WorldWideScience

Sample records for plant community classification

  1. Plant diversity and plant identity influence Fusarium communities in soil.

    Science.gov (United States)

    LeBlanc, Nicholas; Kinkel, Linda; Kistler, H Corby

    2017-01-01

    Fusarium communities play important functional roles in soil and in plants as pathogens, endophytes, and saprotrophs. This study tests how rhizosphere Fusarium communities may vary with plant species, changes in the diversity of the surrounding plant community, and soil physiochemical characteristics. Fusarium communities in soil associated with the roots of two perennial prairie plant species maintained as monocultures or growing within polyculture plant communities were characterized using targeted metagenomics. Amplicon libraries targeting the RPB2 locus were generated from rhizosphere soil DNAs and sequenced using pyrosequencing. Sequences were clustered into operational taxonomic units (OTUs) and assigned a taxonomy using the Evolutionary Placement Algorithm. Fusarium community composition was differentiated between monoculture and polyculture plant communities, and by plant species in monoculture, but not in polyculture. Taxonomic classification of the Fusarium OTUs showed a predominance of F. tricinctum and F. oxysporum as well of the presence of a clade previously only found in the Southern Hemisphere. Total Fusarium richness was not affected by changes in plant community richness or correlated with soil physiochemical characteristics. However, OTU richness within two predominant phylogenetic lineages within the genus was positively or negatively correlated with soil physiochemical characteristics among samples within each lineage. This work shows that plant species, plant community richness, and soil physiochemical characteristics may all influence the composition and richness of Fusarium communities in soil.

  2. [Diversity and classification system of weed community in Harbin City, China].

    Science.gov (United States)

    Chen, Xiao-Shuang; Liang, Hong; Song, Kun; Da, Liang-Jun

    2014-08-01

    To analyze the causes of weed community diversity and their strategies of adaption to the high heterogeneity of urban habitats, weed communities in the central urban area of Harbin, China were studied, and a classification system was established for the weed communities. There were 175 weed species, belonging to 128 genera and 38 families. The heterogeneous urban habitats and species' temporal niche differentiation resulted in the highly diversified weed communities. The high proportions of mono-species dominance and annual species dominance communities were their response to the unstable urban habitats under human disturbances with high intensities and frequencies. A four-level classification system was established in terms of plant species and habitat conditions. Within this system, the identified 1763 weed communities could be categorized into two types of life form, 5 types of dormancy form, 22 community groups, and 119 dominance communities.

  3. Cognition, culture and utility: plant classification by Paraguayan immigrant farmers in Misiones, Argentina.

    Science.gov (United States)

    Kujawska, Monika; Jiménez-Escobar, N David; Nolan, Justin M; Arias-Mutis, Daniel

    2017-07-25

    This study was conducted in three rural communities of small farmers of Paraguayan origin living in the province of Misiones, Argentina. These Criollos (Mestizos) hail chiefly from departments located in the east of Paraguay, where the climate and flora have similar characteristics as those in Misiones. These ecological features contribute to the continuation and maintenance of knowledge and practices related to the use of plants. Fieldwork was conducted between September 2014 and August 2015. Forty five informants from three rural localities situated along the Parana River participated in an ethno-classification task. For the classification event, photographs of 30 medicinal and edible plants were chosen, specifically those yielding the highest frequency of mention among the members of that community (based on data obtained in the first stage of research in 2014). Variation in local plant classifications was examined and compared using principal component analysis and cluster analysis. We found that people classify plants according to application or use (primarily medicinal, to a lesser extent as edible). Morphology is rarely taken into account, even for very similar and closely-related species such as varieties of palms. In light of our findings, we highlight a dominant functionality model at work in the process of plant cognition and classification among farmers of Paraguayan origin. Salient cultural beliefs and practices associated with rural Paraguayan plant-based medicine are described. Additionally, the manner by which residents' concepts of plants articulate with local folk epistemology is discussed. Culturally constructed use patterns ultimately override morphological variables in rural Paraguayans' ethnobotanical classification.

  4. Seed bank characteristics of Dutch plant communities

    NARCIS (Netherlands)

    Bekker, RM; Schaminee, JHJ; Bakker, JP; Thompson, K

    With the recent appearances of a new and well-documented classification of the Dutch plant communities (Schaminee et al 1995a,b; 1996) and a database on the seed longevity of plant species of North West Europe (Thompson ct al. 1997a) it was possible to investigate patterns of seed longevity in Dutch

  5. Mapping of aggregated floodplain plant communities using image fusion of CASI and LiDAR data

    NARCIS (Netherlands)

    Verrelst, J.; Geerling, G.W.; Sykora, K.V.; Clevers, J.G.P.W.

    2009-01-01

    Combined optical and laser altimeter data offer the potential to map and monitor plant communities based on their spectral and structural characteristics. A problem unresolved is, however, that narrowly defined plant communities, i.e. plant communities at a low hierarchical level of classification

  6. Carnegie's New Community Engagement Classification: Affirming Higher Education's Role in Community

    Science.gov (United States)

    Driscoll, Amy

    2009-01-01

    In 2005, the Carnegie Foundation for the Advancement of Teaching (CFAT) stirred the higher education world with the announcement of a new classification for institutions that engage with community. The classification, community engagement, is the first in a set of planned classification schemes resulting from the foundation's reexamination of the…

  7. A baseline classification of riparian woodland plant communities in ...

    African Journals Online (AJOL)

    The plots were placed along a gradient from the main water body to the drier fringe of the riparian zone. Plant species present in each plot were recorded with their estimated percentage cover using the Braun–Blanquet cover abundance scale. Hierarchical cluster analysis was used to determine vegetation communities.

  8. Morphological classification of plant cell deaths

    DEFF Research Database (Denmark)

    van Doorn, W.G.; Beers, E.P.; Dangl, J.L.

    2011-01-01

    , which can express features of both necrosis and vacuolar cell death, PCD in starchy cereal endosperm and during self-incompatibility. The present classification is not static, but will be subject to further revision, especially when specific biochemical pathways are better defined....... the classification of PCD in plants. Here we suggest a classification based on morphological criteria. According to this classification, the use of the term 'apoptosis' is not justified in plants, but at least two classes of PCD can be distinguished: vacuolar cell death and necrosis. During vacuolar cell death...

  9. Phytosociology and plant community utilisation by vervet monkeys of the Blydeberg Conservancy, Limpopo Province

    Directory of Open Access Journals (Sweden)

    A.S. Barret

    2006-12-01

    Full Text Available The plant communities of the Blydeberg Conservancy were investigated as part of a research project on the foraging ecology of vervet monkeys Cercopithecus aethiops pygerythrus (senso lato in mixed lowveld bushveld and sour lowveld bushveld areas. To date there are no formal management plans for vervet monkeys. This is attributed to the limited knowledge of vervets and their utilisation of and impacts on ecosystems. From a TWINSPAN classification refined by Braun-Blanquet procedures, ten plant communities that can be placed into four major groups were identified. A classification and description of these communities, including a vegetation map are presented. Diagnostic species as well as prominent and less conspicuous species of tree, shrub, herb and grass strata are outlined. Of the ten available plant communities, the vervets utilised only six during the study period. There was an abundant supply of various food sources throughout the year, with movement patterns mostly coinciding with the fruiting times of several tree and other plant species.

  10. Morphological classification of plant cell deaths.

    Science.gov (United States)

    van Doorn, W G; Beers, E P; Dangl, J L; Franklin-Tong, V E; Gallois, P; Hara-Nishimura, I; Jones, A M; Kawai-Yamada, M; Lam, E; Mundy, J; Mur, L A J; Petersen, M; Smertenko, A; Taliansky, M; Van Breusegem, F; Wolpert, T; Woltering, E; Zhivotovsky, B; Bozhkov, P V

    2011-08-01

    Programmed cell death (PCD) is an integral part of plant development and of responses to abiotic stress or pathogens. Although the morphology of plant PCD is, in some cases, well characterised and molecular mechanisms controlling plant PCD are beginning to emerge, there is still confusion about the classification of PCD in plants. Here we suggest a classification based on morphological criteria. According to this classification, the use of the term 'apoptosis' is not justified in plants, but at least two classes of PCD can be distinguished: vacuolar cell death and necrosis. During vacuolar cell death, the cell contents are removed by a combination of autophagy-like process and release of hydrolases from collapsed lytic vacuoles. Necrosis is characterised by early rupture of the plasma membrane, shrinkage of the protoplast and absence of vacuolar cell death features. Vacuolar cell death is common during tissue and organ formation and elimination, whereas necrosis is typically found under abiotic stress. Some examples of plant PCD cannot be ascribed to either major class and are therefore classified as separate modalities. These are PCD associated with the hypersensitive response to biotrophic pathogens, which can express features of both necrosis and vacuolar cell death, PCD in starchy cereal endosperm and during self-incompatibility. The present classification is not static, but will be subject to further revision, especially when specific biochemical pathways are better defined.

  11. Safety classification of items in Tianwan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Sun Yongbin

    2005-01-01

    The principle of integrality, moderation and equilibrium should be considered in the safety classification of items in nuclear power plant. The basic ways for safety classification of items is to classify the safety function based on the effect of the outside enclosure damage of the items (parts) on the safety. Tianwan Nuclear Power Plant adopts Russian VVER-1000/428 type reactor, it safety classification mainly refers to Russian Guidelines and standards. The safety classification of the electric equipment refers to IEEE-308(80) standard, including 1E and Non 1E classification. The safety classification of the instrumentation and control equipment refers to GB/T 15474-1995 standard, including safety 1E, safety-related SR and NC non-safety classification. The safety classification of Tianwan Nuclear Power Plant has to be approved by NNSA and satisfy Chinese Nuclear Safety Guidelines. (authors)

  12. Spectral identification of plant communities for mapping of semi-natural grasslands

    DEFF Research Database (Denmark)

    Jacobsen, Anne; Nielsen, Allan Aasbjerg; Ejrnæs, Rasmus

    2000-01-01

    identification of plant communities was based on a hierarchical approach relating the test sites to i) management (Ma) and ii) flora (Fl) using spectral consistency and separability as the main criteria. Evaluation of spectral consistency was based on unsupervised clustering of test sites of Ma classes 1 to 7...... as a measure of plant community heterogeneity within management classes. The spectral analysis as well as the maximum likelihood classification indicated that the source of spectral variation within management classes might be related to vegetation composition....

  13. Biological indices for classification of water quality around Mae Moh power plant, Thailand

    Directory of Open Access Journals (Sweden)

    Pongsarun Junshum and Siripen Traichaiyaporn

    2007-12-01

    Full Text Available The algal communities and water quality were monitored at eight sampling sites around Mae Moh power plant during January-December 2003. Three biological indices, viz. algal genus pollution index, saprobic index, and Shannon-Weaver index, were adopted to classify the water quality around the power plant in comparison with the measured physico-chemical water quality. The result shows that the Shannon-Weaver diversity index appears to be much more applicable and interpretable for the classification of water quality around the Mae Moh power plant than the algal genus pollution index and the saprobic index.

  14. Safety classification of nuclear power plant systems, structures and components

    International Nuclear Information System (INIS)

    1992-01-01

    The Safety Classification principles used for the systems, structures and components of a nuclear power plant are detailed in the guide. For classification, the nuclear power plant is divided into structural and operational units called systems. Every structure and component under control is included into some system. The Safety Classes are 1, 2 and 3 and the Class EYT (non-nuclear). Instructions how to assign each system, structure and component to an appropriate safety class are given in the guide. The guide applies to new nuclear power plants and to the safety classification of systems, structures and components designed for the refitting of old nuclear power plants. The classification principles and procedures applying to the classification document are also given

  15. Field Guide to the Plant Community Types of Voyageurs National Park

    Science.gov (United States)

    Faber-Langendoen, Don; Aaseng, Norman; Hop, Kevin; Lew-Smith, Michael

    2007-01-01

    INTRODUCTION The objective of the U.S. Geological Survey-National Park Service Vegetation Mapping Program is to classify, describe, and map vegetation for most of the park units within the National Park Service (NPS). The program was created in response to the NPS Natural Resources Inventory and Monitoring Guidelines issued in 1992. Products for each park include digital files of the vegetation map and field data, keys and descriptions to the plant communities, reports, metadata, map accuracy verification summaries, and aerial photographs. Interagency teams work in each park and, following standardized mapping and field sampling protocols, develop products and vegetation classification standards that document the various vegetation types found in a given park. The use of a standard national vegetation classification system and mapping protocol facilitate effective resource stewardship by ensuring compatibility and widespread use of the information throughout the NPS as well as by other Federal and state agencies. These vegetation classifications and maps and associated information support a wide variety of resource assessment, park management, and planning needs, and provide a structure for framing and answering critical scientific questions about plant communities and their relation to environmental processes across the landscape. This field guide is intended to make the classification accessible to park visitors and researchers at Voyageurs National Park, allowing them to identify any stand of natural vegetation and showing how the classification can be used in conjunction with the vegetation map (Hop and others, 2001).

  16. Blue oak plant communities of southern San Luis Obispo and northern Santa Barbara Counties, California

    Science.gov (United States)

    Mark I. Borchert; Nancy D. Cunha; Patricia C. Krosse; Marcee L. Lawrence

    1993-01-01

    An ecological classification system has been developed for the Pacific Southwest Region of the Forest Service. As part of that classification effort, blue oak (Quercus douglasii) woodlands and forests of southern San Luis Obispo and northern Santa Barbara Counties in Los Padres National Forest were classified into I3 plant communities using...

  17. Nuclear power plant systems, structures and components and their safety classification

    International Nuclear Information System (INIS)

    2000-01-01

    The assurance of a nuclear power plant's safety is based on the reliable functioning of the plant as well as on its appropriate maintenance and operation. To ensure the reliability of operation, special attention shall be paid to the design, manufacturing, commissioning and operation of the plant and its components. To control these functions the nuclear power plant is divided into structural and functional entities, i.e. systems. A systems safety class is determined by its safety significance. Safety class specifies the procedures to be employed in plant design, construction, monitoring and operation. The classification document contains all documentation related to the classification of the nuclear power plant. The principles of safety classification and the procedures pertaining to the classification document are presented in this guide. In the Appendix of the guide, examples of systems most typical of each safety class are given to clarify the safety classification principles

  18. Classification of High-Mountain Vegetation Communities within a Diverse Giant Mountains Ecosystem Using Airborne APEX Hyperspectral Imagery

    Directory of Open Access Journals (Sweden)

    Adriana Marcinkowska-Ochtyra

    2018-04-01

    Full Text Available Mapping plant communities is a difficult and time consuming endeavor. Methods relying on field surveys deliver high quality data but are usually limited to relatively small areas. In this paper we apply airborne hyperspectral data to vegetation mapping in remote and hard to reach areas. We classified 22 vegetation communities in the Giant Mountains on 3.12-m Airborne Prism Experiment (APEX hyperspectral images, registered in 288 spectral bands (10 September 2012. As the classification algorithm, Support Vector Machines (SVM was used. APEX data were corrected geometrically and atmospherically, and three dimensionality reduction methods were performed to select the best dataset. As reference we used a non-forest vegetation map containing vegetation communities of Polish Karkonosze National Park from 2002, orthophotomap and field surveys data from 2013 to 2014. We obtained the post-classification maps of 22 vegetation communities, lakes and areas without any vegetation. Iterative accuracy assessment repeated 100 times was used to obtain the most objective results for individual communities. The median value of overall accuracy (OA was 84%. Fourteen out of twenty-four classes were classified of more than 80% of producer accuracy (PA and sixteen out of twenty-four of user accuracy (UA. APEX data and SVM with the use of iterative accuracy assessment are useful for the mountain communities classification. This can support both Polish and Czech national parks management by giving the information about diversity of communities in the whole transboundary area, helping with identification especially in changing environment caused by humans.

  19. Plant-plant competition outcomes are modulated by plant effects on the soil bacterial community.

    Science.gov (United States)

    Hortal, S; Lozano, Y M; Bastida, F; Armas, C; Moreno, J L; Garcia, C; Pugnaire, F I

    2017-12-19

    Competition is a key process that determines plant community structure and dynamics, often mediated by nutrients and water availability. However, the role of soil microorganisms on plant competition, and the links between above- and belowground processes, are not well understood. Here we show that the effects of interspecific plant competition on plant performance are mediated by feedbacks between plants and soil bacterial communities. Each plant species selects a singular community of soil microorganisms in its rhizosphere with a specific species composition, abundance and activity. When two plant species interact, the resulting soil bacterial community matches that of the most competitive plant species, suggesting strong competitive interactions between soil bacterial communities as well. We propose a novel mechanism by which changes in belowground bacterial communities promoted by the most competitive plant species influence plant performance and competition outcome. These findings emphasise the strong links between plant and soil communities, paving the way to a better understanding of plant community dynamics and the effects of soil bacterial communities on ecosystem functioning and services.

  20. Ordination of self-organizing feature map neural networks and its application to the study of plant communities

    Institute of Scientific and Technical Information of China (English)

    Jintun ZHANG; Dongping MENG; Yuexiang XI

    2009-01-01

    A self-organizing feature map (SOFM) neural network is a powerful tool in analyzing and solving complex, non-linear problems. According to its features, a SOFM is entirely compatible with ordination studies of plant communities. In our present work, mathematical principles, and ordination techniques and procedures are introduced. A SOFM ordination was applied to the study of plant communities in the middle of the Taihang mountains. The ordination was carried out by using the NNTool box in MATLAB. The results of 68 quadrats of plant communities were distributed in SOFM space. The ordination axes showed the ecological gradients clearly and provided the relationships between communities with ecological meaning. The results are consistent with the reality of vegetation in the study area. This suggests that SOFM ordination is an effective technique in plant ecology. During ordination procedures, it is easy to carry out clustering of communities and so it is beneficial for combining classification and ordination in vegetation studies.

  1. Analysis of the Carnegie Classification of Community Engagement: Patterns and Impact on Institutions

    Science.gov (United States)

    Driscoll, Amy

    2014-01-01

    This chapter describes the impact that participation in the Carnegie Classification for Community Engagement had on the institutions of higher learning that applied for the classification. This is described in terms of changes in direct community engagement, monitoring and reporting on community engagement, and levels of student and professor…

  2. Conceptual hierarchical modeling to describe wetland plant community organization

    Science.gov (United States)

    Little, A.M.; Guntenspergen, G.R.; Allen, T.F.H.

    2010-01-01

    Using multivariate analysis, we created a hierarchical modeling process that describes how differently-scaled environmental factors interact to affect wetland-scale plant community organization in a system of small, isolated wetlands on Mount Desert Island, Maine. We followed the procedure: 1) delineate wetland groups using cluster analysis, 2) identify differently scaled environmental gradients using non-metric multidimensional scaling, 3) order gradient hierarchical levels according to spatiotem-poral scale of fluctuation, and 4) assemble hierarchical model using group relationships with ordination axes and post-hoc tests of environmental differences. Using this process, we determined 1) large wetland size and poor surface water chemistry led to the development of shrub fen wetland vegetation, 2) Sphagnum and water chemistry differences affected fen vs. marsh / sedge meadows status within small wetlands, and 3) small-scale hydrologic differences explained transitions between forested vs. non-forested and marsh vs. sedge meadow vegetation. This hierarchical modeling process can help explain how upper level contextual processes constrain biotic community response to lower-level environmental changes. It creates models with more nuanced spatiotemporal complexity than classification and regression tree procedures. Using this process, wetland scientists will be able to generate more generalizable theories of plant community organization, and useful management models. ?? Society of Wetland Scientists 2009.

  3. The Ecohydrological Context of Drought and Classification of Plant Responses

    Science.gov (United States)

    Feng, X.; Ackerly, D.; Dawson, T. E.; Manzoni, S.; Skelton, R. P.; Vico, G.; Thompson, S. E.

    2017-12-01

    Many recent studies on drought-induced vegetation mortality have explored how plant functional traits, and classifications of such traits along axes of, e.g., isohydry - anisohydry, might contribute to predicting drought survival and recovery. As these studies proliferate, concerns are growing about the consistency and predictive value of such classifications. Here, we outline the basis for a systematic classification of drought strategies that accounts for both environmental conditions and functional traits. We (1) identify drawbacks of exiting isohydricity and trait-based metrics, (2) identify major axes of trait and environmental variation that determine drought mortality pathways (hydraulic failure and carbon starvation) using non-dimensional trait groups, and (3) demonstrate that these trait groupings predict physiological drought outcomes using both measured and synthetic data. In doing so we untangle some confounding effects of environment and trait variations that undermine current classification schemes, outline a pathway to progress towards a general classification of drought vulnerability, and advocate for more careful treatment of the environmental conditions within which plant drought responses occur.

  4. Soil-landform-plant communities relationships of a periglacial landscape at Potter Peninsula, Maritime Antarctica

    Science.gov (United States)

    Poelking, E. L.; Schaefer, C. E. R.; Fernandes Filho, E. I.; de Andrade, A. M.; Spielmann, A. A.

    2014-08-01

    Integrated studies on the interplay between soils, periglacial geomorphology and plant communities are crucial for the understanding of climate change effects on terrestrial ecosystems of Maritime Antarctica, one of the most sensitive areas to global warming. Knowledge on physical environmental factors that influence plant communities can greatly benefit studies on monitoring climate change in Maritime Antarctica, where new ice-free areas are being constantly exposed, allowing plant growth and organic carbon inputs. The relationship between topography, plant communities and soils was investigated in Potter Peninsula, King George Island, Maritime Antarctica. We mapped the occurrence and distribution of plant communities and identified soil-landform-vegetation relationships. The vegetation map was obtained by classification of a Quickbird image, coupled with detailed landform and characterization of 18 soil profiles. The sub-formations were identified and classified, and we also determined the total elemental composition of lichens, mosses and grasses. Plant communities at Potter Peninsula occupy 23% of the ice-free area, at different landscape positions, showing decreasing diversity and biomass from the coastal zone to inland areas where sub-desert conditions prevail. There is a clear dependency between landform and vegetated soils. Soils with greater moisture or poorly drained, and acid to neutral pH, are favourable for mosses subformations. Saline, organic-matter rich ornithogenic soils of former penguin rookeries have greater biomass and diversity, with mixed associations of mosses and grasses, while stable felseenmeers and flat rocky cryoplanation surfaces are the preferred sites for Usnea and Himantormia lugubris lichens, at the highest surface. Lichens subformations cover the largest vegetated area, showing varying associations with mosses.

  5. Improved Management of Part Safety Classification System for Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Young; Park, Youn Won; Park, Heung Gyu; Park, Hyo Chan [BEES Inc., Daejeon (Korea, Republic of)

    2016-10-15

    As, in recent years, many quality assurance (QA) related incidents, such as falsely-certified parts and forged documentation, etc., were reported in association with the supply of structures, systems, components and parts to nuclear power plants, a need for a better management of safety classification system was addressed so that it would be based more on the level of parts . Presently, the Korean nuclear power plants do not develop and apply relevant procedures for safety classifications, but rather the safety classes of parts are determined solely based on the experience of equipment designers. So proposed in this paper is a better management plan for safety equipment classification system with an aim to strengthen the quality management for parts. The plan was developed through the analysis of newly introduced technical criteria to be applied to parts of nuclear power plant.

  6. Using Bi-Seasonal WorldView-2 Multi-Spectral Data and Supervised Random Forest Classification to Map Coastal Plant Communities in Everglades National Park

    Directory of Open Access Journals (Sweden)

    Kristie S. Wendelberger

    2018-03-01

    Full Text Available Coastal plant communities are being transformed or lost because of sea level rise (SLR and land-use change. In conjunction with SLR, the Florida Everglades ecosystem has undergone large-scale drainage and restoration, altering coastal vegetation throughout south Florida. To understand how coastal plant communities are changing over time, accurate mapping techniques are needed that can define plant communities at a fine-enough resolution to detect fine-scale changes. We explored using bi-seasonal versus single-season WorldView-2 satellite data to map three mangrove and four adjacent plant communities, including the buttonwood/glycophyte community that harbors the federally-endangered plant Chromolaena frustrata. Bi-seasonal data were more effective than single-season to differentiate all communities of interest. Bi-seasonal data combined with Light Detection and Ranging (LiDAR elevation data were used to map coastal plant communities of a coastal stretch within Everglades National Park (ENP. Overall map accuracy was 86%. Black and red mangroves were the dominant communities and covered 50% of the study site. All the remaining communities had ≤10% cover, including the buttonwood/glycophyte community. ENP harbors 21 rare coastal species threatened by SLR. The spatially explicit, quantitative data provided by our map provides a fine-scale baseline for monitoring future change in these species’ habitats. Our results also offer a method to monitor vegetation change in other threatened habitats.

  7. Using Bi-Seasonal WorldView-2 Multi-Spectral Data and Supervised Random Forest Classification to Map Coastal Plant Communities in Everglades National Park.

    Science.gov (United States)

    Wendelberger, Kristie S; Gann, Daniel; Richards, Jennifer H

    2018-03-09

    Coastal plant communities are being transformed or lost because of sea level rise (SLR) and land-use change. In conjunction with SLR, the Florida Everglades ecosystem has undergone large-scale drainage and restoration, altering coastal vegetation throughout south Florida. To understand how coastal plant communities are changing over time, accurate mapping techniques are needed that can define plant communities at a fine-enough resolution to detect fine-scale changes. We explored using bi-seasonal versus single-season WorldView-2 satellite data to map three mangrove and four adjacent plant communities, including the buttonwood/glycophyte community that harbors the federally-endangered plant Chromolaena frustrata . Bi-seasonal data were more effective than single-season to differentiate all communities of interest. Bi-seasonal data combined with Light Detection and Ranging (LiDAR) elevation data were used to map coastal plant communities of a coastal stretch within Everglades National Park (ENP). Overall map accuracy was 86%. Black and red mangroves were the dominant communities and covered 50% of the study site. All the remaining communities had ≤10% cover, including the buttonwood/glycophyte community. ENP harbors 21 rare coastal species threatened by SLR. The spatially explicit, quantitative data provided by our map provides a fine-scale baseline for monitoring future change in these species' habitats. Our results also offer a method to monitor vegetation change in other threatened habitats.

  8. Mountain Plant Community Sentinels: AWOL

    Science.gov (United States)

    Malanson, G. P.

    2017-12-01

    Mountain plant communities are thought to be sensitive to climate change. Because climatic gradients are steep on mountain slopes, the spatial response of plant communities to climate change should be compressed and easier to detect. These expectations have led to identifying mountain plant communities as sentinels for climate change. This idea has, however, been criticized. Two critiques, for alpine treeline and alpine tundra, are rehearsed and supplemented. The critique of alpine treeline as sentinel is bolstered with new model results on the confounding role of dispersal mechanisms and sensitivity to climatic volatility. In alpine tundra, for which background turnover rates have yet to be established, community composition may reflect environmental gradients only for extremes where effects of climate are most indirect. Both plant communities, while primarily determined by energy at broad scales, may respond to water as a proximate driver at local scales. These plant communities may not be in equilibrium with climate, and differently scaled time lags may mean that ongoing vegetation change may not signal ongoing climate change (or lack thereof). In both cases a double-whammy is created by scale dependence for time lags and for drivers leading to confusion, but these cases present opportunities for insights into basic ecology.

  9. Documenting Community Engagement Practices and Outcomes: Insights from Recipients of the 2010 Carnegie Community Engagement Classification

    Science.gov (United States)

    Noel, Jana; Earwicker, David P.

    2015-01-01

    This study was performed to document the strategies and methods used by successful applicants for the 2010 Carnegie Community Engagement Classification and to document the cultural shifts connected with the application process and receipt of the Classification. Four major findings emerged: (1) Applicants benefited from a team approach; (2)…

  10. Soil-landform-plant-community relationships of a periglacial landscape on Potter Peninsula, maritime Antarctica

    Science.gov (United States)

    Poelking, E. L.; Schaefer, C. E. R.; Fernandes Filho, E. I.; de Andrade, A. M.; Spielmann, A. A.

    2015-05-01

    Integrated studies on the interplay between soils, periglacial geomorphology and plant communities are crucial for the understanding of climate change effects on terrestrial ecosystems of maritime Antarctica, one of the most sensitive areas to global warming. Knowledge on physical environmental factors that influence plant communities can greatly benefit studies on the monitoring of climate change in maritime Antarctica, where new ice-free areas are being constantly exposed, allowing plant growth and organic carbon inputs. The relationship between topography, plant communities and soils was investigated on Potter Peninsula, King George Island, maritime Antarctica. We mapped the occurrence and distribution of plant communities and identified soil-landform-vegetation relationships. The vegetation map was obtained by classification of a QuickBird image, coupled with detailed landform and characterization of 18 soil profiles. The sub-formations were identified and classified, and we also determined the total elemental composition of lichens, mosses and grasses. Plant communities on Potter Peninsula occupy 23% of the ice-free area, at different landscape positions, showing decreasing diversity and biomass from the coastal zone to inland areas where sub-desert conditions prevail. There is a clear dependency between landform and vegetated soils. Soils that have greater moisture or are poorly drained, and with acid to neutral pH, are favourable for moss sub-formations. Saline, organic-matter-rich ornithogenic soils of former penguin rookeries have greater biomass and diversity, with mixed associations of mosses and grasses, while stable felsenmeers and flat rocky cryoplanation surfaces are the preferred sites for Usnea and Himantormia lugubris lichens at the highest surface. Lichens sub-formations cover the largest vegetated area, showing varying associations with mosses.

  11. Plant community resistance to invasion by Bromus species – the roles of community attributes, Bromus Interactions with plant communities, and Bromus traits

    Science.gov (United States)

    Chambers, Jeanne; Germino, Matthew; Belnap, Jayne; Brown, Cynthia; Schupp, Eugene W.; St. Clair, Samuel B

    2016-01-01

    The factors that determine plant community resistance to exotic annual Bromus species (Bromushereafter) are diverse and context specific. They are influenced by the environmental characteristics and attributes of the community, the traits of Bromus species, and the direct and indirect interactions of Bromus with the plant community. Environmental factors, in particular ambient and soil temperatures, have significant effects on the ability of Bromus to establish and spread. Seasonality of precipitation relative to temperature influences plant community resistance toBromus through effects on soil water storage, timing of water and nutrient availability, and dominant plant life forms. Differences among plant communities in how well soil resource use by the plant community matches resource supply rates can influence the magnitude of resource fluctuations due to either climate or disturbance and thus the opportunities for invasion. The spatial and temporal patterns of resource availability and acquisition of growth resources by Bromus versus native species strongly influence resistance to invasion. Traits of Bromus that confer a “priority advantage” for resource use in many communities include early-season germination and high growth and reproductive rates. Resistance to Bromus can be overwhelmed by high propagule supply, low innate seed dormancy, and large, if short-lived, seed banks. Biological crusts can inhibit germination and establishment of invasive annual plants, including several annual Bromus species, but are effective only in the absence of disturbance. Herbivores can have negative direct effects on Bromus, but positive indirect effects through decreases in competitors. Management strategies can be improved through increased understanding of community resistance to exotic annual Bromus species.

  12. 9 CFR 146.33 - Terminology and classification; meat-type chicken slaughter plants.

    Science.gov (United States)

    2010-01-01

    ...-type chicken slaughter plants. 146.33 Section 146.33 Animals and Animal Products ANIMAL AND PLANT... PLAN FOR COMMERCIAL POULTRY Special Provisions for Meat-Type Chicken Slaughter Plants § 146.33 Terminology and classification; meat-type chicken slaughter plants. Participating meat-type chicken slaughter...

  13. Evaluation of the Waste Isolation Pilot Plant classification of systems, structures and components

    International Nuclear Information System (INIS)

    1985-07-01

    A review of the classification system for systems, structures, and components at the Waste Isolation Pilot Plant (WIPP) was performed using the WIPP Safety Analysis Report (SAR) and Bechtel document D-76-D-03 as primary source documents. The regulations of the US Nuclear Regulatory Commission (NRC) covering ''Disposal of High level Radioactive Wastes in Geologic Repositories,'' 10 CFR 60, and the regulations relevant to nuclear power plant siting and construction (10 CFR 50, 51, 100) were used as standards to evaluate the WIPP design classification system, although it is recognized that the US Department of Energy (DOE) is not required to comply with these NRC regulations in the design and construction of WIPP. The DOE General Design Criteria Manual (DOE Order 6430.1) and the Safety Analysis and Review System for AL Operation document (AL 54f81.1A) were reviewed in part. This report includes a discussion of the historical basis for nuclear power plant requirements, a review of WIPP and nuclear power plant classification bases, and a comparison of the codes and standards applicable to each quality level. Observations made during the review of the WIPP SAR are noted in the text of this reoport. The conclusions reached by this review are: WIPP classification methodology is comparable to corresponding nuclear power procedures. The classification levels assigned to WIPP systems are qualitatively the same as those assigned to nuclear power plant systems

  14. Analysis of effect of safety classification on DCS design in nuclear power plants

    International Nuclear Information System (INIS)

    Gou Guokai; Li Guomin; Wang Qunfeng

    2011-01-01

    By analyzing the safety classification for the systems and functions of nuclear power plants based on the general design requirements for nuclear power plants, especially the requirement of availability and reliability of I and C systems, the characteristics of modem DCS technology and I and C products currently applied in nuclear power field are interpreted. According to the requirements on the safety operation of nuclear power plants and the regulations for safety audit, the effect of different safety classifications on DCS design in nuclear power plants is analyzed, by considering the actual design process of different DCS solutions in the nuclear power plants under construction. (authors)

  15. Multilabel user classification using the community structure of online networks.

    Science.gov (United States)

    Rizos, Georgios; Papadopoulos, Symeon; Kompatsiaris, Yiannis

    2017-01-01

    We study the problem of semi-supervised, multi-label user classification of networked data in the online social platform setting. We propose a framework that combines unsupervised community extraction and supervised, community-based feature weighting before training a classifier. We introduce Approximate Regularized Commute-Time Embedding (ARCTE), an algorithm that projects the users of a social graph onto a latent space, but instead of packing the global structure into a matrix of predefined rank, as many spectral and neural representation learning methods do, it extracts local communities for all users in the graph in order to learn a sparse embedding. To this end, we employ an improvement of personalized PageRank algorithms for searching locally in each user's graph structure. Then, we perform supervised community feature weighting in order to boost the importance of highly predictive communities. We assess our method performance on the problem of user classification by performing an extensive comparative study among various recent methods based on graph embeddings. The comparison shows that ARCTE significantly outperforms the competition in almost all cases, achieving up to 35% relative improvement compared to the second best competing method in terms of F1-score.

  16. Multilabel user classification using the community structure of online networks.

    Directory of Open Access Journals (Sweden)

    Georgios Rizos

    Full Text Available We study the problem of semi-supervised, multi-label user classification of networked data in the online social platform setting. We propose a framework that combines unsupervised community extraction and supervised, community-based feature weighting before training a classifier. We introduce Approximate Regularized Commute-Time Embedding (ARCTE, an algorithm that projects the users of a social graph onto a latent space, but instead of packing the global structure into a matrix of predefined rank, as many spectral and neural representation learning methods do, it extracts local communities for all users in the graph in order to learn a sparse embedding. To this end, we employ an improvement of personalized PageRank algorithms for searching locally in each user's graph structure. Then, we perform supervised community feature weighting in order to boost the importance of highly predictive communities. We assess our method performance on the problem of user classification by performing an extensive comparative study among various recent methods based on graph embeddings. The comparison shows that ARCTE significantly outperforms the competition in almost all cases, achieving up to 35% relative improvement compared to the second best competing method in terms of F1-score.

  17. Ecology of some mire and bog plant communities in the Western Italian Alps

    Directory of Open Access Journals (Sweden)

    Giorgio BUFFA

    2003-02-01

    Full Text Available During a mire vegetation study, conducted mainly in the subalpine-alpine sector of the Western Italian Alps, the ecology of several plant communities and numerous moss species of this kind of vegetation was evaluated. The study area covered the Piedmontese sector of the Graian Alps, the eastern sector of the Aosta Valley as well as certain localities of the Pennine Alps, the Canavese district and the Maritime Alps. They have a rocky substratum representative of the various regional lithologies and include the main sectors characterised by the highest precipitation. Three hundred and twenty two relevées were made using the phytosociological method and the pH and the conductivity of the water table and its depth were measured directly. Cluster Analysis allowed a classification of the samples and the identification of various groups of plant communities. Ordination performed by DCA and CCA allowed us to identify the ecological features of the various plant communities by using the values of the main environmental parameters, measured directly in the field, and certain climatic parameters (altitude and mean annual precipitation available. The use of climatic parameters is an important result for identifying communities which show greater oceanicity, something that is underlined also by the presence of indicator species such as Sphagnum papillosum and S. subnitens. Furthermore the communities are arranged in a "poor-rich" gradient, and are also profoundly influenced by depth to water table which is inversely correlated to the pH. Therefore we find certain kinds of communities all with a very low water table and which are little affected by its chemistry. Other groups share the fact that the water table is outcropping or near the surface and are distinguishable for their pH values and conductivity. We discuss the different response of the bryophytes and vascular plants of these communities to the environmental parameters considered, in light of their

  18. Habitat typing versus advanced vegetation classification in western forests

    Science.gov (United States)

    Tony Kusbach; John Shaw; James Long; Helga Van Miegroet

    2012-01-01

    Major habitat and community types in northern Utah were compared with plant alliances and associations that were derived from fidelity- and diagnostic-species classification concepts. Each of these classification approaches was associated with important environmental factors. Within a 20,000-ha watershed, 103 forest ecosystems were described by physiographic features,...

  19. Application of the Safety Classification of Structures, Systems and Components in Nuclear Power Plants

    International Nuclear Information System (INIS)

    2016-04-01

    This publication describes how to complete tasks associated with every step of the classification methodology set out in IAEA Safety Standards Series No. SSG-30, Safety Classification of Structures, Systems and Components in Nuclear Power Plants. In particular, how to capture all the structures, systems and components (SSCs) of a nuclear power plant to be safety classified. Emphasis is placed on the SSCs that are necessary to limit radiological releases to the public and occupational doses to workers in operational conditions This publication provides information for organizations establishing a comprehensive safety classification of SSCs compliant with IAEA recommendations, and to support regulators in reviewing safety classification submitted by licensees

  20. Support Vector Machine Based Tool for Plant Species Taxonomic Classification

    OpenAIRE

    Manimekalai .K; Vijaya.MS

    2014-01-01

    Plant species are living things and are generally categorized in terms of Domain, Kingdom, Phylum, Class, Order, Family, Genus and name of Species in a hierarchical fashion. This paper formulates the taxonomic leaf categorization problem as the hierarchical classification task and provides a suitable solution using a supervised learning technique namely support vector machine. Features are extracted from scanned images of plant leaves and trained using SVM. Only class, order, family of plants...

  1. Community-level plant-soil feedbacks explain landscape distribution of native and non-native plants.

    Science.gov (United States)

    Kulmatiski, Andrew

    2018-02-01

    Plant-soil feedbacks (PSFs) have gained attention for their potential role in explaining plant growth and invasion. While promising, most PSF research has measured plant monoculture growth on different soils in short-term, greenhouse experiments. Here, five soil types were conditioned by growing one native species, three non-native species, or a mixed plant community in different plots in a common-garden experiment. After 4 years, plants were removed and one native and one non-native plant community were planted into replicate plots of each soil type. After three additional years, the percentage cover of each of the three target species in each community was measured. These data were used to parameterize a plant community growth model. Model predictions were compared to native and non-native abundance on the landscape. Native community cover was lowest on soil conditioned by the dominant non-native, Centaurea diffusa , and non-native community cover was lowest on soil cultivated by the dominant native, Pseudoroegneria spicata . Consistent with plant growth on the landscape, the plant growth model predicted that the positive PSFs observed in the common-garden experiment would result in two distinct communities on the landscape: a native plant community on native soils and a non-native plant community on non-native soils. In contrast, when PSF effects were removed, the model predicted that non-native plants would dominate all soils, which was not consistent with plant growth on the landscape. Results provide an example where PSF effects were large enough to change the rank-order abundance of native and non-native plant communities and to explain plant distributions on the landscape. The positive PSFs that contributed to this effect reflected the ability of the two dominant plant species to suppress each other's growth. Results suggest that plant dominance, at least in this system, reflects the ability of a species to suppress the growth of dominant competitors

  2. Application of two way indicator species analysis in lowland plant types classification.

    Science.gov (United States)

    Kooch, Yahya; Jalilvand, Hamid; Bahmanyar, Mohammad Ali; Pormajidian, Mohammad Reza

    2008-03-01

    A TWINSPAN classification of 60 sample plots from the Khanikan forest (North of Iran) is presented. Plant types were determined from field observations and sample plot data arranged and analyzed in association tables. The types were defined on the basis of species patterns of presence, absence and coverage values. Vegetation was sampled with randomized-systematic method. Vegetation data including density and cover percentage were estimated quantitatively within each quadrate and using the two-way indicator species analysis. The objectives of the study were to plant type's classification for Khanikan lowland forest in North of Iran, Identification of indicator species in plant types and increase our understanding in regarding to one of Multivariate analysis methods (TWINSPAN). Five plant types were produced for the study area by TWINSPAN, i.e., Menta aquatica, Oplismenus undulatifolius, Carex grioletia, Viola odarata and Rubus caesius. Therefore, at each step of the process, the program identifies indicator species that show strongly differential distributions between groups and so can severe to distinguish the groups. The final result, incorporating elements of classification can provide a compact and powerful summary of pattern in the data set.

  3. Plant community resistance to invasion by Bromus species: The roles of community attributes, Bromus interactions with plant communities, and Bromus traits [Chapter 10

    Science.gov (United States)

    Jeanne C. Chambers; Matthew J. Germino; Jayne Belnap; Cynthia S. Brown; Eugene W. Schupp; Samuel B. St. Clair

    2016-01-01

    The factors that determine plant community resistance to exotic annual Bromus species (Bromus hereafter) are diverse and context specific. They are influenced by the environmental characteristics and attributes of the community, the traits of Bromus species, and the direct and indirect interactions of Bromus with the plant community. Environmental factors, in...

  4. Automatic topic identification of health-related messages in online health community using text classification.

    Science.gov (United States)

    Lu, Yingjie

    2013-01-01

    To facilitate patient involvement in online health community and obtain informative support and emotional support they need, a topic identification approach was proposed in this paper for identifying automatically topics of the health-related messages in online health community, thus assisting patients in reaching the most relevant messages for their queries efficiently. Feature-based classification framework was presented for automatic topic identification in our study. We first collected the messages related to some predefined topics in a online health community. Then we combined three different types of features, n-gram-based features, domain-specific features and sentiment features to build four feature sets for health-related text representation. Finally, three different text classification techniques, C4.5, Naïve Bayes and SVM were adopted to evaluate our topic classification model. By comparing different feature sets and different classification techniques, we found that n-gram-based features, domain-specific features and sentiment features were all considered to be effective in distinguishing different types of health-related topics. In addition, feature reduction technique based on information gain was also effective to improve the topic classification performance. In terms of classification techniques, SVM outperformed C4.5 and Naïve Bayes significantly. The experimental results demonstrated that the proposed approach could identify the topics of online health-related messages efficiently.

  5. Evaluation of nuclear power plant operating procedures classifications and interfaces: Problems and techniques for improvement

    International Nuclear Information System (INIS)

    Barnes, V.E.; Radford, L.R.

    1987-02-01

    This report presents activities and findings of a project designed to evaluate current practices and problems related to procedure classification schemes and procedure interfaces in commercial nuclear power plants. The phrase ''procedure classification scheme'' refers to how plant operating procedures are categorized and indexed (e.g., normal, abnormal, emergency operating procedures). The term ''procedure interface'' refers to how reactor operators are instructed to transition within and between procedures. The project consisted of four key tasks, including (1) a survey of literature regarding problems associated with procedure classifications and interfaces, as well as techniques for overcoming them; (2) interviews with experts in the nuclear industry to discuss the appropriate scope of different classes of operating procedures and techniques for managing interfaces between them; (3) a reanalysis of data gathered about nuclear power plant normal operating and off-normal operating procedures in a related project, ''Program Plan for Assessing and Upgrading Operating Procedures for Nuclear Power Plants''; and (4) solicitation of the comments and expert opinions of a peer review group on the draft project report and on proposed techniques for resolving classification and interface issues. In addition to describing these activities and their results, recommendations for NRC and utility actions to address procedure classification and interface problems are offered

  6. Hillslope characterization: Identifying key controls on local-scale plant communities' distribution using remote sensing and subsurface data fusion.

    Science.gov (United States)

    Falco, N.; Wainwright, H. M.; Dafflon, B.; Leger, E.; Peterson, J.; Steltzer, H.; Wilmer, C.; Williams, K. H.; Hubbard, S. S.

    2017-12-01

    Mountainous watershed systems are characterized by extreme heterogeneity in hydrological and pedological properties that influence biotic activities, plant communities and their dynamics. To gain predictive understanding of how ecosystem and watershed system evolve under climate change, it is critical to capture such heterogeneity and to quantify the effect of key environmental variables such as topography, and soil properties. In this study, we exploit advanced geophysical and remote sensing techniques - coupled with machine learning - to better characterize and quantify the interactions between plant communities' distribution and subsurface properties. First, we have developed a remote sensing data fusion framework based on the random forest (RF) classification algorithm to estimate the spatial distribution of plant communities. The framework allows the integration of both plant spectral and structural information, which are derived from multispectral satellite images and airborne LiDAR data. We then use the RF method to evaluate the estimated plant community map, exploiting the subsurface properties (such as bedrock depth, soil moisture and other properties) and geomorphological parameters (such as slope, curvature) as predictors. Datasets include high-resolution geophysical data (electrical resistivity tomography) and LiDAR digital elevation maps. We demonstrate our approach on a mountain hillslope and meadow within the East River watershed in Colorado, which is considered to be a representative headwater catchment in the Upper Colorado Basin. The obtained results show the existence of co-evolution between above and below-ground processes; in particular, dominant shrub communities in wet and flat areas. We show that successful integration of remote sensing data with geophysical measurements allows identifying and quantifying the key environmental controls on plant communities' distribution, and provides insights into their potential changes in the future

  7. Biodiversity of Soil Microbial Communities Following Woody Plant Invasion of Grassland: An Assessment Using Molecular Methods

    Science.gov (United States)

    Kantola, I. B.; Gentry, T. J.; Filley, T. R.; Boutton, T. W.

    2012-12-01

    significantly different between remnant grasslands and all woody plant community types. Phylum-level classification of the 16S bacterial sequences showed that five phyla (Acidobacteria, Actinobacteria, Proteobacteria, Bacteroidetes, and Gemmatiomonadetes) represented 85-91% of classifiable sequences in all landscape elements. The relative abundances of Acidobacteria were significantly higher (p<0.05) in grassland samples (29.5%) than in all wooded landscape elements (17.1-25.6%), while the relative abundances of Actinobacteria was lower in grasslands (8.8%) than wooded areas (16.1-19.7%). Phylum-level classification of fungal sequences showed that four phyla accounted for 61.8 to 86.3% of identified sequences. Ascomycota was the most common phylum in all samples (55.8-62.1%), with significant contributions from Basidiomycota, Chytridiomycota, and Blastocladiomycota. The largest change in fungal community composition at the phylum level was observed in the Chytridiomycota, which declined from 4.0% in the grasslands to 0.8-1.4% in the wooded landscape elements. These significant changes in microbial community composition that occur following grassland to woodland conversion may have important implications for key biogeochemical processes that influence ecosystem structure and function in this region.

  8. Catalogue and classification of technical safety rules for light-water reactors and reprocessing plants

    International Nuclear Information System (INIS)

    Bloser, M.; Fichtner, N.; Neider, R.

    1975-08-01

    This report on the cataloguing and classification of technical rules for land-based light-water reactors and reprocessing plants contains a list of classified rules. The reasons for the classification system used are given and discussed

  9. Modelling asymmetric growth in crowded plant communities

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2010-01-01

    A class of models that may be used to quantify the effect of size-asymmetric competition in crowded plant communities by estimating a community specific degree of size-asymmetric growth for each species in the community is suggested. The model consists of two parts: an individual size......-asymmetric growth part, where growth is assumed to be proportional to a power function of the size of the individual, and a term that reduces the relative growth rate as a decreasing function of the individual plant size and the competitive interactions from other plants in the neighbourhood....

  10. Ozone sensitivity of plants in natural communities

    Energy Technology Data Exchange (ETDEWEB)

    Treshow, M; Stewart, D

    1973-07-01

    Field fumigation studies conducted in grassland, oak, aspen, and conifer, communities established the injury threshold of prevalent plant species to ozone. Several important species, including Bromus tectorum, Quercus gambelii, and Populus tremuloides, were injured by a single 2-hours exposure to 15 pphM ozone. Over half the perennial forbs and woody species studied were visibly injured at concentrations of 30 pphM ozone or less. It is postulated that lower concentrations at prolonged or repeated exposures to ozone may impair growth and affect community vigor and stability. Continued exposure of natural plant communities to ozone is expected to initiate major shifts in the plant composition of communities. 10 references, 4 figures, 1 table.

  11. Database of Vascular Plants of Canada (VASCAN): a community contributed taxonomic checklist of all vascular plants of Canada, Saint Pierre and Miquelon, and Greenland.

    Science.gov (United States)

    Desmet, Peter; Brouillet, Luc

    2013-01-01

    The Database of Vascular Plants of Canada or VASCAN (http://data.canadensys.net/vascan) is a comprehensive and curated checklist of all vascular plants reported in Canada, Greenland (Denmark), and Saint Pierre and Miquelon (France). VASCAN was developed at the Université de Montréal Biodiversity Centre and is maintained by a group of editors and contributors. For every core taxon in the checklist (species, subspecies, or variety), VASCAN provides the accepted scientific name, the accepted French and English vernacular names, and their synonyms/alternatives in Canada, as well as the distribution status (native, introduced, ephemeral, excluded, extirpated, doubtful or absent) of the plant for each province or territory, and the habit (tree, shrub, herb and/or vine) of the plant in Canada. For reported hybrids (nothotaxa or hybrid formulas) VASCAN also provides the hybrid parents, except if the parents of the hybrid do not occur in Canada. All taxa are linked to a classification. VASCAN refers to a source for all name, classification and distribution information. All data have been released to the public domain under a CC0 waiver and are available through Canadensys and the Global Biodiversity Information Facility (GBIF). VASCAN is a service to the scientific community and the general public, including administrations, companies, and non-governmental organizations.

  12. Chemosensory perception and medicinal plants for digestive ailments in a Mapuche community in NW Patagonia, Argentina.

    Science.gov (United States)

    Molares, Soledad; Ladio, Ana

    2009-06-25

    To document the richness of plant species used in gastrointestinal disorders and to investigate about the criteria of aroma and flavor associated with its recognition, classification, selection and use. Ethnobotanical fieldwork consisted of interviews to 30 inhabitants living in a Mapuche community of Northwestern Patagonia; data collected was analyzed by means of non-parametric statistics. This work records 75 ethnospecies, pertaining to 40 botanic families. Lamiaceae, Asteraceae and Chenopodiaceae were the most frequently mentioned and described in terms of smell and taste. Most of species (69%) have notable aroma and/or flavor characteristics. The species presenting highest consensus in the population are positively associated with a higher frequency of organoleptic descriptions. In addition, local people consider these perceptions to be potentially useful in the search for substitutes when species are scarce or disappear from a locality. It is possible to establish a preliminary system of classification of medicinal plants based on their organoleptic characteristics and relate this to their effects on health. Moreover the cultural interpretation of smell and taste is of great heuristic importance to ethnopharmacology, in that it indicates which plants are most likely to contain the main active ingredients sought.

  13. MBS Native Plant Communities

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data layer contains results of the Minnesota County Biological Survey (MCBS). It includes polygons representing the highest quality native plant communities...

  14. Methodology for safety classification of PWR type nuclear power plants items

    International Nuclear Information System (INIS)

    Oliveira, Patricia Pagetti de

    1995-01-01

    This paper contains the criteria and methodology which define a classification system of structures, systems and components in safety classes according to their importance to nuclear safety. The use of this classification system will provide a set of basic safety requirements associated with each safety class specified. These requirements, when available and applicable, shall be utilized in the design, fabrication and installation of structures, systems and components of Pressurized Water Reactor Nuclear Power Plants. (author). 13 refs, 1 tab

  15. IR-360 nuclear power plant safety functions and component classification

    International Nuclear Information System (INIS)

    Yousefpour, F.; Shokri, F.; Soltani, H.

    2010-01-01

    The IR-360 nuclear power plant as a 2-loop PWR of 360 MWe power generation capacity is under design in MASNA Company. For design of the IR-360 structures, systems and components (SSCs), the codes and standards and their design requirements must be determined. It is a prerequisite to classify the IR-360 safety functions and safety grade of structures, systems and components correctly for selecting and adopting the suitable design codes and standards. This paper refers to the IAEA nuclear safety codes and standards as well as USNRC standard system to determine the IR-360 safety functions and to formulate the principles of the IR-360 component classification in accordance with the safety philosophy and feature of the IR-360. By implementation of defined classification procedures for the IR-360 SSCs, the appropriate design codes and standards are specified. The requirements of specific codes and standards are used in design process of IR-360 SSCs by design engineers of MASNA Company. In this paper, individual determination of the IR-360 safety functions and definition of the classification procedures and roles are presented. Implementation of this work which is described with example ensures the safety and reliability of the IR-360 nuclear power plant.

  16. IR-360 nuclear power plant safety functions and component classification

    Energy Technology Data Exchange (ETDEWEB)

    Yousefpour, F., E-mail: fyousefpour@snira.co [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of); Shokri, F.; Soltani, H. [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of)

    2010-10-15

    The IR-360 nuclear power plant as a 2-loop PWR of 360 MWe power generation capacity is under design in MASNA Company. For design of the IR-360 structures, systems and components (SSCs), the codes and standards and their design requirements must be determined. It is a prerequisite to classify the IR-360 safety functions and safety grade of structures, systems and components correctly for selecting and adopting the suitable design codes and standards. This paper refers to the IAEA nuclear safety codes and standards as well as USNRC standard system to determine the IR-360 safety functions and to formulate the principles of the IR-360 component classification in accordance with the safety philosophy and feature of the IR-360. By implementation of defined classification procedures for the IR-360 SSCs, the appropriate design codes and standards are specified. The requirements of specific codes and standards are used in design process of IR-360 SSCs by design engineers of MASNA Company. In this paper, individual determination of the IR-360 safety functions and definition of the classification procedures and roles are presented. Implementation of this work which is described with example ensures the safety and reliability of the IR-360 nuclear power plant.

  17. Integrating Interview Methodology to Analyze Inter-Institutional Comparisons of Service-Learning within the Carnegie Community Engagement Classification Framework

    Science.gov (United States)

    Plante, Jarrad D.; Cox, Thomas D.

    2016-01-01

    Service-learning has a longstanding history in higher education in and includes three main tenets: academic learning, meaningful community service, and civic learning. The Carnegie Foundation for the Advancement of Teaching created an elective classification system called the Carnegie Community Engagement Classification for higher education…

  18. Conservation and restoration of indigenous plants to improve community livelihoods: the Useful Plants Project

    Science.gov (United States)

    Ulian, Tiziana; Sacandé, Moctar; Mattana, Efisio

    2014-05-01

    Kew's Millennium Seed Bank partnership (MSBP) is one of the largest ex situ plant conservation initiatives, which is focused on saving plants in and from regions most at risk, particularly in drylands. Seeds are collected and stored in seed banks in the country of origin and duplicated in the Millennium Seed Bank in the UK. The MSBP also strengthens the capacity of local communities to successfully conserve and sustainably use indigenous plants, which are important for their wellbeing. Since 2007, high quality seed collections and research information have been gathered on ca. 700 useful indigenous plant species that were selected by communities in Botswana, Kenya, Mali, Mexico and South Africa through Project MGU - The Useful Plants Project. These communities range from various farmer's groups and organisations to traditional healers, organic cotton/crop producers and primary schools. The information on seed conservation and plant propagation was used to train communities and to propagate ca. 200 species that were then planted in local gardens, and as species reintroduced for reforestation programmes and enriching village forests. Experimental plots have also been established to further investigate the field performance (plant survival and growth rate) of indigenous species, using low cost procedures. In addition, the activities support revenue generation for local communities directly through the sustainable use of plant products or indirectly through wider environmental and cultural services. This project has confirmed the potential of biodiversity conservation to improve food security and human health, enhance community livelihoods and strengthen the resilience of land and people to the changing climate. This approach of using indigenous species and having local communities play a central role from the selection of species to their planting and establishment, supported by complementary research, may represent a model for other regions of the world, where

  19. Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification

    Directory of Open Access Journals (Sweden)

    Srdjan Sladojevic

    2016-01-01

    Full Text Available The latest generation of convolutional neural networks (CNNs has achieved impressive results in the field of image classification. This paper is concerned with a new approach to the development of plant disease recognition model, based on leaf image classification, by the use of deep convolutional networks. Novel way of training and the methodology used facilitate a quick and easy system implementation in practice. The developed model is able to recognize 13 different types of plant diseases out of healthy leaves, with the ability to distinguish plant leaves from their surroundings. According to our knowledge, this method for plant disease recognition has been proposed for the first time. All essential steps required for implementing this disease recognition model are fully described throughout the paper, starting from gathering images in order to create a database, assessed by agricultural experts. Caffe, a deep learning framework developed by Berkley Vision and Learning Centre, was used to perform the deep CNN training. The experimental results on the developed model achieved precision between 91% and 98%, for separate class tests, on average 96.3%.

  20. Community leaders' perspectives on socio-economic impacts of power-plant development

    International Nuclear Information System (INIS)

    Hastings, M.; Cawley, M.E.

    1981-01-01

    The primary focus of this research effort was to identify and measure the socioeconomic impacts of power plant development on non-metropolitan host communities. A mail survey, distributed to community leaders in 100 power plant communities east of the Mississippi River, was utilized to gather information from 713 respondents. Community leaders were questioned as to the plant's impact on (a) community groups, (b) aspects of community life, (c) overall community acceptance and (d) attitudes toward power plant development. Overall, the trends and patterns of plant impact on the host communities were found to be largely positive. Specifically, local employment opportunities were generally enhanced with the advent of the power plant. Directly related to power plant development was the overall improvement of the local economic situation. Off-shoots from such in the economic area included related general improvements in the community quality of life. While the vast majority of community leaders responded with positive comments on power plant presence, adverse impacts were also mentioned. Negative comments focused on environmental problems, deterioration of roads and traffic conditions, and the possibility of nuclear accidents. Despite these negative impacts, almost two-thirds of the community leaders would definitely support the reconstruction of the same energy facility. Power plant development, therefore, is generally perceived as both a positive and beneficial asset for the host area. (author)

  1. Soil ecosystem functioning under climate change: plant species and community effects

    Energy Technology Data Exchange (ETDEWEB)

    Kardol, Paul [ORNL; Cregger, Melissa [ORNL; Campany, Courtney E [ORNL; Classen, Aimee T [ORNL

    2010-01-01

    Feedbacks of terrestrial ecosystems to climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the microbial communities that feed on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and water availability. Specifically, we collected soils at the plot level (plant community soils), and beneath dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: 1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activities, and soil nematodes. Multiple climate change factors can interact to shape ecosystems, but in this case, those interactions were largely driven by changes in water availability. 2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning and this impact was not obvious when looking at plant community soils. Climate change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. In sum, these results indicate that accurate assessments of climate change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate change-induced shifts in plant community composition will likely modify or counteract the direct

  2. Plant interactions with multiple insect herbivores: from community to genes

    NARCIS (Netherlands)

    Stam, J.M.; Kroes, A.; Li, Y.; Gols, R.; Loon, van J.J.A.; Poelman, E.H.; Dicke, M.

    2014-01-01

    Every plant is a member of a complex insect community that consists of tens to hundreds of species that belong to different trophic levels. The dynamics of this community are critically influenced by the plant, which mediates interactions between community members that can occur on the plant

  3. Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment

    DEFF Research Database (Denmark)

    Engelkes, Tim; Meisner, Annelein; Morriën, Elly

    2016-01-01

    in a riparian ecosystem during early establishment of invaded communities. We planted ten plant communities each consisting of three individuals of each of six exotic plant species as well as six phylogenetically related natives. Exotic plant species were selected based on a rapid recent increase in regional...... abundance, the presence of a congeneric native species, and their co-occurrence in the riparian ecosystem. All plant communities were covered by tents with insect mesh. Five tents were open on the leeward side to allow herbivory. The other five tents were completely closed in order to exclude insects...... and vertebrates. Herbivory reduced aboveground biomass by half and influenced which of the plant species dominated the establishing communities. Exposure to herbivory did not reduce the total biomass of natives more than that of exotics, so aboveground herbivory did not selectively enhance exotics during...

  4. The classification of knowledge and expertise in Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Kuronen, T.; Rintala, N.

    2006-01-01

    The difficulties in sharing tacit knowledge may compromise the safe performance of high-reliability organisations. This threat has been recognised in nuclear power plants worldwide, owing to the risk of simultaneous retirements. In this study, the nature of tacit knowledge in Finnish nuclear power plants was examined and the expertise of nuclear workers modelled. The results of this interview study showed that the tacit nuclear knowledge can be classified in two dimensions: technical and contextual. According to this classification, the employees in plants can be categorised in four categories: the experts; the novices; the technical specialists; the context sensitives. (author)

  5. A Public Image Database for Benchmark of Plant Seedling Classification Algorithms

    DEFF Research Database (Denmark)

    Giselsson, Thomas Mosgaard; Nyholm Jørgensen, Rasmus; Jensen, Peter Kryger

    A database of images of approximately 960 unique plants belonging to 12 species at several growth stages is made publicly available. It comprises annotated RGB images with a physical resolution of roughly 10 pixels per mm. To standardise the evaluation of classification results obtained...

  6. The development of an automatic classification system of nuclear power plant states

    International Nuclear Information System (INIS)

    Mitomo, Nobuo; Matsuoka, Takeshi

    2000-01-01

    For the future autonomous plant, automatic control and diagnostics are being incorporated and operators are mainly engaged in the high levels of diagnosis and decision-making in emergencies. Therefore these matters will be performed through the Man-Machine Interface(MMI). Ship Research Institute has been carrying out the research on the MMI system for autonomous power plants. The automatic classification system of plant states is one of the functions of this MMI and the system utilizes COBWEB, which is known as a way of clustering data to acquire concepts. In this paper, many plant states produced by a plant simulator we examined in order to confirm the effectiveness of this system. The system has well classified plant states produced by a plant simulator. (author)

  7. Plant community analysis and ecology of afromontane and ...

    African Journals Online (AJOL)

    The plant communities of the forests of southwestern Ethiopia were described based on floristic analysis of the data collected between February 1995 and May 1996. Floristic analysis is based on the cover-abundance values of both woody and herbaceous species. Plant community-environment relationship was assessed ...

  8. Ecological land classification and terrestrial environment effects assessment for the Port Hope and Port Granby projects

    International Nuclear Information System (INIS)

    Taylor, M.; Wittkugel, U.; Kleb, H.

    2006-01-01

    The Ecological Land Classification system was developed to provide a standardized methodology for describing plant communities and wildlife habitat in southern Ontario. The method employs a hierarchical classification system. It can be applied at different levels of accuracy, i.e., at regional, sub-regional, and local scales with an increasing differentiation of vegetation communities. The standardization of the approach permits a comparison of vegetation communities from different sites and an evaluation of the rarity of these communities within the province. Further, the approach facilitates the monitoring of changes in terrestrial communities with time. These characteristics make Ecological Land Classification mapping a useful tool for environmental assessment such as the ones undertaken for the Port Hope and Port Granby Long-Term Waste Management Projects, which were conducted pursuant to the Canadian Environmental Assessment Act 1992. In the context of the Environmental Assessment for the Port Hope and Port Granby Projects, an Ecological Land Classification study was undertaken to characterize the terrestrial environment at regional, local and site levels. Vegetation patches (polygons) were delineated on the basis of air photo interpretation. The individual polygons were then visited for detailed inventory and classified to the most detailed level; that is to the vegetation type. Plant communities were then compared with those listed in the Ontario Natural Heritage Information Centre database to determine their rarity and to determine where they rank as Valued Ecosystem Components. Ecological Land Classification mapping results were used in the assessment of effects to Valued Ecosystem Components. A spatial analysis of the digitized vegetation maps showed the geographic extent of habitat losses and impairments due to various project works and activities. Landscape rehabilitation strategies and concepts were subsequently developed based on Ecological Land

  9. Plant traits determine the phylogenetic structure of arbuscular mycorrhizal fungal communities.

    Science.gov (United States)

    López-García, Álvaro; Varela-Cervero, Sara; Vasar, Martti; Öpik, Maarja; Barea, José M; Azcón-Aguilar, Concepción

    2017-12-01

    Functional diversity in ecosystems has traditionally been studied using aboveground plant traits. Despite the known effect of plant traits on the microbial community composition, their effects on the microbial functional diversity are only starting to be assessed. In this study, the phylogenetic structure of arbuscular mycorrhizal (AM) fungal communities associated with plant species differing in life cycle and growth form, that is, plant life forms, was determined to unravel the effect of plant traits on the functional diversity of this fungal group. The results of the 454 pyrosequencing showed that the AM fungal community composition differed across plant life forms and this effect was dependent on the soil collection date. Plants with ruderal characteristics tended to associate with phylogenetically clustered AM fungal communities. By contrast, plants with resource-conservative traits associated with phylogenetically overdispersed AM fungal communities. Additionally, the soil collected in different seasons yielded AM fungal communities with different phylogenetic dispersion. In summary, we found that the phylogenetic structure, and hence the functional diversity, of AM fungal communities is dependent on plant traits. This finding adds value to the use of plant traits for the evaluation of belowground ecosystem diversity, functions and processes. © 2017 John Wiley & Sons Ltd.

  10. Investigating Effects of Invasive Species on Plant Community Structure

    Science.gov (United States)

    Franklin, Wilfred

    2008-01-01

    In this article, the author presents a field study project that explores factors influencing forest community structure and lifts the veil off of "plant blindness." This ecological study consists of three laboratories: (1) preliminary field trip to the study site; (2) plant survey; and (3) analyzing plant community structure with descriptive…

  11. Native plant community response to alien plant invasion and removal

    Directory of Open Access Journals (Sweden)

    Jara ANDREU

    2011-01-01

    Full Text Available Given the potential ecological impacts of invasive species, removal of alien plants has become an important management challenge and a high priority for environmental managers. To consider that a removal effort has been successful requires both, the effective elimination of alien plants and the restoration of the native plant community back to its historical composition and function. We present a conceptual framework based on observational and experimental data that compares invaded, non-invaded and removal sites to quantify invaders’ impacts and native plant recover after their removal. We also conduct a meta-analysis to quantitatively evaluate the impacts of plant invaders and the consequences of their removal on the native plant community, across a variety of ecosystems around the world. Our results that invasion by alien plants is responsible for a local decline in native species richness and abundance. Our analysis also provides evidence that after removal, the native vegetation has the potential to recover to a pre-invasion target state. Our review reveal that observational and experimental approaches are rarely used in concert, and that reference sites are scarcely employed to assess native species recovery after removal. However, we believe that comparing invaded, non-invaded and removal sites offer the opportunity to obtain scientific information with relevance for management.

  12. Measuring competition in plant communities where it is difficult to distinguish individual plants

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2011-01-01

    A novel method for measuring plant-plant interactions in undisturbed semi-natural and natural plant communities where it is difficult to distinguish individual plants is discussed. It is assumed that the ecological success of the different plant species in the plant community may be adequately...... measured by plant cover and vertical density (a measure that is correlated to the 3-dimensional space occupancy and biomass). Both plant cover and vertical density are measured in a standard pin-point analysis in the beginning and at the end of the growing season. In the outlined competition model....... The method allows direct measurements of the competitive effects of neighbouringzplants on plant performance and the estimation of parameters that describe the ecological processes of plantplant interactions during the growing season as well as the process of survival and recruitment between growing seasons...

  13. Genetic diversity within a dominant plant outweighs plant species diversity in structuring an arthropod community.

    Science.gov (United States)

    Crawford, Kerri M; Rudgers, Jennifer A

    2013-05-01

    Plant biodiversity is being lost at a rapid rate. This has spurred much interest in elucidating the consequences of this loss for higher trophic levels. Experimental tests have shown that both plant species diversity and genetic diversity within a plant species can influence arthropod community structure. However, the majority of these studies have been conducted in separate systems, so their relative importance is currently unresolved. Furthermore, potential interactions between the two levels of diversity, which likely occur in natural systems, have not been investigated. To clarify these issues, we conducted three experiments in a freshwater sand dune ecosystem. We (1) independently manipulated plant species diversity, (2) independently manipulated genetic diversity within the dominant plant species, Ammophila breviligulata, and (3) jointly manipulated genetic diversity within the dominant plant and species diversity. We found that genetic diversity within the dominant plant species, Ammophila breviligulata, more strongly influenced arthropod communities than plant species diversity, but this effect was dependent on the presence of other species. In species mixtures, A. breviligulata genetic diversity altered overall arthropod community composition, and arthropod richness and abundance peaked at the highest level of genetic diversity. Positive nonadditive effects of diversity were detected, suggesting that arthropods respond to emergent properties of diverse plant communities. However, in the independent manipulations where A. breviligulata was alone, effects of genetic diversity were weaker, with only arthropod richness responding. In contrast, plant species diversity only influenced arthropods when A. breviligulata was absent, and then only influenced herbivore abundance. In addition to showing that genetic diversity within a dominant plant species can have large effects on arthropod community composition, these results suggest that understanding how species

  14. Place-classification analysis of community vulnerability to near-field tsunami threats in the U.S. Pacific Northwest (Invited)

    Science.gov (United States)

    Wood, N. J.; Jones, J.; Spielman, S.

    2013-12-01

    Near-field tsunami hazards are credible threats to many coastal communities throughout the world. Along the U.S. Pacific Northwest coast, low-lying areas could be inundated by a series of catastrophic tsunami waves that begin to arrive in a matter of minutes following a Cascadia subduction zone (CSZ) earthquake. This presentation summarizes analytical efforts to classify communities with similar characteristics of community vulnerability to tsunami hazards. This work builds on past State-focused inventories of community exposure to CSZ-related tsunami hazards in northern California, Oregon, and Washington. Attributes used in the classification, or cluster analysis, include demography of residents, spatial extent of the developed footprint based on mid-resolution land cover data, distribution of the local workforce, and the number and type of public venues, dependent-care facilities, and community-support businesses. Population distributions also are characterized by a function of travel time to safety, based on anisotropic, path-distance, geospatial modeling. We used an unsupervised-model-based clustering algorithm and a v-fold, cross-validation procedure (v=50) to identify the appropriate number of community types. We selected class solutions that provided the appropriate balance between parsimony and model fit. The goal of the vulnerability classification is to provide emergency managers with a general sense of the types of communities in tsunami hazard zones based on similar characteristics instead of only providing an exhaustive list of attributes for individual communities. This classification scheme can be then used to target and prioritize risk-reduction efforts that address common issues across multiple communities. The presentation will include a discussion of the utility of proposed place classifications to support regional preparedness and outreach efforts.

  15. A phytosociological classification of the Hlane Wildlife Sanctuary, Swaziland

    Directory of Open Access Journals (Sweden)

    W.P.D. Gertenbach

    1978-09-01

    Full Text Available A phytosociological classification of the vegetation of the Hiane Wildlife Sanctuary was undertaken, with special reference to the vegetation structure and the correlation between plant communities and the biotic and abiotic environment. This study contributes to the drafting of a management plan for the sanctuary.

  16. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere.

    Science.gov (United States)

    Knief, Claudia; Ramette, Alban; Frances, Lisa; Alonso-Blanco, Carlos; Vorholt, Julia A

    2010-06-01

    The plant phyllosphere constitutes a habitat for numerous microorganisms; among them are members of the genus Methylobacterium. Owing to the ubiquitous occurrence of methylobacteria on plant leaves, they represent a suitable target for studying plant colonization patterns. The influence of the factor site, host plant species, time and the presence of other phyllosphere bacteria on Methylobacterium community composition and population size were evaluated in this study. Leaf samples were collected from Arabidopsis thaliana or Medicago truncatula plants and from the surrounding plant species at several sites. The abundance of cultivable Methylobacterium clearly correlated with the abundance of other phyllosphere bacteria, suggesting that methylobacteria constitute a considerable and rather stable fraction of the phyllosphere microbiota under varying environmental conditions. Automated ribosomal intergenic spacer analysis (ARISA) was applied to characterize the Methylobacterium community composition and showed the presence of similar communities on A. thaliana plants at most sites in 2 consecutive years of sampling. A substantial part of the observed variation in the community composition was explained by site and plant species, especially in the case of the plants collected at the Arabidopsis sites (50%). The dominating ARISA peaks that were detected on A. thaliana plants were found on other plant species grown at the same site, whereas some different peaks were detected on A. thaliana plants from other sites. This indicates that site-specific factors had a stronger impact on the Methylobacterium community composition than did plant-specific factors and that the Methylobacterium-plant association is not highly host plant species specific.

  17. The role of plant mycorrhizal type and status in modulating the relationship between plant and arbuscular mycorrhizal fungal communities.

    Science.gov (United States)

    Neuenkamp, Lena; Moora, Mari; Öpik, Maarja; Davison, John; Gerz, Maret; Männistö, Minna; Jairus, Teele; Vasar, Martti; Zobel, Martin

    2018-01-25

    Interactions between communities of plants and arbuscular mycorrhizal (AM) fungi shape fundamental ecosystem properties. Experimental evidence suggests that compositional changes in plant and AM fungal communities should be correlated, but empirical data from natural ecosystems are scarce. We investigated the dynamics of covariation between plant and AM fungal communities during three stages of grassland succession, and the biotic and abiotic factors shaping these dynamics. Plant communities were characterised using vegetation surveys. AM fungal communities were characterised by 454-sequencing of the small subunit rRNA gene and identification against the AM fungal reference database MaarjAM. AM fungal abundance was estimated using neutral-lipid fatty acids (NLFAs). Multivariate correlation analysis (Procrustes) revealed a significant relationship between plant and AM fungal community composition. The strength of plant-AM fungal correlation weakened during succession following cessation of grassland management, reflecting changes in the proportion of plants exhibiting different AM status. Plant-AM fungal correlation was strong when the abundance of obligate AM plants was high, and declined as the proportion of facultative AM plants increased. We conclude that the extent to which plants rely on AM symbiosis can determine how tightly communities of plants and AM fungi are interlinked, regulating community assembly of both symbiotic partners. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  18. Projected range contractions of European protected oceanic montane plant communities: focus on climate change impacts is essential for their future conservation.

    Science.gov (United States)

    Hodd, Rory L; Bourke, David; Skeffington, Micheline Sheehy

    2014-01-01

    Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the north-west hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1) oceanic montane bryophytes and vascular plants; 2) species belonging to different montane plant communities; 3) species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need significantly

  19. Projected range contractions of European protected oceanic montane plant communities: focus on climate change impacts is essential for their future conservation.

    Directory of Open Access Journals (Sweden)

    Rory L Hodd

    Full Text Available Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the north-west hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1 oceanic montane bryophytes and vascular plants; 2 species belonging to different montane plant communities; 3 species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need

  20. THE EUROPEAN POSITION OF DUTCH PLANT COMMUNITIES

    Directory of Open Access Journals (Sweden)

    J.A.M. JANSSEN

    2007-04-01

    Full Text Available In this paper it is analyzed for which plant communities (alliances the Netherlands has an international responsibility. Data has been brought together on the range and distribution of alliances in Europe, the area of plant communities in the Netherlands and surrounding countries and the occurrence of endemic associations in the Netherlands. The analysis resulted in a list of 34 out of 93 alliances in the Netherlands which are important from an international point of view.

  1. Semi-Supervised Classification for Fault Diagnosis in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Ma, Jian Ping; Jiang, Jin

    2014-01-01

    Pattern classification methods have become important tools for fault diagnosis in industrial systems. However, it is normally difficult to obtain reliable labeled data to train a supervised pattern classification model for applications in a nuclear power plant (NPP). However, unlabeled data easily become available through increased deployment of supervisory, control, and data acquisition (SCADA) systems. In this paper, a fault diagnosis scheme based on semi-supervised classification (SSC) method is developed with specific applications for NPP. In this scheme, newly measured plant data are treated as unlabeled data. They are integrated with selected labeled data to train a SSC model which is then used to estimate labels of the new data. Compared to exclusive supervised approaches, the proposed scheme requires significantly less number of labeled data to train a classifier. Furthermore, it is shown that higher degree of uncertainties in the labeled data can be tolerated. The developed scheme has been validated using the data generated from a desktop NPP simulator and also from a physical NPP simulator using a graph-based SSC algorithm. Two case studies have been used in the validation process. In the first case study, three faults have been simulated on the desktop simulator. These faults have all been classified successfully with only four labeled data points per fault case. In the second case, six types of fault are simulated on the physical NPP simulator. All faults have been successfully diagnosed. The results have demonstrated that SSC is a promising tool for fault diagnosis

  2. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Science.gov (United States)

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  3. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Directory of Open Access Journals (Sweden)

    Tao Ding

    Full Text Available Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  4. Plant succession and approaches to community restoration

    Science.gov (United States)

    Bruce A. Roundy

    2005-01-01

    The processes of vegetation change over time, or plant succession, are also the processes involved in plant community restoration. Restoration efforts attempt to use designed disturbance, seedbed preparation and sowing methods, and selection of adapted and compatible native plant materials to enhance ecological function. The large scale of wildfires and weed invasion...

  5. Place-classification analysis of community vulnerability to near-field tsunami threats in the U.S. Pacific Northwest

    Science.gov (United States)

    Wood, N. J.; Spielman, S.

    2012-12-01

    Near-field tsunami hazards are credible threats to many coastal communities throughout the world. Along the U.S. Pacific Northwest coast, low-lying areas could be inundated by a series of catastrophic tsunamis that begin to arrive in a matter of minutes following a major Cascadia subduction zone (CSZ) earthquake. Previous research has documented the residents, employees, tourists at public venues, customers at local businesses, and vulnerable populations at dependent-care facilities that are in CSZ-related tsunami-prone areas of northern California, Oregon, and the open-ocean coast of Washington. Community inventories of demographic attributes and other characteristics of the at-risk population have helped emergency managers to develop preparedness and outreach efforts. Although useful for distinct risk-reduction issues, these data can be difficult to fully appreciate holistically given the large number of community attributes. This presentation summarizes analytical efforts to classify communities with similar characteristics of community exposure to tsunami hazards. This work builds on past State-focused inventories of community exposure to CSZ-related tsunami hazards in northern California, Oregon, and Washington. Attributes used in the classification, or cluster analysis, fall into several categories, including demography of residents, spatial extent of the developed footprint based on mid-resolution land cover data, distribution of the local workforce, and the number and type of public venues, dependent-care facilities, and community-support businesses. As we were unsure of the number of different types of communities, we used an unsupervised-model-based clustering algorithm and a v-fold, cross-validation procedure (v=50) to identify the appropriate number of community types. Ultimately we selected class solutions that provided the appropriate balance between parsimony and model fit. The goal of the exposure classification is to provide emergency managers with

  6. Building classification trees to explain the radioactive contamination levels of the plants

    International Nuclear Information System (INIS)

    Briand, B.

    2008-04-01

    The objective of this thesis is the development of a method allowing the identification of factors leading to various radioactive contamination levels of the plants. The methodology suggested is based on the use of a radioecological transfer model of the radionuclides through the environment (A.S.T.R.A.L. computer code) and a classification-tree method. Particularly, to avoid the instability problems of classification trees and to preserve the tree structure, a node level stabilizing technique is used. Empirical comparisons are carried out between classification trees built by this method (called R.E.N. method) and those obtained by the C.A.R.T. method. A similarity measure is defined to compare the structure of two classification trees. This measure is used to study the stabilizing performance of the R.E.N. method. The methodology suggested is applied to a simplified contamination scenario. By the results obtained, we can identify the main variables responsible of the various radioactive contamination levels of four leafy-vegetables (lettuce, cabbage, spinach and leek). Some extracted rules from these classification trees can be usable in a post-accidental context. (author)

  7. Embracing community ecology in plant microbiome research

    NARCIS (Netherlands)

    Dini-Andreote, F.; Raaijmakers, J.M.

    2018-01-01

    Community assembly is mediated by selection, dispersal, drift, and speciation. Environmental selection is mostly used to date to explain patterns in plant microbiome assembly, whereas the influence of the other processes remains largely elusive. Recent studies highlight that adopting community

  8. A Preliminary Survey of Terrestrial Plant Communities in the Sierra de los Valles

    Energy Technology Data Exchange (ETDEWEB)

    Randy G. Balice

    1998-10-01

    To more fully understand the species compositions and environmental relationships of high-elevation terrestrial plant communities in the Los Alamos region, 30 plots in randomly selected, upland locations were sampled for vegetation, topographic, and soils characteristics. The locations of these plots were constrained to be above 2,134 m (7,000 ft) above mean sea level. The field results were summarized, analyzed, and incorporated into a previously developed classification of vegetation and land cover types. The revised and updated discussions of the environmental relationships at these sites and their associated species compositions are included in this report. A key to the major land cover types in the Los Alamos region was also revised in accordance with the new information and included herein its entirety.

  9. Interaction of historical and nonhistorical disturbances maintains native plant communities.

    Science.gov (United States)

    Davies, K W; Svejcar, T J; Bates, J D

    2009-09-01

    Historical disturbance regimes are often considered a critical element in maintaining native plant communities. However, the response of plant communities to disturbance may be fundamentally altered as a consequence of invasive plants, climate change, or prior disturbances. The appropriateness of historical disturbance patterns under modern conditions and the interactions among disturbances are issues that ecologists must address to protect and restore native plant communities. We evaluated the response of Artemisia tridentata ssp. wyomingensis (Beetle & A. Young) S.L. Welsh plant communities to their historical disturbance regime compared to other disturbance regimes. The historical disturbance regime of these plant communities was periodic fires with minimal grazing by large herbivores. We also investigated the influence of prior disturbance (grazing) on the response of these communities to subsequent disturbance (burning). Treatments were: (1) ungrazed (livestock grazing excluded since 1936) and unburned, (2) grazed and unburned, (3) ungrazed and burned (burned in 1993), and (4) grazed and burned. The ungrazed-burned treatment emulated the historical disturbance regime. Vegetation cover, density, and biomass production were measured the 12th, 13th, and 14th year post-burning. Prior to burning the presence of Bromus tectorum L., an exotic annual grass, was minimal (resilience to more severe disturbances. Modern deviations from historical conditions can alter ecosystem response to disturbances, thus restoring the historical disturbance regime may not be an appropriate strategy for all ecosystems.

  10. Bottom-up and top-down effects on plant communities

    DEFF Research Database (Denmark)

    Souza, Lara; Zelikova, Tamara Jane; Sanders, Nate

    2016-01-01

    -down) and soil nitrogen (bottom-up) were manipulated over six years in an existing old-field community. We tracked plant α and β diversity - within plot richness and among plot biodiversity- and aboveground net primary productivity (ANPP) over the course of the experiment. We found that bottom-up factors...... affected ANPP while top-down factors influenced plant community structure. Across years, while N reduction lowered ANPP by 10%, N reduction did not alter ANPP relative to control plots. Further, N reduction lowered ANPP by 20% relative to N addition plots. On the other hand, the reduction of insect...... community composition via shifts in plant dominance....

  11. Nuclear power plant and the host community

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, G

    1978-10-27

    A councillor from a small Swedish community (Kaevlinge) in the vicinity of the Barsebaeck nuclear power plant describes the effects which the plant has had on neighbouring communities. The effect on the labour market has been small at Kaevlinge, both during routine operation and construction phases. This is however, a fairly densely populated area with a population of half a million in a radius of 30 km. The situation is different at Oskarshamn or Oesthammar. Neither has there been any special economic benefit, due to Swedish taxation laws. There has been little local anxiety due to the proximity of the nuclear power plant. Certain local planning problems have been caused by restricted zones and power cables. Cooperation between the local authorities and the utility has been good.

  12. Plant community mediation of ecosystem responses to global change factors

    Science.gov (United States)

    Churchill, A. C.

    2017-12-01

    Human alteration of the numerous environmental drivers affecting ecosystem processes is unprecedented in the last century, including changes in climate regimes and rapid increases in the availability of biologically active nitrogen (N). Plant communities may offer stabilizing or amplifying feedbacks mediating potential ecosystem responses to these alterations, and my research seeks to examine the conditions associated with when plant feedbacks are important for ecosystem change. My dissertation research focused on the unintended consequences of N deposition into natural landscapes, including alpine ecosystems which are particularly susceptible to adverse environmental impacts. In particular, I examined alpine plant and soil responses to N deposition 1) across multiple spatial scales throughout the Southern Rocky Mountains, 2) among diverse plant communities associated with unique environmental conditions common in the alpine of this region, and 3) among ecosystem pools of N contributing to stabilization of N inputs within those communities. I found that communities responded to inputs of N differently, often associated with traits of dominant plant species but these responses were intimately linked with the abiotic conditions of each independent community. Even so, statistical models predicting metrics of N processing in the alpine were improved by encompassing both abiotic and biotic components of the main community types.

  13. Plant Communities Rather than Soil Properties Structure Arbuscular Mycorrhizal Fungal Communities along Primary Succession on a Mine Spoil

    Science.gov (United States)

    Krüger, Claudia; Kohout, Petr; Janoušková, Martina; Püschel, David; Frouz, Jan; Rydlová, Jana

    2017-01-01

    Arbuscular mycorrhizal fungal (AMF) community assembly during primary succession has so far received little attention. It remains therefore unclear, which of the factors, driving AMF community composition, are important during ecosystem development. We addressed this question on a large spoil heap, which provides a mosaic of sites in different successional stages under different managements. We selected 24 sites of c. 12, 20, 30, or 50 years in age, including sites with spontaneously developing vegetation and sites reclaimed by alder plantations. On each site, we sampled twice a year roots of the perennial rhizomatous grass Calamagrostis epigejos (Poaceae) to determine AMF root colonization and diversity (using 454-sequencing), determined the soil chemical properties and composition of plant communities. AMF taxa richness was unaffected by site age, but AMF composition variation increased along the chronosequences. AMF communities were unaffected by soil chemistry, but related to the composition of neighboring plant communities of the sampled C. epigejos plants. In contrast, the plant communities of the sites were more distinctively structured than the AMF communities along the four successional stages. We conclude that AMF and plant community successions respond to different factors. AMF communities seem to be influenced by biotic rather than by abiotic factors and to diverge with successional age. PMID:28473828

  14. Object-based random forest classification of Landsat ETM+ and WorldView-2 satellite imagery for mapping lowland native grassland communities in Tasmania, Australia

    Science.gov (United States)

    Melville, Bethany; Lucieer, Arko; Aryal, Jagannath

    2018-04-01

    This paper presents a random forest classification approach for identifying and mapping three types of lowland native grassland communities found in the Tasmanian Midlands region. Due to the high conservation priority assigned to these communities, there has been an increasing need to identify appropriate datasets that can be used to derive accurate and frequently updateable maps of community extent. Therefore, this paper proposes a method employing repeat classification and statistical significance testing as a means of identifying the most appropriate dataset for mapping these communities. Two datasets were acquired and analysed; a Landsat ETM+ scene, and a WorldView-2 scene, both from 2010. Training and validation data were randomly subset using a k-fold (k = 50) approach from a pre-existing field dataset. Poa labillardierei, Themeda triandra and lowland native grassland complex communities were identified in addition to dry woodland and agriculture. For each subset of randomly allocated points, a random forest model was trained based on each dataset, and then used to classify the corresponding imagery. Validation was performed using the reciprocal points from the independent subset that had not been used to train the model. Final training and classification accuracies were reported as per class means for each satellite dataset. Analysis of Variance (ANOVA) was undertaken to determine whether classification accuracy differed between the two datasets, as well as between classifications. Results showed mean class accuracies between 54% and 87%. Class accuracy only differed significantly between datasets for the dry woodland and Themeda grassland classes, with the WorldView-2 dataset showing higher mean classification accuracies. The results of this study indicate that remote sensing is a viable method for the identification of lowland native grassland communities in the Tasmanian Midlands, and that repeat classification and statistical significant testing can be

  15. Response of native insect communities to invasive plants.

    Science.gov (United States)

    Bezemer, T Martijn; Harvey, Jeffrey A; Cronin, James T

    2014-01-01

    Invasive plants can disrupt a range of trophic interactions in native communities. As a novel resource they can affect the performance of native insect herbivores and their natural enemies such as parasitoids and predators, and this can lead to host shifts of these herbivores and natural enemies. Through the release of volatile compounds, and by changing the chemical complexity of the habitat, invasive plants can also affect the behavior of native insects such as herbivores, parasitoids, and pollinators. Studies that compare insects on related native and invasive plants in invaded habitats show that the abundance of insect herbivores is often lower on invasive plants, but that damage levels are similar. The impact of invasive plants on the population dynamics of resident insect species has been rarely examined, but invasive plants can influence the spatial and temporal dynamics of native insect (meta)populations and communities, ultimately leading to changes at the landscape level.

  16. BORDERLINE AND CLASSIFICATION IN THE COMMUNITY REGULATORY FRAMEWORK FOR MEDICAL DEVICES – BRIEF REVIEW ON SOME DENTISTRY PRODUCTS.

    Directory of Open Access Journals (Sweden)

    Maya Lyapina

    2015-02-01

    Full Text Available Defining a given product as a medical device and interpretation of the application of the classification rules fall within the competence of the competent authorities of the Member States where the product is on the market. Different interpretations of Community legislation occur, and, can put public health at risk and distort the internal market. Borderline cases are considered to be those cases where it is not clear from the outset whether a given product is a medical device, an in vitro diagnostic medical device, an active implantable medical device or not. Classification cases can be described as those cases where there exists a difficulty in the uniform application of the classification rules as laid down in the Medical Devices Directive (MDD, or where for a given device, depending on interpretation of the rules, different classifications can occur. The aim of the present work is to make a brief review on discussion on classification in the community regulatory framework for medical devices of some dentistry products.

  17. Community attitudes toward nuclear plants

    International Nuclear Information System (INIS)

    Peelle, E.

    1982-01-01

    Among the many effects of the accident at Three Mile Island are impacts upon other communities that currently host nuclear-power reactors. Because studies on communities' reactions not immediately available, this chapter reviews existing studies and speculates about possible effects. The patterns and variations in impacts on and responses of nuclear host communities have been the subject of studies at Oak Ridge National Laboratory (Oak Ridge, Tennessee) since 1972. This essay presents results from four post-licensing studies of host communities - Plymouth, Massachusetts, and Waterford, Connecticut (PL-1), and Brunswick, North Carolina, and Appling-Toombs counties, Georgia (PL-2) - along with case study and attitude survey information from two additional communities in which reactors are under construction: Hartsville, Tennessee, and Cherokee County, South Carolina. Differences and similarities between the sites have been assessed in terms of differences in input and social structure; factors affecting the generally favorable attitudes toward local nuclear plants are discussed

  18. Constructing a classification of hypersensitivity/allergic diseases for ICD-11 by crowdsourcing the allergist community.

    Science.gov (United States)

    Tanno, L K; Calderon, M A; Goldberg, B J; Gayraud, J; Bircher, A J; Casale, T; Li, J; Sanchez-Borges, M; Rosenwasser, L J; Pawankar, R; Papadopoulos, N G; Demoly, P

    2015-06-01

    The global allergy community strongly believes that the 11th revision of the International Classification of Diseases (ICD-11) offers a unique opportunity to improve the classification and coding of hypersensitivity/allergic diseases via inclusion of a specific chapter dedicated to this disease area to facilitate epidemiological studies, as well as to evaluate the true size of the allergy epidemic. In this context, an international collaboration has decided to revise the classification of hypersensitivity/allergic diseases and to validate it for ICD-11 by crowdsourcing the allergist community. After careful comparison between ICD-10 and 11 beta phase linearization codes, we identified gaps and trade-offs allowing us to construct a classification proposal, which was sent to the European Academy of Allergy and Clinical Immunology (EAACI) sections, interest groups, executive committee as well as the World Allergy Organization (WAO), and American Academy of Allergy Asthma and Immunology (AAAAI) leaderships. The crowdsourcing process produced comments from 50 of 171 members contacted by e-mail. The classification proposal has also been discussed at face-to-face meetings with experts of EAACI sections and interest groups and presented in a number of business meetings during the 2014 EAACI annual congress in Copenhagen. As a result, a high-level complex structure of classification for hypersensitivity/allergic diseases has been constructed. The model proposed has been presented to the WHO groups in charge of the ICD revision. The international collaboration of allergy experts appreciates bilateral discussion and aims to get endorsement of their proposals for the final ICD-11. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities.

    Science.gov (United States)

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2017-01-01

    Phytoremediation is a promising in situ green technology based on the use of plants to cleanup soils from organic and inorganic pollutants. Microbes, particularly bacteria and fungi, that closely interact with plant roots play key roles in phytoremediation processes. In polluted soils, the root-associated microbes contribute to alleviation of plant stress, improve nutrient uptake and may either degrade or sequester a large range of soil pollutants. Therefore, improving the efficiency of phytoremediation requires a thorough knowledge of the microbial diversity living in the rhizosphere and in close association with plant roots in both the surface and the endosphere. This study aims to assess fungal ITS and bacterial 16S rRNA gene diversity using high-throughput sequencing in rhizospheric soils and roots of three plant species ( Solidago canadensis, Populus balsamifera , and Lycopus europaeus ) growing spontaneously in three petroleum hydrocarbon polluted sedimentation basins. Microbial community structures of rhizospheric soils and roots were compared with those of microbes associated with arbuscular mycorrhizal fungal (AMF) spores to determine the links between the root and rhizosphere communities and those associated with AMF. Our results showed a difference in OTU richness and community structure composition between soils and roots for both bacteria and fungi. We found that petroleum hydrocarbon pollutant (PHP) concentrations have a significant effect on fungal and bacterial community structures in both soils and roots, whereas plant species identity showed a significant effect only on the roots for bacteria and fungi. Our results also showed that the community composition of bacteria and fungi in soil and roots varied from those associated with AMF spores harvested from the same plants. This let us to speculate that in petroleum hydrocarbon contaminated soils, AMF may release chemical compounds by which they recruit beneficial microbes to tolerate or degrade the

  20. Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities

    Directory of Open Access Journals (Sweden)

    Bachir Iffis

    2017-08-01

    Full Text Available Phytoremediation is a promising in situ green technology based on the use of plants to cleanup soils from organic and inorganic pollutants. Microbes, particularly bacteria and fungi, that closely interact with plant roots play key roles in phytoremediation processes. In polluted soils, the root-associated microbes contribute to alleviation of plant stress, improve nutrient uptake and may either degrade or sequester a large range of soil pollutants. Therefore, improving the efficiency of phytoremediation requires a thorough knowledge of the microbial diversity living in the rhizosphere and in close association with plant roots in both the surface and the endosphere. This study aims to assess fungal ITS and bacterial 16S rRNA gene diversity using high-throughput sequencing in rhizospheric soils and roots of three plant species (Solidago canadensis, Populus balsamifera, and Lycopus europaeus growing spontaneously in three petroleum hydrocarbon polluted sedimentation basins. Microbial community structures of rhizospheric soils and roots were compared with those of microbes associated with arbuscular mycorrhizal fungal (AMF spores to determine the links between the root and rhizosphere communities and those associated with AMF. Our results showed a difference in OTU richness and community structure composition between soils and roots for both bacteria and fungi. We found that petroleum hydrocarbon pollutant (PHP concentrations have a significant effect on fungal and bacterial community structures in both soils and roots, whereas plant species identity showed a significant effect only on the roots for bacteria and fungi. Our results also showed that the community composition of bacteria and fungi in soil and roots varied from those associated with AMF spores harvested from the same plants. This let us to speculate that in petroleum hydrocarbon contaminated soils, AMF may release chemical compounds by which they recruit beneficial microbes to tolerate

  1. Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities

    Science.gov (United States)

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2017-01-01

    Phytoremediation is a promising in situ green technology based on the use of plants to cleanup soils from organic and inorganic pollutants. Microbes, particularly bacteria and fungi, that closely interact with plant roots play key roles in phytoremediation processes. In polluted soils, the root-associated microbes contribute to alleviation of plant stress, improve nutrient uptake and may either degrade or sequester a large range of soil pollutants. Therefore, improving the efficiency of phytoremediation requires a thorough knowledge of the microbial diversity living in the rhizosphere and in close association with plant roots in both the surface and the endosphere. This study aims to assess fungal ITS and bacterial 16S rRNA gene diversity using high-throughput sequencing in rhizospheric soils and roots of three plant species (Solidago canadensis, Populus balsamifera, and Lycopus europaeus) growing spontaneously in three petroleum hydrocarbon polluted sedimentation basins. Microbial community structures of rhizospheric soils and roots were compared with those of microbes associated with arbuscular mycorrhizal fungal (AMF) spores to determine the links between the root and rhizosphere communities and those associated with AMF. Our results showed a difference in OTU richness and community structure composition between soils and roots for both bacteria and fungi. We found that petroleum hydrocarbon pollutant (PHP) concentrations have a significant effect on fungal and bacterial community structures in both soils and roots, whereas plant species identity showed a significant effect only on the roots for bacteria and fungi. Our results also showed that the community composition of bacteria and fungi in soil and roots varied from those associated with AMF spores harvested from the same plants. This let us to speculate that in petroleum hydrocarbon contaminated soils, AMF may release chemical compounds by which they recruit beneficial microbes to tolerate or degrade the

  2. Genetics-based interactions among plants, pathogens, and herbivores define arthropod community structure.

    Science.gov (United States)

    Busby, Posy E; Lamit, Louis J; Keith, Arthur R; Newcombe, George; Gehring, Catherine A; Whitham, Thomas G; Dirzo, Rodolfo

    2015-07-01

    Plant resistance to pathogens or insect herbivores is common, but its potential for indirectly influencing plant-associated communities is poorly known. Here, we test whether pathogens' indirect effects on arthropod communities and herbivory depend on plant resistance to pathogens and/or herbivores, and address the overarching interacting foundation species hypothesis that genetics-based interactions among a few highly interactive species can structure a much larger community. In a manipulative field experiment using replicated genotypes of two Populus species and their interspecific hybrids, we found that genetic variation in plant resistance to both pathogens and insect herbivores modulated the strength of pathogens' indirect effects on arthropod communities and insect herbivory. First, due in part to the pathogens' differential impacts on leaf biomass among the two Populus species and the hybrids, the pathogen most strongly impacted arthropod community composition, richness, and abundance on the pathogen-susceptible tree species. Second, we found similar patterns comparing pathogen-susceptible and pathogen-resistant genotypes within species. Third, within a plant species, pathogens caused a fivefold greater reduction in herbivory on insect-herbivore-susceptible plant genotypes than on herbivore-resistant genotypes, demonstrating that the pathogen-herbivore interaction is genotype dependent. We conclude that interactions among plants, pathogens, and herbivores can structure multitrophic communities, supporting the interacting foundation species hypothesis. Because these interactions are genetically based, evolutionary changes in genetic resistance could result in ecological changes in associated communities, which may in turn feed back to affect plant fitness.

  3. Litter Accumulation and Nutrient Content of Roadside Plant Communities in Sichuan Basin, China.

    Science.gov (United States)

    He, Huiqin; Monaco, Thomas

    2017-08-30

    It is widely recognized that feedbacks exist between plant litter and plant community species composition, but this relationship is difficult to interpret over heterogeneous conditions typical of modified environments such as roadways. Given the need to expedite natural recovery of disturbed areas through restoration interventions, we characterized litter accumulation and nutrient content (i.e., organic carbon, total N, and P) and quantified their association with key plant species. Plant species cover and litter characteristics were sampled at 18 successional forest plant communities along major roadways in Sichuan Basin, western China. Variation in litter across communities was assessed with principal component analysis (PCA) and species with the highest correlation to PCA axes were determined with Pearson's r coefficients. Plant communities with the longest time since road construction (i.e., 70 years) were distinctly different in litter total N and organic carbon compared to plant communities with a shorter disturbance history. We encountered 59 plant species across sampling plots, but only four rare species (i.e., frequency plant litter across heavily disturbed landscapes and how litter characteristics and rare plant species are correlated.

  4. A preliminary riparian/wetland vegetation community classification of the Upper and Middle Rio Grande watersheds in New Mexico

    Science.gov (United States)

    Paula Durkin; Esteban Muldavin; Mike Bradley; Stacey E. Carr

    1996-01-01

    The riparian wetland vegetation communities of the upper and middle Rio Grande watersheds in New Mexico were surveyed in 1992 through 1994. The communities are hierarchically classified in terms of species composition and vegetation structure. The resulting Community Types are related to soil conditions, hydrological regime, and temporal dynamics. The classification is...

  5. Establishment of land model at the Shika Nuclear Power Plant. Mainly, on rock board classification

    International Nuclear Information System (INIS)

    Katagawa, Hideki; Hashimoto, Toru; Hirano, Shuji

    1999-01-01

    In order to grasp engineering properties of basic land of constructions, there is rock board classification as a method to classify whole of rock board to some groups considerable to be nearly equal on its properties. Among the method, various methods in response to its aim and characteristics are devised, and for a classification to hard rock board, the Denken type rock board classification considering degree of weathering to its main element and so forth are well known. The basic rock board of the Shika Nuclear Power Plant is composed of middle and hard types of rock, and its weathering is limited to its shallow portion, most of which are held at fresh condition. For such land, a new classification standard in response to characteristics of land was established. Here were introduced on a progress to establish a new classification standard, its application results and rock board properties. (G.K.)

  6. Assessing plant community composition fails to capture impacts of white-tailed deer on native and invasive plant species.

    Science.gov (United States)

    Nuzzo, Victoria; Dávalos, Andrea; Blossey, Bernd

    2017-07-01

    Excessive herbivory can have transformative effects on forest understory vegetation, converting diverse communities into depauperate ones, often with increased abundance of non-native plants. White-tailed deer are a problematic herbivore throughout much of eastern North America and alter forest understory community structure. Reducing (by culling) or eliminating (by fencing) deer herbivory is expected to return understory vegetation to a previously diverse condition. We examined this assumption from 1992 to 2006 at Fermilab (Batavia, IL) where a cull reduced white-tailed deer ( Odocoileus virginianus ) abundance in 1998/1999 by 90 % from 24.6 to 2.5/km 2 , and at West Point, NY, where we assessed interactive effects of deer, earthworms, and invasive plants using 30 × 30 m paired fenced and open plots in 12 different forests from 2009 to 2012. We recorded not only plant community responses (species presence and cover) within 1 m 2 quadrats, but also responses of select individual species (growth, reproduction). At Fermilab, introduced Alliaria petiolata abundance initially increased as deer density increased, but then declined after deer reduction. The understory community responded to the deer cull by increased cover, species richness and height, and community composition changed but was dominated by early successional native forbs. At West Point plant community composition was affected by introduced earthworm density but not deer exclusion. Native plant cover increased and non-native plant cover decreased in fenced plots, thus keeping overall plant cover similar. At both sites native forb cover increased in response to deer reduction, but the anticipated response of understory vegetation failed to materialize at the community level. Deer-favoured forbs ( Eurybia divaricata , Maianthemum racemosum , Polygonatum pubescens and Trillium recurvatum ) grew taller and flowering probability increased in the absence of deer. Plant community monitoring fails to capture

  7. Classification of low-level radioactive wastes from nuclear power plants

    International Nuclear Information System (INIS)

    Stanford, R.E.L.

    1984-01-01

    The NRC regulation, 10 CFR Part 61, establishes three classes of wastes designated A, B, and C based on listed concentrations of specific nuclides. The NRC Branch Technical Position (BTP) relative to the required compliance program focused on extensive waste stream sampling and analysis as a means of compliance. To meet the above regulatory requirements, an engineering analysis approach for quantifying the concentrations and amounts of radionuclides of classification concern was developed as an alternative to an extensive and difficult waste sampling and analysis program. Essentially this methodology involves a material balance of radionuclides which for the most part originate in the reactor core and are transported to the waste streams by reactor coolants and whose concentration in the coolant is primarily a function of fuel performance. The use of scaling factors between readily measured key radionuclides and others required for classification have been published in Report AIF/NESP-027 entitled, Methodologies for Classification of Low-Level Radioactive Wastes from Nuclear Power Plants. Since then data from about 1000 samples on nuclide concentrations in various reactor waste streams from 65 units at 40 sites was collated, analyzed and evaluated to confirm the calculational methodology in AIF/NESP-027. In summary, the approach and results of the engineering analysis methodology were validated

  8. Using genetically modified tomato crop plants with purple leaves for absolute weed/crop classification.

    Science.gov (United States)

    Lati, Ran N; Filin, Sagi; Aly, Radi; Lande, Tal; Levin, Ilan; Eizenberg, Hanan

    2014-07-01

    Weed/crop classification is considered the main problem in developing precise weed-management methodologies, because both crops and weeds share similar hues. Great effort has been invested in the development of classification models, most based on expensive sensors and complicated algorithms. However, satisfactory results are not consistently obtained due to imaging conditions in the field. We report on an innovative approach that combines advances in genetic engineering and robust image-processing methods to detect weeds and distinguish them from crop plants by manipulating the crop's leaf color. We demonstrate this on genetically modified tomato (germplasm AN-113) which expresses a purple leaf color. An autonomous weed/crop classification is performed using an invariant-hue transformation that is applied to images acquired by a standard consumer camera (visible wavelength) and handles variations in illumination intensities. The integration of these methodologies is simple and effective, and classification results were accurate and stable under a wide range of imaging conditions. Using this approach, we simplify the most complicated stage in image-based weed/crop classification models. © 2013 Society of Chemical Industry.

  9. Plants of the fynbos biome harbour host species-specific bacterial communities.

    Science.gov (United States)

    Miyambo, Tsakani; Makhalanyane, Thulani P; Cowan, Don A; Valverde, Angel

    2016-08-01

    The fynbos biome in South Africa is globally recognised as a plant biodiversity hotspot. However, very little is known about the bacterial communities associated with fynbos plants, despite interactions between primary producers and bacteria having an impact on the physiology of both partners and shaping ecosystem diversity. This study reports on the structure, phylogenetic composition and potential roles of the endophytic bacterial communities located in the stems of three fynbos plants (Erepsia anceps, Phaenocoma prolifera and Leucadendron laureolum). Using Illumina MiSeq 16S rRNA sequencing we found that different subpopulations of Deinococcus-Thermus, Alphaproteobacteria, Acidobacteria and Firmicutes dominated the endophytic bacterial communities. Alphaproteobacteria and Actinobacteria were prevalent in P. prolifera, whereas Deinococcus-Thermus dominated in L. laureolum, revealing species-specific host-bacteria associations. Although a high degree of variability in the endophytic bacterial communities within hosts was observed, we also detected a core microbiome across the stems of the three plant species, which accounted for 72% of the sequences. Altogether, it seems that both deterministic and stochastic processes shaped microbial communities. Endophytic bacterial communities harboured putative plant growth-promoting bacteria, thus having the potential to influence host health and growth. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Negative Plant-Soil Feedback and Positive Species Interaction in a Herbaceous Plant Community

    NARCIS (Netherlands)

    Bonanomi, G.; Rietkerk, M.; Dekker, S.C.; Mazzoleni, S.

    2005-01-01

    Increasing evidence shows that facilitative interaction and negative plant¿soil feedback are driving factors of plant population dynamics and community processes. We studied the intensity and the relative impact of negative feedback on clonal growth and seed germination of Scirpus holoschoenus, a

  11. Plant community variability on a small area in southeastern Montana

    Science.gov (United States)

    James G. MacCracken; Daniel W. Uresk; Richard M. Hansen

    1984-01-01

    Plant communities are inherently variable due to a number of environmental and biological forces. Canopy cover and aboveground biomass were determined for understory vegetation in plant communities of a prairie grassland-forest ecotone in southeastern Montana. Vegetation units were described using polar ordination and stepwise discriminant analysis. Nine of a total of...

  12. Vegetation classification and distribution mapping report Mesa Verde National Park

    Science.gov (United States)

    Thomas, Kathryn A.; McTeague, Monica L.; Ogden, Lindsay; Floyd, M. Lisa; Schulz, Keith; Friesen, Beverly A.; Fancher, Tammy; Waltermire, Robert G.; Cully, Anne

    2009-01-01

    The classification and distribution mapping of the vegetation of Mesa Verde National Park (MEVE) and surrounding environment was achieved through a multi-agency effort between 2004 and 2007. The National Park Service’s Southern Colorado Plateau Network facilitated the team that conducted the work, which comprised the U.S. Geological Survey’s Southwest Biological Science Center, Fort Collins Research Center, and Rocky Mountain Geographic Science Center; Northern Arizona University; Prescott College; and NatureServe. The project team described 47 plant communities for MEVE, 34 of which were described from quantitative classification based on f eld-relevé data collected in 1993 and 2004. The team derived 13 additional plant communities from field observations during the photointerpretation phase of the project. The National Vegetation Classification Standard served as a framework for classifying these plant communities to the alliance and association level. Eleven of the 47 plant communities were classified as “park specials;” that is, plant communities with insufficient data to describe them as new alliances or associations. The project team also developed a spatial vegetation map database representing MEVE, with three different map-class schemas: base, group, and management map classes. The base map classes represent the fi nest level of spatial detail. Initial polygons were developed using Definiens Professional (at the time of our use, this software was called eCognition), assisted by interpretation of 1:12,000 true-color digital orthophoto quarter quadrangles (DOQQs). These polygons (base map classes) were labeled using manual photo interpretation of the DOQQs and 1:12,000 true-color aerial photography. Field visits verified interpretation concepts. The vegetation map database includes 46 base map classes, which consist of associations, alliances, and park specials classified with quantitative analysis, additional associations and park specials noted

  13. Plant Communities Suitable for Green Roofs in Arid Regions

    Directory of Open Access Journals (Sweden)

    Rachel Gioannini

    2018-05-01

    Full Text Available In extensive green roof settings, plant communities can be more robust than monocultures. In addition, native plants might be hardier and more ecologically sound choices than non-native plants in green roof systems. The objectives of this research were to (1 compare the performance of plant communities with that of monocultures and (2 compare the growth of natives to non-natives in a simulated green roof setting. We conducted a two-year experiment at an outdoor site in a desert environment using four plant morphological types (groundcover, forb, succulent and grass. Native plants selected were Chrysactinia mexicana, Melampodium leucanthum, Euphorbia antisyphilitica, and Nassella tenuissima, and non-natives were Delosperma nubigenum, Stachys byzantina, Sedum kamtschiaticum and Festuca glauca. Plants were assigned randomly to either monoculture or community and grown in 1 m × 1 m custom-built trays filled with 15 cm of a proprietary blend of 50/20/30 lightweight aggregate/sand/compost (by volume. Native forb, Melampodium, in community had greater coverage for four of the five measurements in the first year over native forb in monoculture and non-native forb regardless of setting. Native forb coverage was also greater than non-native forb for three of the four measurements in year 2, regardless of setting. Coverage of native grass was significantly greater than non-native grasses throughout the experiment. Coverage was also greater for eight of nine measurements for native succulent over non-natives succulent. However, non-native groundcover coverage was significantly greater than native groundcover for seven of nine measurements. On 1 November 2016, relative water content (RWC for succulents (p = 0.0424 was greatest for native Euphorbia in monoculture at 88%. Native Euphorbia also had greater RWC than non-native Sedum on 4 April 2017 (78% and 4 July 2017 (80%. However, non-native Sedum had greater root length (6548 cm, root dry weight (12.1 g

  14. Study on remote sensing method for drawing up and utilizing ecological and natural map II; concentrated on drawing up a plant ecological classification map

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong Woo; Chung, Hwui Chul [Korea Environment Institute, Seoul (Korea)

    1999-12-01

    Following with the flows of the environmental conservation, Korea has revised the law of natural environmental conservation. In this law, it has suggested to draw up an ecological nature figure for efficient preservation and utilization of a country. To draw up an ecological nature figure, it requires several evaluating factors. Among them, a plant ecological classification is a very important evaluating factor since it can evaluate a habitation area of natural organisms. This study investigated a drawing up method of plant ecological classification using satellite image data. However the limit of satellite image data and the quality of required plant ecological classification are not quite matched but if the satellite image data and the infrared color aerial photograph are mixed, it can be expected to have an excellent quality of plant ecological classification. 85 refs., 86 figs., 45 tabs.

  15. Rural and school community in appreciating knowledge on medical plants

    Directory of Open Access Journals (Sweden)

    Marcílio Souza Carneiro

    2016-05-01

    Isolated communities in the urban environment still use medicinal plants, but such knowledge is not always passed on to new generations. In this scenario, we propose a study with students, teachers, and community residents from Córrego da Ema, Amontada, Ceará, Brazil, aiming to know the wisdom of medicinal plants in a small rural community in the Brazilian semi-arid region. We interviewed the medicinal plant connoisseurs, named as local experts, by using the “snow ball” method. We applied questionnaires to investigate Elementary School students’ knowledge on medicinal plants (pre-tour. These actions provided a basis for planning guided-tours, activities aimed at 51 students, which we carried out along with the 10 experts and 2 local school teachers, whose results (post-tour were assessed by using the same pre-tour questionnaire. Most local experts were women (80%, their families had many people and low education level, factors that contribute to using medicinal plants. Experts cited 35 medicinal plant species. Students cited 24 pre-tour plant species and 28 post-tour plant species. Students increased their knowledge, as there was also a post-tour increase in therapeutic indications and preparation methods, as mentioned. The school played an important role in appreciating this intangible heritage, because it enabled actions involving formal and informal education.

  16. Effects of diversity and identity of the neighbouring plant community on the abundance of arthropods on individual ragwort (Jacobaea vulgaris) plants

    NARCIS (Netherlands)

    Kostenko, O.; Grootemaat, Saskia S.; Van der Putten, W.H.; Bezemer, T.M.

    2012-01-01

    The diversity of plant community can greatly affect the abundance and diversity of arthropods associated to that community, but can also influence the composition or abundance of arthropods on individual plants growing in that community. We sampled arthropods and recorded plant size of individual

  17. Application of Cocktail method in vegetation classification

    Directory of Open Access Journals (Sweden)

    Hamed Asadi

    2016-09-01

    Full Text Available This study intends to assess the application of Cocktail method in the classification of large vegetation databases. For this purpose, Buxus hyrcana dataset consisted of 442 relevés with 89 species were used and by the modified TWINSPAN. For running the Cocktail method, first primarily classification was done by modified TWINSPAN, and by performing phi analysis in the groups resulted five species were selected which had the highest fidelity value. Then sociological species groups were formed by examining co-occurrence of these 5 species with other species in the database. 21 plant communities belongs to 6 variant, 17 sub associations, 11 associations, 4 alliance, 1 order and 1 class were recognized by assigning 379 releves to the sociological species groups by using logical formulas. Also, 63 releves by the logical formula were not assigned to any sociological species groups, by FPFI index were assigned to the sociological species groups which had the most index value. According to 91% classification agreement with Brown-Blanquet classification and Cocktail classification, we suggest Cocktail method to vegetation scientists as an efficient alternative of Braun-Blanquet method to classify large vegetation databases.

  18. Rapid Identification of Asteraceae Plants with Improved RBF-ANN Classification Models Based on MOS Sensor E-Nose

    Directory of Open Access Journals (Sweden)

    Hui-Qin Zou

    2014-01-01

    Full Text Available Plants from Asteraceae family are widely used as herbal medicines and food ingredients, especially in Asian area. Therefore, authentication and quality control of these different Asteraceae plants are important for ensuring consumers’ safety and efficacy. In recent decades, electronic nose (E-nose has been studied as an alternative approach. In this paper, we aim to develop a novel discriminative model by improving radial basis function artificial neural network (RBF-ANN classification model. Feature selection algorithms, including principal component analysis (PCA and BestFirst + CfsSubsetEval (BC, were applied in the improvement of RBF-ANN models. Results illustrate that in the improved RBF-ANN models with lower dimension data classification accuracies (100% remained the same as in the original model with higher-dimension data. It is the first time to introduce feature selection methods to get valuable information on how to attribute more relevant MOS sensors; namely, in this case, S1, S3, S4, S6, and S7 show better capability to distinguish these Asteraceae plants. This paper also gives insights to further research in this area, for instance, sensor array optimization and performance improvement of classification model.

  19. Evapotranspiration in three plant communities of a Rhigozum ...

    African Journals Online (AJOL)

    Evapotranspiration losses in three Rhigozum trichotomum plant communities namely, pure grass, pure R. trichotomum and a mixed stand of grass and R. trichotomum were determined during the 1985-86 growing season. Three hydrologically isolated plots in each community type were irrigated and changes in soil water ...

  20. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest

    Science.gov (United States)

    Kembel, Steven W.; O’Connor, Timothy K.; Arnold, Holly K.; Hubbell, Stephen P.; Wright, S. Joseph; Green, Jessica L.

    2014-01-01

    The phyllosphere—the aerial surfaces of plants, including leaves—is a ubiquitous global habitat that harbors diverse bacterial communities. Phyllosphere bacterial communities have the potential to influence plant biogeography and ecosystem function through their influence on the fitness and function of their hosts, but the host attributes that drive community assembly in the phyllosphere are poorly understood. In this study we used high-throughput sequencing to quantify bacterial community structure on the leaves of 57 tree species in a neotropical forest in Panama. We tested for relationships between bacterial communities on tree leaves and the functional traits, taxonomy, and phylogeny of their plant hosts. Bacterial communities on tropical tree leaves were diverse; leaves from individual trees were host to more than 400 bacterial taxa. Bacterial communities in the phyllosphere were dominated by a core microbiome of taxa including Actinobacteria, Alpha-, Beta-, and Gammaproteobacteria, and Sphingobacteria. Host attributes including plant taxonomic identity, phylogeny, growth and mortality rates, wood density, leaf mass per area, and leaf nitrogen and phosphorous concentrations were correlated with bacterial community structure on leaves. The relative abundances of several bacterial taxa were correlated with suites of host plant traits related to major axes of plant trait variation, including the leaf economics spectrum and the wood density–growth/mortality tradeoff. These correlations between phyllosphere bacterial diversity and host growth, mortality, and function suggest that incorporating information on plant–microbe associations will improve our ability to understand plant functional biogeography and the drivers of variation in plant and ecosystem function. PMID:25225376

  1. The nuclear power plant and the host community

    International Nuclear Information System (INIS)

    Olsson, G.

    1978-01-01

    A councillor from a small Swedish community (Kaevlinge) in the vicinity of the Barsebaeck nuclear power plant describes the effects which the plant has had on neighbouring communities. The effect on the labour market has been small at Kaevlinge, both during routine operation and construction phases. This is however, a fairly densely populated area with a population of half a million in a radius of 30 km. The situation is different at Oskarshamn or Oesthammar. Neither has there been any special economic benefit, due to Swedish taxation laws. There has been little local anxiety due to the proximity of the nuclear power plant. Certain local planning problems have been caused by restricted zones and power cables. Cooperation between the local authorities and the utility has been good. (JIW)

  2. The Root-Associated Microbial Community of the World's Highest Growing Vascular Plants.

    Science.gov (United States)

    Angel, Roey; Conrad, Ralf; Dvorsky, Miroslav; Kopecky, Martin; Kotilínek, Milan; Hiiesalu, Inga; Schweingruber, Fritz; Doležal, Jiří

    2016-08-01

    Upward migration of plants to barren subnival areas is occurring worldwide due to raising ambient temperatures and glacial recession. In summer 2012, the presence of six vascular plants, growing in a single patch, was recorded at an unprecedented elevation of 6150 m.a.s.l. close to the summit of Mount Shukule II in the Western Himalayas (Ladakh, India). Whilst showing multiple signs of stress, all plants have managed to establish stable growth and persist for several years. To learn about the role of microbes in the process of plant upward migration, we analysed the root-associated microbial community of the plants (three individuals from each) using microscopy and tagged amplicon sequencing. No mycorrhizae were found on the roots, implying they are of little importance to the establishment and early growth of the plants. However, all roots were associated with a complex bacterial community, with richness and diversity estimates similar or even higher than the surrounding bare soil. Both soil and root-associated communities were dominated by members of the orders Sphingomonadales and Sphingobacteriales, which are typical for hot desert soils, but were different from communities of temperate subnival soils and typical rhizosphere communities. Despite taxonomic similarity on the order level, the plants harboured a unique set of highly dominant operational taxonomic units which were not found in the bare soil. These bacteria have been likely transported with the dispersing seeds and became part of the root-associated community following germination. The results indicate that developing soils act not only as a source of inoculation to plant roots but also possibly as a sink for plant-associated bacteria.

  3. Management of plant communities on set-aside land and its effects on earthworm communities

    Czech Academy of Sciences Publication Activity Database

    Gormsen, D.; Hedlund, K.; Korthals, G. W.; Mortimer, S. R.; Pižl, Václav; Šmilauerová, M.; Sugg, E.

    2004-01-01

    Roč. 40, 3-4 (2004), s. 123-128 ISSN 1164-5563 Grant - others:Evropská unie(XE) ENV4-CT95-0002 Keywords : earthworm community * plant community * land use Subject RIV: EH - Ecology, Behaviour Impact factor: 0.776, year: 2004

  4. Lags in the response of mountain plant communities to climate change

    DEFF Research Database (Denmark)

    Alexander, Jake M; Chalmandrier, Loïc; Lenoir, Jonathan

    2018-01-01

    Rapid climatic changes and increasing human influence at high elevations around the world will have profound impacts on mountain biodiversity. However, forecasts from statistical models (e.g. species distribution models) rarely consider that plant community changes could substantially lag behind...... plant species' spread along elevational gradients, "establishment lags" following their arrival in recipient communities, and "extinction lags" of resident species. Variation in lags is explained by variation among species in physiological and demographic responses, by effects of altered biotic...... turnover in future communities might lag behind simple expectations based on species' range shifts with unlimited dispersal. The model shows a combined contribution of altered biotic interactions and dispersal lags to plant community turnover along an elevational gradient following climate warming. Our...

  5. Rural and school community in appreciating knowledge on medical plants

    Directory of Open Access Journals (Sweden)

    Marcílio Souza Carneiro

    2016-05-01

    Full Text Available Isolated communities in the urban environment still use medicinal plants, but such knowledge is not always passed on to new generations. In this scenario, we propose a study with students, teachers, and community residents from Córrego da Ema, Amontada, Ceará, Brazil, aiming to know the wisdom of medicinal plants in a small rural community in the Brazilian semi-arid region. We interviewed the medicinal plant connoisseurs, named as local experts, by using the “snow ball” method. We applied questionnaires to investigate Elementary School students’ knowledge on medicinal plants (pre-tour. These actions provided a basis for planning guided-tours, activities aimed at 51 students, which we carried out along with the 10 experts and 2 local school teachers, whose results (post-tour were assessed by using the same pre-tour questionnaire. Most local experts were women (80%, their families had many people and low education level, factors that contribute to using medicinal plants. Experts cited 35 medicinal plant species. Students cited 24 pre-tour plant species and 28 post-tour plant species. Students increased their knowledge, as there was also a post-tour increase in therapeutic indications and preparation methods, as mentioned. The school played an important role in appreciating this intangible heritage, because it enabled actions involving formal and informal education.

  6. Ethnobotany of dye plants in Dong communities of China.

    Science.gov (United States)

    Liu, Yujing; Ahmed, Selena; Liu, Bo; Guo, Zhiyong; Huang, Weijuan; Wu, Xianjin; Li, Shenghua; Zhou, Jiangju; Lei, Qiyi; Long, Chunlin

    2014-02-19

    Dyes derived from plants have an extensive history of use for coloring food and clothing in Dong communities and other indigenous areas in the uplands of China. In addition to use as coloring agents, Dong communities have historically utilized dye plants for their value for enhancing the nutritive, medicinal and preservative properties of foods. However, the persistence of plant-derived dyes and associated cultural practices and traditional knowledge is threatened with rapid socio-economic change in China. Research is needed to document the ethnobotany of dye plants in indigenous communities towards their conservation and potential commercialization as a sustainable means of supporting local development initiatives. Semi-structured surveys on plants used for coloring agents and associated traditional knowledge were conducted in fifteen Dong villages of Tongdao County in Hunan Province of South Central China during 2011-2012. Transect walks were carried out with key informants identified from semi-structured surveys to collect samples and voucher specimens for each documented plant species for taxonomic identification. Dong households at the study sites utilize the flowers, bark, stems, tubers and roots of 13 plant species from 9 families as dyes to color their customary clothing and food. Out of the documented plants, a total of 7 are used for coloring food, 3 for coloring clothing and 3 for both food and clothing. Documented plants consist of 3 species that yield black pigments, 3 for brownish red/russet pigments, 3 for red pigments, 2 for dark blue pigments and 2 for yellow pigments. In addition to dyes, the plants have multiple uses including medicinal, ornamental, sacrificial, edible, and for timber. The use of dyes derived from plants persists at the study sites for their important role in expressing Dong cultural identity through customary clothing and food. Further research is needed to evaluate the safety of dye plants, their efficacy in enhancing food

  7. Changes in plant species richness induce functional shifts in soil nematode communities in experimental grassland.

    Directory of Open Access Journals (Sweden)

    Nico Eisenhauer

    Full Text Available Changes in plant diversity may induce distinct changes in soil food web structure and accompanying soil feedbacks to plants. However, knowledge of the long-term consequences of plant community simplification for soil animal food webs and functioning is scarce. Nematodes, the most abundant and diverse soil Metazoa, represent the complexity of soil food webs as they comprise all major trophic groups and allow calculation of a number of functional indices.We studied the functional composition of nematode communities three and five years after establishment of a grassland plant diversity experiment (Jena Experiment. In response to plant community simplification common nematode species disappeared and pronounced functional shifts in community structure occurred. The relevance of the fungal energy channel was higher in spring 2007 than in autumn 2005, particularly in species-rich plant assemblages. This resulted in a significant positive relationship between plant species richness and the ratio of fungal-to-bacterial feeders. Moreover, the density of predators increased significantly with plant diversity after five years, pointing to increased soil food web complexity in species-rich plant assemblages. Remarkably, in complex plant communities the nematode community shifted in favour of microbivores and predators, thereby reducing the relative abundance of plant feeders after five years.The results suggest that species-poor plant assemblages may suffer from nematode communities detrimental to plants, whereas species-rich plant assemblages support a higher proportion of microbivorous nematodes stimulating nutrient cycling and hence plant performance; i.e. effects of nematodes on plants may switch from negative to positive. Overall, food web complexity is likely to decrease in response to plant community simplification and results of this study suggest that this results mainly from the loss of common species which likely alter plant-nematode interactions.

  8. Effects of Trampling Limitation on Coastal Dune Plant Communities

    Science.gov (United States)

    Santoro, Riccardo; Jucker, Tommaso; Prisco, Irene; Carboni, Marta; Battisti, Corrado; Acosta, Alicia T. R.

    2012-03-01

    Sandy coastlines are sensitive ecosystems where human activities can have considerable negative impacts. In particular, trampling by beach visitors is a disturbance that affects dune vegetation both at the species and community level. In this study we assess the effects of the limitation of human trampling on dune vegetation in a coastal protected area of Central Italy. We compare plant species diversity in two recently fenced sectors with that of an unfenced area (and therefore subject to human trampling) using rarefaction curves and a diversity/dominance approach during a two year study period. Our results indicate that limiting human trampling seems to be a key factor in driving changes in the plant diversity of dune systems. In 2007 the regression lines of species abundance as a function of rank showed steep slopes and high Y-intercept values in all sectors, indicating a comparable level of stress and dominance across the entire study site. On the contrary, in 2009 the regression lines of the two fenced sectors clearly diverge from that of the open sector, showing less steep slopes. This change in the slopes of the tendency lines, evidenced by the diversity/dominance diagrams and related to an increase in species diversity, suggests the recovery of plant communities in the two fences between 2007 and 2009. In general, plant communities subject to trampling tended to be poorer in species and less structured, since only dominant and tolerant plant species persisted. Furthermore, limiting trampling appears to have produced positive changes in the dune vegetation assemblage after a period of only two years. These results are encouraging for the management of coastal dune systems. They highlight how a simple and cost-effective management strategy, based on passive recovery conservation measures (i.e., fence building), can be a quick (1-2 years) and effective method for improving and safeguarding the diversity of dune plant communities.

  9. Effects of migratory geese on plant communities of an Alaskan salt marsh

    Science.gov (United States)

    Zacheis, Amy B.; Hupp, Jerry W.; Ruess, Roger W.

    2001-01-01

    1. We studied the effects of lesser snow geese (Anser caerulescens caerulescens) and Canada geese (Branta canadensis) on two salt marsh plant communities in Cook Inlet, Alaska, a stopover area used during spring migration. From 1995 to 1997 we compared plant species composition and biomass on plots where geese were excluded from feeding with paired plots where foraging could occur. 2. Foraging intensity was low (650-1930 goose-days km-2) compared to other goose-grazing systems. 3. Canada geese fed mainly on above-ground shoots of Triglochin maritimum, Puccinellia spp. and Carex ramenskii, whereas the majority of the snow goose diet consisted of below-ground tissues of Plantago maritima and Triglochin maritimum. 4. Plant communities responded differently to goose herbivory. In the sedge meadow community, where feeding was primarily on above-ground shoots, there was no effect of grazing on the dominant species Carex ramenskii and Triglochin maritimum. In the herb meadow community, where snow geese fed on Plantago maritima roots and other below-ground tissues, there was a difference in the relative abundance of plant species between treatments. Biomass of Plantago maritima and Potentilla egedii was lower on grazed plots compared with exclosed, whereas biomass of Carex ramenskii was greater on grazed plots. There was no effect of herbivory on total standing crop biomass in either community. The variable effect of herbivory on Carex ramenskii between communities suggests that plant neighbours and competitive interactions are important factors in a species' response to herbivory. In addition, the type of herbivory (above- or below-ground) was important in determining plant community response to herbivory. 5. Litter accumulation was reduced in grazed areas compared with exclosed in both communities. Trampling of the previous year's litter into the soil surface by geese incorporated more litter into soils in grazed areas. 6. This study illustrates that even light herbivore

  10. Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest.

    Science.gov (United States)

    Mueller, Rebecca C; Paula, Fabiana S; Mirza, Babur S; Rodrigues, Jorge L M; Nüsslein, Klaus; Bohannan, Brendan J M

    2014-07-01

    Understanding the interactions among microbial communities, plant communities and soil properties following deforestation could provide insights into the long-term effects of land-use change on ecosystem functions, and may help identify approaches that promote the recovery of degraded sites. We combined high-throughput sequencing of fungal rDNA and molecular barcoding of plant roots to estimate fungal and plant community composition in soil sampled across a chronosequence of deforestation. We found significant effects of land-use change on fungal community composition, which was more closely correlated to plant community composition than to changes in soil properties or geographic distance, providing evidence for strong links between above- and below-ground communities in tropical forests.

  11. Herbivory of an invasive slug is affected by earthworms and the composition of plant communities.

    Science.gov (United States)

    Zaller, Johann G; Parth, Myriam; Szunyogh, Ilona; Semmelrock, Ines; Sochurek, Susanne; Pinheiro, Marcia; Frank, Thomas; Drapela, Thomas

    2013-05-13

    Biodiversity loss and species invasions are among the most important human-induced global changes. Moreover, these two processes are interlinked as ecosystem invasibility is considered to increase with decreasing biodiversity. In temperate grasslands, earthworms serve as important ecosystem engineers making up the majority of soil faunal biomass. Herbivore behaviour has been shown to be affected by earthworms, however it is unclear whether these effects differ with the composition of plant communities. To test this we conducted a mesocosm experiment where we added earthworms (Annelida: Lumbricidae) to planted grassland communities with different plant species composition (3 vs. 12 plant spp.). Plant communities had equal plant densities and ratios of the functional groups grasses, non-leguminous forbs and legumes. Later, Arion vulgaris slugs (formerly known as A. lusitanicus; Gastropoda: Arionidae) were added and allowed to freely choose among the available plant species. This slug species is listed among the 100 worst alien species in Europe. We hypothesized that (i) the food choice of slugs would be altered by earthworms' specific effects on the growth and nutrient content of plant species, (ii) slug herbivory will be less affected by earthworms in plant communities containing more plant species than in those with fewer plant species because of a more readily utilization of plant resources making the impacts of earthworms less pronounced. Slug herbivory was significantly affected by both earthworms and plant species composition. Slugs damaged 60% less leaves when earthworms were present, regardless of the species composition of the plant communities. Percent leaf area consumed by slugs was 40% lower in communities containing 12 plant species; in communities containing only three species earthworms increased slug leaf area consumption. Grasses were generally avoided by slugs. Leaf length and number of tillers was increased in mesocosms containing more plant

  12. Classification of Grassland Successional Stages Using Airborne Hyperspectral Imagery

    Directory of Open Access Journals (Sweden)

    Thomas Möckel

    2014-08-01

    Full Text Available Plant communities differ in their species composition, and, thus, also in their functional trait composition, at different stages in the succession from arable fields to grazed grassland. We examine whether aerial hyperspectral (414–2501 nm remote sensing can be used to discriminate between grazed vegetation belonging to different grassland successional stages. Vascular plant species were recorded in 104.1 m2 plots on the island of Öland (Sweden and the functional properties of the plant species recorded in the plots were characterized in terms of the ground-cover of grasses, specific leaf area and Ellenberg indicator values. Plots were assigned to three different grassland age-classes, representing 5–15, 16–50 and >50 years of grazing management. Partial least squares discriminant analysis models were used to compare classifications based on aerial hyperspectral data with the age-class classification. The remote sensing data successfully classified the plots into age-classes: the overall classification accuracy was higher for a model based on a pre-selected set of wavebands (85%, Kappa statistic value = 0.77 than one using the full set of wavebands (77%, Kappa statistic value = 0.65. Our results show that nutrient availability and grass cover differences between grassland age-classes are detectable by spectral imaging. These techniques may potentially be used for mapping the spatial distribution of grassland habitats at different successional stages.

  13. Plant Invasions Associated with Change in Root-Zone Microbial Community Structure and Diversity.

    Directory of Open Access Journals (Sweden)

    Richard R Rodrigues

    Full Text Available The importance of plant-microbe associations for the invasion of plant species have not been often tested under field conditions. The research sought to determine patterns of change in microbial communities associated with the establishment of invasive plants with different taxonomic and phenetic traits. Three independent locations in Virginia, USA were selected. One site was invaded by a grass (Microstegium vimineum, another by a shrub (Rhamnus davurica, and the third by a tree (Ailanthus altissima. The native vegetation from these sites was used as reference. 16S rRNA and ITS regions were sequenced to study root-zone bacterial and fungal communities, respectively, in invaded and non-invaded samples and analyzed using Quantitative Insights Into Microbial Ecology (QIIME. Though root-zone microbial community structure initially differed across locations, plant invasion shifted communities in similar ways. Indicator species analysis revealed that Operational Taxonomic Units (OTUs closely related to Proteobacteria, Acidobacteria, Actinobacteria, and Ascomycota increased in abundance due to plant invasions. The Hyphomonadaceae family in the Rhodobacterales order and ammonia-oxidizing Nitrospirae phylum showed greater relative abundance in the invaded root-zone soils. Hyphomicrobiaceae, another bacterial family within the phyla Proteobacteria increased as a result of plant invasion, but the effect associated most strongly with root-zones of M. vimineum and R. davurica. Functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt showed bacteria responsible for nitrogen cycling in soil increased in relative abundance in association with plant invasion. In agreement with phylogenetic and functional analyses, greater turnover of ammonium and nitrate was associated with plant invasion. Overall, bacterial and fungal communities changed congruently across plant invaders, and support the hypothesis that

  14. Nematode community shifts in response to experimental warming and canopy conditions are associated with plant community changes in the temperate-boreal forest ecotone.

    Science.gov (United States)

    Thakur, Madhav Prakash; Reich, Peter B; Fisichelli, Nicholas A; Stefanski, Artur; Cesarz, Simone; Dobies, Tomasz; Rich, Roy L; Hobbie, Sarah E; Eisenhauer, Nico

    2014-06-01

    Global climate warming is one of the key forces driving plant community shifts, such as range shifts of temperate species into boreal forests. As plant community shifts are slow to observe, ecotones, boundaries between two ecosystems, are target areas for providing early evidence of ecological responses to warming. The role of soil fauna is poorly explored in ecotones, although their positive and negative effects on plant species can influence plant community structure. We studied nematode communities in response to experimental warming (ambient, +1.7, +3.4 °C) in soils of closed and open canopy forest in the temperate-boreal ecotone of Minnesota, USA and calculated various established nematode indices. We estimated species-specific coverage of understory herbaceous and shrub plant species from the same experimental plots and tested if changes in the nematode community are associated with plant cover and composition. Individual nematode trophic groups did not differ among warming treatments, but the ratio between microbial-feeding and plant-feeding nematodes increased significantly and consistently with warming in both closed and open canopy areas and at both experimental field sites. The increase in this ratio was positively correlated with total cover of understory plant species, perhaps due to increased predation pressure on soil microorganisms causing higher nutrient availability for plants. Multivariate analyses revealed that temperature treatment, canopy conditions and nematode density consistently shaped understory plant communities across experimental sites. Our findings suggest that warming-induced changes in nematode community structure are associated with shifts in plant community composition and productivity in the temperate-boreal forest ecotones.

  15. Changing expectations: a longitudinal study of community attitudes toward a nuclear power plant

    International Nuclear Information System (INIS)

    Hughey, J.B.; Lounsbury, J.W.; Sundstrom, E.; Mattingly, T.J. Jr.

    1983-01-01

    Initial and 5-year follow-up interviews were conducted with 213 residents of the host community for a nuclear power plant. The purpose was to determine possible changes in attitudes toward the plant and expectations about potential outcomes associated with construction. Large negative changes in attitudes toward the plant were noted and were accompanied most notably by decreased expectations of positive outcomes. The structure of the expectations remained essentially stable over the 5-year period. Perceptions of hazards, community disruption, and economic benefits as measured early in construction and during peak construction were found to be the best predictors of acceptance of the nuclear plant. Initial expectations were found to predict overall attitude toward the plant 5 years later. Results were discussed in terms of implications for social impact assessment, large-scale community change, and the predictability of community attitudes toward nuclear power plant construction

  16. Formalization of the classification pattern: survey of classification modeling in information systems engineering.

    Science.gov (United States)

    Partridge, Chris; de Cesare, Sergio; Mitchell, Andrew; Odell, James

    2018-01-01

    Formalization is becoming more common in all stages of the development of information systems, as a better understanding of its benefits emerges. Classification systems are ubiquitous, no more so than in domain modeling. The classification pattern that underlies these systems provides a good case study of the move toward formalization in part because it illustrates some of the barriers to formalization, including the formal complexity of the pattern and the ontological issues surrounding the "one and the many." Powersets are a way of characterizing the (complex) formal structure of the classification pattern, and their formalization has been extensively studied in mathematics since Cantor's work in the late nineteenth century. One can use this formalization to develop a useful benchmark. There are various communities within information systems engineering (ISE) that are gradually working toward a formalization of the classification pattern. However, for most of these communities, this work is incomplete, in that they have not yet arrived at a solution with the expressiveness of the powerset benchmark. This contrasts with the early smooth adoption of powerset by other information systems communities to, for example, formalize relations. One way of understanding the varying rates of adoption is recognizing that the different communities have different historical baggage. Many conceptual modeling communities emerged from work done on database design, and this creates hurdles to the adoption of the high level of expressiveness of powersets. Another relevant factor is that these communities also often feel, particularly in the case of domain modeling, a responsibility to explain the semantics of whatever formal structures they adopt. This paper aims to make sense of the formalization of the classification pattern in ISE and surveys its history through the literature, starting from the relevant theoretical works of the mathematical literature and gradually shifting focus

  17. Patterns of vegetation and grasshopper community composition.

    Science.gov (United States)

    Kemp, W P; Harvey, S J; O'Neill, K M

    1990-06-01

    A study was conducted to evaluate differences in rangeland grasshopper communities over environmental gradients in Gallatin Valley, Montana, USA. The concept of habitat type (Daubenmire 1966) was used as a basis for discriminating between groupings of patches based on vegetation. A total of 39 patches were selected that represented five recognized grassland habitat types (Mueggler and Stewart 1980), as well as two disturbed types (replanting within a known habitat type). Repeated sampling in 1988 of both the insect and plant communities yielded a total of 40 grasshopper (19 664 individuals) and 97 plant species. Detrended Correspondence Analysis (DCA) indicated that patch classifications based on presence and percent cover of plants were appropriate and showed good between-group (habitat type) separation for patches along gradients of precipitation/elevation and plant community complexity. Results from undisturbed habitats showed that plant and grasshopper species composition changed over observed environmental gradients and suggested that habitat type influenced not only species presence, but also relative abundance. Discussion is presented that relates results with patch-use and core and satellite species paradigms.

  18. Assessing the Impact of Spectral Resolution on Classification of Lowland Native Grassland Communities Based on Field Spectroscopy in Tasmania, Australia

    Directory of Open Access Journals (Sweden)

    Bethany Melville

    2018-02-01

    Full Text Available This paper presents a case study for the analysis of endangered lowland native grassland communities in the Tasmanian Midlands region using field spectroscopy and spectral convolution techniques. The aim of the study was to determine whether there was significant improvement in classification accuracy for lowland native grasslands and other vegetation communities based on hyperspectral resolution datasets over multispectral equivalents. A spectral dataset was collected using an ASD Handheld-2 spectroradiometer at Tunbridge Township Lagoon. The study then employed a k-fold cross-validation approach for repeated classification of a full hyperspectral dataset, a reduced hyperspectral dataset, and two convoluted multispectral datasets. Classification was performed on each of the four datasets a total of 30 times, based on two different class configurations. The classes analysed were Themeda triandra grassland, Danthonia/Poa grassland, Wilsonia rotundifolia/Selliera radicans, saltpan, and a simplified C3 vegetation class. The results of the classifications were then tested for statistically significant differences using ANOVA and Tukey’s post-hoc comparisons. The results of the study indicated that hyperspectral resolution provides small but statistically significant increases in classification accuracy for Themeda and Danthonia grasslands. For other classes, differences in classification accuracy for all datasets were not statistically significant. The results obtained here indicate that there is some potential for enhanced detection of major lowland native grassland community types using hyperspectral resolution datasets, and that future analysis should prioritise good performance in these classes over others. This study presents a method for identification of optimal spectral resolution across multiple datasets, and constitutes an important case study for lowland native grassland mapping in Tasmania.

  19. Does a decade of elevated [CO2] affect a desert perennial plant community?

    Science.gov (United States)

    Newingham, Beth A; Vanier, Cheryl H; Kelly, Lauren J; Charlet, Therese N; Smith, Stanley D

    2014-01-01

    Understanding the effects of elevated [CO2 ] on plant community structure is crucial to predicting ecosystem responses to global change. Early predictions suggested that productivity in deserts would increase via enhanced water-use efficiency under elevated [CO2], but the response of intact arid plant communities to elevated [CO2 ] is largely unknown. We measured changes in perennial plant community characteristics (cover, species richness and diversity) after 10 yr of elevated [CO2] exposure in an intact Mojave Desert community at the Nevada Desert Free-Air CO2 Enrichment (FACE) Facility. Contrary to expectations, total cover, species richness, and diversity were not affected by elevated [CO2]. Over the course of the experiment, elevated [CO2] had no effect on changes in cover of the evergreen C3 shrub, Larrea tridentata; alleviated decreases in cover of the C4 bunchgrass, Pleuraphis rigida; and slightly reduced the cover of C3 drought-deciduous shrubs. Thus, we generally found no effect of elevated [CO2] on plant communities in this arid ecosystem. Extended drought, slow plant growth rates, and highly episodic germination and recruitment of new individuals explain the lack of strong perennial plant community shifts after a decade of elevated [CO2]. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  20. Vertebrate herbivores influence soil nematodes by modifying plant communities

    NARCIS (Netherlands)

    Veen, G. F. (Ciska); Olff, Han; Duyts, Henk; van der Putten, Wim H.

    Abiotic soil properties, plant community composition, and herbivory all have been reported as important factors influencing the composition of soil communities. However, most studies thus far have considered these factors in isolation, whereas they strongly interact in the field. Here, we study how

  1. Exploring the plant-associated bacterial communities in Medicago sativa L

    Directory of Open Access Journals (Sweden)

    Pini Francesco

    2012-05-01

    Full Text Available Abstract Background Plant-associated bacterial communities caught the attention of several investigators which study the relationships between plants and soil and the potential application of selected bacterial species in crop improvement and protection. Medicago sativa L. is a legume crop of high economic importance as forage in temperate areas and one of the most popular model plants for investigations on the symbiosis with nitrogen fixing rhizobia (mainly belonging to the alphaproteobacterial species Sinorhizobium meliloti. However, despite its importance, no studies have been carried out looking at the total bacterial community associated with the plant. In this work we explored for the first time the total bacterial community associated with M. sativa plants grown in mesocosms conditions, looking at a wide taxonomic spectrum, from the class to the single species (S. meliloti level. Results Results, obtained by using Terminal-Restriction Fragment Length Polymorphism (T-RFLP analysis, quantitative PCR and sequencing of 16 S rRNA gene libraries, showed a high taxonomic diversity as well as a dominance by members of the class Alphaproteobacteria in plant tissues. Within Alphaproteobacteria the families Sphingomonadaceae and Methylobacteriaceae were abundant inside plant tissues, while soil Alphaproteobacteria were represented by the families of Hyphomicrobiaceae, Methylocystaceae, Bradyirhizobiaceae and Caulobacteraceae. At the single species level, we were able to detect the presence of S. meliloti populations in aerial tissues, nodules and soil. An analysis of population diversity on nodules and soil showed a relatively low sharing of haplotypes (30-40% between the two environments and between replicate mesocosms, suggesting drift as main force shaping S. meliloti population at least in this system. Conclusions In this work we shed some light on the bacterial communities associated with M. sativa plants, showing that Alphaproteobacteria may

  2. Broad-Scale Comparison of Photosynthesis in Terrestrial and Aquatic Plant Communities

    DEFF Research Database (Denmark)

    Sand-Jensen, Kaj; Krause-Jensen, D.

    1997-01-01

    Comparisons of photosynthesis in terrestrial and aquatic habitats have been impaired by differences in methods and time-scales of measurements. We compiled information on gross photosynthesis at high irradiance and photosynthetic efficiency at low irradiance from 109 published terrestrial studies...... communities probably due to more efficient light utilization and gas exchange in the terrestrial habitats. By contrast only small differences were found within different aquatic plant communities or within different terrestrial plant communities....... of forests, grasslands and crops and 319 aquatic studies of phytoplankton, macrophyte and attached microalgal communities to test if specific differences existed between the communities. Maximum gross photosynthesis and photosynthetic efficiency were systematically higher in terrestrial than in aquatic...

  3. PLANT COMMUNITIES OF ALBANIA - A PRELIMINARY OVERVIEW

    Directory of Open Access Journals (Sweden)

    J. DRING

    2002-04-01

    Full Text Available The phytosociological analysis of Albania was initiated by F. Markgraf in the 30ies, but still remains incomplete. This is a preliminary list of the plant communities resulting from the literature and from field research carried out during the last years and may represent a first contribution for further research. Many communities are described only by dominant species, other are quoted as nomina nuda. Some further syntaxa. probably present in the study area, are added.

  4. Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities

    Czech Academy of Sciences Publication Activity Database

    Mucina, L.; Bültmann, H.; Dierssen, K.; Theurillat, J. P.; Raus, T.; Carni, A.; Šumberová, Kateřina; Willner, W.; Dengler, J.; Gavilán García, R.; Chytrý, M.; Hájek, M.; Di Pietro, R.; Iakushenko, D.; Pallas, J.; Daniëls, F. J. A.; Bergmeier, E.; Santos Guerra, A.; Ermakov, N.; Valachovič, M.; Schaminée, J.H.J.; Lysenko, T.; Didukh, Y. P.; Pignatti, S.; Rodwell, J. S.; Capelo, J.; Weber, H. E.; Solomeshch, A.; Dimopoulos, P.; Aguiar, C.; Hennekens, S. M.; Tichý, L.

    2016-01-01

    Roč. 19, Suppl. 1 (2016), s. 3-264 ISSN 1402-2001 R&D Projects: GA ČR GB14-36079G Institutional support: RVO:67985939 Keywords : Europe * syntaxonomy * vegetation classification Subject RIV: EH - Ecology, Behaviour Impact factor: 2.474, year: 2016

  5. Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities

    NARCIS (Netherlands)

    Mucina, L.; Bültmann, Helga; Dierssen, Klaus; Theurillat, Jean-Paul; Raus, Thomas; Carni, Andraz; Šumberová, Kateřina; Willner, Wolfgang; Dengler, J.; Schaminee, J.H.J.; Hennekens, S.M.

    2016-01-01

    Aims: Vegetation classification consistent with the Braun-Blanquet approach is
    widely used in Europe for applied vegetation science, conservation planning
    and landmanagement. During the long history of syntaxonomy,many concepts
    and names of vegetation units have been proposed, but there

  6. The factors controlling species density in herbaceous plant communities: An assessment

    Science.gov (United States)

    Grace, J.B.

    1999-01-01

    This paper evaluates both the ideas and empirical evidence pertaining to the control of species density in herbaceous plant communities. While most theoretical discussions of species density have emphasized the importance of habitat productivity and disturbance regimes, many other factors (e.g. species pools, plant litter accumulation, plant morphology) have been proposed to be important. A review of literature presenting observations on the density of species in small plots (in the vicinity of a few square meters or less), as well as experimental studies, suggests several generalizations: (1) Available data are consistent with an underlying unimodal relationship between species density and total community biomass. While variance in species density is often poorly explained by predictor variables, there is strong evidence that high levels of community biomass are antagonistic to high species density. (2) Community biomass is just one of several factors affecting variations in species density. Multivariate analyses typically explain more than twice as much variance in species density as can be explained by community biomass alone. (3) Disturbance has important and sometimes complex effects on species density. In general, the evidence is consistent with the intermediate disturbance hypothesis but exceptions exist and effects can be complex. (4) Gradients in the species pool can have important influences on patterns of species density. Evidence is mounting that a considerable amount of the observed variability in species density within a landscape or region may result from environmental effects on the species pool. (5) Several additional factors deserve greater consideration, including time lags, species composition, plant morphology, plant density and soil microbial effects. Based on the available evidence, a conceptual model of the primary factors controlling species density is presented here. This model suggests that species density is controlled by the effects of

  7. Nectar-living yeasts of a tropical host plant community: diversity and effects on community-wide floral nectar traits

    Science.gov (United States)

    2017-01-01

    We characterize the diversity of nectar-living yeasts of a tropical host plant community at different hierarchical sampling levels, measure the associations between yeasts and nectariferous plants, and measure the effect of yeasts on nectar traits. Using a series of hierarchically nested sampling units, we extracted nectar from an assemblage of host plants that were representative of the diversity of life forms, flower shapes, and pollinator types in the tropical area of Yucatan, Mexico. Yeasts were isolated from single nectar samples; their DNA was identified, the yeast cell density was estimated, and the sugar composition and concentration of nectar were quantified using HPLC. In contrast to previous studies from temperate regions, the diversity of nectar-living yeasts in the plant community was characterized by a relatively high number of equally common species with low dominance. Analyses predict highly diverse nectar yeast communities in a relatively narrow range of tropical vegetation, suggesting that the diversity of yeasts will increase as the number of sampling units increases at the level of the species, genera, and botanical families of the hosts. Significant associations between specific yeast species and host plants were also detected; the interaction between yeasts and host plants impacted the effect of yeast cell density on nectar sugars. This study provides an overall picture of the diversity of nectar-living yeasts in tropical host plants and suggests that the key factor that affects the community-wide patterns of nectar traits is not nectar chemistry, but rather the type of yeasts interacting with host plants. PMID:28717591

  8. Nectar-living yeasts of a tropical host plant community: diversity and effects on community-wide floral nectar traits

    Directory of Open Access Journals (Sweden)

    Azucena Canto

    2017-07-01

    Full Text Available We characterize the diversity of nectar-living yeasts of a tropical host plant community at different hierarchical sampling levels, measure the associations between yeasts and nectariferous plants, and measure the effect of yeasts on nectar traits. Using a series of hierarchically nested sampling units, we extracted nectar from an assemblage of host plants that were representative of the diversity of life forms, flower shapes, and pollinator types in the tropical area of Yucatan, Mexico. Yeasts were isolated from single nectar samples; their DNA was identified, the yeast cell density was estimated, and the sugar composition and concentration of nectar were quantified using HPLC. In contrast to previous studies from temperate regions, the diversity of nectar-living yeasts in the plant community was characterized by a relatively high number of equally common species with low dominance. Analyses predict highly diverse nectar yeast communities in a relatively narrow range of tropical vegetation, suggesting that the diversity of yeasts will increase as the number of sampling units increases at the level of the species, genera, and botanical families of the hosts. Significant associations between specific yeast species and host plants were also detected; the interaction between yeasts and host plants impacted the effect of yeast cell density on nectar sugars. This study provides an overall picture of the diversity of nectar-living yeasts in tropical host plants and suggests that the key factor that affects the community-wide patterns of nectar traits is not nectar chemistry, but rather the type of yeasts interacting with host plants.

  9. Distribution, species diversity and composition of plant communities in relation to various affecting factors in an alpine grassland at Bandipora, Kashmir

    International Nuclear Information System (INIS)

    Dad, J. M.

    2016-01-01

    This study provides a broad understanding of vascular plant richness and community structure of mountain grassland (Matri) at Bandipora, Kashmir and links it various environmental variables. Employing a stratified sampling design, six sites were selected wherein vegetation was sampled by placing quadrats (n=210). Elucidating an important effect of topography and anthropic pressure, numerical classification TWINSPAN segregated the quadrats into seven community types. Contrary to species rich communities which showed an explicit composition and localized distribution, the other communities depicted a vague composition and stretched unevenly between the lower and middle altitudes. Using canonical correspondence analysis (CCA), elevation and disturbance were found as most influencing factors whereas steepness of slope, organic carbon, soil reaction (pH) and soil salinity (electrical conductivity) were other important factors. Indices of diversity measured at two measurement scales varied differently between communities and at a macro scale (site level) highest values were recorded in least disturbed communities. However, on a micro scale (quadrat level) the indices behaved differently. For effective conservation of these species rich grasslands, acknowledging the local level variability in vegetation structure is all but crucial. (author)

  10. A framework for quantifying the extent of impact to plants from linear construction.

    Science.gov (United States)

    Xiao, Jun; Shi, Peng; Wang, Ya-Feng; Yu, Yang; Yang, Lei

    2017-05-30

    We present a novel framework that accurately evaluates the extent of a linear project's effect from the variability of the structure of the plant community while avoiding interference caused by pioneer species and invasive species. This framework was based on the change of dominant species in the plant community affected by construction. TWINSPAN classification and variation of the integrated importance value (IIV) of each plant species group were used to characterize the process of change in the structure of the plant community. Indicator species group and its inflection point were defined and used to judge the extent of the effects of pipelines. Our findings revealed that dominant species in the working area of the pipeline construction were different from the original plant communities. With the disturbance decreased, the composition and structure of the plant communities gradually changed. We considered the outer limit of the area affected by the construction to be the first area in which the plant community reached a steady state and was similar to the original community. The framework could be used in the post eco-environment impact assessment of linear construction to estimate the intensity of disturbance and recovery condition.

  11. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell

    NARCIS (Netherlands)

    Timmers, R.A.; Rothballer, M.; Strik, D.P.B.T.B.; Engel, M.; Schulz, M.; Hartmann, A.; Hamelers, H.V.M.; Buisman, C.J.N.

    2012-01-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into

  12. A phyt osociological classification of the vegetation of the Jack Scott Nature Reserve*

    Directory of Open Access Journals (Sweden)

    B. J. Coetzee

    1974-12-01

    Full Text Available The vegetation of the Jack Scott Nature Reserve in the Central Bankenveld Veld Type is classified chiefly by the Braun-Blanquet Table Method. Habitat features, physiognomy, total floristic composition, differentiating species, woody plants and prominent grasses and forbs are presented for each community. Characterizing habitat features, in order of importance for the communities, are: exposure, soil texture, geology, slope, aspect, degree of rockiness and previous ploughing. The classification correlates well with the major physiographic and climatic variation in the Reserve and generally does not cut across main physiognomic types. The communities are potentially homogeneous management units.

  13. Plant pathogens structure arthropod communities across multiple spatial and temporal scales

    NARCIS (Netherlands)

    Tack, A.J.M.; Dicke, M.

    2013-01-01

    Plant pathogens and herbivores frequently co-occur on the same host plants. Despite this, little is known about the impact of their interactions on the structure of plant-based ecological communities. Here, we synthesize evidence that indicates that plant pathogens may profoundly impact arthropod

  14. Estonian soil classification as a tool for recording information on soil cover and its matching with local site types, plant covers and humus forms classifications

    Science.gov (United States)

    Kõlli, Raimo; Tõnutare, Tõnu; Rannik, Kaire; Krebstein, Kadri

    2015-04-01

    Estonian soil classification (ESC) has been used successfully during more than half of century in soil survey, teaching of soil science, generalization of soil databases, arrangement of soils sustainable management and others. The Estonian normally developed (postlithogenic) mineral soils (form 72.4% from total area) are characterized by mean of genetic-functional schema, where the pedo-ecological position of soils (ie. location among other soils) is given by means of three scalars: (i) 8 stage lithic-genetic scalar (from rendzina to podzols) separates soils each from other by parent material, lithic properties, calcareousness, character of soil processes and others, (ii) 6 stage moisture and aeration conditions scalar (from aridic or well aerated to permanently wet or reductic conditions), and (iii) 2-3 stage soil development scalar, which characterizes the intensity of soil forming processes (accumulation of humus, podzolization). The organic soils pedo-ecological schema, which links with histic postlithogenic soils, is elaborated for characterizing of peatlands superficial mantle (form 23.7% from whole soil cover). The position each peat soil species among others on this organic (peat) soil matrix schema is determined by mean of 3 scalars: (i) peat thickness, (ii) type of paludification or peat forming peculiarities, and (iii) stage of peat decomposition or peat type. On the matrix of abnormally developed (synlithogenic) soils (all together 3.9%) the soil species are positioned (i) by proceeding in actual time geological processes as erosion, fluvial processes (at vicinity of rivers, lakes or sea) or transforming by anthropogenic and technological processes, and (ii) by 7 stage moisture conditions (from aridic to subaqual) of soils. The most important functions of soil cover are: (i) being a suitable environment for plant productivity; (ii) forming adequate conditions for decomposition, transformation and conversion of falling litter (characterized by humus

  15. Plant reproduction is altered by simulated herbicide drift to constructed plant communities

    Science.gov (United States)

    Herbicide drift may have unintended impacts on native vegetation, adversely affecting structure and function of plant communities. However, these potential effects have been rarely studied or quantified. To determine potential ecological effects of herbicide drift, we construct...

  16. Rapid plant evolution in the presence of an introduced species alters community composition.

    Science.gov (United States)

    Smith, David Solance; Lau, Matthew K; Jacobs, Ryan; Monroy, Jenna A; Shuster, Stephen M; Whitham, Thomas G

    2015-10-01

    Because introduced species may strongly interact with native species and thus affect their fitness, it is important to examine how these interactions can cascade to have ecological and evolutionary consequences for whole communities. Here, we examine the interactions among introduced Rocky Mountain elk, Cervus canadensis nelsoni, a common native plant, Solidago velutina, and the diverse plant-associated community of arthropods. While introduced species are recognized as one of the biggest threats to native ecosystems, relatively few studies have investigated an evolutionary mechanism by which introduced species alter native communities. Here, we use a common garden design that addresses and supports two hypotheses. First, native S. velutina has rapidly evolved in the presence of introduced elk. We found that plants originating from sites with introduced elk flowered nearly 3 weeks before plants originating from sites without elk. Second, evolution of S. velutina results in a change to the plant-associated arthropod community. We found that plants originating from sites with introduced elk supported an arthropod community that had ~35 % fewer total individuals and a different species composition. Our results show that the impacts of introduced species can have both ecological and evolutionary consequences for strongly interacting species that subsequently cascade to affect a much larger community. Such evolutionary consequences are likely to be long-term and difficult to remediate.

  17. CLASSIFICATION OF BENTHIC BIOCENOSES OF THE LOWLAND RIVER TUDOVKA (TVER REGION, RUSSIA USING COMMUNITY FEATURES

    Directory of Open Access Journals (Sweden)

    M. Schletterer

    2017-01-01

    Full Text Available Within the joint Russian-Austrian monitoring programme “REFCOND_VOLGA (2006 – 20XX”, monitoring sites were established in the headwaters of the Volga (Tver Region. River Tudovka, a right tributary to the Volga River, was included within this monitoring programme as its catchment is partly protected and has only few anthropogenic activities. The monitoring activities include physico-chemical and hydraulic parameters as well as biota with a focus is on benthic organisms (diatoms and macrozoobenthos. In this work, the longitudinal patterns in community structure are classified in the lowland river Tudovka using a novel feature-based approach taken from signal processing theory. The method first clusters field sampling data into longitudinal classes (upper, middle, lower course. Community features based on the relative frequency of individual species occurring per class are then generated. We apply both generative and discriminative classification methods. The application of generative methods provides data models which predict the probability of a new sample to belong to an existing class. In contrast, discriminative approaches search for differences between classes and allocate new data accordingly. Leveraging both methods allows for the creation of stable classifications. On this basis we show how the community features can be used to predict the longitudinal class. The community features approach also allows for a robust cross-comparison of investigation reaches over time. In cases where suitable long-term data set are available, predictive models using this approach can also be developed.

  18. Mapping the rehabilitation interventions of a community stroke team to the extended International Classification of Functioning, Disability and Health Core Set for Stroke.

    Science.gov (United States)

    Evans, Melissa; Hocking, Clare; Kersten, Paula

    2017-12-01

    This study aim was to evaluate whether the Extended International Classification of Functioning, Disability and Health Core Set for Stroke captured the interventions of a community stroke rehabilitation team situated in a large city in New Zealand. It was proposed that the results would identify the contribution of each discipline, and the gaps and differences in service provision to Māori and non-Māori. Applying the Extended International Classification of Functioning, Disability and Health Core Set for Stroke in this way would also inform whether this core set should be adopted in New Zealand. Interventions were retrospectively extracted from 18 medical records and linked to the International Classification of Functioning, Disability and Health and the Extended International Classification of Functioning, Disability and Health Core Set for Stroke. The frequencies of linked interventions and the health discipline providing the intervention were calculated. Analysis revealed that 98.8% of interventions provided by the rehabilitation team could be linked to the Extended International Classification of Functioning, Disability and Health Core Set for Stroke, with more interventions for body function and structure than for activities and participation; no interventions for emotional concerns; and limited interventions for community, social and civic life. Results support previous recommendations for additions to the EICSS. The results support the use of the Extended International Classification of Functioning, Disability and Health Core Set for Stroke in New Zealand and demonstrates its use as a quality assurance tool that can evaluate the scope and practice of a rehabilitation service. Implications for Rehabilitation The Extended International Classification of Functioning Disability and Health Core Set for Stroke appears to represent the stroke interventions of a community stroke rehabilitation team in New Zealand. As a result, researchers and clinicians may have

  19. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell

    OpenAIRE

    Timmers, R.A.; Rothballer, M.; Strik, D.P.B.T.B.; Engel, M.; Schulz, M.; Hartmann, A.; Hamelers, H.V.M.; Buisman, C.J.N.

    2012-01-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into the competition for electron donor in a PMFC. This paper characterises the anode-rhizosphere bacterial community of a Glyceria maxima (reed mannagrass) PMFC. Electrochemically active bacteria (EAB) w...

  20. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell

    OpenAIRE

    Timmers, Ruud A.; Rothballer, Michael; Strik, David P. B. T. B.; Engel, Marion; Schulz, Stephan; Schloter, Michael; Hartmann, Anton; Hamelers, Bert; Buisman, Cees

    2012-01-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into the competition for electron donor in a PMFC. This paper characterises the anode–rhizosphere bacterial community of a Glyceria maxima (reed mannagrass) PMFC. Electrochemically active bacteria (EAB) w...

  1. Vision based nutrient deficiency classification in maize plants using multi class support vector machines

    Science.gov (United States)

    Leena, N.; Saju, K. K.

    2018-04-01

    Nutritional deficiencies in plants are a major concern for farmers as it affects productivity and thus profit. The work aims to classify nutritional deficiencies in maize plant in a non-destructive mannerusing image processing and machine learning techniques. The colored images of the leaves are analyzed and classified with multi-class support vector machine (SVM) method. Several images of maize leaves with known deficiencies like nitrogen, phosphorous and potassium (NPK) are used to train the SVM classifier prior to the classification of test images. The results show that the method was able to classify and identify nutritional deficiencies.

  2. Divergent composition but similar function of soil food webs of individual plants: plant species and community effects

    NARCIS (Netherlands)

    Bezemer, T.M.; Fountain, T.; Barea, J.M.; Christensen, S.; Dekker, S.C.; Duyts, H.; Hal, van R.; Harvey, J.A.; Hedlund, K.; Maraun, M.; Mikola, J.; Mladenov, A.G.; Robin, C.; Ruiter, de P.C.; Scheu, H.; Setälä, S.; šmilauer, P.; Putten, van der W.H.

    2010-01-01

    Soils are extremely rich in biodiversity, and soil organisms play pivotal roles in supporting terrestrial life, but the role that individual plants and plant communities play in influencing the diversity and functioning of soil food webs remains highly debated. Plants, as primary producers and

  3. Divergent composition but similar function of soil food webs beneath individual plants: plant species and community effects

    NARCIS (Netherlands)

    Bezemer, T.M.; Fountain, M.T.; Barea, J.M.; Christensen, S.; Dekker, S.C.; Duyts, H.; van Hal, R.; Harvey, J.A.; Hedlund, K.; Maraun, M.; Mikola, J.; Mladenov, A.G.; Robin, C.; de Ruiter, P.C.; Scheu, S.; Setälä, H.; Milauer, P.; Van der Putten, W.H.

    2010-01-01

    Soils are extremely rich in biodiversity, and soil organisms play pivotal roles in supporting terrestrial life, but the role that individual plants and plant communities play in influencing the diversity and functioning of soil food webs remains highly debated. Plants, as primary producers and

  4. Burn Severity Dominates Understory Plant Community Response to Fire in Xeric Jack Pine Forests

    Directory of Open Access Journals (Sweden)

    Bradley D. Pinno

    2016-04-01

    Full Text Available Fire is the most common disturbance in northern boreal forests, and large fires are often associated with highly variable burn severities across the burnt area. We studied the understory plant community response to a range of burn severities and pre-fire stand age four growing seasons after the 2011 Richardson Fire in xeric jack pine forests of northern Alberta, Canada. Burn severity had the greatest impact on post-fire plant communities, while pre-fire stand age did not have a significant impact. Total plant species richness and cover decreased with disturbance severity, such that the greatest richness was in low severity burns (average 28 species per 1-m2 quadrat and plant cover was lowest in the high severity burns (average 16%. However, the response of individual plant groups differed. Lichens and bryophytes were most common in low severity burns and were effectively eliminated from the regenerating plant community at higher burn severities. In contrast, graminoid cover and richness were positively related to burn severity, while forbs did not respond significantly to burn severity, but were impacted by changes in soil chemistry with increased cover at pH >4.9. Our results indicate the importance of non-vascular plants to the overall plant community in this harsh environment and that the plant community is environmentally limited rather than recruitment or competition limited, as is often the case in more mesic forest types. If fire frequency and severity increase as predicted, we may see a shift in plant communities from stress-tolerant species, such as lichens and ericaceous shrubs, to more colonizing species, such as certain graminoids.

  5. [Plant communities in the terrestrial-aquatic transition zone in the paramo of Chingaza, Colombia].

    Science.gov (United States)

    Schmidt-Mumm, Udo; Vargas Ríos, Orlando

    2012-03-01

    Plant communities in the terrestrial-aquatic transition zone in the paramo of Chingaza, Colombia. High Andean paramo ecosystems are an important water resource for many towns, and major cities in this region. The aquatic and wetland vegetation of different paramo lakes, pond, swamps and bogs was studied according to the classical phytosociological approach, which is based on homogenous stands, but excludes any border phenomena or transitional zone. The present research aimed at determining the aquatic and wetland vegetation along different moisture gradients. A total of 89 species in 30 transects were reported, of which Crassula venezuelensis, Carex honplandii, Callitriche nubigena, Eleocharis macrostachya, Ranunculus flagelliformis, R. nubigenus, Eleocharis stenocarpa, Galium ascendens y Alopecurus aequalis were present in more than one third of the transects. Numerical classification and indicator species analysis resulted in the definition of the next 18 communities: 1) Calamagrostis effusa, 2) Sphagnum cuspidatum, 3) Cyperus rufus, 4) Eleocharis stenocarpa, 5) Carex acutata, 6) Poa annua,7) Valeriana sp., 8) Ranunculus flagelliformis, 9) Carex bonplandii, 10) Festuca andicola. 11) Muhlenbergia fustigiata, 12) Elatine paramoana, 13) Isoëtes palmeri, 14) Crassula venezuelensis, 15) Lilaeopsis macloviana, 16) Callitriche nubigena, 17) Potamogeton paramoanus and 18) Potamogeton illinoensis. The ordination of communities reveals the presence of three different aquatic-terrestrial gradients which are related to the life form structure of species that characterized the various communities. We concluded that patchiness and heterogeneity of the vegetation is mainly the result of alterations caused by human activities (burning, cattle raise and material extraction for road and dam construction).

  6. Wild plant species growing closely connected in a subalpine meadow host distinct root-associated bacterial communities

    Directory of Open Access Journals (Sweden)

    Kristin Aleklett

    2015-02-01

    Full Text Available Plant roots are known to harbor large and diverse communities of bacteria. It has been suggested that plant identity can structure these root-associated communities, but few studies have specifically assessed how the composition of root microbiota varies within and between plant species growing under natural conditions. We assessed the community composition of endophytic and epiphytic bacteria through high throughput sequencing using 16S rDNA derived from root tissues collected from a population of a wild, clonal plant (Orange hawkweed–Pilosella aurantiaca as well as two neighboring plant species (Oxeye daisy–Leucanthemum vulgare and Alsike clover–Trifolium hybridum. Our first goal was to determine if plant species growing in close proximity, under similar environmental conditions, still hosted unique root microbiota. Our results showed that plants of different species host distinct bacterial communities in their roots. In terms of community composition, Betaproteobacteria (especially the family Oxalobacteraceae were found to dominate in the root microbiota of L. vulgare and T. hybridum samples, whereas the root microbiota of P. aurantiaca had a more heterogeneous distribution of bacterial abundances where Gammaproteobacteria and Acidobacteria occupied a larger portion of the community. We also explored the extent of individual variance within each plant species investigated, and found that in the plant species thought to have the least genetic variance among individuals (P. aurantiaca still hosted just as diverse microbial communities. Whether all plant species host their own distinct root microbiota and plants more closely related to each other share more similar bacterial communities still remains to be fully explored, but among the plants examined in this experiment there was no trend that the two species belonging to the same family shared more similarities in terms of bacterial community composition.

  7. Seed bank and big sagebrush plant community composition in a range margin for big sagebrush

    Science.gov (United States)

    Martyn, Trace E.; Bradford, John B.; Schlaepfer, Daniel R.; Burke, Ingrid C.; Laurenroth, William K.

    2016-01-01

    The potential influence of seed bank composition on range shifts of species due to climate change is unclear. Seed banks can provide a means of both species persistence in an area and local range expansion in the case of increasing habitat suitability, as may occur under future climate change. However, a mismatch between the seed bank and the established plant community may represent an obstacle to persistence and expansion. In big sagebrush (Artemisia tridentata) plant communities in Montana, USA, we compared the seed bank to the established plant community. There was less than a 20% similarity in the relative abundance of species between the established plant community and the seed bank. This difference was primarily driven by an overrepresentation of native annual forbs and an underrepresentation of big sagebrush in the seed bank compared to the established plant community. Even though we expect an increase in habitat suitability for big sagebrush under future climate conditions at our sites, the current mismatch between the plant community and the seed bank could impede big sagebrush range expansion into increasingly suitable habitat in the future.

  8. Ecological assembly rules in plant communities--approaches, patterns and prospects.

    Science.gov (United States)

    Götzenberger, Lars; de Bello, Francesco; Bråthen, Kari Anne; Davison, John; Dubuis, Anne; Guisan, Antoine; Lepš, Jan; Lindborg, Regina; Moora, Mari; Pärtel, Meelis; Pellissier, Loic; Pottier, Julien; Vittoz, Pascal; Zobel, Kristjan; Zobel, Martin

    2012-02-01

    Understanding how communities of living organisms assemble has been a central question in ecology since the early days of the discipline. Disentangling the different processes involved in community assembly is not only interesting in itself but also crucial for an understanding of how communities will behave under future environmental scenarios. The traditional concept of assembly rules reflects the notion that species do not co-occur randomly but are restricted in their co-occurrence by interspecific competition. This concept can be redefined in a more general framework where the co-occurrence of species is a product of chance, historical patterns of speciation and migration, dispersal, abiotic environmental factors, and biotic interactions, with none of these processes being mutually exclusive. Here we present a survey and meta-analyses of 59 papers that compare observed patterns in plant communities with null models simulating random patterns of species assembly. According to the type of data under study and the different methods that are applied to detect community assembly, we distinguish four main types of approach in the published literature: species co-occurrence, niche limitation, guild proportionality and limiting similarity. Results from our meta-analyses suggest that non-random co-occurrence of plant species is not a widespread phenomenon. However, whether this finding reflects the individualistic nature of plant communities or is caused by methodological shortcomings associated with the studies considered cannot be discerned from the available metadata. We advocate that more thorough surveys be conducted using a set of standardized methods to test for the existence of assembly rules in data sets spanning larger biological and geographical scales than have been considered until now. We underpin this general advice with guidelines that should be considered in future assembly rules research. This will enable us to draw more accurate and general

  9. Interspecific Plant Interactions Reflected in Soil Bacterial Community Structure and Nitrogen Cycling in Primary Succession.

    Science.gov (United States)

    Knelman, Joseph E; Graham, Emily B; Prevéy, Janet S; Robeson, Michael S; Kelly, Patrick; Hood, Eran; Schmidt, Steve K

    2018-01-01

    Past research demonstrating the importance plant-microbe interactions as drivers of ecosystem succession has focused on how plants condition soil microbial communities, impacting subsequent plant performance and plant community assembly. These studies, however, largely treat microbial communities as a black box. In this study, we sought to examine how emblematic shifts from early successional Alnus viridus ssp. sinuata (Sitka alder) to late successional Picea sitchensis (Sitka spruce) in primary succession may be reflected in specific belowground changes in bacterial community structure and nitrogen cycling related to the interaction of these two plants. We examined early successional alder-conditioned soils in a glacial forefield to delineate how alders alter the soil microbial community with increasing dominance. Further, we assessed the impact of late-successional spruce plants on these early successional alder-conditioned microbiomes and related nitrogen cycling through a leachate addition microcosm experiment. We show how increasingly abundant alder select for particular bacterial taxa. Additionally, we found that spruce leachate significantly alters the composition of these microbial communities in large part by driving declines in taxa that are enriched by alder, including bacterial symbionts. We found these effects to be spruce specific, beyond a general leachate effect. Our work also demonstrates a unique influence of spruce on ammonium availability. Such insights bolster theory relating the importance of plant-microbe interactions with late-successional plants and interspecific plant interactions more generally.

  10. Classification and description of the vegetation in the Spitskop area in the proposed Highveld National Park, North West Province, South Africa

    Directory of Open Access Journals (Sweden)

    Mahlomola E. Daemane

    2012-01-01

    Full Text Available The objective of the proposed Highveld National Park (HNP is to conserve a considerable area of the poorly conserved Rocky Highveld Grassland and Dry Sandy Highveld Grassveld of the western Grassland Biome in South Africa. The park has not yet been proclaimed, but is currently under the management of the North West Parks and Tourism Board. The main aim of this study was to classify and describe the vegetation in the Spitskop area in the HNP. The areas affected by soil degradation were on the midslopes, footslopes, valley bottomland and the floodplains around the Spitskop hill. The concentrated grazing around the Spitskop area was also influenced by the existing dam in the floodplains. Floristic and soil degradation data were collected and used to classify and describe the plant communities of the Spitskop area. Vegetation sampling was performed by means of the Braun-Blanquet method and a total of twenty plots were sampled. A numerical classification technique (TWINSPAN was applied to the floristic data to derive a first approximation of the main plant communities. Further refinement was achieved by Braun-Blanquet procedures. The final results of the classification procedure were presented in the form of a phytosociological table, with three major communities and three subcommunities being described. Canonical correspondence analysis was used to determine the direct correlation between plant communities and soil degradation types. Soil compaction and sheet erosion were found to be the most significant variables determining plant community composition. Rill and gully erosion were shown to be of lesser significance in explaining the variation in plant communities. Conservation implications: Grasslands are amongst the most threatened biomes in South Africa, yet less than 1.3% are currently being conserved. The HNP has significant value for biodiversity conservation and the protection of this area will contribute to the preservation of the highly

  11. Plant community responses to simultaneous changes in temperature, nitrogen availability, and invasion.

    Directory of Open Access Journals (Sweden)

    Elise S Gornish

    Full Text Available Increasing rates of change in climate have been observed across the planet and have contributed to the ongoing range shifts observed for many species. Although ecologists are now using a variety of approaches to study how much and through what mechanisms increasing temperature and nutrient pollution may influence the invasions inherent in range shifts, accurate predictions are still lacking.In this study, we conducted a factorial experiment, simultaneously manipulating warming, nitrogen addition and introduction of Pityopsis aspera, to determine how range-shifting species affect a plant community. We quantified the resident community using ordination scores, then used structural equation modeling to examine hypotheses related to how plants respond to a network of experimental treatments and environmental variables. Variation in soil pH explained plant community response to nitrogen addition in the absence of invasion. However, in the presence of invasion, the direct effect of nitrogen on the community was negligible and soil moisture was important for explaining nitrogen effects. We did not find effects of warming on the native plant community in the absence of invasion. In the presence of invasion, however, warming had negative effects on functional richness directly and invasion and herbivory explained the overall positive effect of warming on the plant community.This work highlights the variation in the biotic and abiotic factors responsible for explaining independent and collective climate change effects over a short time scale. Future work should consider the complex and non-additive relationships among factors of climate change and invasion in order to capture more ecologically relevant features of our changing environment.

  12. Agave salmiana Plant Communities in Central Mexico as Affected by Commercial Use

    Science.gov (United States)

    Martínez Salvador, Martin; Mata-González, Ricardo; Morales Nieto, Carlos; Valdez-Cepeda, Ricardo

    2012-01-01

    Agave salmiana is a native plant species harvested for the commercial production of mezcal ( Agave spirits) in the highlands of central Mexico. The objective of this study was to identify vegetation changes in natural communities where A. salmiana has been differentially harvested for commercial purposes. Three plant community categories were identified in the state of Zacatecas based on their history of A. salmiana utilization: short (less than 10 years of use), moderate (about 25 years), and long (60 or more years). Species cover, composition, and density were evaluated in field surveys by use category. A gradient of vegetation structure of the communities parallels the duration of A. salmiana use. A. salmiana density was greatest (3,125 plants ha-1) in the short-use areas and less (892 plants ha-1) in the moderate-use areas, associated with markedly greater density of shrubs (200%) and Opuntia spp. (50%) in moderate-use areas. The main shrubs were Larrea tridentata, Mimosa biuncifera, Jatropha dioica and Buddleia scordioides while the main Opuntia species were Opuntia leucotricha and Opuntia robusta. A. salmiana density was least (652 plants ha-1) in the long-use areas where shrubs were less abundant but Opuntia spp. density was 25% higher than in moderate-use areas. We suggest that shrubs may increase with moderate use creating an intermediate successional stage that facilitates the establishment of Opuntia spp. Long-term Agave use is generating new plant communities dominated by Opuntia spp. (nopaleras) as a replacement of the original communities dominated by A. salmiana (magueyeras).

  13. Munitions Classification Library

    Science.gov (United States)

    2016-04-04

    members of the community to make their own additions to any, or all, of the classification libraries . The next phase entailed data collection over less......Include area code) 04/04/2016 Final Report August 2014 - August 2015 MUNITIONS CLASSIFICATION LIBRARY Mr. Craig Murray, Parsons Dr. Thomas H. Bell, Leidos

  14. Inoculation effects on root-colonizing arbuscular mycorrhizal fungal communities spread beyond directly inoculated plants

    Science.gov (United States)

    Krak, Karol; Vosátka, Miroslav; Püschel, David; Štorchová, Helena

    2017-01-01

    Inoculation with arbuscular mycorrhizal fungi (AMF) may improve plant performance at disturbed sites, but inoculation may also suppress root colonization by native AMF and decrease the diversity of the root-colonizing AMF community. This has been shown for the roots of directly inoculated plants, but little is known about the stability of inoculation effects, and to which degree the inoculant and the inoculation-induced changes in AMF community composition spread into newly emerging seedlings that were not in direct contact with the introduced propagules. We addressed this topic in a greenhouse experiment based on the soil and native AMF community of a post-mining site. Plants were cultivated in compartmented pots with substrate containing the native AMF community, where AMF extraradical mycelium radiating from directly inoculated plants was allowed to inoculate neighboring plants. The abundances of the inoculated isolate and of native AMF taxa were monitored in the roots of the directly inoculated plants and the neighboring plants by quantitative real-time PCR. As expected, inoculation suppressed root colonization of the directly inoculated plants by other AMF taxa of the native AMF community and also by native genotypes of the same species as used for inoculation. In the neighboring plants, high abundance of the inoculant and the suppression of native AMF were maintained. Thus, we demonstrate that inoculation effects on native AMF propagate into plants that were not in direct contact with the introduced inoculum, and are therefore likely to persist at the site of inoculation. PMID:28738069

  15. Inoculation effects on root-colonizing arbuscular mycorrhizal fungal communities spread beyond directly inoculated plants.

    Directory of Open Access Journals (Sweden)

    Martina Janoušková

    Full Text Available Inoculation with arbuscular mycorrhizal fungi (AMF may improve plant performance at disturbed sites, but inoculation may also suppress root colonization by native AMF and decrease the diversity of the root-colonizing AMF community. This has been shown for the roots of directly inoculated plants, but little is known about the stability of inoculation effects, and to which degree the inoculant and the inoculation-induced changes in AMF community composition spread into newly emerging seedlings that were not in direct contact with the introduced propagules. We addressed this topic in a greenhouse experiment based on the soil and native AMF community of a post-mining site. Plants were cultivated in compartmented pots with substrate containing the native AMF community, where AMF extraradical mycelium radiating from directly inoculated plants was allowed to inoculate neighboring plants. The abundances of the inoculated isolate and of native AMF taxa were monitored in the roots of the directly inoculated plants and the neighboring plants by quantitative real-time PCR. As expected, inoculation suppressed root colonization of the directly inoculated plants by other AMF taxa of the native AMF community and also by native genotypes of the same species as used for inoculation. In the neighboring plants, high abundance of the inoculant and the suppression of native AMF were maintained. Thus, we demonstrate that inoculation effects on native AMF propagate into plants that were not in direct contact with the introduced inoculum, and are therefore likely to persist at the site of inoculation.

  16. Indigenous knowledge of medicinal plants used by Saperas community of Khetawas, Jhajjar District, Haryana, India

    Directory of Open Access Journals (Sweden)

    Kumar Sunil

    2010-01-01

    Full Text Available Abstract Background Plants have traditionally been used as a source of medicine in India by indigenous people of different ethnic groups inhabiting various terrains for the control of various ailments afflicting human and their domestic animals. The indigenous community of snake charmers belongs to the 'Nath' community in India have played important role of healers in treating snake bite victims. Snake charmers also sell herbal remedies for common ailments. In the present paper an attempt has been made to document on ethno botanical survey and traditional medicines used by snake charmers of village Khetawas located in district Jhajjar of Haryana, India as the little work has been made in the past to document the knowledge from this community. Methods Ethno botanical data and traditional uses of plants information was obtained by semi structured oral interviews from experienced rural folk, traditional herbal medicine practitioners of the 'Nath' community. A total of 42 selected inhabitants were interviewed, 41 were male and only one woman. The age of the healers was between 25 years and 75 years. The plant specimens were identified according to different references concerning the medicinal plants of Haryana and adjoining areas and further confirmation from Forest Research Institute, Dehradun. Results The present study revealed that the people of the snake charmer community used 57 medicinal plants species that belonged to 51 genera and 35 families for the treatment of various diseases. The study has brought to light that the main diseases treated by this community was snakebite in which 19 different types of medicinal plants belongs to 13 families were used. Significantly higher number of medicinal plants was claimed by men as compared to women. The highest numbers of medicinal plants for traditional uses utilized by this community were belonging to family Fabaceae. Conclusion This community carries a vast knowledge of medicinal plants but as

  17. SIMILARITY COMPARISON AND CLASSIFICATION OF SUCKING LOUSE COMMUNITIES ON SOME SMALL MAMMALS IN YUNNAN, CHINA

    Institute of Scientific and Technical Information of China (English)

    Xian-guoGuo; Ti-junQian; Li-junGuo; Wen-geDong

    2004-01-01

    The similarity and classification of sucking louse communities on 24 species of small mammals were studied in Yunnan Province, China, through a hierarchical cluster analysis. All the louse species on the body surface of a certain species of small mammals are regarded as a louse community unit. The results reveal that the community structure of sucking lice on small mammals is simple with low species diversity. Most small mammals usually have certain louse species on their body surface; there exists a high degree of host specificity. Most louse communities on the same genus of small mammals show a high similarity and are classified into the same group based on hierarchical cluster analysis. When the hosts have a close affinity in taxonomy, the louse communities on their body surface would tend to be similar with the same or similar dominant louse species (as observed in genus Rattus, Niviventer, Apodemus and Eothenomys). The similarity of sucking louse communities is highly consistent with the affinity of small mammal hosts in taxonomy. The results suggest a close relationship of co-evolution between sucking lice and their hosts.

  18. Gradient Analysis and Classification of Carolina Bay Vegetation: A Framework for Bay Wetlands Conservation and Restoration

    Energy Technology Data Exchange (ETDEWEB)

    Diane De Steven,Ph.D.; Maureen Tone,PhD.

    1997-10-01

    This report address four project objectives: (1) Gradient model of Carolina bay vegetation on the SRS--The authors use ordination analyses to identify environmental and landscape factors that are correlated with vegetation composition. Significant factors can provide a framework for site-based conservation of existing diversity, and they may also be useful site predictors for potential vegetation in bay restorations. (2) Regional analysis of Carolina bay vegetation diversity--They expand the ordination analyses to assess the degree to which SRS bays encompass the range of vegetation diversity found in the regional landscape of South Carolina's western Upper Coastal Plain. Such comparisons can indicate floristic status relative to regional potentials and identify missing species or community elements that might be re-introduced or restored. (3) Classification of vegetation communities in Upper Coastal Plain bays--They use cluster analysis to identify plant community-types at the regional scale, and explore how this classification may be functional with respect to significant environmental and landscape factors. An environmentally-based classification at the whole-bay level can provide a system of templates for managing bays as individual units and for restoring bays to desired plant communities. (4) Qualitative model for bay vegetation dynamics--They analyze present-day vegetation in relation to historic land uses and disturbances. The distinctive history of SRS bays provides the possibility of assessing pathways of post-disturbance succession. They attempt to develop a coarse-scale model of vegetation shifts in response to changing site factors; such qualitative models can provide a basis for suggesting management interventions that may be needed to maintain desired vegetation in protected or restored bays.

  19. Structure and composition of oligohaline marsh plant communities exposed to salinity pulses

    Science.gov (United States)

    Howard, R.J.; Mendelssohn, I.A.

    2000-01-01

    The response of two oligohaline marsh macrophyte communities to pulses of increased salinity was studied over a single growing season in a greenhouse experiment. The plant communities were allowed a recovery period in freshwater following the pulse events. The experimental treatments included: (1) salinity influx rate (rate of salinity increase from 0 to 12 gl-1); (2) duration of exposure to elevated salinity; and (3) water depth. The communities both included Sagittaria lancifolia L.; the codominant species were Eleocharis palustris (L.) Roemer and J.A. Schultes in community 1 and Schoenoplectus americanus (Pers.) Volk. ex Schinz and R. Keller in community 2. Effects of the treatments on sediment chemical characteristics (salinity, pH, redox potential, and sulfide and ammonium concentrations) and plant community attributes (aboveground and belowground biomass, stem density, leaf tissue nutrients, and species richness) were examined. The treatment effects often interacted to influence sediment and plant communities characteristics following recovery in fresh water. Salinity influx rate per se, however, had little effect on the abiotic or biotic response variables; significant influx effects were found when the 0 gl-1 (zero influx) treatment was compared to the 12 gl-1 treatments, regardless of the rate salinity was raised. A salinity level of 12 gl-1 had negative effects on plant community structure and composition; these effects were usually associated with 3 months of salinity exposure. Water depth often interacted with exposure duration, but increased water depth did independently decrease the values of some community response measures. Community 1 was affected more than community 2 in the most extreme salinity treatment (3 months exposure/15-cm water depth). Although species richness in both communities was reduced, structural changes were more dramatic in community 1. Biomass and stem density were reduced in community 1 overall and in both dominant species

  20. Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem.

    Directory of Open Access Journals (Sweden)

    Jonas J Lembrechts

    Full Text Available Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment.

  1. Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem.

    Science.gov (United States)

    Lembrechts, Jonas J; Milbau, Ann; Nijs, Ivan

    2014-01-01

    Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment.

  2. Integrating molecular markers into the World Health Organization classification of CNS tumors: a survey of the neuro-oncology community.

    Science.gov (United States)

    Aldape, Kenneth; Nejad, Romina; Louis, David N; Zadeh, Gelareh

    2017-03-01

    Molecular markers provide important biological and clinical information related to the classification of brain tumors, and the integration of relevant molecular parameters into brain tumor classification systems has been a widely discussed topic in neuro-oncology over the past decade. With recent advances in the development of clinically relevant molecular signatures and the 2016 World Health Organization (WHO) update, the views of the neuro-oncology community on such changes would be informative for implementing this process. A survey with 8 questions regarding molecular markers in tumor classification was sent to an email list of Society for Neuro-Oncology members and attendees of prior meetings (n=5065). There were 403 respondents. Analysis was performed using whole group response, based on self-reported subspecialty. The survey results show overall strong support for incorporating molecular knowledge into the classification and clinical management of brain tumors. Across all 7 subspecialty groups, ≥70% of respondents agreed to this integration. Interestingly, some variability is seen among subspecialties, notably with lowest support from neuropathologists, which may reflect their roles in implementing such diagnostic technologies. Based on a survey provided to the neuro-oncology community, we report strong support for the integration of molecular markers into the WHO classification of brain tumors, as well as for using an integrated "layered" diagnostic format. While membership from each specialty showed support, there was variation by specialty in enthusiasm regarding proposed changes. The initial results of this survey influenced the deliberations underlying the 2016 WHO classification of tumors of the central nervous system. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology.

  3. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status.

    Science.gov (United States)

    Yang, C H; Crowley, D E

    2000-01-01

    Root exudate composition and quantity vary in relation to plant nutritional status, but the impact of the differences on rhizosphere microbial communities is not known. To examine this question, we performed an experiment with barley (Hordeum vulgare) plants under iron-limiting and iron-sufficient growth conditions. Plants were grown in an iron-limiting soil in root box microcosms. One-half of the plants were treated with foliar iron every day to inhibit phytosiderophore production and to alter root exudate composition. After 30 days, the bacterial communities associated with different root zones, including the primary root tips, nonelongating secondary root tips, sites of lateral root emergence, and older roots distal from the tip, were characterized by using 16S ribosomal DNA (rDNA) fingerprints generated by PCR-denaturing gradient gel electrophoresis (DGGE). Our results showed that the microbial communities associated with the different root locations produced many common 16S rDNA bands but that the communities could be distinguished by using correspondence analysis. Approximately 40% of the variation between communities could be attributed to plant iron nutritional status. A sequence analysis of clones generated from a single 16S rDNA band obtained at all of the root locations revealed that there were taxonomically different species in the same band, suggesting that the resolving power of DGGE for characterization of community structure at the species level is limited. Our results suggest that the bacterial communities in the rhizosphere are substantially different in different root zones and that a rhizosphere community may be altered by changes in root exudate composition caused by changes in plant iron nutritional status.

  4. Granivory of invasive, naturalized, and native plants in communities differentially susceptible to invasion.

    Science.gov (United States)

    Connolly, B M; Pearson, D E; Mack, R N

    2014-07-01

    Seed predation is an important biotic filter that can influence abundance and spatial distributions of native species through differential effects on recruitment. This filter may also influence the relative abundance of nonnative plants within habitats and the communities' susceptibility to invasion via differences in granivore identity, abundance, and food preference. We evaluated the effect of postdispersal seed predators on the establishment of invasive, naturalized, and native species within and between adjacent forest and steppe communities of eastern Washington, USA that differ in severity of plant invasion. Seed removal from trays placed within guild-specific exclosures revealed that small mammals were the dominant seed predators in both forest and steppe. Seeds of invasive species (Bromus tectorum, Cirsium arvense) were removed significantly less than the seeds of native (Pseudoroegneria spicata, Balsamorhiza sagittata) and naturalized (Secale cereale, Centaurea cyanus) species. Seed predation limited seedling emergence and establishment in both communities in the absence of competition in a pattern reflecting natural plant abundance: S. cereale was most suppressed, B. tectorum was least suppressed, and P. spicata was suppressed at an intermediate level. Furthermore, seed predation reduced the residual seed bank for all species. Seed mass correlated with seed removal rates in the forest and their subsequent effects on plant recruitment; larger seeds were removed at higher rates than smaller seeds. Our vegetation surveys indicate higher densities and canopy cover of nonnative species occur in the steppe compared with the forest understory, suggesting the steppe may be more susceptible to invasion. Seed predation alone, however, did not result in significant differences in establishment for any species between these communities, presumably due to similar total small-mammal abundance between communities. Consequently, preferential seed predation by small

  5. Herbicide and fertilizers promote analogous phylogenetic responses but opposite functional responses in plant communities

    DEFF Research Database (Denmark)

    Pellissier, Loïc; Wisz, Mary S.; Strandberg, Beate

    2014-01-01

    on long-term experiment we show that fertilizer and herbicides (glyphosate) have contrasting effects on functional structure, but can increase phylogenetic diversity in semi-natural plant communities. We found that an increase in nitrogen promoted an increase in the average specific leaf area and canopy...... height at the community level, but an increase in glyphosate promoted a decrease in those traits. Phylogenetic diversity of plant communities increased when herbicide and fertilizer were applied together, likely because functional traits facilitating plant success in those conditions were......Throughout the world, herbicides and fertilizers change species composition in agricultural communities, but how do the cumulative effects of these chemicals impact the functional and phylogenetic structure of non-targeted communities when they drift into adjacent semi-natural habitats? Based...

  6. Competition for light and nutrients in layered communities of aquatic plants.

    Science.gov (United States)

    van Gerven, Luuk P A; de Klein, Jeroen J M; Gerla, Daan J; Kooi, Bob W; Kuiper, Jan J; Mooij, Wolf M

    2015-07-01

    Dominance of free-floating plants poses a threat to biodiversity in many freshwater ecosystems. Here we propose a theoretical framework to understand this dominance, by modeling the competition for light and nutrients in a layered community of floating and submerged plants. The model shows that at high supply of light and nutrients, floating plants always dominate due to their primacy for light, even when submerged plants have lower minimal resource requirements. The model also shows that floating-plant dominance cannot be an alternative stable state in light-limited environments but only in nutrient-limited environments, depending on the plants' resource consumption traits. Compared to unlayered communities, the asymmetry in competition for light-coincident with symmetry in competition for nutrients-leads to fundamentally different results: competition outcomes can no longer be predicted from species traits such as minimal resource requirements ([Formula: see text] rule) and resource consumption. Also, the same two species can, depending on the environment, coexist or be alternative stable states. When applied to two common plant species in temperate regions, both the model and field data suggest that floating-plant dominance is unlikely to be an alternative stable state.

  7. Microbe-mediated plant-soil feedback in pioneer stages of secondary succession causes long-lasting historical contingency effects in plant community composition.

    NARCIS (Netherlands)

    Kardol, P.; Bezemer, T.M.; Putten, van der W.H.

    2006-01-01

    Soil microbes and soil fauna have been assumed to play a key role in interspecific plant competition and successional community development. It has been suggested that plants can influence their performance by changing the composition of their associated soil communities. Such feedback effects may

  8. Ethnomedicinal plants of the Bauri tribal community of Moulvibazar District, Bangladesh.

    Science.gov (United States)

    Das, Protiva Rani; Islam, Md Tabibul; Mostafa, Mohd Nabil; Rahmatullah, Mohammed

    2013-01-01

    Bangladesh reportedly has more than 100 tribal communities; however, documentation of their medicinal practices is markedly absent. The aim of the present study was to conduct an ethnomedicinal survey among the little known Bauri tribe of Bangladesh, whose tribal medicinal practices are yet to be documented. The survey was carried out among the Bauri tribal community of Purbo Tila village in Moulvibazar District. The community is believed to be the only Bauri community in the country and had four tribal healers who continue their traditional medicinal practices. Interviews of the healers were carried out with the help of a semi-structured questionnaire and the guided field-walk method where the healers took the interviewers on guided field-walks through areas from where they collected their medicinal plants. Here they identified the plants and described their uses. The Bauri healers were observed to use 40 different plant species and one bird species for treatment of ailments such as fever, respiratory tract disorders, pain, gastrointestinal disorders, eye problems like cataract and conjunctivitis, jaundice, abscess, cardiovascular disorders, urinary problems, paralysis, dog bite, snake bite, helminthiasis, lesions on the tongue or lips and piles. Leaves were the major plant part used and constituted 38.3% of total uses followed by fruits at 14.9%. A review of the relevant scientific literature showed that a number of medicinal plants used by the Bauri healers possess pharmacological activities, which were in line with the traditional uses, thus validating their use by the Bauri tribe.

  9. Climate interacts with soil to produce beta diversity in Californian plant communities.

    Science.gov (United States)

    Fernandez-Going, B M; Harrison, S P; Anacker, B L; Safford, H D

    2013-09-01

    Spatially distinct communities can arise through interactions and feedbacks between abiotic and biotic factors. We suggest that, for plants, patches of infertile soils such as serpentine may support more distinct communities from those in the surrounding non-serpentine matrix in regions where the climate is more productive (i.e., warmer and/or wetter). Where both soil fertility and climatic productivity are high, communities may be dominated by plants with fast-growing functional traits, whereas where either soils or climate impose low productivity, species with stress-tolerant functional traits may predominate. As a result, both species and functional composition may show higher dissimilarity between patch and matrix in productive climates. This pattern may be reinforced by positive feedbacks, in which higher plant growth under favorable climate and soil conditions leads to higher soil fertility, further enhancing plant growth. For 96 pairs of sites across a 200-km latitudinal gradient in California, we found that the species and functional dissimilarities between communities on infertile serpentine and fertile non-serpentine soils were higher in more productive (wetter) regions. Woody species had more stress-tolerant functional traits on serpentine than non-serpentine soil, and as rainfall increased, woody species functional composition changed toward fast-growing traits on non-serpentine, but not on serpentine soils. Soil organic matter increased with rainfall, but only on non-serpentine soils, and the difference in organic matter between soils was positively correlated with plant community dissimilarity. These results illustrate a novel mechanism wherein climatic productivity is associated with higher species, functional, and landscape-level dissimilarity (beta diversity).

  10. Changes in uranium plant community leaders' attitudes toward nuclear power: before and after TMI

    International Nuclear Information System (INIS)

    Winfield-Laird, I.; Hastings, M.; Cawley, M.E.

    1982-01-01

    The results of an investigation of the reactions of community leaders in nuclear power plant host communities toward nuclear power following the accident at Three Mile Island (TMI) are reported. Public and private sector officials were surveyed in ten general areas covering their attitudes toward and the continued use of nuclear power as compared to other fuel types, and the reassessment of the local plant impact on different community groups and aspects of community life. Information is compared with findings from a similar study conducted with the same community leaders prior to the TMI accident. The results indicate that community leaders' attitudes remained highly favorable toward the continued use of nuclear power. Three-fourths of the sample indicated that they would probably or definitely allow the continued use of nuclear power as compared to other fuel types, and the reassessment of the local majority still view the plant presence as having a positive impact on their communities. (author)

  11. Plant protein annotation in the UniProt Knowledgebase.

    Science.gov (United States)

    Schneider, Michel; Bairoch, Amos; Wu, Cathy H; Apweiler, Rolf

    2005-05-01

    The Swiss-Prot, TrEMBL, Protein Information Resource (PIR), and DNA Data Bank of Japan (DDBJ) protein database activities have united to form the Universal Protein Resource (UniProt) Consortium. UniProt presents three database layers: the UniProt Archive, the UniProt Knowledgebase (UniProtKB), and the UniProt Reference Clusters. The UniProtKB consists of two sections: UniProtKB/Swiss-Prot (fully manually curated entries) and UniProtKB/TrEMBL (automated annotation, classification and extensive cross-references). New releases are published fortnightly. A specific Plant Proteome Annotation Program (http://www.expasy.org/sprot/ppap/) was initiated to cope with the increasing amount of data produced by the complete sequencing of plant genomes. Through UniProt, our aim is to provide the scientific community with a single, centralized, authoritative resource for protein sequences and functional information that will allow the plant community to fully explore and utilize the wealth of information available for both plant and non-plant model organisms.

  12. Seasonal Variations in the Structure of Phytoplankton Communities near Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, S.-K.; Choi, H.-C.; Moon, H.-T.

    2015-01-01

    To investigate effects of thermal discharge effluent from nuclear power plants on the surrounding marine environment, especially on the phytoplankton community, environmental data gained by seasonal survey around Hanbit and Hanul nuclear power plants during the periods of 11 years from 1999 to 2009 were analysed. The data used were from environmental survey and assessment around Hanbit and Hanul nuclear power plants of Korea during the period of 11 years from 1999 to 2009. The purposes of this study are (1) to evaluate the effect of operation of nuclear power plants on phytoplankton community, (2) to find out whether the thermal discharge affected negatively phytoplankton community, and (3) to evaluate the difference of thermal discharge influence on phytoplankton community between West and East coastal area, Korea. Through this study, (1) quantitative evaluation of the effect of thermal discharge effluent on marine ecology, especially on abundance and biomass of phytoplankton were performed, (2) found that depending on the season, the effect of thermal discharge effluent from nuclear power plant on the marine environment is not always negative (i.e. warm water may increase or prevent decline of abundance in seasons with low temperature such as winter in Hanbit area), and (3) found that same thermal discharge effluent rate to different marine environments, such as west and east coast of Korea, does not result in same effect on the marine ecosystem. (author)

  13. Comparing arbuscular mycorrhizal communities of individual plants in a grassland biodiversity experiment

    NARCIS (Netherlands)

    Van de Voorde, T.F.J.; Van der Putten, W.H.; Gamper, H.A.; Hol, W.H.G.; Bezemer, T.M.

    2010-01-01

    Plants differ greatly in the soil organisms colonizing their roots. However, how soil organism assemblages of individual plant roots can be influenced by plant community properties remains poorly understood. We determined the composition of arbuscular mycorrhizal fungi (AMF) in Jacobaea vulgaris

  14. Comparison of bacterial and fungal communities between natural and planted pine forests in subtropical China.

    Science.gov (United States)

    Nie, Ming; Meng, Han; Li, Ke; Wan, Jia-Rong; Quan, Zhe-Xue; Fang, Chang-Ming; Chen, Jia-Kuan; Li, Bo

    2012-01-01

    To improve our understanding of the changes in bacterial and fungal diversity in natural pine and planted forests in subtropical region of China, we examined bacterial and fungal communities from a native and a nearby planted pine forest of the Mt. Lushan by constructing clone libraries of 16S and 18S rRNA genes. For bacterial communities, Proteobacteria and Acidobacteria were dominant bacterial taxa in both two types of forest soils. The Shannon-Wiener diversity index, rarefaction curve analysis, and LibShuff analysis suggest that these two forests contained similar diversity of bacterial communities. Low soil acidity (pH ≈ 4) of our study forests might be one of the most important selection factors determining growth of acidophilic Acidobacteria and Proteobacteria. However, the natural forest harbored greater level of fungal diversity than the planted forest according to the Shannon-Wiener diversity index and rarefaction curve analysis. Basidiomycota and Ascomycota were dominant fungal taxa in the soils of natural and planted forests, respectively. Our results suggest that fungal community was more sensitive than the bacterial community in characterizing the differences in plant cover impacts on the microbial flora in the natural and planted forests. The natural and planted forests may function differently due to the differences in soil fungal diversity and relative abundance.

  15. Feature Selection Has a Large Impact on One-Class Classification Accuracy for MicroRNAs in Plants.

    Science.gov (United States)

    Yousef, Malik; Saçar Demirci, Müşerref Duygu; Khalifa, Waleed; Allmer, Jens

    2016-01-01

    MicroRNAs (miRNAs) are short RNA sequences involved in posttranscriptional gene regulation. Their experimental analysis is complicated and, therefore, needs to be supplemented with computational miRNA detection. Currently computational miRNA detection is mainly performed using machine learning and in particular two-class classification. For machine learning, the miRNAs need to be parametrized and more than 700 features have been described. Positive training examples for machine learning are readily available, but negative data is hard to come by. Therefore, it seems prerogative to use one-class classification instead of two-class classification. Previously, we were able to almost reach two-class classification accuracy using one-class classifiers. In this work, we employ feature selection procedures in conjunction with one-class classification and show that there is up to 36% difference in accuracy among these feature selection methods. The best feature set allowed the training of a one-class classifier which achieved an average accuracy of ~95.6% thereby outperforming previous two-class-based plant miRNA detection approaches by about 0.5%. We believe that this can be improved upon in the future by rigorous filtering of the positive training examples and by improving current feature clustering algorithms to better target pre-miRNA feature selection.

  16. Data Augmentation for Plant Classification

    NARCIS (Netherlands)

    Pawara, Pornntiwa; Okafor, Emmanuel; Schomaker, Lambertus; Wiering, Marco

    2017-01-01

    Data augmentation plays a crucial role in increasing the number of training images, which often aids to improve classification performances of deep learning techniques for computer vision problems. In this paper, we employ the deep learning framework and determine the effects of several

  17. [Effects of alien species Robinia pseudoacacia on plant community functional structure in hilly-gully region of Loess Plateau, China.

    Science.gov (United States)

    Zhu, Duo Ju; Wen, Zhong Ming; Zhang, Jing; Tao, Yu; Zeng, Hong Wen; Tang, Yang

    2018-02-01

    To investigate the effects of the introduction of Robinia pseudoacacia on the functional structure of plant communities, we selected paired-plots of R. pseudoacacia communities and native plant communities across different vegetation zones, i.e., steppe zone, forest-steppe zone, forest zone in hilly-gully region of Loess Plateau, China. We measured several functional characteristics and then compared the functional structures of R. pseudoacacia and native plant communities in different vegetation zones. The results showed that the variation of the functional traits across different vegetation zones were consistent in R. pseudoacacia community and native plant community, including leaf carbon concentration, leaf nitrogen concentration, leaf phosphorus concentration, specific leaf area, and leaf tissue density. The leaf carbon concentration, leaf nitrogen concentration, and specific leaf area of the R. pseudoacacia community were significantly higher than those of the native plant community. The trend of change that the functional diversity indices, i.e., FR ic , FE ve , FD iv , FD is , Rao of the R. pseudoacacia community and the native plant community with vegetation zones were different. The introduction of R. pseudoacacia enhanced the plant community functional diversity in the forest zone but reduced community functional diversity in the steppe zone.

  18. Interspecific Plant Interactions Reflected in Soil Bacterial Community Structure and Nitrogen Cycling in Primary Succession

    Directory of Open Access Journals (Sweden)

    Joseph E. Knelman

    2018-02-01

    Full Text Available Past research demonstrating the importance plant–microbe interactions as drivers of ecosystem succession has focused on how plants condition soil microbial communities, impacting subsequent plant performance and plant community assembly. These studies, however, largely treat microbial communities as a black box. In this study, we sought to examine how emblematic shifts from early successional Alnus viridus ssp. sinuata (Sitka alder to late successional Picea sitchensis (Sitka spruce in primary succession may be reflected in specific belowground changes in bacterial community structure and nitrogen cycling related to the interaction of these two plants. We examined early successional alder-conditioned soils in a glacial forefield to delineate how alders alter the soil microbial community with increasing dominance. Further, we assessed the impact of late-successional spruce plants on these early successional alder-conditioned microbiomes and related nitrogen cycling through a leachate addition microcosm experiment. We show how increasingly abundant alder select for particular bacterial taxa. Additionally, we found that spruce leachate significantly alters the composition of these microbial communities in large part by driving declines in taxa that are enriched by alder, including bacterial symbionts. We found these effects to be spruce specific, beyond a general leachate effect. Our work also demonstrates a unique influence of spruce on ammonium availability. Such insights bolster theory relating the importance of plant–microbe interactions with late-successional plants and interspecific plant interactions more generally.

  19. Iva xanthiifolia Nutt. and its communities within Warsaw

    Directory of Open Access Journals (Sweden)

    Barbara Sudnik-Wójcikowska

    2014-01-01

    Full Text Available Iva xanthiifolia Nutt., a north-American therophyte has been recorded in Warsaw only for the last 25-40 years. Here, it occurs as a ruderal epoecophyte. It may be considered as an invasive species in the town as it spreads very quickly. The paper represents the attempt at the determination of the coenological amplitude of Iva xanthiifolia Nutt. It also considers syntaxonomic affiliation of the communities with this species on the grounds of the deductive method of syntaxonomic classification of anthropogenic plant communities.

  20. Independent Effects of Invasive Shrubs and Deer Herbivory on Plant Community Dynamics

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Ward

    2016-12-01

    Full Text Available Both invasive species and deer herbivory are recognized as locally important drivers of plant community dynamics. However, few studies have examined whether their effects are synergistic, additive, or antagonistic. At three study areas in southern New England, we examined the interaction of white-tailed deer (Odocoileus virginianus Zimmermann herbivory and three levels of invasive shrub control over seven growing seasons on the dynamics of nine herbaceous and shrub guilds. Although evidence of synergistic interactions was minimal, the separate effects of invasive shrub control and deer herbivory on plant community composition and dynamics were profound. Plant communities remained relatively unchanged where invasive shrubs were not treated, regardless if deer herbivory was excluded or not. With increasing intensity of invasive shrub control, native shrubs and forbs became more dominant where deer herbivory was excluded, and native graminoids became progressively more dominant where deer herbivory remained severe. While deer exclusion and intensive invasive shrub control increased native shrubs and forbs, it also increased invasive vines. Restoring native plant communities in areas with both established invasive shrub thickets and severe deer browsing will require an integrated management plan to eliminate recalcitrant invasive shrubs, reduce deer browsing intensity, and quickly treat other opportunistic invasive species.

  1. Colombia: Territorial classification

    International Nuclear Information System (INIS)

    Mendoza Morales, Alberto

    1998-01-01

    The article is about the approaches of territorial classification, thematic axes, handling principles and territorial occupation, politician and administrative units and administration regions among other topics. Understanding as Territorial Classification the space distribution on the territory of the country, of the geographical configurations, the human communities, the political-administrative units and the uses of the soil, urban and rural, existent and proposed

  2. The Communities' research and development programme on decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    1981-01-01

    This is the first progress report of the European Community's programme (1979-1983) of research on the decommissioning of nuclear power plants. It shows the status of the programme on 31 December 1980. The programme seeks to promote a number of research and development projects as well as the identification of guiding principles. The projects concern the following subjects: long-term integrity of buildings and systems; decontamination for decommissioning purposes; dismantling techniques; treatment of specific waste materials: steel, concrete and graphite; large transport containers for radioactive was produced in the dismantling of nuclear power plants; estimation of the quantities of radioactive wastes arising from decommissioning of nuclear power plants in the Community; influence of nuclear power plant design features on decommissioning

  3. [A phylogenetic analysis of plant communities of Teberda Biosphere Reserve].

    Science.gov (United States)

    Shulakov, A A; Egorov, A V; Onipchenko, V G

    2016-01-01

    Phylogenetic analysis of communities is based on the comparison of distances on the phylogenetic tree between species of a community under study and those distances in random samples taken out of local flora. It makes it possible to determine to what extent a community composition is formed by more closely related species (i.e., "clustered") or, on the opposite, it is more even and includes species that are less related with each other. The first case is usually interpreted as a result of strong influence caused by abiotic factors, due to which species with similar ecology, a priori more closely related, would remain: In the second case, biotic factors, such as competition, may come to the fore and lead to forming a community out of distant clades due to divergence of their ecological niches: The aim of this' study Was Ad explore the phylogenetic structure in communities of the northwestern Caucasus at two spatial scales - the scale of area from 4 to 100 m2 and the smaller scale within a community. The list of local flora of the alpine belt has been composed using the database of geobotanic descriptions carried out in Teberda Biosphere Reserve at true altitudes exceeding.1800 m. It includes 585 species of flowering plants belonging to 57 families. Basal groups of flowering plants are.not represented in the list. At the scale of communities of three classes, namely Thlaspietea rotundifolii - commumties formed on screes and pebbles, Calluno-Ulicetea - alpine meadow, and Mulgedio-Aconitetea subalpine meadows, have not demonstrated significant distinction of phylogenetic structure. At intra level, for alpine meadows the larger share of closely related species. (clustered community) is detected. Significantly clustered happen to be those communities developing on rocks (class Asplenietea trichomanis) and alpine (class Juncetea trifidi). At the same time, alpine lichen proved to have even phylogenetic structure at the small scale. Alpine (class Salicetea herbaceae) that

  4. Plants used for treatment of dysentery and diarrhoea by the Bhoxa community of district Dehradun, Uttarakhand, India.

    Science.gov (United States)

    Gairola, Sumeet; Sharma, Jyotsana; Gaur, R D; Siddiqi, T O; Painuli, R M

    2013-12-12

    Dysentery and diarrhoea are major causes of morbidity and mortality in rural communities of developing world. The Bhoxa community is an important primitive indigenous community of Uttarakhand, India. In this paper we have tried to scientifically enumerate ethnomedicinal plants and herbal preparations used by Bhoxa community to treat dysentery and diarrhoea, and discuss their antidiarrhoeal properties in the light of previous ethnomedicinal, pharmacological, microbiological and phytochemical studies. To record plants and herbal preparations used by Bhoxa community of district Dehradun, Uttarakhand, India in treatment of dysentery and diarrhoea, and to discuss antidiarrhoeal and antimicrobial properties of the recorded plants. Ethnomedicinal survey was conducted in different villages of Bhoxa community located in district Dehradun, Uttarakhand, India. Thirty Bhoxa traditional healers were interviewed to collect information on plants used by them for treating dysentery and diarrhoea. For each of the recorded plant species the use value (UV) and fidelity level (FL) was calculated. Detailed literature survey was conducted to summarize ethnomedicinal, pharmacological, microbiological and phytochemical information on the medicinal plants listed in the present study. Fifty medicinal plants (45 genera and 30 families) were used by Bhoxa community to treat dysentery and diarrhoea, among which 27 species were used for dysentery, 41 for diarrhoea and 18 for both dysentery and diarrhoea. Three plants viz., Dioscorea bulbifera L., Euphorbia thymifolia L. and Prunus persica (L.) Stokes, recorded in the present survey have been reported for the first time in treatment of dysentery and diarrhoea by any indigenous communities in India. FL and UV values revealed that most preferred species for the treatment of dysentery and diarrhoea by Bhoxa community are Euphorbia hirta L. followed by Holarrhena pubescens Wall., Helicteres isora L. and Cassia fistula L. Earlier pharmacological

  5. [Edge effect of the plant community structure on land-bridge islands in the Thousand Island Lake].

    Science.gov (United States)

    Su, Xiao-Fei; Yuan, Jin-Feng; Hu, Guang; Xu, Gao-Fu; Yu, Ming-Jian

    2014-01-01

    The research was conducted on 29 land-bridge islands in the Thousand Island Lake (TIL), where long-term monitoring plots were set up during 2009-2010. The community attributes including species richness, Shannon index, plant mean height, plant mean diameter at breast height (DBH) and plant density along the edge-interior gradient from edge to interior forest were calculated to investigate the edge effect. The results showed that the species richness and Shannon index were affected through the whole gradient (larger than 50 m), while the range of edge effect was 20-30 m on mean plant height, and 10 m on plant density and mean DBH. Community attributes differed significantly among the edge gradients. The species richness and Shannon index peaked at the intermediate edge gradient. Plant density decreased and plant mean height increased along the edge to interior gradient. All five community attributes were significantly associated with the edge gradient, also different functional groups, evergreen or deciduous species, trees or shrubs, shade tolerant or shade intolerant species, were differentially influenced by the edge effect. It was demonstrated the influence of edge effect on the fragmented forest community varied with community attributes and functional groups.

  6. Temporal dynamics of soil nematode communities in a grassland plant diversity experiment.

    NARCIS (Netherlands)

    Viketoft, M.; Sohlenius, B.; Bostrom, S.; Palmborg, C.; Bengtsson, J.; Berg, M.P.; Kuss-Danell, K.

    2011-01-01

    We report here on an 8-year study examining links between plant and nematode communities in a grassland plant diversity experiment, located in the north of Sweden on previous agricultural soil. The examined plots contained 1, 4 and 12 common grassland plant species from three functional groups;

  7. Development of a new cause classification method considering plant ageing and human errors for adverse events which occurred in nuclear power plants and some results of its application

    International Nuclear Information System (INIS)

    Miyazaki, Takamasa

    2007-01-01

    The adverse events which occurred in nuclear power plants are analyzed to prevent similar events, and in the analysis of each event, the cause of the event is classified by a cause classification method. This paper shows a new cause classification method which is improved in several points as follows: (1) the whole causes are systematically classified into three major categories such as machine system, operation system and plant outside causes, (2) the causes of the operation system are classified into several management errors normally performed in a nuclear power plant, (3) the content of ageing is defined in detail for their further analysis, (4) human errors are divided and defined by the error stage, (5) human errors can be related to background factors, and so on. This new method is applied to the adverse events which occurred in domestic and overseas nuclear power plants in 2005. From these results, it is clarified that operation system errors account for about 60% of the whole causes, of which approximately 60% are maintenance errors, about 40% are worker's human errors, and that the prevention of maintenance errors, especially worker's human errors is crucial. (author)

  8. Morphological and qualitative characteristics of the quadriceps muscle of community-dwelling older adults based on ultrasound imaging: classification using latent class analysis.

    Science.gov (United States)

    Kawai, Hisashi; Kera, Takeshi; Hirayama, Ryo; Hirano, Hirohiko; Fujiwara, Yoshinori; Ihara, Kazushige; Kojima, Motonaga; Obuchi, Shuichi

    2018-04-01

    Muscle thickness and echo intensity measured using ultrasound imaging represent both increased muscle volume and connective tissue accumulation. In combination, these ultrasound measurements can be utilized for assessing sarcopenia in community-dwelling older adults. This study aimed to determine whether morphological and qualitative characteristics classified by quadriceps muscle thickness and echo intensity measured using ultrasound are associated with muscle strength, physical function, and sarcopenia in community-dwelling older adults. Quadriceps muscle thickness and echo intensity were measured using ultrasound imaging in 1239 community-dwelling older adults. Latent class analyses were conducted to classify participants based on similarity in the subcutaneous fat thickness (FT), quadriceps muscle thickness (MT), subcutaneous fat echo intensity (FEI), and muscle echo intensity (MEI), which were assessed using ultrasound imaging. Morphological and qualitative characteristics were classified into four types as follows: (A) normal, (B) sarcopenic obesity, (C) obesity, and (D) sarcopenia type. Knee extension strength was significantly greater in A than in B and D. FT and percent body fat were greater in C than in the other types. The correlation between the ultrasound measures and knee extension strength differed among the classification types. The classification types were significantly associated with sarcopenia prevalence. Classification of the morphological and qualitative characteristics obtained from ultrasound imaging may be useful for assessing sarcopenia in community-dwelling older adults.

  9. Responses of Ammonia-Oxidising Bacterial Communities to Nitrogen, Lime, and Plant Species in Upland Grassland Soil

    International Nuclear Information System (INIS)

    Rooney, D.C.; Kennedy, N.M.; Clipson, N.J.W.; Rooney, D.C.; Kennedy, N.M.; Gleeson, D.B.

    2010-01-01

    Agricultural improvement of semi natural grasslands has been shown to result in changes to plant and microbial diversity, with consequences for ecosystem functioning. A microcosm approach was used to elucidate the effects of two key components of agricultural improvement (nitrogen addition and liming) on ammonia-oxidising bacterial (AOB) communities in an upland grassland soil. Plant species characteristic of unimproved and improved pastures (A. capillaries and L. perenne) were planted in microcosms, and lime, nitrogen (NH 4 NO 3 ), or lime plus nitrogen added. The AOB community was profiled using terminal restriction fragment length polymorphism (TRFLP) of the amoA gene. AOB community structure was largely altered by NH 4 NO 3 addition, rather than liming, although interactions between nitrogen addition and plant species were also evident. Results indicate that nitrogen addition drives shifts in the structure of key microbial communities in upland grassland soils, and that plant species may play a significant role in determining AOB community structure

  10. Prospective identification of adolescent suicide ideation using classification tree analysis: Models for community-based screening.

    Science.gov (United States)

    Hill, Ryan M; Oosterhoff, Benjamin; Kaplow, Julie B

    2017-07-01

    Although a large number of risk markers for suicide ideation have been identified, little guidance has been provided to prospectively identify adolescents at risk for suicide ideation within community settings. The current study addressed this gap in the literature by utilizing classification tree analysis (CTA) to provide a decision-making model for screening adolescents at risk for suicide ideation. Participants were N = 4,799 youth (Mage = 16.15 years, SD = 1.63) who completed both Waves 1 and 2 of the National Longitudinal Study of Adolescent to Adult Health. CTA was used to generate a series of decision rules for identifying adolescents at risk for reporting suicide ideation at Wave 2. Findings revealed 3 distinct solutions with varying sensitivity and specificity for identifying adolescents who reported suicide ideation. Sensitivity of the classification trees ranged from 44.6% to 77.6%. The tree with greatest specificity and lowest sensitivity was based on a history of suicide ideation. The tree with moderate sensitivity and high specificity was based on depressive symptoms, suicide attempts or suicide among family and friends, and social support. The most sensitive but least specific tree utilized these factors and gender, ethnicity, hours of sleep, school-related factors, and future orientation. These classification trees offer community organizations options for instituting large-scale screenings for suicide ideation risk depending on the available resources and modality of services to be provided. This study provides a theoretically and empirically driven model for prospectively identifying adolescents at risk for suicide ideation and has implications for preventive interventions among at-risk youth. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Linking the development and functioning of a carnivorous pitcher plant's microbial digestive community.

    Science.gov (United States)

    Armitage, David W

    2017-11-01

    Ecosystem development theory predicts that successional turnover in community composition can influence ecosystem functioning. However, tests of this theory in natural systems are made difficult by a lack of replicable and tractable model systems. Using the microbial digestive associates of a carnivorous pitcher plant, I tested hypotheses linking host age-driven microbial community development to host functioning. Monitoring the yearlong development of independent microbial digestive communities in two pitcher plant populations revealed a number of trends in community succession matching theoretical predictions. These included mid-successional peaks in bacterial diversity and metabolic substrate use, predictable and parallel successional trajectories among microbial communities, and convergence giving way to divergence in community composition and carbon substrate use. Bacterial composition, biomass, and diversity positively influenced the rate of prey decomposition, which was in turn positively associated with a host leaf's nitrogen uptake efficiency. Overall digestive performance was greatest during late summer. These results highlight links between community succession and ecosystem functioning and extend succession theory to host-associated microbial communities.

  12. Coal mining activities change plant community structure due to air pollution and soil degradation.

    Science.gov (United States)

    Pandey, Bhanu; Agrawal, Madhoolika; Singh, Siddharth

    2014-10-01

    The aim of this study was to investigate the effects of coal mining activities on the community structures of woody and herbaceous plants. The response of individual plants of community to defilement caused by coal mining was also assessed. Air monitoring, soil physico-chemical and phytosociological analyses were carried around Jharia coalfield (JCF) and Raniganj coalfield. The importance value index of sensitive species minified and those of tolerant species enhanced with increasing pollution load and altered soil quality around coal mining areas. Although the species richness of woody and herbaceous plants decreased with higher pollution load, a large number of species acclimatized to the stress caused by the coal mining activities. Woody plant community at JCF was more affected by coal mining than herbaceous community. Canonical correspondence analysis revealed that structure of herbaceous community was mainly driven by soil total organic carbon, soil nitrogen, whereas woody layer community was influenced by sulphur dioxide in ambient air, soil sulphate and soil phosphorus. The changes in species diversity observed at mining areas indicated an increase in the proportion of resistant herbs and grasses showing a tendency towards a definite selection strategy of ecosystem in response to air pollution and altered soil characteristics.

  13. Traditional knowledge among Zapotecs of Sierra Madre Del Sur, Oaxaca. Does it represent a base for plant resources management and conservation?

    Science.gov (United States)

    Luna-José, Azucena de Lourdes; Aguilar, Beatriz Rendón

    2012-07-12

    Traditional classification systems represent cognitive processes of human cultures in the world. It synthesizes specific conceptions of nature, as well as cumulative learning, beliefs and customs that are part of a particular human community or society. Traditional knowledge has been analyzed from different viewpoints, one of which corresponds to the analysis of ethnoclassifications. In this work, a brief analysis of the botanical traditional knowledge among Zapotecs of the municipality of San Agustin Loxicha, Oaxaca was conducted. The purposes of this study were: a) to analyze the traditional ecological knowledge of local plant resources through the folk classification of both landscapes and plants and b) to determine the role that this knowledge has played in plant resource management and conservation. The study was developed in five communities of San Agustín Loxicha. From field trips, plant specimens were collected and showed to local people in order to get the Spanish or Zapotec names; through interviews with local people, we obtained names and identified classification categories of plants, vegetation units, and soil types. We found a logic structure in Zapotec plant names, based on linguistic terms, as well as morphological and ecological caracteristics. We followed the classification principles proposed by Berlin [6] in order to build a hierarchical structure of life forms, names and other characteristics mentioned by people. We recorded 757 plant names. Most of them (67%) have an equivalent Zapotec name and the remaining 33% had mixed names with Zapotec and Spanish terms. Plants were categorized as native plants, plants introduced in pre-Hispanic times, or plants introduced later. All of them are grouped in a hierarchical classification, which include life form, generic, specific, and varietal categories. Monotypic and polytypic names are used to further classify plants. This holistic classification system plays an important role for local people in many

  14. Habitat Fragmentation Drives Plant Community Assembly Processes across Life Stages

    Science.gov (United States)

    Hu, Guang; Feeley, Kenneth J.; Yu, Mingjian

    2016-01-01

    Habitat fragmentation is one of the principal causes of biodiversity loss and hence understanding its impacts on community assembly and disassembly is an important topic in ecology. We studied the relationships between fragmentation and community assembly processes in the land-bridge island system of Thousand Island Lake in East China. We focused on the changes in species diversity and phylogenetic diversity that occurred between life stages of woody plants growing on these islands. The observed diversities were compared with the expected diversities from random null models to characterize assembly processes. Regression tree analysis was used to illustrate the relationships between island attributes and community assembly processes. We found that different assembly processes predominate in the seedlings-to-saplings life-stage transition (SS) vs. the saplings-to-trees transition (ST). Island area was the main attribute driving the assembly process in SS. In ST, island isolation was more important. Within a fragmented landscape, the factors driving community assembly processes were found to differ between life stage transitions. Environmental filtering had a strong effect on the seedlings-to-saplings life-stage transition. Habitat isolation and dispersal limitation influenced all plant life stages, but had a weaker effect on communities than area. These findings add to our understanding of the processes driving community assembly and species coexistence in the context of pervasive and widespread habitat loss and fragmentation. PMID:27427960

  15. Development of an improved compact package plant for small community waste-water treatment

    CSIR Research Space (South Africa)

    Hulsman, A

    1993-01-01

    Full Text Available The challenges facing the design and operation of small community wastewater treatment plants are discussed. The package plant concept is considered and the consequent development of a compact intermittently aerated activated sludge package plant...

  16. Purple pitcher plant (Sarracenia rosea Dieback and partial community disassembly following experimental storm surge in a coastal pitcher plant bog.

    Directory of Open Access Journals (Sweden)

    Matthew J Abbott

    Full Text Available Sea-level rise and frequent intense hurricanes associated with climate change will result in recurrent flooding of inland systems such as Gulf Coastal pitcher plant bogs by storm surges. These surges can transport salt water and sediment to freshwater bogs, greatly affecting their biological integrity. Purple pitcher plants (Sarracenia rosea are Gulf Coast pitcher plant bog inhabitants that could be at a disadvantage under this scenario because their pitcher morphology may leave them prone to collection of saline water and sediment after a surge. We investigated the effects of storm surge water salinity and sediment type on S. rosea vitality, plant community structure, and bog soil-water conductivity. Plots (containing ≥1 ramet of S. rosea were experimentally flooded with fresh or saline water crossed with one of three sediment types (local, foreign, or no sediment. There were no treatment effects on soil-water conductivity; nevertheless, direct exposure to saline water resulted in significantly lower S. rosea cover until the following season when a prescribed fire and regional drought contributed to the decline of all the S. rosea to near zero percent cover. There were also significant differences in plant community structure between treatments over time, reflecting how numerous species increased in abundance and a few species decreased in abundance. However, in contrast to S. rosea, most of the other species in the community appeared resilient to the effects of storm surge. Thus, although the community may be somewhat affected by storm surge, those few species that are particularly sensitive to the storm surge disturbance will likely drop out of the community and be replaced by more resilient species. Depending on the longevity of these biological legacies, Gulf Coastal pitcher plant bogs may be incapable of fully recovering if they become exposed to storm surge more frequently due to climate change.

  17. Does the edge effect influence plant community structure in a tropical dry forest?

    Directory of Open Access Journals (Sweden)

    Diogo Gallo Oliveira

    2013-04-01

    Full Text Available Edge effects are considered a key factor in regulating the structure of plant communities in different ecosystems. However, regardless to few studies, edge influence does not seem to be decisive in semiarid regions such as the Brazilian tropical dry forest known as Caatinga but this issue remains inconclusive. The present study tests the null hypothesis that the plant community of shrubs and trees does not change in its structure due to edge effects. Twenty-four plots (20 x 20 m were set up in a fragment of Caatinga, in which 12 plots were in the forest edges and 12 plots were inside the fragment. Tree richness, abundance and species composition did not differ between edge and interior plots. The results of this study are in agreement with the pattern previously found for semiarid environments and contrasts with previous results obtained in different environments such as Rainforests, Savanna and Forest of Araucaria, which indicate abrupt differences between the border and interior of the plant communities in these ecosystems, and suggest that the community of woody plants of the Caatinga is not ecologically affected by the presence of edges.

  18. Traditional knowledge among Zapotecs of Sierra Madre Del Sur, Oaxaca. Does it represent a base for plant resources management and conservation?

    Directory of Open Access Journals (Sweden)

    Luna-José Azucena

    2012-07-01

    Full Text Available Abstract Traditional classification systems represent cognitive processes of human cultures in the world. It synthesizes specific conceptions of nature, as well as cumulative learning, beliefs and customs that are part of a particular human community or society. Traditional knowledge has been analyzed from different viewpoints, one of which corresponds to the analysis of ethnoclassifications. In this work, a brief analysis of the botanical traditional knowledge among Zapotecs of the municipality of San Agustin Loxicha, Oaxaca was conducted. The purposes of this study were: a to analyze the traditional ecological knowledge of local plant resources through the folk classification of both landscapes and plants and b to determine the role that this knowledge has played in plant resource management and conservation. The study was developed in five communities of San Agustín Loxicha. From field trips, plant specimens were collected and showed to local people in order to get the Spanish or Zapotec names; through interviews with local people, we obtained names and identified classification categories of plants, vegetation units, and soil types. We found a logic structure in Zapotec plant names, based on linguistic terms, as well as morphological and ecological caracteristics. We followed the classification principles proposed by Berlin [6] in order to build a hierarchical structure of life forms, names and other characteristics mentioned by people. We recorded 757 plant names. Most of them (67% have an equivalent Zapotec name and the remaining 33% had mixed names with Zapotec and Spanish terms. Plants were categorized as native plants, plants introduced in pre-Hispanic times, or plants introduced later. All of them are grouped in a hierarchical classification, which include life form, generic, specific, and varietal categories. Monotypic and polytypic names are used to further classify plants. This holistic classification system plays an important role

  19. Evapotranspiration over spatially extensive plant communities in the Big Cypress National Preserve, southern Florida, 2007-2010

    Science.gov (United States)

    Shoemaker, W. Barclay; Lopez, Christian D.; Duever, Michael J.

    2011-01-01

    Evapotranspiration (ET) was quantified over plant communities within the Big Cypress National Preserve (BCNP) using the eddy covariance method for a period of 3 years from October 2007 to September 2010. Plant communities selected for study included Pine Upland, Wet Prairie, Marsh, Cypress Swamp, and Dwarf Cypress. These plant communities are spatially extensive in southern Florida, and thus, the ET measurements described herein can be applied to other humid subtropical locations such as the Everglades.

  20. Competition for light and nutrients in layered communities of aquatic plants

    NARCIS (Netherlands)

    Van Gerven, Luuk P.A.; de Klein, J.J.M; Gerla, Daan J.; Kooi, B.W.; Kuiper, Jan J.; Mooij, Wolf M.

    2015-01-01

    Dominance of free-floating plants poses a threat to biodiversity in many freshwater ecosystems. Here we propose a theoretical framework to understand this dominance, by modeling the competition for light and nutrients in a layered community of floating and submerged plants. The model shows that at

  1. Competition for Light and Nutrients in Layered Communities of Aquatic Plants

    NARCIS (Netherlands)

    van Gerven, L.P.A.; de Klein, J.J.M.; Gerla, D.J.; Kooi, B.W.; Kuiper, J.J.; Mooij, W.M.

    2015-01-01

    Dominance of free-floating plants poses a threat to biodiversity in many freshwater ecosystems. Here we propose a theoretical framework to understand this dominance, by modeling the competition for light and nutrients in a layered community of floating and submerged plants. The model shows that at

  2. Competition for light and nutrients in layered communities of aquatic plants

    NARCIS (Netherlands)

    Gerven, van Luuk P.A.; Klein, de Jeroen J.M.; Gerla, Daan J.; Kooi, Bob W.; Kuiper, Jan J.; Mooij, Wolf M.

    2015-01-01

    Dominance of free-floating plants poses a threat to biodiversity in many freshwater ecosystems. Here we propose a theoretical framework to understand this dominance, by modeling the competition for light and nutrients in a layered community of floating and submerged plants. The model shows that

  3. Protist classification and the kingdoms of organisms.

    Science.gov (United States)

    Whittaker, R H; Margulis, L

    1978-04-01

    Traditional classification imposed a division into plant-like and animal-like forms on the unicellular eukaryotes, or protists; in a current view the protists are a diverse assemblage of plant-, animal- and fungus-like groups. Classification of these into phyla is difficult because of their relatively simple structure and limited geological record, but study of ultrastructure and other characteristics is providing new insight on protist classification. Possible classifications are discussed, and a summary classification of the living world into kingdoms (Monera, Protista, Fungi, Animalia, Plantae) and phyla is suggested. This classification also suggests groupings of phyla into superphyla and form-superphyla, and a broadened kingdom Protista (including green algae, oomycotes and slime molds but excluding red and brown algae). The classification thus seeks to offer a compromise between the protist and protoctist kingdoms of Whittaker and Margulis and to combine a full listing of phyla with grouping of these for synoptic treatment.

  4. Functional diversity in plant communities: Theory and analysis ...

    African Journals Online (AJOL)

    Plant functional diversity in community has become a key point in ecology studies recently. The development of species functional diversity was reviewed in the present work. Based on the former original research papers and reviews, we discussed the concept and connotation and put forward a new definition of functional ...

  5. Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change

    Science.gov (United States)

    Metcalfe, D. B.; Fisher, R. A.; Wardle, D. A.

    2011-03-01

    Understanding the impacts of plant community characteristics on soil carbon dioxide efflux (R) is a key prerequisite for accurate prediction of the future carbon balance of terrestrial ecosystems under climate change. In this review, we synthesize relevant information from a wide spectrum of sources to evaluate the current state of knowledge about plant community effects on R, examine how this information is incorporated into global climate models, and highlight priorities for future research. Plant species consistently exhibit cohesive suites of traits, linked to contrasting life history strategies, which exert a variety of impacts on R. As such, we propose that plant community shifts towards dominance by fast growing plants with nutrient rich litter could provide a major, though often neglected, positive feedback to climate change. Within vegetation types, belowground carbon flux will mainly be controlled by photosynthesis, while amongst vegetation types this flux will be more dependent upon the specific characteristics of the plant life form. We also make the case that community composition, rather than diversity, is usually the dominant control on ecosystem processes in natural systems. Individual species impacts on R may be largest where the species accounts for most of the biomass in the ecosystem, has very distinct traits to the rest of the community, or modulates the occurrence of major natural disturbances. We show that climate-vegetation models incorporate a number of pathways whereby plants can affect R, but that simplifications regarding allocation schemes and drivers of litter decomposition may limit model accuracy. This situation could, however, be relatively easily improved with targeted experimental and field studies. Finally, we identify key gaps in knowledge and recommend them as priorities for future work. These include the patterns of photosynthate partitioning amongst belowground components, ecosystem level effects of individual plant traits

  6. Short interspersed elements (SINEs) in plants: origin, classification, and use as phylogenetic markers.

    Science.gov (United States)

    Deragon, Jean-Marc; Zhang, Xiaoyu

    2006-12-01

    Short interspersed elements (SINEs) are a class of dispersed mobile sequences that use RNA as an intermediate in an amplification process called retroposition. The presence-absence of a SINE at a given locus has been used as a meaningful classification criterion to evaluate phylogenetic relations among species. We review here recent developments in the characterisation of plant SINEs and their use as molecular makers to retrace phylogenetic relations among wild and cultivated Oryza and Brassica species. In Brassicaceae, further use of SINE markers is limited by our partial knowledge of endogenous SINE families (their origin and evolution histories) and by the absence of a clear classification. To solve this problem, phylogenetic relations among all known Brassicaceae SINEs were analyzed and a new classification, grouping SINEs in 15 different families, is proposed. The relative age and size of each Brassicaceae SINE family was evaluated and new phylogenetically supported subfamilies were described. We also present evidence suggesting that new potentially active SINEs recently emerged in Brassica oleracea from the shuffling of preexisting SINE portions. Finally, the comparative evolution history of SINE families present in Arabidopsis thaliana and Brassica oleracea revealed that SINEs were in general more active in the Brassica lineage. The importance of these new data for the use of Brassicaceae SINEs as molecular markers in future applications is discussed.

  7. Contrasting trait responses in plant communities to experimental and geographic variation in precipitation

    DEFF Research Database (Denmark)

    Sandel, Brody Steven; Goldstein, Leah; Kraft, Nathan

    2010-01-01

    Patterns of precipitation are likely to change significantly in the coming century, with important but poorly understood consequences for plant communities. Experimental and correlative studies may provide insight into expected changes, but little research has addressed the degree of concordance...... between these approaches. We synthesized results from four experimental water addition studies with a correlative analysis of community changes across a large natural precipitation gradient in the United States. We investigated whether community composition, summarized with plant functional traits......, responded similarly to increasing precipitation among studies and sites. In field experiments, increased precipitation favored species with small seed size,short leaf life span and high leaf nitrogen (N) concentration. However, with increasing precipitation along the natural gradient, community composition...

  8. The Community's research and development programme on decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    1982-01-01

    The programme, adopted by the Council of the European Communities, seeks to promote a number of research and development projects as well as the identification of guiding principles. The projects concern the following subjects: long-term integrity of buildings and systems; decontaminations for decommissioning purposes; dismantling techniques; treatment of specific waste materials (steel, concrete and graphite); large transport containers for radioactive waste arising from decommissioning of nuclear power plants in the Community; and influence of nuclear power plant design features on decommissioning

  9. Suggestion on the safety classification of spent fuel dry storage in China’s pressurized water reactor nuclear power plant

    Science.gov (United States)

    Liu, Ting; Qu, Yunhuan; Meng, De; Zhang, Qiaoer; Lu, Xinhua

    2018-01-01

    China’s spent fuel storage in the pressurized water reactors(PWR) is stored with wet storage way. With the rapid development of nuclear power industry, China’s NPPs(NPPs) will not be able to meet the problem of the production of spent fuel. Currently the world’s major nuclear power countries use dry storage as a way of spent fuel storage, so in recent years, China study on additional spent fuel dry storage system mainly. Part of the PWR NPP is ready to apply for additional spent fuel dry storage system. It also need to safety classificate to spent fuel dry storage facilities in PWR, but there is no standard for safety classification of spent fuel dry storage facilities in China. Because the storage facilities of the spent fuel dry storage are not part of the NPP, the classification standard of China’s NPPs is not applicable. This paper proposes the safety classification suggestion of the spent fuel dry storage for China’s PWR NPP, through to the study on China’s safety classification principles of PWR NPP in “Classification for the items of pressurized water reactor nuclear power plants (GB/T 17569-2013)”, and safety classification about spent fuel dry storage system in NUREG/CR - 6407 in the United States.

  10. Efficient AUC optimization for classification

    NARCIS (Netherlands)

    Calders, T.; Jaroszewicz, S.; Kok, J.N.; Koronacki, J.; Lopez de Mantaras, R.; Matwin, S.; Mladenic, D.; Skowron, A.

    2007-01-01

    In this paper we show an efficient method for inducing classifiers that directly optimize the area under the ROC curve. Recently, AUC gained importance in the classification community as a mean to compare the performance of classifiers. Because most classification methods do not optimize this

  11. Nuclear Power Plant Thermocouple Sensor-Fault Detection and Classification Using Deep Learning and Generalized Likelihood Ratio Test

    Science.gov (United States)

    Mandal, Shyamapada; Santhi, B.; Sridhar, S.; Vinolia, K.; Swaminathan, P.

    2017-06-01

    In this paper, an online fault detection and classification method is proposed for thermocouples used in nuclear power plants. In the proposed method, the fault data are detected by the classification method, which classifies the fault data from the normal data. Deep belief network (DBN), a technique for deep learning, is applied to classify the fault data. The DBN has a multilayer feature extraction scheme, which is highly sensitive to a small variation of data. Since the classification method is unable to detect the faulty sensor; therefore, a technique is proposed to identify the faulty sensor from the fault data. Finally, the composite statistical hypothesis test, namely generalized likelihood ratio test, is applied to compute the fault pattern of the faulty sensor signal based on the magnitude of the fault. The performance of the proposed method is validated by field data obtained from thermocouple sensors of the fast breeder test reactor.

  12. How plants connect pollination and herbivory networks and their contribution to community stability.

    Science.gov (United States)

    Sauve, Alix M C; Thébault, Elisa; Pocock, Michael J O; Fontaine, Colin

    2016-04-01

    Pollination and herbivory networks have mainly been studied separately, highlighting their distinct structural characteristics and the related processes and dynamics. However, most plants interact with both pollinators and herbivores, and there is evidence that both types of interaction affect each other. Here we investigated the way plants connect these mutualistic and antagonistic networks together, and the consequences for community stability. Using an empirical data set, we show that the way plants connect pollination and herbivory networks is not random and promotes community stability. Analyses of the structure of binary and quantitative networks show different results: the plants' generalism with regard to pollinators is positively correlated to their generalism with regard to herbivores when considering binary interactions, but not when considering quantitative interactions. We also show that plants that share the same pollinators do not share the same herbivores. However, the way plants connect pollination and herbivory networks promotes stability for both binary and quantitative networks. Our results highlight the relevance of considering the diversity of interaction types in ecological communities, and stress the need to better quantify the costs and benefits of interactions, as well as to develop new metrics characterizing the way different interaction types are combined within ecological networks.

  13. Environmental and community controls on plant canopy chemistry in a Mediterranean-type ecosystem.

    Science.gov (United States)

    Dahlin, Kyla M; Asner, Gregory P; Field, Christopher B

    2013-04-23

    Understanding how and why plant communities vary across space has long been a goal of ecology, yet parsing the relative importance of different influences has remained a challenge. Species-specific models are not generalizable, whereas broad plant functional type models lack important detail. Here we consider plant trait patterns at the local scale and ask whether plant chemical traits are more closely linked to environmental gradients or to changes in species composition. We used the visible-to-shortwave infrared (VSWIR) spectrometer of the Carnegie Airborne Observatory to develop maps of four plant chemical traits--leaf nitrogen per mass, leaf carbon per mass, leaf water concentration, and canopy water content--across a diverse Mediterranean-type ecosystem (Jasper Ridge Biological Preserve, CA). For all four traits, plant community alone was the strongest predictor of trait variation (explaining 46-61% of the heterogeneity), whereas environmental gradients accounted for just one fourth of the variation in the traits. This result emphasizes the critical role that species composition plays in mediating nutrient and carbon cycling within and among different communities. Environmental filtering and limits to similarity can act strongly, simultaneously, in a spatially heterogeneous environment, but the local-scale environmental gradients alone cannot account for the variation across this landscape.

  14. Wastewater treatment plant effluent introduces recoverable shifts in microbial community composition in urban streams

    Science.gov (United States)

    Ledford, S. H.; Price, J. R.; Ryan, M. O.; Toran, L.; Sales, C. M.

    2017-12-01

    New technologies are allowing for intense scrutiny of the impact of land use on microbial communities in stream networks. We used a combination of analytical chemistry, real-time polymerase chain reaction (qPCR) and targeted amplicon sequencing for a preliminary study on the impact of wastewater treatment plant effluent discharge on urban streams. Samples were collected on two dates above and below treatment plants on the Wissahickon Creek, and its tributary, Sandy Run, in Montgomery County, PA, USA. As expected, effluent was observed to be a significant source of nutrients and human and non-specific fecal associated taxa. There was an observed increase in the alpha diversity at locations immediately below effluent outflows, which contributed many taxa involved in wastewater treatment processes and nutrient cycling to the stream's microbial community. Unexpectedly, modeling of microbial community shifts along the stream was not controlled by concentrations of measured nutrients. Furthermore, partial recovery, in the form of decreasing abundances of bacteria and nutrients associated with wastewater treatment plant processes, nutrient cycling bacteria, and taxa associated with fecal and sewage sources, was observed between effluent sources. Antecedent moisture conditions impacted overall microbial community diversity, with higher diversity occurring after rainfall. These findings hint at resilience in stream microbial communities to recover from wastewater treatment plant effluent and are vital to understanding the impacts of urbanization on microbial stream communities.

  15. The Effects of Disturbance History on Ground-Layer Plant Community Composition in British Columbia

    Directory of Open Access Journals (Sweden)

    Michael Ton

    2016-05-01

    Full Text Available Plant communities are sensitive to perturbations and may display alternative recovery pathways depending on disturbance history. In sub-boreal lodgepole pine forests of central interior British Columbia, Canada, fire and logging are two widespread landscape disturbances that overlap in many regions. We asked whether cumulative, short-interval disturbance from logging and fire resulted in different ground-layer plant communities than resulted from fire alone. Using field-collected data, we compared the taxonomic composition and functional traits of 3-year old plant communities that were either harvested 6-to-13 years prior, or not harvested prior to being burned in a large stand-replacing fire. The taxonomic composition diverged between the two treatments, driven primarily by differences in a few key indicator species such as Petasites frigidus and Vaccinium membranaceum. Analysis of individual species’ morphological traits indicated that only a few species vary in size in relation to disturbance history. Our data suggest that a history of forest harvest leaves a subtle footprint on post-fire ground-layer plant communities at early stages of succession.

  16. The impact of plant chemical diversity on plant-herbivore interactions at the community level.

    Science.gov (United States)

    Salazar, Diego; Jaramillo, Alejandra; Marquis, Robert J

    2016-08-01

    Understanding the role of diversity in ecosystem processes and species interactions is a central goal of ecology. For plant-herbivore interactions, it has been hypothesized that when plant species diversity is reduced, loss of plant biomass to herbivores increases. Although long-standing, this hypothesis has received mixed support. Increasing plant chemical diversity with increasing plant taxonomic diversity is likely to be important for plant-herbivore interactions at the community level, but the role of chemical diversity is unexplored. Here we assess the effect of volatile chemical diversity on patterns of herbivore damage in naturally occurring patches of Piper (Piperaceae) shrubs in a Costa Rican lowland wet forest. Volatile chemical diversity negatively affected total, specialist, and generalist herbivore damage. Furthermore, there were differences between the effects of high-volatility and low-volatility chemical diversity on herbivore damage. High-volatility diversity reduced specialist herbivory, while low-volatility diversity reduced generalist herbivory. Our data suggest that, although increased plant diversity is expected to reduce average herbivore damage, this pattern is likely mediated by the diversity of defensive compounds and general classes of anti-herbivore traits, as well as the degree of specialization of the herbivores attacking those plants.

  17. Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change

    Science.gov (United States)

    Metcalfe, D. B.; Fisher, R. A.; Wardle, D. A.

    2011-08-01

    Understanding the impacts of plant community characteristics on soil carbon dioxide efflux (R) is a key prerequisite for accurate prediction of the future carbon (C) balance of terrestrial ecosystems under climate change. However, developing a mechanistic understanding of the determinants of R is complicated by the presence of multiple different sources of respiratory C within soil - such as soil microbes, plant roots and their mycorrhizal symbionts - each with their distinct dynamics and drivers. In this review, we synthesize relevant information from a wide spectrum of sources to evaluate the current state of knowledge about plant community effects on R, examine how this information is incorporated into global climate models, and highlight priorities for future research. Despite often large variation amongst studies and methods, several general trends emerge. Mechanisms whereby plants affect R may be grouped into effects on belowground C allocation, aboveground litter properties and microclimate. Within vegetation types, the amount of C diverted belowground, and hence R, may be controlled mainly by the rate of photosynthetic C uptake, while amongst vegetation types this should be more dependent upon the specific C allocation strategies of the plant life form. We make the case that plant community composition, rather than diversity, is usually the dominant control on R in natural systems. Individual species impacts on R may be largest where the species accounts for most of the biomass in the ecosystem, has very distinct traits to the rest of the community and/or modulates the occurrence of major natural disturbances. We show that climate vegetation models incorporate a number of pathways whereby plants can affect R, but that simplifications regarding allocation schemes and drivers of litter decomposition may limit model accuracy. We also suggest that under a warmer future climate, many plant communities may shift towards dominance by fast growing plants which

  18. Incorporating the soil environment and microbial community into plant competition theory.

    Science.gov (United States)

    Ke, Po-Ju; Miki, Takeshi

    2015-01-01

    Plants affect microbial communities and abiotic properties of nearby soils, which in turn influence plant growth and interspecific interaction, forming a plant-soil feedback (PSF). PSF is a key determinant influencing plant population dynamics, community structure, and ecosystem functions. Despite accumulating evidence for the importance of PSF and development of specific PSF models, different models are not yet fully integrated. Here, we review the theoretical progress in understanding PSF. When first proposed, PSF was integrated with various mathematical frameworks to discuss its influence on plant competition. Recent theoretical models have advanced PSF research at different levels of ecological organizations by considering multiple species, applying spatially explicit simulations to examine how local-scale predictions apply to larger scales, and assessing the effect of PSF on plant temporal dynamics over the course of succession. We then review two foundational models for microbial- and litter-mediated PSF. We present a theoretical framework to illustrate that although the two models are typically presented separately, their behavior can be understood together by invasibility analysis. We conclude with suggestions for future directions in PSF theoretical studies, which include specifically addressing microbial diversity to integrate litter- and microbial-mediated PSF, and apply PSF to general coexistence theory through a trait-based approach.

  19. Incorporating the soil environment and microbial community into plant competition theory

    Science.gov (United States)

    Ke, Po-Ju; Miki, Takeshi

    2015-01-01

    Plants affect microbial communities and abiotic properties of nearby soils, which in turn influence plant growth and interspecific interaction, forming a plant-soil feedback (PSF). PSF is a key determinant influencing plant population dynamics, community structure, and ecosystem functions. Despite accumulating evidence for the importance of PSF and development of specific PSF models, different models are not yet fully integrated. Here, we review the theoretical progress in understanding PSF. When first proposed, PSF was integrated with various mathematical frameworks to discuss its influence on plant competition. Recent theoretical models have advanced PSF research at different levels of ecological organizations by considering multiple species, applying spatially explicit simulations to examine how local-scale predictions apply to larger scales, and assessing the effect of PSF on plant temporal dynamics over the course of succession. We then review two foundational models for microbial- and litter-mediated PSF. We present a theoretical framework to illustrate that although the two models are typically presented separately, their behavior can be understood together by invasibility analysis. We conclude with suggestions for future directions in PSF theoretical studies, which include specifically addressing microbial diversity to integrate litter- and microbial-mediated PSF, and apply PSF to general coexistence theory through a trait-based approach. PMID:26500621

  20. Incorporating the soil environment and microbial community into plant competition theory

    Directory of Open Access Journals (Sweden)

    Po-Ju eKe

    2015-10-01

    Full Text Available Plants affect microbial communities and abiotic properties of nearby soils, which in turn influence plant growth and interspecific interaction, forming a plant-soil feedback (PSF. PSF is a key determinant influencing plant population dynamics, community structure, and ecosystem functions. Despite accumulating evidence for the importance of PSF and development of specific PSF models, different models are not yet fully integrated. Here, we review the theoretical progress in understanding PSF. When first proposed, PSF was integrated with various mathematical frameworks to discuss its influence on plant competition. Recent theoretical models have advanced PSF research at different levels of ecological organizations by considering multiple species, applying spatially explicit simulations to examine how local-scale predictions apply to larger scales, and assessing the effect of PSF on plant temporal dynamics over the course of succession. We then review two foundational models for microbial- and litter-mediated PSF. We present a theoretical framework to illustrate that although the two models are typically presented separately, their behavior can be understood together by invasibility analysis. We conclude with suggestions for future directions in PSF theoretical studies, which include specifically addressing microbial diversity to integrate litter- and microbial-mediated PSF, and apply PSF to general coexistence theory through a trait-based approach.

  1. Lags in the response of mountain plant communities to climate change.

    Science.gov (United States)

    Alexander, Jake M; Chalmandrier, Loïc; Lenoir, Jonathan; Burgess, Treena I; Essl, Franz; Haider, Sylvia; Kueffer, Christoph; McDougall, Keith; Milbau, Ann; Nuñez, Martin A; Pauchard, Aníbal; Rabitsch, Wolfgang; Rew, Lisa J; Sanders, Nathan J; Pellissier, Loïc

    2018-02-01

    Rapid climatic changes and increasing human influence at high elevations around the world will have profound impacts on mountain biodiversity. However, forecasts from statistical models (e.g. species distribution models) rarely consider that plant community changes could substantially lag behind climatic changes, hindering our ability to make temporally realistic projections for the coming century. Indeed, the magnitudes of lags, and the relative importance of the different factors giving rise to them, remain poorly understood. We review evidence for three types of lag: "dispersal lags" affecting plant species' spread along elevational gradients, "establishment lags" following their arrival in recipient communities, and "extinction lags" of resident species. Variation in lags is explained by variation among species in physiological and demographic responses, by effects of altered biotic interactions, and by aspects of the physical environment. Of these, altered biotic interactions could contribute substantially to establishment and extinction lags, yet impacts of biotic interactions on range dynamics are poorly understood. We develop a mechanistic community model to illustrate how species turnover in future communities might lag behind simple expectations based on species' range shifts with unlimited dispersal. The model shows a combined contribution of altered biotic interactions and dispersal lags to plant community turnover along an elevational gradient following climate warming. Our review and simulation support the view that accounting for disequilibrium range dynamics will be essential for realistic forecasts of patterns of biodiversity under climate change, with implications for the conservation of mountain species and the ecosystem functions they provide. © 2017 John Wiley & Sons Ltd.

  2. Lags in the response of mountain plant communities to climate change

    Science.gov (United States)

    Alexander, Jake M.; Chalmandrier, Loïc; Lenoir, Jonathan; Burgess, Treena I.; Essl, Franz; Haider, Sylvia; Kueffer, Christoph; McDougall, Keith; Milbau, Ann; Nuñez, Martin A.; Pauchard, Aníbal; Rabitsch, Wolfgang; Rew, Lisa J.; Sanders, Nathan J.; Pellissier, Loïc

    2018-01-01

    Rapid climatic changes and increasing human influence at high elevations around the world will have profound impacts on mountain biodiversity. However, forecasts from statistical models (e.g. species distribution models) rarely consider that plant community changes could substantially lag behind climatic changes, hindering our ability to make temporally realistic projections for the coming century. Indeed, the magnitudes of lags, and the relative importance of the different factors giving rise to them, remain poorly understood. We review evidence for three types of lag: “dispersal lags” affecting plant species’ spread along elevational gradients, “establishment lags” following their arrival in recipient communities, and “extinction lags” of resident species. Variation in lags is explained by variation among species in physiological and demographic responses, by effects of altered biotic interactions, and by aspects of the physical environment. Of these, altered biotic interactions could contribute substantially to establishment and extinction lags, yet impacts of biotic interactions on range dynamics are poorly understood. We develop a mechanistic community model to illustrate how species turnover in future communities might lag behind simple expectations based on species’ range shifts with unlimited dispersal. The model shows a combined contribution of altered biotic interactions and dispersal lags to plant community turnover along an elevational gradient following climate warming. Our review and simulation support the view that accounting for disequilibrium range dynamics will be essential for realistic forecasts of patterns of biodiversity under climate change, with implications for the conservation of mountain species and the ecosystem functions they provide. PMID:29112781

  3. Vascular plant diversity and community Structure of nandi forests ...

    African Journals Online (AJOL)

    Abundance data of species was used for species diversity, similarity, species richness estimation and plant community analysis. PC-ORD, CANOCO and EstimateS were used to analyze the data. A total of 321 species ... Keywords: floristic composition, ordination, rarefaction, species accumulation, species richness.

  4. Andean shrublands of Moquegua, South Peru: Prepuna plant communities

    NARCIS (Netherlands)

    Montesinos, D.B.; Cleef, A.M.; Sykora, K.V.

    2012-01-01

    A syntaxonomic overview of shrubland vegetation in the southern Andean regions of Peru is presented. For each plant community, information is given on physiognomy, floristic diversity, ecology and geographical distribution. The shrub vegetation on the slopes of the upper Tambo river valley includes

  5. Plant Protein Annotation in the UniProt Knowledgebase1

    Science.gov (United States)

    Schneider, Michel; Bairoch, Amos; Wu, Cathy H.; Apweiler, Rolf

    2005-01-01

    The Swiss-Prot, TrEMBL, Protein Information Resource (PIR), and DNA Data Bank of Japan (DDBJ) protein database activities have united to form the Universal Protein Resource (UniProt) Consortium. UniProt presents three database layers: the UniProt Archive, the UniProt Knowledgebase (UniProtKB), and the UniProt Reference Clusters. The UniProtKB consists of two sections: UniProtKB/Swiss-Prot (fully manually curated entries) and UniProtKB/TrEMBL (automated annotation, classification and extensive cross-references). New releases are published fortnightly. A specific Plant Proteome Annotation Program (http://www.expasy.org/sprot/ppap/) was initiated to cope with the increasing amount of data produced by the complete sequencing of plant genomes. Through UniProt, our aim is to provide the scientific community with a single, centralized, authoritative resource for protein sequences and functional information that will allow the plant community to fully explore and utilize the wealth of information available for both plant and nonplant model organisms. PMID:15888679

  6. Application of FT-IR Classification Method in Silica-Plant Extracts Composites Quality Testing

    Science.gov (United States)

    Bicu, A.; Drumea, V.; Mihaiescu, D. E.; Purcareanu, B.; Florea, M. A.; Trică, B.; Vasilievici, G.; Draga, S.; Buse, E.; Olariu, L.

    2018-06-01

    Our present work is concerned with the validation and quality testing efforts of mesoporous silica - plant extracts composites, in order to sustain the standardization process of plant-based pharmaceutical products. The synthesis of the silica support were performed by using a TEOS based synthetic route and CTAB as a template, at room temperature and normal pressure. The silica support was analyzed by advanced characterization methods (SEM, TEM, BET, DLS and FT-IR), and loaded with Calendula officinalis and Salvia officinalis standardized extracts. Further desorption studies were performed in order to prove the sustained release properties of the final materials. Intermediate and final product identification was performed by a FT-IR classification method, using the MID-range of the IR spectra, and statistical representative samples from repetitive synthetic stages. The obtained results recommend this analytical method as a fast and cost effective alternative to the classic identification methods.

  7. Evolution in plant populations as a driver of ecological changes in arthropod communities.

    Science.gov (United States)

    Johnson, Marc T J; Vellend, Mark; Stinchcombe, John R

    2009-06-12

    Heritable variation in traits can have wide-ranging impacts on species interactions, but the effects that ongoing evolution has on the temporal ecological dynamics of communities are not well understood. Here, we identify three conditions that, if experimentally satisfied, support the hypothesis that evolution by natural selection can drive ecological changes in communities. These conditions are: (i) a focal population exhibits genetic variation in a trait(s), (ii) there is measurable directional selection on the trait(s), and (iii) the trait(s) under selection affects variation in a community variable(s). When these conditions are met, we expect evolution by natural selection to cause ecological changes in the community. We tested these conditions in a field experiment examining the interactions between a native plant (Oenothera biennis) and its associated arthropod community (more than 90 spp.). Oenothera biennis exhibited genetic variation in several plant traits and there was directional selection on plant biomass, life-history strategy (annual versus biennial reproduction) and herbivore resistance. Genetically based variation in biomass and life-history strategy consistently affected the abundance of common arthropod species, total arthropod abundance and arthropod species richness. Using two modelling approaches, we show that evolution by natural selection in large O. biennis populations is predicted to cause changes in the abundance of individual arthropod species, increases in the total abundance of arthropods and a decline in the number of arthropod species. In small O. biennis populations, genetic drift is predicted to swamp out the effects of selection, making the evolution of plant populations unpredictable. In short, evolution by natural selection can play an important role in affecting the dynamics of communities, but these effects depend on several ecological factors. The framework presented here is general and can be applied to other systems to

  8. Evolution in plant populations as a driver of ecological changes in arthropod communities

    Science.gov (United States)

    Johnson, Marc T.J.; Vellend, Mark; Stinchcombe, John R.

    2009-01-01

    Heritable variation in traits can have wide-ranging impacts on species interactions, but the effects that ongoing evolution has on the temporal ecological dynamics of communities are not well understood. Here, we identify three conditions that, if experimentally satisfied, support the hypothesis that evolution by natural selection can drive ecological changes in communities. These conditions are: (i) a focal population exhibits genetic variation in a trait(s), (ii) there is measurable directional selection on the trait(s), and (iii) the trait(s) under selection affects variation in a community variable(s). When these conditions are met, we expect evolution by natural selection to cause ecological changes in the community. We tested these conditions in a field experiment examining the interactions between a native plant (Oenothera biennis) and its associated arthropod community (more than 90 spp.). Oenothera biennis exhibited genetic variation in several plant traits and there was directional selection on plant biomass, life-history strategy (annual versus biennial reproduction) and herbivore resistance. Genetically based variation in biomass and life-history strategy consistently affected the abundance of common arthropod species, total arthropod abundance and arthropod species richness. Using two modelling approaches, we show that evolution by natural selection in large O. biennis populations is predicted to cause changes in the abundance of individual arthropod species, increases in the total abundance of arthropods and a decline in the number of arthropod species. In small O. biennis populations, genetic drift is predicted to swamp out the effects of selection, making the evolution of plant populations unpredictable. In short, evolution by natural selection can play an important role in affecting the dynamics of communities, but these effects depend on several ecological factors. The framework presented here is general and can be applied to other systems to

  9. Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny.

    Science.gov (United States)

    Bell, Terrence H; El-Din Hassan, Saad; Lauron-Moreau, Aurélien; Al-Otaibi, Fahad; Hijri, Mohamed; Yergeau, Etienne; St-Arnaud, Marc

    2014-02-01

    Phytoremediation is an attractive alternative to excavating and chemically treating contaminated soils. Certain plants can directly bioremediate by sequestering and/or transforming pollutants, but plants may also enhance bioremediation by promoting contaminant-degrading microorganisms in soils. In this study, we used high-throughput sequencing of bacterial 16S rRNA genes and the fungal internal transcribed spacer (ITS) region to compare the community composition of 66 soil samples from the rhizosphere of planted willows (Salix spp.) and six unplanted control samples at the site of a former petrochemical plant. The Bray-Curtis distance between bacterial communities across willow cultivars was significantly correlated with the distance between fungal communities in uncontaminated and moderately contaminated soils but not in highly contaminated (HC) soils (>2000 mg kg(-1) hydrocarbons). The mean dissimilarity between fungal, but not bacterial, communities from the rhizosphere of different cultivars increased substantially in the HC blocks. This divergence was partly related to high fungal sensitivity to hydrocarbon contaminants, as demonstrated by reduced Shannon diversity, but also to a stronger influence of willows on fungal communities. Abundance of the fungal class Pezizomycetes in HC soils was directly related to willow phylogeny, with Pezizomycetes dominating the rhizosphere of a monophyletic cluster of cultivars, while remaining in low relative abundance in other soils. This has implications for plant selection in phytoremediation, as fungal associations may affect the health of introduced plants and the success of co-inoculated microbial strains. An integrated understanding of the relationships between fungi, bacteria and plants will enable the design of treatments that specifically promote effective bioremediating communities.

  10. Climate impacts on bird and plant communities from altered animal-plant interactions

    Science.gov (United States)

    Martin, Thomas E.; Maron, John L.

    2012-01-01

    The contribution of climate change to declining populations of organisms remains a question of outstanding concern. Much attention to declining populations has focused on how changing climate drives phenological mismatches between animals and their food. Effects of climate on plant communities may provide an alternative, but particularly powerful, influence on animal populations because plants provide their habitats. Here, we show that abundances of deciduous trees and associated songbirds have declined with decreasing snowfall over 22 years of study in montane Arizona, USA. We experimentally tested the hypothesis that declining snowfall indirectly influences plants and associated birds by allowing greater over-winter herbivory by elk (Cervus canadensis). We excluded elk from one of two paired snowmelt drainages (10 ha per drainage), and replicated this paired experiment across three distant canyons. Over six years, we reversed multi-decade declines in plant and bird populations by experimentally inhibiting heavy winter herbivory associated with declining snowfall. Moreover, predation rates on songbird nests decreased in exclosures, despite higher abundances of nest predators, demonstrating the over-riding importance of habitat quality to avian recruitment. Thus, our results suggest that climate impacts on plant–animal interactions can have forceful ramifying effects on plants, birds, and ecological interactions.

  11. Resistance and resilience of tundra plant communities to disturbance by winter seismic vehicles

    International Nuclear Information System (INIS)

    Felix, N.A.; Raynolds, M.K.; Jorgenson, J.C.; DuBois, K.E.

    1992-01-01

    Effects of winter seismic exploration on arctic tundra were evaluated on the coastal plain of the Arctic National Wildlife Refuge, four to five growing seasons after disturbance. Plant cover, active layer depths, and track depression were measured at plots representing major tundra plant communities and different levels of initial disturbance. Results are compared with the initial effects reported earlier. Little resilience was seen in any vegetation type, with no clearly decreasing trends in community dissimilarity. Active layer depths remained greater on plots in all nonriparian vegetation types, and most plots still had visible trails. Decreases in plant cover persisted on most plots, although a few species showed recovery or increases in cover above predisturbance level. Moist sedge-shrub tundra and dryas terraces had the largest community dissimilarities initially, showing the least resistance to high levels of winter vehicle disturbance. Community dissimilarity continued to increase for five seasons in moist sedge-shrub tundra, with species composition changing to higher sedge cover and lower shrub cover. The resilience amplitude may have been exceeded on four plots which had significant track depression

  12. Legacy effects of no-analogue disturbances alter plant community diversity and composition in semi-arid sagebrush steppe

    Science.gov (United States)

    Ripplinger, Julie; Franklin, Janet; Edwards, Thomas C.

    2015-01-01

    Questions(i) What role does the type of managed disturbance play in structuring sagebrush steppe plant communities? (ii) How does the composition of post-disturbance plant communities change with time since disturbance? (iii) Does plant community diversity change over time following managed disturbance?LocationField study within the sagebrush steppe ecosystem. Rich County, Utah, USA.MethodsWe developed a chronosequence spanning up to 50 yrs post-treatment to study sagebrush steppe vegetation dynamics. Direct ordination was used to examine plant community composition by managed disturbance type and time since disturbance, and factorial analysis of covariance was used to examine diversity dynamics following disturbance. Indicator species values were calculated in order to identify characteristic species for each disturbance type.ResultsPlant communities experienced a shift toward distinct community composition for each of the three managed disturbance types, and gave no indication of returning to untreated community composition or diversity. Small post-disturbance increases in the number of non-native grass species were observed in the treatments relative to reference, with native forb species making the largest contribution to altered composition. On fire- and chemically-treated sites the proportional native forb species richness increased over time since disturbance, while the proportional contribution of non-native forbs to total species richness decreased. For all three treatment types, native grasses contributed less on average to total richness than on reference sites, while non-native grasses made up a higher proportion of total richness.ConclusionsCommon shrubland management techniques have legacy effects on the composition and diversity of sagebrush steppe plant communities, and no-analogue disturbances, such as chemical or mechanical treatments, have more pronounced legacy effects than treatments similar to natural disturbance regimes (fire). This study

  13. Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus.

    Science.gov (United States)

    Leff, Jonathan W; Lynch, Ryan C; Kane, Nolan C; Fierer, Noah

    2017-04-01

    Root and rhizosphere microbial communities can affect plant health, but it remains undetermined how plant domestication may influence these bacterial and fungal communities. We grew 33 sunflower (Helianthus annuus) strains (n = 5) that varied in their extent of domestication and assessed rhizosphere and root endosphere bacterial and fungal communities. We also assessed fungal communities in the sunflower seeds to investigate the degree to which root and rhizosphere communities were influenced by vertical transmission of the microbiome through seeds. Neither root nor rhizosphere bacterial communities were affected by the extent of sunflower domestication, but domestication did affect the composition of rhizosphere fungal communities. In particular, more modern sunflower strains had lower relative abundances of putative fungal pathogens. Seed-associated fungal communities strongly differed across strains, but several lines of evidence suggest that there is minimal vertical transmission of fungi from seeds to the adult plants. Our results indicate that plant-associated fungal communities are more strongly influenced by host genetic factors and plant breeding than bacterial communities, a finding that could influence strategies for optimizing microbial communities to improve crop yields. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Using Plant Functional Traits and Phylogenies to Understand Patterns of Plant Community Assembly in a Seasonal Tropical Forest in Lao PDR.

    Directory of Open Access Journals (Sweden)

    Manichanh Satdichanh

    Full Text Available Plant functional traits reflect different evolutionary responses to environmental variation, and among extant species determine the outcomes of interactions between plants and their environment, including other plant species. Thus, combining phylogenetic and trait-based information can be a powerful approach for understanding community assembly processes across a range of spatial scales. We used this approach to investigate tree community composition at Phou Khao Khouay National Park (18°14'-18°32'N; 102°38'- 102°59'E, Laos, where several distinct forest types occur in close proximity. The aim of our study was to examine patterns of plant community assembly across the strong environmental gradients evident at our site. We hypothesized that differences in tree community composition were being driven by an underlying gradient in soil conditions. Thus, we predicted that environmental filtering would predominate at the site and that the filtering would be strongest on sandier soil with low pH, as these are the conditions least favorable to plant growth. We surveyed eleven 0.25 ha (50x50 m plots for all trees above 10 cm dbh (1221 individual trees, including 47 families, 70 genera and 123 species and sampled soils in each plot. For each species in the community, we measured 11 commonly studied plant functional traits covering both the leaf and wood economic spectrum traits and we reconstructed a phylogenetic tree for 115 of the species in the community using rbcL and matK sequences downloaded from Genebank (other species were not available. Finally we compared the distribution of trait values and species at two scales (among plots and 10x10m subplots to examine trait and phylogenetic community structures. Although there was strong evidence that an underlying soil gradient was determining patterns of species composition at the site, our results did not support the hypothesis that the environmental filtering dominated community assembly processes

  15. Hierarchical spatial point process analysis for a plant community with high biodiversity

    DEFF Research Database (Denmark)

    Illian, Janine B.; Møller, Jesper; Waagepetersen, Rasmus

    2009-01-01

    A complex multivariate spatial point pattern of a plant community with high biodiversity is modelled using a hierarchical multivariate point process model. In the model, interactions between plants with different post-fire regeneration strategies are of key interest. We consider initially a maxim...

  16. Tracking fungal community responses to maize plants by DNA- and RNA-based pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Eiko E Kuramae

    Full Text Available We assessed soil fungal diversity and community structure at two sampling times (t1 = 47 days and t2 = 104 days of plant age in pots associated with four maize cultivars, including two genetically modified (GM cultivars by high-throughput pyrosequencing of the 18S rRNA gene using DNA and RNA templates. We detected no significant differences in soil fungal diversity and community structure associated with different plant cultivars. However, DNA-based analyses yielded lower fungal OTU richness as compared to RNA-based analyses. Clear differences in fungal community structure were also observed in relation to sampling time and the nucleic acid pool targeted (DNA versus RNA. The most abundant soil fungi, as recovered by DNA-based methods, did not necessary represent the most "active" fungi (as recovered via RNA. Interestingly, RNA-derived community compositions at t1 were highly similar to DNA-derived communities at t2, based on presence/absence measures of OTUs. We recovered large proportions of fungal sequences belonging to arbuscular mycorrhizal fungi and Basidiomycota, especially at the RNA level, suggesting that these important and potentially beneficial fungi are not affected by the plant cultivars nor by GM traits (Bt toxin production. Our results suggest that even though DNA- and RNA-derived soil fungal communities can be very different at a given time, RNA composition may have a predictive power of fungal community development through time.

  17. Biomass, Leaf Area, and Resource Availability of Kudzu Dominated Plant Communities Following Herbicide Treatment

    Energy Technology Data Exchange (ETDEWEB)

    L.T. Rader

    2001-10-01

    Kudzu is an exotic vine that threatens the forests of the southern U.S. Five herbicides were tested with regard to their efficacy in controlling kudzu, community recover was monitored, and interactions with planted pines were studied. The sites selected were old farm sites dominated by kudzu.These were burned following herbicide treatment. The herbicides included triclopyr, clopyralid, metsulfuron, tebuthiuron, and picloram plus 2,4-D. Pine seedlings were planted the following year. Regression equations were developed for predicting biomass and leaf area. Four distinct plant communities resulted from the treatments. The untreated check continued to be kudzu dominated. Blackberry dominated the clopyradid treatment. Metsulfron, trychlopyr and picloram treated sites resulted in herbaceous dominated communities. The tebuthiuron treatment maintained all vegetation low.

  18. Water and Nitrogen Limitations of Ecosystem Processes Across Three Dryland Plant Communities

    Science.gov (United States)

    Beltz, C.; Lauenroth, W. K.; Burke, I. C.

    2017-12-01

    The availability of water and nitrogen (N) play a major role in controlling the distribution of ecosystem types and the rates of ecosystem processes across the globe. Both these resources are being altered by human activity. Anthropogenic fixation of N has increased inputs into the biosphere from 0.5 kg N ha-1 yr-1 to upwards of 10 kg N ha-1 yr-1, while the amount and seasonality of precipitation are expected to continue to change. Within dryland environments, the relationships between increasingly available N and ecosystem processes are especially complex due to dryland's characteristic strong limitation by low and highly variable precipitation. Other experiments have shown that this interplay between N and water can cause temporally complex co-limitation and spatially complex responses with variable effects on ecosystems, such as those to net primary productivity, soil respiration, and plant community composition. Research spanning multiple dryland plant communities is critical for generalizing findings to the 40% of the Earth's terrestrial surface covered in dryland ecosystems. Given IPCC projections in which both N availability and precipitation are altered, examining their interactive effect across multiple plant communities is critical to increasing our understanding of the limitations to ecosystem process in drylands. We are studying a gradient of three plant communities representing a C4 grassland (shortgrass steppe), a C3/C4 grassland (mixed grass prairie), and a shrub-dominated ecosystem with C3 and C4 grasses (sagebrush steppe). We added two levels of N (10 kg N ha-1 and 100 kg N ha-1) and increased summer monthly precipitation by 20%. Sites responded differently to treatments, with the scale of effect varying by treatment. The high-level nitrogen increased soil N availability and soil respiration, while decreasing soil carbon in the labile pool in the upper soil layers. These results will allow for better understanding of increased N in combination with

  19. Information gathering for CLP classification

    Directory of Open Access Journals (Sweden)

    Ida Marcello

    2011-01-01

    Full Text Available Regulation 1272/2008 includes provisions for two types of classification: harmonised classification and self-classification. The harmonised classification of substances is decided at Community level and a list of harmonised classifications is included in the Annex VI of the classification, labelling and packaging Regulation (CLP. If a chemical substance is not included in the harmonised classification list it must be self-classified, based on available information, according to the requirements of Annex I of the CLP Regulation. CLP appoints that the harmonised classification will be performed for carcinogenic, mutagenic or toxic to reproduction substances (CMR substances and for respiratory sensitisers category 1 and for other hazard classes on a case-by-case basis. The first step of classification is the gathering of available and relevant information. This paper presents the procedure for gathering information and to obtain data. The data quality is also discussed.

  20. Antimicrobial and Antibiofilm Activity and Machine Learning Classification Analysis of Essential Oils from Different Mediterranean Plants against Pseudomonas aeruginosa.

    Science.gov (United States)

    Artini, Marco; Patsilinakos, Alexandros; Papa, Rosanna; Božović, Mijat; Sabatino, Manuela; Garzoli, Stefania; Vrenna, Gianluca; Tilotta, Marco; Pepi, Federico; Ragno, Rino; Selan, Laura

    2018-02-23

    Pseudomonas aeruginosa is a ubiquitous organism and opportunistic pathogen that can cause persistent infections due to its peculiar antibiotic resistance mechanisms and to its ability to adhere and form biofilm. The interest in the development of new approaches for the prevention and treatment of biofilm formation has recently increased. The aim of this study was to seek new non-biocidal agents able to inhibit biofilm formation, in order to counteract virulence rather than bacterial growth and avoid the selection of escape mutants. Herein, different essential oils extracted from Mediterranean plants were analyzed for their activity against P. aeruginosa . Results show that they were able to destabilize biofilm at very low concentration without impairing bacterial viability. Since the action is not related to a bacteriostatic/bactericidal activity on P. aeruginosa , the biofilm change of growth in presence of the essential oils was possibly due to a modulation of the phenotype. To this aim, application of machine learning algorithms led to the development of quantitative activity-composition relationships classification models that allowed to direct point out those essential oil chemical components more involved in the inhibition of biofilm production. The action of selected essential oils on sessile phenotype make them particularly interesting for possible applications such as prevention of bacterial contamination in the community and in healthcare environments in order to prevent human infections. We assayed 89 samples of different essential oils as P. aeruginosa anti-biofilm. Many samples inhibited P. aeruginosa biofilm at concentrations as low as 48.8 µg/mL. Classification of the models was developed through machine learning algorithms.

  1. Community-Weighted Mean Plant Traits Predict Small Scale Distribution of Insect Root Herbivore Abundance.

    Directory of Open Access Journals (Sweden)

    Ilja Sonnemann

    Full Text Available Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae larvae (43% in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive- and vegetative plant height, and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio. Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of

  2. Content validity and nursing sensitivity of community-level outcomes from the Nursing Outcomes Classification (NOC).

    Science.gov (United States)

    Head, Barbara J; Aquilino, Mary Lober; Johnson, Marion; Reed, David; Maas, Meridean; Moorhead, Sue

    2004-01-01

    To evaluate the content validity and nursing sensitivity of six community-level outcomes from the Nursing Outcomes Classification (NOC; Johnson, Maas, & Moorhead, 2000). A survey research design was used. Questionnaires were mailed to 300 public health nursing experts; 102 nurses responded. Experts evaluated between 11 and 30 indicators for each of the six outcomes for: (a) importance of the indicators for measuring the outcome, and (b) influence of nursing on the indicators. Content validity and nursing sensitivity of the outcomes were estimated with a modified Fehring technique. All outcomes were deemed important; only Community Competence had an outcome content validity score < .80. The outcome sensitivity score for Community Health: Immunity was .80; other outcome scores ranged from .62-.70. Indicator ratios for all 102 indicators met the study criterion for importance, with 87% designated as critical and 13% as supplemental. Sensitivity ratios reflected judgments that 45% of the indicators were sensitive to nursing intervention. The study provided evidence of outcome content validity and nursing sensitivity of the study outcomes; further validation research is recommended, followed by testing of the study outcomes in clinical practice. Community-level nursing-sensitive outcomes will potentially enable study of the efficacy and effectiveness of public health interventions focused on improving health of populations and communities.

  3. Concentration of petroleum-hydrocarbon contamination shapes fungal endophytic community structure in plant roots

    Directory of Open Access Journals (Sweden)

    Guillaume eBourdel

    2016-05-01

    Full Text Available Plant-root inhabiting fungi are a universal phenomenon found in all ecosystems where plants are able to grow, even in harsh environments. Interactions between fungi and plant roots can vary widely from mutualism to parasitism depending on many parameters. The role of fungal endophytes in phytoremediation of polluted sites, and characterization of the endophytic diversity and community assemblages in contaminated areas remain largely unexplored. In this study, we investigated the composition of endophytic fungal communities in the roots of two plant species growing spontaneously in petroleum-contaminated sedimentation basins of a former petro-chemical plant. The three adjacent basins showed a highly heterogeneous patterns of pollutant concentrations. We combined a culture-based isolation approach with the pyrosequencing of fungal ITS ribosomal DNA. We selected two species, Eleocharis erythropoda Steud. and Populus balsamifera L., and sampled three individuals of each species from each of three adjacent basins, each with a different concentration of petroleum hydrocarbons. We found that contamination level significantly shaped endophytic fungal diversity and community composition in E. erythropoda, with only 9.9% of these fungal Operational Taxonomic Units (OTUs retrieved in all three basins. However, fungal community structure associated with P. balsamifera remained unaffected by the contamination level with 28.2% of fungal OTUs shared among all three basins. This could be explained by the smaller differences of pollutant concentrations in the soil around our set of P. balsamifera sampless compared to that around our set of E. erythropoda samples. Our culture-based approach allowed isolation of 11 and 30 fungal endophytic species from surface-sterilized roots of E. erythropoda and P. balsamifera, respectively. These isolates were ribotyped using ITS, and all were found in pyrosequensing datasets. Our results demonstrate that extreme levels of

  4. THE CONCENTRATION OF PHOTOSINTHESIS PIGMENTS IN THE ANTHROPOGENIC PLANT COMMUNITIES IN TOBOLSK TOWN

    Directory of Open Access Journals (Sweden)

    Еlena Ivanovna Popova

    2016-10-01

    Full Text Available Photosynthesis means a lot in the life of a plant body. For the normal photosynthesis process it is necessary to have certain external and internal conditions. The topic of the research is the study of photosynthesis pigments in anthropogenic plant communities. The aim of our work was to study the pigment composition plants of anthropogenic phytocenoses. Methods: we have used the spectrophotometric method to define the concentration of pigments. Results: the research has shown that the concentration of a – chlorophyll, b – chlorophyll and carotenoids changes depending on the site conditions. The maximal concentration of a and b chlorophyll is found on less polluted areas. High carotenoid concentration was found in stress anthropogenic conditions. On the one hand, this carotenoid concentration decreases the stress effect. On the other hand it fulfils the protection function, preventing the chlorophyll molecules and other organic substances from destruction. In the research you will find the species composition of vascular plants on the sites under research. Jaccard’s coefficient of community has been defined. Field of application of results: the data can be used to predict the dynamics of populations and communities of plants in the contaminated areas and monitor the status of natural ecosystems.

  5. Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change

    Directory of Open Access Journals (Sweden)

    D. B. Metcalfe

    2011-08-01

    Full Text Available Understanding the impacts of plant community characteristics on soil carbon dioxide efflux (R is a key prerequisite for accurate prediction of the future carbon (C balance of terrestrial ecosystems under climate change. However, developing a mechanistic understanding of the determinants of R is complicated by the presence of multiple different sources of respiratory C within soil – such as soil microbes, plant roots and their mycorrhizal symbionts – each with their distinct dynamics and drivers. In this review, we synthesize relevant information from a wide spectrum of sources to evaluate the current state of knowledge about plant community effects on R, examine how this information is incorporated into global climate models, and highlight priorities for future research. Despite often large variation amongst studies and methods, several general trends emerge.

    Mechanisms whereby plants affect R may be grouped into effects on belowground C allocation, aboveground litter properties and microclimate. Within vegetation types, the amount of C diverted belowground, and hence R, may be controlled mainly by the rate of photosynthetic C uptake, while amongst vegetation types this should be more dependent upon the specific C allocation strategies of the plant life form. We make the case that plant community composition, rather than diversity, is usually the dominant control on R in natural systems. Individual species impacts on R may be largest where the species accounts for most of the biomass in the ecosystem, has very distinct traits to the rest of the community and/or modulates the occurrence of major natural disturbances. We show that climate vegetation models incorporate a number of pathways whereby plants can affect R, but that simplifications regarding allocation schemes and drivers of litter decomposition may limit model accuracy. We also suggest that under a warmer future

  6. Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability.

    Science.gov (United States)

    Dieleman, Catherine M; Branfireun, Brian A; McLaughlin, James W; Lindo, Zoë

    2015-01-01

    The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO2 ), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid-dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens. © 2014 John Wiley & Sons Ltd.

  7. Restructuring of endophytic bacterial communities in grapevine yellows-diseased and recovered Vitis vinifera L. plants.

    Science.gov (United States)

    Bulgari, Daniela; Casati, Paola; Crepaldi, Paola; Daffonchio, Daniele; Quaglino, Fabio; Brusetti, Lorenzo; Bianco, Piero Attilio

    2011-07-01

    Length heterogeneity-PCR assays, combined with statistical analyses, highlighted that the endophytic bacterial community associated with healthy grapevines was characterized by a greater diversity than that present in diseased and recovered plants. The findings suggest that phytoplasmas can restructure the bacterial community by selecting endophytic strains that could elicit a plant defense response.

  8. A Post Licensing Study of Community Effects at Two Operating Nuclear Power Plants. Final Report.

    Science.gov (United States)

    Purdy, Bruce J.; And Others

    In an effort to identify and assess the social, economic, and political effects of nuclear power plant construction and operation upon two host communities (Plymouth, Massachusetts and Waterford, Connecticut), a post-licensing review revealed that the primary impact of the nuclear power plants in both communities was an increase in the property…

  9. Summer freezing resistance: a critical filter for plant community assemblies in Mediterranean high mountains

    Directory of Open Access Journals (Sweden)

    David Sánchez Pescador

    2016-02-01

    Full Text Available Assessing freezing community response and whether freezing resistance is related to other functional traits is essential for understanding alpine community assemblages, particularly in Mediterranean environments where plants are exposed to freezing temperatures and summer droughts. Thus, we characterized the leaf freezing resistance of 42 plant species in 38 plots at Sierra de Guadarrama (Spain by measuring their ice nucleation temperature, freezing point (FP, and low-temperature damage (LT50, as well as determining their freezing resistance mechanisms (i.e., tolerance or avoidance. The community response to freezing was estimated for each plot as community weighted means (CWMs and functional diversity, and we assessed their relative importance with altitude. We established the relationships between freezing resistance, growth forms, and four key plant functional traits (i.e., plant height, specific leaf area, leaf dry matter content, and seed mass. There was a wide range of freezing resistance responses and more than in other alpine habitats. At the community level, the CWMs of FP and LT50 responded negatively to altitude, whereas the functional diversity of both traits increased with altitude. The proportion of freezing-tolerant species also increased with altitude. The ranges of FP and LT50 varied among growth forms, and only the leaf dry matter content correlated negatively with freezing-resistance traits. Summer freezing events represent important abiotic filters for assemblies of Mediterranean high mountain communities, as suggested by the CWMs. However, a concomitant summer drought constraint may also explain the high freezing resistance of species that thrive in these areas and the lower functional diversity of freezing resistance traits at lower altitudes. Leaves with high dry matter contents may maintain turgor at lower water potential and enhance drought tolerance in parallel to freezing resistance. This adaptation to drought seems to

  10. Abandoned floodplain plant communities along a regulated dryland river

    Science.gov (United States)

    Reynolds, L. V.; Shafroth, Patrick B.; House, P. K.

    2014-01-01

    Rivers and their floodplains worldwide have changed dramatically over the last century because of regulation by dams, flow diversions and channel stabilization. Floodplains no longer inundated by river flows following dam-induced flood reduction comprise large areas of bottomland habitat, but the effects of abandonment on plant communities are not well understood. Using a hydraulic flow model, geomorphic mapping and field surveys, we addressed the following questions along the Bill Williams River, Arizona: (i) What per cent of the bottomland do abandoned floodplains comprise? and (ii) Are abandoned floodplains quantitatively different from adjacent xeric and riparian surfaces in terms of vegetation composition and surface sediment? We found that nearly 70% of active channel and floodplain area was abandoned following dam installation. Abandoned floodplains along the Bill Williams River tend to be similar to each other yet distinct from neighbouring habitats: they have been altered physically from their historic state, leading to distinct combinations of surface sediments, hydrology and plant communities. Abandoned floodplains may transition to xeric communities over time but are likely to retain some riparian qualities as long as there is access to relatively shallow ground water. With expected increases in water demand and drying climatic conditions in many regions, these surfaces and associated vegetation will continue to be extensive in riparian landscapes worldwide

  11. [Species, functional, structural diversity of typical plant communities and their responses to environmental factors in Miao Archipelago, China.

    Science.gov (United States)

    Zheng, Li Ting; Su, Tian; Liu, Xiang Yu; Yin, Fang; Guo, Chao; Tuo, Bin; Yan, En Rong

    2018-02-01

    Island vegetation plays an important role in biodiversity research across the world. The study of plant diversity in island is helpful for understanding the mechanism of plant diversity maintenance under land-sea interaction. Here, four typical plant communities (Quercus acutissima community, Robinia pseudoacacia community, Pinus thunbergii community and Vitex negundo community) in Miao Archipelago were selected to examine the species, functional and structural diversities and their responses to environmental factors at the community scale by using species diversity indices, functional diversity indices, as well as structural diversity indices. The results showed that the species richness and Rao index of P. thunbergii community was higher than that of Q. acutissima community and R. pseudoacacia community, but the structural diversity was lower. The species diversity and structural diversity of V. Negundo shrub were lower than that of forest community, but the functional diversity was higher than some forest communities. The relationship between the diversity of typical plant communities in island area illustrated a significant positive correlation between species richness with Rao index and tree height diversity, however the correlation with functional evenness was significantly negative. The structural diversity and functional evenness were determined by slope with negative and positive relationships, respectively. Functional heterogeneity, functional divergence and species diversity were affected largely by soil physical and chemical properties, displaying the positive relationship with soil bulk density and soil total carbon content, and a negative relationship with soil water content. In conclusion, diversity pattern of plant community in Miao Archipelago reflected not only the characteristics in mainland vegetation but also the special nature of the sea island.

  12. Interactions among predators and the cascading effects of vertebrate insectivores on arthropod communities and plants.

    Science.gov (United States)

    Mooney, Kailen A; Gruner, Daniel S; Barber, Nicholas A; Van Bael, Sunshine A; Philpott, Stacy M; Greenberg, Russell

    2010-04-20

    Theory on trophic interactions predicts that predators increase plant biomass by feeding on herbivores, an indirect interaction called a trophic cascade. Theory also predicts that predators feeding on predators, or intraguild predation, will weaken trophic cascades. Although past syntheses have confirmed cascading effects of terrestrial arthropod predators, we lack a comprehensive analysis for vertebrate insectivores-which by virtue of their body size and feeding habits are often top predators in these systems-and of how intraguild predation mediates trophic cascade strength. We report here on a meta-analysis of 113 experiments documenting the effects of insectivorous birds, bats, or lizards on predaceous arthropods, herbivorous arthropods, and plants. Although vertebrate insectivores fed as intraguild predators, strongly reducing predaceous arthropods (38%), they nevertheless suppressed herbivores (39%), indirectly reduced plant damage (40%), and increased plant biomass (14%). Furthermore, effects of vertebrate insectivores on predatory and herbivorous arthropods were positively correlated. Effects were strongest on arthropods and plants in communities with abundant predaceous arthropods and strong intraguild predation, but weak in communities depauperate in arthropod predators and intraguild predation. The naturally occurring ratio of arthropod predators relative to herbivores varied tremendously among the studied communities, and the skew to predators increased with site primary productivity and in trees relative to shrubs. Although intraguild predation among arthropod predators has been shown to weaken herbivore suppression, we find this paradigm does not extend to vertebrate insectivores in these communities. Instead, vertebrate intraguild preda-tion is associated with strengthened trophic cascades, and insectivores function as dominant predators in terrestrial plant-arthropod communities.

  13. Color me healthy: food diversity in school community gardens in two rapidly urbanising Australian cities.

    Science.gov (United States)

    Guitart, Daniela A; Pickering, Catherine M; Byrne, Jason A

    2014-03-01

    Community garden research has focused on social aspects of gardens, neglecting systematic analysis of what food is grown. Yet agrodiversity within community gardens may provide health benefits. Diverse fruit and vegetables provide nutritional benefits, including vitamins, minerals and phytochemicals. This paper reports research that investigated the agro-biodiversity of school-based community gardens in Brisbane and Gold Coast cities, Australia. Common motivations for establishing these gardens were education, health and environmental sustainability. The 23 gardens assessed contained 234 food plants, ranging from 7 to 132 plant types per garden. This included 142 fruits and vegetables. The nutritional diversity of fruits and vegetable plants was examined through a color classification system. All gardens grew fruits and vegetables from at least four food color groups, and 75% of the gardens grew plants from all seven color groups. As places with high agrodiversity, and related nutritional diversity, some school community gardens can provide children with exposure to a healthy range of fruit and vegetables, with potential flow-on health benefits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. New classification of operators' human errors at overseas nuclear power plants and preparation of easy-to-use case sheets

    International Nuclear Information System (INIS)

    Takagawa, Kenichi

    2004-01-01

    At nuclear power plants, plant operators examine other human error cases, including those that occurred at other plants, so that they can learn from such experiences and avoid making similar errors again. Although there is little data available on errors made at domestic plants, nuclear operators in foreign countries are reporting even minor irregularities and signs of faults, and a large amount of data on human errors at overseas plants could be collected and examined. However, these overseas data have not been used effectively because most of them are poorly organized or not properly classified and are often hard to understand. Accordingly, we carried out a study on the cases of human errors at overseas power plants in order to help plant personnel clearly understand overseas experiences and avoid repeating similar errors, The study produced the following results, which were put to use at nuclear power plants and other facilities. (1) ''One-Point-Advice'' refers to a practice where a leader gives pieces of advice to his team of operators in order to prevent human errors before starting work. Based on this practice and those used in the aviation industry, we have developed a new method of classifying human errors that consists of four basic actions and three applied actions. (2) We used this new classification method to classify human errors made by operators at overseas nuclear power plants. The results show that the most frequent errors caused not by operators themselves but due to insufficient team monitoring, for which superiors and/or their colleagues were responsible. We therefore analyzed and classified possible factors contributing to insufficient team monitoring, and demonstrated that the frequent errors have also occurred at domestic power plants. (3) Using the new classification formula, we prepared a human error case sheets that is easy for plant personnel to understand. The sheets are designed to make data more understandable and easier to remember

  15. Isolated and Community Contexts Produce Distinct Responses by Host Plants to the Presence of Ant-Aphid Interaction: Plant Productivity and Seed Viability

    Science.gov (United States)

    Santiago, Graziele Silva; Zurlo, Luana Fonseca; Ribas, Carla Rodrigues; Carvalho, Rafaela Pereira; Alves, Guilherme Pereira; Carvalho, Mariana Comanucci Silva; Souza, Brígida

    2017-01-01

    Ant-aphid interactions may affect host plants in several ways, however, most studies measure only the amount of fruit and seed produced, and do not test seed viability. Therefore, the aim of this study was to assess the effects of the presence of ant-aphid interactions upon host plant productivity and seed viability in two different contexts: isolated and within an arthropod community. For this purpose we tested the hypothesis that in both isolated and community contexts, the presence of an ant-aphid interaction will have a positive effect on fruit and seed production, seed biomass and rate of seed germination, and a negative effect on abnormal seedling rates, in comparison to plants without ants. We performed a field mesocosm experiment containing five treatments: Ant-aphid, Aphid, Community, Ant-free community and Control. We counted fruits and seeds produced by each treatment, and conducted experiments for seed biomass and germinability. We found that in the community context the presence of an ant-aphid interaction negatively affected fruit and seed production. We think this may be because aphid attendance by tending-ants promotes aphid damage to the host plant, but without an affect on seed weight and viability. On the other hand, when isolated, the presence of an ant-aphid interaction positively affected fruit and seed production. These positive effects are related to the cleaning services offered to aphids by tending-ants, which prevent the development of saprophytic fungi on the surface of leaves, which would cause a decrease in photosynthetic rates. Our study is important because we evaluated some parameters of plant fitness that have not been addressed very well by other studies involving the effects of ant-aphid interactions mainly on plants with short life cycles. Lastly, our context dependent approach sheds new light on how ecological interactions can vary among different methods of crop management. PMID:28141849

  16. Isolated and Community Contexts Produce Distinct Responses by Host Plants to the Presence of Ant-Aphid Interaction: Plant Productivity and Seed Viability.

    Directory of Open Access Journals (Sweden)

    Ernesto Oliveira Canedo-Júnior

    Full Text Available Ant-aphid interactions may affect host plants in several ways, however, most studies measure only the amount of fruit and seed produced, and do not test seed viability. Therefore, the aim of this study was to assess the effects of the presence of ant-aphid interactions upon host plant productivity and seed viability in two different contexts: isolated and within an arthropod community. For this purpose we tested the hypothesis that in both isolated and community contexts, the presence of an ant-aphid interaction will have a positive effect on fruit and seed production, seed biomass and rate of seed germination, and a negative effect on abnormal seedling rates, in comparison to plants without ants. We performed a field mesocosm experiment containing five treatments: Ant-aphid, Aphid, Community, Ant-free community and Control. We counted fruits and seeds produced by each treatment, and conducted experiments for seed biomass and germinability. We found that in the community context the presence of an ant-aphid interaction negatively affected fruit and seed production. We think this may be because aphid attendance by tending-ants promotes aphid damage to the host plant, but without an affect on seed weight and viability. On the other hand, when isolated, the presence of an ant-aphid interaction positively affected fruit and seed production. These positive effects are related to the cleaning services offered to aphids by tending-ants, which prevent the development of saprophytic fungi on the surface of leaves, which would cause a decrease in photosynthetic rates. Our study is important because we evaluated some parameters of plant fitness that have not been addressed very well by other studies involving the effects of ant-aphid interactions mainly on plants with short life cycles. Lastly, our context dependent approach sheds new light on how ecological interactions can vary among different methods of crop management.

  17. Ethnobotany of wild plants used for starting fermented beverages in Shui communities of southwest China.

    Science.gov (United States)

    Hong, Liya; Zhuo, Jingxian; Lei, Qiyi; Zhou, Jiangju; Ahmed, Selena; Wang, Chaoying; Long, Yuxiao; Li, Feifei; Long, Chunlin

    2015-05-28

    Shui communities of southwest China have an extensive history of using wild plants as starters (Xiaoqu) to prepare fermented beverages that serve important roles in interpersonal relationships and cultural events. While the practice of using wild plants as starters for the preparation of fermented beverages was once prevalent throughout China, this tradition has seen a decline nationally since the 1930s. The traditional technique of preparing fermented beverages from wild plant starters remains well preserved in the Shui communities in southwest China and provides insight on local human-environment interactions and conservation of plant biodiversity for cultural purposes. The present study sought to examine the ethnobotany of wild plants used as starters for the preparation of fermented beverages including an inventory of plants used as a starter in liquor fermentation and associated knowledge and practices. Field surveys were carried out that consisted of semi-structured surveys and plant species inventories. One hundred forty-nine informants in twenty Shui villages were interviewed between July 2012 and October 2014 to document knowledge associated with wild plants used as a liquor fermentation starter. The inventories involved plant voucher specimens and taxonomic identification of plant collections. A total of 103 species in 57 botanical families of wild plants were inventoried and documented that are traditionally used as starters for preparing fermented beverages by Shui communities. The majority of the species (93.2%) have multiple uses in addition to being used as a starter with medicinal purposes being the most prevalent. Shui women are the major harvesters and users of wild plants used as starters for preparing fermented beverages and transfer knowledge orally from mother to daughter. Findings from this study can serve as a basis for future investigation on fermented beverages and foods and associated knowledge and cultural practices. However, with rapid

  18. Interactions between plant and rhizosphere microbial communities in a metalliferous soil

    International Nuclear Information System (INIS)

    Epelde, Lur; Becerril, Jose M.; Barrutia, Oihana; Gonzalez-Oreja, Jose A.; Garbisu, Carlos

    2010-01-01

    In the present work, the relationships between plant consortia, consisting of 1-4 metallicolous pseudometallophytes with different metal-tolerance strategies (Thlaspi caerulescens: hyperaccumulator; Jasione montana: accumulator; Rumex acetosa: indicator; Festuca rubra: excluder), and their rhizosphere microbial communities were studied in a mine soil polluted with high levels of Cd, Pb and Zn. Physiological response and phytoremediation potential of the studied pseudometallophytes were also investigated. The studied metallicolous populations are tolerant to metal pollution and offer potential for the development of phytoextraction and phytostabilization technologies. T. caerulescens appears very tolerant to metal stress and most suitable for metal phytoextraction; the other three species enhance soil functionality. Soil microbial properties had a stronger effect on plant biomass rather than the other way around (35.2% versus 14.9%). An ecological understanding of how contaminants, ecosystem functions and biological communities interact in the long-term is needed for proper management of these fragile metalliferous ecosystems. - Rhizosphere microbial communities in highly polluted mine soils are determinant for the growth of pseudometallophytes.

  19. Interactions between plant and rhizosphere microbial communities in a metalliferous soil

    Energy Technology Data Exchange (ETDEWEB)

    Epelde, Lur [NEIKER-Tecnalia, Department of Ecosystems, c/Berreaga 1, E-48160 Derio (Spain); Becerril, Jose M.; Barrutia, Oihana [Department of Plant Biology and Ecology, University of the Basque Country, UPV/EHU, P.O. Box 644, E-48080 Bilbao (Spain); Gonzalez-Oreja, Jose A. [NEIKER-Tecnalia, Department of Ecosystems, c/Berreaga 1, E-48160 Derio (Spain); Garbisu, Carlos, E-mail: cgarbisu@neiker.ne [NEIKER-Tecnalia, Department of Ecosystems, c/Berreaga 1, E-48160 Derio (Spain)

    2010-05-15

    In the present work, the relationships between plant consortia, consisting of 1-4 metallicolous pseudometallophytes with different metal-tolerance strategies (Thlaspi caerulescens: hyperaccumulator; Jasione montana: accumulator; Rumex acetosa: indicator; Festuca rubra: excluder), and their rhizosphere microbial communities were studied in a mine soil polluted with high levels of Cd, Pb and Zn. Physiological response and phytoremediation potential of the studied pseudometallophytes were also investigated. The studied metallicolous populations are tolerant to metal pollution and offer potential for the development of phytoextraction and phytostabilization technologies. T. caerulescens appears very tolerant to metal stress and most suitable for metal phytoextraction; the other three species enhance soil functionality. Soil microbial properties had a stronger effect on plant biomass rather than the other way around (35.2% versus 14.9%). An ecological understanding of how contaminants, ecosystem functions and biological communities interact in the long-term is needed for proper management of these fragile metalliferous ecosystems. - Rhizosphere microbial communities in highly polluted mine soils are determinant for the growth of pseudometallophytes.

  20. Relative Importance and Knowledge Distribution of Medicinal Plants in a Kichwa Community in the Ecuadorian Amazon

    Directory of Open Access Journals (Sweden)

    Brian Joseph Doyle

    2017-01-01

    Full Text Available Traditional knowledge, such as knowledge of the use of plants as medicine, influences how indigenous people manage forest resources. Gender and age-associated differences in traditional knowledge may impact forest resource management because of the traditional division of labor. We interviewed 18 men and 18 women between 9 and 74 years old in San José de Payamino, an indigenous community of the Kichwa ethnicity in the Ecuadorian Amazon, to determine if there are gender or age-associated differences in medicinal plant knowledge among the Payamino people and to identify the most important species from a sample of medicinal plants. Individuals were interviewed using a tablet that displayed images of 34 plants, which had been cited by traditional healers in the community. Quantitative analysis provided insight into the relative importance of plants in the sample as well as the distribution of medicinal plant knowledge among members of the community. The most important plants were Tradescantia zanonia and Monolena primuliflora. These plants should be considered candidates for further investigation. There was a positive correlation between age and knowledge of medicinal plants, but no significant difference between genders. Our results suggest that an interview method that relies on digital images can reveal differences in the importance of medicinal plants as well as provide insight into the distribution of traditional medical knowledge. While men and women are likely to manage forest resources similarly, younger members of the community may not have the same regard for forest resources as their elder counterparts.

  1. Plant communities and landscapes of the Parque Nacional de Zinave, Mozambique

    Directory of Open Access Journals (Sweden)

    Marc Stalmans

    2010-03-01

    Full Text Available The Parque Nacional de Zinave covers 400 000 ha in Mozambique to the south of the Save River. Until recently, this park had been characterised by neglect and illegal hunting that caused the demise of most of its large wildlife. A recent initiative has been launched that aims at rehabilitating the park within the scope of the Greater Limpopo Transfrontier Park (GLTP. A vegetation map was required as input to its management plan. The three primary objectives of the study were, firstly, to understand the environmental and biotic determinants of the vegetation, secondly, to identify and describe individual plant communities in terms of species composition and structure along the roads in the study area and, thirdly, to delineate landscapes in terms of their plant community make-up, environmental as well as biotic determinants and distribution. This is the third survey and description of the landscapes of the national parks located in the Mozambique part of the GLTP. A combination of feldwork and analysis of LANDSAT satellite imagery was used. A total of 75 sample plots were surveyed. A brief subjective visual assessment was undertaken for another 114 sample points. The accuracy of the landscape map was evaluated by means of 582 points assessed during an aerial game count. The ordination results clearly indicate the overriding importance of moisture availability in determining vegetation composition. Ten distinct plant communities were recognised. Different combinations of these plant communities can be grouped in six major landscapes, namely the Save River channel and river banks, Save riverine forest, Acacia nigrescens woodland landscape, mopane landscape, miombo landscape and sandveld landscape. The landscapes with their individual plant communities represent habitats that are highly suitable for the reintroduction of many game species that were lost during the latter part of the last century. Conservation implication: No formal description and

  2. Herbicide and fertilizers promote analogous phylogenetic responses but opposite functional responses in plant communities

    International Nuclear Information System (INIS)

    Pellissier, Loïc; Wisz, Mary S; Strandberg, Beate; Damgaard, Christian

    2014-01-01

    Throughout the world, herbicides and fertilizers change species composition in agricultural communities, but how do the cumulative effects of these chemicals impact the functional and phylogenetic structure of non-targeted communities when they drift into adjacent semi-natural habitats? Based on long-term experiment we show that fertilizer and herbicides (glyphosate) have contrasting effects on functional structure, but can increase phylogenetic diversity in semi-natural plant communities. We found that an increase in nitrogen promoted an increase in the average specific leaf area and canopy height at the community level, but an increase in glyphosate promoted a decrease in those traits. Phylogenetic diversity of plant communities increased when herbicide and fertilizer were applied together, likely because functional traits facilitating plant success in those conditions were not phylogenetically conserved. Species richness also decreased with increasing levels of nitrogen and glyphosate. Our results suggest that predicting the cumulative effects of agrochemicals is more complex than anticipated due to their distinct selection of traits that may or may not be conserved phylogenetically. Precautionary efforts to mitigate drift of agricultural chemicals into semi-natural habitats are warranted to prevent unforeseeable biodiversity shifts. (paper)

  3. Dispersal and life span spectra in plant communities : a key to safe site dynamics, species coexistence and conservation

    NARCIS (Netherlands)

    Strykstra, RJ; Bekker, RM; Van Andel, J

    Dispersal and life span of individual plant species within five plant communities were assessed to obtain a characterization of these communities in this respect. Such a characterization is important in the context of restoration and maintenance. The most frequent species of five communities were

  4. Spatial point process analysis for a plant community with high biodiversity

    DEFF Research Database (Denmark)

    Illian, Janine; Møller, Jesper; Waagepetersen, Rasmus Plenge

    A complex multivariate spatial point pattern for a plant community with high biodiversity is modelled using a hierarchical multivariate point process model. In the model, interactions between plants with different post-fire regeneration strategies are of key interest. We consider initially...... a maximum likelihood approach to inference where problems arise due to unknown interaction radii for the plants. We next demonstrate that a Bayesian approach provides a flexible framework for incorporating prior information concerning the interaction radii. From an ecological perspective, we are able both...

  5. Litter Accumulation and Nutrient Content of Roadside Plant Communities in Sichuan Basin, China

    OpenAIRE

    He, Huiqin; Monaco, Thomas

    2017-01-01

    It is widely recognized that feedbacks exist between plant litter and plant community species composition, but this relationship is difficult to interpret over heterogeneous conditions typical of modified environments such as roadways. Given the need to expedite natural recovery of disturbed areas through restoration interventions, we characterized litter accumulation and nutrient content (i.e., organic carbon, total N, and P) and quantified their association with key plant species. Plant spe...

  6. Allelopathy and resource competition: the effects of Phragmites australis invasion in plant communities

    OpenAIRE

    Uddin, Md Nazim; Robinson, Randall William

    2017-01-01

    Background Phragmites australis, a ubiquitous wetland plant, has been considered one of the most invasive species in the world. Allelopathy appears to be one of the invasion mechanisms, however, the effects could be masked by resource competition among target plants. The difficulty of distinguishing allelopathy from resource competition among plants has hindered investigations of the role of phytotoxic allelochemicals in plant communities. This has been addressed via experiments conducted in ...

  7. Antiprotozoal activity of medicinal plants used by Iquitos-Nauta road communities in Loreto (Peru).

    Science.gov (United States)

    Vásquez-Ocmín, Pedro; Cojean, Sandrine; Rengifo, Elsa; Suyyagh-Albouz, Soulaf; Amasifuen Guerra, Carlos A; Pomel, Sébastien; Cabanillas, Billy; Mejía, Kember; Loiseau, Philippe M; Figadère, Bruno; Maciuk, Alexandre

    2018-01-10

    In the Peruvian Amazon, the use of medicinal plants is a common practice. However, there is few documented information about the practical aspects of their use and few scientific validation. The starting point for this work was a set of interviews of people living in rural communities from the Peruvian Amazon about their uses of plants. Protozoan diseases are a public health issue in the Amazonian communities, who partly cope with it by using traditional remedies. Validation of these traditional practices contributes to public health care efficiency and may help identify new antiprotozoal compounds. to inventory and validate the use of medicinal plants by rural people of Loreto region. Rural mestizos were interviewed about traditional medication of parasite infections with medicinal plants. Ethnopharmacological surveys were undertaken in two villages along Iquitos-Nauta road (Loreto region, Peru), namely 13 de Febrero and El Dorado communities. Forty-six plants were collected according to their traditional use for the treatment of parasitic diseases, 50 ethanolic extracts (different parts for some of the plants) were tested in vitro on Plasmodium falciparum (3D7 sensitive strain and W2 chloroquine resistant strain), Leishmania donovani LV9 strain and Trypanosoma brucei gambiense. Cytotoxic assessment (HUVEC cells) of the active extracts was performed. Two of the most active plants were submitted to preliminary bioguided fractionation to ascertain and explore their activities. From the initial plants list, 10 were found to be active on P. falciparum, 15 on L. donovani and 2 on the three parasites. The ethanolic extract from Costus curvibracteatus (Costaceae) leaves and Grias neuberthii (Lecythidaceae) bark showed strong in vitro activity on P. falciparum (sensitive and resistant strain) and L. donovani and moderate activity on T. brucei gambiense. The Amazonian forest communities in Peru represents a source of knowledge on the use of medicinal plants. In this work

  8. [Soil catalase activity of main plant communities in Leymus chinensis grassland in northeast China].

    Science.gov (United States)

    Lu, Ping; Guo, Jixun; Zhu, Li

    2002-06-01

    The seasonal dynamics of soil catalase activity of three different plants communities in Leymus chinensis grassland in northeast China were in a parabolas shape. The seasonal variation of Chloris virgata community was greater than those of Leymus chinensis community and Puccinellia tenuiflora community, and "seed effect" might be the main reason. The correlation between the activity of soil catalase in different soil layers and environmental factors were analyzed. The results showed that the activity of soil catalase was decreased gradually with depth of soil layer. The activity of soil catalase was closely correlated with rainfall and air temperature, and it was affected by soil temperature, soil moisture, and their interactions. The correlation between the activity and aboveground vegetation was very significant, and the growing condition of plant communities could be reflected by the activity of soil catalase.

  9. Global environmental change effects on plant community composition trajectories depend upon management legacies

    NARCIS (Netherlands)

    Perring, Michael P.; Bernhardt-Römermann, Markus; Baeten, Lander; Midolo, Gabriele; Blondeel, Haben; Depauw, Leen; Landuyt, Dries; Maes, Sybryn L.; Lombaerde, De Emiel; Carón, Maria Mercedes; Vellend, Mark; Brunet, Jörg; Chudomelová, Markéta; Decocq, Guillaume; Diekmann, Martin; Dirnböck, Thomas; Dörfler, Inken; Durak, Tomasz; Frenne, De Pieter; Gilliam, Frank S.; Hédl, Radim; Heinken, Thilo; Hommel, Patrick; Jaroszewicz, Bogdan; Kirby, Keith J.; Kopecký, Martin; Lenoir, Jonathan; Li, Daijiang; Máliš, František; Mitchell, Fraser J.G.; Naaf, Tobias; Newman, Miles; Petřík, Petr; Reczyńska, Kamila; Schmidt, Wolfgang; Standovár, Tibor; Świerkosz, Krzysztof; Calster, Van Hans; Vild, Ondřej; Wagner, Eva Rosa; Wulf, Monika; Verheyen, Kris

    2018-01-01

    The contemporary state of functional traits and species richness in plant communities depends on legacy effects of past disturbances. Whether temporal responses of community properties to current environmental changes are altered by such legacies is, however, unknown. We expect global environmental

  10. Water Source Utilization of Hammock and Pine Rockland Plant Communities in the Everglades, USA.

    Science.gov (United States)

    Saha, A. K.; Sternberg, L.; Miralles-Wilhelm, F.

    2007-12-01

    South Florida has a mosaic of plant communities resulting from topographical differences, spatially varying hydroperiods and fire. The only plant communities not flooded in the wet season are hardwood hammocks and often pine rocklands. Natural fires burn off litter accumulated in pine rocklands, with the exception of organic matter in sinkholes in the limestone bedrock. This relative lack of soil is thought to constrain pineland plants in the Everglades to depend upon groundwater that is typically low in nutrients. In contrast, adjoining hardwood hammocks have accumulated an organic soil layer that traps rainwater and nutrients. Plants in hammocks may be able to utilize this water and thereby access nutrients present in the litter. Hammocks are thus viewed as localized areas of high nutrients and instances of vegetation feedback upon the oligotrophic everglades landscape enabling establishment and survival of flood-intolerant tropical hardwood species. This study examines water source use and couples it to foliar nutrient concentrations of plants found in hammocks and pinelands. We examined the δ2H and δ18O of stem waters in plants in Everglades National Park and compared those with the δ2H and δ18O of potential water sources. In the wet season hammock plants accessed both groundwater and water in the surface organic soil layer while in the dry season they relied more on groundwater. A similar seasonal shift was observed in pineland plants; however groundwater constituted a much higher proportion of total water uptake throughout the year under observation. Concomitant with differential water utilization by hammock and pineland plant communities, we observed hammock plants having a significantly higher annual mean foliar N and P concentration than pineland plants. Most hammock species are intolerant of flooded soils and are thus constrained by the high water table in the wet season, yet access the lowered groundwater table in the dry season due to drying up of

  11. Plant Community Richness Mediates Inhibitory Interactions and Resource Competition between Streptomyces and Fusarium Populations in the Rhizosphere.

    Science.gov (United States)

    Essarioui, Adil; LeBlanc, Nicholas; Kistler, Harold C; Kinkel, Linda L

    2017-07-01

    Plant community characteristics impact rhizosphere Streptomyces nutrient competition and antagonistic capacities. However, the effects of Streptomyces on, and their responses to, coexisting microorganisms as a function of plant host or plant species richness have received little attention. In this work, we characterized antagonistic activities and nutrient use among Streptomyces and Fusarium from the rhizosphere of Andropogon gerardii (Ag) and Lespedeza capitata (Lc) plants growing in communities of 1 (monoculture) or 16 (polyculture) plant species. Streptomyces from monoculture were more antagonistic against Fusarium than those from polyculture. In contrast, Fusarium isolates from polyculture had greater inhibitory capacities against Streptomyces than isolates from monoculture. Although Fusarium isolates had on average greater niche widths, the collection of Streptomyces isolates in total used a greater diversity of nutrients for growth. Plant richness, but not plant host, influenced the potential for resource competition between the two taxa. Fusarium isolates had greater niche overlap with Streptomyces in monoculture than polyculture, suggesting greater potential for Fusarium to competitively challenge Streptomyces in monoculture plant communities. In contrast, Streptomyces had greater niche overlap with Fusarium in polyculture than monoculture, suggesting that Fusarium experiences greater resource competition with Streptomyces in polyculture than monoculture. These patterns of competitive and inhibitory phenotypes among Streptomyces and Fusarium populations are consistent with selection for Fusarium-antagonistic Streptomyces populations in the presence of strong Fusarium resource competition in plant monocultures. Similarly, these results suggest selection for Streptomyces-inhibitory Fusarium populations in the presence of strong Streptomyces resource competition in more diverse plant communities. Thus, landscape-scale variation in plant species richness may be

  12. Zooming-in on floral nectar: a first exploration of nectar-associated bacteria in wild plant communities.

    Science.gov (United States)

    Alvarez-Pérez, Sergio; Herrera, Carlos M; de Vega, Clara

    2012-06-01

    Floral nectar of some animal-pollinated plants usually harbours highly adapted yeast communities which can profoundly alter nectar characteristics and, therefore, potentially have significant impacts on plant reproduction through their effects on insect foraging behaviour. Bacteria have also been occasionally observed in floral nectar, but their prevalence, phylogenetic diversity and ecological role within plant-pollinator-yeast systems remains unclear. Here we present the first reported survey of bacteria in floral nectar from a natural plant community. Culturable bacteria occurring in a total of 71 nectar samples collected from 27 South African plant species were isolated and identified by 16S rRNA gene sequencing. Rarefaction-based analyses were used to assess operational taxonomic units (OTUs) richness at the plant community level using nectar drops as sampling units. Our results showed that bacteria are common inhabitants of floral nectar of South African plants (53.5% of samples yielded growth), and their communities are characterized by low species richness (18 OTUs at a 16S rRNA gene sequence dissimilarity cut-off of 3%) and moderate phylogenetic diversity, with most isolates belonging to the Gammaproteobacteria. Furthermore, isolates showed osmotolerance, catalase activity and the ability to grow under microaerobiosis, three traits that might help bacteria to overcome important factors limiting their survival and/or growth in nectar. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. The Effect of Re-Planting Trees on Soil Microbial Communities in a Wildfire-Induced Subalpine Grassland

    Directory of Open Access Journals (Sweden)

    Ed-Haun Chang

    2017-10-01

    Full Text Available Wildfire often causes tremendous changes in ecosystems, particularly in subalpine and alpine areas, which are vulnerable due to severe climate conditions such as cold temperature and strong wind. This study aimed to clarify the effect of tree re-planting on ecosystem services such as the soil microbial community after several decades. We compared the re-planted forest and grassland with the mature forest as a reference in terms of soil microbial biomass C and N (Cmic and Nmic, enzyme activities, phospholipid fatty acids (PLFA composition, and denaturing gradient gel electrophoresis (DGGE. The Cmic and Nmic did not differ among the grassland, re-planted forest and mature forest soil; however, ratios of Cmic/Corg and Nmic/Ntot decreased from the grassland to re-planted forest and mature forest soil. The total PLFAs and those attributed to bacteria and Gram-positive and Gram-negative bacteria did not differ between the re-planted forest and grassland soil. Principle component analysis of the PLFA content separated the grassland from re-planted forest and mature forest soil. Similarly, DGGE analysis revealed changes in both bacterial and fungal community structures with changes in vegetation. Our results suggest that the microbial community structure changes with the re-planting of trees after a fire event in this subalpine area. Recovery of the soil microbial community to the original state in a fire-damaged site in a subalpine area may require decades, even under a re-planted forest.

  14. Fungal Communities in Rhizosphere Soil under Conservation Tillage Shift in Response to Plant Growth

    Directory of Open Access Journals (Sweden)

    Ziting Wang

    2017-07-01

    Full Text Available Conservation tillage is an extensively used agricultural practice in northern China that alters soil texture and nutrient conditions, causing changes in the soil microbial community. However, how conservation tillage affects rhizosphere and bulk soil fungal communities during plant growth remains unclear. The present study investigated the effect of long-term (6 years conservation (chisel plow, zero and conventional (plow tillage during wheat growth on the rhizosphere fungal community, using high-throughput sequencing of the internal transcribed spacer (ITS gene and quantitative PCR. During tillering, fungal alpha diversity in both rhizosphere and bulk soil were significantly higher under zero tillage compared to other methods. Although tillage had no significant effect during the flowering stage, fungal alpha diversity at this stage was significantly different between rhizosphere and bulk soils, with bulk soil presenting the highest diversity. This was also reflected in the phylogenetic structure of the communities, as rhizosphere soil communities underwent a greater shift from tillering to flowering compared to bulk soil communities. In general, less variation in community structure was observed under zero tillage compared to plow and chisel plow treatments. Changes in the relative abundance of the fungal orders Capnodiales, Pleosporales, and Xylariales contributed the highest to the dissimilarities observed. Structural equation models revealed that the soil fungal communities under the three tillage regimes were likely influenced by the changes in soil properties associated with plant growth. This study suggested that: (1 differences in nutrient resources between rhizosphere and bulk soils can select for different types of fungi thereby increasing community variation during plant growth; (2 tillage can alter fungal communities' variability, with zero tillage promoting more stable communities. This work suggests that long-term changes in

  15. Long-term effects of plant diversity and composition on soil nematode communities in grassland.

    NARCIS (Netherlands)

    Viketoft, M.; Bengtsson, J.; Sohlenius, B.; Berg, M.P.; Petchey, O.; Palmborg, C.; Huss-Daniel, K.

    2009-01-01

    An important component of plant-soil feedbacks is how plant species identity and diversity influence soil organism communities. We examine the effects of grassland plant species growing alone and together up to a richness of 12 species on nematode diversity and feeding group composition, eight years

  16. Criteria for classification and reporting of fire incidences in nuclear power plants of India

    International Nuclear Information System (INIS)

    Kapoor, R.K.

    1998-01-01

    Is is important that all fires in and around fire effective neighbourhood of Nuclear Power Plant (NPP) should be promptly reported (Reportable fires) and investigated. However, the depth of investigation and the range of authorities to whom the individual fire incidence need to be reported depends upon the severity of fire. In case of conventional non-chemical industries, the severity of fire depends mainly on the extent of loss caused by fire on property and the burn injury to persons. In case of NPP, two additional losses viz, release of radioactivity to working/public environment and the risk to safety related systems of NPP due to fire assume greater importance. This paper describes the criteria used in NPPs of India for classification of reportable fire incidences into four categories, viz. Insignificant, small, medium and large fires. It also gives the level of investigation depending upon the severity of fire. The fire classification scheme is explained in this paper with the help of worked out examples and two incidences of fire in Indian NPPs. (author)

  17. The most used medicinal plants by communities in Mahaboboka, Amboronabo, Mikoboka, Southwestern Madagascar.

    Science.gov (United States)

    Randrianarivony, Tabita N; Ramarosandratana, Aro Vonjy; Andriamihajarivo, Tefy H; Rakotoarivony, Fortunat; Jeannoda, Vololoniaina H; Randrianasolo, Armand; Bussmann, Rainer W

    2017-03-09

    This paper reports a study undertaken in three remote communities (Mahaboboka, Amboronabo, Mikoboka), located in Sakaraha, Southwestern Madagascar. Not only villages are far away from sanitary infrastructures and doctors but drugs and consulting fees are unaffordable to villagers. They rely essentially on natural resources for health care as for most of rural areas in Madagascar. This paper aims to document medicinal plants used by communities in Sakaraha and to present the most important plant species used in traditional medicine. Semi - structured interview was conducted within 214 informants in 34 villages of the study area. Different ailments encountered in the site study were classified in various categories. For data analysis, frequency of citation (Fq), Informant Consensus Factor (Fic), Fidelity Level (FL) and Use Value (UV) were assessed to find agreement among informants about the use of plants as remedies. Mann-Whitney, Kruskall-Wallis and Spearman correlation tests were performed to determine use of medicinal plants following social status of informants. A total of 235 medicinal plant species belonging to 198 genera and 75 families were inventoried. The richest families in species used for medicinal purposes were: Fabaceae, Apocynaceae, Rubiaceae, Euphorbiaceae, Asteraceae, and Poaceae. Plant species cited by informants were used to treat 76 various ailments classified in 13 categories. Leaves and leafy twigs were the most used plant parts and decoction was the mostly cited way of preparation of these medicinal plants species. In average, local people cited 6.7 ± 6.03 medicinal taxa among them, Cedrelopsis grevei is the most cited medicinal plants (Fq. 0.28). With Cedrelopsis grevei (UV = 0.48), Henonia scoparia (UV = 0.43) are mostly used species. Leonotis nepetifolia (FL = 96%) and Strychnos henningsii (FL = 92%) are plant species claimed by high percentage of informants to treat the Digestive System Disorder. This study

  18. The chemotaxonomic classification of Rhodiola plants and its correlation with morphological characteristics and genetic taxonomy.

    Science.gov (United States)

    Liu, Zhenli; Liu, Yuanyan; Liu, Chunsheng; Song, Zhiqian; Li, Qing; Zha, Qinglin; Lu, Cheng; Wang, Chun; Ning, Zhangchi; Zhang, Yuxin; Tian, Cheng; Lu, Aiping

    2013-07-12

    Rhodiola plants are used as a natural remedy in the western world and as a traditional herbal medicine in China, and are valued for their ability to enhance human resistance to stress or fatigue and to promote longevity. Due to the morphological similarities among different species, the identification of the genus remains somewhat controversial, which may affect their safety and effectiveness in clinical use. In this paper, 47 Rhodiola samples of seven species were collected from thirteen local provinces of China. They were identified by their morphological characteristics and genetic and phytochemical taxonomies. Eight bioactive chemotaxonomic markers from four chemical classes (phenylpropanoids, phenylethanol derivatives, flavonoids and phenolic acids) were determined to evaluate and distinguish the chemotaxonomy of Rhodiola samples using an HPLC-DAD/UV method. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) were applied to compare the two classification methods between genetic and phytochemical taxonomy. The established chemotaxonomic classification could be effectively used for Rhodiola species identification.

  19. Plant community composition and species richness in the High Arctic tundra: from the present to the future

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Jacob; Normand, Signe; Hui, Francis K.C.

    2017-01-01

    of these conditions is limited due to the scarcity of studies, especially in the High Arctic. 2. We investigated variations in vascular plant community composition and species richness based on 288 plots distributed on three sites along a coast-inland gradient in Northeast Greenland using a stratified random design......1. Arctic plant communities are altered by climate changes. The magnitude of these alterations depends on whether species distributions are determined by macroclimatic conditions, by factors related to local topography, or by biotic interactions. Our current understanding of the relative importance....... We used an information theoretic approach to determine whether variations in species richness were best explained by macroclimate, by factors related to local topography (including soil water) or by plant-plant interactions. Latent variable models were used to explain patterns in plant community...

  20. An ethnobotanical study of medicinal plants used by the Yaegl Aboriginal community in northern New South Wales, Australia.

    Science.gov (United States)

    Packer, Joanne; Brouwer, Nynke; Harrington, David; Gaikwad, Jitendra; Heron, Ronald; Yaegl Community Elders; Ranganathan, Shoba; Vemulpad, Subramanyam; Jamie, Joanne

    2012-01-06

    Documentation of Australian bush medicines is of utmost importance to the preservation of this disappearing and invaluable knowledge. This collaboration between the Yaegl Aboriginal community in northern New South Wales (NSW), Australia and an academic institution, demonstrates an effective means of preserving and adding value to this information. Questionnaire-guided interviews were performed with community Elders under a framework of participatory action research. Medicinal plant knowledge was collated in a handbook to aid interviews and to be used as an ongoing resource by the community. Specimens for all non-cultivar plants that were discussed were collected and deposited in herbaria with unique voucher numbers. This medicinal knowledge was checked against the literature for reports of related use and studies of biological activity. Nineteen Elders were interviewed, leading to discussions on fifty four plant preparations used for medicinal purposes. These plant preparations involved thirty two plants coming from twenty one families, reflecting the botanical diversity of the area. The plants retained in the Yaegl pharmacopoeia correspond to their accessibility and ease of preparation, reflected in their ongoing utilisation. Several plant uses did not appear elsewhere in the literature. This study is the first comprehensive documentation of the medicinal knowledge of the Yaegl Aboriginal community. It has been conducted using participatory action research methods and adds to the recorded customary knowledge of the region. The customary medicinal knowledge retained by the Yaegl Aboriginal community is related to the evolving needs of the community and accessibility of plants. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Convergence in mycorrhizal fungal communities due to drought, plant competition, parasitism, and susceptibility to herbivory: consequences for fungi and host plants.

    Science.gov (United States)

    Gehring, Catherine A; Mueller, Rebecca C; Haskins, Kristin E; Rubow, Tine K; Whitham, Thomas G

    2014-01-01

    Plants and mycorrhizal fungi influence each other's abundance, diversity, and distribution. How other biotic interactions affect the mycorrhizal symbiosis is less well understood. Likewise, we know little about the effects of climate change on the fungal component of the symbiosis or its function. We synthesized our long-term studies on the influence of plant parasites, insect herbivores, competing trees, and drought on the ectomycorrhizal fungal communities associated with a foundation tree species of the southwestern United States, pinyon pine (Pinus edulis), and described how these changes feed back to affect host plant performance. We found that drought and all three of the biotic interactions studied resulted in similar shifts in ectomycorrhizal fungal community composition, demonstrating a convergence of the community towards dominance by a few closely related fungal taxa. Ectomycorrhizal fungi responded similarly to each of these stressors resulting in a predictable trajectory of community disassembly, consistent with ecological theory. Although we predicted that the fungal communities associated with trees stressed by drought, herbivory, competition, and parasitism would be poor mutualists, we found the opposite pattern in field studies. Our results suggest that climate change and the increased importance of herbivores, competitors, and parasites that can be associated with it, may ultimately lead to reductions in ectomycorrhizal fungal diversity, but that the remaining fungal community may be beneficial to host trees under the current climate and the warmer, drier climate predicted for the future.

  2. A dynamic modelling approach for estimating critical loads of nitrogen based on plant community changes under a changing climate

    International Nuclear Information System (INIS)

    Belyazid, Salim; Kurz, Dani; Braun, Sabine; Sverdrup, Harald; Rihm, Beat; Hettelingh, Jean-Paul

    2011-01-01

    A dynamic model of forest ecosystems was used to investigate the effects of climate change, atmospheric deposition and harvest intensity on 48 forest sites in Sweden (n = 16) and Switzerland (n = 32). The model was used to investigate the feasibility of deriving critical loads for nitrogen (N) deposition based on changes in plant community composition. The simulations show that climate and atmospheric deposition have comparably important effects on N mobilization in the soil, as climate triggers the release of organically bound nitrogen stored in the soil during the elevated deposition period. Climate has the most important effect on plant community composition, underlining the fact that this cannot be ignored in future simulations of vegetation dynamics. Harvest intensity has comparatively little effect on the plant community in the long term, while it may be detrimental in the short term following cutting. This study shows: that critical loads of N deposition can be estimated using the plant community as an indicator; that future climatic changes must be taken into account; and that the definition of the reference deposition is critical for the outcome of this estimate. - Research highlights: → Plant community changes can be used to estimate critical loads of nitrogen. → Climate change is decisive for future changes of geochemistry and plant communities. → Climate change cannot be ignored in estimates of critical loads. → The model ForSAFE-Veg was successfully used to set critical loads of nitrogen. - Plant community composition can be used in dynamic modelling to estimate critical loads of nitrogen deposition, provided the appropriate reference deposition, future climate and target plant communities are defined.

  3. Species diversity of plant communities from territories with natural origin radionuclides contamination

    Energy Technology Data Exchange (ETDEWEB)

    Kaneva, A.V.; Belykh, E.S.; Maystrenko, T.A.; Grusdev, B.I.; Zainullin, V.G.; Vakhrusheva, O.M. [Institute of Biology, Komi Scientific Center, Ural Division of RAS, Syktyvkar, 167982 (Russian Federation); Oughton, D. [Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Aas (Norway)

    2014-07-01

    Since plants dominate every landscape, the impact of any environmental stressor on plants can directly affect the structure and function of an ecosystem, resulting in decreased primary productivity and degradation of wildlife habitat. The investigation goal of the present research was to study how vascular plant species' composition at a former radium mining site could be related to i) soil contamination with heavy metals and uranium and thorium decay chain radionuclides and ii) soil agrochemical properties. Between the 1930's and 1950's, the commercial extraction of radium, storage of the uranium mill tailings and radium production wastes, together with deactivation of the site with a mixture of sand and gravel completely destroyed plant communities in the vicinity of Vodny settlement (Komi Republic, Russia). The plant cover recovery started more than 60 years ago, and resulted in overgrowing with common grassland plant species. Three meadow sites were investigated, one with low contamination (on the territory of former radium production plant), one with high contamination (waste storage cell) and a reference sites out of the radiochemical plant zone of influence, but with similar natural conditions. Geo-botanical descriptions revealed 134 vascular plant species from 34 families in the meadow communities studied. The greatest richness was seen for Poaceae, Asteraceae, Rosaceae and Fabaceae families; others had 1-5 species. The highest richness in diversity was seen at reference sites with 95 vascular plant species. 87 species were registered on low contaminated sites and 75 species on high contaminated. Perennial herbs were the dominant life form on all the studied meadow communities. Arboreal species expansion in vegetation was noted at both experimental and reference sites. Shannon index calculations indicated a significant (p<0.05) decrease in species diversity on sample areas of the highly contaminated radioactive waste storage cell. Mean values

  4. Spatial Patterns of Species Diversity and Phylogenetic Structure of Plant Communities in the Tianshan Mountains, Arid Central Asia

    Directory of Open Access Journals (Sweden)

    Hong-Xiang Zhang

    2017-12-01

    Full Text Available The Tianshan Mountains, located in arid Central Asia, have a humid climate and are biodiversity hotspots. Here, we aimed to clarify whether the pattern of species diversity and the phylogenetic structure of plant communities is affected by environmental variables and glacial refugia. In this study, plant community assemblies of 17 research sites with a total of 35 sample plots were investigated at the grassland/woodland boundaries on the Tianshan Mountains. Community phylogeny of these plant communities was constructed based on two plant DNA barcode regions. The indices of phylogenetic diversity and phylogenetic community structure were calculated for these sample plots. We first estimated the correlation coefficients between species richness (SR and environmental variables as well as the presence of glacial refugia. We then mapped the significant values of indices of community phylogeny (PD, RPD, NRI, and NTI to investigate the correlation between community phylogeny and environmental structure or macrozones in the study area. The results showed that a significantly higher value of SR was obtained for the refugial groups than for the colonizing groups (P < 0.05; presence of refugia and environmental variables were highly correlated to the pattern of variation in SR. Indices of community phylogeny were not significantly different between refugial and colonizing regions. Comparison with the humid western part showed that plant communities in the arid eastern part of the Tianshan Mountains tended to display more significant phylogenetic overdispersion. The variation tendency of the PhyloSor index showed that the increase in macro-geographical and environmental distance did not influence obvious phylogenetic dissimilarities between different sample plots. In conclusion, glacial refugia and environmental factors profoundly influenced the pattern of SR, but community phylogenetic structure was not affected by glacial refugia among different plant

  5. Effects of water table position and plant functional group on plant community, aboveground production, and peat properties in a peatland mesocosm experiment (PEATcosm)

    Science.gov (United States)

    Lynette R. Potvin; Evan S. Kane; Rodney A. Chimner; Randall K. Kolka; Erik A. Lilleskov

    2015-01-01

    Aims Our objective was to assess the impacts of water table position and plant functional type on peat structure, plant community composition and aboveground plant production. Methods We initiated a full factorial experiment with 2 water table (WT) treatments (high and low) and 3 plant functional groups (PFG: sedge, Ericaceae,...

  6. Antimicrobial and Antibiofilm Activity and Machine Learning Classification Analysis of Essential Oils from Different Mediterranean Plants against Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Marco Artini

    2018-02-01

    Full Text Available Pseudomonas aeruginosa is a ubiquitous organism and opportunistic pathogen that can cause persistent infections due to its peculiar antibiotic resistance mechanisms and to its ability to adhere and form biofilm. The interest in the development of new approaches for the prevention and treatment of biofilm formation has recently increased. The aim of this study was to seek new non-biocidal agents able to inhibit biofilm formation, in order to counteract virulence rather than bacterial growth and avoid the selection of escape mutants. Herein, different essential oils extracted from Mediterranean plants were analyzed for their activity against P. aeruginosa. Results show that they were able to destabilize biofilm at very low concentration without impairing bacterial viability. Since the action is not related to a bacteriostatic/bactericidal activity on P. aeruginosa, the biofilm change of growth in presence of the essential oils was possibly due to a modulation of the phenotype. To this aim, application of machine learning algorithms led to the development of quantitative activity–composition relationships classification models that allowed to direct point out those essential oil chemical components more involved in the inhibition of biofilm production. The action of selected essential oils on sessile phenotype make them particularly interesting for possible applications such as prevention of bacterial contamination in the community and in healthcare environments in order to prevent human infections. We assayed 89 samples of different essential oils as P. aeruginosa anti-biofilm. Many samples inhibited P. aeruginosa biofilm at concentrations as low as 48.8 µg/mL. Classification of the models was developed through machine learning algorithms.

  7. Mapping Plant Functional Types over Broad Mountainous Regions: A Hierarchical Soft Time-Space Classification Applied to the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Danlu Cai

    2014-04-01

    Full Text Available Research on global climate change requires plant functional type (PFT products. Although several PFT mapping procedures for remote sensing imagery are being used, none of them appears to be specifically designed to map and evaluate PFTs over broad mountainous areas which are highly relevant regions to identify and analyze the response of natural ecosystems. We present a methodology for generating soft classifications of PFTs from remotely sensed time series that are based on a hierarchical strategy by integrating time varying integrated NDVI and phenological information with topography: (i Temporal variability: a Fourier transform of a vegetation index (MODIS NDVI, 2006 to 2010. (ii Spatial partitioning: a primary image segmentation based on a small number of thresholds applied to the Fourier amplitude. (iii Classification by a supervised soft classification step is based on a normalized distance metric constructed from a subset of Fourier coefficients and complimentary altitude data from a digital elevation model. Applicability and effectiveness is tested for the eastern Tibetan Plateau. A classification nomenclature is determined from temporally stable pixels in the MCD12Q1 time series. Overall accuracy statistics of the resulting classification reveal a gain of about 7% from 64.4% compared to 57.7% by the MODIS PFT products.

  8. Earthworms drive succession of both plant and Collembola communities in post-mining sites

    Czech Academy of Sciences Publication Activity Database

    Mudrák, Ondřej; Uteseny, Karoline; Frouz, Jan

    2016-01-01

    Roč. 18, April (2016), EGU2016-8464 ISSN 1607-7962. [European Geosciences Union General Assembly 2016. 17.04.2016-22.04.2016, Vienna] Institutional support: RVO:60077344 ; RVO:67985939 Keywords : earthworms * succession * plant communities * Collembola communities * post-mining sites Subject RIV: DF - Soil Science

  9. [Relation between species distribution of plant community and soil factors under grazing in alpine meadow].

    Science.gov (United States)

    Niu, Yu Jie; Yang, Si Wei; Wang, Gui Zhen; Liu, Li; Du, Guo Zhen; Hua, Li Min

    2017-12-01

    The research selected the alpine meadow located in the northeastern margin of the Qinghai-Tibet Plateau to study the changes of vegetation community and soil properties under different grazing intensities, as well as the quantitative relation between the distribution patterns of plant species and the physical and chemical properties of soil. The results showed that the grazing caused the differentiation of the initial vegetation community with the dominant plants, Elymus nutans and Stipa grandis. In the plots with high and low grazing intensities, the dominant plants had changed to Kobresia humilis and Melissitus ruthenica, and E. nutans and Poa crymophila, respectively. With the increase of grazing intensity, the plant richness, importance value and biomass were significantly decreased. The sequence of plant species importance value in each plot against grazing intensity could be fitted by a logarithmic model. The number of required plant species was reduced while the importance value of the remaining plant species accounted for 50% of the importance value in the whole vegetation community. The available P, available K, soil compaction, soil water content, stable infiltration rate and large aggregate index were significantly changed with grazing intensity, however, the changes were different. The CCA ordination showed that the soil compaction was the key factor affecting the distribution pattern of the plant species under grazing. The variance decomposition indicated that the soil factors together explained 30.5% of the distribution of the plant species, in particular the soil physical properties alone explained 22.8% of the distribution of the plant species, which had the highest rate of contribution to the plant species distribution. The soil physical properties affected the distribution pattern of plant species on grazed alpine meadow.

  10. Phyllosphere Microbiota Composition and Microbial Community Transplantation on Lettuce Plants Grown Indoors

    Science.gov (United States)

    Williams, Thomas R.

    2014-01-01

    ABSTRACT The aerial surfaces of plants, or phyllosphere, are microbial habitats important to plant and human health. In order to accurately investigate microbial interactions in the phyllosphere under laboratory conditions, the composition of the phyllosphere microbiota should be representative of the diversity of microorganisms residing on plants in nature. We found that Romaine lettuce grown in the laboratory contained 10- to 100-fold lower numbers of bacteria than age-matched, field-grown lettuce. The bacterial diversity on laboratory-grown plants was also significantly lower and contained relatively higher proportions of Betaproteobacteria as opposed to the Gammaproteobacteria-enriched communities on field lettuce. Incubation of field-grown Romaine lettuce plants in environmental growth chambers for 2 weeks resulted in bacterial cell densities and taxa similar to those on plants in the field but with less diverse bacterial populations overall. In comparison, the inoculation of laboratory-grown Romaine lettuce plants with either freshly collected or cryopreserved microorganisms recovered from field lettuce resulted in the development of a field-like microbiota on the lettuce within 2 days of application. The survival of an inoculated strain of Escherichia coli O157:H7 was unchanged by microbial community transfer; however, the inoculation of E. coli O157:H7 onto those plants resulted in significant shifts in the abundance of certain taxa. This finding was strictly dependent on the presence of a field-associated as opposed to a laboratory-associated microbiota on the plants. Phyllosphere microbiota transplantation in the laboratory will be useful for elucidating microbial interactions on plants that are important to agriculture and microbial food safety. PMID:25118240

  11. Microbiomes: unifying animal and plant systems through the lens of community ecology theory.

    Science.gov (United States)

    Christian, Natalie; Whitaker, Briana K; Clay, Keith

    2015-01-01

    The field of microbiome research is arguably one of the fastest growing in biology. Bacteria feature prominently in studies on animal health, but fungi appear to be the more prominent functional symbionts for plants. Despite the similarities in the ecological organization and evolutionary importance of animal-bacterial and plant-fungal microbiomes, there is a general failure across disciplines to integrate the advances made in each system. Researchers studying bacterial symbionts in animals benefit from greater access to efficient sequencing pipelines and taxonomic reference databases, perhaps due to high medical and veterinary interest. However, researchers studying plant-fungal symbionts benefit from the relative tractability of fungi under laboratory conditions and ease of cultivation. Thus each system has strengths to offer, but both suffer from the lack of a common conceptual framework. We argue that community ecology best illuminates complex species interactions across space and time. In this synthesis we compare and contrast the animal-bacterial and plant-fungal microbiomes using six core theories in community ecology (i.e., succession, community assembly, metacommunities, multi-trophic interactions, disturbance, restoration). The examples and questions raised are meant to spark discussion amongst biologists and lead to the integration of these two systems, as well as more informative, manipulatory experiments on microbiomes research.

  12. Microbiomes: unifying animal and plant systems through the lens of community ecology theory

    Directory of Open Access Journals (Sweden)

    Natalie eChristian

    2015-09-01

    Full Text Available The field of microbiome research is arguably one of the fastest growing in biology. Bacteria feature prominently in studies on animal health, but fungi appear to be the more prominent functional symbionts for plants. Despite the similarities in the ecological organization and evolutionary importance of animal-bacterial and plant-fungal microbiomes, there is a general failure across disciplines to integrate the advances made in each system. Researchers studying bacterial symbionts in animals benefit from greater access to efficient sequencing pipelines and taxonomic reference databases, perhaps due to high medical and veterinary interest. However, researchers studying plant-fungal symbionts benefit from the relative tractability of fungi under laboratory conditions and ease of cultivation. Thus each system has strengths to offer, but both suffer from the lack of a common conceptual framework. We argue that community ecology best illuminates complex species interactions across space and time. In this synthesis we compare and contrast the animal-bacterial and plant-fungal microbiomes using six core theories in community ecology (i.e., succession, community assembly, metacommunities, multi-trophic interactions, disturbance, restoration. The examples and questions raised are meant to spark discussion amongst biologists and lead to the integration of these two systems, as well as more informative, manipulatory experiments on microbiomes research.

  13. Use of self-organizing maps for classification of defects in the tubes from the steam generator of nuclear power plants

    International Nuclear Information System (INIS)

    Mesquita, Roberto Navarro de

    2002-01-01

    This thesis obtains a new classification method for different steam generator tube defects in nuclear power plants using Eddy Current Test signals. The method uses self-organizing maps to compare different signal characteristics efficiency to identify and classify these defects. A multiple inference system is proposed which composes the different extracted characteristic trained maps classification to infer the final defect type. The feature extraction methods used are the Wavelet zero-crossings representation, the linear predictive coding (LPC), and other basic signal representations on time like module and phase. Many characteristic vectors are obtained with combinations of these extracted characteristics. These vectors are tested to classify the defects and the best ones are applied to the multiple inference system. A systematic study of pre-processing, calibration and analysis methods for the steam generator tube defect signals in nuclear power plants is done. The method efficiency is demonstrated and characteristic maps with the main prototypes are obtained for each steam generator tube defect type. (author)

  14. Herbivores shape woody plant communities in the Kruger National Park: Lessons from three long-term exclosures

    Directory of Open Access Journals (Sweden)

    Benjamin J. Wigley

    2014-03-01

    Full Text Available The role of grazers in determining vegetation community compositions and structuring plant communities is well recognised in grassy systems. The role of browsers in affecting savanna woody plant communities is less clear. We used three long-term exclosures in the Kruger National Park to determine the effect of browsers on species compositions and population structures of woody communities. Species assemblages, plant traits relating to browsing and soil nutrients were compared inside and outside of the exclosures. Our results showed that browsers directly impact plant species distributions, densities and population structures by actively selecting for species with traits which make them desirable to browsers. Species with high leaf nitrogen, low total phenolic content and low acid detergent lignin appeared to be favoured by herbivores and therefore tend to be rare outside of the exclosures. This study also suggested that browsers have important indirect effects on savanna functioning, as the reduction of woody cover can result in less litter of lower quality, which in turn can result in lower soil fertility. However, the magnitude of browser effects appeared to depend on inherent soil fertility and climate. Conservation implications: Browsers were shown to have significant impacts on plant communities. They have noticeable effects on local species diversity and population structure, as well as soil nutrients. These impacts are shown to be related to the underlying geology and climate. The effects of browsers on woody communities were shown to be greater in low rainfall, fertile areas compared to high rainfall, infertile soils.

  15. Importance of earthworm-seed interactions for the composition and structure of plant communities: A review

    Science.gov (United States)

    Forey, Estelle; Barot, Sébastien; Decaëns, Thibaud; Langlois, Estelle; Laossi, Kam-Rigne; Margerie, Pierre; Scheu, Stefan; Eisenhauer, Nico

    2011-11-01

    Soil seed bank composition and dynamics are crucial elements for the understanding of plant population and community ecology. Earthworms are increasingly recognized as important dispersers and predators of seeds. Through direct and indirect effects they influence either positively or negatively the establishment and survival of seeds and seedlings. Seedling establishment is affected by a variety of earthworm-mediated mechanisms, such as selective seed ingestion and digestion, acceleration or deceleration of germination, and seed transport. Earthworm casts deposited on the soil surface and the entrance of earthworm burrows often contain viable seeds and constitute important regeneration niches for plant seedlings and therefore likely favour specific seed traits. However, the role of earthworms as seed dispersers, mediators of seed bank dynamics and seed predators has not been considered in concert. The overall effect of earthworms on plant communities remains little understood. Most knowledge is based on laboratory studies on temperate species and future work has to explore the biological significance of earthworm-seed interactions under more natural conditions. In this review we summarize the current knowledge on earthworm-seed interactions and discuss factors determining these interactions. We highlight that this interaction may be an underappreciated, yet major driving force for the dynamics of soil seed banks and plant communities which most likely have experienced co-evolutionary processes. Despite the experimental bias, we hypothesize that the knowledge gathered in the present review is of crucial relevance for restoration and conservation ecology. For instance, as earthworms emerge as successful and ubiquitous invaders in various ecosystems, the summarized information might serve as a basis for realistic estimations and modelling of consequences on native plant communities. We depict promising directions of future research and point to the need to consider

  16. Plant community development is affected by nutrients and soil biota

    NARCIS (Netherlands)

    De Deyn, G.B.; Raaijmakers, C.E.; Van der Putten, W.H.

    2004-01-01

    1 Plant community development depends to a great extent on the availability of soil nutrients, but recent studies underline the role of symbiotic, herbivorous and pathogenic soil biota. We tested for interactions between these biotic and abiotic factors by studying the effects of additional

  17. Construction of an Yucatec Maya soil classification and comparison with the WRB framework.

    Science.gov (United States)

    Bautista, Francisco; Zinck, J Alfred

    2010-02-13

    Mayas living in southeast Mexico have used soils for millennia and provide thus a good example for understanding soil-culture relationships and for exploring the ways indigenous people name and classify the soils of their territory. This paper shows an attempt to organize the Maya soil knowledge into a soil classification scheme and compares the latter with the World Reference Base for Soil Resources (WRB). Several participative soil surveys were carried out in the period 2000-2009 with the help of bilingual Maya-Spanish-speaking farmers. A multilingual soil database was built with 315 soil profile descriptions. On the basis of the diagnostic soil properties and the soil nomenclature used by Maya farmers, a soil classification scheme with a hierarchic, dichotomous and open structure was constructed, organized in groups and qualifiers in a fashion similar to that of the WRB system. Maya soil properties were used at the same categorical levels as similar diagnostic properties are used in the WRB system. The Maya soil classification (MSC) is a natural system based on key properties, such as relief position, rock types, size and quantity of stones, color of topsoil and subsoil, depth, water dynamics, and plant-supporting processes. The MSC addresses the soil properties of surficial and subsurficial horizons, and uses plant communities as qualifier in some cases. The MSC is more accurate than the WRB for classifying Leptosols.

  18. Use of Medical Plants in Schools Communities from Sinop, Mato Grosso.

    Directory of Open Access Journals (Sweden)

    A. C. M. Urtado

    2013-03-01

    Full Text Available Abstract: This study was conducted in Sinop, Mato Grosso, on two school communities. It was applied semi-structured questionnaires with questions focused on socioeconomic and the use of medicinal plants. It has as finality proved the effective use of medicinal plants on the everyday and a levy of the most used plant. The general profile of the respondents has shown that the women detain the major part of the knowledge, and that pass this uses to the future generations and friends, and find these plants on specialty stores, backyards, supermarket, root stores, bush and fairs. The plants that were found more frequently was (Ruta graveolens L., Babosa (Aloe vera L., Erva-Cidreira (Lippia alba Mill., Erva-Santa-Maria (Chenopodium ambrosioides L., Boldo (Plectranthus amboinicus Spreng., Hortel(Menta x vilosa Huds. e Terramicina (Alternanthera dentata Moench..Keywords: medical plants, Sinop, school.

  19. Restructuring of Endophytic Bacterial Communities in Grapevine Yellows-Diseased and Recovered Vitis vinifera L. Plants

    Science.gov (United States)

    Bulgari, Daniela; Casati, Paola; Crepaldi, Paola; Daffonchio, Daniele; Quaglino, Fabio; Brusetti, Lorenzo; Bianco, Piero Attilio

    2011-01-01

    Length heterogeneity-PCR assays, combined with statistical analyses, highlighted that the endophytic bacterial community associated with healthy grapevines was characterized by a greater diversity than that present in diseased and recovered plants. The findings suggest that phytoplasmas can restructure the bacterial community by selecting endophytic strains that could elicit a plant defense response. PMID:21622794

  20. Design of community biogas plant for cooking and lighting from cowdung (a proposal case study)

    International Nuclear Information System (INIS)

    Mekki, Ibtisam I.

    1999-01-01

    A calculation design for community biogas plant was proposed for a village in Sudan consisting 100 families, each consisting of 6 persons (adult). Two children are equivalent to one person. Based on the requirement for cooking and lighting, the community biogas plant is deigned for production of total biogas of 360 m-3 gas per day. This volume of the gas will be produced from total dung per day of 6000kg. This amount of dung will expect to obtained from 600 cows. The actual digester volume equal to 60.5m-3. The layout of the plant was designed of two identical plants, each consisted of 3 digester, i.e. 6digesters will be needed.(Author)

  1. Medicinal, Aromatic and Cosmetic (MAC) plants for community health and bio-cultural diversity conservation in Bali, Indonesia

    NARCIS (Netherlands)

    Leurs, Liesbeth Nathalie

    2010-01-01

    The general aim of this ethno-botanical study is to document, describe and analyse the Balinese community members’ knowledge, belief and practices with regard to medicinal, aromatic and cosmetic (MAC) plants in relation to community health and bio-cultural diversity conservation of MAC plants. This

  2. Introduction to Classification of Living Things.

    Science.gov (United States)

    Stettler, Donald

    This monograph contains an autoinstructional packet developed for secondary school biology students. The instructions present a lesson on classification using slides and packets of pictures as the media for displaying the animals and plants to be classified. A brief historical account leads into the study of the modern classification system. No…

  3. Diversity and spatial structure of belowground plant-fungal symbiosis in a mixed subtropical forest of ectomycorrhizal and arbuscular mycorrhizal plants.

    Science.gov (United States)

    Toju, Hirokazu; Sato, Hirotoshi; Tanabe, Akifumi S

    2014-01-01

    Plant-mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community structures of root-associated fungi. To reveal root-associated fungal community structure in a mixed forest of ectomycorrhizal and arbuscular mycorrhizal plants, we conducted a massively-parallel pyrosequencing analysis, targeting fungi in the roots of 36 plant species that co-occur in a subtropical forest. In total, 580 fungal operational taxonomic units were detected, of which 132 and 58 were probably ectomycorrhizal and arbuscular mycorrhizal, respectively. As expected, the composition of fungal symbionts differed between fagaceous (ectomycorrhizal) and non-fagaceous (possibly arbuscular mycorrhizal) plants. However, non-fagaceous plants were associated with not only arbuscular mycorrhizal fungi but also several clades of ectomycorrhizal (e.g., Russula) and root-endophytic ascomycete fungi. Many of the ectomycorrhizal and root-endophytic fungi were detected from both fagaceous and non-fagaceous plants in the community. Interestingly, ectomycorrhizal and arbuscular mycorrhizal fungi were concurrently detected from tiny root fragments of non-fagaceous plants. The plant-fungal associations in the forest were spatially structured, and non-fagaceous plant roots hosted ectomycorrhizal fungi more often in the proximity of ectomycorrhizal plant roots. Overall, this study suggests that belowground plant-fungal symbiosis in subtropical forests is complex in that it includes "non-typical" plant-fungal combinations (e.g., ectomycorrhizal fungi on possibly arbuscular mycorrhizal plants) that do not fall within the conventional classification of mycorrhizal symbioses, and in that

  4. Plant community structure regulates responses of prairie soil respiration to decadal experimental warming.

    Science.gov (United States)

    Xu, Xia; Shi, Zheng; Li, Dejun; Zhou, Xuhui; Sherry, Rebecca A; Luo, Yiqi

    2015-10-01

    Soil respiration is recognized to be influenced by temperature, moisture, and ecosystem production. However, little is known about how plant community structure regulates responses of soil respiration to climate change. Here, we used a 13-year field warming experiment to explore the mechanisms underlying plant community regulation on feedbacks of soil respiration to climate change in a tallgrass prairie in Oklahoma, USA. Infrared heaters were used to elevate temperature about 2 °C since November 1999. Annual clipping was used to mimic hay harvest. Our results showed that experimental warming significantly increased soil respiration approximately from 10% in the first 7 years (2000-2006) to 30% in the next 6 years (2007-2012). The two-stage warming stimulation of soil respiration was closely related to warming-induced increases in ecosystem production over the years. Moreover, we found that across the 13 years, warming-induced increases in soil respiration were positively affected by the proportion of aboveground net primary production (ANPP) contributed by C3 forbs. Functional composition of the plant community regulated warming-induced increases in soil respiration through the quantity and quality of organic matter inputs to soil and the amount of photosynthetic carbon (C) allocated belowground. Clipping, the interaction of clipping with warming, and warming-induced changes in soil temperature and moisture all had little effect on soil respiration over the years (all P > 0.05). Our results suggest that climate warming may drive an increase in soil respiration through altering composition of plant communities in grassland ecosystems. © 2015 John Wiley & Sons Ltd.

  5. Predictive occurrence models for coastal wetland plant communities: Delineating hydrologic response surfaces with multinomial logistic regression

    Science.gov (United States)

    Snedden, Gregg A.; Steyer, Gregory D.

    2013-02-01

    Understanding plant community zonation along estuarine stress gradients is critical for effective conservation and restoration of coastal wetland ecosystems. We related the presence of plant community types to estuarine hydrology at 173 sites across coastal Louisiana. Percent relative cover by species was assessed at each site near the end of the growing season in 2008, and hourly water level and salinity were recorded at each site Oct 2007-Sep 2008. Nine plant community types were delineated with k-means clustering, and indicator species were identified for each of the community types with indicator species analysis. An inverse relation between salinity and species diversity was observed. Canonical correspondence analysis (CCA) effectively segregated the sites across ordination space by community type, and indicated that salinity and tidal amplitude were both important drivers of vegetation composition. Multinomial logistic regression (MLR) and Akaike's Information Criterion (AIC) were used to predict the probability of occurrence of the nine vegetation communities as a function of salinity and tidal amplitude, and probability surfaces obtained from the MLR model corroborated the CCA results. The weighted kappa statistic, calculated from the confusion matrix of predicted versus actual community types, was 0.7 and indicated good agreement between observed community types and model predictions. Our results suggest that models based on a few key hydrologic variables can be valuable tools for predicting vegetation community development when restoring and managing coastal wetlands.

  6. Study on control method of the actuators accepting commands from different classifications in nuclear power plant

    International Nuclear Information System (INIS)

    Tang Lixue; Zhang Nan; Fan Jin; Li Liang

    2015-01-01

    The distributed control system has become the main control system for the nuclear power plant, consisting of 1E and non-1E parts. Because the safety actuators accept commands from different safety classifications, this is a difficulty of controlling those actuators in nuclear power plant. This article discusses about the control method for safety actuators accepting commands from different classifications. Firstly, one control method adopted in new nuclear power projects is introduced. Then based on this, an optimized method is raised. The new method mainly concludes two points than the adopted method: 1. The concept 'local control mode' is introduced into the signal priority logic modules, and the priority logic module turns into local mode for the non-1E control system once it accepts safety signal; 2. The 'remote control mode' is added into the module of the safety actuator in the non-1E control system, and this can make the non-1E control system abandon controlling the safety actuator when the relevant priority logic module accept the safety signal. Based on verifying the correctness of modified scheme, comparisons between the fore-and-aft schemes are provided to summary the merits of the optimized method. It is concluded that optimized scheme is better in the aspects of reliability, safety and economy. (authors)

  7. A Community-Based Culture Collection for Targeting Novel Plant Growth-Promoting Bacteria from the Sugarcane Microbiome

    Directory of Open Access Journals (Sweden)

    Jaderson Silveira Leite Armanhi

    2018-01-01

    Full Text Available The soil-plant ecosystem harbors an immense microbial diversity that challenges investigative approaches to study traits underlying plant-microbe association. Studies solely based on culture-dependent techniques have overlooked most microbial diversity. Here we describe the concomitant use of culture-dependent and -independent techniques to target plant-beneficial microbial groups from the sugarcane microbiome. The community-based culture collection (CBC approach was used to access microbes from roots and stalks. The CBC recovered 399 unique bacteria representing 15.9% of the rhizosphere core microbiome and 61.6–65.3% of the endophytic core microbiomes of stalks. By cross-referencing the CBC (culture-dependent with the sugarcane microbiome profile (culture-independent, we designed a synthetic community comprised of naturally occurring highly abundant bacterial groups from roots and stalks, most of which has been poorly explored so far. We then used maize as a model to probe the abundance-based synthetic inoculant. We show that when inoculated in maize plants, members of the synthetic community efficiently colonize plant organs, displace the natural microbiota and dominate at 53.9% of the rhizosphere microbial abundance. As a result, inoculated plants increased biomass by 3.4-fold as compared to uninoculated plants. The results demonstrate that abundance-based synthetic inoculants can be successfully applied to recover beneficial plant microbes from plant microbiota.

  8. Invasion of Opuntia humifusa and O. phaeacantha (Cactaceae into plant communities of the Karadag Nature Reserve

    Directory of Open Access Journals (Sweden)

    Valentina V. Fateryga

    2017-11-01

    Full Text Available The results of a study of Opuntia humifusa and O. phaeacantha naturalised in the Karadag Nature Reserve (southeastern part of the Crimean Peninsula are presented. There, the largest coenopopulations of Opuntia plants are confined to the «biostation» territory (bordering with the park, administrative buildings and housing estate. Twelve localities were described in the Karadag Reserve. These differ by phytocoenotic characteristics, area and floristic composition. Seven localities include only O. humifusa plants; four ones include only O. phaeacantha individuals; and both the species are present on the twelfth locality. The total number of individuals of each species and ontogenetic structure of the population were studied in each locality. The total number of O. humifusa individuals in the Karadag Reserve is more than 600 plants within the «biostation» territory, while the total number of O. phaeacantha plants is about 400 individuals. Studying of the plant communities has been carried out according to the Braun-Blanquet method. Opuntia plants form derivate communities within degraded steppes, phryganoid-steppes, and semi-desert badland phytocoenoses almost at all studied localities. A significant number of synanthropic species (including alien plants was found within these communities. Opuntia plants are able to self-reproduce predominantly vegetatively. Self-seeding reproduction occurs less frequently. Both species can be considered as invasive plants because they have a high adaptive capacity.

  9. Estimating CO2 gas exchange in mixed age vegetable plant communities grown on soil-like substrates for life support systems

    Science.gov (United States)

    Velichko, V. V.; Tikhomirov, A. A.; Ushakova, S. A.

    2018-02-01

    If soil-like substrate (SLS) is to be used in human life support systems with a high degree of mass closure, the rate of its gas exchange as a compartment for mineralization of plant biomass should be understood. The purpose of this study was to compare variations in CO2 gas exchange of vegetable plant communities grown on the soil-like substrate using a number of plant age groups, which determined the so-called conveyor interval. Two experimental plant communities were grown as plant conveyors with different conveyor intervals. The first plant community consisted of conveyors with intervals of 7 days for carrot and beet and 14 days for chufa sedge. The conveyor intervals in the second plant community were 14 days for carrot and beet and 28 days for chufa sedge. This study showed that increasing the number of age groups in the conveyor and, thus, increasing the frequency of adding plant waste to the SLS, decreased the range of variations in CO2 concentration in the "plant-soil-like substrate" system. However, the resultant CO2 gas exchange was shifted towards CO2 release to the atmosphere of the plant community with short conveyor intervals. The duration of the conveyor interval did not significantly affect productivity and mineral composition of plants grown on the SLS.

  10. Phylogenetic composition of host plant communities drives plant-herbivore food web structure.

    Science.gov (United States)

    Volf, Martin; Pyszko, Petr; Abe, Tomokazu; Libra, Martin; Kotásková, Nela; Šigut, Martin; Kumar, Rajesh; Kaman, Ondřej; Butterill, Philip T; Šipoš, Jan; Abe, Haruka; Fukushima, Hiroaki; Drozd, Pavel; Kamata, Naoto; Murakami, Masashi; Novotny, Vojtech

    2017-05-01

    Insects tend to feed on related hosts. The phylogenetic composition of host plant communities thus plays a prominent role in determining insect specialization, food web structure, and diversity. Previous studies showed a high preference of insect herbivores for congeneric and confamilial hosts suggesting that some levels of host plant relationships may play more prominent role that others. We aim to quantify the effects of host phylogeny on the structure of quantitative plant-herbivore food webs. Further, we identify specific patterns in three insect guilds with different life histories and discuss the role of host plant phylogeny in maintaining their diversity. We studied herbivore assemblages in three temperate forests in Japan and the Czech Republic. Sampling from a canopy crane, a cherry picker and felled trees allowed a complete census of plant-herbivore interactions within three 0·1 ha plots for leaf chewing larvae, miners, and gallers. We analyzed the effects of host phylogeny by comparing the observed food webs with randomized models of host selection. Larval leaf chewers exhibited high generality at all three sites, whereas gallers and miners were almost exclusively monophagous. Leaf chewer generality dropped rapidly when older host lineages (5-80 myr) were collated into a single lineage but only decreased slightly when the most closely related congeneric hosts were collated. This shows that leaf chewer generality has been maintained by feeding on confamilial hosts while only a few herbivores were shared between more distant plant lineages and, surprisingly, between some congeneric hosts. In contrast, miner and galler generality was maintained mainly by the terminal nodes of the host phylogeny and dropped immediately after collating congeneric hosts into single lineages. We show that not all levels of host plant phylogeny are equal in their effect on structuring plant-herbivore food webs. In the case of generalist guilds, it is the phylogeny of deeper

  11. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell.

    Science.gov (United States)

    Timmers, Ruud A; Rothballer, Michael; Strik, David P B T B; Engel, Marion; Schulz, Stephan; Schloter, Michael; Hartmann, Anton; Hamelers, Bert; Buisman, Cees

    2012-04-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into the competition for electron donor in a PMFC. This paper characterises the anode-rhizosphere bacterial community of a Glyceria maxima (reed mannagrass) PMFC. Electrochemically active bacteria (EAB) were located on the root surfaces, but they were more abundant colonising the graphite granular electrode. Anaerobic cellulolytic bacteria dominated the area where most of the EAB were found, indicating that the current was probably generated via the hydrolysis of cellulose. Due to the presence of oxygen and nitrate, short-chain fatty acid-utilising denitrifiers were the major competitors for the electron donor. Acetate-utilising methanogens played a minor role in the competition for electron donor, probably due to the availability of graphite granules as electron acceptors.

  12. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Timmers, Ruud A.; Strik, David P.B.T.B.; Hamelers, Bert; Buisman, Cees [Wageningen Univ. (Netherlands). Sub-dept. of Environmental Technology; Rothballer, Michael; Hartmann, Anton [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg (Germany). Dept. Microbe-Plant Interactions; Engel, Marion; Schulz, Stephan; Schloter, Michael [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg (Germany). Dept. Terrestrial Ecogenetics

    2012-04-15

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into the competition for electron donor in a PMFC. This paper characterises the anode-rhizosphere bacterial community of a Glyceria maxima (reed mannagrass) PMFC. Electrochemically active bacteria (EAB) were located on the root surfaces, but they were more abundant colonising the graphite granular electrode. Anaerobic cellulolytic bacteria dominated the area where most of the EAB were found, indicating that the current was probably generated via the hydrolysis of cellulose. Due to the presence of oxygen and nitrate, short-chain fatty acid-utilising denitrifiers were the major competitors for the electron donor. Acetate-utilising methanogens played a minor role in the competition for electron donor, probably due to the availability of graphite granules as electron acceptors. (orig.)

  13. Plant invasions: Merging the concepts of species invasiveness and community invasibility

    Czech Academy of Sciences Publication Activity Database

    Richardson, D. M.; Pyšek, Petr

    2006-01-01

    Roč. 30, č. 3 (2006), s. 409-431 ISSN 0309-1333 Institutional research plan: CEZ:AV0Z60050516 Keywords : plant invasions * species invasiveness * community invasibility Subject RIV: EF - Botanics Impact factor: 1.278, year: 2006

  14. Indigenous uses of ethnomedicinal plants among forest-dependent communities of Northern Bengal, India.

    Science.gov (United States)

    Raj, Antony Joseph; Biswakarma, Saroj; Pala, Nazir A; Shukla, Gopal; Vineeta; Kumar, Munesh; Chakravarty, Sumit; Bussmann, Rainer W

    2018-01-26

    Traditional knowledge on ethnomedicinal plant is slowly eroding. The exploration, identification and documentation on utilization of ethnobotanic resources are essential for restoration and preservation of ethnomedicinal knowledge about the plants and conservation of these species for greater interest of human society. The study was conducted at fringe areas of Chilapatta Reserve Forest in the foothills of the eastern sub-Himalayan mountain belts of West Bengal, India, from December 2014 to May 2016. Purposive sampling method was used for selection of area. From this area which is inhabited by aboriginal community of Indo-Mongoloid origin, 400 respondents including traditional medicinal practitioners were selected randomly for personal interview schedule through open-ended questionnaire. The questionnaire covered aspects like plant species used as ethnomedicines, plant parts used, procedure for dosage and therapy. A total number of 140 ethnomedicinal species was documented, in which the tree species (55) dominated the lists followed by herbs (39) and shrubs (30). Among these total planted species used for ethnomedicinal purposes, 52 species were planted, 62 species growing wild or collected from the forest for use and 26 species were both wild and planted. The present study documented 61 more planted species as compared to 17 planted species documented in an ethnomedicinal study a decade ago. The documented species were used to treat 58 human diseases/ailments including nine species used to eight diseases/ailments of domestic animals. Stomach-related problems were treated by maximum number of plants (40 species) followed by cuts and wounds with 27 plant species and least with one species each for 17 diseases or ailments. Maximum number of 12 diseases/ailments was cured by Melia azedarach followed by Centella asiatica and Rauvolfia serpentina which were used to cure 11 diseases/ailments each. The list of 140 plant species indicates that the Chilapatta Reserve Forest

  15. Interspecific variation of the bacterial community structure in the phyllosphere of the three major plant components of mangrove forests

    Directory of Open Access Journals (Sweden)

    Armando Cavalcante Franco Dias

    2012-06-01

    Full Text Available Mangrove forests encompass a group of trees species that inhabit the intertidal zones, where soil is characterized by the high salinity and low availability of oxygen. The phyllosphere of these trees represent the habitat provided on the aboveground parts of plants, supporting in a global scale, a large and complex microbial community. The structure of phyllosphere communities reflects immigration, survival and growth of microbial colonizers, which is influenced by numerous environmental factors in addition to leaf physical and chemical properties. Here, a combination of culture-base methods with PCR-DGGE was applied to test whether local or plant specific factors shape the bacterial community of the phyllosphere from three plant species (Avicenia shaueriana, Laguncularia racemosa and Rhizophora mangle, found in two mangroves. The number of bacteria in the phyllosphere of these plants varied between 3.62 x 10(4 in A. schaeriana and 6.26 x 10³ in R. mangle. The results obtained by PCR-DGGE and isolation approaches were congruent and demonstrated that each plant species harbor specific bacterial communities in their leaves surfaces. Moreover, the ordination of environmental factors (mangrove and plant species, by redundancy analysis (RDA, also indicated that the selection exerted by plant species is higher than mangrove location on bacterial communities at phyllosphere.

  16. Plant Community Diversity After Herbicide Control of Spotted Knapweed

    OpenAIRE

    United States Department of Agriculture, Forest Service

    1992-01-01

    Herbicides were applied to four west-central Montana sites with light to moderate spotted knapweed (Centaurea maculosa Lam.) infestations. Althought knapweed suppression was high, 2 years after the spraying the communities were not converted to grass monocultures. No large declines in plant diversity were caused by the herbicides, and small depressions were probably transitory. By the third year, diversity had increased.

  17. Soil classification predicts differences in prokaryotic communities across a range of geographically distant soils once pH is accounted for

    OpenAIRE

    Morales, Sergio; Trouche, Blandine; Kaminsky, Rachel

    2017-01-01

    Agricultural land is typically managed based on visible plant life at the expense of the belowground majority. However, microorganisms mediate processes sustaining plant life and the soil environment. To understand the role of microbes we first must understand what controls soil microbial community assembly. We assessed the distribution and composition of prokaryotic communities from soils representing four geographic regions on the South Island of New Zealand. These soils are under three dif...

  18. Bacterial communities associated with culex mosquito larvae and two emergent aquatic plants of bioremediation importance.

    Directory of Open Access Journals (Sweden)

    Dagne Duguma

    Full Text Available Microbes are important for mosquito nutrition, growth, reproduction and control. In this study, we examined bacterial communities associated with larval mosquitoes and their habitats. Specifically, we characterized bacterial communities associated with late larval instars of the western encephalitis mosquito (Culextarsalis, the submerged portions of two emergent macrophytes (California bulrush, Schoenoplectuscalifornicus and alkali bulrush, Schoenoplectusmaritimus, and the associated water columns to investigate potential differential use of resources by mosquitoes in different wetland habitats. Using next-generation sequence data from 16S rRNA gene hypervariable regions, the alpha diversity of mosquito gut microbial communities did not differ between pond mesocosms containing distinct monotypic plants. Proteobacteria, dominated by the genus Thorsellia (Enterobacteriaceae, was the most abundant phylum recovered from C. tarsalis larvae. Approximately 49% of bacterial OTUs found in larval mosquitoes were identical to OTUs recovered from the water column and submerged portions of the two bulrushes. Plant and water samples were similar to one another, both being dominated by Actinobacteria, Bacteroidetes, Cyanobacteria, Proteobacteria and Verrucomicrobia phyla. Overall, the bacterial communities within C. tarsalis larvae were conserved and did not change across sampling dates and between two distinct plant habitats. Although Thorsellia spp. dominated mosquito gut communities, overlap of mosquito gut, plant and water-column OTUs likely reveal the effects of larval feeding. Future research will investigate the role of the key indicator groups of bacteria across the different developmental stages of this mosquito species.

  19. Morphological classification of plant cell deaths

    NARCIS (Netherlands)

    Doorn, van W.G.; Beers, E.P.; Dangl, J.L.; Franklin-Tong, V.E.; Woltering, E.J.

    2011-01-01

    Programmed cell death (PCD) is an integral part of plant development and of responses to abiotic stress or pathogens. Although the morphology of plant PCD is, in some cases, well characterised and molecular mechanisms controlling plant PCD are beginning to emerge, there is still confusion about the

  20. Machine Learning for High-Throughput Stress Phenotyping in Plants.

    Science.gov (United States)

    Singh, Arti; Ganapathysubramanian, Baskar; Singh, Asheesh Kumar; Sarkar, Soumik

    2016-02-01

    Advances in automated and high-throughput imaging technologies have resulted in a deluge of high-resolution images and sensor data of plants. However, extracting patterns and features from this large corpus of data requires the use of machine learning (ML) tools to enable data assimilation and feature identification for stress phenotyping. Four stages of the decision cycle in plant stress phenotyping and plant breeding activities where different ML approaches can be deployed are (i) identification, (ii) classification, (iii) quantification, and (iv) prediction (ICQP). We provide here a comprehensive overview and user-friendly taxonomy of ML tools to enable the plant community to correctly and easily apply the appropriate ML tools and best-practice guidelines for various biotic and abiotic stress traits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effect of the recent land use on the plant diversity and community structure of Omayed Biosphere Reserve, Egypt

    Directory of Open Access Journals (Sweden)

    Dalia A. Ahmed

    2015-07-01

    Full Text Available The present study aims at describing and analysing the floristic composition and vegetation types, as well as determining the effect of recent land uses on the vegetation structure. It aims also at identifying the alien plants species and elucidating the impact of these species on the plant diversity and community structure of the study area. One hundred and ninety stands were selected monthly for this study, 145 species were recorded (69 perennials and 76 annuals related to 83 genera, 40 families in 9 identified habitats in El-Omayed Biosphere Reserve (coastal sand dunes, salt marshes, saline depression, non-saline depression, inland ridges, inland plateau, irrigation canals, road sides and cultivated lands. Therophytes were the most represented life form. Three habitat groups resulted after the application of TWINSPAN and DCA as classification and ordination techniques: 2 represented the natural habitats and one represented the urban and cultivated habitats. Group I represented coastal dunes and salt marshes GII: saline depressions, non-saline depressions, inland plateau and inland ridges and GIII: irrigation canals, road sides and cultivated lands. Coastal dunes had the highest species richness (α-diversity, followed by cultivated lands, while inland plateau had the lowest; but saline depressions had the highest species turnover (β-diversity. Non-saline depressions had the highest relative evenness, while saline depressions had the highest relative concentration of dominance. Coastal dunes had highest values of calcium carbonates and calcium ions, and salt marshes had the highest salinity, pH, potassium and sodium contents, but cultivated lands had the highest values of silt, clay and organic matter. The diagram resulting from CCA showed an influence of most soil variables, except nitrogen, calcium and potassium. Twenty two species were recorded for the first time in the study area. The recent land use (overgrazing, wood cutting and

  2. Characteristics and application study of AP1000 NPPs equipment reliability classification method

    International Nuclear Information System (INIS)

    Guan Gao

    2013-01-01

    AP1000 nuclear power plant applies an integrated approach to establish equipment reliability classification, which includes probabilistic risk assessment technique, maintenance rule administrative, power production reliability classification and functional equipment group bounding method, and eventually classify equipment reliability into 4 levels. This classification process and result are very different from classical RCM and streamlined RCM. It studied the characteristic of AP1000 equipment reliability classification approach, considered that equipment reliability classification should effectively support maintenance strategy development and work process control, recommended to use a combined RCM method to establish the future equipment reliability program of AP1000 nuclear power plants. (authors)

  3. Community development on 35-year-old planted minespoil banks in Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, W S; Hutnik, R J

    1987-07-01

    Invading plant communities were studied in 1982 on a series of 35-year old strip-mine test plantings in the main bituminous region of Pennsylvania. Ten of the original 22 sites were evaluated; the others had been significantly disturbed or destroyed. The sites varied in mean pH, in survival and basal area of the planted trees and in the species planted. The study involved 24 plots of the following species: eastern white pine (Pine strobus), red pine (Pinus resinosa), Japanese larch (Laprix leptolepis), red oak (Quercus rubra), black locust (Robinia pseudoacacia), white ash (Fraxinus americana), green ash (Fraxinus pennsylvanica) and hybrid poplar (Populus hyb.) and seven plots where plantings were unsuccessful (control plots). In the cluster analysis of invading communities described by a modified Braun-Blanquet scale, strong clustering trends were evident by both site and planted species. Clustering by sites was most pronounced for those sites with extremes of soil pH. There was also strong clustering among pine plots and among some hardwood plots. Species richness was higher on white ash, red oak, Japanese larch and control plots than on white pine plots. Black cherry (Prunus serotina) was the most common of the 169 invading species and was especially numerous on black locust plots. Aspens (Populus sp.) were also common invaders, especially on pine and ash plots. These species, along with pin cherry (Prunus Pennsylvanica) and the planted black locust are declining in importance, whereas black cherry, red maple (Acer rubrum) and slippery elm (Ulmus rubra) are increasing. Invading oaks (Quercus sp.), hickories (Carya sp.) and a few sugar maple (Acer saccharum) and American beech (Fagus grandifolia) suggest future successional changes. 26 refs., 2 figs., 4 tabs.

  4. Insect-plant interactions: new pathways to a better comprehension of ecological communities in Neotropical savannas.

    Science.gov (United States)

    Del-Claro, Kleber; Torezan-Silingardi, Helena M

    2009-01-01

    The causal mechanisms shaping and structuring ecological communities are among the most important themes in ecology. The study of insect-plant interactions in trophic nets is pointed out as basic to improve our knowledge on this issue. The cerrado tropical savanna, although extremely diverse, distributed in more than 20% of the Brazilian territory and filled up with rich examples of multitrophic interactions, is underexplored in terms of biodiversity interaction. Here, this ecosystem is suggested as valuable to the study of insect-plant interactions whose understanding can throw a new light at the ecological communities' theory. Three distinct systems: extrafloral nectary plants or trophobiont herbivores and the associated ant fauna; floral herbivores-predators-pollinators; and plants-forest engineers and associated fauna, will serve as examples to illustrate promising new pathways in cerrado. The aim of this brief text is to instigate young researchers, mainly entomologists, to initiate more elaborated field work, including experimental manipulations in multitrophic systems, to explore in an interactive way the structure that maintain preserved viable communities in the Neotropical savanna.

  5. Changes in soil bacterial communities induced by the invasive plant Pennisetum setaceum in a semiarid environment

    Science.gov (United States)

    Rodriguez-Caballero, Gema; Caravaca, Fuensanta; del Mar Alguacil, María; Fernández-López, Manuel; José Fernández-González, Antonio; García-Orenes, Fuensanta; Roldán, Antonio

    2016-04-01

    Invasive alien species are considered as a global threat being among the main causes of biodiversity loss. Plant invasions have been extensively studied from different disciplines with the purpose of identifying predictor traits of invasiveness and finding solutions. However, less is known about the implication of the rhizosphere microbiota in these processes, even when it is well known the importance of the interaction between plant rhizosphere and microbial communities. The objective of this study was to determine whether native and invasive plants support different bacterial communities in their rhizospheres and whether there are bacterial indicator species that might be contributing to the invasion process of these ecosystems. We carried out a study in five independent locations under Mediterranean semiarid conditions, where the native Hyparrhenia hirta is being displaced by Pennisetum setaceum, an aggressive invasive Poaceae and soil bacterial communities were amplified and 454-pyrosequenced. Changes in the composition and structure of the bacterial communities, owing to the invasive status of the plant, were detected when the richness and alpha-diversity estimators were calculated as well as when we analyzed the PCoA axes scores. The Indicator Species Analysis results showed a higher number of indicators for invaded communities at all studied taxonomic levels. In conclusion, the effect of the invasiveness and its interaction with the soil location has promoted shifts in the rhizosphere bacterial communities which might be facilitating the invader success in these ecosystems.

  6. The Upper Mississippi River floodscape: spatial patterns of flood inundation and associated plant community distributions

    Science.gov (United States)

    DeJager, Nathan R.; Rohweder, Jason J.; Yin, Yao; Hoy, Erin E.

    2016-01-01

    Questions How is the distribution of different plant communities associated with patterns of flood inundation across a large floodplain landscape? Location Thirty-eight thousand nine hundred and seventy hectare of floodplain, spanning 320 km of the Upper Mississippi River (UMR). Methods High-resolution elevation data (Lidar) and 30 yr of daily river stage data were integrated to produce a ‘floodscape’ map of growing season flood inundation duration. The distributions of 16 different remotely sensed plant communities were quantified along the gradient of flood duration. Results Models fitted to the cumulative frequency of occurrence of different vegetation types as a function of flood duration showed that most types exist along a continuum of flood-related occurrence. The diversity of community types was greatest at high elevations (0–10 d of flooding), where both upland and lowland community types were found, as well as at very low elevations (70–180 d of flooding), where a variety of lowland herbaceous communities were found. Intermediate elevations (20–60 d of flooding) tended to be dominated by floodplain forest and had the lowest diversity of community types. Conclusions Although variation in flood inundation is often considered to be the main driver of spatial patterns in floodplain plant communities, few studies have quantified flood–vegetation relationships at broad scales. Our results can be used to identify targets for restoration of historical hydrological regimes or better anticipate hydro-ecological effects of climate change at broad scales.

  7. Engineering a plant community to deliver multiple ecosystem services.

    Science.gov (United States)

    Storkey, Jonathan; Döring, Thomas; Baddeley, John; Collins, Rosemary; Roderick, Stephen; Jones, Hannah; Watson, Christine

    2015-06-01

    The sustainable delivery of multiple ecosystem services requires the management of functionally diverse biological communities. In an agricultural context, an emphasis on food production has often led to a loss of biodiversity to the detriment of other ecosystem services such as the maintenance of soil health and pest regulation. In scenarios where multiple species can be grown together, it may be possible to better balance environmental and agronomic services through the targeted selection of companion species. We used the case study of legume-based cover crops to engineer a plant community that delivered the optimal balance of six ecosystem services: early productivity, regrowth following mowing, weed suppression, support of invertebrates, soil fertility building (measured as yield of following crop), and conservation of nutrients in the soil. An experimental species pool of 12 cultivated legume species was screened for a range of functional traits and ecosystem services at five sites across a geographical gradient in the United Kingdom. All possible species combinations were then analyzed, using a process-based model of plant competition, to identify the community that delivered the best balance of services at each site. In our system, low to intermediate levels of species richness (one to four species) that exploited functional contrasts in growth habit and phenology were identified as being optimal. The optimal solution was determined largely by the number of species and functional diversity represented by the starting species pool, emphasizing the importance of the initial selection of species for the screening experiments. The approach of using relationships between functional traits and ecosystem services to design multifunctional biological communities has the potential to inform the design of agricultural systems that better balance agronomic and environmental services and meet the current objective of European agricultural policy to maintain viable food

  8. Predictive occurrence models for coastal wetland plant communities: delineating hydrologic response surfaces with multinomial logistic regression

    Science.gov (United States)

    Snedden, Gregg A.; Steyer, Gregory D.

    2013-01-01

    Understanding plant community zonation along estuarine stress gradients is critical for effective conservation and restoration of coastal wetland ecosystems. We related the presence of plant community types to estuarine hydrology at 173 sites across coastal Louisiana. Percent relative cover by species was assessed at each site near the end of the growing season in 2008, and hourly water level and salinity were recorded at each site Oct 2007–Sep 2008. Nine plant community types were delineated with k-means clustering, and indicator species were identified for each of the community types with indicator species analysis. An inverse relation between salinity and species diversity was observed. Canonical correspondence analysis (CCA) effectively segregated the sites across ordination space by community type, and indicated that salinity and tidal amplitude were both important drivers of vegetation composition. Multinomial logistic regression (MLR) and Akaike's Information Criterion (AIC) were used to predict the probability of occurrence of the nine vegetation communities as a function of salinity and tidal amplitude, and probability surfaces obtained from the MLR model corroborated the CCA results. The weighted kappa statistic, calculated from the confusion matrix of predicted versus actual community types, was 0.7 and indicated good agreement between observed community types and model predictions. Our results suggest that models based on a few key hydrologic variables can be valuable tools for predicting vegetation community development when restoring and managing coastal wetlands.

  9. Earthworms drive succession of both plant and Collembola communities in post-mining sites

    Science.gov (United States)

    Mudrák, Ondřej; Uteseny, Karoline; Frouz, Jan

    2016-04-01

    Previous field observations indicated that earthworms promote late-successional plant species and reduce collembolan numbers at post-mining sites in the Sokolov coal mining district (Czech Republic). Here, we established a laboratory pot experiment to test the effect of earthworms (Aporrectodea caliginosa Savigny and Lumbricus rubellus Hoffm.) and litter of low, medium, and high quality (the grass Calamagrostis epigejos, the willow Salix caprea, and the alder Alnus glutinosa, respectively) on late successional plants (grasses Arrhenatherum elatius and Agrostis capillaris, legumes Lotus corniculatus and Trifolium medium, and non-leguminous dicots Centaurea jacea and Plantago lanceolata) in spoil substrate originating from Sokolov post-mining sites and naturally inhabited by abundant numbers of Collembola. The earthworms increased plant biomass, especially that of the large-seeded A. elatius, but reduced the number of plant individuals, mainly that of the small-seeded A. capillaris and both legumes. Litter quality affected plant biomass, which was highest with S. caprea litter, but did not change the number of plant individuals. Litter quality did not modify the effect of earthworms on plants; the effect of litter quality and earthworms was only additive. Species composition of Collembola community was altered by litter quality, but earthworms reduced the number of individuals, increased the number of species, and increased species evenness consistently across the litter qualities. Because the results of this experiment were consistent with the field observations, we conclude that earthworms help drive succession of both plant and Collembola communities on post-mining sites.

  10. Training of nuclear power plant personnel in the member states of the European Community

    International Nuclear Information System (INIS)

    Misenta, R.; Matfield, R.S.; Volta, G.; Ancarani, A.; Lhoir, J.

    1981-01-01

    After the Three Mile Island accident the Commission of the European Communities undertook various actions in order to assess the status of the training of nuclear power plant personnel with particular attention to their training for incidents and accidents. This presentation attempts a review of the training situation in the six member states of the European Community together with some other European states, that are operating nuclear power plants. Schemes for the training of control room operators, shift leaders, major European training centres and simulator training will be described

  11. Ethnoveterinary medicinal plants used by the Maale and Ari ethnic communities in southern Ethiopia

    NARCIS (Netherlands)

    Kidane, B.; Maesen, van der L.J.G.; Andel, van T.; Asfaw, Z.

    2014-01-01

    Ethnopharmacological relevance: Livestock production is an integral part of the agricultural system in Ethiopia. Medicinal plants are used and are important for rural communities for the treatment of livestock diseases. We studied and analysed the traditional medicinal plants used for the treatment

  12. Influence of flooding and landform properties on riparian plant communities in an old-growth northern hardwood watershed

    Science.gov (United States)

    P. Charles Goebel; Kurt S. Pregitzer; Brian J. Palik

    2012-01-01

    In most forested landscapes, the organization of plant communities across stream valleys is thought to be regulated by a complex set of interactions including flooding, landform properties, and vegetation. However, few studies have directly examined the relative influence of frequent and infrequent flooding, as well as landform properties, on riparian plant community...

  13. The effects of glyphosate and aminopyralid on an artifical plant communities

    Science.gov (United States)

    The US EPA has responsibility for registration of pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). The potential adverse effects of pesticides to nontarget terrestrial plant communities are a concern that must be addressed in the pesticide regist...

  14. A comparison of change detection measurements using object-based and pixel-based classification methods on western juniper dominated woodlands in eastern Oregon

    Directory of Open Access Journals (Sweden)

    Ryan G. Howell

    2017-03-01

    Full Text Available Encroachment of pinyon (Pinus spp and juniper (Juniperus spp. woodlands in western North America is considered detrimental due to its effects on ecohydrology, plant community structure, and soil stability. Management plans at the federal, state, and private level often include juniper removal for improving habitat of sensitive species and maintaining sustainable ecosystem processes. Remote sensing has become a useful tool in determining changes in juniper woodland structure because of its uses in comparing archived historic imagery with newly available multispectral images to provide information on changes that are no longer detectable by field measurements. Change in western juniper (J. occidentalis cover was detected following juniper removal treatments between 1995 and 2011 using panchromatic 1-meter NAIP and 4-band 1-meter NAIP imagery, respectively. Image classification was conducted using remotely sensed images taken at the Roaring Springs Ranch in southeastern Oregon. Feature Analyst for ArcGIS (object-based extraction and a supervised classification with ENVI 5.2 (pixel-based extraction were used to delineate juniper canopy cover. Image classification accuracy was calculated using an Accuracy Assessment and Kappa Statistic. Both methods showed approximately a 76% decrease in western juniper cover, although differing in total canopy cover area, with object-based classification being more accurate. Classification results for the 2011 imagery were much more accurate (0.99 Kappa statistic because of its low juniper density and the presence of an infrared band. The development of methods for detecting change in juniper cover can lead to more accurate and efficient data acquisition and subsequently improved land management and monitoring practices. These data can subsequently be used to assess and quantify juniper invasion and succession, potential ecological impacts, and plant community resilience.

  15. Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss

    DEFF Research Database (Denmark)

    Marini, Lorenzo; Bruun, Hans Henrik; Heikkinen, Risto

    2012-01-01

    Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life-history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal in dete...... rural landscapes in NW Europe, mitigating the spatial isolation of remaining grasslands should be accompanied by restoration measures aimed at improving habitat quality for low competitors, abiotically dispersed and perennial, clonal species.......Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life-history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal...... in determining dynamics of species communities in fragmented landscapes is still limited. The primary aim of this study was to test how plant traits related to persistence and dispersal and their interactions modify plant species vulnerability to decreasing habitat area and increasing isolation. Location Five...

  16. Random forests for classification in ecology

    Science.gov (United States)

    Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J.

    2007-01-01

    Classification procedures are some of the most widely used statistical methods in ecology. Random forests (RF) is a new and powerful statistical classifier that is well established in other disciplines but is relatively unknown in ecology. Advantages of RF compared to other statistical classifiers include (1) very high classification accuracy; (2) a novel method of determining variable importance; (3) ability to model complex interactions among predictor variables; (4) flexibility to perform several types of statistical data analysis, including regression, classification, survival analysis, and unsupervised learning; and (5) an algorithm for imputing missing values. We compared the accuracies of RF and four other commonly used statistical classifiers using data on invasive plant species presence in Lava Beds National Monument, California, USA, rare lichen species presence in the Pacific Northwest, USA, and nest sites for cavity nesting birds in the Uinta Mountains, Utah, USA. We observed high classification accuracy in all applications as measured by cross-validation and, in the case of the lichen data, by independent test data, when comparing RF to other common classification methods. We also observed that the variables that RF identified as most important for classifying invasive plant species coincided with expectations based on the literature. ?? 2007 by the Ecological Society of America.

  17. The movement ecology and dynamics of plant communities in fragmented landscapes.

    Science.gov (United States)

    Damschen, Ellen I; Brudvig, Lars A; Haddad, Nick M; Levey, Douglas J; Orrock, John L; Tewksbury, Joshua J

    2008-12-09

    A conceptual model of movement ecology has recently been advanced to explain all movement by considering the interaction of four elements: internal state, motion capacity, navigation capacities, and external factors. We modified this framework to generate predictions for species richness dynamics of fragmented plant communities and tested them in experimental landscapes across a 7-year time series. We found that two external factors, dispersal vectors and habitat features, affected species colonization and recolonization in habitat fragments and their effects varied and depended on motion capacity. Bird-dispersed species richness showed connectivity effects that reached an asymptote over time, but no edge effects, whereas wind-dispersed species richness showed steadily accumulating edge and connectivity effects, with no indication of an asymptote. Unassisted species also showed increasing differences caused by connectivity over time, whereas edges had no effect. Our limited use of proxies for movement ecology (e.g., dispersal mode as a proxy for motion capacity) resulted in moderate predictive power for communities and, in some cases, highlighted the importance of a more complete understanding of movement ecology for predicting how landscape conservation actions affect plant community dynamics.

  18. Plants, birds and butterflies: short-term responses of species communities to climate warming vary by taxon and with altitude.

    Science.gov (United States)

    Roth, Tobias; Plattner, Matthias; Amrhein, Valentin

    2014-01-01

    As a consequence of climate warming, species usually shift their distribution towards higher latitudes or altitudes. Yet, it is unclear how different taxonomic groups may respond to climate warming over larger altitudinal ranges. Here, we used data from the national biodiversity monitoring program of Switzerland, collected over an altitudinal range of 2500 m. Within the short period of eight years (2003-2010), we found significant shifts in communities of vascular plants, butterflies and birds. At low altitudes, communities of all species groups changed towards warm-dwelling species, corresponding to an average uphill shift of 8 m, 38 m and 42 m in plant, butterfly and bird communities, respectively. However, rates of community changes decreased with altitude in plants and butterflies, while bird communities changed towards warm-dwelling species at all altitudes. We found no decrease in community variation with respect to temperature niches of species, suggesting that climate warming has not led to more homogenous communities. The different community changes depending on altitude could not be explained by different changes of air temperatures, since during the 16 years between 1995 and 2010, summer temperatures in Switzerland rose by about 0.07°C per year at all altitudes. We discuss that land-use changes or increased disturbances may have prevented alpine plant and butterfly communities from changing towards warm-dwelling species. However, the findings are also consistent with the hypothesis that unlike birds, many alpine plant species in a warming climate could find suitable habitats within just a few metres, due to the highly varied surface of alpine landscapes. Our results may thus support the idea that for plants and butterflies and on a short temporal scale, alpine landscapes are safer places than lowlands in a warming world.

  19. Local Plant Diversity Across Multiple Habitats Supports a Diverse Wild Bee Community in Pennsylvania Apple Orchards.

    Science.gov (United States)

    Kammerer, Melanie A; Biddinger, David J; Rajotte, Edwin G; Mortensen, David A

    2016-02-01

    Wild pollinators supply essential, historically undervalued pollination services to crops and other flowering plant communities with great potential to ensure agricultural production against the loss of heavily relied upon managed pollinators. Local plant communities provision wild bees with crucial floral and nesting resources, but the distribution of floristic diversity among habitat types in North American agricultural landscapes and its effect on pollinators are diverse and poorly understood, especially in orchard systems. We documented floristic diversity in typical mid-Atlantic commercial apple (Malus domestica Borkh.) orchards including the forest and orchard-forest edge ("edge") habitats surrounding orchards in a heterogeneous landscape in south-central Pennsylvania, USA. We also assessed the correlation between plant richness and orchard pollinator communities. In this apple production region, edge habitats are the most species rich, supporting 146 out of 202 plant species recorded in our survey. Plant species richness in the orchard and edge habitats were significant predictors of bee species richness and abundance in the orchard, as well as landscape area of the forest and edge habitats. Both the quantity and quality of forest and edges close to orchards play a significant role in provisioning a diverse wild bee community in this agroecosystem. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Formation of higher plant component microbial community in closed ecological system

    Science.gov (United States)

    Tirranen, L. S.

    2001-07-01

    Closed ecological systems (CES) place at the disposal of a researcher unique possibilities to study the role of microbial communities in individual components and of the entire system. The microbial community of the higher plant component has been found to form depending on specific conditions of the closed ecosystem: length of time the solution is reused, introduction of intrasystem waste water into the nutrient medium, effect of other component of the system, and system closure in terms of gas exchange. The higher plant component formed its own microbial complex different from that formed prior to closure. The microbial complex of vegetable polyculture is more diverse and stable than the monoculture of wheat. The composition of the components' microflora changed, species diversity decreased, individual species of bacteria and fungi whose numbers were not so great before the closure prevailed. Special attention should be paid to phytopathogenic and conditionally pathogenic species of microorganisms potentially hazardous to man or plants and the least controlled in CES. This situation can endanger creation of CES and make conjectural existence of preplanned components, man, specifically, and consequently, of CES as it is.

  1. Diversity of MAPs in some plant communities of Stara Planina

    Directory of Open Access Journals (Sweden)

    Obratov-Petković Dragica

    2006-01-01

    Full Text Available The high floristic diversity of Stara Planina was the starting base for the research of medicinal and aromatic plants (MAPs in individual forest and meadow communities. The sites Javor and Prelesje, forest community Fagetum moesiacae montanum B. Jov. 1953, pioneer community of birch Betuletum verrucosae s.l. and meadow community Agrostietum vulgaris (capillaris Pavlović, Z. 1955, were researched as follows: soil types, floristic composition and structure of the community, percentage of MAPs, as well as the selection of species which, according to the predetermined criteria can be recommended for further exploitation. The study shows that the soil of the forest communities is eutric brown, and meadow soils are dystric and eutric humus-siliceous. The percentage of MAPs in the floristic structure of the study sites in forest and meadow communities is 32.35%. The following species can be recommended for the collection and utilisation: Hypericum perforatum L., Asperula odorata L., Dryopteris filix-mas (L Schott. Urtica dioica L., Euphorbia amygdaloides L., Prunella grandiflora L. Tanacetum vulgare L., Achillea millefolium L., Rumex acetosa L., Campanula glomerata L., Stachys officinalis (L Trevis., Plantago lanceolata W. et K., Potentilla erecta (L Rauchel, Chamaespartium sagittale (L P. Gibbs. Cynanchum vincetoxicum (L Pers., Euphrasia stricta Host., Fagus moesiaca (Matt Liebl. and Fragaria vesca L.

  2. Wetland Plants of Great Salt Lake, A Guide to Identification, Communities, & Bird Habitat

    OpenAIRE

    Downard, Rebekah; Frank, Maureen; Perkins, Jennifer; Kettenring, Karin; Larese-Casanova, Mark

    2017-01-01

    Wetland Plants of Great Salt Lake: a guide to identification, communities, & bird habitat is a wetland plant identification guide, resulting from collaborative research efforts about Great Salt Lake (GSL) wetland conditions and bird habitat. Dr. Rebekah Downard collected dissertation field data from GSL wetlands during 2012–2015, the majority of which informed this work. Dr. Maureen Frank contributed her guide to GSL wetland vegetation and how to manage native plants as high-quality habitat f...

  3. THE CONCENTRATION OF PHOTOSINTHESIS PIGMENTS IN THE ANTHROPOGENIC PLANT COMMUNITIES IN TOBOLSK TOWN

    OpenAIRE

    Еlena Ivanovna Popova

    2016-01-01

    Photosynthesis means a lot in the life of a plant body. For the normal photosynthesis process it is necessary to have certain external and internal conditions. The topic of the research is the study of photosynthesis pigments in anthropogenic plant communities. The aim of our work was to study the pigment composition plants of anthropogenic phytocenoses. Methods: we have used the spectrophotometric method to define the concentration of pigments. Results: the research has shown that the concen...

  4. Traditional uses of medicinal plants used by Indigenous communities for veterinary practices at Bajaur Agency, Pakistan.

    Science.gov (United States)

    Aziz, Muhammad Abdul; Khan, Amir Hasan; Adnan, Muhammad; Ullah, Habib

    2018-01-29

    The pastoral lifestyle of Indigenous communities of Bajaur Agency is bringing them close to natural remedies for treating their domestic animals. Several studies have been conducted across the globe describing the importance of traditional knowledge in veterinary care. Therefore, this study was planned with the aim to record knowledge on ethnoveterinary practices from the remote areas and share sit with other communities through published literature. Data was gathered from community members through semi-structured interviews and analyzed through informant consensus factor (Fic) to evaluate the consent of current ethnoveterinary practices among the local people. In total, 73 medicinal plants were recorded under the ethnoveterinary practices. Most widely used medicinal plants with maximum use reports (URs) were Visnaga daucoides Gaertn., Foeniculum vulgare Mill., Solanum virginianum L., Withania somnifera (L.) Dunal, Glycyrrhiza glabra L., and Curcuma longa L. New medicinal values were found with confidential level of citations for species including Heracleum candicans and Glycerhiza glabra. Family Apiaceae was the utmost family with high number (7 species) of medicinal plants. Maximum number of medicinal plants (32) was used for gastric problems. High Fic was recorded for dermatological (0.97) followed by reproductive (0.93) and gastrointestinal disorders (0.92). The main route of remedies administration was oral. Current study revealed that the study area has sufficient knowledge on ethnoveterinary medicinal plants. This knowledge is in the custody of nomadic grazers, herders, and aged community members. Plants with new medicinal uses need to be validated phytochemically and pharmacologically for the development of new alternative drugs for veterinary purposes.

  5. Soil Seed Bank and Plant Community Development in Passive Restoration of Degraded Sandy Grasslands

    Directory of Open Access Journals (Sweden)

    Renhui Miao

    2016-06-01

    Full Text Available To evaluate the efficacy of passive restoration on soil seed bank and vegetation recovery, we measured the species composition and density of the soil seed bank, as well as the species composition, density, coverage, and height of the extant vegetation in sites passively restored for 0, 4, 7, and 12 years (S0, S4, S7, and S12 in a degraded grassland in desert land. Compared with S0, three more species in the soil seed bank at depths of 0–30 cm and one more plant species in the community was detected in S12. Seed density within the topsoil (0–5 cm was five times higher in S12 than that in S0. Plant densities in S7 and S12 were triple and quadruple than that in S0. Plant coverage was increased by 1.5 times (S4, double (S7, and triple (S12 compared with S0. Sørensen’s index of similarity in species composition between the soil seed bank and the plant community were high (0.43–0.63, but it was lower in short-term restoration sites (S4 and S7 than that in no and long-term restoration sites (S0 and S12. The soil seed bank recovered more slowly than the plant community under passive restoration. Passive restoration is a useful method to recover the soil seed bank and vegetation in degraded grasslands.

  6. Interactions for pollinator visitation and their consequences for reproduction in a plant community

    Science.gov (United States)

    Hegland, Stein Joar; Totland, Ørjan

    2012-08-01

    Competition and facilitation in species interactions attract much attention in ecology, but their relative importance has seldom been evaluated in a community context. We assessed competitive and facilitative interactions for pollinator visitation among co-flowering species in a plant community, investigated the subsequent consequences for plant reproduction, and investigated whether effects could be trait-based. We removed the flowers of two species attractive to pollinators, in two separate experiments and assessed the effects on pollinator visitation rates and components of reproductive success in 11 co-flowering focal herb species. Overall, most focal species appear not to interact with the removal species with respect to pollinator visitation and subsequent reproduction (neutral interactions). Three focal species in the community had significantly higher reproductive responses (fruit production and seed weight) in the presence of the attractive removal species (facilitative interactions), but species interaction effects were less pronounced in species' flower visitation rates. A community-wide meta-analysis demonstrated that the two experiments did not have a significant effect on either facilitation or competition, and that there was no overall correlation between effect sizes for visitation and reproduction. Based on species-specific responses, it seems likely that floral traits such as similar flower colors contribute to interspecific facilitation of pollinator visitation and, in particular, that high pollinator dependence for plant reproduction, and associated pollen limitation, may contribute to subsequent interaction effects on reproduction in the focal species.

  7. Climate Variability Structures Plant Community Dynamics in Mediterranean Restored and Reference Tidal Wetlands

    Directory of Open Access Journals (Sweden)

    Dylan E. Chapple

    2017-03-01

    Full Text Available In Mediterranean regions and other areas with variable climates, interannual weather variability may impact ecosystem dynamics, and by extension ecological restoration projects. Conditions at reference sites, which are often used to evaluate restoration projects, may also be influenced by weather variability, confounding interpretations of restoration outcomes. To better understand the influence of weather variability on plant community dynamics, we explore change in a vegetation dataset collected between 1990 and 2005 at a historic tidal wetland reference site and a nearby tidal wetland restoration project initiated in 1976 in California’s San Francisco (SF Bay. To determine the factors influencing reference and restoration trajectories, we examine changes in plant community identity in relation to annual salinity levels in the SF Bay, annual rainfall, and tidal channel structure. Over the entire study period, both sites experienced significant directional change away from the 1990 community. Community change was accelerated following low salinity conditions that resulted from strong El Niño events in 1994–1995 and 1997–1998. Overall rates of change were greater at the restoration site and driven by a combination of dominant and sub-dominant species, whereas change at the reference site was driven by sub-dominant species. Sub-dominant species first appeared at the restoration site in 1996 and incrementally increased during each subsequent year, whereas sub-dominant species cover at the reference site peaked in 1999 and subsequently declined. Our results show that frequent, long-term monitoring is needed to adequately capture plant community dynamics in variable Mediterranean ecosystems and demonstrate the need for expanding restoration monitoring and timing restoration actions to match weather conditions.

  8. Taxonomic and Functional Responses of Soil Microbial Communities to Annual Removal of Aboveground Plant Biomass

    Science.gov (United States)

    Guo, Xue; Zhou, Xishu; Hale, Lauren; Yuan, Mengting; Feng, Jiajie; Ning, Daliang; Shi, Zhou; Qin, Yujia; Liu, Feifei; Wu, Liyou; He, Zhili; Van Nostrand, Joy D.; Liu, Xueduan; Luo, Yiqi; Tiedje, James M.; Zhou, Jizhong

    2018-01-01

    Clipping, removal of aboveground plant biomass, is an important issue in grassland ecology. However, few studies have focused on the effect of clipping on belowground microbial communities. Using integrated metagenomic technologies, we examined the taxonomic and functional responses of soil microbial communities to annual clipping (2010–2014) in a grassland ecosystem of the Great Plains of North America. Our results indicated that clipping significantly (P microbial respiration rates. Annual temporal variation within the microbial communities was much greater than the significant changes introduced by clipping, but cumulative effects of clipping were still observed in the long-term scale. The abundances of some bacterial and fungal lineages including Actinobacteria and Bacteroidetes were significantly (P microbial communities were significantly correlated with soil respiration and plant productivity. Intriguingly, clipping effects on microbial function may be highly regulated by precipitation at the interannual scale. Altogether, our results illustrated the potential of soil microbial communities for increased soil organic matter decomposition under clipping land-use practices. PMID:29904372

  9. Construction of an Yucatec Maya soil classification and comparison with the WRB framework

    Directory of Open Access Journals (Sweden)

    Zinck J Alfred

    2010-02-01

    Full Text Available Abstract Background Mayas living in southeast Mexico have used soils for millennia and provide thus a good example for understanding soil-culture relationships and for exploring the ways indigenous people name and classify the soils of their territory. This paper shows an attempt to organize the Maya soil knowledge into a soil classification scheme and compares the latter with the World Reference Base for Soil Resources (WRB. Methods Several participative soil surveys were carried out in the period 2000-2009 with the help of bilingual Maya-Spanish-speaking farmers. A multilingual soil database was built with 315 soil profile descriptions. Results On the basis of the diagnostic soil properties and the soil nomenclature used by Maya farmers, a soil classification scheme with a hierarchic, dichotomous and open structure was constructed, organized in groups and qualifiers in a fashion similar to that of the WRB system. Maya soil properties were used at the same categorical levels as similar diagnostic properties are used in the WRB system. Conclusions The Maya soil classification (MSC is a natural system based on key properties, such as relief position, rock types, size and quantity of stones, color of topsoil and subsoil, depth, water dynamics, and plant-supporting processes. The MSC addresses the soil properties of surficial and subsurficial horizons, and uses plant communities as qualifier in some cases. The MSC is more accurate than the WRB for classifying Leptosols.

  10. Ethnobotanical study on medicinal plants in the community of Curral Velho, Luís Correia, Piauí, Brazil

    Directory of Open Access Journals (Sweden)

    Jesus Rodrigues Lemos

    2015-03-01

    Full Text Available The use of plants as medication in the state of Piauí, Brazil, has been a common practice passed from generation to generation. This study aimed to analyze the use of medicinal plants by residents of the community Curral Velho, in the municipality of Luís Correia, northern Piauí, Brazil, contributing to register and preserve the traditional botanical knowledge of the community under study and, as a consequence, the state’s. The survey of plant species used as a therapeutic resource was conducted through interviews with a semi-structured questionnaire applied to 38 informants. The plants were collected for scientific identification. Use value (UV, informant consensus factor (ICF, and relative importance (RI of species were determined. We registered 62 species, belonging to 38 families and 57 genera, and the Fabaceae family stood out. Aristolochia triangularis, Petiveria alliaceae, and Stachytarpheta cayennensis had the highest use values (UV = 3.0, and Turnera subulata was the most versatile. Out of the 10 bodily systems identified, those with higher concentration of medicinal species are related to the most ordinary illnesses as general signs (inflammation, fever, respiratory tract diseases, and genitourinary tract diseases. This survey enabled the identification of some relevant aspects concerning the use and knowledge of medicinal plants in the community under study. The diversity of medicinal plants known and the availability of plants in the very community suggest a correlation between use/knowledge of medicinal plants and their availability.

  11. Ethnobotanical study on medicinal plants in the community of Curral Velho, Luís Correia, Piauí, Brazil

    Directory of Open Access Journals (Sweden)

    Jairla Lima Araujo

    2015-05-01

    Full Text Available The use of plants as medication in the state of Piauí, Brazil, has been a common practice passed from generation to generation. This study aimed to analyze the use of medicinal plants by residents of the community Curral Velho, in the municipality of Luís Correia, northern Piauí, Brazil, contributing to register and preserve the traditional botanical knowledge of the community under study and, as a consequence, the state’s. The survey of plant species used as a therapeutic resource was conducted through interviews with a semi-structured questionnaire applied to 38 informants. The plants were collected for scientific identification. Use value (UV, informant consensus factor (ICF, and relative importance (RI of species were determined. We registered 62 species, belonging to 38 families and 57 genera, and the Fabaceae family stood out. Aristolochia triangularis, Petiveria alliaceae, and Stachytarpheta cayennensis had the highest use values (UV = 3.0, and Turnera subulata was the most versatile. Out of the 10 bodily systems identified, those with higher concentration of medicinal species are related to the most ordinary illnesses as general signs (inflammation, fever, respiratory tract diseases, and genitourinary tract diseases. This survey enabled the identification of some relevant aspects concerning the use and knowledge of medicinal plants in the community under study. The diversity of medicinal plants known and the availability of plants in the very community suggest a correlation between use/knowledge of medicinal plants and their availability.

  12. Fire and invasive exotic plant species in eastern oak communities: an assessment of current knowledge

    Science.gov (United States)

    Cynthia D. Huebner

    2006-01-01

    Successful regeneration of oak-dominated communities in the Eastern United States historically requires disturbance such as fire, making them vulnerable to invasion by exotic plants. Little is currently known about the effects of fire on invasive plant species and the effects of invasive plant species on fire regimes of this region. Seventeen common eastern invaders...

  13. Environmental filtering drives the shape and breadth of the seed germination niche in coastal plant communities.

    Science.gov (United States)

    Fernández-Pascual, Eduardo; Pérez-Arcoiza, Adrián; Prieto, José Alberto; Díaz, Tomás E

    2017-05-01

    A phylogenetic comparative analysis of the seed germination niche was conducted in coastal plant communities of western Europe. Two hypotheses were tested, that (1) the germination niche shape (i.e. the preference for a set of germination cues as opposed to another) would differ between beaches and cliffs to prevent seedling emergence in the less favourable season (winter and summer, respectively); and (2) the germination niche breadth (i.e. the amplitude of germination cues) would be narrower in the seawards communities, where environmental filtering is stronger. Seeds of 30 specialist species of coastal plant communities were collected in natural populations of northern Spain. Their germination was measured in six laboratory treatments based on field temperatures. Germination niche shape was estimated as the best germination temperature. Germination niche breadth was calculated using Pielou's evenness index. Differences between plant communities in their germination niche shape and breadth were tested using phylogenetic generalized least squares regression (PGLS). Germination niche shape differed between communities, being warm-cued in beaches (best germination temperature = 20 °C) and cold-cued in cliffs (14 °C). Germination niche was narrowest in seawards beaches (Pielou's index = 0·89) and broadest in landwards beaches (0·99). Cliffs had an intermediate germination niche breadth (0·95). The relationship between niche and plant community had a positive phylogenetic signal for shape (Pagel's λ = 0·64) and a negative one for breadth (Pagel's λ = -1·71). Environmental filters shape the germination niche to prevent emergence in the season of highest threat for seedling establishment. The germination niche breadth is narrower in the communities with stronger environmental filters, but only in beaches. This study provides empirical support to a community-level generalization of the hypotheses about the environmental drivers of the germination

  14. Classification of emotions by multivariate analysis and individual differences of nuclear power plant operators` emotion

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Naoko; Yoshimura, Seiichi [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1999-03-01

    The purpose of this study is the development of a simulation model which expresses operators` emotion under plant emergency. This report shows the classification of emotions by multivariate analysis and investigation results conducted to clarify individual differences of activated emotion influenced by personal traits. Although a former investigation was conducted to classify emotions into five basic emotions proposed by Johnson-Laird, the basic emotions was not based on real data. For the development of more realistic and accurate simulation model, it is necessary to recognize basic emotion and to classify emotions into them. As a result of analysis by qualification method 3 and cluster analysis, four basic clusters were clarified, i.e., Emotion expressed towards objects, Emotion affected by objects, Pleasant emotion, and Surprise. Moreover, 51 emotions were ranked in the order according to their similarities in each cluster. An investigation was conducted to clarify individual differences in emotion process using 87 plant operators. The results showed the differences of emotion depending on the existence of operators` foresight, cognitive style, experience in operation, and consciousness of attribution to an operating team. For example, operators with low self-efficacy, short experience or low consciousness of attribution to a team, feel more intensive emotion under plant emergency and more affected by severe plant conditions. The model which can express individual differences will be developed utilizing and converting these data hereafter. (author)

  15. Classification of emotions by multivariate analysis and individual differences of nuclear power plant operators' emotion

    International Nuclear Information System (INIS)

    Hasegawa, Naoko; Yoshimura, Seiichi

    1999-01-01

    The purpose of this study is the development of a simulation model which expresses operators' emotion under plant emergency. This report shows the classification of emotions by multivariate analysis and investigation results conducted to clarify individual differences of activated emotion influenced by personal traits. Although a former investigation was conducted to classify emotions into five basic emotions proposed by Johnson-Laird, the basic emotions was not based on real data. For the development of more realistic and accurate simulation model, it is necessary to recognize basic emotion and to classify emotions into them. As a result of analysis by qualification method 3 and cluster analysis, four basic clusters were clarified, i.e., Emotion expressed towards objects, Emotion affected by objects, Pleasant emotion, and Surprise. Moreover, 51 emotions were ranked in the order according to their similarities in each cluster. An investigation was conducted to clarify individual differences in emotion process using 87 plant operators. The results showed the differences of emotion depending on the existence of operators' foresight, cognitive style, experience in operation, and consciousness of attribution to an operating team. For example, operators with low self-efficacy, short experience or low consciousness of attribution to a team, feel more intensive emotion under plant emergency and more affected by severe plant conditions. The model which can express individual differences will be developed utilizing and converting these data hereafter. (author)

  16. Plant community responses to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Kongstad, J.

    2012-07-01

    ecosystem more resilient to the climatic treatments than expected. We also found that the amount of flowering culms of D. flexuosa increased in response to increased CO{sub 2}, whereas the seed germination success decreased. The bryophyte biomass and the nitrogen content decreased in response to nitrogen addition. Even such apparently minor changes might, given time, affect the plant composition and thereby possibly also the major ecosystem processes. Further, we observed changes in the aboveground plant composition in response to the climate manipulations at the Mols site, where C. vulgaris was regenerating after a disturbance. Here a decrease in biomass of the pioneer stage was seen, when subjected to the drought treatment compared to warmed and control treatments. I therefore conclude, that the stage of the C. vulgaris population as well as the magnitude and frequency of disturbances determine the effects of future climate change on the plant community in heathland ecosystems. (Author)

  17. Use and management of traditional medicinal plants by Maale and Ari ethnic communities in southern Ethiopia

    Science.gov (United States)

    2014-01-01

    Background Around 80% of the people of Ethiopia are estimated to be relying on medicinal plants for the treatment of different types of human health problems. The purpose of this study was to describe and analyse the use and management of medicinal plants used for the treatment of human health problems by the Maale and Ari communities in southern Ethiopia. Methods Quantitative and qualitative ethnobotanical field inquiries and analytical methods including individual and focus group discussions (18), observations, individual interviews (n = 74), preference ranking and paired comparison were used. Data were collected in three study sites and from two markets; the latter surveyed every 15 days from February 2011 to February 2012. Results A total of 128 medicinal plant species, belonging to 111 genera and 49 families, used as herbal medicine by Maale and Ari communities were documented. Predominantly harvested plant parts were leaves, which are known to have relatively low impact on medicinal plant resources. Species with high familiarity indices included Solanum dasyphyllum, Indigofera spicata, Ruta chalepensis, Plumbago zeylanica and Meyna tetraphylla. Low Jaccards similarity indices (≤ 0.33) indicated little correspondence in medicinal plant use among sites and between ethnic communities. The dominant ways of medicinal plant knowledge acquisition and transfer is vertical: from parents to children through oral means. Gender and site significantly influenced the number of human medicinal plants known currently in the study sites. Age was only a factor of significance in Maale. Marketing of medicinal plants harvested from wild and semi-wild stands is not common. Expansion of agricultural land and lack of cultivation efforts by local communities are mentioned by locals to affect the availability of medicinal plant resources. Conclusion S. dasyphyllum, I. spicata, P. zeylanica, M. tetraphylla, and Oxalis radicosa need to be considered for phytochemical and

  18. Classification of the eastern alpine vegetation of Lesotho | Morris ...

    African Journals Online (AJOL)

    Five vegetation communities in the alpine catchment of Lesotho were identified by hierarchical classification of the botanical composition data. Discriminant analysis indicated that these communities occupy particular topographic positions. The community-environmental relationships identified in this study were similar to ...

  19. Diversity and aggregation patterns of plant species in a grass community

    Directory of Open Access Journals (Sweden)

    Ran Li

    2014-09-01

    Full Text Available Both composition and aggregation patterns of species in a community are the outcome of community self-organizing. In this paper we conducted analysis on species diversity and aggregation patterns of plant species in a grass community, Zhuhai, China. According to the sampling survey, in total of 47 plant species, belonging to 16 families, were found. Compositae had 10 species (21.3%, seconded by Gramineae (9 species, 19.1%, Leguminosae (6 species, 12.8%, Cyperaceae (4 species, 8.5%, and Malvaceae (3 species, 6.4%. The results revealed that the means of aggregation indices Iδ, I and m*/m were 21.71, 15.71 and 19.89 respectively and thus individuals of most of plant species strongly followed aggregative distribution. Iwao analysis indicated that both individuals of all species and clumps of all individuals of all species followed aggregative distribution. Taylor's power law indicated that individuals of all species followed aggregative distribution and aggregation intensity strengthened as the increase of mean density. We held that the strong aggregation intensity of a species has been resulted from the strong adaptation ability to the environment, the strong interspecific competition ability and the earlier establishment of the species. Fitting goodness of the mean, I, Iδ, m*/m with probability distributions demonstrated that the mean (density, I, Iδ, and m*/m over all species followed Weibull distribution rather than normal distribution. Lophatherum gracile, Paederia scandens (Lour. Merr., Eleusine indica, and Alternanthera philoxeroides (Mart. Griseb. were mostly aggregative, and Oxalis sp., Eleocharis plantagineiformis, Vernonia cinerea (L. Less., and Sapium sebiferum (L. Roxb, were mostly uniform in the spatial distribution. Importance values (IV showed that Cynodon dactylon was the most important species, seconded by Desmodium triflorum (L. DC., Cajanus scarabaeoides (L. Benth., Paspalum scrobiculatum L., and Rhynchelytrum repens. Oxalis

  20. Silver nanoparticles uptake by salt marsh plants - Implications for phytoremediation processes and effects in microbial community dynamics.

    Science.gov (United States)

    Fernandes, Joana P; Mucha, Ana P; Francisco, Telmo; Gomes, Carlos Rocha; Almeida, C Marisa R

    2017-06-15

    This study investigated the uptake of silver nanoparticles (AgNPs) by a salt marsh plant, Phragmites australis, as well as AgNPs effects on rhizospheric microbial community, evaluating the implications for phytoremediation processes. Experiments were carried out with elutriate solution doped with Ag, either in ionic form or in NP form. Metal uptake was evaluated in plant tissues, elutriate solutions and sediments (by AAS) and microbial community was characterized in terms of bacterial community structure (evaluated by ARISA). Results showed Ag accumulation but only in plant belowground tissues and only in the absence of rhizosediment, the presence of sediment reducing Ag availability. But in plant roots Ag accumulation was higher when Ag was in NP form. Multivariate analysis of ARISA profiles showed significant effect of the absence/presence of Ag either in ionic or NP form on microbial community structure, although without significant differences among bacterial richness and diversity. Overall, P. australis can be useful for phytoremediation of medium contaminated with Ag, including with AgNPs. However, the presence of Ag in either forms affected the microbial community structure, which may cause disturbances in ecosystems function and compromise phytoremediation processes. Such considerations need to be address regarding environmental management strategies applied to the very important estuarine areas. The form in which the metal was added affected metal uptake by Phragmites australis and rhizosediment microbial community structure, which can affect phytoremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Classification and Use of Natural and Anthropogenic Soils by Indigenous Communities of the Upper Amazon Region of Colombia.

    Science.gov (United States)

    Peña-Venegas, C P; Stomph, T J; Verschoor, G; Echeverri, J A; Struik, P C

    Outsiders often oversimplify Amazon soil use by assuming that abundantly available natural soils are poorly suited to agriculture and that sporadic anthropogenic soils are agriculturally productive. Local perceptions about the potentials and limitations of soils probably differ, but information on these perceptions is scarce. We therefore examined how four indigenous communities in the Middle Caquetá River region in the Colombian Amazon classify and use natural and anthropogenic soils. The study was framed in ethnopedology: local classifications, preferences, rankings, and soil uses were recorded through interviews and field observations. These communities recognized nine soils varying in suitability for agriculture. They identified anthropogenic soils as most suitable for agriculture, but only one group used them predominantly for their swiddens. As these communities did not perceive soil nutrient status as limiting, they did not base crop-site selection on soil fertility or on the interplay between soil quality and performance of manioc genetic resources.

  2. A discrimlnant function approach to ecological site classification in northern New England

    Science.gov (United States)

    James M. Fincher; Marie-Louise Smith

    1994-01-01

    Describes one approach to ecologically based classification of upland forest community types of the White and Green Mountain physiographic regions. The classification approach is based on an intensive statistical analysis of the relationship between the communities and soil-site factors. Discriminant functions useful in distinguishing between types based on soil-site...

  3. Effects of Plant Genotype and Growth Stage on the Betaproteobacterial Communities Associated with Different Potato Cultivars in Two Fields

    NARCIS (Netherlands)

    Inceoglu, O.; Salles, J.F.; Overbeek, van L.S.; Elsas, van J.D.

    2010-01-01

    Bacterial communities in the rhizosphere are dynamic and susceptible to changes in plant conditions. Among the bacteria, the betaproteobacteria play key roles in nutrient cycling and plant growth promotion, and hence the dynamics of their community structures in the rhizosphere should be

  4. Special nuclear material information, security classification guidance. Instruction

    International Nuclear Information System (INIS)

    Flickinger, A.

    1982-01-01

    The Instruction reissues DoD Instruction 5210.67, July 5, 1979, and provides security classification guidance for information concerning significant quantities of special nuclear material, other than that contained in nuclear weapons and that used in the production of energy in the reactor plant of nuclear-powered ships. Security classification guidance for these data in the latter two applications is contained in Joint DoE/DoD Nuclear Weapons Classification Guide and Joint DoE/DoD Classification Guide for the Naval Nuclear Propulsion Program

  5. Endemic plants harbour specific Trichoderma communities with an exceptional potential for biocontrol of phytopathogens.

    Science.gov (United States)

    Zachow, Christin; Berg, Christian; Müller, Henry; Monk, Jana; Berg, Gabriele

    2016-10-10

    Trichoderma strains exhibit enormous potential for applications in biotechnology, in particular as biocontrol agents against pathogens. However, little is known about the diversity of plant-associated Trichoderma communities at a global scale and their antagonistic spectrum. In order to gather information about structure and function, we compared Trichoderma biomes of endemic (Aeonium, Diospyros, Hebe, Rhododendron) and cosmopolitan plants (Zea mays) in a global study encompassing the area Northwest Africa to New Zealand via the European Alps and Madagascar. At the quantitative level we found no differences between cosmopolitan and endemic plants. Statistically significant differences were detected at the qualitative level: Trichoderma populations of endemic plants were highly specific and diverse with hot spots appearing in Madagascar and New Zealand. By contrast, maize plants from all sites shared the majority of Trichoderma species (65.5%). Interestingly, the high above ground biodiversity in ecosystems containing endemic plants was confirmed by a high below ground Trichoderma diversity. Despite the differences, we found a global Trichoderma core community shared by all analysed plants, which was dominated by T. koningii and T. koningiopsis. Amplicon-based network analyses revealed a high similarity between maize Trichoderma grown world-wide and distinct populations of endemic plants. Furthermore, Trichoderma strains from endemic plants showed a higher antagonistic activity against fungal pathogens compared to maize-associated strains. Our results showed that endemic plants are associated with a specific Trichoderma microbiome which possesses a high antagonistic activity indicating that it has potential to be used for biocontrol purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Plant Communities Rather than Soil Properties Structure Arbuscular Mycorrhizal Fungal Communities along Primary Succession on a Mine Spoil

    Czech Academy of Sciences Publication Activity Database

    Krüger, C.; Kohout, Petr; Janoušková, M.; Püschel, D.; Frouz, J.; Rydlová, J.

    2017-01-01

    Roč. 8, APR 20 (2017), s. 1-16, č. článku 719. ISSN 1664-302X Institutional support: RVO:61388971 Keywords : biodiversity * community ecology * fungal and plant succession Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.076, year: 2016

  7. The treatment of jaundice with medicinal plants in indigenous communities of the Sub-Himalayan region of Uttarakhand, India.

    Science.gov (United States)

    Sharma, Jyotsana; Gairola, Sumeet; Gaur, R D; Painuli, R M

    2012-08-30

    Inspite of tremendous advances made in allopathic medical practices, herbs still play an important role in the management of various liver diseases. A large number of plants and formulations have been claimed to have hepatoprotective activity. Jaundice is a symptom, indicative of the malfunctioning of the liver. This paper provides ethnomedicinal information on the plants used to treat jaundice by three important indigenous communities, i.e., nomadic Gujjars, Tharu and Bhoxa of Sub-Himalayan region, Uttarakhand, India. To record herbal preparations used by the studied indigenous communities in treatment of jaundice and discuss hepatoprotective properties of the recorded plants. The traditional knowledge of the studied indigenous communities on herbal preparations used for treating jaundice was collected through structured questionnaire and personal interviews. The interviews were conducted with 91 traditional healers (29 Bhoxa, 35 Tharu and 27 nomadic Gujjars) in Sub-Himalayan region of Uttarakhand, India. More than 250 research papers reporting ethnomedicinal information on the hepatoprotective plants used by various communities from different parts of India were extensively reviewed. A total of 40 medicinal plants belonging to 31 families and 38 genera were recorded to be used by the studied communities in 45 formulations as a remedy of jaundice. Bhoxa, nomadic Gujjars and Tharu communities used 15, 23 and 9 plants, respectively. To our knowledge eight plants reported in the present survey viz., Amaranthus spinosus L., Cissampelos pareira L., Ehretia laevis Roxb., Holarrhena pubescens Wall., Ocimum americanum L., Physalis divaricata D. Don, Solanum incanum L. and Trichosanthes cucumerina L. have not been reported earlier as remedy of jaundice in India. Literature review revealed that a total of 214 (belonging to 181 genus and 78 families), 19 (belonging to 18 genus and 12 families) and 14 (belonging to 14 genus and 11 families) plant species are used as internal

  8. Effects of plant diversity on primary production and species interactions in brackish water angiosperm communities

    DEFF Research Database (Denmark)

    Salo, Tiina; Gustafsson, Camilla; Boström, Christoffer

    2009-01-01

    Research on plant biodiversity and ecosystem functioning has mainly focused on terrestrial ecosystems, and our understanding of how plant species diversity and interactions affect processes in marine ecosystems is still limited. To investigate if plant species richness and composition influence...... plant productivity in brackish water angiosperm communities, a 14 wk field experiment was conducted. Using a replacement design with a standardized initial aboveground biomass, shoots of Zostera marina, Potamogeton filiformis and P. perfoliatus were planted on a shallow, sandy bottom in replicated...

  9. Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes.

    Science.gov (United States)

    Hu, Hang-Wei; Wang, Jun-Tao; Singh, Brajesh K; Liu, Yu-Rong; Chen, Yong-Liang; Zhang, Yu-Jing; He, Ji-Zheng

    2018-04-24

    Antibiotic resistance is ancient and prevalent in natural ecosystems and evolved long before the utilization of synthetic antibiotics started, but factors influencing the large-scale distribution patterns of natural antibiotic resistance genes (ARGs) remain largely unknown. Here, a large-scale investigation over 4000 km was performed to profile soil ARGs, plant communities and bacterial communities from 300 quadrats across five forest biomes with minimal human impact. We detected diverse and abundant ARGs in forests, including over 160 genes conferring resistance to eight major categories of antibiotics. The diversity of ARGs was strongly and positively correlated with the diversity of bacteria, herbaceous plants and mobile genetic elements (MGEs). The ARG composition was strongly correlated with the taxonomic structure of bacteria and herbs. Consistent with this strong correlation, structural equation modelling demonstrated that the positive effects of bacterial and herb communities on ARG patterns were maintained even when simultaneously accounting for multiple drivers (climate, spatial predictors and edaphic factors). These findings suggest a paradigm that the interactions between aboveground and belowground communities shape the large-scale distribution of soil resistomes, providing new knowledge for tackling the emerging environmental antibiotic resistance. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Annual glyphosate treatments alter growth of unaffected bentgrass (Agrostis weeds and plant community composition.

    Directory of Open Access Journals (Sweden)

    Collin W Ahrens

    Full Text Available Herbicide resistance is becoming more common in weed ecotypes and crop species including turfgrasses, but current gaps in knowledge limit predictive ecological risk assessments and risk management plans. This project examined the effect of annual glyphosate applications on the vegetative growth and reproductive potential of two weedy bentgrasses, creeping bentgrass (CB and redtop (RT, where the glyphosate resistance (GR trait was mimicked by covering the bentgrass plants during glyphosate application. Five field plots were studied in habitats commonly inhabited by weedy bentgrasses including an agricultural hayfield, natural meadow, and wasteland. Results showed that annual glyphosate treatment improved bentgrass survivorship, vegetative growth, and reproductive potential compared with bentgrass in unsprayed subplots. In the second year of growth, RT plants had an 86-fold increase in flower number in glyphosate-treated subplots versus controls, while CB plants had a 20-fold increase. At the end of the three year study, plant community composition had changed in glyphosate-treated subplots in hayfield and meadow plots compared to controls. Soils in subplots receiving glyphosate had higher nitrate concentrations than controls. This is the first study to mimic the GR trait in bentgrass plants with the goal of quantifying bentgrass response to glyphosate selection pressure and understanding the impacts on surrounding plant communities.

  11. High specificity but contrasting biodiversity of Sphagnum-associated bacterial and plant communities in bog ecosystems independent of the geographical region.

    Science.gov (United States)

    Opelt, Katja; Berg, Christian; Schönmann, Susan; Eberl, Leo; Berg, Gabriele

    2007-10-01

    Mosses represent ecological niches that harbor a hitherto largely uncharacterized microbial diversity. To investigate which factors affect the biodiversity of bryophyte-associated bacteria, we analyzed the bacterial communities associated with two moss species, which exhibit different ecological behaviors and importance in bog ecosystems, Sphagnum magellanicum and Sphagnum fallax, from six temperate and boreal bogs in Germany and Norway. Furthermore, their surrounding plant communities were studied. Molecular analysis of bacterial communities was determined by single-strand conformation polymorphism (SSCP) analysis using eubacterial and genus-specific primers for the dominant genera Burkholderia and Serratia as well as by sequence analysis of a Burkholderia 16S rRNA gene clone library. Plant communities were analyzed by monitoring the abundance and composition of bryophyte and vascular plant species, and by determining ecological indicator values. Interestingly, we found a high degree of host specificity for associated bacterial and plant communities of both Sphagnum species independent of the geographical region. Calculation of diversity indices on the basis of SSCP gels showed that the S. fallax-associated communities displayed a statistically significant higher degree of diversity than those associated with S. magellanicum. In contrast, analyses of plant communities of Sphagnum-specific habitats resulted in a higher diversity of S. magellanicum-specific habitats for all six sites. The higher content of nutrients in the S. fallax-associated ecosystems can explain higher diversity of microorganisms.

  12. Prognoses of plant community changes in the territories not used for agriculture after the accident at the Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    Timofeev, S.F.; Podolyak, A.G.; Avseenko, S.V.; Sapegin, L.M.; Dayneko, N.M.

    1997-01-01

    Science-research in the zones of eviction in the Bragin district of the Gomel region confirms interdependence between development of plants' communities and such factors as type of soil, kind of agricultural field, the term of nonuse. The study of vegetation change on the former fields, represented by turf-podsol soil, indicates that plant community has by now been formed on it, in which out of 100% projection cover prevail Artemisia absinthium L., - 40%, Artemisia campestris L. -20%, Artemisia vulgaris L. -5%, Elytrigia repens (L.) Nevski - 30%. On lower lots, represented by turf-podsol swampy soil, prevail Elytrigia repens - 60%, Artemisia absinthium -20%, Erigeron canadensis - 10%. So, on the unused arable land the tendency to form communities of Elytrigia repens is observed. In 10-15 years there may be a community here, consisting of bunch-grasses an densely turfed grasses. On the haymaking and pasture meadows, sowing plants are replaced by rhizome bunch-grasses (Poa pratensis L.) rhizome (Elytrigia repens) and diverse grasses (Artemisia absinthium, Achillea millefolium, Erigeron canadensis and others). On sowing meadows, situated on peat-swamp soil, Urtica dioica L. took root. It formed powerful herbage with 80-90% projection cover, which prevents the renewing of grasses. Only after gradual decrease of Urtica dioica there will appear different grasses, as well as rhisome grasses. In future this land can be used for haymaking. It is impossible to use this kind of soil without herbicides in large quantity, which may create additional problems of ecological character

  13. The traditional knowledge about melitophile plants in rural communities in the city of Sigefredo Pacheco, Piauí

    Directory of Open Access Journals (Sweden)

    Ederson de Sousa Martins

    2017-07-01

    Full Text Available The knowledge about plants with melitophile potential is highlighted in the research field, this way; these pieces of information are collected in the rural areas. Thus, ethnobotany, which studies the relation between human groups and plants, is fundamental, because it brings information about the species visited by bees as well as beekeepers and meliponiculturers, helping with environmental protection, especially native tree species and different bee groups. The objective of this study was to conduct an ethnobotanical survey about the knowledge the residents of two rural communities in the city of  Sigrefredo Pacheco, state of Piauí, about melitophile plants. The study was conducted through interviews in every house (41 of the two communities, totalizing 69 interviewees. 31 species were cited, and the family Leguminosae was highlighted.the most cited species were: Croton blanchetianus Baill. (25 and Hyptis suaveolens (L. Poit. (25, in which the native species stood out (77,4%. It is possible to observe that the younger portion had the smaller participation and about gender, it is noticeable that men presented a major number of citation addressing plants than women. The study concludes that the knowledge of melitophile plants is present among the residents of the communities, that they know the profitable practices to the conservation of the melitophile flora, though; they are not overspread in the community. It is necessary to know more and more the knowledge about apicultural flora in rural communities, in order to rescue and value this knowledge, as well as local conservation measures.

  14. Inductive classification of operating data from a fluidized bed calciner

    International Nuclear Information System (INIS)

    O'Brien, B.H.

    1990-01-01

    A process flowsheet expert system for a fluidized bed calciner which solidifies high-level radioactive liquid waste was developed from pilot-plant data using a commercial, inductive classification program. After initial classification of the data, the resulting rules were inspected and adjusted to match existing knowledge of process chemistry. The final expert system predicts performance of process flowsheets based upon the chemical composition of the calciner feed and has been successfully used to identify potential operational problems prior to calciner pilot-plant testing of new flowsheets and to provide starting parameters for pilot-plant tests. By using inductive classification techniques to develop the initial rules from the calciner pilot-plant data and using existing process knowledge to verify the accuracy of these rules, an effective expert system was developed with a minimum amount of effort. This method may be applied for developing expert systems for other processes where numerous operating data are available and only general process chemistry effects are known

  15. Responses of plant community composition and biomass production to warming and nitrogen deposition in a temperate meadow ecosystem.

    Science.gov (United States)

    Zhang, Tao; Guo, Rui; Gao, Song; Guo, Jixun; Sun, Wei

    2015-01-01

    Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China.

  16. Evolution of resistance to a multiple-herbivore community: genetic correlations, diffuse coevolution, and constraints on the plant's response to selection.

    Science.gov (United States)

    Wise, Michael J; Rausher, Mark D

    2013-06-01

    Although plants are generally attacked by a community of several species of herbivores, relatively little is known about the strength of natural selection for resistance in multiple-herbivore communities-particularly how the strength of selection differs among herbivores that feed on different plant organs or how strongly genetic correlations in resistance affect the evolutionary responses of the plant. Here, we report on a field study measuring natural selection for resistance in a diverse community of herbivores of Solanum carolinense. Using linear phenotypic-selection analyses, we found that directional selection acted to increase resistance to seven species. Selection was strongest to increase resistance to fruit feeders, followed by flower feeders, then leaf feeders. Selection favored a decrease in resistance to a stem borer. Bootstrapping analyses showed that the plant population contained significant genetic variation for each of 14 measured resistance traits and significant covariances in one-third of the pairwise combinations of resistance traits. These genetic covariances reduced the plant's overall predicted evolutionary response for resistance against the herbivore community by about 60%. Diffuse (co)evolution was widespread in this community, and the diffuse interactions had an overwhelmingly constraining (rather than facilitative) effect on the plant's evolution of resistance. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  17. TALL-FORB COMMUNITIES OF THE NORTH ALTAI

    Directory of Open Access Journals (Sweden)

    N. ERMAKOV

    2003-06-01

    Full Text Available Classification of tall-forb vegetation of the Altai using the Braun-Blanquet approach was carried out on the basis of a wide ranging set o[ data from different altitudinal belts. Three main phytosociological types of the tall-forb communities were distinguished within the class MulgedioAconitetea, order Tmllio - Crepidetalia due to performed syntaxonomic analysis. The thermophilous tall-forb communities occurring in the subnemoral belt at altitudes of 259-700 m were included in the alliance Cacalio hastatae - Aconition septentrionalis all. nova. The montain tall-forb meadows of the dark-coniferous taiga belt (altitudes of 800-1700 m were included in the alliance Triseto sibiricae-Aconirlon septentrionalis all. prov. The moderately cryophilous subalpine tall-forb communities widespread at the upper boundary of the forest belt at altitudes of 1000-1900 m were included in the alliance Rhaponticion carthamoidis. Altaian tall-forb vegetation shows a distinct phytosociological and plant geographical unity with European subalpine communities but the closeness of the floristic relations varies in certain altitudinal groups. Most thermophilous tall-forb Siberian meadows of the alliance Cacalio-Aconition which occur at lower altitudes demonstrate strong plant geographical relations with North and Central European meadows of the Adenostyletalia. Gradual decrease of the European floristic relations in the Altaian tall-forb meadows at higher altitudes is shown.

  18. Local wisdom of Cikondang village community in the utilization of medicinal plants

    Science.gov (United States)

    Mulyani, Y.; Munandar, A.; Nuraeni, E.

    2018-05-01

    This study aims to analyze local wisdom Cikondang community in the use of medicinal plants. This research used qualitative method with emic and ethical approach to explain the relationship of public knowledge about the type and utilization of medicinal plants in the view of science. Determination of respondents conducted by purposive sampling, taken 30% of the total respondent. The data of the knowledge of the use of medicinal plants obtained through interview techniques as many as 39 respondents. Cikondang people know 27 known medicinal plants and commonly used. Zingiberaceae family has a type that is more widely used as a medicinal plant. The most widely used plant part is leaf and medicinal plant processing which mostly done by boiling. The species with the highest value of use is owned by Curcuma longa L. with a value of 4.28, which states important species / priorities, while the species with the lowest SUV value is Aracchis hypogaea L. of 0.15, which states species are less important and can be replaced by other plants.

  19. Microbial community dynamics and transformation of vascular plant detritus in two wetland ecosystems

    International Nuclear Information System (INIS)

    Moran, M.A.

    1987-01-01

    The microbial ecology of two wetland ecosystems in southeastern Georgia, USA, was studied with respect to microbial community dynamics and microbially-mediated transformations of vascular plant detritus. In the Okefenokee Swamp, biomass of microorganisms in the water column and sediments was generally lower in winter months and higher during spring and summer. Biomass and activity (measured as 14 C-lignocellulose mineralization) differed significantly among five habitats within the Okefenokee, and also among locations within each habitat. Significant heterogeneity in the structure of Okefenokee microbial communities was found at scales from 30 cm to 150 m. In field and laboratory studies of vascular plant decomposition in the Okefenokee and a salt marsh on Sapelo Island, the mathematical model which best describes decomposition kinetics is the decaying coefficient model

  20. A risk informed safety classification for a Nordic NPP

    International Nuclear Information System (INIS)

    Jaenkaelae, K.

    2002-01-01

    The report describes a study to develop a safety classification proposal or classi- fication recommendations based on risks for selected equipment of a nuclear power plant. The application plant in this work is Loviisa NPP unit 1. The safety classification proposals are to be considered as an exercise in this pilot study and do not necessarily represent final proposals in a real situation. Comparisons to original safety classifications and technical specifications were made. The study concludes that it is possible to change safety classes or safety signifi- cances as considered in technical specifications and in in-service-inspections into both directions without endangering the safety or even by improving the safety. (au)

  1. The Classification of Living Things: Nature in the Classroom.

    Science.gov (United States)

    Doyle, Charles

    1982-01-01

    Use of a classification system in teaching biology is presented as a concept aiding students' understanding of the diversity of plants and animals. The principles of classification are summarized and six learning strategies are given to show relationships among groups. (CM)

  2. Diversity and classification of mycorrhizal associations.

    Science.gov (United States)

    Brundrett, Mark

    2004-08-01

    Most mycorrhizas are 'balanced' mutualistic associations in which the fungus and plant exchange commodities required for their growth and survival. Myco-heterotrophic plants have 'exploitative' mycorrhizas where transfer processes apparently benefit only plants. Exploitative associations are symbiotic (in the broad sense), but are not mutualistic. A new definition of mycorrhizas that encompasses all types of these associations while excluding other plant-fungus interactions is provided. This definition recognises the importance of nutrient transfer at an interface resulting from synchronised plant-fungus development. The diversity of interactions between mycorrhizal fungi and plants is considered. Mycorrhizal fungi also function as endophytes, necrotrophs and antagonists of host or non-host plants, with roles that vary during the lifespan of their associations. It is recommended that mycorrhizal associations are defined and classified primarily by anatomical criteria regulated by the host plant. A revised classification scheme for types and categories of mycorrhizal associations defined by these criteria is proposed. The main categories of vesicular-arbuscular mycorrhizal associations (VAM) are 'linear' or 'coiling', and of ectomycorrhizal associations (ECM) are 'epidermal' or 'cortical'. Subcategories of coiling VAM and epidermal ECM occur in certain host plants. Fungus-controlled features result in 'morphotypes' within categories of VAM and ECM. Arbutoid and monotropoid associations should be considered subcategories of epidermal ECM and ectendomycorrhizas should be relegated to an ECM morphotype. Both arbuscules and vesicles define mycorrhizas formed by glomeromycotan fungi. A new classification scheme for categories, subcategories and morphotypes of mycorrhizal associations is provided.

  3. Supervised learning classification models for prediction of plant virus encoded RNA silencing suppressors.

    Directory of Open Access Journals (Sweden)

    Zeenia Jagga

    Full Text Available Viral encoded RNA silencing suppressor proteins interfere with the host RNA silencing machinery, facilitating viral infection by evading host immunity. In plant hosts, the viral proteins have several basic science implications and biotechnology applications. However in silico identification of these proteins is limited by their high sequence diversity. In this study we developed supervised learning based classification models for plant viral RNA silencing suppressor proteins in plant viruses. We developed four classifiers based on supervised learning algorithms: J48, Random Forest, LibSVM and Naïve Bayes algorithms, with enriched model learning by correlation based feature selection. Structural and physicochemical features calculated for experimentally verified primary protein sequences were used to train the classifiers. The training features include amino acid composition; auto correlation coefficients; composition, transition, and distribution of various physicochemical properties; and pseudo amino acid composition. Performance analysis of predictive models based on 10 fold cross-validation and independent data testing revealed that the Random Forest based model was the best and achieved 86.11% overall accuracy and 86.22% balanced accuracy with a remarkably high area under the Receivers Operating Characteristic curve of 0.95 to predict viral RNA silencing suppressor proteins. The prediction models for plant viral RNA silencing suppressors can potentially aid identification of novel viral RNA silencing suppressors, which will provide valuable insights into the mechanism of RNA silencing and could be further explored as potential targets for designing novel antiviral therapeutics. Also, the key subset of identified optimal features may help in determining compositional patterns in the viral proteins which are important determinants for RNA silencing suppressor activities. The best prediction model developed in the study is available as a

  4. Effects of Nonnative Ungulate Removal on Plant Communities and Soil Biogeochemistry in Tropical Forests

    Science.gov (United States)

    Cole, R. J.; Litton, C. M.; Giardina, C. P.; Sparks, J. P.

    2014-12-01

    Non-native ungulates have substantial impacts on native ecosystems globally, altering both plant communities and soil biogeochemistry. Across tropical and temperate ecosystems, land managers fence and remove non-native ungulates to conserve native biodiversity, a costly management action, yet long-term outcomes are not well quantified. Specifically, knowledge gaps include: (i) the magnitude and time frame of plant community recovery; (ii) the response of non-native invasive plants; and (iii) changes to soil biogeochemistry. In 2010, we established a series of paired ungulate presence vs. removal plots that span a 20 yr. chronosequence in tropical montane wet forests on the Island of Hawaii to quantify the impacts and temporal legacy of feral pig removal on plant communities and soil biogeochemistry. We also compared soil biogeochemistry in targeted areas of low and high feral pig impact. Our work shows that both native and non-native vegetation respond positively to release from top-down control following removal of feral pigs, but species of high conservation concern recover only if initially present at the time of non-native ungulate removal. Feral pig impacts on soil biogeochemistry appear to last for at least 20 years following ungulate removal. We observed that both soil physical and chemical properties changed with feral pig removal. Soil bulk density and volumetric water content decreased while extractable base cations and inorganic N increased in low vs. high feral pig impact areas. We hypothesize that altered soil biogeochemistry facilitates continued invasions by non-native plants, even decades after non-native ungulate removal. Future work will concentrate on comparisons between wet and dry forest ecosystems and test whether manipulation of soil nutrients can be used to favor native vs. non-native plant establishment.

  5. Discussion on the safety classification of nuclear safety mechanical equipment

    International Nuclear Information System (INIS)

    Shen Wei

    2010-01-01

    The purpose and definition of the equipment safety classification in nuclear plant are introduced. The differences of several safety classification criterions are compared, and the object of safety classification is determined. According to the regulation, the definition and category of the safety functions are represented. The safety classification method, safety classification process, safety class interface, and the requirement for the safety class mechanical equipment are explored. At last, the relation of the safety classification between the mechanical and electrical equipment is presented, and the relation of the safety classification between mechanical equipment and system is also presented. (author)

  6. [Interrelations between plant communities and environmental factors of wetlands and surrounding lands in mid- and lower reaches of Tarim River].

    Science.gov (United States)

    Zhao, Ruifeng; Zhou, Huarong; Qian, Yibing; Zhang, Jianjun

    2006-06-01

    A total of 16 quadrants of wetlands and surrounding lands in the mid- and lower reaches of Tarim River were surveyed, and the data about the characteristics of plant communities and environmental factors were collected and counted. By using PCA (principal component analysis) ordination and regression procedure, the distribution patterns of plant communities and the relationships between the characteristics of plant community structure and environmental factors were analyzed. The results showed that the distribution of the plant communities was closely related to soil moisture, salt, and nutrient contents. The accumulative contribution rate of soil moisture and salt contents in the first principal component accounted for 35.70%, and that of soil nutrient content in the second principal component reached 25.97%. There were 4 types of habitats for the plant community distribution, i. e., fenny--light salt--medium nutrient, moist--medium salt--medium nutrient, mesophytic--medium salt--low nutrient, and medium xerophytic-heavy salt--low nutrient. Along these habitats, swamp vegetation, meadow vegetation, riparian sparse forest, halophytic desert, and salinized shrub were distributed. In the wetlands and surrounding lands of mid- and lower reaches of Tarim River, the ecological dominance of the plant communities was markedly and unitary-linearly correlated with the compound gradient of soil moisture and salt contents. The relationships between species diversity, ecological dominance, and compound gradient of soil moisture and salt contents were significantly accorded to binary-linear regression model.

  7. A statistical approach to root system classification.

    Directory of Open Access Journals (Sweden)

    Gernot eBodner

    2013-08-01

    Full Text Available Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for plant functional type identification in ecology can be applied to the classification of root systems. We demonstrate that combining principal component and cluster analysis yields a meaningful classification of rooting types based on morphological traits. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. Biplot inspection is used to determine key traits and to ensure stability in cluster based grouping. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Three rooting types emerged from measured data, distinguished by diameter/weight, density and spatial distribution respectively. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement

  8. Contribution of above- and below-ground plant traits to the structure and function of grassland soil microbial communities.

    Science.gov (United States)

    Legay, N; Baxendale, C; Grigulis, K; Krainer, U; Kastl, E; Schloter, M; Bardgett, R D; Arnoldi, C; Bahn, M; Dumont, M; Poly, F; Pommier, T; Clément, J C; Lavorel, S

    2014-10-01

    Abiotic properties of soil are known to be major drivers of the microbial community within it. Our understanding of how soil microbial properties are related to the functional structure and diversity of plant communities, however, is limited and largely restricted to above-ground plant traits, with the role of below-ground traits being poorly understood. This study investigated the relative contributions of soil abiotic properties and plant traits, both above-ground and below-ground, to variations in microbial processes involved in grassland nitrogen turnover. In mountain grasslands distributed across three European sites, a correlative approach was used to examine the role of a large range of plant functional traits and soil abiotic factors on microbial variables, including gene abundance of nitrifiers and denitrifiers and their potential activities. Direct effects of soil abiotic parameters were found to have the most significant influence on the microbial groups investigated. Indirect pathways via plant functional traits contributed substantially to explaining the relative abundance of fungi and bacteria and gene abundances of the investigated microbial communities, while they explained little of the variance in microbial activities. Gene abundances of nitrifiers and denitrifiers were most strongly related to below-ground plant traits, suggesting that they were the most relevant traits for explaining variation in community structure and abundances of soil microbes involved in nitrification and denitrification. The results suggest that consideration of plant traits, and especially below-ground traits, increases our ability to describe variation in the abundances and the functional characteristics of microbial communities in grassland soils. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Leaf-litter microfungal community on poor fen plant debris in Torfy Lake area (Central Poland

    Directory of Open Access Journals (Sweden)

    Mateusz Wilk

    2014-06-01

    Full Text Available The purpose of this study was to initially evaluate the species diversity of microfungi growing on litter of 15 plant species occurring on the poor fen and neighbouring area of the Torfy Lake, Masovian voivodeship, Poland. The lake is located near the planned road investment (construction of the Warsaw southern express ring road S2. The place is biologically valuable as there are rare plant communities from Rhynchosporion albae alliance protected under the Habitats Directive adopted by the European Union. On the examined plant debris 73 taxa of fungi were recorded (3 basidiomycetes, 13 ascomycetes, 2 zygomycetes, 43 anamorphic ascomycetes, 12 unidentified. Two of them, Dicranidion sp. and Wentiomyces sp. are presented here as new to Poland. Among the plant species examined, the litter of Rhododendron tomentosum harbored the highest number of fungal taxa (16. The highest percents of substrate-specific microfungi (i.e. recorded only on one plant species was noted on R. tomentosum (81.3 %, and Pteridium aquilinum (75%. It is emphasized that the lake area should be protected not only because of rare plant community but also because of the uniqueness and diversity of mycobiota.

  10. CO2, Temperature, and Soil Moisture Interactions Affect NDVI and Reproductive Phenology in Old-Field Plant Communities

    Science.gov (United States)

    Engel, C.; Weltzin, J.; Norby, R.

    2004-12-01

    Plant community composition and ecosystem function may be altered by global atmospheric and climate change, including increased atmospheric [CO2], temperature, and varying precipitation regimes. We are conducting an experiment at Oak Ridge National Laboratory (ORNL) utilizing open-top chambers to administer experimental treatments of elevated CO2 (+300 ppm), warming (+ 3 degrees Celsius), and varying soil moisture availability to experimental plant communities constructed of seven common old-field species, including C3 and C4 grasses, forbs, and legumes. During 2004 we monitored plant community phenology (NDVI) and plant reproductive phenology. Early in the year, NDVI was greater in wet treatment plots, and was unaffected by main effects of temperature or CO2. This result suggests that early in the season warming is insufficient to affect early canopy development. Differences in soil moisture sustained throughout the winter and into early spring may constitute an important control on early canopy greenup. Elevated CO2 alleviated detrimental effects of warming on NDVI, but only early in the season. As ambient temperatures increased, elevated temperatures negatively impacted NDVI only in the dry plots. Wetter conditions ameliorate the effects of warming on canopy greenness during the warmer seasons of the year. Warming increased rates of bolting, number of inflorescences, and time to reproductive maturity for Andropogon virginicus (a C4 bunchgrass). Solidago Canadensis (a C3 late-season forb) also produced flowers earlier in elevated temperatures. Conversely, none of the C3 grasses and forbs that bolt or flower in late spring or early summer responded to temperature or CO2. Results indicate that warming and drought may impact plant community phenology, and plant species reproductive phenology. Clearly community phenology is driven by complex interactions among temperature, water, and CO2 that change throughout the season. Our data stresses the importance of

  11. Gender-related traits in the dioecious shrub Empetrum rubrum in two plant communities in the Magellanic steppe

    Science.gov (United States)

    Díaz-Barradas, Mari Cruz; Zunzunegui, María; Collantes, Marta; Álvarez-Cansino, Leonor; García Novo, Francisco

    2014-10-01

    Following the theory on costs of reproduction, sexually dimorphic plants may exhibit several trade-offs in energy and resources that can determine gender dimorphism in morphological or physiological traits, especially during the reproductive period. In this study we assess whether the sexes of the dioecious species Empetrum rubrum differ in morphological and ecophysiological traits related to water economy and photochemical efficiency and whether these differences change in nearby populations with contrasting plant communities. We conducted physiological, morphological, sex ratio, and cover measurements in E. rubrum plants in the Magellanic steppe, North-Eastern part of Tierra del Fuego (Argentina), from two types of heathlands with differing community composition. We found differences between sites in soil pH and wind speed at the canopy level. E. rubrum plants exhibited lower photosynthetic height and higher LAI (leaf area index), lower RWC (relative water content) and higher water-use efficiency (lower Δ13C) in the heathland with harsher environmental conditions. Gender dimorphism in the physiological response was patent for photochemical efficiency and water use (RWC and Δ13C discrimination), with males showing a more conservative strategy in relation to females. Accordingly, male-biased sex ratio in the stress-prone community suggested a better performance of male plants under stressful environmental conditions. The integrated analysis of all variables (photochemical efficiency, RWC, leaf dry matter content (LDMC), pigments, and Δ13C) indicated an interaction between gender and heathland community effects in the physiological response. We suggest that female plants may exhibit compensatory mechanisms to face their higher reproductive costs.

  12. An ethnomedicinal survey of a Tashelhit-speaking community in the High Atlas, Morocco.

    Science.gov (United States)

    Teixidor-Toneu, Irene; Martin, Gary J; Ouhammou, Ahmed; Puri, Rajindra K; Hawkins, Julie A

    2016-07-21

    Traditional knowledge about medicinal plants from a poorly studied region, the High Atlas in Morocco, is reported here for the first time; this permits consideration of efficacy and safety of current practises whilst highlighting species previously not known to have traditional medicinal use. Our study aims to document local medicinal plant knowledge among Tashelhit speaking communities through ethnobotanical survey, identifying preferred species and new medicinal plant citations and illuminating the relationship between emic and etic ailment classifications. Ethnobotanical data were collected using standard methods and with prior informed consent obtained before all interactions, data were characterized using descriptive indices and medicinal plants and healing strategies relevant to local livelihoods were identified. 151 vernacular names corresponding to 159 botanical species were found to be used to treat 36 folk ailments grouped in 14 biomedical use categories. Thirty-five (22%) are new medicinal plant records in Morocco, and 26 described as used for the first time anywhere. Fidelity levels (FL) revealed low specificity in plant use, particularly for the most commonly reported plants. Most plants are used in mixtures. Plant use is driven by local concepts of disease, including "hot" and "cold" classification and beliefs in supernatural forces. Local medicinal plant knowledge is rich in the High Atlas, where local populations still rely on medicinal plants for healthcare. We found experimental evidence of safe and effective use of medicinal plants in the High Atlas; but we highlight the use of eight poisonous species. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Sustainable utilization and conservation of plant biodiversity in montane ecosystems: the western Himalayas as a case study.

    Science.gov (United States)

    Khan, Shujaul Mulk; Page, Sue E; Ahmad, Habib; Harper, David M

    2013-08-01

    Conservation of the unique biodiversity of mountain ecosystems needs trans-disciplinary approaches to succeed in a crowded colloquial world. Geographers, conservationists, ecologists and social scientists have, in the past, had the same conservation goals but have tended to work independently. In this review, the need to integrate different conservation criteria and methodologies is discussed. New criteria are offered for prioritizing species and habitats for conservation in montane ecosystems that combine both ecological and social data. Ecological attributes of plant species, analysed through robust community statistical packages, provide unbiased classifications of species assemblages and environmental biodiversity gradients and yield importance value indices (IVIs). Surveys of local communities' utilization of the vegetation provides use values (UVs). This review suggests a new means of assessing anthropogenic pressure on plant biodiversity at both species and community levels by integrating IVI and UV data sets in a combined analysis. Mountain ecosystems are hot spots for plant conservation efforts because they hold a high overall plant diversity as communities replace each other along altitudinal and climatic gradients, including a high proportion of endemic species. This review contributes an enhanced understanding of (1) plant diversity in mountain ecosystems with special reference to the western Himalayas; (2) ethnobotanical and ecosystem service values of mountain vegetation within the context of anthropogenic impacts; and (3) local and regional plant conservation strategies and priorities.

  14. Nuclear power plants - Instrumentation and control systems important for safety - Classification (International Electrotechnical Commission Standard Publication 1226:1993)

    International Nuclear Information System (INIS)

    Stefanik, J.

    1996-01-01

    This international standard established a method of classification of the information and command functions for nuclear power plants, and the I and C and equipment that provide those functions, into categories that designate the importance for safety of the functions, and the associated systems and equipment. The resulting classification then determines relevant design criteria. The design criteria are the measures of quality by which the adequacy of each functions, and the associated systems and equipment in relation to its importance to plant safety is ensured. In this standard, the criteria are those of functionality, reliability, performance, environmental durability and quality assurance. This standard is applicable to all the information and command functions, and the instrumentation and control systems and equipment that provide those functions. The functions, systems and equipment under consideration provide automated protection, closed or open loop control, and information to the operating staff. They keep the NPP conditions inside the safe operating envelope and provide automatic actions, or enable manual actions, that mitigate accidents or prevent or minimize radioactive releases to the site or wider environment. The functions, and the associated systems and equipment that fulfill these roles safeguard the health and safety of the NPP operators and the public. This standard complements, and does not replace or supersede, the Safety Guides and Codes of Practice published by the International Atomic Energy Agency

  15. Forest Plant community changes during 1989-2007 in response to climate warming in the Jura Mountains (France and Switzerland)

    DEFF Research Database (Denmark)

    Lenoir, Jonathan; Gégout, J.C.; Dupouey, J.L.

    2010-01-01

    Question: How strong are climate warming-driven changes within mid-elevation forest communities? Observations of plant community change within temperate mountain forest ecosystems in response to recent warming are scarce in comparison to high-elevation alpine and nival ecosystems, perhaps...... reflecting the confounding influence of forest stand dynamics. Location: Jura Mountains (France and Switzerland). Methods: We assessed changes in plant community composition by surveying 154 Abies alba forest vegetation relevés (550-1,350 m a.s.l.) in 1989 and 2007. Over this period, temperatures increased...... while precipitation did not change. Correspondence analysis (CA) and ecological indicator values were used to measure changes in plant community composition. Relevés in even- and uneven-aged stands were analysed separately to determine the influence of forest stand dynamics. We also analysed changes...

  16. Properties of Soil Pore Space Regulate Pathways of Plant Residue Decomposition and Community Structure of Associated Bacteria

    Science.gov (United States)

    Negassa, Wakene C.; Guber, Andrey K.; Kravchenko, Alexandra N.; Marsh, Terence L.; Hildebrandt, Britton; Rivers, Mark L.

    2015-01-01

    Physical protection of soil carbon (C) is one of the important components of C storage. However, its exact mechanisms are still not sufficiently lucid. The goal of this study was to explore the influence of soil structure, that is, soil pore spatial arrangements, with and without presence of plant residue on (i) decomposition of added plant residue, (ii) CO2 emission from soil, and (iii) structure of soil bacterial communities. The study consisted of several soil incubation experiments with samples of contrasting pore characteristics with/without plant residue, accompanied by X-ray micro-tomographic analyses of soil pores and by microbial community analysis of amplified 16S–18S rRNA genes via pyrosequencing. We observed that in the samples with substantial presence of air-filled well-connected large (>30 µm) pores, 75–80% of the added plant residue was decomposed, cumulative CO2 emission constituted 1,200 µm C g-1 soil, and movement of C from decomposing plant residue into adjacent soil was insignificant. In the samples with greater abundance of water-filled small pores, 60% of the added plant residue was decomposed, cumulative CO2 emission constituted 2,000 µm C g-1 soil, and the movement of residue C into adjacent soil was substantial. In the absence of plant residue the influence of pore characteristics on CO2 emission, that is on decomposition of the native soil organic C, was negligible. The microbial communities on the plant residue in the samples with large pores had more microbial groups known to be cellulose decomposers, that is, Bacteroidetes, Proteobacteria, Actinobacteria, and Firmicutes, while a number of oligotrophic Acidobacteria groups were more abundant on the plant residue from the samples with small pores. This study provides the first experimental evidence that characteristics of soil pores and their air/water flow status determine the phylogenetic composition of the local microbial community and directions and magnitudes of soil C

  17. Properties of soil pore space regulate pathways of plant residue decomposition and community structure of associated bacteria.

    Science.gov (United States)

    Negassa, Wakene C; Guber, Andrey K; Kravchenko, Alexandra N; Marsh, Terence L; Hildebrandt, Britton; Rivers, Mark L

    2015-01-01

    Physical protection of soil carbon (C) is one of the important components of C storage. However, its exact mechanisms are still not sufficiently lucid. The goal of this study was to explore the influence of soil structure, that is, soil pore spatial arrangements, with and without presence of plant residue on (i) decomposition of added plant residue, (ii) CO2 emission from soil, and (iii) structure of soil bacterial communities. The study consisted of several soil incubation experiments with samples of contrasting pore characteristics with/without plant residue, accompanied by X-ray micro-tomographic analyses of soil pores and by microbial community analysis of amplified 16S-18S rRNA genes via pyrosequencing. We observed that in the samples with substantial presence of air-filled well-connected large (>30 µm) pores, 75-80% of the added plant residue was decomposed, cumulative CO2 emission constituted 1,200 µm C g(-1) soil, and movement of C from decomposing plant residue into adjacent soil was insignificant. In the samples with greater abundance of water-filled small pores, 60% of the added plant residue was decomposed, cumulative CO2 emission constituted 2,000 µm C g(-1) soil, and the movement of residue C into adjacent soil was substantial. In the absence of plant residue the influence of pore characteristics on CO2 emission, that is on decomposition of the native soil organic C, was negligible. The microbial communities on the plant residue in the samples with large pores had more microbial groups known to be cellulose decomposers, that is, Bacteroidetes, Proteobacteria, Actinobacteria, and Firmicutes, while a number of oligotrophic Acidobacteria groups were more abundant on the plant residue from the samples with small pores. This study provides the first experimental evidence that characteristics of soil pores and their air/water flow status determine the phylogenetic composition of the local microbial community and directions and magnitudes of soil C

  18. Mediterranean coastal dune systems: Which abiotic factors have the most influence on plant communities?

    Science.gov (United States)

    Ruocco, Matteo; Bertoni, Duccio; Sarti, Giovanni; Ciccarelli, Daniela

    2014-08-01

    Mediterranean coastal dunes are dynamic and heterogeneous ecosystems characterised by a strong interaction between abiotic and biotic factors. The present study aimed to adopt a multidisciplinary approach - integrating data on dune morphology, sediment texture and soil parameters as well as shoreline trend - in order to define which are the abiotic factors that most affect the distribution and composition of Mediterranean plant dune communities. The study was carried out in two protected areas, located in central Italy, subjected to different shoreline trends in recent years. 75 plots were identified along eleven randomly positioned cross-shore transects, starting from the beach continuing up to the plant communities of the backdunes. In each plot floristic and environmental data - such as distance to the coastline, plot altitude, inclination, shoreline trend, mean grain-size, sorting, pH, conductivity and organic matter concentration - were collected. The analyses revealed significant changes of vegetational cover, dune morphology and geopedological features along the coast-to-inland gradient. Relationships between vegetation composition and environmental factors were investigated through Canonical Correspondence Analysis (CCA). Four factors - distance to the coastline, mean grain-size, shoreline trend and organic matter - were found to be closely correlated with the floristic composition of plant communities. Finally, soil properties were highlighted as the most determinant factors of community zonation in these Mediterranean coastal dune ecosystems. These results could be taken into account by local managers in conservation actions such as protecting the eroding foredunes as well as in artificial dune reconstructions.

  19. Convergence in mycorrhizal fungal communities due to drought, plant competition, parasitism and susceptibility to herbivory: Consequences for fungi and host plants

    Directory of Open Access Journals (Sweden)

    Catherine A. Gehring

    2014-06-01

    Full Text Available Plants and mycorrhizal fungi influence each other’s abundance, diversity and distribution. How other biotic interactions affect the mycorrhizal symbiosis is less well understood. Likewise, we know little about the effects of climate change on the fungal component of the symbiosis or its function. We synthesized our long-term studies on the influence of mistletoe parasites, insect herbivores, competing trees, and drought on the ectomycorrhizal fungal communities associated with a foundation tree species of the southwestern United States, pinyon pine (Pinus edulis, and described how these changes feed back to affect host plant performance. We found that drought and all three of the biotic interactions studied resulted in similar shifts in ectomycorrhizal fungal community composition, demonstrating a convergence of the community towards dominance by a few closely related fungal taxa. Ectomycorrhizal fungi responded similarly to each of these stressors resulting in a predictable trajectory of community disassembly, consistent with ecological theory. Although we predicted that the fungal communities associated with trees stressed by drought, herbivory, competition, and parasitism would be poor mutualists, we found the opposite pattern in field studies. Our results suggest that climate change and the increased importance of herbivores, competitors and parasites that can be associated with it, may ultimately lead to reductions in ectomycorrhizal fungal diversity, but that the remaining fungal community may be beneficial to host trees under the current climate and the warmer, drier climate predicted for the future.

  20. Meta-scale mountain grassland observatories uncover commonalities as well as specific interactions among plant and non-rhizosphere soil bacterial communities.

    Science.gov (United States)

    Yashiro, Erika; Pinto-Figueroa, Eric; Buri, Aline; Spangenberg, Jorge E; Adatte, Thierry; Niculita-Hirzel, Helene; Guisan, Antoine; van der Meer, Jan Roelof

    2018-04-10

    Interactions between plants and bacteria in the non-rhizosphere soil are rarely assessed, because they are less direct and easily masked by confounding environmental factors. By studying plant vegetation alliances and soil bacterial community co-patterning in grassland soils in 100 sites across a heterogeneous mountain landscape in the western Swiss Alps, we obtained sufficient statistical power to disentangle common co-occurrences and weaker specific interactions. Plant alliances and soil bacterial communities tended to be synchronized in community turnover across the landscape, largely driven by common underlying environmental factors, such as soil pH or elevation. Certain alliances occurring in distinct, local, environmental conditions were characterized by co-occurring specialist plant and bacterial species, such as the Nardus stricta and Thermogemmatisporaceae. In contrast, some generalist taxa, like Anthoxanthum odoratum and 19 Acidobacteria species, spanned across multiple vegetation alliances. Meta-scale analyses of soil bacterial community composition and vegetation surveys, complemented with local edaphic measurements, can thus prove useful to identify the various types of plant-bacteria interactions and the environments in which they occur.

  1. Vulnerability of oak-dominated forests in West Virginia to invasive exotic plants: temporal and spatial patterns of nine exotic species using herbarium records and land classification data

    Science.gov (United States)

    Cynthia D. Huebner

    2003-01-01

    Are oak-dominated forests immune to invasive exotic plants? Herbarium and land classification data were used to evaluate the extent of spread of nine invasive exotic plants and to relate their distributions to remotely-sensed land use types in West Virginia. Collector-defined habitats indicated that the most common habitat was roadsides, but seven of the nine species...

  2. Responses of prairie arthropod communities to fire and fertilizer: Balancing plant and arthropod conservation

    Science.gov (United States)

    Hartley, M.K.; Rogers, W.E.; Siemann, E.; Grace, J.

    2007-01-01

    Fire is an important tool for limiting woody plant invasions into prairies, but using fire management to maintain grassland plant communities may inadvertently reduce arthropod diversity. To test this, we established twenty-four 100 m2 plots in a tallgrass prairie in Galveston County, Texas, in spring 2000. Plots were assigned a fire (no burn, one time burn [2000], two time burn [2000, 2001]) and fertilization treatment (none, NPK addition) in a full factorial design. Fertilization treatments allowed us to examine the effects of fire at a different level of productivity. We measured plant cover by species and sampled arthropods with sweep nets during the 2001 growing season. Path analysis indicated that fertilization reduced while annual fires increased arthropod diversity via increases and decreases in woody plant abundance, respectively. There was no direct effect of fire on arthropod diversity or abundance. Diptera and Homoptera exhibited particularly strong positive responses to fires. Lepidoptera had a negative response to nutrient enrichment. Overall, the negative effects of fire on the arthropod community were minor in contrast to the strong positive indirect effects of small-scale burning on arthropod diversity if conservation of particular taxa is not a priority. The same fire regime that minimized woody plant invasion also maximized arthropod diversity.

  3. Potential link between plant and fungal distributions in a dipterocarp rainforest: community and phylogenetic structure of tropical ectomycorrhizal fungi across a plant and soil ecotone.

    Science.gov (United States)

    Peay, Kabir G; Kennedy, Peter G; Davies, Stuart J; Tan, Sylvester; Bruns, Thomas D

    2010-01-01

    *Relatively little is known about diversity or structure of tropical ectomycorrhizal communities or their roles in tropical ecosystem dynamics. In this study, we present one of the largest molecular studies to date of an ectomycorrhizal community in lowland dipterocarp rainforest. *We sampled roots from two 0.4 ha sites located across an ecotone within a 52 ha forest dynamics plot. Our plots contained > 500 tree species and > 40 species of ectomycorrhizal host plants. Fungi were identified by sequencing ribosomal RNA genes. *The community was dominated by the Russulales (30 species), Boletales (17), Agaricales (18), Thelephorales (13) and Cantharellales (12). Total species richness appeared comparable to molecular studies of temperate forests. Community structure changed across the ecotone, although it was not possible to separate the role of environmental factors vs host plant preferences. Phylogenetic analyses were consistent with a model of community assembly where habitat associations are influenced by evolutionary conservatism of functional traits within ectomycorrhizal lineages. *Because changes in the ectomycorrhizal fungal community parallel those of the tree community at this site, this study demonstrates the potential link between the distribution of tropical tree diversity and the distribution of tropical ectomycorrhizal diversity in relation to local-scale edaphic variation.

  4. Classification trees for identifying non-use of community-based long-term care services among older adults.

    Science.gov (United States)

    Penkunas, Michael James; Eom, Kirsten Yuna; Chan, Angelique Wei-Ming

    2017-10-01

    Home- and center-based long-term care (LTC) services allow older adults to remain in the community while simultaneously helping caregivers cope with the stresses associated with providing care. Despite these benefits, the uptake of community-based LTC services among older adults remains low. We analyzed data from a longitudinal study in Singapore to identify the characteristics of individuals with referrals to home-based LTC services or day rehabilitation services at the time of hospital discharge. Classification and regression tree analysis was employed to identify combinations of clinical and sociodemographic characteristics of patients and their caregivers for individuals who did not take up their referred services. Patients' level of limitation in activities of daily living (ADL) and caregivers' ethnicity and educational level were the most distinguishing characteristics for identifying older adults who failed to take up their referred home-based services. For day rehabilitation services, patients' level of ADL limitation, home size, age, and possession of a national medical savings account, as well as caregivers' education level, and gender were significant factors influencing service uptake. Identifying subgroups of patients with high rates of non-use can help clinicians target individuals who are need of community-based LTC services but unlikely to engage in formal treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Is fire exclusion in mountain big sagebrush communities prudent? Soil nutrient, plant diversity, and arthropod response to burning

    Science.gov (United States)

    Fire has largely been excluded from many mountain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana (Rydb.) Beetle) communities. Land and wildlife managers are especially reluctant to reintroduce fire in mountain big sagebrush plant communities, especially those communities without significan...

  6. The Community's research and development programme on decommissioning of nuclear power plants. Fourth annual progress report (year 1983)

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    This is the fourth progress report of the European Community's program. (1979-83) of research on decommissioning of nuclear power plants. It covers the year 1983 and follows the 1980, 1981 and 1982 reports (EUR 7440, EUR 8343, EUR 8962). The present report describes the further progress of research and contains a large amount of results. For a majority of the 51 research contracts composing the 1979-83 programme, work was completed by the end of 1983; the conclusions drawn from this work are in this report. The European Community's program deals with the following fields: long-term integrity of buildings and systems; decontamination for decommissioning purposes; dismantling techniques; treatment of specific wastes materials (steel, concrete and graphite); large transport containers for radioactive waste produced in the dismantling of nuclear power plants; estimation of the quantities of radioactive waste arising from the decommissioning of nuclear power plants in the Community; influence of nuclear power plant design features on decommissioning

  7. Riparian plant community responses to increased flooding: a meta-analysis.

    Science.gov (United States)

    Garssen, Annemarie G; Baattrup-Pedersen, Annette; Voesenek, Laurentius A C J; Verhoeven, Jos T A; Soons, Merel B

    2015-08-01

    A future higher risk of severe flooding of streams and rivers has been projected to change riparian plant community composition and species richness, but the extent and direction of the expected change remain uncertain. We conducted a meta-analysis to synthesize globally available experimental evidence and assess the effects of increased flooding on (1) riparian adult plant and seedling survival, (2) riparian plant biomass and (3) riparian plant species composition and richness. We evaluated which plant traits are of key importance for the response of riparian plant species to flooding. We identified and analysed 53 papers from ISI Web of Knowledge which presented quantitative experimental results on flooding treatments and corresponding control situations. Our meta-analysis demonstrated how longer duration of flooding, greater depth of flooding and, particularly, their combination reduce seedling survival of most riparian species. Plant height above water level, ability to elongate shoots and plasticity in root porosity were decisive for adult plant survival and growth during longer periods of flooding. Both 'quiescence' and 'escape' proved to be successful strategies promoting riparian plant survival, which was reflected in the wide variation in survival (full range between 0 and 100%) under fully submerged conditions, while plants that protrude above the water level (>20 cm) almost all survive. Our survey confirmed that the projected increase in the duration and depth of flooding periods is sufficient to result in species shifts. These shifts may lead to increased or decreased riparian species richness depending on the nutrient, climatic and hydrological status of the catchment. Species richness was generally reduced at flooded sites in nutrient-rich catchments and sites that previously experienced relatively stable hydrographs (e.g. rain-fed lowland streams). Species richness usually increased at sites in desert and semi-arid climate regions (e.g. intermittent

  8. Strong shift in the diazotrophic endophytic bacterial community inhabiting rice (Oryza sativa) plants after flooding.

    Science.gov (United States)

    Ferrando, Lucía; Fernández Scavino, Ana

    2015-09-01

    Flooding impacts soil microbial communities, but its effect on endophytic communities has rarely been explored. This work addresses the effect of flooding on the abundance and diversity of endophytic diazotrophic communities on rice plants established in a greenhouse experiment. The nifH gene was significantly more abundant in roots after flooding, whereas the nifH gene copy numbers in leaves were unaffected and remained low. The PCA (principal component analysis) of T-RFLP (terminal restriction fragment length polymorphism) profiles indicated that root communities of replicate plots were more similar and diverse after flooding than before flooding. The nifH libraries obtained by cloning and 454 pyrosequencing consistently showed a remarkable shift in the diazotrophic community composition after flooding. Gammaproteobacteria (66-98%), mainly of the genus Stenotrophomonas, prevailed in roots before flooding, whereas Betaproteobacteria was the dominant class (26-34%) after flooding. A wide variety of aerotolerant and anaerobic diazotrophic bacteria (e.g. Dechloromonas, Rhodopseudomonas, Desulfovibrio, Geobacter, Chlorobium, Spirochaeta, Selenomonas and Dehalobacter) with diverse metabolic traits were retrieved from flooded rice roots. These findings suggest that endophytic communities could be significantly impacted by changes in plant-soil conditions derived from flooding during rice cropping. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Grazing exclusion, substrate type, and drought frequency affect plant community structure in rangelands of the arid unpredictable Arabian Deserts

    Science.gov (United States)

    El-Keblawy, Ali; El-Sheikh, Mohamed

    2017-04-01

    Grazing and drought can adversely affect the ecology and management of rangeland ecosystems. Several management actions have been applied to restore species diversity and community structure in degraded rangelands of the unpredictable arid environment. Protection from grazing is considered as a proper approach for restoration of degraded rangelands, but this depends on substrate type and sometime is hindered with water deficiency (drought). In this study, the effect of protection from grazing animals on species diversity and plant community structure was assessed after a dry and wet periods in both sandy and gravelly substrates in the Dubai Desert Conservation reserve (DDCR), United Arab Emirates. Two sites were selected during November 2012 on the two substrate types (fixed sandy flat and gravel plain) in the arid DDCR. An enclosure was established in each site. Plant community attributes (plant cover, density, frequency, species composition, and diversity indices) were assessed in a number of permanent plots laid inside and outside each enclosure during November 2012, April 2014 and April 2016. The results showed that protection improved clay content, but decreased the organic matters. Interestingly, the protection reduced the concentrations of most estimated nutrients, which could be attributed to the high turnover rate of nutrients associated grazing and low decomposition of accumulated dry plants of non-protected sites. Protection significantly increased all plant community attributes, but the only significant effect was for plant density. Plant density was almost twice greater inside than outside the enclosures. During the dry period, protection resulted in significantly greater deterioration in cover, density and all diversity indices in gravel, compared to sandy sites. Most of the grasses and shrubby plants had died in the gravel plains. However, plant community of the gravel plains was significantly restored after receiving considerable rainfalls. The

  10. Squared Euclidean distance: a statistical test to evaluate plant community change

    Science.gov (United States)

    Raymond D. Ratliff; Sylvia R. Mori

    1993-01-01

    The concepts and a procedure for evaluating plant community change using the squared Euclidean distance (SED) resemblance function are described. Analyses are based on the concept that Euclidean distances constitute a sample from a population of distances between sampling units (SUs) for a specific number of times and SUs. With different times, the distances will be...

  11. Community analysis of microbial sharing and specialization in a Costa Rican ant-plant-hemipteran symbiosis.

    Science.gov (United States)

    Pringle, Elizabeth G; Moreau, Corrie S

    2017-03-15

    Ants have long been renowned for their intimate mutualisms with trophobionts and plants and more recently appreciated for their widespread and diverse interactions with microbes. An open question in symbiosis research is the extent to which environmental influence, including the exchange of microbes between interacting macroorganisms, affects the composition and function of symbiotic microbial communities. Here we approached this question by investigating symbiosis within symbiosis. Ant-plant-hemipteran symbioses are hallmarks of tropical ecosystems that produce persistent close contact among the macroorganism partners, which then have substantial opportunity to exchange symbiotic microbes. We used metabarcoding and quantitative PCR to examine community structure of both bacteria and fungi in a Neotropical ant-plant-scale-insect symbiosis. Both phloem-feeding scale insects and honeydew-feeding ants make use of microbial symbionts to subsist on phloem-derived diets of suboptimal nutritional quality. Among the insects examined here, Cephalotes ants and pseudococcid scale insects had the most specialized bacterial symbionts, whereas Azteca ants appeared to consume or associate with more fungi than bacteria, and coccid scale insects were associated with unusually diverse bacterial communities. Despite these differences, we also identified apparent sharing of microbes among the macro-partners. How microbial exchanges affect the consumer-resource interactions that shape the evolution of ant-plant-hemipteran symbioses is an exciting question that awaits further research. © 2017 The Author(s).

  12. Effects of changes in plant species richness and community traits on carabid assemblages and feeding guilds

    NARCIS (Netherlands)

    Harvey, J.A.; Putten, van der W.H.; Turin, H.; Wagenaar, R.; Bezemer, T.M.

    2008-01-01

    Experiments were conducted between 2001 and 2003 in constructed plant communities that were set up in 1996 on abandoned agricultural land. The primary aim of the experiment was to study how different secondary vegetation succession scenarios influence community development of invertebrates in

  13. Land cover's refined classification based on multi source of remote sensing information fusion: a case study of national geographic conditions census in China

    Science.gov (United States)

    Cheng, Tao; Zhang, Jialong; Zheng, Xinyan; Yuan, Rujin

    2018-03-01

    The project of The First National Geographic Conditions Census developed by Chinese government has designed the data acquisition content and indexes, and has built corresponding classification system mainly based on the natural property of material. However, the unified standard for land cover classification system has not been formed; the production always needs converting to meet the actual needs. Therefore, it proposed a refined classification method based on multi source of remote sensing information fusion. It takes the third-level classes of forest land and grassland for example, and has collected the thematic data of Vegetation Map of China (1:1,000,000), attempts to develop refined classification utilizing raster spatial analysis model. Study area is selected, and refined classification is achieved by using the proposed method. The results show that land cover within study area is divided principally among 20 classes, from subtropical broad-leaved forest (31131) to grass-forb community type of low coverage grassland (41192); what's more, after 30 years in the study area, climatic factors, developmental rhythm characteristics and vegetation ecological geographical characteristics have not changed fundamentally, only part of the original vegetation types have changed in spatial distribution range or land cover types. Research shows that refined classification for the third-level classes of forest land and grassland could make the results take on both the natural attributes of the original and plant community ecology characteristics, which could meet the needs of some industry application, and has certain practical significance for promoting the product of The First National Geographic Conditions Census.

  14. Plant toxicity, adaptive herbivory, and plant community dynamics

    Science.gov (United States)

    Feng, Z.; Liu, R.; DeAngelis, D.L.; Bryant, J.P.; Kielland, K.; Stuart, Chapin F.; Swihart, R.K.

    2009-01-01

    We model effects of interspecific plant competition, herbivory, and a plant's toxic defenses against herbivores on vegetation dynamics. The model predicts that, when a generalist herbivore feeds in the absence of plant toxins, adaptive foraging generally increases the probability of coexistence of plant species populations, because the herbivore switches more of its effort to whichever plant species is more common and accessible. In contrast, toxin-determined selective herbivory can drive plant succession toward dominance by the more toxic species, as previously documented in boreal forests and prairies. When the toxin concentrations in different plant species are similar, but species have different toxins with nonadditive effects, herbivores tend to diversify foraging efforts to avoid high intakes of any one toxin. This diversification leads the herbivore to focus more feeding on the less common plant species. Thus, uncommon plants may experience depensatory mortality from herbivory, reducing local species diversity. The depensatory effect of herbivory may inhibit the invasion of other plant species that are more palatable or have different toxins. These predictions were tested and confirmed in the Alaskan boreal forest. ?? 2009 Springer Science+Business Media, LLC.

  15. Establishment of different riparian plant communities from the same soil seed bank

    NARCIS (Netherlands)

    ter Heerdt, Gerhardus

    2016-01-01

    This thesis shows that weather conditions during the first year of establishment, strongly affect the composition of riparian plant communities. This is one of the factors determining if some goals of the Water Framework Directive and Natura 2000, reed beds and accompanying bird species, can be met.

  16. Medicinal wild plant knowledge and gathering patterns in a Mapuche community from North-western Patagonia.

    Science.gov (United States)

    Estomba, Diego; Ladio, Ana; Lozada, Mariana

    2006-01-03

    Medicinal plant use has persisted as a long standing tradition in the Mapuche communities of Southern Argentina and Chile. An ethnobotanical survey was conducted in the rural Curruhuinca community located near the mountain city of San Martin de los Andes, Argentina. Semi-structured interviews were carried out on 22 families in order to examine the present use of medicinal plants and their reputed therapeutic effects. Ecological variables, such as distance to the gathering site and biogeographical origin were also analyzed. Our results showed that the Curruhuinca dwellers cited 89 plant species for medicinal purposes, both of native and exotic origin. They know about 47 native plants, of which they use 40, and they know of 42 exotic medicinal plants of which they use 34. A differential pattern was observed given that only native species, relevant for the traditional Mapuche medicine, were collected at more distant gathering sites. The interviewees mentioned 268 plant usages. Those most frequently reported had therapeutic value for treating digestive ailments (33%), as analgesic/anti-inflammatory (25%) and antitusive (13%). Native species were mainly cited as analgesics, and for gynecological, urinary and "cultural syndrome" effects, whereas exotic species were mainly cited for digestive ailments. The total number of medicinal plants known and used by the interviewees was positively correlated with people's age, indicating that this ancient knowledge tends to disappear in the younger generations.

  17. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production

    NARCIS (Netherlands)

    Belila, A.; El-Chakhtoura, J.; Otaibi, N.; Muyzer, G.; Gonzalez-Gil, G.; Saikaly, P.E.; van Loosdrecht, M.C.M.; Vrouwenvelder, J.S.

    2016-01-01

    Microbial processes inevitably play a role in membrane-based desalination plants, mainly recognized as membrane biofouling. We assessed the bacterial community structure and diversity during different treatment steps in a full-scale seawater desalination plant producing 40,000 m3/d of drinking

  18. Belowground Carbon Allocation and Plant-Microbial Interactions Drive Resistance and Resilience of Mountain Grassland Communities to Drought

    Science.gov (United States)

    Karlowsky, S.; Augusti, A.; Ingrisch, J.; Hasibeder, R.; Lavorel, S.; Bahn, M.; Gleixner, G.

    2016-12-01

    Belowground carbon allocation (BCA) and plant-microbial interactions are crucial for the functioning of terrestrial ecosystems. Recent research suggests that extreme events can have severe effects on these processes but it is unknown how land use intensity potentially modifies their responses. We studied the resistance and resilience of mountain grassland communities to prolonged drought and investigated the role of plant C allocation and soil microbial communities in mediating drought resistance and immediate recovery. In a common garden experiment we exposed monoliths from an abandoned grassland and a hay meadow to an early summer drought. Two independent 13C pulse labeling experiments were conducted, the first during peak drought and the second during the recovery phase. The 13C incorporation was analyzed in above- and belowground plant parts and in phospho- and neutral lipid fatty acids of soil microorganisms. In addition, a 15N label was added at the rewetting to determine plant N uptake. We found that C uptake, BCA and C transfer to soil microorganisms were less strongly reduced by drought in the abandoned grassland than in the meadow. Moreover, drought induced an increase of arbuscular mycorrhiza fungi (AMF) marker in the abandoned grassland. Nevertheless, C uptake and related parameters were quickly recovered and N uptake increased in the meadow during recovery. Unexpectedly, AMF and their C uptake were generally reduced during recovery, while bacteria increased and quickly recovered C uptake, particularly in the meadow. Our results showed a negative relation between high resistance and fast recovery. The more resistant abandoned grassland plant communities seemed to invest more C below ground and into interactions with AMF during drought, likely to access water through their hyphal network. Conversely, meadow communities invested more C from recent photosynthesis into bacterial communities during recovery, obviously to gain more nutrients for regrowth

  19. Community emergency response to nuclear power plant accidents: A selected and partially annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Youngen, G.

    1988-10-01

    The role of responding to emergencies at nuclear power plants is often considered the responsibility of the personnel onsite. This is true for most, if not all, of the incidents that may happen during the course of the plant`s operating lifetime. There is however, the possibility of a major accident occurring at anytime. Major nuclear accidents at Chernobyl and Three Mile Island have taught their respective countries and communities a significant lesson in local emergency preparedness and response. Through these accidents, the rest of the world can also learn a great deal about planning, preparing and responding to the emergencies unique to nuclear power. This bibliography contains books, journal articles, conference papers and government reports on emergency response to nuclear power plant accidents. It does not contain citations for ``onsite`` response or planning, nor does it cover the areas of radiation releases from transportation accidents. The compiler has attempted to bring together a sampling of the world`s collective written experience on dealing with nuclear reactor accidents on the sate, local and community levels. Since the accidents at Three Mile Island and Chernobyl, that written experience has grown enormously.

  20. Investigating the Effect of Livestock Grazing and Associated Plant Community Shifts on Carbon and Nutrient Cycling in Alberta, Canada

    Science.gov (United States)

    Hewins, D. B.; Chuan, S.; Stolnikova, E.; Bork, E. W.; Carlyle, C. N.; Chang, S. X.

    2015-12-01

    Grassland ecosystems are ubiquitous across the globe covering an estimated 40 % of Earth's terrestrial landmass. These ecosystems are widely valued for providing forage for domestic livestock and a suite of important ecosystem goods and services including carbon (C) storage. Despite storing more than 30 % of soil C globally, the effect of both livestock grazing and the associated change in plant community structure in response to grazing on C and nutrient cycling remains uncertain. To gain a quantitative understanding of the direct and indirect effects of livestock grazing on C and nutrient cycling, we established study sites at 15 existing site localities with paired long-term grazing (ca. 30 y) and non-grazed treatments (totaling 30 unique plant communities). Our sites were distributed widely across Alberta in three distinct grassland bioclimatic zones allowing us to make comparisons across the broad range of climate variability typical of western Canadian grasslands. In each plant community we decomposed 5 common plant species that are known to increase or decrease in response to grazing pressure, a unique plant community sample, and a cellulose paper control. We measured mass loss, initial lignin, C and N concentrations at 0, 1, 3, 6 and 12 months of field incubation. In addition we assayed hydrolytic and oxidative extracellular enzymes associated with for C (n= 5 hydrolytic; phenoloxidase and peroxidase) and nutrients (i.e. N and P; n=1 ea.) cycling from each litter sample at each collection. Our results suggest that by changing the plant community structure, grazing can affect rates of decomposition and associated biogeochemical cycling by changing plant species and associated litter inputs. Moreover, measures of microbial function are controlled by site-specific conditions (e.g. temperature and precipitation), litter chemistry over the course of our incubation.

  1. Pipeline corridors through wetlands - summary of seventeen plant-community studies at ten wetland crossings. Topical report, February 1990--August 1994

    Energy Technology Data Exchange (ETDEWEB)

    Van Dyke, G.D. [Argonne National Lab., IL (United States)]|[Trinity Christian College, Palos Heights, IL (United States); Shem, L.M.; Wilkey, P.L.; Zimmerman, R.E.; Alsum, S.K. [Argonne National Lab., IL (United States)

    1994-12-01

    As part of the Gas Research Institute Wetland Corridors Program, Argonne National Laboratory conducted field studies on 10 wetland crossings located in six states to document impacts of natural gas pipeline rights-of-way (ROWS) on 15 wetland plant communities. This study is unique in the number, range, ages, and variety of wetland crossings surveyed and compared. Vegetation data and recorded observations were analyzed to reveal patterns associated with age, installation technology, maintenance practices, and wetland type. This report summarizes the findings of this study. Results revealed that ROWs of pipelines installed according to recent wetland regulations rapidly revegetated with dense and diverse plant communities. The ROW plant communities were similar to those in the adjacent natural areas in species richness, wetland indicator values, and percentages of native species. The ROW plant communities developed from naturally available propagules without fertilization, liming, or artificial seeding. ROWs contributed to increased habitat and plant species diversity in the wetland. There was little evidence that they degrade the wetland by providing avenues for the spread of invasive and normative plant species. Most impacts are temporal in nature, decreasing rapidly during the first several years and more slowly thereafter to the extent permitted by maintenance and other ROW activities.

  2. The effect of environmental change on vascular plant and cryptogam communities from the Falkland Islands and the Maritime Antarctic

    Directory of Open Access Journals (Sweden)

    Convey Peter

    2007-12-01

    Full Text Available Abstract Background Antarctic terrestrial vegetation is subject to one of the most extreme climates on Earth. Currently, parts of Antarctica are one of the fastest warming regions on the planet. During 3 growing seasons, we investigated the effect of experimental warming on the diversity and abundance of coastal plant communities in the Maritime Antarctic region (cryptogams only and the Falkland Islands (vascular plants only. We compared communities from the Falkland Islands (51°S, mean annual temperature 7.9°C, with those of Signy Island (60°S, -2.1°C and Anchorage Island (67°S, -2.6°C, and experimental temperature manipulations at each of the three islands using Open Top Chambers (OTCs. Results Despite the strong difference in plant growth form dominance between the Falkland Islands and the Maritime Antarctic, communities across the gradient did not differ in total diversity and species number. During the summer months, the experimental temperature increase at 5 cm height in the vegetation was similar between the locations (0.7°C across the study. In general, the response to this experimental warming was low. Total lichen cover showed a non-significant decreasing trend at Signy Island (p Conclusion These results suggest that small temperature increases may rapidly lead to decreased soil moisture, resulting in more stressful conditions for plants. The more open plant communities (grass and lichen appeared more negatively affected by such changes than dense communities (dwarf shrub and moss.

  3. Vegetation communities associated with the 100-Area and 200-Area facilities on the Hanford Site

    International Nuclear Information System (INIS)

    Stegen, J.A.

    1994-01-01

    The Hanford Site, Benton County, Washington, lies within the broad semi-arid shrub-steppe vegetation zone of the Columbia Basin. Thirteen different habitat types on the Hanford Site have been mapped in Habitat Types on the Hanford Site: Wildlife and Plant Species of Concern (Downs et al. 1993). In a broad sense, this classification is correct. On a smaller scale, however, finer delineations are possible. This study was conducted to determine the plant communities and estimate vegetation cover in and directly adjacent to the 100 and 200 Areas, primarily in relation to waste sites, as part of a comprehensive ecological study for the Compensation Environmental Response, Compensation, and Liability Act (CERCLA) characterization of the 100 and 200 Areas. During the summer of 1993, field surveys were conducted and a map of vegetation communities in each area, including dominant species associations, was produced. The field surveys consisted of qualitative community delineations. The community delineations described were made by field reconnaissance and are qualitative in nature. The delineations were made by visually determining the dominant plant species or vegetation types and were based on the species most apparent at the time of inspection. Additionally, 38 transects were run in these plant communities to try to obtain a more accurate representation of the community. Because habitat disturbances from construction/operations activities continue to occur in these areas, users of this information should be cautious in applying these maps without a current ground survey. This work will complement large-scale habitat maps of the Hanford Site

  4. Vegetation communities associated with the 100-Area and 200-Area facilities on the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Stegen, J.A.

    1994-01-17

    The Hanford Site, Benton County, Washington, lies within the broad semi-arid shrub-steppe vegetation zone of the Columbia Basin. Thirteen different habitat types on the Hanford Site have been mapped in Habitat Types on the Hanford Site: Wildlife and Plant Species of Concern (Downs et al. 1993). In a broad sense, this classification is correct. On a smaller scale, however, finer delineations are possible. This study was conducted to determine the plant communities and estimate vegetation cover in and directly adjacent to the 100 and 200 Areas, primarily in relation to waste sites, as part of a comprehensive ecological study for the Compensation Environmental Response, Compensation, and Liability Act (CERCLA) characterization of the 100 and 200 Areas. During the summer of 1993, field surveys were conducted and a map of vegetation communities in each area, including dominant species associations, was produced. The field surveys consisted of qualitative community delineations. The community delineations described were made by field reconnaissance and are qualitative in nature. The delineations were made by visually determining the dominant plant species or vegetation types and were based on the species most apparent at the time of inspection. Additionally, 38 transects were run in these plant communities to try to obtain a more accurate representation of the community. Because habitat disturbances from construction/operations activities continue to occur in these areas, users of this information should be cautious in applying these maps without a current ground survey. This work will complement large-scale habitat maps of the Hanford Site.

  5. Effects of soil depth and plant-soil interaction on microbial community in temperate grasslands of northern China.

    Science.gov (United States)

    Yao, Xiaodong; Zhang, Naili; Zeng, Hui; Wang, Wei

    2018-07-15

    Although the patterns and drivers of soil microbial community composition are well studied, little is known about the effects of plant-soil interactions and soil depth on soil microbial distribution at a regional scale. We examined 195 soil samples from 13 sites along a climatic transect in the temperate grasslands of northern China to measure the composition of and factors influencing soil microbial communities within a 1-m soil profile. Soil microbial community composition was measured using phospholipid fatty acids (PLFA) analysis. Fungi predominated in topsoil (0-10 cm) and bacteria and actinomycetes in deep soils (40-100 cm), independent of steppe types. This variation was explained by contemporary environmental factors (including above- and below-ground plant biomass, soil physicochemical and climatic factors) >58% in the 0-40 cm of soil depth, but soils. Interestingly, when we considered the interactive effects between plant traits (above ground biomass and root biomass) and soil factors (pH, clay content, and soil total carbon, nitrogen, phosphorous), we observed a significant interaction effect occurring at depths of 10-20 cm soil layer, due to different internal and external factors of the plant-soil system along the soil profile. These results improve understanding of the drivers of soil microbial community composition at regional scales. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Inventory of plant communities recorded in the western, southern and eastern Cape Province, South African up to the end of 1980

    CSIR Research Space (South Africa)

    Boucher, C

    1982-09-01

    Full Text Available A comprehensive list of plant communities described by various authors within the Fynbos Biome geographic area is given. The list is divided into two sections. Section I consists of plant communities described over a wide geographical area. Section...

  7. Inoculation effects on root-colonizing arbuscular mycorrhizal fungal communities spread beyond directly inoculated plants

    Czech Academy of Sciences Publication Activity Database

    Janoušková, Martina; Krak, Karol; Vosátka, Miroslav; Püschel, David; Štorchová, Helena

    2017-01-01

    Roč. 12, č. 7 (2017), s. 1-21, č. článku e0181525. E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) LH14285 Institutional support: RVO:67985939 ; RVO:61389030 Keywords : inoculation * arbuscular mycorrhiza * community Subject RIV: EH - Ecology, Behaviour; EH - Ecology, Behaviour (UEB-Q) OBOR OECD: Plant sciences, botany; Plant sciences, botany (UEB-Q) Impact factor: 2.806, year: 2016

  8. Quantitative distribution of aquatic plant and animal communities in the Forsmark-area

    International Nuclear Information System (INIS)

    Kautsky, H.; Plantman, P.; Borgiel, M.

    1999-12-01

    This report is a part of the SKB project 'SAFE'. The aim of SAFE is to update the previous safety analysis of SFR-1. SFR is for the repository of low and intermediate level radioactive waste. The aim of this report is to provide background information of the quantitative distribution of macroscopic (>1 mm) plants and animals on the sea floor (the phytobenthic communities) above the SFR. The phytobenthic plant and animal communities in the Bothnian Sea may constitute over half of the total production of the ecosystem in the coastal zone. Data will be used in a simulation model of the area. The attached plant and animal communities of the sea floor can be the major component to find radioactive isotopes when a leakage should occur from the SFR below the investigated area. Their ability to bioaccumulate the isotopes and the abundance of the plants and animals might to a large extent determine the amount of radionuclides that could be retained in the biological system. This might then affect the form of further dispersal of the radionuclides over larger areas, whether they are kept within and accumulated in the food chain or retained in the sediments or diluted in the water column. In the investigated area divers described the sea floor substrate and the dominating plant and animal communities along transect lines. In addition, the divers collected quantitative samples. Three transects were placed just above SFR, and two transects were placed from the shore of islands adjacent to SFR. In total, divers collected 54 quantitative samples. Also, divers collected 6 sediment cores for analysis of the organic contents and chlorophylla. The results from the divers estimates of plant and animal species distribution and cover degree, as well as the quantitative samples, indicated the area being fairly rich. An eroded moraine (boulders, stones, gravel and sand) dominated the substrate with occasional rock outcrops. At several sites, on the hard, more stable substrates (boulders

  9. Quantitative distribution of aquatic plant and animal communities in the Forsmark-area

    Energy Technology Data Exchange (ETDEWEB)

    Kautsky, H; Plantman, P; Borgiel, M [Stockholm Univ. (Sweden). Dept. of Systems Ecology

    1999-12-15

    This report is a part of the SKB project 'SAFE'. The aim of SAFE is to update the previous safety analysis of SFR-1. SFR is for the repository of low and intermediate level radioactive waste. The aim of this report is to provide background information of the quantitative distribution of macroscopic (>1 mm) plants and animals on the sea floor (the phytobenthic communities) above the SFR. The phytobenthic plant and animal communities in the Bothnian Sea may constitute over half of the total production of the ecosystem in the coastal zone. Data will be used in a simulation model of the area. The attached plant and animal communities of the sea floor can be the major component to find radioactive isotopes when a leakage should occur from the SFR below the investigated area. Their ability to bioaccumulate the isotopes and the abundance of the plants and animals might to a large extent determine the amount of radionuclides that could be retained in the biological system. This might then affect the form of further dispersal of the radionuclides over larger areas, whether they are kept within and accumulated in the food chain or retained in the sediments or diluted in the water column. In the investigated area divers described the sea floor substrate and the dominating plant and animal communities along transect lines. In addition, the divers collected quantitative samples. Three transects were placed just above SFR, and two transects were placed from the shore of islands adjacent to SFR. In total, divers collected 54 quantitative samples. Also, divers collected 6 sediment cores for analysis of the organic contents and chlorophylla. The results from the divers estimates of plant and animal species distribution and cover degree, as well as the quantitative samples, indicated the area being fairly rich. An eroded moraine (boulders, stones, gravel and sand) dominated the substrate with occasional rock outcrops. At several sites, on the hard, more stable substrates (boulders

  10. Quantitative distribution of aquatic plant and animal communities in the Forsmark-area

    Energy Technology Data Exchange (ETDEWEB)

    Kautsky, H.; Plantman, P.; Borgiel, M. [Stockholm Univ. (Sweden). Dept. of Systems Ecology

    1999-12-15

    This report is a part of the SKB project 'SAFE'. The aim of SAFE is to update the previous safety analysis of SFR-1. SFR is for the repository of low and intermediate level radioactive waste. The aim of this report is to provide background information of the quantitative distribution of macroscopic (>1 mm) plants and animals on the sea floor (the phytobenthic communities) above the SFR. The phytobenthic plant and animal communities in the Bothnian Sea may constitute over half of the total production of the ecosystem in the coastal zone. Data will be used in a simulation model of the area. The attached plant and animal communities of the sea floor can be the major component to find radioactive isotopes when a leakage should occur from the SFR below the investigated area. Their ability to bioaccumulate the isotopes and the abundance of the plants and animals might to a large extent determine the amount of radionuclides that could be retained in the biological system. This might then affect the form of further dispersal of the radionuclides over larger areas, whether they are kept within and accumulated in the food chain or retained in the sediments or diluted in the water column. In the investigated area divers described the sea floor substrate and the dominating plant and animal communities along transect lines. In addition, the divers collected quantitative samples. Three transects were placed just above SFR, and two transects were placed from the shore of islands adjacent to SFR. In total, divers collected 54 quantitative samples. Also, divers collected 6 sediment cores for analysis of the organic contents and chlorophylla. The results from the divers estimates of plant and animal species distribution and cover degree, as well as the quantitative samples, indicated the area being fairly rich. An eroded moraine (boulders, stones, gravel and sand) dominated the substrate with occasional rock outcrops. At several sites, on the hard, more stable substrates

  11. Application of ant colony optimization in NPP classification fault location

    International Nuclear Information System (INIS)

    Xie Chunli; Liu Yongkuo; Xia Hong

    2009-01-01

    Nuclear Power Plant is a highly complex structural system with high safety requirements. Fault location appears to be particularly important to enhance its safety. Ant Colony Optimization is a new type of optimization algorithm, which is used in the fault location and classification of nuclear power plants in this paper. Taking the main coolant system of the first loop as the study object, using VB6.0 programming technology, the NPP fault location system is designed, and is tested against the related data in the literature. Test results show that the ant colony optimization can be used in the accurate classification fault location in the nuclear power plants. (authors)

  12. Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing

    DEFF Research Database (Denmark)

    Zakrzewski, Martha; Goesmann, Alexander; Jaenicke, Sebastian

    2012-01-01

    of the community by classification of 16S ribosomal sequence tags revealed that members of the Euryarchaeota and Firmicutes account for the dominant phyla. Only smaller fractions of the 16S ribosomal sequence tags were assigned to the phyla Bacteroidetes, Actinobacteria and Synergistetes. Among the m...

  13. Leaf quality and insect herbivory in model tropical plant communities after long-term exposure to elevated atmospheric CO2.

    Science.gov (United States)

    Arnone, J A; Zaller, J G; Körner, Ch; Ziegler, C; Zandt, H

    1995-09-01

    Results from laboratory feeding experiments have shown that elevated atmospheric carbon dioxide can affect interactions between plants and insect herbivores, primarily through changes in leaf nutritional quality occurring at elevated CO 2 . Very few data are available on insect herbivory in plant communities where insects can choose among species and positions in the canopy in which to feed. Our objectives were to determine the extent to which CO 2 -induced changes in plant communities and leaf nutritional quality may affect herbivory at the level of the entire canopy. We introduced equivalent populations of fourth instar Spodoptera eridania, a lepidopteran generalist, to complex model ecosystems containing seven species of moist tropical plants maintained under low mineral nutrient supply. Larvae were allowed to feed freely for 14 days, by which time they had reached the seventh instar. Prior to larval introductions, plant communities had been continuously exposed to either 340 μl CO 2 l -1 or to 610 μl CO 2 l -1 for 1.5 years. No major shifts in leaf nutritional quality [concentrations of N, total non-structural carbohydrates (TNC), sugar, and starch; ratios of: C/N, TNC/N, sugar/N, starch/N; leaf toughness] were observed between CO 2 treatments for any of the species. Furthermore, no correlations were observed between these measures of leaf quality and leaf biomass consumption. Total leaf area and biomass of all plant communities were similar when caterpillars were introduced. However, leaf biomass of some species was slightly greater-and for other species slightly less (e.g. Cecropia peltata)-in communities exposed to elevated CO 2 . Larvae showed the strongest preference for C. peltata leaves, the plant species that was least abundant in all communites, and fed relatively little on plants species which were more abundant. Thus, our results indicate that leaf tissue quality, as described by these parameters, is not necessarily affected by elevated CO 2 under

  14. Bacterial Community Structure Shifted by Geosmin in Granular Activated Carbon System of Water Treatment Plants.

    Science.gov (United States)

    Pham, Ngoc Dung; Lee, Eun-Hee; Chae, Seon-Ha; Cho, Yongdeok; Shin, Hyejin; Son, Ahjeong

    2016-01-01

    We investigated the relation between the presence of geosmin in water and the bacterial community structure within the granular activated carbon (GAC) system of water treatment plants in South Korea. GAC samples were collected in May and August of 2014 at three water treatment plants (Sungnam, Koyang, and Yeoncho in Korea). Dissolved organic carbon and geosmin were analyzed before and after GAC treatment. Geosmin was found in raw water from Sungnam and Koyang water treatment plants but not in that from Yeoncho water treatment plant. Interestingly, but not surprisingly, the 16S rRNA clone library indicated that the bacterial communities from the Sungnam and Koyang GAC systems were closely related to geosmin-degrading bacteria. Based on the phylogenetic tree and multidimensional scaling plot, bacterial clones from GAC under the influence of geosmin were clustered with Variovorax paradoxus strain DB 9b and Comamonas sp. DB mg. In other words, the presence of geosmin in water might have inevitably contributed to the growth of geosmin degraders within the respective GAC system.

  15. Soil microbial community structure is unaltered by plant invasion, vegetation clipping, and nitrogen fertilization in experimental semi-arid grasslands

    Directory of Open Access Journals (Sweden)

    Chelsea J Carey

    2015-05-01

    Full Text Available Global and regional environmental changes often co-occur, creating complex gradients of disturbance on the landscape. Soil microbial communities are an important component of ecosystem response to environmental change, yet little is known about how microbial structure and function respond to multiple disturbances, or whether multiple environmental changes lead to unanticipated interactive effects. Our study used experimental semi-arid grassland plots in a Mediterranean-climate to determine how soil microbial communities in a seasonally variable ecosystem respond to one, two, or three simultaneous environmental changes: exotic plant invasion, plant invasion + vegetation clipping (to simulate common management practices like mowing or livestock grazing, plant invasion + nitrogen (N fertilization, and plant invasion + clipping + N fertilization. We examined microbial community structure 5-6 years after plot establishment via sequencing of >1 million 16S rRNA genes. Abiotic soil properties (soil moisture, temperature, pH, and inorganic N and microbial functioning (nitrification and denitrification potentials were also measured and showed treatment-induced shifts, including altered NO3- availability, temperature, and nitrification potential. Despite these changes, bacterial and archaeal communities showed little variation in composition and diversity across treatments. Even communities in plots exposed to three interacting environmental changes were similar to those in restored native grassland plots. Historical exposure to large seasonal and inter-annual variations in key soil properties, in addition to prior site cultivation, may select for a functionally plastic or largely dormant microbial community, resulting in a microbial community that is structurally robust to single and multiple environmental changes.

  16. Large margin classification with indefinite similarities

    KAUST Repository

    Alabdulmohsin, Ibrahim; Cisse, Moustapha; Gao, Xin; Zhang, Xiangliang

    2016-01-01

    Classification with indefinite similarities has attracted attention in the machine learning community. This is partly due to the fact that many similarity functions that arise in practice are not symmetric positive semidefinite, i.e. the Mercer

  17. Phylogenetic classification of the world’s tropical forests

    OpenAIRE

    Slik, J. W. Ferry; Franklin, Janet; Arroyo-Rodríguez, Víctor; Field, Richard; Aguilar, Salomon; Aguirre, Nikolay; Ahumada, Jorge; Aiba, Shin-Ichiro; Alves, Luciana F.; K, Anitha; Avella, Andres; Mora, Francisco; Aymard C., Gerardo A.; Báez, Selene; Balvanera, Patricia

    2018-01-01

    Identifying and explaining regional differences in tropical forest dynamics, structure, diversity, and composition are critical for anticipating region-specific responses to global environmental change. Floristic classifications are of fundamental importance for these efforts. Here we provide a global tropical forest classification that is explicitly based on community evolutionary similarity, resulting in identification of five major tropical forest regions and their relationships: (i) Indo-...

  18. Plants Rather than Mineral Fertilization Shape Microbial Community Structure and Functional Potential in Legacy Contaminated Soil.

    Science.gov (United States)

    Ridl, Jakub; Kolar, Michal; Strejcek, Michal; Strnad, Hynek; Stursa, Petr; Paces, Jan; Macek, Tomas; Uhlik, Ondrej

    2016-01-01

    Plant-microbe interactions are of particular importance in polluted soils. This study sought to determine how selected plants (horseradish, black nightshade and tobacco) and NPK mineral fertilization shape the structure of soil microbial communities in legacy contaminated soil and the resultant impact of treatment on the soil microbial community functional potential. To explore these objectives, we combined shotgun metagenomics and 16S rRNA gene amplicon high throughput sequencing with data analysis approaches developed for RNA-seq. We observed that the presence of any of the selected plants rather than fertilization shaped the microbial community structure, and the microbial populations of the root zone of each plant significantly differed from one another and/or from the bulk soil, whereas the effect of the fertilizer proved to be insignificant. When we compared microbial diversity in root zones versus bulk soil, we observed an increase in the relative abundance of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria or Bacteroidetes, taxa which are commonly considered copiotrophic. Our results thus align with the theory that fast-growing, copiotrophic, microorganisms which are adapted to ephemeral carbon inputs are enriched in the vegetated soil. Microbial functional potential indicated that some genetic determinants associated with signal transduction mechanisms, defense mechanisms or amino acid transport and metabolism differed significantly among treatments. Genetic determinants of these categories tend to be overrepresented in copiotrophic organisms. The results of our study further elucidate plant-microbe relationships in a contaminated environment with possible implications for the phyto/rhizoremediation of contaminated areas.

  19. Definition of sampling units begets conclusions in ecology: the case of habitats for plant communities

    Directory of Open Access Journals (Sweden)

    Martin A. Mörsdorf

    2015-03-01

    Full Text Available In ecology, expert knowledge on habitat characteristics is often used to define sampling units such as study sites. Ecologists are especially prone to such approaches when prior sampling frames are not accessible. Here we ask to what extent can different approaches to the definition of sampling units influence the conclusions that are drawn from an ecological study? We do this by comparing a formal versus a subjective definition of sampling units within a study design which is based on well-articulated objectives and proper methodology. Both approaches are applied to tundra plant communities in mesic and snowbed habitats. For the formal approach, sampling units were first defined for each habitat in concave terrain of suitable slope using GIS. In the field, these units were only accepted as the targeted habitats if additional criteria for vegetation cover were fulfilled. For the subjective approach, sampling units were defined visually in the field, based on typical plant communities of mesic and snowbed habitats. For each approach, we collected information about plant community characteristics within a total of 11 mesic and seven snowbed units distributed between two herding districts of contrasting reindeer density. Results from the two approaches differed significantly in several plant community characteristics in both mesic and snowbed habitats. Furthermore, differences between the two approaches were not consistent because their magnitude and direction differed both between the two habitats and the two reindeer herding districts. Consequently, we could draw different conclusions on how plant diversity and relative abundance of functional groups are differentiated between the two habitats depending on the approach used. We therefore challenge ecologists to formalize the expert knowledge applied to define sampling units through a set of well-articulated rules, rather than applying it subjectively. We see this as instrumental for progress in

  20. Definition of sampling units begets conclusions in ecology: the case of habitats for plant communities.

    Science.gov (United States)

    Mörsdorf, Martin A; Ravolainen, Virve T; Støvern, Leif Einar; Yoccoz, Nigel G; Jónsdóttir, Ingibjörg Svala; Bråthen, Kari Anne

    2015-01-01

    In ecology, expert knowledge on habitat characteristics is often used to define sampling units such as study sites. Ecologists are especially prone to such approaches when prior sampling frames are not accessible. Here we ask to what extent can different approaches to the definition of sampling units influence the conclusions that are drawn from an ecological study? We do this by comparing a formal versus a subjective definition of sampling units within a study design which is based on well-articulated objectives and proper methodology. Both approaches are applied to tundra plant communities in mesic and snowbed habitats. For the formal approach, sampling units were first defined for each habitat in concave terrain of suitable slope using GIS. In the field, these units were only accepted as the targeted habitats if additional criteria for vegetation cover were fulfilled. For the subjective approach, sampling units were defined visually in the field, based on typical plant communities of mesic and snowbed habitats. For each approach, we collected information about plant community characteristics within a total of 11 mesic and seven snowbed units distributed between two herding districts of contrasting reindeer density. Results from the two approaches differed significantly in several plant community characteristics in both mesic and snowbed habitats. Furthermore, differences between the two approaches were not consistent because their magnitude and direction differed both between the two habitats and the two reindeer herding districts. Consequently, we could draw different conclusions on how plant diversity and relative abundance of functional groups are differentiated between the two habitats depending on the approach used. We therefore challenge ecologists to formalize the expert knowledge applied to define sampling units through a set of well-articulated rules, rather than applying it subjectively. We see this as instrumental for progress in ecology as only rules

  1. Plant or Animal?

    Science.gov (United States)

    Bowman, Frank; Matthews, Catherine E.

    1996-01-01

    Presents activities that use marine organisms with plant-like appearances to help students build classification skills and illustrate some of the less obvious differences between plants and animals. Compares mechanisms by which sessile plants and animals deal with common problems such as obtaining energy, defending themselves, successfully…

  2. Index of Cultural Significance as a Potential Tool for Conservation of Plants Diversity by Communities in The Kerinci Seblat National Park

    Directory of Open Access Journals (Sweden)

    Asvic Helida

    2015-12-01

    Full Text Available The Kerinci community is an Indonesian indigenous people who live in Kerinci Regency, Jambi Province. They have local knowledge of the surrounding vegetation that has become a cultural unifying factor within the community. The study reported here aimed to analyze the importance of plants of particular cultural significance and to review efforts to conserve these plants based on Kerinci cultural values. The study was conducted for eight months from October 2013 to May 2014 at three locations chosen purposively, they were Lempur Baru Village, Lama Tamiai Village and Ulu Jernih Village. The data was obtained using a participatory observation approach, based on key informant interviews, while the assessment of plant distribution was based on a whole-of-community viewpoint. The research data consisted of data on the botany of the plants, on the utilization of the plants and on assessment of plant distribution. Analysis of data for 234 plant species used a formula for index of cultural significance (ICS adopted from Turner (1988. The study showed that rice (Oryza sativa L. and cinnamon (Cinnamomum burmanni (Nees & T.Nees Blume are important plant species with values for the Cultural Index of 59 and 57 respectively, while the species known as 'inggu' (Ruta angustifolia (L. Pers had the lowest ICS, of 3. The 'Tri-Stimulus Amar' conservation analysis developed by Zuhud (2007 is seen as a useful model for considering the cultural values that motivate the Kerinci community's plant conservation actions.

  3. Rhizosphere bacterial communities of dominant steppe plants shift in response to a gradient of simulated nitrogen deposition

    Directory of Open Access Journals (Sweden)

    An eYang

    2015-08-01

    Full Text Available We evaluated effects of 9-year simulation of simulated nitrogen (N deposition on microbial composition and diversity in the rhizosphere of two dominant temperate grassland species: grass Stipa krylovii and forb Artemisia frigida. Microbiomes in S. krylovii and A.frigida rhizosphere differed, but changed consistently along the N gradient. These changes were correlated to N-induced shifts to plant community. Hence, as plant biomass changed, so did bacterial rhizosphere communities, a result consistent with the role that N fertilizer has been shown to play in altering plant-microbial mutualisms. A total of 23 bacterial phyla were detected in the two rhizospheric soils by pyrosequencing, with Proteobacteria, Acidobacteria and Bacteroidetes dominating the sequences of all samples. Bacterioidetes and Proteobacteria tended to increase, while Acidobacteria declined with increase in N addition rates. TM7 increased >5-fold in the high N addition rates, especially in S. krylovii rhizosphere. Nitrogen addition also decreased diversity of OTUs (operational taxonomic units, Shannon and Chao1 indices of rhizospheric microbes regardless of plant species. These results suggest that there were both similar but also specific changes in microbial communities of temperate steppes due to N deposition.

  4. Metagenomic analysis of an ecological wastewater treatment plant's microbial communities and their potential to metabolize pharmaceuticals.

    Science.gov (United States)

    Balcom, Ian N; Driscoll, Heather; Vincent, James; Leduc, Meagan

    2016-01-01

    Pharmaceuticals and other micropollutants have been detected in drinking water, groundwater, surface water, and soil around the world. Even in locations where wastewater treatment is required, they can be found in drinking water wells, municipal water supplies, and agricultural soils. It is clear conventional wastewater treatment technologies are not meeting the challenge of the mounting pressures on global freshwater supplies. Cost-effective ecological wastewater treatment technologies have been developed in response. To determine whether the removal of micropollutants in ecological wastewater treatment plants (WWTPs) is promoted by the plant-microbe interactions, as has been reported for other recalcitrant xenobiotics, biofilm microbial communities growing on the surfaces of plant roots were profiled by whole metagenome sequencing and compared to the microbial communities residing in the wastewater. In this study, the concentrations of pharmaceuticals and personal care products (PPCPs) were quantified in each treatment tank of the ecological WWTP treating human wastewater at a highway rest stop and visitor center in Vermont. The concentrations of detected PPCPs were substantially greater than values reported for conventional WWTPs likely due to onsite recirculation of wastewater. The greatest reductions in PPCPs concentrations were observed in the anoxic treatment tank where Bacilli dominated the biofilm community. Benzoate degradation was the most abundant xenobiotic metabolic category identified throughout the system. Collectively, the microbial communities residing in the wastewater were taxonomically and metabolically more diverse than the immersed plant root biofilm. However, greater heterogeneity and higher relative abundances of xenobiotic metabolism genes was observed for the root biofilm.

  5. The role of biotic interactions in plant community assembly: What is the community species pool?

    Science.gov (United States)

    Švamberková, Eva; Vítová, Alena; Lepš, Jan

    2017-11-01

    Differences in plant species composition between a community and its species pool are considered to reflect the effect of community filters. If we define the species pool as a set of species able to reach a site and form a viable population in a given abiotic environment (i.e. to pass the dispersal and abiotic filter), the difference in species composition should correspond to the effect of biotic interactions. However, most of the operational definitions of the species pool are based on co-occurrence patterns and thus also reflect the effect of biotic relationships, including definitions based on functional plant traits, Ellenberg indicator values or Beals index. We conducted two seed introduction experiments in an oligotrophic wet meadow with the aim of demonstrating that many species excluded, according to the above definitions, from a species pool are in fact able to establish there successfully if competition is removed. In sowing experiments, we studied the establishment and survival of species after the removal of competition (i.e. in artificial gaps) and in intact vegetation. We also investigated inter-annual variability of seed germination and seedling establishment and competitive exclusion of sown species. The investigated species also included those from very different habitats (i.e. species with very low corresponding Beals index or Ellenberg indicator values that were different from the target community weighted mean). Many of these species were able to grow in the focal wet meadow if competition was removed, but they did not establish and survive in the intact community. These species are thus not limited by abiotic conditions, but by the biotic filter. We also recorded a great inter-annual variability in seed germination and seedling establishment. Competitive exclusion of species with different ecological requirements could be quite fast (one and half seasons) in some species, but some non-resident species were able to survive several seasons; the

  6. Medicinal plants used for management of malaria among the Luhya community of Kakamega East sub-County, Kenya.

    Science.gov (United States)

    Mukungu, Nillian; Abuga, Kennedy; Okalebo, Faith; Ingwela, Raphael; Mwangi, Julius

    2016-12-24

    Malaria remains a major health problem worldwide especially in sub-Saharan Africa. In Kenya, 80% of the population is at risk of contracting the disease. Pregnant mothers and children under five years are the most affected by this disease. Antimalarial drug resistance poses a major threat in the fight against malaria necessitating continuous search for new antimalarial drugs. Due to inadequate and inaccessible health facilities, majority of people living in rural communities heavily depend on traditional medicine which involves the use of medicinal plants for the management of malaria. Most of these indigenous knowledge is undocumented and risks being lost yet such information could be useful in the search of new antimalarial agents. An ethnobotanical survey was carried out among the Luhya community of Kakamega East sub-County, a malaria epidemic region, with the aim of documenting the plants used in the management of malaria. Semi-structured questionnaires were used to collect information from 21 informants who included traditional medicine practitioners and other caregivers who had experience in use of plants in management of malaria. These were drawn from 4 villages located in Kakamega East sub-county, within Kakamega County based on their differences in topography. Information recorded included plant names, parts used, mode of preparation and administration and the sources of plant materials. A literature search was conducted using PubMed and google scholar to identify the reported traditional uses of these plants and studied antiplasmodial activities. In this study, 57% of the informants were aged above 50 years and a total of 61% had either no formal education or had only attained primary school education. A total of 42 plant species belonging to 24 families were identified. Most plants used in the management of malaria in this community belonged to Lamiaceae (18%), Leguminosae (9%) and Compositae (9%) plant families. Plants mostly used included Melia

  7. Grid connected integrated community energy system. Phase II: final stage 2 report. Preliminary design of cogeneration plant

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-22

    The preliminary design of a dual-purpose power plant to be located on the University of Minnesota is described. This coal-fired plant will produce steam and electric power for a grid-connected Integrated Community Energy System. (LCL)

  8. Micro-organisms behind the pollination scenes: microbial imprint on floral nectar sugar variation in a tropical plant community.

    Science.gov (United States)

    Canto, A; Herrera, C M

    2012-11-01

    Variation in the composition of floral nectar reflects intrinsic plant characteristics as well as the action of extrinsic factors. Micro-organisms, particularly yeasts, represent one extrinsic factor that inhabit the nectar of animal-pollinated flowers worldwide. In this study a 'microbial imprint hypothesis' is formulated and tested, in which it is proposed that natural community-wide variation in nectar sugar composition will partly depend on the presence of yeasts in flowers. Occurrence and density of yeasts were studied microscopically in single-flower nectar samples of 22 animal-pollinated species from coastal xeric and sub-humid tropical habitats of the Yucatán Peninsula, Mexico. Nectar sugar concentration and composition were concurrently determined on the same samples using high-performance liquid chromatography (HPLC) methods. Microscopical examination of nectar samples revealed the presence of yeasts in nearly all plant species (21 out of 22 species) and in about half of the samples examined (51·8 % of total, all species combined). Plant species and individuals differed significantly in nectar sugar concentration and composition, and also in the incidence of nectar yeasts. After statistically controlling for differences between plant species and individuals, nectar yeasts still accounted for a significant fraction of community-wide variance in all nectar sugar parameters considered. Significant yeast × species interactions on sugar parameters revealed that plant species differed in the nectar sugar correlates of variation in yeast incidence. The results support the hypothesis that nectar yeasts impose a detectable imprint on community-wide variation in nectar sugar composition and concentration. Since nectar sugar features influence pollinator attraction and plant reproduction, future nectar studies should control for yeast presence and examine the extent to which microbial signatures on nectar characteristics ultimately have some influence on

  9. Assessment of interspecific interactions in plant communities: an illustration from the cold desert saltbush grasslands of North America

    Science.gov (United States)

    Freeman, Carl D.; Emlen, John M.

    1995-01-01

    Interspecific interactions influence both the productivity and composition of plant communities. Here, we propose new field procedures and analytical approaches for assessing interspecific interactions in nature and apply these procedures to the salt desert shrub grasslands of western Utah. Data were collected from two grazing treatments over a period of 2 years. The proposed equations were fairly consistent across both treatments and years. In addition to illustrating how to assess interspecific interactions within a community, we also develop a new approach for projecting the community composition as a result of some alteration, i.e. increase or decrease in the abundance of one or more species. Results demonstrate competition both within and between plant life-form groups. While introduced annuals were found to depress profoundly the likelihood of perennial plants replacing themselves, perennials had little influence on annuals. Thus, as native perennials die, they are more likely to be replaced by perennials than for the reverse to occur. Our results suggest that unless conditions change, these communities will become increasingly dominated by introduced annuals.

  10. Succession Stages of Tundra Plant Communities Following Wildfire Disturbance in Arctic Alaska

    Science.gov (United States)

    Breen, A. L.; Hollingsworth, T. N.; Mack, M. C.; Jones, B. M.

    2015-12-01

    Rapid climate change is affecting climate-sensitive disturbance regimes throughout the world. In particular, the impacts of climate change on Arctic disturbance regimes are poorly understood because landscape-scale disturbances are infrequent or occur in remote localities. Wildfire in Arctic Alaska is presently limited by ignition source and favorable burn weather. With rapid climate change, a lengthening growing season, and subsequent increase in plant biomass and productivity, wildfire frequency and annual area burned in tundra ecosystems is expected to increase over the next century. Yet, post-fire tundra vegetation succession is inadequately characterized except at a few point locations. We identify succession stages of tussock tundra communities following wildfire using a chronosequence of 65 relevés in 10 tundra fire scars (1971-2011) and nearby unburned tundra from sites on the Seward Peninsula and northern foothills of the Brooks Range. We used the Braun-Blanquét approach to classify plant communities, and applied nonmetric multidimentional scaling (NMDS) to identify ecological gradients underlying community differentiation. The ordination revealed a clear differentiation between unburned and burned tundra communities. Ecological gradients, reflected by ordination axes, correspond to fire history (e.g., time since last fire, number of times burned, burn severity) and a complex productivity gradient. Post-fire species richness is less than unburned tundra; primarily reflected as a decrease in lichen species and turnover of bryophyte species immediately post-fire. Species richness of grasses increases post-fire and is greatest in communities that burned more than once in the past 30 years. Shrub cover and total aboveground biomass are greatest in repeat burn sites. We review and discuss our results focusing on the implications of a changing tundra fire regime, its effect on vegetation succession trajectories, and subsequent rates of carbon sequestration and

  11. Strong Regionality and Dominance of Anaerobic Bacterial Taxa Characterize Diazotrophic Bacterial Communities of the Arcto-Alpine Plant Species Oxyria digyna and Saxifraga oppositifolia

    Directory of Open Access Journals (Sweden)

    Manoj Kumar

    2017-10-01

    Full Text Available Arctic and alpine biomes are most often strongly nitrogen-limited, and hence biological nitrogen fixation is a strong driver of these ecosystems. Both biomes are characterized by low temperatures and short growing seasons, but they differ in seasonality of solar radiation and in soil water balance due to underlying permafrost in the Arctic. Arcto-alpine plant species are well-adapted to the low temperatures that prevail in their habitats, and plant growth is mainly limited by the availability of nutrients, in particular nitrogen, due to slow mineralization. Nitrogen fixing bacteria are likely important for plant growth in these habitats, but very little is known of these bacteria or forces shaping their communities. In this study, we characterized the potential nitrogen fixing bacterial (PNFB communities associated with two arcto-alpine pioneer plant species, Oxyria digyna (mountain sorrel and Saxifraga oppositifolia (blue saxifrage, in three climate regions. Both of these plants readily colonize low nutrient mineral soils. Our goal was to investigate how climate (region and, on the other hand, host plant and plant species shape these communities. To our knowledge, this is the first comprehensive study describing PNFB communities associated with pioneer plants in different arcto-alpine biomes. Replicate samples were taken from two arctic regions, Kilpisjärvi and Ny-Ålesund, and one alpine region, Mayrhofen. In these, the PNFB communities in the bulk and rhizosphere soils and the plant endospheres were characterized by nifH-targeted PCR and massive parallel sequencing. The data revealed strong effects of climatic region on the dominating nitrogen fixers. Specifically, nifH sequences related to Geobacter (δ-Proteobacteria were present in high relative abundances in the nitrogen-fixing communities in the Mayrhofen and Kilpisjärvi regions, while members of the Clostridiales prevailed in the Kilpisjärvi and Ny-Ålesund regions. The bulk and

  12. Strong Regionality and Dominance of Anaerobic Bacterial Taxa Characterize Diazotrophic Bacterial Communities of the Arcto-Alpine Plant Species Oxyria digyna and Saxifraga oppositifolia.

    Science.gov (United States)

    Kumar, Manoj; van Elsas, Jan Dirk; Nissinen, Riitta

    2017-01-01

    Arctic and alpine biomes are most often strongly nitrogen-limited, and hence biological nitrogen fixation is a strong driver of these ecosystems. Both biomes are characterized by low temperatures and short growing seasons, but they differ in seasonality of solar radiation and in soil water balance due to underlying permafrost in the Arctic. Arcto-alpine plant species are well-adapted to the low temperatures that prevail in their habitats, and plant growth is mainly limited by the availability of nutrients, in particular nitrogen, due to slow mineralization. Nitrogen fixing bacteria are likely important for plant growth in these habitats, but very little is known of these bacteria or forces shaping their communities. In this study, we characterized the potential nitrogen fixing bacterial (PNFB) communities associated with two arcto-alpine pioneer plant species, Oxyria digyna (mountain sorrel) and Saxifraga oppositifolia (blue saxifrage), in three climate regions. Both of these plants readily colonize low nutrient mineral soils. Our goal was to investigate how climate (region) and, on the other hand, host plant and plant species shape these communities. To our knowledge, this is the first comprehensive study describing PNFB communities associated with pioneer plants in different arcto-alpine biomes. Replicate samples were taken from two arctic regions, Kilpisjärvi and Ny-Ålesund, and one alpine region, Mayrhofen. In these, the PNFB communities in the bulk and rhizosphere soils and the plant endospheres were characterized by nifH -targeted PCR and massive parallel sequencing. The data revealed strong effects of climatic region on the dominating nitrogen fixers. Specifically, nifH sequences related to Geobacter (δ- Proteobacteria ) were present in high relative abundances in the nitrogen-fixing communities in the Mayrhofen and Kilpisjärvi regions, while members of the Clostridiales prevailed in the Kilpisjärvi and Ny-Ålesund regions. The bulk and rhizosphere soil

  13. Negative Plant–Soil Feedback and Positive Species Interaction in a Herbaceous Plant Community

    NARCIS (Netherlands)

    Bonanomi, G.; Rietkerk, M.G.; Dekker, S.C.; Mazzoleni, S.

    2005-01-01

    Increasing evidence shows that facilitative interaction and negative plant–soil feedback are driving factors of plant population dynamics and community processes. We studied the intensity and the relative impact of negative feedback on clonal growth and seed germination of Scirpus holoschoenus, a

  14. Classification of nuclear plant cost to energy

    International Nuclear Information System (INIS)

    Long, G.A.

    1983-01-01

    In order to understand why the fixed-cost/variable-cost method of classifying nuclear plant costs can lead to rate discontinuities, the author must examine the factors which lead to the decision to build a nuclear power plant and the interrelationship between demand (KW) and energy (KWH). The problems and inequities associated with the nuclear plants can be avoided by recognizing that fixed costs are related to both demand and energy and by using a costing methodology which closely relates to the functional purpose of the plant. Generally, this leads to classifying fixed costs of nuclear plants primarily to the energy function in an embedded cost-of-service study and through either implicit or explicit recognition of fuel savings in a marginal cost study. The large rate discontinuities which occurred in the scenario can be resolved. Costs associated with demand or energy charges remain relatively stable compared to actual capacity costs and customers would not experience large changes in their bills due solely to a particular costing convention

  15. Asháninka medicinal plants: a case study from the native community of Bajo Quimiriki, Junín, Peru

    Directory of Open Access Journals (Sweden)

    Luziatelli Gaia

    2010-08-01

    Full Text Available Abstract Background The Asháninka Native Community Bajo Quimiriki, District Pichanaki, Junín, Peru, is located only 4 km from a larger urban area and is dissected by a major road. Therefore the loss of traditional knowledge is a main concern of the local headman and inhabitants. The present study assesses the state of traditional medicinal plant knowledge in the community and compares the local pharmacopoeia with the one from a related ethnic group. Methods Fieldwork was conducted between July and September 2007. Data were collected through semi-structured interviews, collection of medicinal plants in the homegardens, forest walks, a walk along the river banks, participant observation, informal conversation, cross check through voucher specimens and a focus group interview with children. Results Four-hundred and two medicinal plants, mainly herbs, were indicated by the informants. The most important families in terms of taxa were Asteraceae, Araceae, Rubiaceae, Euphorbiaceae, Solanaceae and Piperaceae. Eighty-four percent of the medicinal plants were wild and 63% were collected from the forest. Exotics accounted to only 2% of the medicinal plants. Problems related to the dermal system, digestive system, and cultural belief system represented 57% of all the medicinal applications. Some traditional healers received non-indigenous customers, using their knowledge as a source of income. Age and gender were significantly correlated to medicinal plant knowledge. Children knew the medicinal plants almost exclusively by their Spanish names. Sixteen percent of the medicinal plants found in this community were also reported among the Yanesha of the Pasco Region. Conclusions Despite the vicinity to a city, knowledge on medicinal plants and cultural beliefs are still abundant in this Asháninka Native Community and the medicinal plants are still available in the surroundings. Nevertheless, the use of Spanish names for the medicinal plants and the shift of

  16. Medicinal knowledge and plant utilization in an Amazonian coastal community of Marudá, Pará State (Brazil).

    Science.gov (United States)

    Coelho-Ferreira, Márlia

    2009-10-29

    It shows the local medicinal uses of biodiversity in Brazil's Amazonian littoral, promoting the value of folk knowledge, and its applicability in future studies. To demonstrate the importance of the knowledge of medicinal plants in the Amazonian coastal community of Marudá, located in Pará State, Brazil. Fieldwork was conducted between 1996 and 1998, using the methods of participant observation, semi-structured interviews and informal discussions to elicit information from community residents and plant specialists, in addition to collecting plant material. Community residents possess knowledge of 229 medicinal plants distributed in 81 botanical families and know how to manipulate them in a variety of ways, with special care taken to ensure that they are used in the safest and most efficient manner. Therapeutic indications for these plants include illness and disease recognized in the repertoire of Western medicine as well as ailments perceived from a local cultural perspective. Results from this study attest to informants' knowledge of medicinal flora and their ability and openness to integrate new species from diverse origins into their gamut of medicinal knowledge, including industrial therapeutic preparations and animal products. Local uses of biodiversity in Brazil's Amazonian littoral are also evinced, promoting the value of folk medicinal knowledge. Similarly, it mentions the potential of implementing local knowledge in Brazil's Unitary Health System.

  17. Plant Communities Rather than Soil Properties Structure Arbuscular Mycorrhizal Fungal Communities along Primary Succession on a Mine Spoil

    Czech Academy of Sciences Publication Activity Database

    Krüger, Claudia; Kohout, Petr; Janoušková, Martina; Püschel, David; Frouz, J.; Rydlová, Jana

    2017-01-01

    Roč. 8, APR 20 (2017), s. 1-16, č. článku 719. ISSN 1664-302X R&D Projects: GA ČR GA13-10377S; GA ČR GA15-05466S Institutional support: RVO:67985939 Keywords : biodiversity * community ecology * fungal and plant succession Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 4.076, year: 2016

  18. Biochar increases plant growth and alters microbial communities via regulating the moisture and temperature of green roof substrates.

    Science.gov (United States)

    Chen, Haoming; Ma, Jinyi; Wei, Jiaxing; Gong, Xin; Yu, Xichen; Guo, Hui; Zhao, Yanwen

    2018-09-01

    Green roofs have increasingly been designed and applied to relieve environmental problems, such as water loss, air pollution as well as heat island effect. Substrate and vegetation are important components of green roofs providing ecosystem services and benefiting the urban development. Biochar made from sewage sludge could be potentially used as the substrate amendment for green roofs, however, the effects of biochar on substrate quality and plant performance in green roofs are still unclear. We evaluated the effects of adding sludge biochar (0, 5, 10, 15 and 20%, v/v) to natural soil planted with three types of plant species (ryegrass, Sedum lineare and cucumber) on soil properties, plant growth and microbial communities in both green roof and ground ecosystems. Our results showed that sludge biochar addition significantly increased substrate moisture, adjusted substrate temperature, altered microbial community structure and increased plant growth. The application rate of 10-15% sludge biochar on the green roof exerted the most significant effects on both microbial and plant biomass by 63.9-89.6% and 54.0-54.2% respectively. Path analysis showed that biochar addition had a strong effect on microbial biomass via changing the soil air-filled porosity, soil moisture and temperature, and promoted plant growth through the positive effects on microbial biomass. These results suggest that the applications of biochar at an appropriate rate can significantly alter plant growth and microbial community structure, and increase the ecological benefits of green roofs via exerting effects on the moisture, temperature and nutrients of roof substrates. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Quantifying Hydroperiod, Fire and Nutrient Effects on the Composition of Plant Communities in Marl Prairie of the Everglades: a Joint Probability Method Based Model

    Science.gov (United States)

    Zhai, L.

    2017-12-01

    Plant community can be simultaneously affected by human activities and climate changes, and quantifying and predicting this combined effect on plant community by appropriate model framework which is validated by field data is complex, but very useful to conservation management. Plant communities in the Everglades provide an unique set of conditions to develop and validate this model framework, because they are both experiencing intensive effects of human activities (such as changing hydroperiod by drainage and restoration projects, nutrients from upstream agriculture, prescribed fire, etc.) and climate changes (such as warming, changing precipitation patter, sea level rise, etc.). More importantly, previous research attention focuses on plant communities in slough ecosystem (including ridge, slough and their tree islands), very few studies consider the marl prairie ecosystem. Comparing with slough ecosystem featured by remaining consistently flooded almost year-round, marl prairie has relatively shorter hydroperiod (just in wet-season of one year). Therefore, plant communities of marl prairie may receive more impacts from hydroperiod change. In addition to hydroperiod, fire and nutrients also affect the plant communities in the marl prairie. Therefore, to quantify the combined effects of water level, fire, and nutrients on the composition of the plant communities, we are developing a joint probability method based vegetation dynamic model. Further, the model is being validated by field data about changes of vegetation assemblage along environmental gradients in the marl prairie. Our poster showed preliminary data from our current project.

  20. Natural woodland vegetation and plant species richness of the urban open spaces in Gauteng, South Africa

    Directory of Open Access Journals (Sweden)

    C.H. Grobler

    2002-01-01

    Full Text Available It is estimated that approximately 60 % of the world’s population will be living in urban areas by 2025. In Gauteng, the most densely populated province in South Africa, the natural open spaces are continually under threat from development. Vegetation is the most physical representation of the environment on which all animals are ultimately dependent. In order to evaluate an areas potential for development or conservation it is necessary to make a thorough inventory of the plant communities and their associated habitats. A survey of the natural woodlands was undertaken as part of a project describing the vegetation of the natural open spaces within the Gauteng region. Relevés were compiled in 73 stratified random sample plots in selected open spaces within the study area. A TWINSPAN classification, refined by Braun-Blanquet procedures, indicated six woodland communities that can be grouped into two major woodland communities. A classification and description of these communities as well as their species richness are presented. The results indicate that there are still patches of well-preserved natural vegetation within the study area and contribute to the limited knowledge that presently exists for the vegetation of the area.

  1. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta) Forests

    Science.gov (United States)

    McIntosh, Anne C. S.; Macdonald, S. Ellen; Quideau, Sylvie A.

    2016-01-01

    Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights

  2. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta Forests.

    Directory of Open Access Journals (Sweden)

    Anne C S McIntosh

    Full Text Available Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs and multiple carbon-source substrate-induced respiration (MSIR of the forest floor microbial community environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis showed that two above-ground (mean tree diameter, litter cover and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs properties were associated with variation in understory plant community composition. These results provide

  3. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta) Forests.

    Science.gov (United States)

    McIntosh, Anne C S; Macdonald, S Ellen; Quideau, Sylvie A

    2016-01-01

    Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights

  4. Plant litter effects on soil nutrient availability and vegetation dynamics: changes that occur when annual grasses invade shrub-steppe communities

    Science.gov (United States)

    Sheel Bansal; Roger L. Sheley; Bob Blank; Edward A. Vasquez

    2014-01-01

    Changes in the quantity and quality of plant litter occur in many ecosystems as they are invaded by exotic species, which impact soil nutrient cycling and plant community composition. Such changes in sagebrush-steppe communities are occurring with invasion of annual grasses (AG) into a perennial grass (PG) dominated system. We conducted a 5-year litter manipulation...

  5. Common occupational classification system - revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Stahlman, E.J.; Lewis, R.E.

    1996-05-01

    Workforce planning has become an increasing concern within the DOE community as the Office of Environmental Restoration and Waste Management (ER/WM or EM) seeks to consolidate and refocus its activities and the Office of Defense Programs (DP) closes production sites. Attempts to manage the growth and skills mix of the EM workforce while retaining the critical skills of the DP workforce have been difficult due to the lack of a consistent set of occupational titles and definitions across the complex. Two reasons for this difficulty may be cited. First, classification systems commonly used in industry often fail to cover in sufficient depth the unique demands of DOE`s nuclear energy and research community. Second, the government practice of contracting the operation of government facilities to the private sector has introduced numerous contractor-specific classification schemes to the DOE complex. As a result, sites/contractors report their workforce needs using unique classification systems. It becomes difficult, therefore, to roll these data up to the national level necessary to support strategic planning and analysis. The Common Occupational Classification System (COCS) is designed to overcome these workforce planning barriers. The COCS is based on earlier workforce planning activities and the input of technical, workforce planning, and human resource managers from across the DOE complex. It provides a set of mutually-exclusive occupation titles and definitions that cover the broad range of activities present in the DOE complex. The COCS is not a required record-keeping or data management guide. Neither is it intended to replace contractor/DOE-specific classification systems. Instead, the system provides a consistent, high- level, functional structure of occupations to which contractors can crosswalk (map) their job titles.

  6. The Species Richness of Vascular Plants and Amphibia in Major Plant Communities in Temperate to Tropical Australia: Relationship with Annual Biomass Production

    International Nuclear Information System (INIS)

    Specht, R. L.; Tyler, M.J.

    2010-01-01

    Aerodynamic fluxes (frictional, thermal, evaporative) in the atmosphere as it flows over and through a plant community determine the Foliage Projective Covers and eco-morphological attributes of new leaves developed annually in overstorey and understorey strata. The number of leaves produced on vertical foliage shoots depends on available soil water and nutrients, also ambient temperature, during this short growth season. Stem density (number of stems per hectare) and species richness (number of species per hectare) in the overstorey of major Floristic Groups are correlated with annual shoot growth (ASG, t ha-1) in that stratum. Species richness in the overstorey increases in the climatic gradient from the arid to the humid zone as well as with increasing air temperatures (about 10 degree C) from temperate to tropical Australia. Species richness in the understorey is highest in plant communities in temperate Australia, decreasing in the temperature gradient towards the tropics. As with other major plant and animal groups within an ecosystem, the species richness of Amphibia is correlated with the amount of solar energy fixed (per annum) by the major plant formation in the regional photosynthetic potential determined by the foliage shoots (ASG, t ha-1) produced annually in the overstorey.

  7. The Species Richness of Vascular Plants and Amphibia in Major Plant Communities in Temperate to Tropical Australia: Relationship with Annual Biomass Production

    Directory of Open Access Journals (Sweden)

    R. L. Specht

    2010-01-01

    Full Text Available Aerodynamic fluxes (frictional, thermal, evaporative in the atmosphere as it flows over and through a plant community determine the Foliage Projective Covers and eco-morphological attributes of new leaves developed annually in overstorey and understorey strata. The number of leaves produced on vertical foliage shoots depends on available soil water and nutrients, also ambient temperature, during this short growth season. Stem density (number of stems per hectare and species richness (number of species per hectare in the overstorey of major Floristic Groups are correlated with annual shoot growth (ASG, t ha−1 in that stratum. Species richness in the overstorey increases in the climatic gradient from the arid to the humid zone as well as with increasing air temperatures (about 10oC from temperate to tropical Australia. Species richness in the understorey is highest in plant communities in temperate Australia, decreasing in the temperature gradient towards the tropics. As with other major plant and animal groups within an ecosystem, the species richness of Amphibia is correlated with the amount of solar energy fixed (per annum by the major plant formation in the region—a photosynthetic potential determined by the foliage shoots (ASG, t ha−1 produced annually in the overstorey.

  8. Indigenous knowledge for plant species diversity: a case study of wild plants' folk names used by the Mongolians in Ejina desert area, Inner Mongolia, P. R. China

    Directory of Open Access Journals (Sweden)

    Soyolt

    2008-01-01

    Full Text Available Abstract Folk names of plants are the roots of traditional plant biodiversity knowledge. This paper mainly records and analyses the wild plant folk names of the Mongolians in the Ejina desert area based on a field survey for collection and identification of voucher specimens. The results show that a total of 121 folk names of local plants have correspondence with 93 scientific species which belong to 26 families and 70 genera. The correspondence between plants' Mongol folk names and scientific species may be classified as one to one correspondence, multitude to one correspondence and one to multitude correspondence. The Ejina Mongolian plant folk names were formed on the basis of observations and an understanding of the wild plants growing in their desert environment. The high correspondence between folk names and scientific names shows the scientific meaning of folk botanical nomenclature and classification. It is very useful to take an inventory of biodiversity, especially among the rapid rural appraisal (RRA in studying biodiversity at the community level.

  9. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe

    DEFF Research Database (Denmark)

    Lenoir, Jonathan; Graae, Bente; Aarrestad, Per

    2013-01-01

    -change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine-grained thermal variability across a 2500-km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community...... data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within community-inferred temperatures: CiT). We...... temperature indicator values in combination with plant assemblages explained 46-72% of variation in LmT and 92-96% of variation in GiT during the growing season (June, July, August). Growing-season CiT range within 1-km(2) units peaked at 60-65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0...

  10. Plant and Bird Presence Strongly Influences the Microbial Communities in Soils of Admiralty Bay, Maritime Antarctica

    Science.gov (United States)

    Teixeira, Lia C. R. S.; Yeargeau, Etienne; Balieiro, Fabiano C.; Piccolo, Marisa C.; Peixoto, Raquel S.; Greer, Charles W.; Rosado, Alexandre S.

    2013-01-01

    Understanding the environmental factors that shape microbial communities is crucial, especially in extreme environments, like Antarctica. Two main forces were reported to influence Antarctic soil microbes: birds and plants. Both birds and plants are currently undergoing relatively large changes in their distribution and abundance due to global warming. However, we need to clearly understand the relationship between plants, birds and soil microorganisms. We therefore collected rhizosphere and bulk soils from six different sampling sites subjected to different levels of bird influence and colonized by Colobanthus quitensis and Deschampsia antarctica in Admiralty Bay, King George Island, Maritime Antarctic. Microarray and qPCR assays targeting 16S rRNA genes of specific taxa were used to assess microbial community structure, composition and abundance and analyzed with a range of soil physico-chemical parameters. The results indicated significant rhizosphere effects in four out of the six sites, including areas with different levels of bird influence. Acidobacteria were significantly more abundant in soils with little bird influence (low nitrogen) and in bulk soil. In contrast, Actinobacteria were significantly more abundant in the rhizosphere of both plant species. At two of the sampling sites under strong bird influence (penguin colonies), Firmicutes were significantly more abundant in D. antarctica rhizosphere but not in C. quitensis rhizosphere. The Firmicutes were also positively and significantly correlated to the nitrogen concentrations in the soil. We conclude that the microbial communities in Antarctic soils are driven both by bird and plants, and that the effect is taxa-specific. PMID:23840411

  11. Plant and bird presence strongly influences the microbial communities in soils of Admiralty Bay, Maritime Antarctica.

    Science.gov (United States)

    Teixeira, Lia C R S; Yeargeau, Etienne; Balieiro, Fabiano C; Piccolo, Marisa C; Peixoto, Raquel S; Greer, Charles W; Rosado, Alexandre S

    2013-01-01

    Understanding the environmental factors that shape microbial communities is crucial, especially in extreme environments, like Antarctica. Two main forces were reported to influence Antarctic soil microbes: birds and plants. Both birds and plants are currently undergoing relatively large changes in their distribution and abundance due to global warming. However, we need to clearly understand the relationship between plants, birds and soil microorganisms. We therefore collected rhizosphere and bulk soils from six different sampling sites subjected to different levels of bird influence and colonized by Colobanthus quitensis and Deschampsia antarctica in Admiralty Bay, King George Island, Maritime Antarctic. Microarray and qPCR assays targeting 16S rRNA genes of specific taxa were used to assess microbial community structure, composition and abundance and analyzed with a range of soil physico-chemical parameters. The results indicated significant rhizosphere effects in four out of the six sites, including areas with different levels of bird influence. Acidobacteria were significantly more abundant in soils with little bird influence (low nitrogen) and in bulk soil. In contrast, Actinobacteria were significantly more abundant in the rhizosphere of both plant species. At two of the sampling sites under strong bird influence (penguin colonies), Firmicutes were significantly more abundant in D. antarctica rhizosphere but not in C. quitensis rhizosphere. The Firmicutes were also positively and significantly correlated to the nitrogen concentrations in the soil. We conclude that the microbial communities in Antarctic soils are driven both by bird and plants, and that the effect is taxa-specific.

  12. Plant and bird presence strongly influences the microbial communities in soils of Admiralty Bay, Maritime Antarctica.

    Directory of Open Access Journals (Sweden)

    Lia C R S Teixeira

    Full Text Available Understanding the environmental factors that shape microbial communities is crucial, especially in extreme environments, like Antarctica. Two main forces were reported to influence Antarctic soil microbes: birds and plants. Both birds and plants are currently undergoing relatively large changes in their distribution and abundance due to global warming. However, we need to clearly understand the relationship between plants, birds and soil microorganisms. We therefore collected rhizosphere and bulk soils from six different sampling sites subjected to different levels of bird influence and colonized by Colobanthus quitensis and Deschampsia antarctica in Admiralty Bay, King George Island, Maritime Antarctic. Microarray and qPCR assays targeting 16S rRNA genes of specific taxa were used to assess microbial community structure, composition and abundance and analyzed with a range of soil physico-chemical parameters. The results indicated significant rhizosphere effects in four out of the six sites, including areas with different levels of bird influence. Acidobacteria were significantly more abundant in soils with little bird influence (low nitrogen and in bulk soil. In contrast, Actinobacteria were significantly more abundant in the rhizosphere of both plant species. At two of the sampling sites under strong bird influence (penguin colonies, Firmicutes were significantly more abundant in D. antarctica rhizosphere but not in C. quitensis rhizosphere. The Firmicutes were also positively and significantly correlated to the nitrogen concentrations in the soil. We conclude that the microbial communities in Antarctic soils are driven both by bird and plants, and that the effect is taxa-specific.

  13. Ethnobotanical study of medicinal plants in the community of Santa Rita, Ituiutaba – Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Glaucieli Siqueira Parreira Alves

    2013-09-01

    Full Text Available This paper aimed to inventory the plants used in popular medicine by members of the rural community of Santa Rita, in the town of Ituiutaba, Minas Gerais, Brazil. The evaluation was carried out through interviews, with a semi-structured questionnaire and subsequent collection of the plants indicated by informants. One conducted 47 interviews and 127 species were listed, belonging to 55 Angiosperm families. For obtaining the quantitative data, one calculated the percentage of the Main Use Concordance (cMUC of each species; for identifying the therapeutic indications with greater importance, one used the Informant Consensus Factor (ICF. The cMUC showed that 5.5% of the plants mentioned are widely used by the community. The predominant botanical families registered were Lamiaceae and Asteraceae, with 14 and 13 records, respectively. The indication of predominant use mainly involved illnesses related to an emotional disorder, as indicated by the ICF. One emphasizes that 60.7% of the plants mentioned in this paper are exotic species; thus, there’s a need for further studies in order to catalogue knowledge on the medicinal plants which are native to this region.

  14. The effect of glyphosate and nitrogen on plant communities and the soil fauna in terrestrial biotopes at field margins

    DEFF Research Database (Denmark)

    Damgaard, Christian; Strandberg, Beate; Dupont, Yoko

    were assessed at the ecosystem level by measuring biodiversity and functional traits. We have obtained an increased understanding of the causal relationship between plant communities and the soil fauna at the ecosystem level and increased knowledge on how and by what mechanisms important drivers...... that are known to affect plant communities may affect pollination and the soil fauna. The combined use of plant trait and soil fauna trait data in a full-factorial field experiment of glyphosate and nitrogen has never been explored before. The focus on plant and soil fauna traits rather than species enabled...... nitrogen, generally, resulted in increasing total plant cover and biomass, especially of fast-growing and competitive species as grasses and a few herbs such as Tanacetum vulgare. Using plant traits we found that increase in nitrogen promoted an increase in the average specific leaf area (SLA) and canopy...

  15. Ignored fungal community in activated sludge wastewater treatment plants: diversity and altitudinal characteristics.

    Science.gov (United States)

    Niu, Lihua; Li, Yi; Xu, Lingling; Wang, Peifang; Zhang, Wenlong; Wang, Chao; Cai, Wei; Wang, Linqiong

    2017-02-01

    Fungi are important contributors to the various functions of activated sludge wastewater treatment plants (WWTPs); however, the diversity and geographic characteristics of fungal populations have remained vastly unexplored. Here, quantitative polymerase chain reaction and 454 pyrosequencing were combined to investigate the abundance and diversity of the activated sludge fungal communities from 18 full-scale municipal WWTPs in China. Phylogenetic taxonomy revealed that the members of the fungal communities were assigned to 7 phyla and 195 genera. Ascomycota and Basidiomycota were the most abundant phyla, dominated by Pluteus, Wickerhamiella, and Penicillium. Twenty-three fungal genera, accounting for 50.1 % of the total reads, were shared by 18 WWTPs and constituted a core fungal community. The fungal communities presented similar community diversity but different community structures across the WWTPs. Significant distance decay relationships were observed for the dissimilarity in fungal community structure and altitudinal distance between WWTPs. Additionally, the community evenness increased from 0.25 to 0.7 as the altitude increased. Dissolved oxygen and the C/N ratio were determined to be the most dominant contributors to the variation in fungal community structure via redundancy analysis. The observed data demonstrated the diverse occurrence of fungal species and gave a marked view of fungal community characteristics based on the previously unexplored fungal communities in activated sludge WWTPs.

  16. Habitat template approach for green roofs using a native rocky sea coast plant community in Japan.

    Science.gov (United States)

    Nagase, Ayako; Tashiro-Ishii, Yurika

    2018-01-15

    The present study examined whether it is possible to simulate a local herbaceous coastal plant community on a roof, by studying the natural habitats of rocky sea coast plants and their propagation and performance on a green roof. After studying the natural habitat of coastal areas in Izu peninsula, a germination and cutting transplant study was carried out using herbaceous plants from the Jogasaki sea coast. Many plant species did not germinate at all and the use of cuttings was a better method than direct seeding. The green roof was installed in the spring of 2012 in Chiba city. Thirteen plant species from the Jogasaki sea coast, which were successfully propagated, were planted in three kinds of substrate (15 cm depth): pumice, roof tile and commercial green roof substrate. The water drainage was restricted and a reservoir with 5 cm depth of water underlaid the substrate to simulate a similar growing environment to the sea coast. Volcanic rocks were placed as mulch to create a landscape similar to that on the Jogasaki sea coast. Plant coverage on the green roof was measured every month from June 2012 to October 2014. All plants were harvested and their dry shoot weight was measured in December 2014. The type of substrate did not cause significant differences in plant survival and dry shoot weight. Sea coast plant species were divided into four categories: vigorous growth; seasonal change; disappearing after a few years; limited growth. Understanding the ecology of natural habitats was important to simulating a local landscape using native plant communities on the green roof. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Plant selenium hyperaccumulation- Ecological effects and potential implications for selenium cycling and community structure.

    Science.gov (United States)

    Reynolds, R Jason B; Pilon-Smits, Elizabeth A H

    2018-04-25

    Selenium (Se) hyperaccumulation occurs in ~50 plant taxa native to seleniferous soils in Western USA. Hyperaccumulator tissue Se levels, 1000-15,000 mg/kg dry weight, are typically 100 times higher than surrounding vegetation. Relative to other species, hyperaccumulators also transform Se more into organic forms. We review abiotic and biotic factors influencing soil Se distribution and bioavailability, soil being the source of the Se in hyperaccumulators. Next, we summarize the fate of Se in plants, particularly hyperaccumulators. We then extensively review the impact of plant Se accumulation on ecological interactions. Finally, we discuss the potential impact of Se hyperaccumulators on local community composition and Se cycling. Selenium (hyper)accumulation offers ecological advantages: protection from herbivores and pathogens and competitive advantage over other plants. The extreme Se levels in and around hyperaccumulators create a toxic environment for Se-sensitive ecological partners, while offering a niche for Se-resistant partners. Through these dual effects, hyperaccumulators may influence species composition in their local environment, as well as Se cycling. The implied effects of Se hyperaccumulation on community assembly and local Se cycling warrant further investigations into the contribution of hyperaccumulators and general terrestrial vegetation to global Se cycling and may serve as a case study for how trace elements influence ecological processes. Furthermore, understanding ecological implications of plant Se accumulation are vital for safe implementation of biofortification and phytoremediation, technologies increasingly implemented to battle Se deficiency and toxicity. Copyright © 2018. Published by Elsevier B.V.

  18. Generalization of heterogeneous alpine vegetation in air photo-based image classification, Latnjajaure catchment, northern Sweden

    Directory of Open Access Journals (Sweden)

    Lindblad, K. E. M.

    2006-12-01

    Full Text Available

    Mapping alpine vegetation at a meso-scale (catchment level using remote sensing presents difficulties due to a patchy distribution and heterogeneous spectral appearance of the plant cover. We discuss issues of generalization and accuracy assessment in this case study when using a digital CIR air photo for an automatic classification of the dominant plant communities. Spectral information from an aerial photograph was supplemented by classified plant communities in field and by topographical information derived from a DEM. 150 control points were tracked in the field using a GPS. The outcome from three alternative classifications was analysed by Kappa statistics, user’s and producer’s accuracy. Overall accuracy did not differ between the classifications although producer’s and user’s accuracy for separate classes differed together with total surface (ha and distribution. Manual accuracy assessment when recording the occurrence of the correct class within a radius of 5 meters from the control points generated an improvement of 16 % of the total accuracy. About 10 plant communities could be classified with acceptable accuracy where the chosen classification scheme determined the final outcome. If a high resolution pixel mosaic is generalized to units that match the positional accuracy of simple GPS this generalization may also influence the information content of the image.



    Hemos llevado a cabo la cartografía de la vegetación alpina a escala media (nivel de cuenca experimental mediante interpretación remota. Esta metodología plantea dificultades debido a la distribución en mosaico de la vegetación y a la heterogeneidad del espetro obtenido. Se discuten las posibilidades de generalización de los resultados y el grado de precisión alcanzado en este caso experimental mediante fotografía aérea digital CIR aplicada a una clasificación automática de

  19. Ecological effects of transgene persistence on plant communities in the presence and absence of drift levels of glyphosate herbicide

    Science.gov (United States)

    In 2005, plant communities were constructed in outdoor sunlit chambers that contained 3 round tubs having a surface area of 1.2 m2 and a depth of 0.6 m. Six plant types were planted in triplicate using the same spatial arrangement in each tub. Three of the six plant types were se...

  20. Intensive land use drives small-scale homogenization of plant- and leafhopper communities and promotes generalists.

    Science.gov (United States)

    Chisté, Melanie N; Mody, Karsten; Kunz, Gernot; Gunczy, Johanna; Blüthgen, Nico

    2018-02-01

    The current biodiversity decline through anthropogenic land-use not only involves local species losses, but also homogenization of communities, with a few generalist species benefitting most from human activities. Most studies assessed community heterogeneity (β-diversity) on larger scales by comparing different sites, but little is known about impacts on β-diversity within each site, which is relevant for understanding variation in the level of α-diversity, the small-scale distribution of species and associated habitat heterogeneity. To obtain our dataset with 36,899 individuals out of 117 different plant- and leafhopper (Auchenorrhyncha) species, we sampled communities of 140 managed grassland sites across Germany by quantitative vacuum suction of five 1 m 2 plots on each site. Sites differed in land-use intensity as characterized by intensity of fertilization, mowing and grazing. Our results demonstrate a significant within-site homogenization of plant- and leafhopper communities with increasing land-use intensity. Correspondingly, density (- 78%) and γ-diversity (- 35%) declined, particularly with fertilization and mowing intensity. More than 34% of plant- and leafhopper species were significant losers and only 6% were winners of high land-use intensity, with abundant and widespread species being less affected. Increasing land-use intensity adversely affected dietary specialists and promoted generalist species. Our study emphasizes considerable, multifaceted effects of land-use intensification on species loss, with a few dominant generalists winning, and an emerging trend towards more homogenized assemblages. By demonstrating homogenization for the first time within sites, our study highlights that anthropogenic influences on biodiversity even occur on small scales.