WorldWideScience

Sample records for plant chloroplast genomes

  1. Patterns of synonymous codon usage bias in chloroplast genomes of seed plants

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Codon usage in chloroplast genome of six seed plants (Arabidopsis thaliana, Populus alba, Zea mays, Triticum aestivum,Pinus koraiensis and Cycas taitungensis) was analyzed to find general patterns of codon usage in chloroplast genomes of seed plants.The results show that chloroplast genomes of the six seed plants had similar codon usage patterns, with a strong bias towards a high representation of NNA and NNT codons. In chloroplast genomes of the six seed plants, the effective number of codons (ENC) for most genes was similar to that of the expected ENC based on the GC content at the third codon position, but several genes with low ENC values were laying below the expected curve. All of these data indicate that codon usage was dominated by a mutational bias in chloroplast genomes of seed plants and that selection appeared to be limited to a subset of genes and to only subtly affect codon us-age. Meantime, four, six, eight, nine, ten and 12 codons were defined as the optimal codons in chloroplast genomes of the six seed plants.

  2. Chloroplast genome sequence of the moss Tortula ruralis: gene content, polymorphism, and structural arrangement relative to other green plant chloroplast genomes

    Directory of Open Access Journals (Sweden)

    Wolf Paul G

    2010-02-01

    Full Text Available Abstract Background Tortula ruralis, a widely distributed species in the moss family Pottiaceae, is increasingly used as a model organism for the study of desiccation tolerance and mechanisms of cellular repair. In this paper, we present the chloroplast genome sequence of T. ruralis, only the second published chloroplast genome for a moss, and the first for a vegetatively desiccation-tolerant plant. Results The Tortula chloroplast genome is ~123,500 bp, and differs in a number of ways from that of Physcomitrella patens, the first published moss chloroplast genome. For example, Tortula lacks the ~71 kb inversion found in the large single copy region of the Physcomitrella genome and other members of the Funariales. Also, the Tortula chloroplast genome lacks petN, a gene found in all known land plant plastid genomes. In addition, an unusual case of nucleotide polymorphism was discovered. Conclusions Although the chloroplast genome of Tortula ruralis differs from that of the only other sequenced moss, Physcomitrella patens, we have yet to determine the biological significance of the differences. The polymorphisms we have uncovered in the sequencing of the genome offer a rare possibility (for mosses of the generation of DNA markers for fine-level phylogenetic studies, or to investigate individual variation within populations.

  3. Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants.

    Science.gov (United States)

    George, Biju; Bhatt, Bhavin S; Awasthi, Mayur; George, Binu; Singh, Achuit K

    2015-11-01

    Microsatellites, or simple sequence repeats (SSRs), contain repetitive DNA sequence where tandem repeats of one to six base pairs are present number of times. Chloroplast genome sequences have been  shown to possess extensive variations in the length, number and distribution of SSRs. However, a comparative analysis of chloroplast microsatellites is not available. Considering their potential importance in generating genomic diversity, we have systematically analysed the abundance and distribution of simple and compound microsatellites in 164 sequenced chloroplast genomes from wide range of plants. The key findings of these studies are (1) a large number of mononucleotide repeats as compared to SSR(2-6)(di-, tri-, tetra-, penta-, hexanucleotide repeats) are present in all chloroplast genomes investigated, (2) lower plants such as algae show wide variation in relative abundance, density and distribution of microsatellite repeats as compared to flowering plants, (3) longer SSRs are excluded from coding regions of most chloroplast genomes, (4) GC content has a weak influence on number, relative abundance and relative density of mononucleotide as well as SSR(2-6). However, GC content strongly showed negative correlation with relative density (R (2) = 0.5, P plants possesses relatively more genomic diversity compared to higher plants.

  4. Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants.

    Science.gov (United States)

    Drouin, Guy; Daoud, Hanane; Xia, Junnan

    2008-12-01

    Previous studies have estimated that, in angiosperms, the synonymous substitution rate of chloroplast genes is three times higher than that of mitochondrial genes and that of nuclear genes is twelve times higher than that of mitochondrial genes. Here we used 12 genes in 27 seed plant species to investigate whether these relative rates of substitutions are common to diverse seed plant groups. We find that the overall relative rate of synonymous substitutions of mitochondrial, chloroplast and nuclear genes of all seed plants is 1:3:10, that these ratios are 1:2:4 in gymnosperms but 1:3:16 in angiosperms and that they go up to 1:3:20 in basal angiosperms. Our results show that the mitochondrial, chloroplast and nuclear genomes of seed plant groups have different synonymous substitutions rates, that these rates are different in different seed plant groups and that gymnosperms have smaller ratios than angiosperms.

  5. Chloroplast Genome Sequence of the Moss Tortula ruralis: Gene Content and Structural Arrangement Relative to Other Green Plant Chloroplast Genomes

    Science.gov (United States)

    Tortula ruralis, a widely distributed moss species in the family Pottiaceae, is increasingly being used as a model organism for the study of desiccation tolerance and mechanisms of cellular repair. In this paper, we present the chloroplast genome sequence of Tortula ruralis, only the second publishe...

  6. The complete chloroplast and mitochondrial genome sequences of Boea hygrometrica: insights into the evolution of plant organellar genomes.

    Directory of Open Access Journals (Sweden)

    Tongwu Zhang

    Full Text Available The complete nucleotide sequences of the chloroplast (cp and mitochondrial (mt genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147 with a 72% coding sequence, and the larger mitochondrial genome have less genes (65 with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage.

  7. The complete chloroplast and mitochondrial genome sequences of Boea hygrometrica: insights into the evolution of plant organellar genomes.

    Science.gov (United States)

    Zhang, Tongwu; Fang, Yongjun; Wang, Xumin; Deng, Xin; Zhang, Xiaowei; Hu, Songnian; Yu, Jun

    2012-01-01

    The complete nucleotide sequences of the chloroplast (cp) and mitochondrial (mt) genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae) have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147) with a 72% coding sequence, and the larger mitochondrial genome have less genes (65) with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC) and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage.

  8. Chloroplast genome sequence of the moss Tortula ruralis: gene content, polymorphism, and structural arrangement relative to other green plant chloroplast genomes

    OpenAIRE

    Wolf Paul G; Everett Karin DE; Mandoli Dina F; Boore Jeffrey L; Kuehl Jennifer V; Mishler Brent D; Murdock Andrew G; Oliver Melvin J; Duffy Aaron M; Karol Kenneth G

    2010-01-01

    Abstract Background Tortula ruralis, a widely distributed species in the moss family Pottiaceae, is increasingly used as a model organism for the study of desiccation tolerance and mechanisms of cellular repair. In this paper, we present the chloroplast genome sequence of T. ruralis, only the second published chloroplast genome for a moss, and the first for a vegetatively desiccation-t...

  9. The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng.

    Science.gov (United States)

    Chen, Jinhui; Hao, Zhaodong; Xu, Haibin; Yang, Liming; Liu, Guangxin; Sheng, Yu; Zheng, Chen; Zheng, Weiwei; Cheng, Tielong; Shi, Jisen

    2015-01-01

    Metasequoia glyptostroboides Hu et Cheng is the only species in the genus Metasequoia Miki ex Hu et Cheng, which belongs to the Cupressaceae family. There were around 10 species in the Metasequoia genus, which were widely spread across the Northern Hemisphere during the Cretaceous of the Mesozoic and in the Cenozoic. M. glyptostroboides is the only remaining representative of this genus. Here, we report the complete chloroplast (cp) genome sequence and the cp genomic features of M. glyptostroboides. The M. glyptostroboides cp genome is 131,887 bp in length, with a total of 117 genes comprised of 82 protein-coding genes, 31 tRNA genes and four rRNA genes. In this genome, 11 forward repeats, nine palindromic repeats, and 15 tandem repeats were detected. A total of 188 perfect microsatellites were detected through simple sequence repeat (SSR) analysis and these were distributed unevenly within the cp genome. Comparison of the cp genome structure and gene order to those of several other land plants indicated that a copy of the inverted repeat (IR) region, which was found to be IR region A (IRA), was lost in the M. glyptostroboides cp genome. The five most divergent and five most conserved genes were determined and further phylogenetic analysis was performed among plant species, especially for related species in conifers. Finally, phylogenetic analysis demonstrated that M. glyptostroboides is a sister species to Cryptomeria japonica (L. F.) D. Don and to Taiwania cryptomerioides Hayata. The complete cp genome sequence information of M. glyptostroboides will be great helpful for further investigations of this endemic relict woody plant and for in-depth understanding of the evolutionary history of the coniferous cp genomes, especially for the position of M. glyptostroboides in plant systematics and evolution.

  10. The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza.

    Science.gov (United States)

    Qian, Jun; Song, Jingyuan; Gao, Huanhuan; Zhu, Yingjie; Xu, Jiang; Pang, Xiaohui; Yao, Hui; Sun, Chao; Li, Xian'en; Li, Chuyuan; Liu, Juyan; Xu, Haibin; Chen, Shilin

    2013-01-01

    Salvia miltiorrhiza is an important medicinal plant with great economic and medicinal value. The complete chloroplast (cp) genome sequence of Salvia miltiorrhiza, the first sequenced member of the Lamiaceae family, is reported here. The genome is 151,328 bp in length and exhibits a typical quadripartite structure of the large (LSC, 82,695 bp) and small (SSC, 17,555 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 25,539 bp). It contains 114 unique genes, including 80 protein-coding genes, 30 tRNAs and four rRNAs. The genome structure, gene order, GC content and codon usage are similar to the typical angiosperm cp genomes. Four forward, three inverted and seven tandem repeats were detected in the Salvia miltiorrhiza cp genome. Simple sequence repeat (SSR) analysis among the 30 asterid cp genomes revealed that most SSRs are AT-rich, which contribute to the overall AT richness of these cp genomes. Additionally, fewer SSRs are distributed in the protein-coding sequences compared to the non-coding regions, indicating an uneven distribution of SSRs within the cp genomes. Entire cp genome comparison of Salvia miltiorrhiza and three other Lamiales cp genomes showed a high degree of sequence similarity and a relatively high divergence of intergenic spacers. Sequence divergence analysis discovered the ten most divergent and ten most conserved genes as well as their length variation, which will be helpful for phylogenetic studies in asterids. Our analysis also supports that both regional and functional constraints affect gene sequence evolution. Further, phylogenetic analysis demonstrated a sister relationship between Salvia miltiorrhiza and Sesamum indicum. The complete cp genome sequence of Salvia miltiorrhiza reported in this paper will facilitate population, phylogenetic and cp genetic engineering studies of this medicinal plant.

  11. The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza.

    Directory of Open Access Journals (Sweden)

    Jun Qian

    Full Text Available Salvia miltiorrhiza is an important medicinal plant with great economic and medicinal value. The complete chloroplast (cp genome sequence of Salvia miltiorrhiza, the first sequenced member of the Lamiaceae family, is reported here. The genome is 151,328 bp in length and exhibits a typical quadripartite structure of the large (LSC, 82,695 bp and small (SSC, 17,555 bp single-copy regions, separated by a pair of inverted repeats (IRs, 25,539 bp. It contains 114 unique genes, including 80 protein-coding genes, 30 tRNAs and four rRNAs. The genome structure, gene order, GC content and codon usage are similar to the typical angiosperm cp genomes. Four forward, three inverted and seven tandem repeats were detected in the Salvia miltiorrhiza cp genome. Simple sequence repeat (SSR analysis among the 30 asterid cp genomes revealed that most SSRs are AT-rich, which contribute to the overall AT richness of these cp genomes. Additionally, fewer SSRs are distributed in the protein-coding sequences compared to the non-coding regions, indicating an uneven distribution of SSRs within the cp genomes. Entire cp genome comparison of Salvia miltiorrhiza and three other Lamiales cp genomes showed a high degree of sequence similarity and a relatively high divergence of intergenic spacers. Sequence divergence analysis discovered the ten most divergent and ten most conserved genes as well as their length variation, which will be helpful for phylogenetic studies in asterids. Our analysis also supports that both regional and functional constraints affect gene sequence evolution. Further, phylogenetic analysis demonstrated a sister relationship between Salvia miltiorrhiza and Sesamum indicum. The complete cp genome sequence of Salvia miltiorrhiza reported in this paper will facilitate population, phylogenetic and cp genetic engineering studies of this medicinal plant.

  12. The complete chloroplast genome sequence of Pelargonium x hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants.

    Science.gov (United States)

    Chumley, Timothy W; Palmer, Jeffrey D; Mower, Jeffrey P; Fourcade, H Matthew; Calie, Patrick J; Boore, Jeffrey L; Jansen, Robert K

    2006-11-01

    The chloroplast genome of Pelargonium x hortorum has been completely sequenced. It maps as a circular molecule of 217,942 bp and is both the largest and most rearranged land plant chloroplast genome yet sequenced. It features 2 copies of a greatly expanded inverted repeat (IR) of 75,741 bp each and, consequently, diminished single-copy regions of 59,710 and 6,750 bp. Despite the increase in size and complexity of the genome, the gene content is similar to that of other angiosperms, with the exceptions of a large number of pseudogenes, the recognition of 2 open reading frames (ORF56 and ORF42) in the trnA intron with similarities to previously identified mitochondrial products (ACRS and pvs-trnA), the losses of accD and trnT-ggu and, in particular, the presence of a highly divergent set of rpoA-like ORFs rather than a single, easily recognized gene for rpoA. The 3-fold expansion of the IR (relative to most angiosperms) accounts for most of the size increase of the genome, but an additional 10% of the size increase is related to the large number of repeats found. The Pelargonium genome contains 35 times as many 31 bp or larger repeats than the unrearranged genome of Spinacia. Most of these repeats occur near the rearrangement hotspots, and 2 different associations of repeats are localized in these regions. These associations are characterized by full or partial duplications of several genes, most of which appear to be nonfunctional copies or pseudogenes. These duplications may also be linked to the disruption of at least 1 but possibly 2 or 3 operons. We propose simple models that account for the major rearrangements with a minimum of 8 IR boundary changes and 12 inversions in addition to several insertions of duplicated sequence.

  13. The Complete Chloroplast Genome Sequences of the Medicinal Plant Pogostemon cablin

    Directory of Open Access Journals (Sweden)

    Yang He

    2016-06-01

    Full Text Available Pogostemon cablin, the natural source of patchouli alcohol, is an important herb in the Lamiaceae family. Here, we present the entire chloroplast genome of P. cablin. This genome, with 38.24% GC content, is 152,460 bp in length. The genome presents a typical quadripartite structure with two inverted repeats (each 25,417 bp in length, separated by one small and one large single-copy region (17,652 and 83,974 bp in length, respectively. The chloroplast genome encodes 127 genes, of which 107 genes are single-copy, including 79 protein-coding genes, four rRNA genes, and 24 tRNA genes. The genome structure, GC content, and codon usage of this chloroplast genome are similar to those of other species in the family, except that it encodes less protein-coding genes and tRNA genes. Phylogenetic analysis reveals that P. cablin diverged from the Scutellarioideae clade about 29.45 million years ago (Mya. Furthermore, most of the simple sequence repeats (SSRs are short polyadenine or polythymine repeats that contribute to high AT content in the chloroplast genome. Complete sequences and annotation of P. cablin chloroplast genome will facilitate phylogenic, population and genetic engineering research investigations involving this particular species.

  14. The complete chloroplast genome sequence of Pelargonium xhortorum: Or ganization and evolution of the largest and most highlyrearranged chloroplast genome of land plants

    Energy Technology Data Exchange (ETDEWEB)

    Chumley, Timothy W.; Palmer, Jeffrey D.; Mower, Jeffrey P.; Fourcade, H. Matthew; Calie, Patrick J.; Boore, Jeffrey L.; Jansen,Robert K.

    2006-01-20

    The chloroplast genome of Pelargonium e hortorum has beencompletely sequenced. It maps as a circular molecule of 217,942 bp, andis both the largest and most rearranged land plant chloroplast genome yetsequenced. It features two copies of a greatly expanded inverted repeat(IR) of 75,741 bp each, and consequently diminished single copy regionsof 59,710 bp and 6,750 bp. It also contains two different associations ofrepeated elements that contribute about 10 percent to the overall sizeand account for the majority of repeats found in the genome. Theyrepresent hotspots for rearrangements and gene duplications and include alarge number of pseudogenes. We propose simple models that account forthe major rearrangements with a minimum of eight IR boundary changes and12 inversions in addition to a several insertions of duplicated sequence.The major processes at work (duplication, IR expansion, and inversion)have disrupted at least one and possibly two or three transcriptionaloperons, and the genes involved in these disruptions form the core of thetwo major repeat associations. Despite the vast increase in size andcomplexity of the genome, the gene content is similar to that of otherangiosperms, with the exceptions of a large number of pseudogenes as partof the repeat associations, the recognition of two open reading frames(ORF56 and ORF42) in the trnA intron with similarities to previouslyidentified mitochondrial products (ACRS and pvs-trnA), the loss of accDand trnT-GGU, and in particular, the lack of a recognizably functionalrpoA. One or all of three similar open reading frames may possibly encodethe latter, however.

  15. Phylogenomic Analysis and Dynamic Evolution of Chloroplast Genomes in Salicaceae

    Directory of Open Access Journals (Sweden)

    Yuan Huang

    2017-06-01

    Full Text Available Chloroplast genomes of plants are highly conserved in both gene order and gene content. Analysis of the whole chloroplast genome is known to provide much more informative DNA sites and thus generates high resolution for plant phylogenies. Here, we report the complete chloroplast genomes of three Salix species in family Salicaceae. Phylogeny of Salicaceae inferred from complete chloroplast genomes is generally consistent with previous studies but resolved with higher statistical support. Incongruences of phylogeny, however, are observed in genus Populus, which most likely results from homoplasy. By comparing three Salix chloroplast genomes with the published chloroplast genomes of other Salicaceae species, we demonstrate that the synteny and length of chloroplast genomes in Salicaceae are highly conserved but experienced dynamic evolution among species. We identify seven positively selected chloroplast genes in Salicaceae, which might be related to the adaptive evolution of Salicaceae species. Comparative chloroplast genome analysis within the family also indicates that some chloroplast genes are lost or became pseudogenes, infer that the chloroplast genes horizontally transferred to the nucleus genome. Based on the complete nucleus genome sequences from two Salicaceae species, we remarkably identify that the entire chloroplast genome is indeed transferred and integrated to the nucleus genome in the individual of the reference genome of P. trichocarpa at least once. This observation, along with presence of the large nuclear plastid DNA (NUPTs and NUPTs-containing multiple chloroplast genes in their original order in the chloroplast genome, favors the DNA-mediated hypothesis of organelle to nucleus DNA transfer. Overall, the phylogenomic analysis using chloroplast complete genomes clearly elucidates the phylogeny of Salicaceae. The identification of positively selected chloroplast genes and dynamic chloroplast-to-nucleus gene transfers in

  16. The First Chloroplast Genome Sequence of Boswellia sacra, a Resin-Producing Plant in Oman

    Science.gov (United States)

    Khan, Abdul Latif; Al-Harrasi, Ahmed; Asaf, Sajjad; Park, Chang Eon; Park, Gun-Seok; Khan, Abdur Rahim; Lee, In-Jung; Al-Rawahi, Ahmed; Shin, Jae-Ho

    2017-01-01

    Boswellia sacra (Burseraceae), a keystone endemic species, is famous for the production of fragrant oleo-gum resin. However, the genetic make-up especially the genomic information about chloroplast is still unknown. Here, we described for the first time the chloroplast (cp) genome of B. sacra. The complete cp sequence revealed a circular genome of 160,543 bp size with 37.61% GC content. The cp genome is a typical quadripartite chloroplast structure with inverted repeats (IRs 26,763 bp) separated by small single copy (SSC; 18,962 bp) and large single copy (LSC; 88,055 bp) regions. De novo assembly and annotation showed the presence of 114 unique genes with 83 protein-coding regions. The phylogenetic analysis revealed that the B. sacra cp genome is closely related to the cp genome of Azadirachta indica and Citrus sinensis, while most of the syntenic differences were found in the non-coding regions. The pairwise distance among 76 shared genes of B. sacra and A. indica was highest for atpA, rpl2, rps12 and ycf1. The cp genome of B. sacra reveals a novel genome, which could be used for further studied to understand its diversity, taxonomy and phylogeny. PMID:28085925

  17. Utilization of complete chloroplast genomes for phylogenetic studies

    NARCIS (Netherlands)

    Ramlee, Shairul Izan Binti

    2016-01-01

    Chloroplast DNA sequence polymorphisms are a primary source of data in many plant phylogenetic studies. The chloroplast genome is relatively conserved in its evolution making it an ideal molecule to retain phylogenetic signals. The chloroplast genome is also largely, but not completely, free from ot

  18. Analysis of the Complete Chloroplast Genome of a Medicinal Plant, Dianthus superbus var. longicalyncinus, from a Comparative Genomics Perspective.

    Directory of Open Access Journals (Sweden)

    Gurusamy Raman

    Full Text Available Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicinal plant that is also used for ornamental purposes. In this study, D. superbus was compared to its closely related family of Caryophyllaceae chloroplast (cp genomes such as Lychnis chalcedonica and Spinacia oleracea. D. superbus had the longest large single copy (LSC region (82,805 bp, with some variations in the inverted repeat region A (IRA/LSC regions. The IRs underwent both expansion and constriction during evolution of the Caryophyllaceae family; however, intense variations were not identified. The pseudogene ribosomal protein subunit S19 (rps19 was identified at the IRA/LSC junction, but was not present in the cp genome of other Caryophyllaceae family members. The translation initiation factor IF-1 (infA and ribosomal protein subunit L23 (rpl23 genes were absent from the Dianthus cp genome. When the cp genome of Dianthus was compared with 31 other angiosperm lineages, the infA gene was found to have been lost in most members of rosids, solanales of asterids and Lychnis of Caryophyllales, whereas rpl23 gene loss or pseudogization had occurred exclusively in Caryophyllales. Nevertheless, the cp genome of Dianthus and Spinacia has two introns in the proteolytic subunit of ATP-dependent protease (clpP gene, but Lychnis has lost introns from the clpP gene. Furthermore, phylogenetic analysis of individual protein-coding genes infA and rpl23 revealed that gene loss or pseudogenization occurred independently in the cp genome of Dianthus. Molecular phylogenetic analysis also demonstrated a sister relationship between Dianthus and Lychnis based on 78 protein-coding sequences. The results presented herein will contribute to studies of the evolution, molecular biology and genetic engineering of the medicinal and ornamental plant, D. superbus var. longicalycinus.

  19. Analysis of the Complete Chloroplast Genome of a Medicinal Plant, Dianthus superbus var. longicalyncinus, from a Comparative Genomics Perspective.

    Science.gov (United States)

    Raman, Gurusamy; Park, SeonJoo

    2015-01-01

    Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicinal plant that is also used for ornamental purposes. In this study, D. superbus was compared to its closely related family of Caryophyllaceae chloroplast (cp) genomes such as Lychnis chalcedonica and Spinacia oleracea. D. superbus had the longest large single copy (LSC) region (82,805 bp), with some variations in the inverted repeat region A (IRA)/LSC regions. The IRs underwent both expansion and constriction during evolution of the Caryophyllaceae family; however, intense variations were not identified. The pseudogene ribosomal protein subunit S19 (rps19) was identified at the IRA/LSC junction, but was not present in the cp genome of other Caryophyllaceae family members. The translation initiation factor IF-1 (infA) and ribosomal protein subunit L23 (rpl23) genes were absent from the Dianthus cp genome. When the cp genome of Dianthus was compared with 31 other angiosperm lineages, the infA gene was found to have been lost in most members of rosids, solanales of asterids and Lychnis of Caryophyllales, whereas rpl23 gene loss or pseudogization had occurred exclusively in Caryophyllales. Nevertheless, the cp genome of Dianthus and Spinacia has two introns in the proteolytic subunit of ATP-dependent protease (clpP) gene, but Lychnis has lost introns from the clpP gene. Furthermore, phylogenetic analysis of individual protein-coding genes infA and rpl23 revealed that gene loss or pseudogenization occurred independently in the cp genome of Dianthus. Molecular phylogenetic analysis also demonstrated a sister relationship between Dianthus and Lychnis based on 78 protein-coding sequences. The results presented herein will contribute to studies of the evolution, molecular biology and genetic engineering of the medicinal and ornamental plant, D. superbus var. longicalycinus.

  20. Determination of the melon chloroplast and mitochondrial genome sequences reveals that the largest reported mitochondrial genome in plants contains a significant amount of DNA having a nuclear origin

    Science.gov (United States)

    2011-01-01

    Background The melon belongs to the Cucurbitaceae family, whose economic importance among vegetable crops is second only to Solanaceae. The melon has a small genome size (454 Mb), which makes it suitable for molecular and genetic studies. Despite similar nuclear and chloroplast genome sizes, cucurbits show great variation when their mitochondrial genomes are compared. The melon possesses the largest plant mitochondrial genome, as much as eight times larger than that of other cucurbits. Results The nucleotide sequences of the melon chloroplast and mitochondrial genomes were determined. The chloroplast genome (156,017 bp) included 132 genes, with 98 single-copy genes dispersed between the small (SSC) and large (LSC) single-copy regions and 17 duplicated genes in the inverted repeat regions (IRa and IRb). A comparison of the cucumber and melon chloroplast genomes showed differences in only approximately 5% of nucleotides, mainly due to short indels and SNPs. Additionally, 2.74 Mb of mitochondrial sequence, accounting for 95% of the estimated mitochondrial genome size, were assembled into five scaffolds and four additional unscaffolded contigs. An 84% of the mitochondrial genome is contained in a single scaffold. The gene-coding region accounted for 1.7% (45,926 bp) of the total sequence, including 51 protein-coding genes, 4 conserved ORFs, 3 rRNA genes and 24 tRNA genes. Despite the differences observed in the mitochondrial genome sizes of cucurbit species, Citrullus lanatus (379 kb), Cucurbita pepo (983 kb) and Cucumis melo (2,740 kb) share 120 kb of sequence, including the predicted protein-coding regions. Nevertheless, melon contained a high number of repetitive sequences and a high content of DNA of nuclear origin, which represented 42% and 47% of the total sequence, respectively. Conclusions Whereas the size and gene organisation of chloroplast genomes are similar among the cucurbit species, mitochondrial genomes show a wide variety of sizes, with a non

  1. Complete chloroplast genome sequence of an orchid model plant candidate: Erycina pusilla apply in tropical Oncidium breeding.

    Directory of Open Access Journals (Sweden)

    I-Chun Pan

    Full Text Available Oncidium is an important ornamental plant but the study of its functional genomics is difficult. Erycina pusilla is a fast-growing Oncidiinae species. Several characteristics including low chromosome number, small genome size, short growth period, and its ability to complete its life cycle in vitro make E. pusilla a good model candidate and parent for hybridization for orchids. Although genetic information remains limited, systematic molecular analysis of its chloroplast genome might provide useful genetic information. By combining bacterial artificial chromosome (BAC clones and next-generation sequencing (NGS, the chloroplast (cp genome of E. pusilla was sequenced accurately, efficiently and economically. The cp genome of E. pusilla shares 89 and 84% similarity with Oncidium Gower Ramsey and Phalanopsis aphrodite, respectively. Comparing these 3 cp genomes, 5 regions have been identified as showing diversity. Using PCR analysis of 19 species belonging to the Epidendroideae subfamily, a conserved deletion was found in the rps15-trnN region of the Cymbidieae tribe. Because commercial Oncidium varieties in Taiwan are limited, identification of potential parents using molecular breeding method has become very important. To demonstrate the relationship between taxonomic position and hybrid compatibility of E. pusilla, 4 DNA regions of 36 tropically adapted Oncidiinae varieties have been analyzed. The results indicated that trnF-ndhJ and trnH-psbA were suitable for phylogenetic analysis. E. pusilla proved to be phylogenetically closer to Rodriguezia and Tolumnia than Oncidium, despite its similar floral appearance to Oncidium. These results indicate the hybrid compatibility of E. pusilla, its cp genome providing important information for Oncidium breeding.

  2. Complete chloroplast genome sequence of poisonous and medicinal plant Datura stramonium: organizations and implications for genetic engineering.

    Science.gov (United States)

    Yang, Yang; Dang, Yuanye; Yuanye, Dang; Li, Qing; Qing, Li; Lu, Jinjian; Jinjian, Lu; Li, Xiwen; Xiwen, Li; Wang, Yitao; Yitao, Wang

    2014-01-01

    Datura stramonium is a widely used poisonous plant with great medicinal and economic value. Its chloroplast (cp) genome is 155,871 bp in length with a typical quadripartite structure of the large (LSC, 86,302 bp) and small (SSC, 18,367 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 25,601 bp). The genome contains 113 unique genes, including 80 protein-coding genes, 29 tRNAs and four rRNAs. A total of 11 forward, 9 palindromic and 13 tandem repeats were detected in the D. stramonium cp genome. Most simple sequence repeats (SSR) are AT-rich and are less abundant in coding regions than in non-coding regions. Both SSRs and GC content were unevenly distributed in the entire cp genome. All preferred synonymous codons were found to use A/T ending codons. The difference in GC contents of entire genomes and of the three-codon positions suggests that the D. stramonium cp genome might possess different genomic organization, in part due to different mutational pressures. The five most divergent coding regions and four non-coding regions (trnH-psbA, rps4-trnS, ndhD-ccsA, and ndhI-ndhG) were identified using whole plastome alignment, which can be used to develop molecular markers for phylogenetics and barcoding studies within the Solanaceae. Phylogenetic analysis based on 68 protein-coding genes supported Datura as a sister to Solanum. This study provides valuable information for phylogenetic and cp genetic engineering studies of this poisonous and medicinal plant.

  3. Complete Chloroplast Genome of Tanaecium tetragonolobum: The First Bignoniaceae Plastome.

    Directory of Open Access Journals (Sweden)

    Alison Gonçalves Nazareno

    Full Text Available Bignoniaceae is a Pantropical plant family that is especially abundant in the Neotropics. Members of the Bignoniaceae are diverse in many ecosystems and represent key components of the Tropical flora. Despite the ecological importance of the Bignoniaceae and all the efforts to reconstruct the phylogeny of this group, whole chloroplast genome information has not yet been reported for any members of the family. Here, we report the complete chloroplast genome sequence of Tanaecium tetragonolobum (Jacq. L.G. Lohmann, which was reconstructed using de novo and referenced-based assembly of single-end reads generated by shotgun sequencing of total genomic DNA in an Illumina platform. The gene order and organization of the chloroplast genome of T. tetragonolobum exhibits the general structure of flowering plants, and is similar to other Lamiales chloroplast genomes. The chloroplast genome of T. tetragonolobum is a circular molecule of 153,776 base pairs (bp with a quadripartite structure containing two single copy regions, a large single copy region (LSC, 84,612 bp and a small single copy region (SSC, 17,586 bp separated by inverted repeat regions (IRs, 25,789 bp. In addition, the chloroplast genome of T. tetragonolobum has 38.3% GC content and includes 121 genes, of which 86 are protein-coding, 31 are transfer RNA, and four are ribosomal RNA. The chloroplast genome of T. tetragonolobum presents a total of 47 tandem repeats and 347 simple sequence repeats (SSRs with mononucleotides being the most common and di-, tri-, tetra-, and hexanucleotides occurring with less frequency. The results obtained here were compared to other chloroplast genomes of Lamiales available to date, providing new insight into the evolution of chloroplast genomes within Lamiales. Overall, the evolutionary rates of genes in Lamiales are lineage-, locus-, and region-specific, indicating that the evolutionary pattern of nucleotide substitution in chloroplast genomes of flowering

  4. Analysis of Protein Import into Chloroplasts Isolated from Stressed Plants.

    Science.gov (United States)

    Ling, Qihua; Jarvis, Paul

    2016-11-01

    Chloroplasts are organelles with many vital roles in plants, which include not only photosynthesis but numerous other metabolic and signaling functions. Furthermore, chloroplasts are critical for plant responses to various abiotic stresses, such as salinity and osmotic stresses. A chloroplast may contain up to ~3,000 different proteins, some of which are encoded by its own genome. However, the majority of chloroplast proteins are encoded in the nucleus and synthesized in the cytosol, and these proteins need to be imported into the chloroplast through translocons at the chloroplast envelope membranes. Recent studies have shown that the chloroplast protein import can be actively regulated by stress. To biochemically investigate such regulation of protein import under stress conditions, we developed the method described here as a quick and straightforward procedure that can easily be achieved in any laboratory. In this method, plants are grown under normal conditions and then exposed to stress conditions in liquid culture. Plant material is collected, and chloroplasts are then released by homogenization. The crude homogenate is separated by density gradient centrifugation, enabling isolation of the intact chloroplasts. Chloroplast yield is assessed by counting, and chloroplast intactness is checked under a microscope. For the protein import assays, purified chloroplasts are incubated with (35)S radiolabeled in vitro translated precursor proteins, and time-course experiments are conducted to enable comparisons of import rates between genotypes under stress conditions. We present data generated using this method which show that the rate of protein import into chloroplasts from a regulatory mutant is specifically altered under osmotic stress conditions.

  5. Chloroplast in Plant-Virus Interaction

    Science.gov (United States)

    Zhao, Jinping; Zhang, Xian; Hong, Yiguo; Liu, Yule

    2016-01-01

    In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus interaction. PMID:27757106

  6. Complete chloroplast genome of Sedum sarmentosum and chloroplast genome evolution in Saxifragales.

    Directory of Open Access Journals (Sweden)

    Wenpan Dong

    Full Text Available Comparative chloroplast genome analyses are mostly carried out at lower taxonomic levels, such as the family and genus levels. At higher taxonomic levels, chloroplast genomes are generally used to reconstruct phylogenies. However, little attention has been paid to chloroplast genome evolution within orders. Here, we present the chloroplast genome of Sedum sarmentosum and take advantage of several available (or elucidated chloroplast genomes to examine the evolution of chloroplast genomes in Saxifragales. The chloroplast genome of S. sarmentosum is 150,448 bp long and includes 82,212 bp of a large single-copy (LSC region, 16.670 bp of a small single-copy (SSC region, and a pair of 25,783 bp sequences of inverted repeats (IRs.The genome contains 131 unique genes, 18 of which are duplicated within the IRs. Based on a comparative analysis of chloroplast genomes from four representative Saxifragales families, we observed two gene losses and two pseudogenes in Paeonia obovata, and the loss of an intron was detected in the rps16 gene of Penthorum chinense. Comparisons among the 72 common protein-coding genes confirmed that the chloroplast genomes of S. sarmentosum and Paeonia obovata exhibit accelerated sequence evolution. Furthermore, a strong correlation was observed between the rates of genome evolution and genome size. The detected genome size variations are predominantly caused by the length of intergenic spacers, rather than losses of genes and introns, gene pseudogenization or IR expansion or contraction. The genome sizes of these species are negatively correlated with nucleotide substitution rates. Species with shorter duration of the life cycle tend to exhibit shorter chloroplast genomes than those with longer life cycles.

  7. Chloroplast avoidance movement reduces photodamage in plants.

    Science.gov (United States)

    Kasahara, Masahiro; Kagawa, Takatoshi; Oikawa, Kazusato; Suetsugu, Noriyuki; Miyao, Mitsue; Wada, Masamitsu

    When plants are exposed to light levels higher than those required for photosynthesis, reactive oxygen species are generated in the chloroplasts and cause photodamage. This can occur even under natural growth conditions. To mitigate photodamage, plants have developed several protective mechanisms. One is chloroplast avoidance movement, in which chloroplasts move from the cell surface to the side walls of cells under high light conditions, although experimental support is still awaited. Here, using different classes of mutant defective in chloroplast avoidance movement, we show that these mutants are more susceptible to damage in high light than wild-type plants. Damage of the photosynthetic apparatus and subsequent bleaching of leaf colour and necrosis occur faster under high light conditions in the mutants than in wild-type plants. We conclude that chloroplast avoidance movement actually decreases the amount of light absorption by chloroplasts, and might therefore be important to the survival of plants under natural growth conditions.

  8. A comparison of rice chloroplast genomes

    DEFF Research Database (Denmark)

    Tang, Jiabin; Xia, Hong'ai; Cao, Mengliang

    2004-01-01

    Using high quality sequence reads extracted from our whole genome shotgun repository, we assembled two chloroplast genome sequences from two rice (Oryza sativa) varieties, one from 93-11 (a typical indica variety) and the other from PA64S (an indica-like variety with maternal origin of japonica),...

  9. The complete chloroplast genome sequence of tung tree (Vernicia fordii): Organization and phylogenetic relationships with other angiosperms

    Science.gov (United States)

    Tung tree (Vernicia fordii) is an economically important plant widely cultivated for industrial oil production in China. To better understand the molecular basis of tung tree chloroplasts, we sequenced and characterized the complete chloroplast genome. The chloroplast genome was 161,524 bp in length...

  10. Chloroplast Redox Status Modulates Genome-Wide Plant Responses during the Non-host Interaction of Tobacco with the Hemibiotrophic Bacterium Xanthomonas campestris pv. vesicatoria

    Directory of Open Access Journals (Sweden)

    Juan J. Pierella Karlusich

    2017-07-01

    Full Text Available Non-host resistance is the most ample and durable form of plant resistance against pathogen infection. It includes induction of defense-associated genes, massive metabolic reprogramming, and in many instances, a form of localized cell death (LCD at the site of infection, purportedly designed to limit the spread of biotrophic and hemibiotrophic microorganisms. Reactive oxygen species (ROS have been proposed to act as signals for LCD orchestration. They are produced in various cellular compartments including chloroplasts, mitochondria and apoplast. We have previously reported that down-regulation of ROS build-up in chloroplasts by expression of a plastid-targeted flavodoxin (Fld suppressed LCD in tobacco leaves inoculated with the non-host bacterium Xanthomonas campestris pv. vesicatoria (Xcv, while other defensive responses were unaffected, suggesting that chloroplast ROS and/or redox status play a major role in the progress of LCD. To better understand these effects, we compare here the transcriptomic alterations caused by Xcv inoculation on leaves of Fld-expressing tobacco plants and their wild-type siblings. About 29% of leaf-expressed genes were affected by Xcv and/or Fld. Surprisingly, 5.8% of them (1,111 genes were regulated by Fld in the absence of infection, presumably representing pathways responsive to chloroplast ROS production and/or redox status during normal growth conditions. While the majority (∼75% of pathogen-responsive genes were not affected by Fld, many Xcv responses were exacerbated, attenuated, or regulated in opposite direction by expression of this protein. Particularly interesting was a group of 384 genes displaying Xcv responses that were already triggered by Fld in the absence of infection, suggesting that the transgenic plants had a larger and more diversified suite of constitutive defenses against the attacking microorganism compared to the wild type. Fld modulated many genes involved in pathogenesis, signal

  11. Chloroplast: The Trojan Horse in Plant-Virus Interaction.

    Science.gov (United States)

    Bhattacharyya, Dhriti; Chakraborty, Supriya

    2017-01-05

    Chloroplast is one of the most dynamic organelle of a plant cell. It carries out photosynthesis, synthesizes major phytohormones, takes active part in defence response, and is crucial for inter-organelle signaling. Viruses, on the other hand, are extremely strategic in manipulating the internal environment of the host cell. Chloroplast, a prime target for viruses, undergoes enormous structural and functional damage during viral infection. In fact, large proportions of affected gene products in a virus infected plant are closely associated to chloroplast and photosynthesis process. Although chloroplast is deficient in gene-silencing machinery, it elicits effector-triggered immune response against viral pathogens. Virus infection induces the organelle to produce extensive network of stromules which are involved in both viral propagation and anti-viral defence. From last few decades' study, involvement of chloroplast in regulating plant-virus interaction has become increasingly evident. Current review presents an exhaustive account of these facts, with their implication in pathogenicity. We have attempted to highlight the intricacies of chloroplast-virus interaction and explained the existing gaps in current knowledge, which will promote the virologists to utilize the chloroplast genome-based antiviral resistance in economically important crops. This article is protected by copyright. All rights reserved.

  12. Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs.

    Science.gov (United States)

    Yang, Jun-Bo; Li, De-Zhu; Li, Hong-Tao

    2014-09-01

    Chloroplast genomes supply indispensable information that helps improve the phylogenetic resolution and even as organelle-scale barcodes. Next-generation sequencing technologies have helped promote sequencing of complete chloroplast genomes, but compared with the number of angiosperms, relatively few chloroplast genomes have been sequenced. There are two major reasons for the paucity of completely sequenced chloroplast genomes: (i) massive amounts of fresh leaves are needed for chloroplast sequencing and (ii) there are considerable gaps in the sequenced chloroplast genomes of many plants because of the difficulty of isolating high-quality chloroplast DNA, preventing complete chloroplast genomes from being assembled. To overcome these obstacles, all known angiosperm chloroplast genomes available to date were analysed, and then we designed nine universal primer pairs corresponding to the highly conserved regions. Using these primers, angiosperm whole chloroplast genomes can be amplified using long-range PCR and sequenced using next-generation sequencing methods. The primers showed high universality, which was tested using 24 species representing major clades of angiosperms. To validate the functionality of the primers, eight species representing major groups of angiosperms, that is, early-diverging angiosperms, magnoliids, monocots, Saxifragales, fabids, malvids and asterids, were sequenced and assembled their complete chloroplast genomes. In our trials, only 100 mg of fresh leaves was used. The results show that the universal primer set provided an easy, effective and feasible approach for sequencing whole chloroplast genomes in angiosperms. The designed universal primer pairs provide a possibility to accelerate genome-scale data acquisition and will therefore magnify the phylogenetic resolution and species identification in angiosperms. © 2014 John Wiley & Sons Ltd.

  13. Isolation of Chloroplasts from Plant Protoplasts.

    Science.gov (United States)

    Lung, Shiu-Cheung; Smith, Matthew D; Chuong, Simon D X

    2015-10-01

    Chloroplasts can be isolated from higher plants directly following homogenization; however, the resulting yield, purity, and intactness are often low, necessitating a large amount of starting material. This protocol is optimized to produce a high yield of pure chloroplasts from isolated Arabidopsis protoplasts. The two-part method is a simple, scaled-down, and low-cost procedure that readily provides healthy mesophyll protoplasts, which are then ruptured to release intact chloroplasts. Chloroplasts isolated using this method are competent for use in biochemical, cellular, and molecular analyses.

  14. The Chloroplast Genome of Utricularia reniformis Sheds Light on the Evolution of the ndh Gene Complex of Terrestrial Carnivorous Plants from the Lentibulariaceae Family

    Science.gov (United States)

    Silva, Saura R.; Diaz, Yani C. A.; Penha, Helen Alves; Pinheiro, Daniel G.; Fernandes, Camila C.; Miranda, Vitor F. O.; Michael, Todd P.

    2016-01-01

    Lentibulariaceae is the richest family of carnivorous plants spanning three genera including Pinguicula, Genlisea, and Utricularia. Utricularia is globally distributed, and, unlike Pinguicula and Genlisea, has both aquatic and terrestrial forms. In this study we present the analysis of the chloroplast (cp) genome of the terrestrial Utricularia reniformis. U. reniformis has a standard cp genome of 139,725bp, encoding a gene repertoire similar to essentially all photosynthetic organisms. However, an exclusive combination of losses and pseudogenization of the plastid NAD(P)H-dehydrogenase (ndh) gene complex were observed. Comparisons among aquatic and terrestrial forms of Pinguicula, Genlisea, and Utricularia indicate that, whereas the aquatic forms retained functional copies of the eleven ndh genes, these have been lost or truncated in terrestrial forms, suggesting that the ndh function may be dispensable in terrestrial Lentibulariaceae. Phylogenetic scenarios of the ndh gene loss and recovery among Pinguicula, Genlisea, and Utricularia to the ancestral Lentibulariaceae cladeare proposed. Interestingly, RNAseq analysis evidenced that U. reniformis cp genes are transcribed, including the truncated ndh genes, suggesting that these are not completely inactivated. In addition, potential novel RNA-editing sites were identified in at least six U. reniformis cp genes, while none were identified in the truncated ndh genes. Moreover, phylogenomic analyses support that Lentibulariaceae is monophyletic, belonging to the higher core Lamiales clade, corroborating the hypothesis that the first Utricularia lineage emerged in terrestrial habitats and then evolved to epiphytic and aquatic forms. Furthermore, several truncated cp genes were found interspersed with U. reniformis mitochondrial and nuclear genome scaffolds, indicating that as observed in other smaller plant genomes, such as Arabidopsis thaliana, and the related and carnivorous Genlisea nigrocaulis and G. hispidula, the

  15. The complete chloroplast genome provides insight into the evolution and polymorphism of Panax ginseng

    Directory of Open Access Journals (Sweden)

    Yongbing eZhao

    2015-01-01

    Full Text Available Panax ginseng C.A. Meyer (P. ginseng is an important medicinal plant and is often used in traditional Chinese medicine. With next generation sequencing (NGS technology, we determined the complete chloroplast genome sequences for four Chinese P. ginseng strains, which are Damaya (DMY, Ermaya (EMY, Gaolishen (GLS and Yeshanshen (YSS. The total chloroplast genome sequence length for DMY, EMY and GLS was 156,354 bp, while that for YSS was 156,355 bp. Comparative genomic analysis of the chloroplast genome sequences indicate that gene content, GC content, and gene order in DMY are quite similar to its relative species, and nucleotide sequence diversity of inverted repeat region (IR is lower than that of its counterparts, large single copy region (LSC and small single copy region (SSC. A comparison among these four P. ginseng strains revealed that the chloroplast genome sequences of DMY, EMY, and GLS were identical and YSS had a 1-bp insertion at base 5472. To further study the heterogeneity in chloroplast genome during domestication, high-resolution reads were mapped to the genome sequences to investigate the differences at the minor allele level; 208 minor allele sites with minor allele frequencies (MAF of ≥ 0.05 were identified. The polymorphism site numbers per kb of chloroplast genome sequence for DMY, EMY, GLS, and YSS were 0.74, 0.59, 0.97, and 1.23, respectively. All the minor allele sites located in LSC and IR regions, and the four strains showed the same variation types (substitution base or indel at all identified polymorphism sites. Comparison results of heterogeneity in the chloroplast genome sequences showed that the minor allele sites on the chloroplast genome were undergoing purifying selection to adapt to changing environment during domestication process. A study of P. ginseng chloroplast genome with particular focus on minor allele sites would aid in investigating the dynamics on the chloroplast genomes and different P. ginseng

  16. The chloroplast genome of a symbiodinium sp. clade C3 isolate

    KAUST Repository

    Barbrook, Adrian C.

    2014-01-01

    Dinoflagellate algae of the genus Symbiodinium form important symbioses within corals and other benthic marine animals. Dinoflagellates possess an extremely reduced plastid genome relative to those examined in plants and other algae. In dinoflagellates the plastid genes are located on small plasmids, commonly referred to as \\'minicircles\\'. However, the chloroplast genomes of dinoflagellates have only been extensively characterised from a handful of species. There is also evidence of considerable variation in the chloroplast genome organisation across those species that have been examined. We therefore characterised the chloroplast genome from an environmental coral isolate, in this case containing a symbiont belonging to the Symbiodinium sp. clade C3. The gene content of the genome is well conserved with respect to previously characterised genomes. However, unlike previously characterised dinoflagellate chloroplast genomes we did not identify any \\'empty\\' minicircles. The sequences of this chloroplast genome show a high rate of evolution relative to other algal species. Particularly notable was a surprisingly high level of sequence divergence within the core polypeptides of photosystem I, the reasons for which are currently unknown. This chloroplast genome also possesses distinctive codon usage and GC content. These features suggest that chloroplast genomes in Symbiodinium are highly plastic. © 2013 Adrian C. Barbrook.

  17. Characterization of mango (Mangifera indica L.) transcriptome and chloroplast genome.

    Science.gov (United States)

    Azim, M Kamran; Khan, Ishtaiq A; Zhang, Yong

    2014-05-01

    We characterized mango leaf transcriptome and chloroplast genome using next generation DNA sequencing. The RNA-seq output of mango transcriptome generated >12 million reads (total nucleotides sequenced >1 Gb). De novo transcriptome assembly generated 30,509 unigenes with lengths in the range of 300 to ≥3,000 nt and 67× depth of coverage. Blast searching against nonredundant nucleotide databases and several Viridiplantae genomic datasets annotated 24,593 mango unigenes (80% of total) and identified Citrus sinensis as closest neighbor of mango with 9,141 (37%) matched sequences. The annotation with gene ontology and Clusters of Orthologous Group terms categorized unigene sequences into 57 and 25 classes, respectively. More than 13,500 unigenes were assigned to 293 KEGG pathways. Besides major plant biology related pathways, KEGG based gene annotation pointed out active presence of an array of biochemical pathways involved in (a) biosynthesis of bioactive flavonoids, flavones and flavonols, (b) biosynthesis of terpenoids and lignins and (c) plant hormone signal transduction. The mango transcriptome sequences revealed 235 proteases belonging to five catalytic classes of proteolytic enzymes. The draft genome of mango chloroplast (cp) was obtained by a combination of Sanger and next generation sequencing. The draft mango cp genome size is 151,173 bp with a pair of inverted repeats of 27,093 bp separated by small and large single copy regions, respectively. Out of 139 genes in mango cp genome, 91 found to be protein coding. Sequence analysis revealed cp genome of C. sinensis as closest neighbor of mango. We found 51 short repeats in mango cp genome supposed to be associated with extensive rearrangements. This is the first report of transcriptome and chloroplast genome analysis of any Anacardiaceae family member.

  18. Complete sequencing of five araliaceae chloroplast genomes and the phylogenetic implications.

    Directory of Open Access Journals (Sweden)

    Rong Li

    Full Text Available BACKGROUND: The ginseng family (Araliaceae includes a number of economically important plant species. Previously phylogenetic studies circumscribed three major clades within the core ginseng plant family, yet the internal relationships of each major group have been poorly resolved perhaps due to rapid radiation of these lineages. Recent studies have shown that phyogenomics based on chloroplast genomes provides a viable way to resolve complex relationships. METHODOLOGY/PRINCIPAL FINDINGS: We report the complete nucleotide sequences of five Araliaceae chloroplast genomes using next-generation sequencing technology. The five chloroplast genomes are 156,333-156,459 bp in length including a pair of inverted repeats (25,551-26,108 bp separated by the large single-copy (86,028-86,566 bp and small single-copy (18,021-19,117 bp regions. Each chloroplast genome contains the same 114 unique genes consisting of 30 transfer RNA genes, four ribosomal RNA genes, and 80 protein coding genes. Gene size, content, and order, AT content, and IR/SC boundary structure are similar among all Araliaceae chloroplast genomes. A total of 140 repeats were identified in the five chloroplast genomes with palindromic repeat as the most common type. Phylogenomic analyses using parsimony, likelihood, and Bayesian inference based on the complete chloroplast genomes strongly supported the monophyly of the Asian Palmate group and the Aralia-Panax group. Furthermore, the relationships among the sampled taxa within the Asian Palmate group were well resolved. Twenty-six DNA markers with the percentage of variable sites higher than 5% were identified, which may be useful for phylogenetic studies of Araliaceae. CONCLUSION: The chloroplast genomes of Araliaceae are highly conserved in all aspects of genome features. The large-scale phylogenomic data based on the complete chloroplast DNA sequences is shown to be effective for the phylogenetic reconstruction of Araliaceae.

  19. The complete chloroplast genomes of Cannabis sativa and Humulus lupulus.

    Science.gov (United States)

    Vergara, Daniela; White, Kristin H; Keepers, Kyle G; Kane, Nolan C

    2016-09-01

    Cannabis and Humulus are sister genera comprising the entirety of the Cannabaceae sensu stricto, including C. sativa L. (marijuana, hemp), and H. lupulus L. (hops) as two economically important crops. These two plants have been used by humans for many purposes including as a fiber, food, medicine, or inebriant in the case of C. sativa, and as a flavoring component in beer brewing in the case of H. lupulus. In this study, we report the complete chloroplast genomes for two distinct hemp varieties of C. sativa, Italian "Carmagnola" and Russian "Dagestani", and one Czech variety of H. lupulus "Saazer". Both C. sativa genomes are 153 871 bp in length, while the H. lupulus genome is 153 751 bp. The genomes from the two C. sativa varieties differ in 16 single nucleotide polymorphisms (SNPs), while the H. lupulus genome differs in 1722 SNPs from both C. sativa cultivars.

  20. Protein disorder in plants: a view from the chloroplast

    Directory of Open Access Journals (Sweden)

    Yruela Inmaculada

    2012-09-01

    Full Text Available Abstract Background The intrinsically unstructured state of some proteins, observed in all living organisms, is essential for basic cellular functions. In this field the available information from plants is limited but it has been reached a point where these proteins can be comprehensively classified on the basis of disorder, function and evolution. Results Our analysis of plant genomes confirms that nuclear-encoded proteins follow the same trend than other multi-cellular eukaryotes; however, chloroplast- and mitochondria- encoded proteins conserve the patterns of Archaea and Bacteria, in agreement with their phylogenetic origin. Based on current knowledge about gene transference from the chloroplast to the nucleus, we report a strong correlation between the rate of disorder of transferred and nuclear-encoded proteins, even for polypeptides that play functional roles back in the chloroplast. We further investigate this trend by reviewing the set of chloroplast ribosomal proteins, one of the most representative transferred gene clusters, finding that the ribosomal large subunit, assembled from a majority of nuclear-encoded proteins, is clearly more unstructured than the small one, which integrates mostly plastid-encoded proteins. Conclusions Our observations suggest that the evolutionary dynamics of the plant nucleus adds disordered segments to genes alike, regardless of their origin, with the notable exception of proteins currently encoded in both genomes, probably due to functional constraints.

  1. The evolution of chloroplast genes and genomes in ferns.

    Science.gov (United States)

    Wolf, Paul G; Der, Joshua P; Duffy, Aaron M; Davidson, Jacob B; Grusz, Amanda L; Pryer, Kathleen M

    2011-07-01

    Most of the publicly available data on chloroplast (plastid) genes and genomes come from seed plants, with relatively little information from their sister group, the ferns. Here we describe several broad evolutionary patterns and processes in fern plastid genomes (plastomes), and we include some new plastome sequence data. We review what we know about the evolutionary history of plastome structure across the fern phylogeny and we compare plastome organization and patterns of evolution in ferns to those in seed plants. A large clade of ferns is characterized by a plastome that has been reorganized with respect to the ancestral gene order (a similar order that is ancestral in seed plants). We review the sequence of inversions that gave rise to this organization. We also explore global nucleotide substitution patterns in ferns versus those found in seed plants across plastid genes, and we review the high levels of RNA editing observed in fern plastomes.

  2. Insights from the complete chloroplast genome into the evolution of Sesamum indicum L.

    Directory of Open Access Journals (Sweden)

    Haiyang Zhang

    Full Text Available Sesame (Sesamum indicum L. is one of the oldest oilseed crops. In order to investigate the evolutionary characters according to the Sesame Genome Project, apart from sequencing its nuclear genome, we sequenced the complete chloroplast genome of S. indicum cv. Yuzhi 11 (white seeded using Illumina and 454 sequencing. Comparisons of chloroplast genomes between S. indicum and the 18 other higher plants were then analyzed. The chloroplast genome of cv. Yuzhi 11 contains 153,338 bp and a total of 114 unique genes (KC569603. The number of chloroplast genes in sesame is the same as that in Nicotiana tabacum, Vitis vinifera and Platanus occidentalis. The variation in the length of the large single-copy (LSC regions and inverted repeats (IR in sesame compared to 18 other higher plant species was the main contributor to size variation in the cp genome in these species. The 77 functional chloroplast genes, except for ycf1 and ycf2, were highly conserved. The deletion of the cp ycf1 gene sequence in cp genomes may be due either to its transfer to the nuclear genome, as has occurred in sesame, or direct deletion, as has occurred in Panax ginseng and Cucumis sativus. The sesame ycf2 gene is only 5,721 bp in length and has lost about 1,179 bp. Nucleotides 1-585 of ycf2 when queried in BLAST had hits in the sesame draft genome. Five repeats (R10, R12, R13, R14 and R17 were unique to the sesame chloroplast genome. We also found that IR contraction/expansion in the cp genome alters its rate of evolution. Chloroplast genes and repeats display the signature of convergent evolution in sesame and other species. These findings provide a foundation for further investigation of cp genome evolution in Sesamum and other higher plants.

  3. The complete chloroplast genome of the Dendrobium strongylanthum (Orchidaceae: Epidendroideae).

    Science.gov (United States)

    Li, Jing; Chen, Chen; Wang, Zhe-Zhi

    2016-07-01

    Complete chloroplast genome sequence is very useful for studying the phylogenetic and evolution of species. In this study, the complete chloroplast genome of Dendrobium strongylanthum was constructed from whole-genome Illumina sequencing data. The chloroplast genome is 153 058 bp in length with 37.6% GC content and consists of two inverted repeats (IRs) of 26 316 bp. The IR regions are separated by large single-copy region (LSC, 85 836 bp) and small single-copy (SSC, 14 590 bp) region. A total of 130 chloroplast genes were successfully annotated, including 84 protein coding genes, 38 tRNA genes, and eight rRNA genes. Phylogenetic analyses showed that the chloroplast genome of Dendrobium strongylanthum is related to that of the Dendrobium officinal.

  4. The complete chloroplast genome sequence of Abies nephrolepis (Pinaceae: Abietoideae

    Directory of Open Access Journals (Sweden)

    Dong-Keun Yi

    2016-06-01

    Full Text Available The plant chloroplast (cp genome has maintained a relatively conserved structure and gene content throughout evolution. Cp genome sequences have been used widely for resolving evolutionary and phylogenetic issues at various taxonomic levels of plants. Here, we report the complete cp genome of Abies nephrolepis. The A. nephrolepis cp genome is 121,336 base pairs (bp in length including a pair of short inverted repeat regions (IRa and IRb of 139 bp each separated by a small single copy (SSC region of 54,323 bp (SSC and a large single copy region of 66,735 bp (LSC. It contains 114 genes, 68 of which are protein coding genes, 35 tRNA and four rRNA genes, six open reading frames, and one pseudogene. Seventeen repeat units and 64 simple sequence repeats (SSR have been detected in A. nephrolepis cp genome. Large IR sequences locate in 42-kb inversion points (1186 bp. The A. nephrolepis cp genome is identical to Abies koreana’s which is closely related to taxa. Pairwise comparison between two cp genomes revealed 140 polymorphic sites in each. Complete cp genome sequence of A. nephrolepis has a significant potential to provide information on the evolutionary pattern of Abietoideae and valuable data for development of DNA markers for easy identification and classification.

  5. The complete chloroplast genome of Origanum vulgare L. (Lamiaceae).

    Science.gov (United States)

    Lukas, Brigitte; Novak, Johannes

    2013-10-10

    Oregano (Origanum vulgare L., Lamiaceae) is a medicinal and aromatic plant maybe best known for flavouring pizza. New applications e.g. as natural antioxidants for food are emerging due to the plants' high antibacterial and antioxidant activity. The complete chloroplast (cp) genome of Origanum vulgare (GenBank/EBML/DDBJ accession number: JX880022) consists of 151,935 bp and includes a pair of inverted repeats (IR) of 25,527 bp separated by one small and one large single copy region (SSC and LSC) of 17,745 and 83,136 bp, respectively. The genome with an overall GC content of 38% hosts 114 genes that covering 63% of the genome of which 8% were introns. The comparison of the Origanum cp genome with the cp genomes of two other core lamiales (Salvia miltiorrhiza Bunge and Sesamum indicum L.) revealed completely conserved protein-coding regions in the IR region but also in the LSC and SSC regions. Phylogenetic analysis of the lamiids based on 56 protein-coding genes give a hint at the basic structure of the Lamiales. However, further genomes will be necessary to clarify this taxonomically complicated order. The variability of the cp within the genus Origanum, studied exemplarily on 16 different chloroplast DNA regions, demonstrated that in 14 regions analyzed, the variability was extremely low (max. 0.7%), while only two regions showed a moderate variability of up to 2.3%. The cp genome of Origanum vulgare contains 27 perfect mononucleotide repeats (number of repeats>9) consisting exclusively of the nucleotides A or T. 34 perfect repeats (repeat lengths>1 and number of repeats>3) were found, of which 32 were di-, and 2 were trinucleotide repeats.

  6. An improved chloroplast DNA extraction procedure for whole plastid genome sequencing.

    Science.gov (United States)

    Shi, Chao; Hu, Na; Huang, Hui; Gao, Ju; Zhao, You-Jie; Gao, Li-Zhi

    2012-01-01

    Chloroplast genomes supply valuable genetic information for evolutionary and functional studies in plants. The past five years have witnessed a dramatic increase in the number of completely sequenced chloroplast genomes with the application of second-generation sequencing technology in plastid genome sequencing projects. However, cost-effective high-throughput chloroplast DNA (cpDNA) extraction becomes a major bottleneck restricting the application, as conventional methods are difficult to make a balance between the quality and yield of cpDNAs. We first tested two traditional methods to isolate cpDNA from the three species, Oryza brachyantha, Leersia japonica and Prinsepia utihis. Both of them failed to obtain properly defined cpDNA bands. However, we developed a simple but efficient method based on sucrose gradients and found that the modified protocol worked efficiently to isolate the cpDNA from the same three plant species. We sequenced the isolated DNA samples with Illumina (Solexa) sequencing technology to test cpDNA purity according to aligning sequence reads to the reference chloroplast genomes, showing that the reference genome was properly covered. We show that 40-50% cpDNA purity is achieved with our method. Here we provide an improved method used to isolate cpDNA from angiosperms. The Illumina sequencing results suggest that the isolated cpDNA has reached enough yield and sufficient purity to perform subsequent genome assembly. The cpDNA isolation protocol thus will be widely applicable to the plant chloroplast genome sequencing projects.

  7. The complete chloroplast genome of common walnut (Juglans regia)

    Science.gov (United States)

    Yiheng ​Hu; Keith E. Woeste; Meng Dang; Tao Zhou; Xiaojia Feng; Guifang Zhao; Zhanlin Liu; Zhonghu Li; Peng. Zhao

    2016-01-01

    Common walnut (Juglans regia L.) is cultivated in temperate regions worldwide for its wood and nuts. The complete chloroplast genome of J. regia was sequenced using the Illumina MiSeq platform. This is the first complete chloroplast sequence for the Juglandaceae, a family that includes numerous species of economic importance....

  8. Chloroplast genome structure in Ilex (Aquifoliaceae).

    Science.gov (United States)

    Yao, Xin; Tan, Yun-Hong; Liu, Ying-Ying; Song, Yu; Yang, Jun-Bo; Corlett, Richard T

    2016-07-05

    Aquifoliaceae is the largest family in the campanulid order Aquifoliales. It consists of a single genus, Ilex, the hollies, which is the largest woody dioecious genus in the angiosperms. Most species are in East Asia or South America. The taxonomy and evolutionary history remain unclear due to the lack of a robust species-level phylogeny. We produced the first complete chloroplast genomes in this family, including seven Ilex species, by Illumina sequencing of long-range PCR products and subsequent reference-guided de novo assembly. These genomes have a typical bicyclic structure with a conserved genome arrangement and moderate divergence. The total length is 157,741 bp and there is one large single-copy region (LSC) with 87,109 bp, one small single-copy with 18,436 bp, and a pair of inverted repeat regions (IR) with 52,196 bp. A total of 144 genes were identified, including 96 protein-coding genes, 40 tRNA and 8 rRNA. Thirty-four repetitive sequences were identified in Ilex pubescens, with lengths >14 bp and identity >90%, and 11 divergence hotspot regions that could be targeted for phylogenetic markers. This study will contribute to improved resolution of deep branches of the Ilex phylogeny and facilitate identification of Ilex species.

  9. Chloroplast genome evolution in early diverged leptosporangiate ferns.

    Science.gov (United States)

    Kim, Hyoung Tae; Chung, Myong Gi; Kim, Ki-Joong

    2014-05-01

    In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. cinnamomea. In addition, putative RNA editing sites in the cp genome were rare in O. cinnamomea, even though the sites were frequently predicted to be present in leptosporangiate ferns. The complete cp genome sequence of Diplopterygium glaucum (Gleicheniales) was 151,007 bp and has a 9.7 kb inversion between the trnL-CAA and trnVGCA genes when compared to O. cinnamomea. Several repeated sequences were detected around the inversion break points. The complete cp genome sequence of Lygodium japonicum (Schizaeales) was 157,142 bp and a deletion of the rpoC1 intron was detected. This intron loss was shared by all of the studied species of the genus Lygodium. The GC contents and the effective numbers of codons (ENCs) in ferns varied significantly when compared to seed plants. The ENC values of the early diverged leptosporangiate ferns showed intermediate levels between eusporangiate and core leptosporangiate ferns. However, our phylogenetic tree based on all of the cp gene sequences clearly indicated that the cp genome similarity between O. cinnamomea (Osmundales) and eusporangiate ferns are symplesiomorphies, rather than synapomorphies. Therefore, our data is in agreement with the view that Osmundales is a distinct early diverged lineage in the leptosporangiate ferns.

  10. The first complete chloroplast genome sequence of a lycophyte,Huperzia lucidula (Lycopodiaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Paul G.; Karol, Kenneth G.; Mandoli, Dina F.; Kuehl,Jennifer V.; Arumuganathan, K.; Ellis, Mark W.; Mishler, Brent D.; Kelch,Dean G.; Olmstead, Richard G.; Boore, Jeffrey L.

    2005-02-01

    We used a unique combination of techniques to sequence the first complete chloroplast genome of a lycophyte, Huperzia lucidula. This plant belongs to a significant clade hypothesized to represent the sister group to all other vascular plants. We used fluorescence-activated cell sorting (FACS) to isolate the organelles, rolling circle amplification (RCA) to amplify the genome, and shotgun sequencing to 8x depth coverage to obtain the complete chloroplast genome sequence. The genome is 154,373bp, containing inverted repeats of 15,314 bp each, a large single-copy region of 104,088 bp, and a small single-copy region of 19,671 bp. Gene order is more similar to those of mosses, liverworts, and hornworts than to gene order for other vascular plants. For example, the Huperziachloroplast genome possesses the bryophyte gene order for a previously characterized 30 kb inversion, thus supporting the hypothesis that lycophytes are sister to all other extant vascular plants. The lycophytechloroplast genome data also enable a better reconstruction of the basaltracheophyte genome, which is useful for inferring relationships among bryophyte lineages. Several unique characters are observed in Huperzia, such as movement of the gene ndhF from the small single copy region into the inverted repeat. We present several analyses of evolutionary relationships among land plants by using nucleotide data, amino acid sequences, and by comparing gene arrangements from chloroplast genomes. The results, while still tentative pending the large number of chloroplast genomes from other key lineages that are soon to be sequenced, are intriguing in themselves, and contribute to a growing comparative database of genomic and morphological data across the green plants.

  11. An optimized chloroplast DNA extraction protocol for grasses (Poaceae proves suitable for whole plastid genome sequencing and SNP detection.

    Directory of Open Access Journals (Sweden)

    Kerstin Diekmann

    Full Text Available BACKGROUND: Obtaining chloroplast genome sequences is important to increase the knowledge about the fundamental biology of plastids, to understand evolutionary and ecological processes in the evolution of plants, to develop biotechnological applications (e.g. plastid engineering and to improve the efficiency of breeding schemes. Extraction of pure chloroplast DNA is required for efficient sequencing of chloroplast genomes. Unfortunately, most protocols for extracting chloroplast DNA were developed for eudicots and do not produce sufficiently pure yields for a shotgun sequencing approach of whole plastid genomes from the monocot grasses. METHODOLOGY/PRINCIPAL FINDINGS: We have developed a simple and inexpensive method to obtain chloroplast DNA from grass species by modifying and extending protocols optimized for the use in eudicots. Many protocols for extracting chloroplast DNA require an ultracentrifugation step to efficiently separate chloroplast DNA from nuclear DNA. The developed method uses two more centrifugation steps than previously reported protocols and does not require an ultracentrifuge. CONCLUSIONS/SIGNIFICANCE: The described method delivered chloroplast DNA of very high quality from two grass species belonging to highly different taxonomic subfamilies within the grass family (Lolium perenne, Pooideae; Miscanthus x giganteus, Panicoideae. The DNA from Lolium perenne was used for whole chloroplast genome sequencing and detection of SNPs. The sequence is publicly available on EMBL/GenBank.

  12. High-throughput sequencing of three Lemnoideae (duckweeds chloroplast genomes from total DNA.

    Directory of Open Access Journals (Sweden)

    Wenqin Wang

    Full Text Available BACKGROUND: Chloroplast genomes provide a wealth of information for evolutionary and population genetic studies. Chloroplasts play a particularly important role in the adaption for aquatic plants because they float on water and their major surface is exposed continuously to sunlight. The subfamily of Lemnoideae represents such a collection of aquatic species that because of photosynthesis represents one of the fastest growing plant species on earth. METHODS: We sequenced the chloroplast genomes from three different genera of Lemnoideae, Spirodela polyrhiza, Wolffiella lingulata and Wolffia australiana by high-throughput DNA sequencing of genomic DNA using the SOLiD platform. Unfractionated total DNA contains high copies of plastid DNA so that sequences from the nucleus and mitochondria can easily be filtered computationally. Remaining sequence reads were assembled into contiguous sequences (contigs using SOLiD software tools. Contigs were mapped to a reference genome of Lemna minor and gaps, selected by PCR, were sequenced on the ABI3730xl platform. CONCLUSIONS: This combinatorial approach yielded whole genomic contiguous sequences in a cost-effective manner. Over 1,000-time coverage of chloroplast from total DNA were reached by the SOLiD platform in a single spot on a quadrant slide without purification. Comparative analysis indicated that the chloroplast genome was conserved in gene number and organization with respect to the reference genome of L. minor. However, higher nucleotide substitution, abundant deletions and insertions occurred in non-coding regions of these genomes, indicating a greater genomic dynamics than expected from the comparison of other related species in the Pooideae. Noticeably, there was no transition bias over transversion in Lemnoideae. The data should have immediate applications in evolutionary biology and plant taxonomy with increased resolution and statistical power.

  13. The Complete Chloroplast Genome of the Hare’s Ear Root, Bupleurum falcatum: Its Molecular Features

    Science.gov (United States)

    Shin, Dong-Ho; Lee, Jeong-Hoon; Kang, Sang-Ho; Ahn, Byung-Ohg; Kim, Chang-Kug

    2016-01-01

    Bupleurum falcatum, which belongs to the family Apiaceae, has long been applied for curative treatments, especially as a liver tonic, in herbal medicine. The chloroplast (cp) genome has been an ideal model to perform the evolutionary and comparative studies because of its highly conserved features and simple structure. The Apiaceae family is taxonomically close to the Araliaceae family and there have been numerous complete chloroplast genome sequences reported in the Araliaceae family, while little is known about the Apiaceae family. In this study, the complete sequence of the B. falcatum chloroplast genome was obtained. The full-length of the cp genome is 155,989 nucleotides with a 37.66% overall guanine-cytosine (GC) content and shows a quadripartite structure composed of three nomenclatural regions: a large single-copy (LSC) region, a small single-copy (SSC) region, and a pair of inverted repeat (IR) regions. The genome occupancy is 85,912-bp, 17,517-bp, and 26,280-bp for LSC, SSC, and IR, respectively. B. falcatum was shown to contain 111 unique genes (78 for protein-coding, 29 for tRNAs, and four for rRNAs, respectively) on its chloroplast genome. Genic comparison found that B. falcatum has no pseudogenes and has two gene losses, accD in the LSC and ycf15 in the IRs. A total of 55 unique tandem repeat sequences were detected in the B. falcatum cp genome. This report is the first to describe the complete chloroplast genome sequence in B. falcatum and will open up further avenues of research to understand the evolutionary panorama and the chloroplast genome conformation in related plant species. PMID:27187480

  14. The Complete Chloroplast Genome of the Hare’s Ear Root, Bupleurum falcatum: Its Molecular Features

    Directory of Open Access Journals (Sweden)

    Dong-Ho Shin

    2016-05-01

    Full Text Available Bupleurum falcatum, which belongs to the family Apiaceae, has long been applied for curative treatments, especially as a liver tonic, in herbal medicine. The chloroplast (cp genome has been an ideal model to perform the evolutionary and comparative studies because of its highly conserved features and simple structure. The Apiaceae family is taxonomically close to the Araliaceae family and there have been numerous complete chloroplast genome sequences reported in the Araliaceae family, while little is known about the Apiaceae family. In this study, the complete sequence of the B. falcatum chloroplast genome was obtained. The full-length of the cp genome is 155,989 nucleotides with a 37.66% overall guanine-cytosine (GC content and shows a quadripartite structure composed of three nomenclatural regions: a large single-copy (LSC region, a small single-copy (SSC region, and a pair of inverted repeat (IR regions. The genome occupancy is 85,912-bp, 17,517-bp, and 26,280-bp for LSC, SSC, and IR, respectively. B. falcatum was shown to contain 111 unique genes (78 for protein-coding, 29 for tRNAs, and four for rRNAs, respectively on its chloroplast genome. Genic comparison found that B. falcatum has no pseudogenes and has two gene losses, accD in the LSC and ycf15 in the IRs. A total of 55 unique tandem repeat sequences were detected in the B. falcatum cp genome. This report is the first to describe the complete chloroplast genome sequence in B. falcatum and will open up further avenues of research to understand the evolutionary panorama and the chloroplast genome conformation in related plant species.

  15. Insights into phylogeny, sex function and age of Fragaria based on whole chloroplast genome sequencing

    Science.gov (United States)

    Wambui Njunguna; Aaron Liston; Richard Cronn; Tia-Lynn Ashman; Nahla Bassil

    2013-01-01

    The cultivated strawberry is one of the youngest domesticated plants, developed in France in the 1700s from chance hybridization between two western hemisphere octoploid species. However, little is known about the evolution of the species that gave rise to this important fruit crop. Phylogenetic analysis of chloroplast genome sequences of 21 Fragaria...

  16. Establishment of a Gene Expression System in Rice Chloroplast and Obtainment of PPT-Resistant Rice Plants

    Institute of Scientific and Technical Information of China (English)

    LI Yi-nü; SUN Bing-yao; SU Ning; MENG Xiang-xun; ZHANG Zhi-fang; SHEN Gui-fang

    2009-01-01

    In contrast to the situation of random integration of foreign genes in nuclear transformation,the introduction of genes via chloroplast genetic engineering is characterized by site-specific pattern via homologous recombination.To establish an expression system for alien genes in rice chloroplast,the intergenic region of ndhF and trnL was selected as target for sitespecific integration of PPT-resistant bar gene in this study.Two DNA fragments suitable for homologous recombination were cloned from rice chloroplast genome DNA using PCR technique,and the chloroplast-specific expression vector pRB was constructed by fusing a modified 16S rRNA gene promoter to bar gene together with terminator of psbA gene 3'sequence.Chloroplast transformation was carried out by biolistic bombardment of sterile rice calli with the pRB construct.Subsequently,the regenerated plantlets and seeds of progeny arising from reciprocal cross to the wild-type lines were obtained.Molecular analysis suggested that the bar gene has been integrated into rice chloroplast genome.Genetic analysis revealed that bar gene could be transmitted and expressed normally in chloroplast genome.Thus,the bar gene conferred not only selection pressure for the transformation of rice chloroplast genome,but PPT-resistant trait for rice plants as well.It is suggested that an efficient gene expression system in the rice chloroplast has been established by chloroplast transformation technique.

  17. Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species

    Science.gov (United States)

    Hirao, Tomonori; Watanabe, Atsushi; Kurita, Manabu; Kondo, Teiji; Takata, Katsuhiko

    2008-01-01

    Background The recent determination of complete chloroplast (cp) genomic sequences of various plant species has enabled numerous comparative analyses as well as advances in plant and genome evolutionary studies. In angiosperms, the complete cp genome sequences of about 70 species have been determined, whereas those of only three gymnosperm species, Cycas taitungensis, Pinus thunbergii, and Pinus koraiensis have been established. The lack of information regarding the gene content and genomic structure of gymnosperm cp genomes may severely hamper further progress of plant and cp genome evolutionary studies. To address this need, we report here the complete nucleotide sequence of the cp genome of Cryptomeria japonica, the first in the Cupressaceae sensu lato of gymnosperms, and provide a comparative analysis of their gene content and genomic structure that illustrates the unique genomic features of gymnosperms. Results The C. japonica cp genome is 131,810 bp in length, with 112 single copy genes and two duplicated (trnI-CAU, trnQ-UUG) genes that give a total of 116 genes. Compared to other land plant cp genomes, the C. japonica cp has lost one of the relevant large inverted repeats (IRs) found in angiosperms, fern, liverwort, and gymnosperms, such as Cycas and Gingko, and additionally has completely lost its trnR-CCG, partially lost its trnT-GGU, and shows diversification of accD. The genomic structure of the C. japonica cp genome also differs significantly from those of other plant species. For example, we estimate that a minimum of 15 inversions would be required to transform the gene organization of the Pinus thunbergii cp genome into that of C. japonica. In the C. japonica cp genome, direct repeat and inverted repeat sequences are observed at the inversion and translocation endpoints, and these sequences may be associated with the genomic rearrangements. Conclusion The observed differences in genomic structure between C. japonica and other land plants, including

  18. An improved chloroplast DNA extraction procedure for whole plastid genome sequencing.

    Directory of Open Access Journals (Sweden)

    Chao Shi

    Full Text Available BACKGROUND: Chloroplast genomes supply valuable genetic information for evolutionary and functional studies in plants. The past five years have witnessed a dramatic increase in the number of completely sequenced chloroplast genomes with the application of second-generation sequencing technology in plastid genome sequencing projects. However, cost-effective high-throughput chloroplast DNA (cpDNA extraction becomes a major bottleneck restricting the application, as conventional methods are difficult to make a balance between the quality and yield of cpDNAs. METHODOLOGY/PRINCIPAL FINDINGS: We first tested two traditional methods to isolate cpDNA from the three species, Oryza brachyantha, Leersia japonica and Prinsepia utihis. Both of them failed to obtain properly defined cpDNA bands. However, we developed a simple but efficient method based on sucrose gradients and found that the modified protocol worked efficiently to isolate the cpDNA from the same three plant species. We sequenced the isolated DNA samples with Illumina (Solexa sequencing technology to test cpDNA purity according to aligning sequence reads to the reference chloroplast genomes, showing that the reference genome was properly covered. We show that 40-50% cpDNA purity is achieved with our method. CONCLUSION: Here we provide an improved method used to isolate cpDNA from angiosperms. The Illumina sequencing results suggest that the isolated cpDNA has reached enough yield and sufficient purity to perform subsequent genome assembly. The cpDNA isolation protocol thus will be widely applicable to the plant chloroplast genome sequencing projects.

  19. Phototropins and chloroplast activity in plant blue light signaling

    OpenAIRE

    Goh, Chang-Hyo

    2009-01-01

    In plants, phototropins 1 (phot1) and 2 (phot2) mediate chloroplast movement to blue light (BL). A recent report showed that phototropins (phot) are required for the expression of chloroplast genes in rice. The light-induced responses of phot1a rice mutants result in H2O2-mediated damage to chloroplast photosystems, indicating that phot-regulated responses might be associated with the other photoreceptor, such as cryptochrome (cry) BL receptor. This suggests diversification and specialization...

  20. Light-harvesting superstructures of green plant chloroplasts lacking photosystems.

    Science.gov (United States)

    Belgio, Erica; Ungerer, Petra; Ruban, Alexander V

    2015-10-01

    The light-harvesting antenna of higher plant photosystem II (LHCII) is the major photosynthetic membrane component encoded by an entire family of homologous nuclear genes. On the contrary, the great majority of proteins of photosystems and electron transport components are encoded by the chloroplast genome. In this work, we succeeded in gradually inhibiting the expression of the chloroplast genes that led to the disappearance of the photosystem complexes, mimicking almost total photoinhibition. The treated plants, despite displaying only some early signs of senescence, sustained their metabolism and growth for several weeks. The only major remaining membrane component was LHCII antenna that formed superstructures - stacks of dozens of thylakoids or supergrana. Freeze-fracture electron microscopy revealed specific organization, directly displaying frequently bifurcated membranes with reduced or totally absent photosystem II (PSII) reaction centre complexes. Our findings show that it is possible to accumulate large amounts of light-harvesting membranes, organized into three-dimensional structures, in the absence of reaction centre complexes. This points to the reciprocal role of LHCII and PSII in self-assembly of the three-dimensional matrix of the photosynthetic membrane, dictating its size and flexible adaptation to the light environment. © 2015 John Wiley & Sons Ltd.

  1. Complete Chloroplast Genome Sequence of Dendrobium nobile from Northeastern India

    Science.gov (United States)

    Parameswaran, Sriram; Sundar, Durai

    2016-01-01

    The orchid species Dendrobium nobile belonging to the family Orchidaceae and genus Dendrobium (a vast genus that encompasses nearly 1,200 species) has an herbal medicinal history of about 2000 years in east and south Asian countries. Here, we report the complete chloroplast genome sequence of D. nobile from northeastern India for the first time.

  2. Chloroplast Genome Sequence Annotation of Dendrobium nobile (Asparagales: Orchidaceae), an Endangered Medicinal Orchid from Northeast India.

    Science.gov (United States)

    Biswal, Devendra; Konhar, Ruchishree; Debnath, Manish; Parameswaran, Sriram; Sundar, Durai; Tandon, Pramod

    2017-05-19

    Orchidaceae constitutes one of the largest families of angiosperms. Owing to the significance of orchids in plant biology, market needs and current sustainable technology levels, basic research on the biology of orchids and their applications in the orchid industry is increasing. Although chloroplast (cp) genomes continue to be evolutionarily informative, there is very limited information available on orchid chloroplast genomes in public repositories. Here, we report the complete cp genome sequence of Dendrobium nobile from Northeast India (Orchidaceae, Asparagales), bearing the GenBank accession number KX377961, which will provide valuable information for future research on orchid genomics and evolution, as well as the medicinal value of orchids. Phylogenetic analyses using Bayesian methods recovered a monophyletic grouping of all Dendrobium species (D. nobile, D. huoshanense, D. officinale, D. pendulum, D. strongylanthum and D. chrysotoxum). The relationships recovered among the representative orchid species from the four subfamilies, i.e., Cypripedioideae, Epidendroideae, Orchidoideae and Vanilloideae, were consistent within the family Orchidaceae.

  3. A Comparison of the First Two Sequenced Chloroplast Genomes in Asteraceae: Lettuce and Sunflower

    Energy Technology Data Exchange (ETDEWEB)

    Timme, Ruth E.; Kuehl, Jennifer V.; Boore, Jeffrey L.; Jansen, Robert K.

    2006-01-20

    Asteraceae is the second largest family of plants, with over 20,000 species. For the past few decades, numerous phylogenetic studies have contributed to our understanding of the evolutionary relationships within this family, including comparisons of the fast evolving chloroplast gene, ndhF, rbcL, as well as non-coding DNA from the trnL intron plus the trnLtrnF intergenic spacer, matK, and, with lesser resolution, psbA-trnH. This culminated in a study by Panero and Funk in 2002 that used over 13,000 bp per taxon for the largest taxonomic revision of Asteraceae in over a hundred years. Still, some uncertainties remain, and it would be very useful to have more information on the relative rates of sequence evolution among various genes and on genome structure as a potential set of phylogenetic characters to help guide future phylogenetic structures. By way of contributing to this, we report the first two complete chloroplast genome sequences from members of the Asteraceae, those of Helianthus annuus and Lactuca sativa. These plants belong to two distantly related subfamilies, Asteroideae and Cichorioideae, respectively. In addition to these, there is only one other published chloroplast genome sequence for any plant within the larger group called Eusterids II, that of Panax ginseng (Araliaceae, 156,318 bps, AY582139). Early chloroplast genome mapping studies demonstrated that H. annuus and L. sativa share a 22 kb inversion relative to members of the subfamily Barnadesioideae. By comparison to outgroups, this inversion was shown to be derived, indicating that the Asteroideae and Cichorioideae are more closely related than either is to the Barnadesioideae. Later sequencing study found that taxa that share this 22 kb inversion also contain within this region a second, smaller, 3.3 kb inversion. These sequences also enable an analysis of patterns of shared repeats in the genomes at fine level and of RNA editing by comparison to available EST sequences. In addition, since

  4. Diversity of chloroplast genome among local clones of cocoa (Theobroma cacao, L.) from Central Sulawesi

    Science.gov (United States)

    Suwastika, I. Nengah; Pakawaru, Nurul Aisyah; Rifka, Rahmansyah, Muslimin, Ishizaki, Yoko; Cruz, André Freire; Basri, Zainuddin; Shiina, Takashi

    2017-02-01

    Chloroplast genomes typically range in size from 120 to 170 kilo base pairs (kb), which relatively conserved among plant species. Recent evaluation on several species, certain unique regions showed high variability which can be utilized in the phylogenetic analysis. Many fragments of coding regions, introns, and intergenic spacers, such as atpB-rbcL, ndhF, rbcL, rpl16, trnH-psbA, trnL-F, trnS-G, etc., have been used for phylogenetic reconstructions at various taxonomic levels. Based on that status, we would like to analysis the diversity of chloroplast genome within species of local cacao (Theobroma cacao L.) from Central Sulawesi. Our recent data showed, there were more than 20 clones from local farming in Central Sulawesi, and it can be detected based on phenotypic and nuclear-genome-based characterization (RAPD- Random Amplified Polymorphic DNA and SSR- Simple Sequences Repeat) markers. In developing DNA marker for this local cacao, here we also included analysis based on the variation of chloroplast genome. At least several regions such as rpl32-TurnL, it can be considered as chloroplast markers on our local clone of cocoa. Furthermore, we could develop phylogenetic analysis in between clones of cocoa.

  5. The chloroplast genome of Hyoscyamus niger and a phylogenetic study of the tribe Hyoscyameae (Solanaceae.

    Directory of Open Access Journals (Sweden)

    M Virginia Sanchez-Puerta

    Full Text Available The tribe Hyoscyameae (Solanaceae is restricted to Eurasia and includes the genera Archihyoscyamus, Anisodus, Atropa, Atropanthe, Hyoscyamus, Physochlaina, Przewalskia and Scopolia. Even though the monophyly of Hyoscyameae is strongly supported, the relationships of the taxa within the tribe remain unclear. Chloroplast markers have been widely used to elucidate plant relationships at low taxonomic levels. Identification of variable chloroplast intergenic regions has been developed based on comparative genomics of chloroplast genomes, but these regions have a narrow phylogenetic utility. In this study, we present the chloroplast genome sequence of Hyoscyamus niger and make comparisons to other solanaceous plastid genomes in terms of gene order, gene and intron content, editing sites, origins of replication, repeats, and hypothetical open reading frames. We developed and sequenced three variable plastid markers from eight species to elucidate relationships within the tribe Hyoscyameae. The presence of a horizontally transferred intron in the mitochondrial cox1 gene of some species of the tribe is considered here a likely synapomorphy uniting five genera of the Hyoscyameae. Alternatively, the cox1 intron could be a homoplasious character acquired twice within the tribe. A homoplasious inversion in the intergenic plastid spacer trnC-psbM was recognized as a source of bias and removed from the data set used in the phylogenetic analyses. Almost 12 kb of plastid sequence data were not sufficient to completely resolve relationships among genera of Hyoscyameae but some clades were identified. Two alternative hypotheses of the evolution of the genera within the tribe are proposed.

  6. Metabolic engineering of chloroplasts for artemisinic acid biosynthesis and impact on plant growth

    Indian Academy of Sciences (India)

    Bhawna Saxena; Mayavan Subramaniyan; Karan Malhotra; Neel Sarovar Bhavesh; Shobha Devi Potlakayala; Shashi Kumar

    2014-03-01

    Chloroplasts offer high-level transgene expression and transgene containment due to maternal inheritance, and are ideal hosts for biopharmaceutical biosynthesis via multigene engineering. To exploit these advantages, we have expressed 12 enzymes in chloroplasts for the biosynthesis of artemisinic acid (precursor of artemisinin, antimalarial drug) in an alternative plant system. Integration of transgenes into the tobacco chloroplast genome via homologous recombination was confirmed by molecular analysis, and biosynthesis of artemisinic acid in plant leaf tissues was detected with the help of 13C NMR and ESI-mass spectrometry. The excess metabolic flux of isopentenyl pyrophosphate generated by an engineered mevalonate pathway was diverted for the biosynthesis of artemisinic acid. However, expression of megatransgenes impacted the growth of the transplastomic plantlets. By combining two exogenous pathways, artemisinic acid was produced in transplastomic plants, which can be improved further using better metabolic engineering strategies for commercially viable yield of desirable isoprenoid products.

  7. A fragment of chloroplast DNA was transferred horizontally, probably from non-eudicots, to mitochondrial genome of Phaseolus.

    Science.gov (United States)

    Woloszynska, Magdalena; Bocer, Tomasz; Mackiewicz, Pawel; Janska, Hanna

    2004-11-01

    The mitochondrial genomes of some Phaseolus species contain a fragment of chloroplast trnA gene intron, named pvs-trnA for its location within the Phaseolus vulgaris sterility sequence (pvs). The purpose of this study was to determine the type of transfer (intracellular or horizontal) that gave rise to pvs-trnA. Using a PCR approach we could not find the respective portion of the trnA gene as a part of pvs outside the Phaseolus genus. However, a BLAST search revealed longer fragments of trnA present in the mitochondrial genomes of some Citrus species, Helianthus annuus and Zea mays. Basing on the identity or near-identity between these mitochondrial sequences and their chloroplast counterparts we concluded that they had relocated from chloroplasts to mitochondria via recent, independent, intracellular DNA transfers. In contrast, pvs-trnA displayed a relatively higher sequence divergence when compared with its chloroplast counterpart from Phaseolus vulgaris. Alignment of pvs-trnA with corresponding trnA fragments from 35 plant species as well as phylogenetic analysis revealed that pvs-trnA grouped with non-eudicot sequences and was well separated from all Fabales sequences. In conclusion, we propose that pvs-trnA arose via horizontal transfer of a trnA intron fragment from chloroplast of a non-eudicot plant to Phaseolus mitochondria. This is the first example of horizontal transfer of a chloroplast sequence to the mitochondrial genome in higher plants.

  8. The first complete chloroplast genome sequences of Ulmus species by de novo sequencing: Genome comparative and taxonomic position analysis

    Science.gov (United States)

    Zhang, Shuang; Yu, Xiao-Yue; Ren, Ya-Chao; Yang, Min-Sheng; Wang, Jin-Mao

    2017-01-01

    Elm (Ulmus) has a long history of use as a high-quality heavy hardwood famous for its resistance to drought, cold, and salt. It grows in temperate, warm temperate, and subtropical regions. This is the first report of Ulmaceae chloroplast genomes by de novo sequencing. The Ulmus chloroplast genomes exhibited a typical quadripartite structure with two single-copy regions (long single copy [LSC] and short single copy [SSC] sections) separated by a pair of inverted repeats (IRs). The lengths of the chloroplast genomes from five Ulmus ranged from 158,953 to 159,453 bp, with the largest observed in Ulmus davidiana and the smallest in Ulmus laciniata. The genomes contained 137–145 protein-coding genes, of which Ulmus davidiana var. japonica and U. davidiana had the most and U. pumila had the fewest. The five Ulmus species exhibited different evolutionary routes, as some genes had been lost. In total, 18 genes contained introns, 13 of which (trnL-TAA+, trnL-TAA−, rpoC1-, rpl2-, ndhA-, ycf1, rps12-, rps12+, trnA-TGC+, trnA-TGC-, trnV-TAC-, trnI-GAT+, and trnI-GAT) were shared among all five species. The intron of ycf1 was the longest (5,675bp) while that of trnF-AAA was the smallest (53bp). All Ulmus species except U. davidiana exhibited the same degree of amplification in the IR region. To determine the phylogenetic positions of the Ulmus species, we performed phylogenetic analyses using common protein-coding genes in chloroplast sequences of 42 other species published in NCBI. The cluster results showed the closest plants to Ulmaceae were Moraceae and Cannabaceae, followed by Rosaceae. Ulmaceae and Moraceae both belonged to Urticales, and the chloroplast genome clustering results were consistent with their traditional taxonomy. The results strongly supported the position of Ulmaceae as a member of the order Urticales. In addition, we found a potential error in the traditional taxonomies of U. davidiana and U. davidiana var. japonica, which should be confirmed with a

  9. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus.

    Science.gov (United States)

    Martin, William; Rujan, Tamas; Richly, Erik; Hansen, Andrea; Cornelsen, Sabine; Lins, Thomas; Leister, Dario; Stoebe, Bettina; Hasegawa, Masami; Penny, David

    2002-09-17

    Chloroplasts were once free-living cyanobacteria that became endosymbionts, but the genomes of contemporary plastids encode only approximately 5-10% as many genes as those of their free-living cousins, indicating that many genes were either lost from plastids or transferred to the nucleus during the course of plant evolution. Previous estimates have suggested that between 800 and perhaps as many as 2,000 genes in the Arabidopsis genome might come from cyanobacteria, but genome-wide phylogenetic surveys that could provide direct estimates of this number are lacking. We compared 24,990 proteins encoded in the Arabidopsis genome to the proteins from three cyanobacterial genomes, 16 other prokaryotic reference genomes, and yeast. Of 9,368 Arabidopsis proteins sufficiently conserved for primary sequence comparison, 866 detected homologues only among cyanobacteria and 834 other branched with cyanobacterial homologues in phylogenetic trees. Extrapolating from these conserved proteins to the whole genome, the data suggest that approximately 4,500 of Arabidopsis protein-coding genes ( approximately 18% of the total) were acquired from the cyanobacterial ancestor of plastids. These proteins encompass all functional classes, and the majority of them are targeted to cell compartments other than the chloroplast. Analysis of 15 sequenced chloroplast genomes revealed 117 nuclear-encoded proteins that are also still present in at least one chloroplast genome. A phylogeny of chloroplast genomes inferred from 41 proteins and 8,303 amino acids sites indicates that at least two independent secondary endosymbiotic events have occurred involving red algae and that amino acid composition bias in chloroplast proteins strongly affects plastid genome phylogeny.

  10. Characterization of the chloroplast genome sequence of oil palm (Elaeis guineensis Jacq.).

    Science.gov (United States)

    Uthaipaisanwong, P; Chanprasert, J; Shearman, J R; Sangsrakru, D; Yoocha, T; Jomchai, N; Jantasuriyarat, C; Tragoonrung, S; Tangphatsornruang, S

    2012-06-01

    Oil palm (Elaeis guineensis Jacq.) is an economically important crop, which is grown for oil production. To better understand the molecular basis of oil palm chloroplasts, we characterized the complete chloroplast (cp) genome sequence obtained from 454 pyrosequencing. The oil palm cp genome is 156,973 bp in length consisting of a large single-copy region of 85,192 bp flanked on each side by inverted repeats of 27,071 bp with a small single-copy region of 17,639 bp joining the repeats. The genome contains 112 unique genes: 79 protein-coding genes, 4 ribosomal RNA genes and 29 tRNA genes. By aligning the cp genome sequence with oil palm cDNA sequences, we observed 18 non-silent and 10 silent RNA editing events among 19 cp protein-coding genes. Creation of an initiation codon by RNA editing in rpl2 has been reported in several monocots and was also found in the oil palm cp genome. Fifty common chloroplast protein-coding genes from 33 plant taxa were used to construct ML and MP phylogenetic trees. Their topologies are similar and strongly support for the position of E. guineensis as the sister of closely related species Phoenix dactylifera in Arecaceae (palm families) of monocot subtrees. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Complete Chloroplast Genome Sequence of Dendrobium nobile from Northeastern India.

    Science.gov (United States)

    Konhar, Ruchishree; Biswal, Devendra Kumar; Debnath, Manish; Parameswaran, Sriram; Sundar, Durai; Tandon, Pramod

    2016-10-06

    The orchid species Dendrobium nobile belonging to the family Orchidaceae and genus Dendrobium (a vast genus that encompasses nearly 1,200 species) has an herbal medicinal history of about 2000 years in east and south Asian countries. Here, we report the complete chloroplast genome sequence of D. nobile from northeastern India for the first time. Copyright © 2016 Konhar et al.

  12. Non-invasive, whole-plant imaging of chloroplast movement and chlorophyll fluorescence reveals photosynthetic phenotypes independent of chloroplast photorelocation defects in chloroplast division mutants.

    Science.gov (United States)

    Dutta, Siddhartha; Cruz, Jeffrey A; Jiao, Yuhua; Chen, Jin; Kramer, David M; Osteryoung, Katherine W

    2015-10-01

    Leaf chloroplast movement is thought to optimize light capture and to minimize photodamage. To better understand the impact of chloroplast movement on photosynthesis, we developed a technique based on the imaging of reflectance from leaf surfaces that enables continuous, high-sensitivity, non-invasive measurements of chloroplast movement in multiple intact plants under white actinic light. We validated the method by measuring photorelocation responses in Arabidopsis chloroplast division mutants with drastically enlarged chloroplasts, and in phototropin mutants with impaired photorelocation but normal chloroplast morphology, under different light regimes. Additionally, we expanded our platform to permit simultaneous image-based measurements of chlorophyll fluorescence and chloroplast movement. We show that chloroplast division mutants with enlarged, less-mobile chloroplasts exhibit greater photosystem II photodamage than is observed in the wild type, particularly under fluctuating high levels of light. Comparison between division mutants and the severe photorelocation mutant phot1-5 phot2-1 showed that these effects are not entirely attributable to diminished photorelocation responses, as previously hypothesized, implying that altered chloroplast morphology affects other photosynthetic processes. Our dual-imaging platform also allowed us to develop a straightforward approach to correct non-photochemical quenching (NPQ) calculations for interference from chloroplast movement. This correction method should be generally useful when fluorescence and reflectance are measured in the same experiments. The corrected data indicate that the energy-dependent (qE) and photoinhibitory (qI) components of NPQ contribute differentially to the NPQ phenotypes of the chloroplast division and photorelocation mutants. This imaging technology thus provides a platform for analyzing the contributions of chloroplast movement, chloroplast morphology and other phenotypic attributes to the

  13. Complete sequence and comparative analysis of the chloroplast genome of coconut palm (Cocos nucifera).

    Science.gov (United States)

    Huang, Ya-Yi; Matzke, Antonius J M; Matzke, Marjori

    2013-01-01

    Coconut, a member of the palm family (Arecaceae), is one of the most economically important trees used by mankind. Despite its diverse morphology, coconut is recognized taxonomically as only a single species (Cocos nucifera L.). There are two major coconut varieties, tall and dwarf, the latter of which displays traits resulting from selection by humans. We report here the complete chloroplast (cp) genome of a dwarf coconut plant, and describe the gene content and organization, inverted repeat fluctuations, repeated sequence structure, and occurrence of RNA editing. Phylogenetic relationships of monocots were inferred based on 47 chloroplast protein-coding genes. Potential nodes for events of gene duplication and pseudogenization related to inverted repeat fluctuation were mapped onto the tree using parsimony criteria. We compare our findings with those from other palm species for which complete cp genome sequences are available.

  14. Complete sequence and comparative analysis of the chloroplast genome of coconut palm (Cocos nucifera.

    Directory of Open Access Journals (Sweden)

    Ya-Yi Huang

    Full Text Available Coconut, a member of the palm family (Arecaceae, is one of the most economically important trees used by mankind. Despite its diverse morphology, coconut is recognized taxonomically as only a single species (Cocos nucifera L.. There are two major coconut varieties, tall and dwarf, the latter of which displays traits resulting from selection by humans. We report here the complete chloroplast (cp genome of a dwarf coconut plant, and describe the gene content and organization, inverted repeat fluctuations, repeated sequence structure, and occurrence of RNA editing. Phylogenetic relationships of monocots were inferred based on 47 chloroplast protein-coding genes. Potential nodes for events of gene duplication and pseudogenization related to inverted repeat fluctuation were mapped onto the tree using parsimony criteria. We compare our findings with those from other palm species for which complete cp genome sequences are available.

  15. The chloroplast genome of the hexaploid Spartina maritima (Poaceae, Chloridoideae): Comparative analyses and molecular dating.

    Science.gov (United States)

    Rousseau-Gueutin, M; Bellot, S; Martin, G E; Boutte, J; Chelaifa, H; Lima, O; Michon-Coudouel, S; Naquin, D; Salmon, A; Ainouche, K; Ainouche, M

    2015-12-01

    The history of many plant lineages is complicated by reticulate evolution with cases of hybridization often followed by genome duplication (allopolyploidy). In such a context, the inference of phylogenetic relationships and biogeographic scenarios based on molecular data is easier using haploid markers like chloroplast genome sequences. Hybridization and polyploidization occurred recurrently in the genus Spartina (Poaceae, Chloridoideae), as illustrated by the recent formation of the invasive allododecaploid S. anglica during the 19th century in Europe. Until now, only a few plastid markers were available to explore the history of this genus and their low variability limited the resolution of species relationships. We sequenced the complete chloroplast genome (plastome) of S. maritima, the native European parent of S. anglica, and compared it to the plastomes of other Poaceae. Our analysis revealed the presence of fast-evolving regions of potential taxonomic, phylogeographic and phylogenetic utility at various levels within the Poaceae family. Using secondary calibrations, we show that the tetraploid and hexaploid lineages of Spartina diverged 6-10 my ago, and that the two parents of the invasive allopolyploid S. anglica separated 2-4 my ago via long distance dispersal of the ancestor of S. maritima over the Atlantic Ocean. Finally, we discuss the meaning of divergence times between chloroplast genomes in the context of reticulate evolution. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Complete chloroplast genome of Trachelium caeruleum: extensiverearrangements are associated with repeats and tRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Haberle, Rosemarie C.; Fourcade, Matthew L.; Boore, Jeffrey L.; Jansen, Robert K.

    2006-01-09

    Chloroplast genome structure, gene order and content arehighly conserved in land plants. We sequenced the complete chloroplastgenome sequence of Trachelium caeruleum (Campanulaceae) a member of anangiosperm family known for highly rearranged chloroplast genomes. Thetotal genome size is 162,321 bp with an IR of 27,273 bp, LSC of 100,113bp and SSC of 7,661 bp. The genome encodes 115 unique genes, with 19duplicated in the IR, a tRNA (trnI-CAU) duplicated once in the LSC and aprotein coding gene (psbJ) duplicated twice, for a total of 137 genes.Four genes (ycf15, rpl23, infA and accD) are truncated and likelynonfunctional; three others (clpP, ycf1 and ycf2) are so highly divergedthat they may now be pseudogenes. The most conspicuous feature of theTrachelium genome is the presence of eighteen internally unrearrangedblocks of genes that have been inverted or relocated within the genome,relative to the typical gene order of most angiosperm chloroplastgenomes. Recombination between repeats or tRNAs has been suggested as twomeans of chloroplast genome rearrangements. We compared the relativenumber of repeats in Trachelium to eight other angiosperm chloroplastgenomes, and evaluated the location of repeats and tRNAs in relation torearrangements. Trachelium has the highest number and largest repeats,which are concentrated near inversion endpoints or other rearrangements.tRNAs occur at many but not all inversion endpoints. There is likely nosingle mechanism responsible for the remarkable number of alterations inthis genome, but both repeats and tRNAs are clearly associated with theserearrangements. Land plant chloroplast genomes are highly conserved instructure, gene order and content. The chloroplast genomes of ferns, thegymnosperm Ginkgo, and most angiosperms are nearly collinear, reflectingthe gene order in lineages that diverged from lycopsids and the ancestralchloroplast gene order over 350 million years ago (Raubeson and Jansen,1992). Although earlier mapping studies

  17. Complete chloroplast genome sequence of a major invasive species, crofton weed (Ageratina adenophora.

    Directory of Open Access Journals (Sweden)

    Xiaojun Nie

    Full Text Available BACKGROUND: Crofton weed (Ageratina adenophora is one of the most hazardous invasive plant species, which causes serious economic losses and environmental damages worldwide. However, the sequence resource and genome information of A. adenophora are rather limited, making phylogenetic identification and evolutionary studies very difficult. Here, we report the complete sequence of the A. adenophora chloroplast (cp genome based on Illumina sequencing. METHODOLOGY/PRINCIPAL FINDINGS: The A. adenophora cp genome is 150, 689 bp in length including a small single-copy (SSC region of 18, 358 bp and a large single-copy (LSC region of 84, 815 bp separated by a pair of inverted repeats (IRs of 23, 755 bp. The genome contains 130 unique genes and 18 duplicated in the IR regions, with the gene content and organization similar to other Asteraceae cp genomes. Comparative analysis identified five DNA regions (ndhD-ccsA, psbI-trnS, ndhF-ycf1, ndhI-ndhG and atpA-trnR containing parsimony-informative characters higher than 2%, which may be potential informative markers for barcoding and phylogenetic analysis. Repeat structure, codon usage and contraction of the IR were also investigated to reveal the pattern of evolution. Phylogenetic analysis demonstrated a sister relationship between A. adenophora and Guizotia abyssinica and supported a monophyly of the Asterales. CONCLUSION: We have assembled and analyzed the chloroplast genome of A. adenophora in this study, which was the first sequenced plastome in the Eupatorieae tribe. The complete chloroplast genome information is useful for plant phylogenetic and evolutionary studies within this invasive species and also within the Asteraceae family.

  18. The complete chloroplast genome sequence of an endemic monotypic genus Hagenia (Rosaceae): structural comparative analysis, gene content and microsatellite detection.

    Science.gov (United States)

    Gichira, Andrew W; Li, Zhizhong; Saina, Josphat K; Long, Zhicheng; Hu, Guangwan; Gituru, Robert W; Wang, Qingfeng; Chen, Jinming

    2017-01-01

    Hagenia is an endangered monotypic genus endemic to the topical mountains of Africa. The only species, Hagenia abyssinica (Bruce) J.F. Gmel, is an important medicinal plant producing bioactive compounds that have been traditionally used by African communities as a remedy for gastrointestinal ailments in both humans and animals. Complete chloroplast genomes have been applied in resolving phylogenetic relationships within plant families. We employed high-throughput sequencing technologies to determine the complete chloroplast genome sequence of H. abyssinica. The genome is a circular molecule of 154,961 base pairs (bp), with a pair of Inverted Repeats (IR) 25,971 bp each, separated by two single copies; a large (LSC, 84,320 bp) and a small single copy (SSC, 18,696). H. abyssinica's chloroplast genome has a 37.1% GC content and encodes 112 unique genes, 78 of which code for proteins, 30 are tRNA genes and four are rRNA genes. A comparative analysis with twenty other species, sequenced to-date from the family Rosaceae, revealed similarities in structural organization, gene content and arrangement. The observed size differences are attributed to the contraction/expansion of the inverted repeats. The translational initiation factor gene (infA) which had been previously reported in other chloroplast genomes was conspicuously missing in H. abyssinica. A total of 172 microsatellites and 49 large repeat sequences were detected in the chloroplast genome. A Maximum Likelihood analyses of 71 protein-coding genes placed Hagenia in Rosoideae. The availability of a complete chloroplast genome, the first in the Sanguisorbeae tribe, is beneficial for further molecular studies on taxonomic and phylogenomic resolution within the Rosaceae family.

  19. The complete chloroplast genome sequence of an endemic monotypic genus Hagenia (Rosaceae: structural comparative analysis, gene content and microsatellite detection

    Directory of Open Access Journals (Sweden)

    Andrew W. Gichira

    2017-01-01

    Full Text Available Hagenia is an endangered monotypic genus endemic to the topical mountains of Africa. The only species, Hagenia abyssinica (Bruce J.F. Gmel, is an important medicinal plant producing bioactive compounds that have been traditionally used by African communities as a remedy for gastrointestinal ailments in both humans and animals. Complete chloroplast genomes have been applied in resolving phylogenetic relationships within plant families. We employed high-throughput sequencing technologies to determine the complete chloroplast genome sequence of H. abyssinica. The genome is a circular molecule of 154,961 base pairs (bp, with a pair of Inverted Repeats (IR 25,971 bp each, separated by two single copies; a large (LSC, 84,320 bp and a small single copy (SSC, 18,696. H. abyssinica’s chloroplast genome has a 37.1% GC content and encodes 112 unique genes, 78 of which code for proteins, 30 are tRNA genes and four are rRNA genes. A comparative analysis with twenty other species, sequenced to-date from the family Rosaceae, revealed similarities in structural organization, gene content and arrangement. The observed size differences are attributed to the contraction/expansion of the inverted repeats. The translational initiation factor gene (infA which had been previously reported in other chloroplast genomes was conspicuously missing in H. abyssinica. A total of 172 microsatellites and 49 large repeat sequences were detected in the chloroplast genome. A Maximum Likelihood analyses of 71 protein-coding genes placed Hagenia in Rosoideae. The availability of a complete chloroplast genome, the first in the Sanguisorbeae tribe, is beneficial for further molecular studies on taxonomic and phylogenomic resolution within the Rosaceae family.

  20. The complete chloroplast genome sequence of an endemic monotypic genus Hagenia (Rosaceae): structural comparative analysis, gene content and microsatellite detection

    Science.gov (United States)

    Saina, Josphat K.; Long, Zhicheng; Hu, Guangwan; Gituru, Robert W.

    2017-01-01

    Hagenia is an endangered monotypic genus endemic to the topical mountains of Africa. The only species, Hagenia abyssinica (Bruce) J.F. Gmel, is an important medicinal plant producing bioactive compounds that have been traditionally used by African communities as a remedy for gastrointestinal ailments in both humans and animals. Complete chloroplast genomes have been applied in resolving phylogenetic relationships within plant families. We employed high-throughput sequencing technologies to determine the complete chloroplast genome sequence of H. abyssinica. The genome is a circular molecule of 154,961 base pairs (bp), with a pair of Inverted Repeats (IR) 25,971 bp each, separated by two single copies; a large (LSC, 84,320 bp) and a small single copy (SSC, 18,696). H. abyssinica’s chloroplast genome has a 37.1% GC content and encodes 112 unique genes, 78 of which code for proteins, 30 are tRNA genes and four are rRNA genes. A comparative analysis with twenty other species, sequenced to-date from the family Rosaceae, revealed similarities in structural organization, gene content and arrangement. The observed size differences are attributed to the contraction/expansion of the inverted repeats. The translational initiation factor gene (infA) which had been previously reported in other chloroplast genomes was conspicuously missing in H. abyssinica. A total of 172 microsatellites and 49 large repeat sequences were detected in the chloroplast genome. A Maximum Likelihood analyses of 71 protein-coding genes placed Hagenia in Rosoideae. The availability of a complete chloroplast genome, the first in the Sanguisorbeae tribe, is beneficial for further molecular studies on taxonomic and phylogenomic resolution within the Rosaceae family.

  1. Five Complete Chloroplast Genome Sequences from Diospyros: Genome Organization and Comparative Analysis.

    Directory of Open Access Journals (Sweden)

    Jianmin Fu

    Full Text Available Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been an important food resource in China, Korea, and Japan. Complete chloroplast (cp genomes from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros 'Jinzaoshi' were sequenced using Illumina sequencing technology. This is the first cp genome reported in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp in length, presenting a typical quadripartite structure with two inverted repeats each separated by one large and one small single-copy region. For each cp genome, 134 genes were annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179 repeats and 283 single sequence repeats were identified. Four hypervariable regions, namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA, were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is closely related to D. kaki and could be used as a model plant for future research on D. kaki; to our knowledge, this is proposed for the first time. Further, these analyses together with two large deletions (301 and 140 bp in the cp genome of D. 'Jinzaoshi', support its placement as a new species in Diospyros. Both maximum parsimony and likelihood analyses for 19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is monophyletic in Ericales.

  2. Analyses of the complete genome and gene expression of chloroplast of sweet potato [Ipomoea batata].

    Science.gov (United States)

    Yan, Lang; Lai, Xianjun; Li, Xuedan; Wei, Changhe; Tan, Xuemei; Zhang, Yizheng

    2015-01-01

    Sweet potato [Ipomoea batatas (L.) Lam] ranks among the top seven most important food crops cultivated worldwide and is hexaploid plant (2n=6x=90) in the Convolvulaceae family with a genome size between 2,200 to 3,000 Mb. The genomic resources for this crop are deficient due to its complicated genetic structure. Here, we report the complete nucleotide sequence of the chloroplast (cp) genome of sweet potato, which is a circular molecule of 161,303 bp in the typical quadripartite structure with large (LSC) and small (SSC) single-copy regions separated by a pair of inverted repeats (IRs). The chloroplast DNA contains a total of 145 genes, including 94 protein-encoding genes of which there are 72 single-copy and 11 double-copy genes. The organization and structure of the chloroplast genome (gene content and order, IR expansion/contraction, random repeating sequences, structural rearrangement) of sweet potato were compared with those of Ipomoea (L.) species and some basal important angiosperms, respectively. Some boundary gene-flow and gene gain-and-loss events were identified at intra- and inter-species levels. In addition, by comparing with the transcriptome sequences of sweet potato, the RNA editing events and differential expressions of the chloroplast functional-genes were detected. Moreover, phylogenetic analysis was conducted based on 77 protein-coding genes from 33 taxa and the result may contribute to a better understanding of the evolution progress of the genus Ipomoea (L.), including phylogenetic relationships, intraspecific differentiation and interspecific introgression.

  3. Analysis of Acorus calamus chloroplast genome and its phylogenetic implications.

    Science.gov (United States)

    Goremykin, Vadim V; Holland, Barbara; Hirsch-Ernst, Karen I; Hellwig, Frank H

    2005-09-01

    Determining the phylogenetic relationships among the major lines of angiosperms is a long-standing problem, yet the uncertainty as to the phylogenetic affinity of these lines persists. While a number of studies have suggested that the ANITA (Amborella-Nymphaeales-Illiciales-Trimeniales-Aristolochiales) grade is basal within angiosperms, studies of complete chloroplast genome sequences also suggested an alternative tree, wherein the line leading to the grasses branches first among the angiosperms. To improve taxon sampling in the existing chloroplast genome data, we sequenced the chloroplast genome of the monocot Acorus calamus. We generated a concatenated alignment (89,436 positions for 15 taxa), encompassing almost all sequences usable for phylogeny reconstruction within spermatophytes. The data still contain support for both the ANITA-basal and grasses-basal hypotheses. Using simulations we can show that were the ANITA-basal hypothesis true, parsimony (and distance-based methods with many models) would be expected to fail to recover it. The self-evident explanation for this failure appears to be a long-branch attraction (LBA) between the clade of grasses and the out-group. However, this LBA cannot explain the discrepancies observed between tree topology recovered using the maximum likelihood (ML) method and the topologies recovered using the parsimony and distance-based methods when grasses are deleted. Furthermore, the fact that neither maximum parsimony nor distance methods consistently recover the ML tree, when according to the simulations they would be expected to, when the out-group (Pinus) is deleted, suggests that either the generating tree is not correct or the best symmetric model is misspecified (or both). We demonstrate that the tree recovered under ML is extremely sensitive to model specification and that the best symmetric model is misspecified. Hence, we remain agnostic regarding phylogenetic relationships among basal angiosperm lineages.

  4. The whole chloroplast genome of wild rice (Oryza australiensis).

    Science.gov (United States)

    Wu, Zhiqiang; Ge, Song

    2016-01-01

    The whole chloroplast genome of wild rice (Oryza australiensis) is characterized in this study. The genome size is 135,224  bp, exhibiting a typical circular structure including a pair of 25,776  bp inverted repeats (IRa,b) separated by a large single-copy region (LSC) of 82,212  bp and a small single-copy region (SSC) of 12,470  bp. The overall GC content of the genome is 38.95%. 110 unique genes were annotated, including 76 protein-coding genes, 4 ribosomal RNA genes, and 30t RNA genes. Among these, 18 are duplicated in the inverted repeat regions, 13 genes contain one intron, and 2 genes (rps12 and ycf3) have two introns.

  5. The complete chloroplast genome sequence of Dendrobium nobile.

    Science.gov (United States)

    Yan, Wenjin; Niu, Zhitao; Zhu, Shuying; Ye, Meirong; Ding, Xiaoyu

    2016-11-01

    The complete chloroplast (cp) genome sequence of Dendrobium nobile, an endangered and traditional Chinese medicine with important economic value, is presented in this article. The total genome size is 150,793 bp, containing a large single copy (LSC) region (84,939 bp) and a small single copy region (SSC) (13,310 bp) which were separated by two inverted repeat (IRs) regions (26,272 bp). The overall GC contents of the plastid genome were 38.8%. In total, 130 unique genes were annotated and they were consisted of 76 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Fourteen genes contained one or two introns.

  6. Phylogenetic placement of Cynomorium in Rosales inferred from sequences of the inverted repeat region of the chloroplast genome

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hong ZHANG; Chun-Qi LI; Jian-hua LI

    2009-01-01

    Cynomorium is a herbaceous holoparasite that has been placed in Santalales, Saxifragales, Myrtales, or Sapindales. The inverted repeat (IR) region of the chloroplast genome region is slow evolving and, unlike mitochondrial genes, the chloroplast genome experiences few horizontal gene transfers between the host and parasite. Thus, in the present study, we used sequences of the IR region to test the phylogenetic placements of Cynomorium. Phylogenetic analyses of the chloroplast IR sequences generated largely congruent ordinal relationships with those from previous studies of angiosperm phylogeny based on single or multiple genes. Santalales was closely related to Caryophyllales and asterids. Saxifragales formed a clade where Peridiscus was sister to the remainder of the order, whereas Paeonia was sister to the woody clade of Saxifragales. Cynomorium is not closely related to Santalales, Saxifragales, Myrtales, or Sapindales; instead, it is included in Rosales and sister to Rosaceae. The various placements of the holoparasite on the basis of different regions of the mitochondrial genome may indicate the heterogeneous nature of the genome in the parasite. However, it is unlikely that the placement of Cynomorium in Rosales is the result of chloroplast gene transfer because Cynomorium does not parasitize on rosaceous plants and there is no chloroplast gene transfer between Cynomorium and Nitraria, a confirmed host of Cynomorium and a member of Sapindales.

  7. The complete chloroplast genome sequence of Dendropanax morbifera (Léveillé).

    Science.gov (United States)

    Kim, Kyunghee; Lee, Sang-Choon; Yang, Tae-Jin

    2016-07-01

    The complete chloroplast genome sequence of Dendropanax morbifera, an economically and medicinally important endemic tree species in Korea, was obtained by de novo assembly with whole-genome sequence data and manual correction. A circular 156 366-bp chloroplast genome showed typical chloroplast genome structure comprising a large single copy region of 86 475 bp, a small single copy region of 18 125 bp, and a pair of inverted repeats of 25 883 bp. The chloroplast genome harbored 87 protein-coding genes. Phylogenetic analysis with the chloroplast genome revealed that D. morbifera is most closely related to Dendropanax dentiger, an evergreen tree species in China and Southeastern Asia.

  8. Comparative genomics of four Liliales families inferred from the complete chloroplast genome sequence of Veratrum patulum O. Loes. (Melanthiaceae).

    Science.gov (United States)

    Do, Hoang Dang Khoa; Kim, Jung Sung; Kim, Joo-Hwan

    2013-11-10

    The sequence of the chloroplast genome, which is inherited maternally, contains useful information for many scientific fields such as plant systematics, biogeography and biotechnology because its characteristics are highly conserved among species. There is an increase in chloroplast genomes of angiosperms that have been sequenced in recent years. In this study, the nucleotide sequence of the chloroplast genome (cpDNA) of Veratrum patulum Loes. (Melanthiaceae, Liliales) was analyzed completely. The circular double-stranded DNA of 153,699 bp consists of two inverted repeat (IR) regions of 26,360 bp each, a large single copy of 83,372 bp, and a small single copy of 17,607 bp. This plastome contains 81 protein-coding genes, 30 distinct tRNA and four genes of rRNA. In addition, there are six hypothetical coding regions (ycf1, ycf2, ycf3, ycf4, ycf15 and ycf68) and two open reading frames (ORF42 and ORF56), which are also found in the chloroplast genomes of the other species. The gene orders and gene contents of the V. patulum plastid genome are similar to that of Smilax china, Lilium longiflorum and Alstroemeria aurea, members of the Smilacaceae, Liliaceae and Alstroemeriaceae (Liliales), respectively. However, the loss rps16 exon 2 in V. patulum results in the difference in the large single copy regions in comparison with other species. The base substitution rate is quite similar among genes of these species. Additionally, the base substitution rate of inverted repeat region was smaller than that of single copy regions in all observed species of Liliales. The IR regions were expanded to trnH_GUG in V. patulum, a part of rps19 in L. longiflorum and A. aurea, and whole sequence of rps19 in S. china. Furthermore, the IGS lengths of rbcL-accD-psaI region were variable among Liliales species, suggesting that this region might be a hotspot of indel events and the informative site for phylogenetic studies in Liliales. In general, the whole chloroplast genome of V. patulum, a

  9. RNA Editing Sites Exist in Protein-coding Genes in the Chloroplast Genome of Cycas taitungensis

    Institute of Scientific and Technical Information of China (English)

    Haiyan Chen; Likun Deng; Yuan Jiang; Ping Lu; Jianing Yu

    2011-01-01

    RNA editing is a post-transcriptional process that results in modifications of ribonucleotides at specific locations.In land plants editing can occur in both mitochondria and chloroplasts and most commonly involves C-to-U changes,especially in seed plants.Using prediction and experimental determination,we investigated RNA editing in 40 protein-coding genes from the chloroplast genome of Cycas taitungensis.A total of 85 editing sites were identified in 25 transcripts.Comparison analysis of the published editotypes of these 25 transcripts in eight species showed that RNA editing events gradually disappear during plant evolution.The editing in the first and third codon position disappeared quicker than that in the second codon position,ndh genes have the highest editing frequency while serine and proline codons were more frequently edited than the codons of other amino acids.These results imply that retained RNA editing sites have imbalanced distribution in genes and most of them may function by changing protein structure or interaction.Mitochondrion protein-coding genes have three times the editing sites compared with chloroplast genes of Cycas,most likely due to slower evolution speed.

  10. Comparative transcriptome and chloroplast genome analyses of two related Dipteronia species

    Directory of Open Access Journals (Sweden)

    Tao Zhou

    2016-10-01

    Full Text Available Dipteronia (order Sapindales is an endangered genus endemic to China and has two living species, D. sinensis and D. dyeriana. The plants are closely related to the genus Acer, which is also classified in the order Sapindales. Evolutionary studies on Dipteronia have been hindered by the paucity of information on their genomes and plastids. Here, we used next generation sequencing to characterize the transcriptomes and complete chloroplast genomes of both Dipteronia species. A comparison of the transcriptomes of both species identified a total of 7,814 orthologs. Estimation of selection pressures using Ka/Ks ratios showed that only 30 of 5,435 orthologous pairs had a ratio significantly greater than 1, i.e., showing positive selection. However, 4,041 orthologs had a Ka/Ks < 0.5 (p < 0.05, suggesting that most genes had likely undergone purifying selection. Based on orthologous unigenes, 314 single copy nuclear genes were identified. Through a combination of de novo and reference guided assembly, plastid genomes were obtained; that of D. sinensis was 157,080 bp and that of D. dyeriana was 157,071 bp. Both plastid genomes encoded 87 protein coding genes, 40 tRNAs, and 8 rRNAs; no significant differences were detected in the size, gene content, and organization of the two plastomes. We used the whole chloroplast genomes to determine the phylogeny of D. sinensis and D. dyeriana and confirmed that the two species were highly divergent. Overall, our study provides comprehensive transcriptomic and chloroplast genomic resources, which will be valuable for future evolutionary studies of Dipteronia.

  11. A novel class of heat-responsive small RNAs derived from the chloroplast genome of Chinese cabbage (Brassica rapa

    Directory of Open Access Journals (Sweden)

    de Ruiter Marjo

    2011-06-01

    Full Text Available Abstract Background Non-coding small RNAs play critical roles in various cellular processes in a wide spectrum of eukaryotic organisms. Their responses to abiotic stress have become a popular topic of economic and scientific importance in biological research. Several studies in recent years have reported a small number of non-coding small RNAs that map to chloroplast genomes. However, it remains uncertain whether small RNAs are generated from chloroplast genome and how they respond to environmental stress, such as high temperature. Chinese cabbage is an important vegetable crop, and heat stress usually causes great losses in yields and quality. Under heat stress, the leaves become etiolated due to the disruption and disassembly of chloroplasts. In an attempt to determine the heat-responsive small RNAs in chloroplast genome of Chinese cabbage, we carried out deep sequencing, using heat-treated samples, and analysed the proportion of small RNAs that were matched to chloroplast genome. Results Deep sequencing provided evidence that a novel subset of small RNAs were derived from the chloroplast genome of Chinese cabbage. The chloroplast small RNAs (csRNAs include those derived from mRNA, rRNA, tRNA and intergenic RNA. The rRNA-derived csRNAs were preferentially located at the 3'-ends of the rRNAs, while the tRNA-derived csRNAs were mainly located at 5'-termini of the tRNAs. After heat treatment, the abundance of csRNAs decreased in seedlings, except those of 24 nt in length. The novel heat-responsive csRNAs and their locations in the chloroplast were verified by Northern blotting. The regulation of some csRNAs to the putative target genes were identified by real-time PCR. Our results reveal that high temperature suppresses the production of some csRNAs, which have potential roles in transcriptional or post-transcriptional regulation. Conclusions In addition to nucleus, the chloroplast is another important organelle that generates a number of small

  12. The complete chloroplast genome sequences of five Epimedium species: lights into phylogenetic and taxonomic analyses

    Directory of Open Access Journals (Sweden)

    Yanjun eZhang

    2016-03-01

    Full Text Available Epimedium L. is a phylogenetically and economically important genus in the family Berberidaceae. We here sequenced the complete chloroplast (cp genomes of four Epimedium species using Illumina sequencing technology via a combination of de novo and reference-guided assembly, which was also the first comprehensive cp genome analysis on Epimedium combining the cp genome sequence of E. koreanum previously reported. The five Epimedium cp genomes exhibited typical quadripartite and circular structure that was rather conserved in genomic structure and the synteny of gene order. However, these cp genomes presented obvious variations at the boundaries of the four regions because of the expansion and contraction of the inverted repeat (IR region and the single-copy (SC boundary regions. The trnQ-UUG duplication occurred in the five Epimedium cp genomes, which was not found in the other basal eudicotyledons. The rapidly evolving cp genome regions were detected among the five cp genomes, as well as the difference of simple sequence repeats (SSR and repeat sequence were identified. Phylogenetic relationships among the five Epimedium species based on their cp genomes showed accordance with the updated system of the genus on the whole, but reminded that the evolutionary relationships and the divisions of the genus need further investigation applying more evidences. The availability of these cp genomes provided valuable genetic information for accurately identifying species, taxonomy and phylogenetic resolution and evolution of Epimedium, and assist in exploration and utilization of Epimedium plants.

  13. Comparative chloroplast genomes of photosynthetic orchids: insights into evolution of the Orchidaceae and development of molecular markers for phylogenetic applications.

    Directory of Open Access Journals (Sweden)

    Jing Luo

    Full Text Available The orchid family Orchidaceae is one of the largest angiosperm families, including many species of important economic value. While chloroplast genomes are very informative for systematics and species identification, there is very limited information available on chloroplast genomes in the Orchidaceae. Here, we report the complete chloroplast genomes of the medicinal plant Dendrobium officinale and the ornamental orchid Cypripedium macranthos, demonstrating their gene content and order and potential RNA editing sites. The chloroplast genomes of the above two species and five known photosynthetic orchids showed similarities in structure as well as gene order and content, but differences in the organization of the inverted repeat/small single-copy junction and ndh genes. The organization of the inverted repeat/small single-copy junctions in the chloroplast genomes of these orchids was classified into four types; we propose that inverted repeats flanking the small single-copy region underwent expansion or contraction among Orchidaceae. The AT-rich regions of the ycf1 gene in orchids could be linked to the recombination of inverted repeat/small single-copy junctions. Relative species in orchids displayed similar patterns of variation in ndh gene contents. Furthermore, fifteen highly divergent protein-coding genes were identified, which are useful for phylogenetic analyses in orchids. To test the efficiency of these genes serving as markers in phylogenetic analyses, coding regions of four genes (accD, ccsA, matK, and ycf1 were used as a case study to construct phylogenetic trees in the subfamily Epidendroideae. High support was obtained for placement of previously unlocated subtribes Collabiinae and Dendrobiinae in the subfamily Epidendroideae. Our findings expand understanding of the diversity of orchid chloroplast genomes and provide a reference for study of the molecular systematics of this family.

  14. Sonication-based isolation and enrichment of Chlorella protothecoides chloroplasts for illumina genome sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Angelova, Angelina [University of Arizona; Park, Sang-Hycuk [University of Arizona; Kyndt, John [Bellevue University; Fitzsimmons, Kevin [University of Arizona; Brown, Judith K [University of Arizona

    2013-09-01

    With the increasing world demand for biofuel, a number of oleaginous algal species are being considered as renewable sources of oil. Chlorella protothecoides Krüger synthesizes triacylglycerols (TAGs) as storage compounds that can be converted into renewable fuel utilizing an anabolic pathway that is poorly understood. The paucity of algal chloroplast genome sequences has been an important constraint to chloroplast transformation and for studying gene expression in TAGs pathways. In this study, the intact chloroplasts were released from algal cells using sonication followed by sucrose gradient centrifugation, resulting in a 2.36-fold enrichment of chloroplasts from C. protothecoides, based on qPCR analysis. The C. protothecoides chloroplast genome (cpDNA) was determined using the Illumina HiSeq 2000 sequencing platform and found to be 84,576 Kb in size (8.57 Kb) in size, with a GC content of 30.8 %. This is the first report of an optimized protocol that uses a sonication step, followed by sucrose gradient centrifugation, to release and enrich intact chloroplasts from a microalga (C. prototheocoides) of sufficient quality to permit chloroplast genome sequencing with high coverage, while minimizing nuclear genome contamination. The approach is expected to guide chloroplast isolation from other oleaginous algal species for a variety of uses that benefit from enrichment of chloroplasts, ranging from biochemical analysis to genomics studies.

  15. Research Progress of Sugarcane Chloroplast Genome%甘蔗叶绿体基因组研究进展

    Institute of Scientific and Technical Information of China (English)

    吴杨; 周会

    2013-01-01

    Along with the development of modern molecular biology technologies, complete chloroplast genomes have been sequenced in various plant species to date, and the structure, function and expression of these genes have been deter-mined. The chloroplast genome structure in most higher plants is stable, since the gene number, arrangement and composition are conservative. The determination of sugarcane chloroplast genome sequence laid a good foundation for sugarcane chloroplast related research. This article gives a review on the research progress of sugarcane chloroplast genome through the chloroplast genome map, gene structure, function, chloroplast RNA editing, and phylogenetic analysis in Saccharum and relat-ed genera. This study held great potential to clarify more directions in researches, including sugarcane chloroplast genetic transformation, complete chloroplast nu-cleotide sequence determination in Saccharum and closely related genera, cpSSRs development and application.%随着现代分子生物学技术的发展,目前已经完成了多种植物叶绿体基因组的全序列测定,并研究了这些基因的结构、功能与表达。大部分高等植物的叶绿体基因组结构稳定,基因数量、排列顺序及组成上具有保守性。甘蔗叶绿体基因组测序工作的完成为甘蔗叶绿体相关研究奠定了良好基础。文章从甘蔗叶绿体基因组图谱、结构和功能基因、叶绿体RNA编辑以及甘蔗属叶绿体系统进化等方面综合概述了甘蔗叶绿体基因组研究取得的成果,并从甘蔗叶绿体遗传转化、甘蔗及近缘属叶绿体基因组测序和叶绿体基因组 cpSSRs开发利用等方面指出甘蔗叶绿体基因组今后的研究方向。

  16. CURE-Chloroplast: A chloroplast C-to-U RNA editing predictor for seed plants

    OpenAIRE

    2009-01-01

    Abstract Background RNA editing is a type of post-transcriptional modification of RNA and belongs to the class of mechanisms that contribute to the complexity of transcriptomes. C-to-U RNA editing is commonly observed in plant mitochondria and chloroplasts. The in vivo mechanism of recognizing C-to-U RNA editing sites is still unknown. In recent years, many efforts have been made to computationally predict C-to-U RNA editing sites in the mitochondria of seed plants, but there is still no algo...

  17. The evolutionary processes of mitochondrial and chloroplast genomes differ from those of nuclear genomes

    Science.gov (United States)

    Korpelainen, Helena

    2004-11-01

    This paper first introduces our present knowledge of the origin of mitochondria and chloroplasts, and the organization and inheritance patterns of their genomes, and then carries on to review the evolutionary processes influencing mitochondrial and chloroplast genomes. The differences in evolutionary phenomena between the nuclear and cytoplasmic genomes are highlighted. It is emphasized that varying inheritance patterns and copy numbers among different types of genomes, and the potential advantage achieved through the transfer of many cytoplasmic genes to the nucleus, have important implications for the evolution of nuclear, mitochondrial and chloroplast genomes. Cytoplasmic genes transferred to the nucleus have joined the more strictly controlled genetic system of the nuclear genome, including also sexual recombination, while genes retained within the cytoplasmic organelles can be involved in selection and drift processes both within and among individuals. Within-individual processes can be either intra- or intercellular. In the case of heteroplasmy, which is attributed to mutations or biparental inheritance, within-individual selection on cytoplasmic DNA may provide a mechanism by which the organism can adapt rapidly. The inheritance of cytoplasmic genomes is not universally maternal. The presence of a range of inheritance patterns indicates that different strategies have been adopted by different organisms. On the other hand, the variability occasionally observed in the inheritance mechanisms of cytoplasmic genomes reduces heritability and increases environmental components in phenotypic features and, consequently, decreases the potential for adaptive evolution.

  18. Plant Genome Duplication Database.

    Science.gov (United States)

    Lee, Tae-Ho; Kim, Junah; Robertson, Jon S; Paterson, Andrew H

    2017-01-01

    Genome duplication, widespread in flowering plants, is a driving force in evolution. Genome alignments between/within genomes facilitate identification of homologous regions and individual genes to investigate evolutionary consequences of genome duplication. PGDD (the Plant Genome Duplication Database), a public web service database, provides intra- or interplant genome alignment information. At present, PGDD contains information for 47 plants whose genome sequences have been released. Here, we describe methods for identification and estimation of dates of genome duplication and speciation by functions of PGDD.The database is freely available at http://chibba.agtec.uga.edu/duplication/.

  19. Complete nucleotide sequence of Dendrocalamus latiflorus and Bambusa oldhamii chloroplast genomes

    Science.gov (United States)

    WU, F.-H.; KAN, D.-P.; LEE, S.-B.; DANIELL, H.; LEE, Y.-W.; LIN, C.-C.; LIN, N.-S.; LIN, C.-S.

    2009-01-01

    Summary Although bamboo is one of the most important woody crops in Asia, information on its genome is still very limited. To investigate the relationship among Poaceae members and to understand the mechanism of albino mutant generation in vitro, the complete chloroplast genome of two economically important bamboo species, Dendrocalamus latiflorus Munro and Bambusa oldhamii Munro, was determined employing a strategy that involved polymerase chain reaction (PCR) amplification using 443 novel primers designed to amplify the chloroplast genome of these two species. The lengths of the B. oldhamii and D. latiflorus chloroplast genomes are 139,350 and 139,365 bp, respectively. The organization structure and the gene order of these two bamboos are identical to other members of Poaceae. Highly conserved chloroplast genomes of Poaceae facilitated sequencing by the PCR method. Phylogenetic analysis using both chloroplast genomes confirmed the results obtained from studies on chromosome number and reproductive organ morphology. There are 23 gaps, insertions/deletions > 100 bp, in the chloroplast genomes of 10 genera of Poaceae compared in this study. The phylogenetic distribution of these gaps corresponds to their taxonomic placement. The sequences of these two chloroplast genomes provide useful information for studying bamboo evolution, ecology and biotechnology. PMID:19324693

  20. Chloroplast Genome Sequence of pigeonpea (Cajanus cajan (L. Millspaugh and Cajanus scarabaeoides: Genome organization and Comparison with other legumes

    Directory of Open Access Journals (Sweden)

    Tanvi Kaila

    2016-12-01

    Full Text Available Pigeonpea (Cajanus cajan (L. Millspaugh, a diploid (2n = 22 legume crop with a genome size of 852 Mbp, serves as an important source of human dietary protein especially in South East Asian and African regions. In this study, the draft chloroplast genomes of Cajanus cajan and Cajanus scarabaeoides were sequenced. Cajanus scarabaeoides is an important species of the Cajanus gene pool and has also been used for developing promising CMS system by different groups. A male sterile genotype harbouring the Cajanus scarabaeoides cytoplasm was used for sequencing the plastid genome. The cp genome of Cajanus cajan is 152,242bp long, having a quadripartite structure with LSC of 83,455 bp and SSC of 17,871 bp separated by IRs of 25,398 bp. Similarly, the cp genome of Cajanus scarabaeoides is 152,201bp long, having a quadripartite structure in which IRs of 25,402 bp length separates 83,423 bp of LSC and 17,854 bp of SSC. The pigeonpea cp genome contains 116 unique genes, including 30 tRNA, 4 rRNA, 78 predicted protein coding genes and 5 pseudogenes. A 50kb inversion was observed in the LSC region of pigeonpea cp genome, consistent with other legumes. Comparison of cp genome with other legumes revealed the contraction of IR boundaries due to the absence of rps19 gene in the IR region. Chloroplast SSRs were mined and a total of 280 and 292 cpSSRs were identified in Cajanus scarabaeoides and Cajanus cajan respectively. RNA editing was observed at 37 sites in both Cajanus scarabaeoides and Cajanus cajan, with maximum occurrence in the ndh genes. The pigeonpea cp genome sequence would be beneficial in providing informative molecular markers which can be utilized for genetic diversity analysis and aid in understanding the plant systematics studies among major grain legumes.

  1. Balanced gene losses, duplications and intensive rearrangements led to an unusual regularly sized genome in Arbutus unedo chloroplasts.

    Directory of Open Access Journals (Sweden)

    Fernando Martínez-Alberola

    Full Text Available Completely sequenced plastomes provide a valuable source of information about the duplication, loss, and transfer events of chloroplast genes and phylogenetic data for resolving relationships among major groups of plants. Moreover, they can also be useful for exploiting chloroplast genetic engineering technology. Ericales account for approximately six per cent of eudicot diversity with 11,545 species from which only three complete plastome sequences are currently available. With the aim of increasing the number of ericalean complete plastome sequences, and to open new perspectives in understanding Mediterranean plant adaptations, a genomic study on the basis of the complete chloroplast genome sequencing of Arbutus unedo and an updated phylogenomic analysis of Asteridae was implemented. The chloroplast genome of A. unedo shows extensive rearrangements but a medium size (150,897 nt in comparison to most of angiosperms. A number of remarkable distinct features characterize the plastome of A. unedo: five-fold dismissing of the SSC region in relation to most angiosperms; complete loss or pseudogenization of a number of essential genes; duplication of the ndhH-D operon and its location within the two IRs; presence of large tandem repeats located near highly re-arranged regions and pseudogenes. All these features outline the primary evolutionary split between Ericaceae and other ericalean families. The newly sequenced plastome of A. unedo with the available asterid sequences allowed the resolution of some uncertainties in previous phylogenies of Asteridae.

  2. The complete chloroplast genome sequence of Ampelopsis: gene organization, comparative analysis and phylogenetic relationships to other angiosperms

    Directory of Open Access Journals (Sweden)

    Gurusamy eRaman

    2016-03-01

    Full Text Available Ampelopsis brevipedunculata is an economically important plant that belongs to the Vitaceae family of angiosperms. The phylogenetic placement of Vitaceae is still unresolved. Recent phylogenetic studies suggested that it should be placed in various alternative families including Caryophyllaceae, asteraceae, Saxifragaceae, Dilleniaceae, or with the rest of the rosid families. However, these analyses provided weak supportive results because they were based on only one of several genes. Accordingly, complete chloroplast genome sequences are required to resolve the phylogenetic relationships among angiosperms. Recent phylogenetic analyses based on the complete chloroplast genome sequence suggested strong support for the position of Vitaceae as the earliest diverging lineage of rosids and placed it as a sister to the remaining rosids. These studies also revealed relationships among several major lineages of angiosperms; however, they highlighted the significance of taxon sampling for obtaining accurate phylogenies. In the present study, we sequenced the complete chloroplast genome of A. brevipedunculata and used these data to assess the relationships among 32 angiosperms, including 18 taxa of rosids. The Ampelopsis chloroplast genome is 161,090 bp in length, and includes a pair of inverted repeats of 26,394 bp that are separated by small and large single copy regions of 19,036 bp and 89,266 bp, respectively. The gene content and order of Ampelopsis is identical to many other unrearranged angiosperm chloroplast genomes, including Vitis and tobacco. A phylogenetic tree constructed based on 70 protein-coding genes of 33 angiosperms showed that both Saxifragales and Vitaceae diverged from the rosid clade and formed two clades with 100% bootstrap value. The position of the Vitaceae is sister to Saxifragales, and both are the basal and earliest diverging lineages. Moreover, Saxifragales forms a sister clade to Vitaceae of rosids. Overall, the results of

  3. The complete chloroplast genome sequence of Dianthus superbus var. longicalycinus.

    Science.gov (United States)

    Gurusamy, Raman; Lee, Do-Hyung; Park, SeonJoo

    2016-05-01

    The complete chloroplast genome (cpDNA) sequence of Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicine was reported and characterized. The cpDNA of Dianthus superbus var. longicalycinus is 149,539 bp, with 36.3% GC content. A pair of inverted repeats (IRs) of 24,803 bp is separated by a large single-copy region (LSC, 82,805 bp) and a small single-copy region (SSC, 17,128 bp). It encodes 85 protein-coding genes, 36 tRNA genes and 8 rRNA genes. Of 129 individual genes, 13 genes encoded one intron and three genes have two introns.

  4. The PLASTID DIVISION1 and 2 Components of the Chloroplast Division Machinery Determine the Rate of Chloroplast Division in Land Plant Cell Differentiation

    National Research Council Canada - National Science Library

    Kumiko Okazaki; Yukihiro Kabeya; Kenji Suzuki; Toshiyuki Mori; Takanari Ichikawa; Minami Matsui; Hiromitsu Nakanishi; Shin-Ya Miyagishima

    2009-01-01

    .... By contrast, land plants evolved cell and chloroplast differentiation systems in which the size and number of chloroplasts change along with their respective cellular function by regulation of the division rate...

  5. A Phylogenetic Analysis of Chloroplast Genomes Elucidates the Relationships of the Six Economically Important Brassica Species Comprising the Triangle of U

    Science.gov (United States)

    Li, Peirong; Zhang, Shujiang; Li, Fei; Zhang, Shifan; Zhang, Hui; Wang, Xiaowu; Sun, Rifei; Bonnema, Guusje; Borm, Theo J. A.

    2017-01-01

    The Brassica genus comprises many economically important worldwide cultivated crops. The well-established model of the Brassica genus, U’s triangle, consists of three basic diploid plant species (Brassica rapa, Brassica oleracea, and Brassica nigra) and three amphidiploid species (Brassica napus, Brassica juncea, and Brassica carinata) that arose through interspecific hybridizations. Despite being extensively studied because of its commercial relevance, several aspects of the origin of the Brassica species and the relationships within and among these six species still remain open questions. Here, we successfully de novo assembled 60 complete chloroplast genomes of Brassica genotypes of all six species. A complete map of the single nucleotide variants and insertions and deletions in the chloroplast genomes of different Brassica species was produced. The chloroplast genome consists of a Large and a Small Single Copy (LSC and SSC) region between two inverted repeats, and while these regions of chloroplast genomes have very different molecular evolutionary rates, phylogenetic analyses of different regions yielded no contradicting topologies and separated the Brassica genus into four clades. B. carinata and B. juncea share their chloroplast genome with one of their hybridization donors B. nigra and B. rapa, respectively, which fits the U model. B. rapa, surprisingly, shows evidence of two types of chloroplast genomes, with one type specific to some Italian broccoletto accessions. B. napus clearly has evidence for two independent hybridization events, as it contains either B. rapa chloroplast genomes. The divergence estimation suggests that B. nigra and B. carinata diverged from the main Brassica clade 13.7 million years ago (Mya), while B. rapa and B. oleracea diverged at 2.18 Mya. The use of the complete chloroplast DNA sequence not only provides insights into comparative genome analysis but also paves the way for a better understanding of the phylogenetic

  6. Mechanisms of Protein Synthesis in Chloroplasts: How to Design Translatable mRNAs in Chloroplasts

    Institute of Scientific and Technical Information of China (English)

    M. Sugiura

    2007-01-01

    @@ Chloroplast transformation provides a powerful tool to produce useful proteins in plants. After completion of the chloroplast genome sequencing from tobacco plants (Shinozaki et al., 1986, Yukawa et al., 2005), Pal Maliga group developed the high-frequency chloroplast transformation system in tobacco (Svab and Maliga, 1993).

  7. Chloroplast Genome Evolution in Actinidiaceae: clpP Loss, Heterogenous Divergence and Phylogenomic Practice.

    Science.gov (United States)

    Wang, Wen-Cai; Chen, Si-Yun; Zhang, Xian-Zhi

    2016-01-01

    Actinidiaceae is a well-known economically important plant family in asterids. To elucidate the chloroplast (cp) genome evolution within this family, here we present complete genomes of three species from two sister genera (Clematoclethra and Actinidia) in the Actinidiaceae via genome skimming technique. Comparative analyses revealed that the genome structure and content were rather conservative in three cp genomes in spite of different inheritance pattern, i.e.paternal in Actinidia and maternal in Clematoclethra. The clpP gene was lacked in all the three sequenced cp genomes examined here indicating that the clpP gene loss is likely a conspicuous synapomorphic characteristic during the cp genome evolution of Actinidiaceae. Comprehensive sequence comparisons in Actinidiaceae cp genomes uncovered that there were apparently heterogenous divergence patterns among the cpDNA regions, suggesting a preferred data-partitioned analysis for cp phylogenomics. Twenty non-coding cpDNA loci with fast evolutionary rates are further identified as potential molecular markers for systematics studies of Actinidiaceae. Moreover, the cp phylogenomic analyses including 31 angiosperm plastomes strongly supported the monophyly of Actinidia, being sister to Clematoclethra in Actinidiaceae which locates in the basal asterids, Ericales.

  8. Evolution of the Cp-Actin-based Motility System of Chloroplasts in Green Plants.

    Science.gov (United States)

    Suetsugu, Noriyuki; Wada, Masamitsu

    2016-01-01

    During the course of green plant evolution, numerous light responses have arisen that optimize their growth under fluctuating light conditions. The blue light receptor phototropin mediates several photomovement responses at the tissue, cellular and organelle levels. Chloroplast photorelocation movement is one such photomovement response, and is found not only in most green plants, but also in some red algae and photosynthetic stramenopiles. In general, chloroplasts move toward weak light to maximally capture photosynthetically active radiation (the chloroplast accumulation response), and they move away from strong light to avoid photodamage (the avoidance response). In land plants, chloroplast movement is dependent on specialized actin filaments, chloroplast-actin filaments (cp-actin filaments). Through molecular genetic analysis using Arabidopsis thaliana, many molecular factors that regulate chloroplast photorelocation were identified. In this Perspective, we discuss the evolutionary history of the molecular mechanism for chloroplast photorelocation movement in green plants in view of cp-actin filaments.

  9. Plant DNA barcoding: from gene to genome.

    Science.gov (United States)

    Li, Xiwen; Yang, Yang; Henry, Robert J; Rossetto, Maurizio; Wang, Yitao; Chen, Shilin

    2015-02-01

    DNA barcoding is currently a widely used and effective tool that enables rapid and accurate identification of plant species; however, none of the available loci work across all species. Because single-locus DNA barcodes lack adequate variations in closely related taxa, recent barcoding studies have placed high emphasis on the use of whole-chloroplast genome sequences which are now more readily available as a consequence of improving sequencing technologies. While chloroplast genome sequencing can already deliver a reliable barcode for accurate plant identification it is not yet resource-effective and does not yet offer the speed of analysis provided by single-locus barcodes to unspecialized laboratory facilities. Here, we review the development of candidate barcodes and discuss the feasibility of using the chloroplast genome as a super-barcode. We advocate a new approach for DNA barcoding that, for selected groups of taxa, combines the best use of single-locus barcodes and super-barcodes for efficient plant identification. Specific barcodes might enhance our ability to distinguish closely related plants at the species and population levels.

  10. Chloroplast genome analysis of Australian eucalypts--Eucalyptus, Corymbia, Angophora, Allosyncarpia and Stockwellia (Myrtaceae).

    Science.gov (United States)

    Bayly, Michael J; Rigault, Philippe; Spokevicius, Antanas; Ladiges, Pauline Y; Ades, Peter K; Anderson, Charlotte; Bossinger, Gerd; Merchant, Andrew; Udovicic, Frank; Woodrow, Ian E; Tibbits, Josquin

    2013-12-01

    We present a phylogenetic analysis and comparison of structural features of chloroplast genomes for 39 species of the eucalypt group (genera Eucalyptus, Corymbia, Angophora, and outgroups Allosyncarpia and Stockwellia). We use 41 complete chloroplast genome sequences, adding 39 finished-quality chloroplast genomes to two previously published genomes. Maximum parsimony and Bayesian analyses, based on >7000 variable nucleotide positions, produced one fully resolved phylogenetic tree (35 supported nodes, 27 with 100% bootstrap support). Eucalyptus and its sister lineage Angophora+Corymbia show a deep divergence. Within Eucalyptus, three lineages are resolved: the 'eudesmid', 'symphyomyrt' and 'monocalypt' groups. Corymbia is paraphyletic with respect to Angophora. Gene content and order do not vary among eucalypt chloroplasts; length mutations, especially frame shifts, are uncommon in protein-coding genes. Some non-synonymous mutations are highly incongruent with the overall phylogenetic signal, notably in rbcL, and may be adaptive. Application of custom informatics pipelines (GYDLE Inc.) enabled direct chloroplast genome assembly, resolving each genome to finished-quality with no need for PCR gap-filling or contig order resolution. Analysis of whole chloroplast genomes resolved major eucalypt clades and revealed variable regions of the genome that will be useful in lower-level genetic studies (including phylogeography and geneflow).

  11. The complete chloroplast genome of two Brassica species, Brassica nigra and B. Oleracea.

    Science.gov (United States)

    Seol, Young-Joo; Kim, Kyunghee; Kang, Sang-Ho; Perumal, Sampath; Lee, Jonghoon; Kim, Chang-Kug

    2017-03-01

    The two Brassica species, Brassica nigra and Brassica oleracea, are important agronomic crops. The chloroplast genome sequences were generated by de novo assembly using whole genome next-generation sequences. The chloroplast genomes of B. nigra and B. oleracea were 153 633 bp and 153 366 bp in size, respectively, and showed conserved typical chloroplast structure. The both chloroplast genomes contained a total of 114 genes including 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Phylogenetic analysis revealed that B. oleracea is closely related to B. rapa and B. napus but B. nigra is more diverse than the neighbor species Raphanus sativus.

  12. The Complete Chloroplast Genome Sequences of Six Rehmannia Species

    Directory of Open Access Journals (Sweden)

    Shuyun Zeng

    2017-03-01

    Full Text Available Rehmannia is a non-parasitic genus in Orobanchaceae including six species mainly distributed in central and north China. Its phylogenetic position and infrageneric relationships remain uncertain due to potential hybridization and polyploidization. In this study, we sequenced and compared the complete chloroplast genomes of six Rehmannia species using Illumina sequencing technology to elucidate the interspecific variations. Rehmannia plastomes exhibited typical quadripartite and circular structures with good synteny of gene order. The complete genomes ranged from 153,622 bp to 154,055 bp in length, including 133 genes encoding 88 proteins, 37 tRNAs, and 8 rRNAs. Three genes (rpoA, rpoC2, accD have potentially experienced positive selection. Plastome size variation of Rehmannia was mainly ascribed to the expansion and contraction of the border regions between the inverted repeat (IR region and the single-copy (SC regions. Despite of the conserved structure in Rehmannia plastomes, sequence variations provide useful phylogenetic information. Phylogenetic trees of 23 Lamiales species reconstructed with the complete plastomes suggested that Rehmannia was monophyletic and sister to the clade of Lindenbergia and the parasitic taxa in Orobanchaceae. The interspecific relationships within Rehmannia were completely different with the previous studies. In future, population phylogenomic works based on plastomes are urgently needed to clarify the evolutionary history of Rehmannia.

  13. Effects and mechanism of acid rain on plant chloroplast ATP synthase.

    Science.gov (United States)

    Sun, Jingwen; Hu, Huiqing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-09-01

    Acid rain can directly or indirectly affect plant physiological functions, especially photosynthesis. The enzyme ATP synthase is the key in photosynthetic energy conversion, and thus, it affects plant photosynthesis. To clarify the mechanism by which acid rain affects photosynthesis, we studied the effects of acid rain on plant growth, photosynthesis, chloroplast ATP synthase activity and gene expression, chloroplast ultrastructure, intracellular H(+) level, and water content of rice seedlings. Acid rain at pH 4.5 remained the chloroplast structure unchanged but increased the expression of six chloroplast ATP synthase subunits, promoted chloroplast ATP synthase activity, and increased photosynthesis and plant growth. Acid rain at pH 4.0 or less decreased leaf water content, destroyed chloroplast structure, inhibited the expression of six chloroplast ATP synthase subunits, decreased chloroplast ATP synthase activity, and reduced photosynthesis and plant growth. In conclusion, acid rain affected the chloroplast ultrastructure, chloroplast ATPase transcription and activity, and P n by changing the acidity in the cells, and thus influencing the plant growth and development. Finally, the effects of simulated acid rain on the test indices were found to be dose-dependent.

  14. Complete Chloroplast Genome Sequence of Aquilaria sinensis (Lour. Gilg and the Evolution Analysis within the Malvalesorder

    Directory of Open Access Journals (Sweden)

    Ying eWang

    2016-03-01

    Full Text Available Aquilaria sinensis (Lour. Gilg is an important medicinal woody plant producing agarwood, which is widely used in traditional Chinese medicine. High-throughput sequencing of chloroplast (cp genomes enhanced the understanding about evolutionary relationships within plant families. In this study, we determined the complete cp genome sequences for A. sinensis. The size of the A.sinensis cp genome was 159,565 bp. This genome included a large single-copy region of 87,482 bp, a small single-copy region of 19,857 bp, and a pair of inverted repeats (IRa and IRb of 26,113 bp each. The GC content of the genome was 37.11%. The A.sinensis cp genome encoded 113 functional genes, including 82 protein-coding genes, 27 tRNA genes, and 4 rRNA genes. Seven genes were duplicated in the protein-coding genes, whereas 11 genes were duplicated in the RNA genes. A total of 45 polymorphic simple-sequence repeat loci and 60 pairs of large repeats were identified. Most simple-sequence repeats were located in the noncoding sections of the large single-copy/small single-copy region and exhibited high A/T content. Moreover, 33 pairs of large repeat sequences were located in the protein-coding genes, whereas 27 pairs were located in the intergenic regions. Aquilaria sinensis cp genome bias ended with A/T on the basis of codon usage. The distribution of codon usage in A.sinensis cp genome was most similar to that in the Gonystylus bancanus cp genome. Comparative results of 82 protein-coding genes from 29 species of cp genomes demonstrated that A.sinensis was a sister species to G. bancanus within the Malvales order. Aquilaria sinensis cp genome presented the highest sequence similarity of >90% with the G. bancanus cp genome by using CGView Comparison Tool. This finding strongly supports the placement of A.sinensis as a sister to G. bancanus within the Malvales order. The complete A.sinensis cp genome information will be highly beneficial for further studies on this traditional

  15. Diversification and genetic differentiation of cultivated melon inferred from sequence polymorphism in the chloroplast genome

    OpenAIRE

    Tanaka, Katsunori; Akashi, Yukari; FUKUNAGA, Kenji; Yamamoto, Tatsuya; Aierken, Yasheng; Nishida, Hidetaka; Long, Chun Lin; Yoshino, Hiromichi; Sato, Yo-Ichiro; KATO, Kenji

    2013-01-01

    Molecular analysis encouraged discovery of genetic diversity and relationships of cultivated melon (Cucumis melo L.). We sequenced nine inter- and intra-genic regions of the chloroplast genome, about 5500 bp, using 60 melon accessions and six reference accessions of wild species of Cucumis to show intra-specific variation of the chloroplast genome. Sequence polymorphisms were detected among melon accessions and other Cucumis species, indicating intra-specific diversification of the chloroplas...

  16. Complete Chloroplast Genome Sequence of Omani Lime (Citrus aurantiifolia) and Comparative Analysis within the Rosids

    OpenAIRE

    Huei-Jiun Su; Hogenhout, Saskia A.; Al-Sadi, Abdullah M.; Chih-Horng Kuo

    2014-01-01

    The genus Citrus contains many economically important fruits that are grown worldwide for their high nutritional and medicinal value. Due to frequent hybridizations among species and cultivars, the exact number of natural species and the taxonomic relationships within this genus are unclear. To compare the differences between the Citrus chloroplast genomes and to develop useful genetic markers, we used a reference-assisted approach to assemble the complete chloroplast genome of Omani lime (C....

  17. Cucumber, melon, pumpkin, and squash: are rules of editing in flowering plants chloroplast genes so well known indeed?

    Science.gov (United States)

    Guzowska-Nowowiejska, Magdalena; Fiedorowicz, Ewa; Plader, Wojciech

    2009-04-01

    The similarities and differences in the chloroplast genes editing patterns of four species from one family (and two genera), which is the first-ever attempt at comparison of such data in closely related species, is discussed. The effective use of the chloroplast genes editing patterns in evolutionary studies, especially in evaluating the kinship between closely related species, is thereby proved. The results indicate that differences in editing patterns between different genera (Cucumis and Cucurbita) exist, and some novel editing sites can be identified even now. However, surprising is the fact of finding editing in the codon for Arg (in flowering plants detected before only in Cuscuta reflexa chloroplast genome, Funk et al.,[Funk H.T., Berg S., Krupinska K., Maier U.G. and Krause K., 2007. Complete DNA sequences of the plastid genomes of two parasitic flowering plants species, Cuscuta reflexa and Cuscuta gronovi. BMC Plant Biol. 7:45, doi: 10.1186/1471-2229-7-45.]), which was believed to have been lost during evolution before the emergence of angiosperms. In addition, the existence of silent editing in plant chloroplasts has been confirmed, and some probable reasons for its presence are pointed out herein.

  18. The complete chloroplast genome of Capsicum annuum var. glabriusculum using Illumina sequencing.

    Science.gov (United States)

    Raveendar, Sebastin; Na, Young-Wang; Lee, Jung-Ro; Shim, Donghwan; Ma, Kyung-Ho; Lee, Sok-Young; Chung, Jong-Wook

    2015-07-20

    Chloroplast (cp) genome sequences provide a valuable source for DNA barcoding. Molecular phylogenetic studies have concentrated on DNA sequencing of conserved gene loci. However, this approach is time consuming and more difficult to implement when gene organization differs among species. Here we report the complete re-sequencing of the cp genome of Capsicum pepper (Capsicum annuum var. glabriusculum) using the Illumina platform. The total length of the cp genome is 156,817 bp with a 37.7% overall GC content. A pair of inverted repeats (IRs) of 50,284 bp were separated by a small single copy (SSC; 18,948 bp) and a large single copy (LSC; 87,446 bp). The number of cp genes in C. annuum var. glabriusculum is the same as that in other Capsicum species. Variations in the lengths of LSC; SSC and IR regions were the main contributors to the size variation in the cp genome of this species. A total of 125 simple sequence repeat (SSR) and 48 insertions or deletions variants were found by sequence alignment of Capsicum cp genome. These findings provide a foundation for further investigation of cp genome evolution in Capsicum and other higher plants.

  19. The Complete Chloroplast Genome of Capsicum annuum var. glabriusculum Using Illumina Sequencing

    Directory of Open Access Journals (Sweden)

    Sebastin Raveendar

    2015-07-01

    Full Text Available Chloroplast (cp genome sequences provide a valuable source for DNA barcoding. Molecular phylogenetic studies have concentrated on DNA sequencing of conserved gene loci. However, this approach is time consuming and more difficult to implement when gene organization differs among species. Here we report the complete re-sequencing of the cp genome of Capsicum pepper (Capsicum annuum var. glabriusculum using the Illumina platform. The total length of the cp genome is 156,817 bp with a 37.7% overall GC content. A pair of inverted repeats (IRs of 50,284 bp were separated by a small single copy (SSC; 18,948 bp and a large single copy (LSC; 87,446 bp. The number of cp genes in C. annuum var. glabriusculum is the same as that in other Capsicum species. Variations in the lengths of LSC; SSC and IR regions were the main contributors to the size variation in the cp genome of this species. A total of 125 simple sequence repeat (SSR and 48 insertions or deletions variants were found by sequence alignment of Capsicum cp genome. These findings provide a foundation for further investigation of cp genome evolution in Capsicum and other higher plants.

  20. Characterization of the complete chloroplast genome of the endangered species Carya sinensis (Juglandaceae)

    Science.gov (United States)

    Yiheng Hu; Xi Chen; Xiaojia Feng; Keith E. Woeste; Peng Zhao

    2016-01-01

    Carya sinensis (Chinese Hickory, beaked walnut, or beaked hickory) is an endangered species that needs urgent conservation action. Here, we reported the complete chloroplast (cp) genome sequence and the genomic features of the C. sinensis cp, which is the first complete cp genome of any member of Carya. The...

  1. The complete chloroplast genome sequences for four Amaranthus species (Amaranthaceae)1

    Science.gov (United States)

    Chaney, Lindsay; Mangelson, Ryan; Ramaraj, Thiruvarangan; Jellen, Eric N.; Maughan, Peter J.

    2016-01-01

    Premise of the study: The amaranth genus contains many important grain and weedy species. We further our understanding of the genus through the development of a complete reference chloroplast genome. Methods and Results: A high-quality Amaranthus hypochondriacus (Amaranthaceae) chloroplast genome assembly was developed using long-read technology. This reference genome was used to reconstruct the chloroplast genomes for two closely related grain species (A. cruentus and A. caudatus) and their putative progenitor (A. hybridus). The reference genome was 150,518 bp and possesses a circular structure of two inverted repeats (24,352 bp) separated by small (17,941 bp) and large (83,873 bp) single-copy regions; it encodes 111 genes, 72 for proteins. Relative to the reference chloroplast genome, an average of 210 single-nucleotide polymorphisms (SNPs) and 122 insertion/deletion polymorphisms (indels) were identified across the analyzed genomes. Conclusions: This reference chloroplast genome, along with the reported simple sequence repeats, SNPs, and indels, is an invaluable genetic resource for studying the phylogeny and genetic diversity within the amaranth genus. PMID:27672525

  2. The Chloroplast Genome of Passiflora edulis (Passifloraceae) Assembled from Long Sequence Reads: Structural Organization and Phylogenomic Studies in Malpighiales

    Science.gov (United States)

    Cauz-Santos, Luiz A.; Munhoz, Carla F.; Rodde, Nathalie; Cauet, Stephane; Santos, Anselmo A.; Penha, Helen A.; Dornelas, Marcelo C.; Varani, Alessandro M.; Oliveira, Giancarlo C. X.; Bergès, Hélène; Vieira, Maria Lucia C.

    2017-01-01

    The family Passifloraceae consists of some 700 species classified in around 16 genera. Almost all its members belong to the genus Passiflora. In Brazil, the yellow passion fruit (Passiflora edulis) is of considerable economic importance, both for juice production and consumption as fresh fruit. The availability of chloroplast genomes (cp genomes) and their sequence comparisons has led to a better understanding of the evolutionary relationships within plant taxa. In this study, we obtained the complete nucleotide sequence of the P. edulis chloroplast genome, the first entirely sequenced in the Passifloraceae family. We determined its structure and organization, and also performed phylogenomic studies on the order Malpighiales and the Fabids clade. The P. edulis chloroplast genome is characterized by the presence of two copies of an inverted repeat sequence (IRA and IRB) of 26,154 bp, each separating a small single copy region of 13,378 bp and a large single copy (LSC) region of 85,720 bp. The annotation resulted in the identification of 105 unique genes, including 30 tRNAs, 4 rRNAs, and 71 protein coding genes. Also, 36 repetitive elements and 85 SSRs (microsatellites) were identified. The structure of the complete cp genome of P. edulis differs from that of other species because of rearrangement events detected by means of a comparison based on 22 members of the Malpighiales. The rearrangements were three inversions of 46,151, 3,765 and 1,631 bp, located in the LSC region. Phylogenomic analysis resulted in strongly supported trees, but this could also be a consequence of the limited taxonomic sampling used. Our results have provided a better understanding of the evolutionary relationships in the Malpighiales and the Fabids, confirming the potential of complete chloroplast genome sequences in inferring evolutionary relationships and the utility of long sequence reads for generating very accurate biological information. PMID:28344587

  3. A trnI_CAU triplication event in the complete chloroplast genome of Paris verticillata M.Bieb. (Melanthiaceae, Liliales).

    Science.gov (United States)

    Do, Hoang Dang Khoa; Kim, Jung Sung; Kim, Joo-Hwan

    2014-06-19

    The chloroplast is an essential plant organelle responsible for photosynthesis. Gene duplication, relocation, and loss in the chloroplast genome (cpDNA) are useful for exploring the evolution and phylogeny of plant species. In this study, the complete chloroplast genome of Paris verticillata was sequenced using the 454 sequencing system and Sanger sequencing method to trace the evolutionary pattern in the tribe Parideae of the family Melanthiaceae (Liliales). The circular double-stranded cpDNA of P. verticillata (157,379 bp) consists of two inverted repeat regions each of 28,373 bp, a large single copy of 82,726 bp, and a small single copy of 17,907 bp. Gene content and order are generally similar to the previously reported cpDNA sequences within the order Liliales. However, we found that trnI_CAU was triplicated in P. verticillata. In addition, cemA is suspected to be a pseudogene due to the presence of internal stop codons created by poly(A) insertion and single small CA repeats. Such changes were not found in previously examined cpDNAs of the Melanthiaceae or other families of the Liliales, suggesting that such features are unique to the tribe Parideae of Melanthiaceae. The characteristics of P. verticillata cpDNA will provide useful information for uncovering the evolution within Paris and for further research of plastid genome evolution and phylogenetic studies in Liliales.

  4. The complete chloroplast genome sequence of Podocarpus lambertii: genome structure, evolutionary aspects, gene content and SSR detection.

    Directory of Open Access Journals (Sweden)

    Leila do Nascimento Vieira

    Full Text Available BACKGROUND: Podocarpus lambertii (Podocarpaceae is a native conifer from the Brazilian Atlantic Forest Biome, which is considered one of the 25 biodiversity hotspots in the world. The advancement of next-generation sequencing technologies has enabled the rapid acquisition of whole chloroplast (cp genome sequences at low cost. Several studies have proven the potential of cp genomes as tools to understand enigmatic and basal phylogenetic relationships at different taxonomic levels, as well as further probe the structural and functional evolution of plants. In this work, we present the complete cp genome sequence of P. lambertii. METHODOLOGY/PRINCIPAL FINDINGS: The P. lambertii cp genome is 133,734 bp in length, and similar to other sequenced cupressophytes, it lacks one of the large inverted repeat regions (IR. It contains 118 unique genes and one duplicated tRNA (trnN-GUU, which occurs as an inverted repeat sequence. The rps16 gene was not found, which was previously reported for the plastid genome of another Podocarpaceae (Nageia nagi and Araucariaceae (Agathis dammara. Structurally, P. lambertii shows 4 inversions of a large DNA fragment ∼20,000 bp compared to the Podocarpus totara cp genome. These unexpected characteristics may be attributed to geographical distance and different adaptive needs. The P. lambertii cp genome presents a total of 28 tandem repeats and 156 SSRs, with homo- and dipolymers being the most common and tri-, tetra-, penta-, and hexapolymers occurring with less frequency. CONCLUSION: The complete cp genome sequence of P. lambertii revealed significant structural changes, even in species from the same genus. These results reinforce the apparently loss of rps16 gene in Podocarpaceae cp genome. In addition, several SSRs in the P. lambertii cp genome are likely intraspecific polymorphism sites, which may allow highly sensitive phylogeographic and population structure studies, as well as phylogenetic studies of species of

  5. The Complete Chloroplast Genome Sequence of Podocarpus lambertii: Genome Structure, Evolutionary Aspects, Gene Content and SSR Detection

    Science.gov (United States)

    Vieira, Leila do Nascimento; Faoro, Helisson; Rogalski, Marcelo; Fraga, Hugo Pacheco de Freitas; Cardoso, Rodrigo Luis Alves; de Souza, Emanuel Maltempi; de Oliveira Pedrosa, Fábio; Nodari, Rubens Onofre; Guerra, Miguel Pedro

    2014-01-01

    Background Podocarpus lambertii (Podocarpaceae) is a native conifer from the Brazilian Atlantic Forest Biome, which is considered one of the 25 biodiversity hotspots in the world. The advancement of next-generation sequencing technologies has enabled the rapid acquisition of whole chloroplast (cp) genome sequences at low cost. Several studies have proven the potential of cp genomes as tools to understand enigmatic and basal phylogenetic relationships at different taxonomic levels, as well as further probe the structural and functional evolution of plants. In this work, we present the complete cp genome sequence of P. lambertii. Methodology/Principal Findings The P. lambertii cp genome is 133,734 bp in length, and similar to other sequenced cupressophytes, it lacks one of the large inverted repeat regions (IR). It contains 118 unique genes and one duplicated tRNA (trnN-GUU), which occurs as an inverted repeat sequence. The rps16 gene was not found, which was previously reported for the plastid genome of another Podocarpaceae (Nageia nagi) and Araucariaceae (Agathis dammara). Structurally, P. lambertii shows 4 inversions of a large DNA fragment ∼20,000 bp compared to the Podocarpus totara cp genome. These unexpected characteristics may be attributed to geographical distance and different adaptive needs. The P. lambertii cp genome presents a total of 28 tandem repeats and 156 SSRs, with homo- and dipolymers being the most common and tri-, tetra-, penta-, and hexapolymers occurring with less frequency. Conclusion The complete cp genome sequence of P. lambertii revealed significant structural changes, even in species from the same genus. These results reinforce the apparently loss of rps16 gene in Podocarpaceae cp genome. In addition, several SSRs in the P. lambertii cp genome are likely intraspecific polymorphism sites, which may allow highly sensitive phylogeographic and population structure studies, as well as phylogenetic studies of species of this genus. PMID

  6. Transcriptional Slippage and RNA Editing Increase the Diversity of Transcripts in Chloroplasts: Insight from Deep Sequencing of Vigna radiata Genome and Transcriptome.

    Directory of Open Access Journals (Sweden)

    Ching-Ping Lin

    Full Text Available We performed deep sequencing of the nuclear and organellar genomes of three mungbean genotypes: Vigna radiata ssp. sublobata TC1966, V. radiata var. radiata NM92 and the recombinant inbred line RIL59 derived from a cross between TC1966 and NM92. Moreover, we performed deep sequencing of the RIL59 transcriptome to investigate transcript variability. The mungbean chloroplast genome has a quadripartite structure including a pair of inverted repeats separated by two single copy regions. A total of 213 simple sequence repeats were identified in the chloroplast genomes of NM92 and RIL59; 78 single nucleotide variants and nine indels were discovered in comparing the chloroplast genomes of TC1966 and NM92. Analysis of the mungbean chloroplast transcriptome revealed mRNAs that were affected by transcriptional slippage and RNA editing. Transcriptional slippage frequency was positively correlated with the length of simple sequence repeats of the mungbean chloroplast genome (R2=0.9911. In total, 41 C-to-U editing sites were found in 23 chloroplast genes and in one intergenic spacer. No editing site that swapped U to C was found. A combination of bioinformatics and experimental methods revealed that the plastid-encoded RNA polymerase-transcribed genes psbF and ndhA are affected by transcriptional slippage in mungbean and in main lineages of land plants, including three dicots (Glycine max, Brassica rapa, and Nicotiana tabacum, two monocots (Oryza sativa and Zea mays, two gymnosperms (Pinus taeda and Ginkgo biloba and one moss (Physcomitrella patens. Transcript analysis of the rps2 gene showed that transcriptional slippage could affect transcripts at single sequence repeat regions with poly-A runs. It showed that transcriptional slippage together with incomplete RNA editing may cause sequence diversity of transcripts in chloroplasts of land plants.

  7. Complete Chloroplast Genome of the Medicinal Plant Paris polyphylla var. chinensis (Melanthiaceae)%药用植物华重楼(黑药花科)叶绿体全基因组研究

    Institute of Scientific and Technical Information of China (English)

    李晓娟; 杨振艳; 黄玉玲; 纪运恒

    2015-01-01

    In order to understand the characters of chloroplast genome (cp genome) in Paris polyphylla var. chinensis, the chloroplast genome (cp genome) of P. polyphylla var. chinensis was compared with those of 10 species within Liliales by using phylogenomics methods based on complete chloroplast genomes. The results showed that the cp genome of P. polyphylla var. chinensis was 158307 bp in length and display a typical quadripartite structure including two inverted repeat regions (IRA and IRB, 27473 bp), one small single-copy region (SSC, 18175 bp) and one large single-copy region (LSC, 85187 bp). It contained 115 unique genes, including 81 protein-coding genes, 30 tRNAs and 4 rRNAs. The genome structure, gene contents and arrangement of 10 Liliales species cp genomes were very similar. The cemA gene of P. polyphylla var. chinensis was pseudogene with poly(A) and CA SSR patterns after the start codon, and the loci of premature stop codons are different from those of Paris veticillata. In conclusion, the cp genome of P. polyphylla var. chinensis was conservative. The cemA structure and pseudogenization might play an important role in the evolution and phylogeny, and the location of the stop codons in cemA was useful for distinguishing P. polyphylla var. chinensis from P. veticillata.%为探究华重楼(Paris polyphylla var. chinensis)的叶绿体基因组特征,利用叶绿体系统发育基因组学方法,对华重楼与其它百合目植物的叶绿体全基因组进行了比较。结果表明,华重楼的叶绿体全基因组长158307 bp,由4个区组成,包括2个反向重复区(IRA和IRB,27473 bp)、1个小单拷贝区(SSC,18175 bp)和1个大单拷贝区(LSC,85187 bp)。其叶绿体基因组有115个基因,包括81个编码蛋白质基因、30个转运RNA基因和4个核糖体RNA基因。11种百合目植物的叶绿体全基因组的基因组成和基因顺序相似。华重楼的cemA基因是假基因,其起始密码子后有多聚核苷酸poly(A

  8. Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding.

    Directory of Open Access Journals (Sweden)

    Wenpan Dong

    Full Text Available BACKGROUND: At present, plant molecular systematics and DNA barcoding techniques rely heavily on the use of chloroplast gene sequences. Because of the relatively low evolutionary rates of chloroplast genes, there are very few choices suitable for molecular studies on angiosperms at low taxonomic levels, and for DNA barcoding of species. METHODOLOGY/PRINCIPAL FINDINGS: We scanned the entire chloroplast genomes of 12 genera to search for highly variable regions. The sequence data of 9 genera were from GenBank and 3 genera were of our own. We identified nearly 5% of the most variable loci from all variable loci in the chloroplast genomes of each genus, and then selected 23 loci that were present in at least three genera. The 23 loci included 4 coding regions, 2 introns, and 17 intergenic spacers. Of the 23 loci, the most variable (in order from highest variability to lowest were intergenic regions ycf1-a, trnK, rpl32-trnL, and trnH-psbA, followed by trnS(UGA-trnG(UCC, petA-psbJ, rps16-trnQ, ndhC-trnV, ycf1-b, ndhF, rpoB-trnC, psbE-petL, and rbcL-accD. Three loci, trnS(UGA-trnG(UCC, trnT-psbD, and trnW-psaJ, showed very high nucleotide diversity per site (π values across three genera. Other loci may have strong potential for resolving phylogenetic and species identification problems at the species level. The loci accD-psaI, rbcL-accD, rpl32-trnL, rps16-trnQ, and ycf1 are absent from some genera. To amplify and sequence the highly variable loci identified in this study, we designed primers from their conserved flanking regions. We tested the applicability of the primers to amplify target sequences in eight species representing basal angiosperms, monocots, eudicots, rosids, and asterids, and confirmed that the primers amplified the desired sequences of these species. SIGNIFICANCE/CONCLUSIONS: Chloroplast genome sequences contain regions that are highly variable. Such regions are the first consideration when screening the suitable loci to resolve

  9. Chloroplast genome sequence confirms distinctness of Australian and Asian wild rice.

    Science.gov (United States)

    Waters, Daniel L E; Nock, Catherine J; Ishikawa, Ryuji; Rice, Nicole; Henry, Robert J

    2012-01-01

    Cultivated rice (Oryza sativa) is an AA genome Oryza species that was most likely domesticated from wild populations of O. rufipogon in Asia. O. rufipogon and O. meridionalis are the only AA genome species found within Australia and occur as widespread populations across northern Australia. The chloroplast genome sequence of O. rufipogon from Asia and Australia and O. meridionalis and O. australiensis (an Australian member of the genus very distant from O. sativa) was obtained by massively parallel sequencing and compared with the chloroplast genome sequence of domesticated O. sativa. Oryza australiensis differed in more than 850 sites single nucleotide polymorphism or indel from each of the other samples. The other wild rice species had only around 100 differences relative to cultivated rice. The chloroplast genomes of Australian O. rufipogon and O. meridionalis were closely related with only 32 differences. The Asian O. rufipogon chloroplast genome (with only 68 differences) was closer to O. sativa than the Australian taxa (both with more than 100 differences). The chloroplast sequences emphasize the genetic distinctness of the Australian populations and their potential as a source of novel rice germplasm. The Australian O. rufipogon may be a perennial form of O. meridionalis.

  10. Authentication Markers for Five Major Panax Species Developed via Comparative Analysis of Complete Chloroplast Genome Sequences.

    Science.gov (United States)

    Nguyen, Van Binh; Park, Hyun-Seung; Lee, Sang-Choon; Lee, Junki; Park, Jee Young; Yang, Tae-Jin

    2017-08-02

    Ginseng represents a set of high-value medicinal plants of different species: Panax ginseng (Asian ginseng), Panax quinquefolius (American ginseng), Panax notoginseng (Chinese ginseng), Panax japonicus (Bamboo ginseng), and Panax vietnamensis (Vietnamese ginseng). Each species is pharmacologically and economically important, with differences in efficacy and price. Accordingly, an authentication system is needed to combat economically motivated adulteration of Panax products. We conducted comparative analysis of the chloroplast genome sequences of these five species, identifying 34-124 InDels and 141-560 SNPs. Fourteen InDel markers were developed to authenticate the Panax species. Among these, eight were species-unique markers that successfully differentiated one species from the others. We generated at least one species-unique marker for each of the five species, and any of the species can be authenticated by selection among these markers. The markers are reliable, easily detectable, and valuable for applications in the ginseng industry as well as in related research.

  11. Comparative analysis of the complete chloroplast genome sequences in psammophytic Haloxylon species (Amaranthaceae

    Directory of Open Access Journals (Sweden)

    Wenpan Dong

    2016-11-01

    Full Text Available The Haloxylon genus belongs to the Amaranthaceae (formerly Chenopodiaceae family. The small trees or shrubs in this genus are referred to as the King of psammophytic plants, and perform important functions in environmental protection, including wind control and sand fixation in deserts. To better understand these beneficial plants, we sequenced the chloroplast (cp genomes of Haloxylon ammodendron (HA and Haloxylon persicum (HP and conducted comparative genomic analyses on these and two other representative Amaranthaceae species. Similar to other higher plants, we found that the Haloxylon cp genome is a quadripartite, double-stranded, circular DNA molecule of 151,570 bp in HA and 151,586 bp in HP. It contains a pair of inverted repeats (24,171 bp in HA and 24,177 bp in HP that separate the genome into a large single copy region of 84,214 bp in HA and 84,217 bp in HP, and a small single copy region of 19,014 bp in HA and 19,015 bp in HP. Each Haloxylon cp genome contains 112 genes, including 78 coding, 30 tRNA, and four ribosomal RNA genes. We detected 59 different simple sequence repeat loci, including 44 mono-nucleotide, three di-nucleotide, one tri-nucleotide, and 11 tetra-nucleotide repeats. Comparative analysis revealed only 67 mutations between the two species, including 44 substitutions, 23 insertions/deletions, and two micro-inversions. The two inversions, with lengths of 14 and 3 bp, occur in the petA-psbJ intergenic region and rpl16 intron, respectively, and are predicted to form hairpin structures with repeat sequences of 27 and 19 bp, respectively, at the two ends. The ratio of transitions to transversions was 0.76. These results are valuable for future studies on Haloxylon genetic diversity and will enhance our understanding of the phylogenetic evolution of Amaranthaceae.

  12. Genome Sequences of Populus tremula Chloroplast and Mitochondrion: Implications for Holistic Poplar Breeding.

    Directory of Open Access Journals (Sweden)

    Birgit Kersten

    Full Text Available Complete Populus genome sequences are available for the nucleus (P. trichocarpa; section Tacamahaca and for chloroplasts (seven species, but not for mitochondria. Here, we provide the complete genome sequences of the chloroplast and the mitochondrion for the clones P. tremula W52 and P. tremula x P. alba 717-1B4 (section Populus. The organization of the chloroplast genomes of both Populus clones is described. A phylogenetic tree constructed from all available complete chloroplast DNA sequences of Populus was not congruent with the assignment of the related species to different Populus sections. In total, 3,024 variable nucleotide positions were identified among all compared Populus chloroplast DNA sequences. The 5-prime part of the LSC from trnH to atpA showed the highest frequency of variations. The variable positions included 163 positions with SNPs allowing for differentiating the two clones with P. tremula chloroplast genomes (W52, 717-1B4 from the other seven Populus individuals. These potential P. tremula-specific SNPs were displayed as a whole-plastome barcode on the P. tremula W52 chloroplast DNA sequence. Three of these SNPs and one InDel in the trnH-psbA linker were successfully validated by Sanger sequencing in an extended set of Populus individuals. The complete mitochondrial genome sequence of P. tremula is the first in the family of Salicaceae. The mitochondrial genomes of the two clones are 783,442 bp (W52 and 783,513 bp (717-1B4 in size, structurally very similar and organized as single circles. DNA sequence regions with high similarity to the W52 chloroplast sequence account for about 2% of the W52 mitochondrial genome. The mean SNP frequency was found to be nearly six fold higher in the chloroplast than in the mitochondrial genome when comparing 717-1B4 with W52. The availability of the genomic information of all three DNA-containing cell organelles will allow a holistic approach in poplar molecular breeding in the future.

  13. The complete chloroplast genome sequence of Helwingia himalaica (Helwingiaceae, Aquifoliales and a chloroplast phylogenomic analysis of the Campanulidae

    Directory of Open Access Journals (Sweden)

    Xin Yao

    2016-11-01

    Full Text Available Complete chloroplast genome sequences have been very useful for understanding phylogenetic relationships in angiosperms at the family level and above, but there are currently large gaps in coverage. We report the chloroplast genome for Helwingia himalaica, the first in the distinctive family Helwingiaceae and only the second genus to be sequenced in the order Aquifoliales. We then combine this with 36 published sequences in the large (c. 35,000 species subclass Campanulidae in order to investigate relationships at the order and family levels. The Helwingia genome consists of 158,362 bp containing a pair of inverted repeat (IR regions of 25,996 bp separated by a large single-copy (LSC region and a small single-copy (SSC region which are 87,810 and 18,560 bp, respectively. There are 142 known genes, including 94 protein-coding genes, eight ribosomal RNA genes, and 40 tRNA genes. The topology of the phylogenetic relationships between Apiales, Asterales, and Dipsacales differed between analyses based on complete genome sequences and on 36 shared protein-coding genes, showing that further studies of campanulid phylogeny are needed.

  14. The complete chloroplast genome sequence of Helwingia himalaica (Helwingiaceae, Aquifoliales) and a chloroplast phylogenomic analysis of the Campanulidae.

    Science.gov (United States)

    Yao, Xin; Liu, Ying-Ying; Tan, Yun-Hong; Song, Yu; Corlett, Richard T

    2016-01-01

    Complete chloroplast genome sequences have been very useful for understanding phylogenetic relationships in angiosperms at the family level and above, but there are currently large gaps in coverage. We report the chloroplast genome for Helwingia himalaica, the first in the distinctive family Helwingiaceae and only the second genus to be sequenced in the order Aquifoliales. We then combine this with 36 published sequences in the large (c. 35,000 species) subclass Campanulidae in order to investigate relationships at the order and family levels. The Helwingia genome consists of 158,362 bp containing a pair of inverted repeat (IR) regions of 25,996 bp separated by a large single-copy (LSC) region and a small single-copy (SSC) region which are 87,810 and 18,560 bp, respectively. There are 142 known genes, including 94 protein-coding genes, eight ribosomal RNA genes, and 40 tRNA genes. The topology of the phylogenetic relationships between Apiales, Asterales, and Dipsacales differed between analyses based on complete genome sequences and on 36 shared protein-coding genes, showing that further studies of campanulid phylogeny are needed.

  15. The evolution of chloroplast genome structure in ferns.

    Science.gov (United States)

    Wolf, Paul G; Roper, Jessie M; Duffy, Aaron M

    2010-09-01

    The plastid genome (plastome) is a rich source of phylogenetic and other comparative data in plants. Most land plants possess a plastome of similar structure. However, in a major group of plants, the ferns, a unique plastome structure has evolved. The gene order in ferns has been explained by a series of genomic inversions relative to the plastome organization of seed plants. Here, we examine for the first time the structure of the plastome across fern phylogeny. We used a PCR-based strategy to map and partially sequence plastomes. We found that a pair of partially overlapping inversions in the region of the inverted repeat occurred in the common ancestor of most ferns. However, the ancestral (seed plant) structure is still found in early diverging branches leading to the osmundoid and filmy fern lineages. We found that a second pair of overlapping inversions occurred on a branch leading to the core leptosporangiates. We also found that the unique placement of the gene matK in ferns (lacking a flanking intron) is not a result of a large-scale inversion, as previously thought. This is because the intron loss maps to an earlier point on the phylogeny than the nearby inversion. We speculate on why inversions may occur in pairs and what this may mean for the dynamics of plastome evolution.

  16. Complete chloroplast genome sequence of Omani lime (Citrus aurantiifolia and comparative analysis within the rosids.

    Directory of Open Access Journals (Sweden)

    Huei-Jiun Su

    Full Text Available The genus Citrus contains many economically important fruits that are grown worldwide for their high nutritional and medicinal value. Due to frequent hybridizations among species and cultivars, the exact number of natural species and the taxonomic relationships within this genus are unclear. To compare the differences between the Citrus chloroplast genomes and to develop useful genetic markers, we used a reference-assisted approach to assemble the complete chloroplast genome of Omani lime (C. aurantiifolia. The complete C. aurantiifolia chloroplast genome is 159,893 bp in length; the organization and gene content are similar to most of the rosids lineages characterized to date. Through comparison with the sweet orange (C. sinensis chloroplast genome, we identified three intergenic regions and 94 simple sequence repeats (SSRs that are potentially informative markers with resolution for interspecific relationships. These markers can be utilized to better understand the origin of cultivated Citrus. A comparison among 72 species belonging to 10 families of representative rosids lineages also provides new insights into their chloroplast genome evolution.

  17. Complete chloroplast genome sequence of Omani lime (Citrus aurantiifolia) and comparative analysis within the rosids.

    Science.gov (United States)

    Su, Huei-Jiun; Hogenhout, Saskia A; Al-Sadi, Abdullah M; Kuo, Chih-Horng

    2014-01-01

    The genus Citrus contains many economically important fruits that are grown worldwide for their high nutritional and medicinal value. Due to frequent hybridizations among species and cultivars, the exact number of natural species and the taxonomic relationships within this genus are unclear. To compare the differences between the Citrus chloroplast genomes and to develop useful genetic markers, we used a reference-assisted approach to assemble the complete chloroplast genome of Omani lime (C. aurantiifolia). The complete C. aurantiifolia chloroplast genome is 159,893 bp in length; the organization and gene content are similar to most of the rosids lineages characterized to date. Through comparison with the sweet orange (C. sinensis) chloroplast genome, we identified three intergenic regions and 94 simple sequence repeats (SSRs) that are potentially informative markers with resolution for interspecific relationships. These markers can be utilized to better understand the origin of cultivated Citrus. A comparison among 72 species belonging to 10 families of representative rosids lineages also provides new insights into their chloroplast genome evolution.

  18. Chloroplast biogenesis during rehydration of the resurrection plant Xerophyta humilis: parallels to the etioplast-chloroplast transition.

    Science.gov (United States)

    Ingle, Robert A; Collett, Helen; Cooper, Keren; Takahashi, Yuichiro; Farrant, Jill M; Illing, Nicola

    2008-12-01

    De-etiolation of dark-grown seedlings is a commonly used experimental system to study the mechanisms of chloroplast biogenesis, including the stacking of thylakoid membranes into grana, the response of the nuclear-chloroplast transcriptome to light, and the ordered synthesis and assembly of photosystem II (PSII). Here, we present the xeroplast to chloroplast transition during rehydration of the resurrection plant Xerophyta humilis as a novel system for studying chloroplast biogenesis, and investigate the role of light in this process. Xeroplasts are characterized by the presence of numerous large and small membrane-bound vesicles and the complete absence of thylakoid membranes. While the initial assembly of stromal thylakoid membranes occurs independently of light, the formation of grana is light dependent. Recovery of photosynthetic activity is rapid in plants rehydrated in the light and correlates with the light-dependent synthesis of the D1 protein, but does not require de novo chlorophyll biosynthesis. Light-dependent synthesis of the chlorophyll-binding protein Lhcb2 and digalactosyldiacylglycerol synthase 1 correlated with the formation of grana and with the increased PSII activity. Our results suggest that the molecular mechanisms underlying photomorphogenic development may also function in desiccation tolerance in poikilochlorophyllous resurrection plants.

  19. Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus

    Directory of Open Access Journals (Sweden)

    Boore Jeffrey L

    2007-06-01

    Full Text Available Abstract Background The number of completely sequenced plastid genomes available is growing rapidly. This array of sequences presents new opportunities to perform comparative analyses. In comparative studies, it is often useful to compare across wide phylogenetic spans and, within angiosperms, to include representatives from basally diverging lineages such as the genomes reported here: Nuphar advena (from a basal-most lineage and Ranunculus macranthus (a basal eudicot. We report these two new plastid genome sequences and make comparisons (within angiosperms, seed plants, or all photosynthetic lineages to evaluate features such as the status of ycf15 and ycf68 as protein coding genes, the distribution of simple sequence repeats (SSRs and longer dispersed repeats (SDR, and patterns of nucleotide composition. Results The Nuphar [GenBank:NC_008788] and Ranunculus [GenBank:NC_008796] plastid genomes share characteristics of gene content and organization with many other chloroplast genomes. Like other plastid genomes, these genomes are A+T-rich, except for rRNA and tRNA genes. Detailed comparisons of Nuphar with Nymphaea, another Nymphaeaceae, show that more than two-thirds of these genomes exhibit at least 95% sequence identity and that most SSRs are shared. In broader comparisons, SSRs vary among genomes in terms of abundance and length and most contain repeat motifs based on A and T nucleotides. Conclusion SSR and SDR abundance varies by genome and, for SSRs, is proportional to genome size. Long SDRs are rare in the genomes assessed. SSRs occur less frequently than predicted and, although the majority of the repeat motifs do include A and T nucleotides, the A+T bias in SSRs is less than that predicted from the underlying genomic nucleotide composition. In codon usage third positions show an A+T bias, however variation in codon usage does not correlate with differences in A+T-richness. Thus, although plastome nucleotide composition shows "A

  20. Dated tribe-wide whole chloroplast genome phylogeny indicates recurrent hybridizations within Triticeae.

    Science.gov (United States)

    Bernhardt, Nadine; Brassac, Jonathan; Kilian, Benjamin; Blattner, Frank R

    2017-06-16

    Triticeae, the tribe of wheat grasses, harbours the cereals barley, rye and wheat and their wild relatives. Although economically important, relationships within the tribe are still not understood. We analysed the phylogeny of chloroplast lineages among nearly all monogenomic Triticeae taxa and polyploid wheat species aiming at a deeper understanding of the tribe's evolution. We used on- and off-target reads of a target-enrichment experiment followed by Illumina sequencing. The read data was used to assemble the plastid locus ndhF for 194 individuals and the whole chloroplast genome for 183 individuals, representing 53 Triticeae species and 15 genera. We conducted Bayesian and multispecies coalescent analyses to infer relationships and estimate divergence times of the taxa. We present the most comprehensive dated Triticeae chloroplast phylogeny and review previous hypotheses in the framework of our results. Monophyly of Triticeae chloroplasts could not be confirmed, as either Bromus or Psathyrostachys captured a chloroplast from a lineage closely related to a Bromus-Triticeae ancestor. The most recent common ancestor of Triticeae occurred approximately between ten and 19 million years ago. The comparison of the chloroplast phylogeny with available nuclear data in several cases revealed incongruences indicating past hybridizations. Recent events of chloroplast capture were detected as individuals grouped apart from con-specific accessions in otherwise monopyhletic groups.

  1. Evolution from the prokaryotic to the higher plant chloroplast signal recognition particle

    DEFF Research Database (Denmark)

    Träger, Chantal; Rosenblad, Magnus Alm; Ziehe, Dominik;

    2012-01-01

    The protein targeting signal recognition particle (SRP) pathway in chloroplasts of higher plants has undergone dramatic evolutionary changes. It disposed of its RNA, which is an essential SRP component in bacteria, and uses a unique chloroplast-specific protein cpSRP43. Nevertheless, homologs of ...

  2. Proliferation of group II introns in the chloroplast genome of the green alga Oedocladium carolinianum (Chlorophyceae

    Directory of Open Access Journals (Sweden)

    Jean-Simon Brouard

    2016-10-01

    Full Text Available Background The chloroplast genome sustained extensive changes in architecture during the evolution of the Chlorophyceae, a morphologically and ecologically diverse class of green algae belonging to the Chlorophyta; however, the forces driving these changes are poorly understood. The five orders recognized in the Chlorophyceae form two major clades: the CS clade consisting of the Chlamydomonadales and Sphaeropleales, and the OCC clade consisting of the Oedogoniales, Chaetophorales, and Chaetopeltidales. In the OCC clade, considerable variations in chloroplast DNA (cpDNA structure, size, gene order, and intron content have been observed. The large inverted repeat (IR, an ancestral feature characteristic of most green plants, is present in Oedogonium cardiacum (Oedogoniales but is lacking in the examined members of the Chaetophorales and Chaetopeltidales. Remarkably, the Oedogonium 35.5-kb IR houses genes that were putatively acquired through horizontal DNA transfer. To better understand the dynamics of chloroplast genome evolution in the Oedogoniales, we analyzed the cpDNA of a second representative of this order, Oedocladium carolinianum. Methods The Oedocladium cpDNA was sequenced and annotated. The evolutionary distances separating Oedocladium and Oedogonium cpDNAs and two other pairs of chlorophycean cpDNAs were estimated using a 61-gene data set. Phylogenetic analysis of an alignment of group IIA introns from members of the OCC clade was performed. Secondary structures and insertion sites of oedogonialean group IIA introns were analyzed. Results The 204,438-bp Oedocladium genome is 7.9 kb larger than the Oedogonium genome, but its repertoire of conserved genes is remarkably similar and gene order differs by only one reversal. Although the 23.7-kb IR is missing the putative foreign genes found in Oedogonium, it contains sequences coding for a putative phage or bacterial DNA primase and a hypothetical protein. Intergenic sequences are 1.5-fold

  3. Chloroplast Genome Analysis of Resurrection Tertiary Relict Haberlea rhodopensis Highlights Genes Important for Desiccation Stress Response.

    Science.gov (United States)

    Ivanova, Zdravka; Sablok, Gaurav; Daskalova, Evelina; Zahmanova, Gergana; Apostolova, Elena; Yahubyan, Galina; Baev, Vesselin

    2017-01-01

    Haberlea rhodopensis is a paleolithic tertiary relict species, best known as a resurrection plant with remarkable tolerance to desiccation. When exposed to severe drought stress, H. rhodopensis shows an ability to maintain the structural integrity of its photosynthetic apparatus, which re-activates easily upon rehydration. We present here the results from the assembly and annotation of the chloroplast (cp) genome of H. rhodopensis, which was further subjected to comparative analysis with the cp genomes of closely related species. H. rhodopensis showed a cp genome size of 153,099 bp, harboring a pair of inverted repeats (IR) of 25,415 bp separated by small and large copy regions (SSC and LSC) of 17,826 and 84,443 bp. The genome structure, gene order, GC content and codon usage are similar to those of the typical angiosperm cp genomes. The genome hosts 137 genes representing 70.66% of the plastome, which includes 86 protein-coding genes, 36 tRNAs, and 4 rRNAs. A comparative plastome analysis with other closely related Lamiales members revealed conserved gene order in the IR and LSC/SSC regions. A phylogenetic analysis based on protein-coding genes from 33 species defines this species as belonging to the Gesneriaceae family. From an evolutionary point of view, a site-specific selection analysis detected positively selected sites in 17 genes, most of which are involved in photosynthesis (e.g., rbcL, ndhF, accD, atpE, etc.). The observed codon substitutions may be interpreted as being a consequence of molecular adaptation to drought stress, which ensures an evolutionary advantage to H. rhodopensis.

  4. Sequencing of chloroplast genome using whole cellular DNA and Solexa sequencing technology

    Directory of Open Access Journals (Sweden)

    Jian eWu

    2012-11-01

    Full Text Available Sequencing of the chloroplast genome using traditional sequencing methods has been difficult because of its size (>120 kb and the complicated procedures required to prepare templates. To explore the feasibility of sequencing the chloroplast genome using DNA extracted from whole cells and Solexa sequencing technology, we sequenced whole cellular DNA isolated from leaves of three Brassica rapa accessions with one lane per accession. In total, 246 Mb, 362Mb, 361 Mb sequence data were generated for the three accessions Chiifu-401-42, Z16 and FT, respectively. Microreads were assembled by reference-guided assembly using the cpDNA sequences of B. rapa, Arabidopsis thaliana, and Nicotiana tabacum. We achieved coverage of more than 99.96% of the cp genome in the three tested accessions using the B. rapa sequence as the reference. When A. thaliana or N. tabacum sequences were used as references, 99.7–99.8% or 95.5–99.7% of the B. rapa chloroplast genome was covered, respectively. These results demonstrated that sequencing of whole cellular DNA isolated from young leaves using the Illumina Genome Analyzer is an efficient method for high-throughput sequencing of chloroplast genome.

  5. Chloroplast genome sequence confirms distinctness of Australian and Asian wild rice

    OpenAIRE

    Waters, Daniel L. E.; Nock, Catherine J; Ishikawa, Ryuji; Rice, Nicole; Henry, Robert J.

    2012-01-01

    Cultivated rice (Oryza sativa) is an AA genome Oryza species that was most likely domesticated from wild populations of O. rufipogon in Asia. O. rufipogon and O. meridionalis are the only AA genome species found within Australia and occur as widespread populations across northern Australia. The chloroplast genome sequence of O. rufipogon from Asia and Australia and O. meridionalis and O. australiensis (an Australian member of the genus very distant from O. sativa) was obtained by massively pa...

  6. Complete chloroplast genome sequence of common bermudagrass (Cynodon dactylon (L.) Pers.) and comparative analysis within the family Poaceae.

    Science.gov (United States)

    Huang, Ya-Yi; Cho, Shu-Ting; Haryono, Mindia; Kuo, Chih-Horng

    2017-01-01

    Common bermudagrass (Cynodon dactylon (L.) Pers.) belongs to the subfamily Chloridoideae of the Poaceae family, one of the most important plant families ecologically and economically. This grass has a long connection with human culture but its systematics is relatively understudied. In this study, we sequenced and investigated the chloroplast genome of common bermudagrass, which is 134,297 bp in length with two single copy regions (LSC: 79,732 bp; SSC: 12,521 bp) and a pair of inverted repeat (IR) regions (21,022 bp). The annotation contains a total of 128 predicted genes, including 82 protein-coding, 38 tRNA, and 8 rRNA genes. Additionally, our in silico analyses identified 10 sets of repeats longer than 20 bp and predicted the presence of 36 RNA editing sites. Overall, the chloroplast genome of common bermudagrass resembles those from other Poaceae lineages. Compared to most angiosperms, the accD gene and the introns of both clpP and rpoC1 genes are missing. Additionally, the ycf1, ycf2, ycf15, and ycf68 genes are pseudogenized and two genome rearrangements exist. Our phylogenetic analysis based on 47 chloroplast protein-coding genes supported the placement of common bermudagrass within Chloridoideae. Our phylogenetic character mapping based on the parsimony principle further indicated that the loss of the accD gene and clpP introns, the pseudogenization of four ycf genes, and the two rearrangements occurred only once after the most recent common ancestor of the Poaceae diverged from other monocots, which could explain the unusual long branch leading to the Poaceae when phylogeny is inferred based on chloroplast sequences.

  7. The complete chloroplast genome sequence of Citrus sinensis (L. Osbeck var 'Ridge Pineapple': organization and phylogenetic relationships to other angiosperms

    Directory of Open Access Journals (Sweden)

    Jansen Robert K

    2006-09-01

    Full Text Available Abstract Background The production of Citrus, the largest fruit crop of international economic value, has recently been imperiled due to the introduction of the bacterial disease Citrus canker. No significant improvements have been made to combat this disease by plant breeding and nuclear transgenic approaches. Chloroplast genetic engineering has a number of advantages over nuclear transformation; it not only increases transgene expression but also facilitates transgene containment, which is one of the major impediments for development of transgenic trees. We have sequenced the Citrus chloroplast genome to facilitate genetic improvement of this crop and to assess phylogenetic relationships among major lineages of angiosperms. Results The complete chloroplast genome sequence of Citrus sinensis is 160,129 bp in length, and contains 133 genes (89 protein-coding, 4 rRNAs and 30 distinct tRNAs. Genome organization is very similar to the inferred ancestral angiosperm chloroplast genome. However, in Citrus the infA gene is absent. The inverted repeat region has expanded to duplicate rps19 and the first 84 amino acids of rpl22. The rpl22 gene in the IRb region has a nonsense mutation resulting in 9 stop codons. This was confirmed by PCR amplification and sequencing using primers that flank the IR/LSC boundaries. Repeat analysis identified 29 direct and inverted repeats 30 bp or longer with a sequence identity ≥ 90%. Comparison of protein-coding sequences with expressed sequence tags revealed six putative RNA edits, five of which resulted in non-synonymous modifications in petL, psbH, ycf2 and ndhA. Phylogenetic analyses using maximum parsimony (MP and maximum likelihood (ML methods of a dataset composed of 61 protein-coding genes for 30 taxa provide strong support for the monophyly of several major clades of angiosperms, including monocots, eudicots, rosids and asterids. The MP and ML trees are incongruent in three areas: the position of Amborella and

  8. An efficient procedure for plant organellar genome assembly, based on whole genome data from the 454 GS FLX sequencing platform

    Directory of Open Access Journals (Sweden)

    Zhang Tongwu

    2011-11-01

    Full Text Available Abstract Motivation Complete organellar genome sequences (chloroplasts and mitochondria provide valuable resources and information for studying plant molecular ecology and evolution. As high-throughput sequencing technology advances, it becomes the norm that a shotgun approach is used to obtain complete genome sequences. Therefore, to assemble organellar sequences from the whole genome, shotgun reads are inevitable. However, associated techniques are often cumbersome, time-consuming, and difficult, because true organellar DNA is difficult to separate efficiently from nuclear copies, which have been transferred to the nucleus through the course of evolution. Results We report a new, rapid procedure for plant chloroplast and mitochondrial genome sequencing and assembly using the Roche/454 GS FLX platform. Plant cells can contain multiple copies of the organellar genomes, and there is a significant correlation between the depth of sequence reads in contigs and the number of copies of the genome. Without isolating organellar DNA from the mixture of nuclear and organellar DNA for sequencing, we retrospectively extracted assembled contigs of either chloroplast or mitochondrial sequences from the whole genome shotgun data. Moreover, the contig connection graph property of Newbler (a platform-specific sequence assembler ensures an efficient final assembly. Using this procedure, we assembled both chloroplast and mitochondrial genomes of a resurrection plant, Boea hygrometrica, with high fidelity. We also present information and a minimal sequence dataset as a reference for the assembly of other plant organellar genomes.

  9. Chloroplast photorelocation movement mediated by phototropin family proteins in green plants.

    Science.gov (United States)

    Suetsugu, Noriyuki; Wada, Masamitsu

    2007-09-01

    Chloroplasts gather in areas irradiated with weak light to maximize photosynthesis (the accumulation response). They move away from areas irradiated with strong light to minimize damage of the photosynthetic apparatus (the avoidance response). The processes underlying these chloroplast movements can be divided into three parts: photoperception, signal transduction, and chloroplast movement. Photoreceptors for chloroplast movement have been identified recently in various plant species. A blue light receptor phototropin (phot) mediates chloroplast photorelocation movement in the seed plant Arabidopsis thaliana, the fern Adiantum capillus-veneris, the moss Physcomitrella patens and possibly the green alga Mougeotia scalaris. A chimeric photoreceptor between phytochrome and phototropin, neochrome (neo), was found in some advanced ferns and in the green alga M. scalaris. While the mechanism of chloroplast movement is not well understood, it is known that actin filaments play an important role in this process. To understand the molecular mechanisms associated with chloroplast movement, several mutants were isolated in A. thaliana (jac1 and chup1) and the corresponding genes were cloned. In this review, recent progress in photoreceptor research into chloroplast movement in various plant species and the possible factors functioning in signal transduction or the regulation of actin filaments identified in A. thaliana is discussed.

  10. Analysis of Complete Nucleotide Sequences of 12 Gossypium Chloroplast Genomes: Origin and Evolution of Allotetraploids

    Science.gov (United States)

    Xu, Qin; Xiong, Guanjun; Li, Pengbo; He, Fei; Huang, Yi; Wang, Kunbo; Li, Zhaohu; Hua, Jinping

    2012-01-01

    Background Cotton (Gossypium spp.) is a model system for the analysis of polyploidization. Although ascertaining the donor species of allotetraploid cotton has been intensively studied, sequence comparison of Gossypium chloroplast genomes is still of interest to understand the mechanisms underlining the evolution of Gossypium allotetraploids, while it is generally accepted that the parents were A- and D-genome containing species. Here we performed a comparative analysis of 13 Gossypium chloroplast genomes, twelve of which are presented here for the first time. Methodology/Principal Findings The size of 12 chloroplast genomes under study varied from 159,959 bp to 160,433 bp. The chromosomes were highly similar having >98% sequence identity. They encoded the same set of 112 unique genes which occurred in a uniform order with only slightly different boundary junctions. Divergence due to indels as well as substitutions was examined separately for genome, coding and noncoding sequences. The genome divergence was estimated as 0.374% to 0.583% between allotetraploid species and A-genome, and 0.159% to 0.454% within allotetraploids. Forty protein-coding genes were completely identical at the protein level, and 20 intergenic sequences were completely conserved. The 9 allotetraploids shared 5 insertions and 9 deletions in whole genome, and 7-bp substitutions in protein-coding genes. The phylogenetic tree confirmed a close relationship between allotetraploids and the ancestor of A-genome, and the allotetraploids were divided into four separate groups. Progenitor allotetraploid cotton originated 0.43–0.68 million years ago (MYA). Conclusion Despite high degree of conservation between the Gossypium chloroplast genomes, sequence variations among species could still be detected. Gossypium chloroplast genomes preferred for 5-bp indels and 1–3-bp indels are mainly attributed to the SSR polymorphisms. This study supports that the common ancestor of diploid A-genome species in

  11. The complete chloroplast and mitochondrial genomes of the green macroalga Ulva sp. UNA00071828 (Ulvophyceae, Chlorophyta.

    Directory of Open Access Journals (Sweden)

    James T Melton

    Full Text Available Sequencing mitochondrial and chloroplast genomes has become an integral part in understanding the genomic machinery and the phylogenetic histories of green algae. Previously, only three chloroplast genomes (Oltmannsiellopsis viridis, Pseudendoclonium akinetum, and Bryopsis hypnoides and two mitochondrial genomes (O. viridis and P. akinetum from the class Ulvophyceae have been published. Here, we present the first chloroplast and mitochondrial genomes from the ecologically and economically important marine, green algal genus Ulva. The chloroplast genome of Ulva sp. was 99,983 bp in a circular-mapping molecule that lacked inverted repeats, and thus far, was the smallest ulvophycean plastid genome. This cpDNA was a highly compact, AT-rich genome that contained a total of 102 identified genes (71 protein-coding genes, 28 tRNA genes, and three ribosomal RNA genes. Additionally, five introns were annotated in four genes: atpA (1, petB (1, psbB (2, and rrl (1. The circular-mapping mitochondrial genome of Ulva sp. was 73,493 bp and follows the expanded pattern also seen in other ulvophyceans and trebouxiophyceans. The Ulva sp. mtDNA contained 29 protein-coding genes, 25 tRNA genes, and two rRNA genes for a total of 56 identifiable genes. Ten introns were annotated in this mtDNA: cox1 (4, atp1 (1, nad3 (1, nad5 (1, and rrs (3. Double-cut-and-join (DCJ values showed that organellar genomes across Chlorophyta are highly rearranged, in contrast to the highly conserved organellar genomes of the red algae (Rhodophyta. A phylogenomic investigation of 51 plastid protein-coding genes showed that Ulvophyceae is not monophyletic, and also placed Oltmannsiellopsis (Oltmannsiellopsidales and Tetraselmis (Chlorodendrophyceae closely to Ulva (Ulvales and Pseudendoclonium (Ulothrichales.

  12. A plant-specific protein essential for blue-light-induced chloroplast movements.

    Science.gov (United States)

    DeBlasio, Stacy L; Luesse, Darron L; Hangarter, Roger P

    2005-09-01

    In Arabidopsis (Arabidopsis thaliana), light-dependent chloroplast movements are induced by blue light. When exposed to low fluence rates of light, chloroplasts accumulate in periclinal layers perpendicular to the direction of light, presumably to optimize light absorption by exposing more chloroplast area to the light. Under high light conditions, chloroplasts become positioned parallel to the incoming light in a response that can reduce exposure to light intensities that may damage the photosynthetic machinery. To identify components of the pathway downstream of the photoreceptors that mediate chloroplast movements (i.e. phototropins), we conducted a mutant screen that has led to the isolation of several Arabidopsis mutants displaying altered chloroplast movements. The plastid movement impaired1 (pmi1) mutant exhibits severely attenuated chloroplast movements under all tested fluence rates of light, suggesting that it is a necessary component for both the low- and high-light-dependant chloroplast movement responses. Analysis of pmi1 leaf cross sections revealed that regardless of the light condition, chloroplasts are more evenly distributed in leaf mesophyll cells than in the wild type. The pmi1-1 mutant was found to contain a single nonsense mutation within the open reading frame of At1g42550. This gene encodes a plant-specific protein of unknown function that appears to be conserved among angiosperms. Sequence analysis of the protein suggests that it may be involved in calcium-mediated signal transduction, possibly through protein-protein interactions.

  13. Domestication and plant genomes.

    Science.gov (United States)

    Tang, Haibao; Sezen, Uzay; Paterson, Andrew H

    2010-04-01

    The techniques of plant improvement have been evolving with the advancement of technology, progressing from crop domestication by Neolithic humans to scientific plant breeding, and now including DNA-based genotyping and genetic engineering. Archeological findings have shown that early human ancestors often unintentionally selected for and finally fixed a few major domestication traits over time. Recent advancement of molecular and genomic tools has enabled scientists to pinpoint changes to specific chromosomal regions and genetic loci that are responsible for dramatic morphological and other transitions that distinguish crops from their wild progenitors. Extensive studies in a multitude of additional crop species, facilitated by rapid progress in sequencing and resequencing(s) of crop genomes, will further our understanding of the genomic impact from both the unusual population history of cultivated plants and millennia of human selection.

  14. Phytozome Comparative Plant Genomics Portal

    Energy Technology Data Exchange (ETDEWEB)

    Goodstein, David; Batra, Sajeev; Carlson, Joseph; Hayes, Richard; Phillips, Jeremy; Shu, Shengqiang; Schmutz, Jeremy; Rokhsar, Daniel

    2014-09-09

    The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes

  15. Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes

    Directory of Open Access Journals (Sweden)

    Cronn Richard

    2009-12-01

    Full Text Available Abstract Background Molecular evolutionary studies share the common goal of elucidating historical relationships, and the common challenge of adequately sampling taxa and characters. Particularly at low taxonomic levels, recent divergence, rapid radiations, and conservative genome evolution yield limited sequence variation, and dense taxon sampling is often desirable. Recent advances in massively parallel sequencing make it possible to rapidly obtain large amounts of sequence data, and multiplexing makes extensive sampling of megabase sequences feasible. Is it possible to efficiently apply massively parallel sequencing to increase phylogenetic resolution at low taxonomic levels? Results We reconstruct the infrageneric phylogeny of Pinus from 37 nearly-complete chloroplast genomes (average 109 kilobases each of an approximately 120 kilobase genome generated using multiplexed massively parallel sequencing. 30/33 ingroup nodes resolved with ≥ 95% bootstrap support; this is a substantial improvement relative to prior studies, and shows massively parallel sequencing-based strategies can produce sufficient high quality sequence to reach support levels originally proposed for the phylogenetic bootstrap. Resampling simulations show that at least the entire plastome is necessary to fully resolve Pinus, particularly in rapidly radiating clades. Meta-analysis of 99 published infrageneric phylogenies shows that whole plastome analysis should provide similar gains across a range of plant genera. A disproportionate amount of phylogenetic information resides in two loci (ycf1, ycf2, highlighting their unusual evolutionary properties. Conclusion Plastome sequencing is now an efficient option for increasing phylogenetic resolution at lower taxonomic levels in plant phylogenetic and population genetic analyses. With continuing improvements in sequencing capacity, the strategies herein should revolutionize efforts requiring dense taxon and character sampling

  16. Comparative Chloroplast Genome Analyses of Streptophyte Green Algae Uncover Major Structural Alterations in the Klebsormidiophyceae, Coleochaetophyceae and Zygnematophyceae.

    Science.gov (United States)

    Lemieux, Claude; Otis, Christian; Turmel, Monique

    2016-01-01

    The Streptophyta comprises all land plants and six main lineages of freshwater green algae: Mesostigmatophyceae, Chlorokybophyceae, Klebsormidiophyceae, Charophyceae, Coleochaetophyceae and Zygnematophyceae. Previous comparisons of the chloroplast genome from nine streptophyte algae (including four zygnematophyceans) revealed that, although land plant chloroplast DNAs (cpDNAs) inherited most of their highly conserved structural features from green algal ancestors, considerable cpDNA changes took place during the evolution of the Zygnematophyceae, the sister group of land plants. To gain deeper insights into the evolutionary dynamics of the chloroplast genome in streptophyte algae, we sequenced the cpDNAs of nine additional taxa: two klebsormidiophyceans (Entransia fimbriata and Klebsormidium sp. SAG 51.86), one coleocheatophycean (Coleochaete scutata) and six zygnematophyceans (Cylindrocystis brebissonii, Netrium digitus, Roya obtusa, Spirogyra maxima, Cosmarium botrytis and Closterium baillyanum). Our comparative analyses of these genomes with their streptophyte algal counterparts indicate that the large inverted repeat (IR) encoding the rDNA operon experienced loss or expansion/contraction in all three sampled classes and that genes were extensively shuffled in both the Klebsormidiophyceae and Zygnematophyceae. The klebsormidiophycean genomes boast greatly expanded IRs, with the Entransia 60,590-bp IR being the largest known among green algae. The 206,025-bp Entransia cpDNA, which is one of the largest genome among streptophytes, encodes 118 standard genes, i.e., four additional genes compared to its Klebsormidium flaccidum homolog. We inferred that seven of the 21 group II introns usually found in land plants were already present in the common ancestor of the Klebsormidiophyceae and its sister lineages. At 107,236 bp and with 117 standard genes, the Coleochaete IR-less genome is both the smallest and most compact among the streptophyte algal cpDNAs analyzed thus

  17. Complex interplay among DNA modification, noncoding RNA expression and protein-coding RNA expression in Salvia miltiorrhiza chloroplast genome.

    Directory of Open Access Journals (Sweden)

    Haimei Chen

    Full Text Available Salvia miltiorrhiza is one of the most widely used medicinal plants. As a first step to develop a chloroplast-based genetic engineering method for the over-production of active components from S. miltiorrhiza, we have analyzed the genome, transcriptome, and base modifications of the S. miltiorrhiza chloroplast. Total genomic DNA and RNA were extracted from fresh leaves and then subjected to strand-specific RNA-Seq and Single-Molecule Real-Time (SMRT sequencing analyses. Mapping the RNA-Seq reads to the genome assembly allowed us to determine the relative expression levels of 80 protein-coding genes. In addition, we identified 19 polycistronic transcription units and 136 putative antisense and intergenic noncoding RNA (ncRNA genes. Comparison of the abundance of protein-coding transcripts (cRNA with and without overlapping antisense ncRNAs (asRNA suggest that the presence of asRNA is associated with increased cRNA abundance (p<0.05. Using the SMRT Portal software (v1.3.2, 2687 potential DNA modification sites and two potential DNA modification motifs were predicted. The two motifs include a TATA box-like motif (CPGDMM1, "TATANNNATNA", and an unknown motif (CPGDMM2 "WNYANTGAW". Specifically, 35 of the 97 CPGDMM1 motifs (36.1% and 91 of the 369 CPGDMM2 motifs (24.7% were found to be significantly modified (p<0.01. Analysis of genes downstream of the CPGDMM1 motif revealed the significantly increased abundance of ncRNA genes that are less than 400 bp away from the significantly modified CPGDMM1motif (p<0.01. Taking together, the present study revealed a complex interplay among DNA modifications, ncRNA and cRNA expression in chloroplast genome.

  18. Assessment of multi-enzyme operon engineering of tobacco chloroplast genome for high-level simultaneous expression of cellulolytic enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Kolotilin, I. [Agriculture and Agri-Food Canada, London, ON (Canada); Pereira, E.O.; Menassa, R. [Western Ontario Univ., London, ON (Canada). Dept. of Biology; Agriculture and Agri-Food Canada, London, ON (Canada)

    2009-07-01

    The use of biofuels as an environmentally-sound substitute for depleting fossil fuels was discussed. Commercially produced biofuels are generated primarily from starch or sugar and supply only a small fraction of global fuel requirements. Although cellulosic biomass can serve as an abundant and renewable source of fermentable sugars, the cost of converting biomass to fuel is too high. Plant genetic engineering techniques are more economical for producing recombinant proteins because of the low-cost of the growing bioreactors. The transformation of the tobacco chloroplast genome has proven to be very prolific in terms of recombinant protein yield, which typically reaches 10 to 20 per cent of total soluble protein. In addition, plastid transcription-translation machinery allows for the simultaneous expression of several genes from artificial operons, providing the potential to engineer several proteins in one transformation step. The purpose of this study was to produce transplastomic tobacco plants bearing single genes as well as operons of cell wall-degrading enzymes for high-level expression. An attempt was made to reproduce an engineering approach in tobacco chloroplasts to generate a potent mini-cellulosome. The resulting enzymes were evaluated for their ability to degrade biomass. The study also examined the feasibility of using crude extracts of highly-expressing plants as an additive in the biomass fermentation process. The productivity of transplastomic plants was compared with plants transiently expressing cellulolytic enzymes directed to other cellular compartments.

  19. Is Chloroplast Movement in Tobacco Plants Influenced Systemically after Local Illumination or Burning Stress?

    Institute of Scientific and Technical Information of China (English)

    Jan Naus; Monika Rolencova; Vladimira Hlavackova

    2008-01-01

    Chloroplast movement has been studied In many plants mainly in relation to the local light, mechanical or stress effects. Here we investigated possible systemic responses of chloroplast movement to local light or burning stress in tobacco plants (Nicotiana tabacum cv. Samsun). Chloroplast movement was measured using two independent methods: one with a SPAD 502 Chlorophyll meter and another by collimated transmittance at a selected wavelength (676 nm). A sensitive pedodic movement of chloroplasts was used in high or low (2 000 or 50 μmol/m2 per s photosynthetically active radiation, respectively) cold white light with periods of 50 or 130 min. Measurements were carried out in the irradiated area, in the non-irradiated area of the same leaf or in the leaf located on the stem below the irradiated or burned one. No significant changes in systemic chloroplast movement in non-irradiated parts of the leaf and in the non-treated leaf were detected. Our data indicate that chloroplast movement in tobacco is dependent dominantly on the intensity and spectral composition of the incident light and on the local stimulation and state of the target tissue. No systemic signal was strong enough tovoke a detectable systemic response in chloroplast movement in distant untreated tissues of tobacco plants.

  20. Is chloroplast movement in tobacco plants influenced systemically after local illumination or burning stress?

    Science.gov (United States)

    Naus, Jan; Rolencová, Monika; Hlavácková, Vladimíra

    2008-10-01

    Chloroplast movement has been studied in many plants mainly in relation to the local light, mechanical or stress effects. Here we investigated possible systemic responses of chloroplast movement to local light or burning stress in tobacco plants (Nicotiana tabacum cv. Samsun). Chloroplast movement was measured using two independent methods: one with a SPAD 502 Chlorophyll meter and another by collimated transmittance at a selected wavelength (676 nm). A sensitive periodic movement of chloroplasts was used in high or low (2 000 or 50 micromol/m(2) per s photosynthetically active radiation, respectively) cold white light with periods of 50 or 130 min. Measurements were carried out in the irradiated area, in the non-irradiated area of the same leaf or in the leaf located on the stem below the irradiated or burned one. No significant changes in systemic chloroplast movement in non-irradiated parts of the leaf and in the non-treated leaf were detected. Our data indicate that chloroplast movement in tobacco is dependent dominantly on the intensity and spectral composition of the incident light and on the local stimulation and state of the target tissue. No systemic signal was strong enough to evoke a detectable systemic response in chloroplast movement in distant untreated tissues of tobacco plants.

  1. Chloroplast avoidance movement is not functional in plants grown under strong sunlight.

    Science.gov (United States)

    Higa, Takeshi; Wada, Masamitsu

    2016-04-01

    Chloroplast movement in nine climbing plant species was investigated. It is thought that chloroplasts generally escape from strong light to avoid photodamage but accumulate towards weak light to perform photosynthesis effectively. Unexpectedly, however, the leaves of climbing plants grown under strong sunlight showed very low or no chloroplast photorelocation responses to either weak or strong blue light when detected by red light transmittance through leaves. Direct observations of Cayratia japonica leaves, for example, revealed that the average number of chloroplasts in upper periclinal walls of palisade tissue cells was only 1.2 after weak blue-light irradiation and almost all of the chloroplasts remained at the anticlinal wall, the state of chloroplast avoidance response. The leaves grown under strong light have thin and columnar palisade tissue cells comparing with the leaves grown under low light. Depending on our analyses and our schematic model, the thinner cells in a unit leaf area have a wider total plasma membrane area, such that more chloroplasts can exist on the plasma membrane in the thinner cells than in the thicker cells in a unit leaf-area basis. The same strategy might be used in other plant leaves grown under direct sunlight.

  2. Complete nucleotide sequence of Dendrocalamus latiflorus and Bambusa oldhamii chloroplast genomes

    OpenAIRE

    WU, F.-H.; KAN, D.-P.; LEE, S.-B.; Daniell, H.; Lee, Y. -W.; Lin, C.-C.; LIN, N.-S.; Lin, C.-S.

    2009-01-01

    Although bamboo is one of the most important woody crops in Asia, information on its genome is still very limited. To investigate the relationship among Poaceae members and to understand the mechanism of albino mutant generation in vitro, the complete chloroplast genome of two economically important bamboo species, Dendrocalamus latiflorus Munro and Bambusa oldhamii Munro, was determined employing a strategy that involved polymerase chain reaction (PCR) amplification using 443 novel primers d...

  3. Complete chloroplast genomes from apomictic Taraxacum (Asteraceae): Identity and variation between three microspecies

    Science.gov (United States)

    Majeský, Ľuboš; Schwarzacher, Trude; Gornall, Richard; Heslop-Harrison, Pat

    2017-01-01

    Chloroplast DNA sequences show substantial variation between higher plant species, and less variation within species, so are typically excellent markers to investigate evolutionary, population and genetic relationships and phylogenies. We sequenced the plastomes of Taraxacum obtusifrons Markl. (O978); T. stridulum Trávniček ined. (S3); and T. amplum Markl. (A978), three apomictic triploid (2n = 3x = 24) dandelions from the T. officinale agg. We aimed to characterize the variation in plastomes, define relationships and correlations with the apomictic microspecies status, and refine placement of the microspecies in the evolutionary or phylogenetic context of the Asteraceae. The chloroplast genomes of accessions O978 and S3 were identical and 151,322 bp long (where the nuclear genes are known to show variation), while A978 was 151,349 bp long. All three genomes contained 135 unique genes, with an additional copy of the trnF-GGA gene in the LSC region and 20 duplicated genes in the IR region, along with short repeats, the typical major Inverted Repeats (IR1 and IR2, 24,431bp long), and Large and Small Single Copy regions (LSC 83,889bp and SSC 18,571bp in O978). Between the two Taraxacum plastomes types, we identified 28 SNPs. The distribution of polymorphisms suggests some parts of the Taraxacum plastome are evolving at a slower rate. There was a hemi-nested inversion in the LSC region that is common to Asteraceae, and an SSC inversion from ndhF to rps15 found only in some Asteraceae lineages. A comparative repeat analysis showed variation between Taraxacum and the phylogenetically close genus Lactuca, with many more direct repeats of 40bp or more in Lactuca (1% larger plastome than Taraxacum). When individual genes and non-coding regions were for Asteraceae phylogeny reconstruction, not all showed the same evolutionary scenario suggesting care is needed for interpretation of relationships if a limited number of markers are used. Studying genotypic diversity in

  4. Complete chloroplast genomes from apomictic Taraxacum (Asteraceae): Identity and variation between three microspecies.

    Science.gov (United States)

    M Salih, Rubar Hussein; Majeský, Ľuboš; Schwarzacher, Trude; Gornall, Richard; Heslop-Harrison, Pat

    2017-01-01

    Chloroplast DNA sequences show substantial variation between higher plant species, and less variation within species, so are typically excellent markers to investigate evolutionary, population and genetic relationships and phylogenies. We sequenced the plastomes of Taraxacum obtusifrons Markl. (O978); T. stridulum Trávniček ined. (S3); and T. amplum Markl. (A978), three apomictic triploid (2n = 3x = 24) dandelions from the T. officinale agg. We aimed to characterize the variation in plastomes, define relationships and correlations with the apomictic microspecies status, and refine placement of the microspecies in the evolutionary or phylogenetic context of the Asteraceae. The chloroplast genomes of accessions O978 and S3 were identical and 151,322 bp long (where the nuclear genes are known to show variation), while A978 was 151,349 bp long. All three genomes contained 135 unique genes, with an additional copy of the trnF-GGA gene in the LSC region and 20 duplicated genes in the IR region, along with short repeats, the typical major Inverted Repeats (IR1 and IR2, 24,431bp long), and Large and Small Single Copy regions (LSC 83,889bp and SSC 18,571bp in O978). Between the two Taraxacum plastomes types, we identified 28 SNPs. The distribution of polymorphisms suggests some parts of the Taraxacum plastome are evolving at a slower rate. There was a hemi-nested inversion in the LSC region that is common to Asteraceae, and an SSC inversion from ndhF to rps15 found only in some Asteraceae lineages. A comparative repeat analysis showed variation between Taraxacum and the phylogenetically close genus Lactuca, with many more direct repeats of 40bp or more in Lactuca (1% larger plastome than Taraxacum). When individual genes and non-coding regions were for Asteraceae phylogeny reconstruction, not all showed the same evolutionary scenario suggesting care is needed for interpretation of relationships if a limited number of markers are used. Studying genotypic diversity in

  5. Organelle_PBA, a pipeline for assembling chloroplast and mitochondrial genomes from PacBio DNA sequencing data.

    Science.gov (United States)

    Soorni, Aboozar; Haak, David; Zaitlin, David; Bombarely, Aureliano

    2017-01-07

    The development of long-read sequencing technologies, such as single-molecule real-time (SMRT) sequencing by PacBio, has produced a revolution in the sequencing of small genomes. Sequencing organelle genomes using PacBio long-read data is a cost effective, straightforward approach. Nevertheless, the availability of simple-to-use software to perform the assembly from raw reads is limited at present. We present Organelle-PBA, a Perl program designed specifically for the assembly of chloroplast and mitochondrial genomes. For chloroplast genomes, the program selects the chloroplast reads from a whole genome sequencing pool, maps the reads to a reference sequence from a closely related species, and then performs read correction and de novo assembly using Sprai. Organelle-PBA completes the assembly process with the additional step of scaffolding by SSPACE-LongRead. The program then detects the chloroplast inverted repeats and reassembles and re-orients the assembly based on the organelle origin of the reference. We have evaluated the performance of the software using PacBio reads from different species, read coverage, and reference genomes. Finally, we present the assembly of two novel chloroplast genomes from the species Picea glauca (Pinaceae) and Sinningia speciosa (Gesneriaceae). Organelle-PBA is an easy-to-use Perl-based software pipeline that was written specifically to assemble mitochondrial and chloroplast genomes from whole genome PacBio reads. The program is available at https://github.com/aubombarely/Organelle_PBA .

  6. Investigating cytoskeletal function in chloroplast protrusion formation in the arctic-alpine plant Oxyria digyna.

    Science.gov (United States)

    Holzinger, A; Wasteneys, G O; Lütz, C

    2007-05-01

    Arctic and alpine plants like Oxyria digyna have to face enhanced environmental stress. This study compared leaves from Oxyria digyna collected in the Arctic at Svalbard (78 degrees N) and in the Austrian Alps (47 degrees N) at cellular, subcellular, and ultrastructural levels. Oxyria digyna plants collected in Svalbard had significantly thicker leaves than the samples collected in the Austrian Alps. This difference was generated by increased thickness of the palisade and spongy mesophyll layers in the arctic plants, while epidermal cells had no significant size differences between the two habitats. A characteristic feature of arctic, alpine, and cultivated samples was the occurrence of broad stroma-filled chloroplast protrusions, 2 - 5 microm broad and up to 5 microm long. Chloroplast protrusions were in close spatial contact with other organelles including mitochondria and microbodies. Mitochondria were also present in invaginations of the chloroplasts. A dense network of cortical microtubules found in the mesophyll cells suggested a potential role for microtubules in the formation and function of chloroplast protrusions. No direct interactions between microtubules and chloroplasts, however, were observed and disruption of the microtubule arrays with the anti-microtubule agent oryzalin at 5 - 10 microM did not alter the appearance or dynamics of chloroplast protrusions. These observations suggest that, in contrast to studies on stromule formation in Nicotiana, microtubules are not involved in the formation and morphology of chloroplast protrusions in Oxyria digyna. The actin microfilament-disrupting drug latrunculin B (5 - 10 microM for 2 h) arrested cytoplasmic streaming and altered the cytoplasmic integrity of mesophyll cells. However, at the ultrastructural level, stroma-containing, thylakoid-free areas were still visible, mostly at the concave sides of the chloroplasts. As chloroplast protrusions were frequently found to be mitochondria-associated in Oxyria

  7. A plant mitochondrial sequence transcribed in transgenic tobacco chloroplasts is not edited

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, C.A.; Hanson, M.R. [Cornell Univ., Ithaca, NY (United States); Zoubenko, O.V.; Maliga, P. [State Univ. of New Jersey, Piscataway, NJ (United States)

    1995-03-01

    RNA editing occurs in two higher-plant organelles, chloroplasts, and mitochondria. Because chloroplasts and mitochondria exhibit some similarity in editing site selection, we investigated whether mitochondrial RNA sequences could be edited in chloroplasts. We produced transgenic tobacco plants that contained chimeric genes in which the second exon of a Petunia hybrida mitochondrial coxII gene was under the control of chloroplast gene regulatory sequences. coxII transcripts accumulated to low or high levels in transgenic chloroplasts containing chimeric genes with the plastid ribosomal protein gene rps16 or the rRNA operon promoter, respectively. Exon 2 of coxII was chosen because it carries seven editing sites and is edited in petunia mitochondria even when located in an abnormal context in an aberrant recombined gene. When editing of the coxII transcripts in transgenic chloroplasts was examined, no RNA editing at any of the usual sites was detected, nor was there any novel editing at any other sites. These results indicate that the RNA editing mechanisms of chloroplasts and mitochondria are not identical but must have at least some organelle-specific components. 33 refs., 5 figs.

  8. Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species

    Indian Academy of Sciences (India)

    Qingpo Liu; Qingzhong Xue

    2005-04-01

    A detailed comparison was made of codon usage of chloroplast genes with their host (nuclear) genes in the four angiosperm species Oryza sativa, Zea mays, Triticum aestivum and Arabidopsis thaliana. The average GC content of the entire genes, and at the three codon positions individually, was higher in nuclear than in chloroplast genes, suggesting different genomic organization and mutation pressures in nuclear and chloroplast genes. The results of Nc-plots and neutrality plots suggested that nucleotide compositional constraint had a large contribution to codon usage bias of nuclear genes in O. sativa, Z. mays, and T. aestivum, whereas natural selection was likely to be playing a large role in codon usage bias in chloroplast genomes. Correspondence analysis and chi-test showed that regardless of the genomic environment (species) of the host, the codon usage pattern of chloroplast genes differed from nuclear genes of their host species by their AU-richness. All the chloroplast genomes have predominantly A- and/or U-ending codons, whereas nuclear genomes have G-, C- or U-ending codons as their optimal codons. These findings suggest that the chloroplast genome might display particular characteristics of codon usage that are different from its host nuclear genome. However, one feature common to both chloroplast and nuclear genomes in this study was that pyrimidines were found more frequently than purines at the synonymous codon position of optimal codons.

  9. The complete chloroplast genome sequence of American bird pepper (Capsicum annuum var. glabriusculum).

    Science.gov (United States)

    Zeng, Fan-chun; Gao, Cheng-wen; Gao, Li-zhi

    2016-01-01

    The complete chloroplast genome sequence of American bird pepper (Capsicum annuum var. glabriusculum) is reported and characterized in this study. The genome size is 156,612 bp, containing a pair of inverted repeats (IRs) of 25,776 bp separated by a large single-copy region of 87,213 bp and a small single-copy region of 17,851 bp. The chloroplast genome harbors 130 known genes, including 89 protein-coding genes, 8 ribosomal RNA genes, and 37 tRNA genes. A total of 18 of these genes are duplicated in the inverted repeat regions, 16 genes contain 1 intron, and 2 genes and one ycf have 2 introns.

  10. MIPS plant genome information resources.

    Science.gov (United States)

    Spannagl, Manuel; Haberer, Georg; Ernst, Rebecca; Schoof, Heiko; Mayer, Klaus F X

    2007-01-01

    The Munich Institute for Protein Sequences (MIPS) has been involved in maintaining plant genome databases since the Arabidopsis thaliana genome project. Genome databases and analysis resources have focused on individual genomes and aim to provide flexible and maintainable data sets for model plant genomes as a backbone against which experimental data, for example from high-throughput functional genomics, can be organized and evaluated. In addition, model genomes also form a scaffold for comparative genomics, and much can be learned from genome-wide evolutionary studies.

  11. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mullet, J.E.

    1995-11-10

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailed description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  12. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mullet, J.E.

    1995-11-10

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailing description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  13. Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress

    Science.gov (United States)

    Zheng, Xiaodong; Tan, Dun X.; Allan, Andrew C.; Zuo, Bixiao; Zhao, Yu; Reiter, Russel J.; Wang, Lin; Wang, Zhi; Guo, Yan; Zhou, Jingzhe; Shan, Dongqian; Li, Qingtian; Han, Zhenhai; Kong, Jin

    2017-01-01

    Within the chloroplasts reactive oxygen species (ROS) are generated during photosynthesis and stressful conditions. Excessive ROS damages chloroplasts and reduces photosynthesis if not properly detoxified. In this current study, we document that chloroplasts produce melatonin, a recently-discovered plant antioxidant molecule. When N-acetylserotonin, a substrate for melatonin synthesis, was fed to purified chloroplasts, they produced melatonin in a dose-response manner. To further confirm this function of chloroplasts, the terminal enzyme for melatonin synthesis, N-acetylserotonin-O-methyltransferase (ASMT), was cloned from apple rootstock, Malus zumi. The in vivo fluorescence observations and Western blots confirmed MzASMT9 was localized in the chloroplasts. A study of enzyme kinetics revealed that the Km and Vmax of the purified recombinant MzASMT9 protein for melatonin synthesis were 500 μM and 12 pmol/min·mg protein, respectively. Arabidopsis ectopically-expressing MzASMT9 possessed improved melatonin level. Importantly, the MzASMT9 gene was found to be upregulated by high light intensity and salt stress. Increased melatonin due to the highly-expressed MzASMT9 resulted in Arabidopsis lines with enhanced salt tolerance than wild type plants, as indicated by reduced ROS, lowered lipid peroxidation and enhanced photosynthesis. These findings have agricultural applications for the genetic enhancement of melatonin-enriched plants for increasing crop production under a variety of unfavorable environmental conditions. PMID:28145449

  14. Chloroplast movement provides photoprotection to plants by redistributing PSII damage within leaves.

    Science.gov (United States)

    Davis, Phillip A; Hangarter, Roger P

    2012-09-01

    Plants use light to fix carbon through the process of photosynthesis but light also causes photoinhibition, by damaging photosystem II (PSII). Plants can usually adjust their rate of PSII repair to equal the rate of damage, but under stress conditions or supersaturating light-intensities damage may exceed the rate of repair. Light-induced chloroplast movements are one of the many mechanisms plants have evolved to minimize photoinhibition. We found that chloroplast movements achieve a measure of photoprotection to PSII by altering the distribution of photoinhibition through depth in leaves. When chloroplasts are in the low-light accumulation arrangement a greater proportion of PSII damage occurs near the illuminated surface than for leaves where the chloroplasts are in the high-light avoidance arrangement. According to our findings chloroplast movements can increase the overall efficiency of leaf photosynthesis in at least two ways. The movements alter light profiles within leaves to maximize photosynthetic output and at the same time redistribute PSII damage throughout the leaf to reduce the amount of inhibition received by individual chloroplasts and prevent a decrease in photosynthetic potential.

  15. The complete chloroplast genome sequence of Brachypodium distachyon: sequence comparison and phylogenetic analysis of eight grass plastomes

    Directory of Open Access Journals (Sweden)

    Anderson Olin D

    2008-07-01

    Full Text Available Abstract Background Wheat, barley, and rye, of tribe Triticeae in the Poaceae, are among the most important crops worldwide but they present many challenges to genomics-aided crop improvement. Brachypodium distachyon, a close relative of those cereals has recently emerged as a model for grass functional genomics. Sequencing of the nuclear and organelle genomes of Brachypodium is one of the first steps towards making this species available as a tool for researchers interested in cereals biology. Findings The chloroplast genome of Brachypodium distachyon was sequenced by a combinational approach using BAC end and shotgun sequences derived from a selected BAC containing the entire chloroplast genome. Comparative analysis indicated that the chloroplast genome is conserved in gene number and organization with respect to those of other cereals. However, several Brachypodium genes evolve at a faster rate than those in other grasses. Sequence analysis reveals that rice and wheat have a ~2.1 kb deletion in their plastid genomes and this deletion must have occurred independently in both species. Conclusion We demonstrate that BAC libraries can be used to sequence plastid, and likely other organellar, genomes. As expected, the Brachypodium chloroplast genome is very similar to those of other sequenced grasses. The phylogenetic analyses and the pattern of insertions and deletions in the chloroplast genome confirmed that Brachypodium is a close relative of the tribe Triticeae. Nevertheless, we show that some large indels can arise multiple times and may confound phylogenetic reconstruction.

  16. Oral delivery of Acid Alpha Glucosidase epitopes expressed in plant chloroplasts suppresses antibody formation in treatment of Pompe mice

    Science.gov (United States)

    Su, Jin; Sherman, Alexandra; Doerfler, Phillip A.; Byrne, Barry J.; Herzog, Roland W.; Daniell, Henry

    2015-01-01

    Summary Deficiency of acid alpha glucosidase (GAA) causes Pompe disease in which the patients systemically accumulate lysosomal glycogen in muscles and nervous systems, often resulting in infant mortality. Although enzyme replacement therapy (ERT) is effective in treating patients with Pompe disease, formation of antibodies against rhGAA complicates treatment. In this report, we investigated induction of tolerance by oral administration of GAA expressed in chloroplasts. Because full-length GAA could not be expressed, N-terminal 410-amino acids of GAA (as determined by T-cell epitope mapping) were fused with the transmucosal carrier CTB. Tobacco transplastomic lines expressing CTB-GAA were generated through site-specific integration of transgenes into the chloroplast genome. Homoplasmic lines were confirmed by Southern blot analysis. Despite low-level expression of CTB-GAA in chloroplasts, yellow or albino phenotype of transplastomic lines was observed due to binding of GAA to a chloroplast protein that has homology to mannose-6 phosphate receptor. Oral administration of the plant-made CTB-GAA fusion protein even at 330-fold lower dose (1.5 μg) significantly suppressed immunoglobulin formation against GAA in Pompe mice injected with 500 μg rhGAA per dose, with several-fold lower titre of GAA-specific IgG1 and IgG2a. Lyophilization increased CTB-GAA concentration by 30-fold (up to 190 μg per g of freeze-dried leaf material), facilitating long-term storage at room temperature and higher dosage in future investigations. This study provides the first evidence that oral delivery of plant cells is effective in reducing antibody responses in ERT for lysosomal storage disorders facilitating further advances in clinical investigations using plant cell culture system or in vitro propagation. PMID:26053072

  17. A rare case of plastid protein-coding gene duplication in the chloroplast genome of Euglena archaeoplastidiata (Euglenophyta).

    Science.gov (United States)

    Bennett, Matthew S; Shiu, Shin-Han; Triemer, Richard E

    2017-03-12

    Gene duplication is an important evolutionary process that allows duplicate functions to diverge, or, in some cases, allows for new functional gains. However, in contrast to the nuclear genome, gene duplications within the chloroplast are extremely rare. Here, we present the chloroplast genome of the photosynthetic protist Euglena archaeoplastidiata. Upon annotation, it was found that the chloroplast genome contained a novel tandem direct duplication that encoded a portion of RuBisCO large subunit (rbcL) followed by a complete copy of ribosomal protein L32 (rpl32), as well as the associated intergenic sequences. Analyses of the duplicated rpl32 were inconclusive regarding selective pressures, although it was found that substitutions in the duplicated region, all non-synonymous, likely had a neutral functional effect. The duplicated region did not exhibit patterns consistent with previously described mechanisms for tandem direct duplications, and demonstrated an unknown mechanism of duplication. In addition, a comparison of this chloroplast genome to other previously characterized chloroplast genomes from the same family revealed characteristics that indicated E. archaeoplastidiata was probably more closely related to taxa in the genera Monomorphina, Cryptoglena, and Euglenaria than it was to other Euglena taxa. Taken together, the chloroplast genome of E. archaeoplastidiata demonstrated multiple characteristics unique to the euglenoid world, and has justified the longstanding curiosity regarding this enigmatic taxon.

  18. Phylogenomic relationship of feijoa (Acca sellowiana (O.Berg) Burret) with other Myrtaceae based on complete chloroplast genome sequences.

    Science.gov (United States)

    Machado, Lilian de Oliveira; Vieira, Leila do Nascimento; Stefenon, Valdir Marcos; Oliveira Pedrosa, Fábio de; Souza, Emanuel Maltempi de; Guerra, Miguel Pedro; Nodari, Rubens Onofre

    2017-04-01

    Given their distribution, importance, and richness, Myrtaceae species comprise a model system for studying the evolution of tropical plant diversity. In addition, chloroplast (cp) genome sequencing is an efficient tool for phylogenetic relationship studies. Feijoa [Acca sellowiana (O. Berg) Burret; CN: pineapple-guava] is a Myrtaceae species that occurs naturally in southern Brazil and northern Uruguay. Feijoa is known for its exquisite perfume and flavorful fruits, pharmacological properties, ornamental value and increasing economic relevance. In the present work, we reported the complete cp genome of feijoa. The feijoa cp genome is a circular molecule of 159,370 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC 88,028 bp) and a Small Single Copy region (SSC 18,598 bp) separated by Inverted Repeat regions (IRs 26,372 bp). The genome structure, gene order, GC content and codon usage are similar to those of typical angiosperm cp genomes. When compared to other cp genome sequences of Myrtaceae, feijoa showed closest relationship with pitanga (Eugenia uniflora L.). Furthermore, a comparison of pitanga synonymous (Ks) and nonsynonymous (Ka) substitution rates revealed extremely low values. Maximum Likelihood and Bayesian Inference analyses produced phylogenomic trees identical in topology. These trees supported monophyly of three Myrtoideae clades.

  19. OrgConv: detection of gene conversion using consensus sequences and its application in plant mitochondrial and chloroplast homologs

    Directory of Open Access Journals (Sweden)

    Hao Weilong

    2010-03-01

    Full Text Available Abstract Background The ancestry of mitochondria and chloroplasts traces back to separate endosymbioses of once free-living bacteria. The highly reduced genomes of these two organelles therefore contain very distant homologs that only recently have been shown to recombine inside the mitochondrial genome. Detection of gene conversion between mitochondrial and chloroplast homologs was previously impossible due to the lack of suitable computer programs. Recently, I developed a novel method and have, for the first time, discovered recurrent gene conversion between chloroplast mitochondrial genes. The method will further our understanding of plant organellar genome evolution and help identify and remove gene regions with incongruent phylogenetic signals for several genes widely used in plant systematics. Here, I implement such a method that is available in a user friendly web interface. Results OrgConv (Organellar Conversion is a computer package developed for detection of gene conversion between mitochondrial and chloroplast homologous genes. OrgConv is available in two forms; source code can be installed and run on a Linux platform and a web interface is available on multiple operating systems. The input files of the feature program are two multiple sequence alignments from different organellar compartments in FASTA format. The program compares every examined sequence against the consensus sequence of each sequence alignment rather than exhaustively examining every possible combination. Making use of consensus sequences significantly reduces the number of comparisons and therefore reduces overall computational time, which allows for analysis of very large datasets. Most importantly, with the significantly reduced number of comparisons, the statistical power remains high in the face of correction for multiple tests. Conclusions Both the source code and the web interface of OrgConv are available for free from the OrgConv website http

  20. Genome Mapping in Plant Comparative Genomics.

    Science.gov (United States)

    Chaney, Lindsay; Sharp, Aaron R; Evans, Carrie R; Udall, Joshua A

    2016-09-01

    Genome mapping produces fingerprints of DNA sequences to construct a physical map of the whole genome. It provides contiguous, long-range information that complements and, in some cases, replaces sequencing data. Recent advances in genome-mapping technology will better allow researchers to detect large (>1kbp) structural variations between plant genomes. Some molecular and informatics complications need to be overcome for this novel technology to achieve its full utility. This technology will be useful for understanding phenotype responses due to DNA rearrangements and will yield insights into genome evolution, particularly in polyploids. In this review, we outline recent advances in genome-mapping technology, including the processes required for data collection and analysis, and applications in plant comparative genomics.

  1. Analysis of synonymous codon usage in chloroplast genome of Populus alba

    Institute of Scientific and Technical Information of China (English)

    ZHOU Meng; LONG Wei; LI Xia

    2008-01-01

    The pattern of codon usage in the chloroplast genome of Populus alba was investigated.Correspondence analysis (a commonly used multivariate statistical approach) and method of effective number of codons (ENc)-plot were conducted to analyze synonymous codon usage.The results of correspondence analysis showed that the distribution of genes on the major axis was significantly correlated with the frequency of use of G+C in synonymously variable third position of sense codon (GC3S),(r=0.349),and the positions of genes on the axis 2 and axis 3 were significantly correlated with CAI (r=-0.348,p<0.01 and r=0.602,p<0.01).The ENc for most genes was similar to that for the expected ENc based on the GC3S,but several genes with low ENC values were lying below the expected curve.All of these data indicated that codon usage was dominated by a mutational bias in chloroplast genome of P.alba.The selection in nature for translational efficiency only played a minor role in shaping codon usage in the chloroplast genome of P.alba.

  2. Transfer of a eubacteria-type cell division site-determining factor CrMinD gene to the nucleus from the chloroplast genome in Chlamydomonas reinhardtii

    Institute of Scientific and Technical Information of China (English)

    LIU WeiZhong; HU Yong; ZHANG RunJie; ZHOU WeiWei; ZHU JiaYing; LIU XiangLin; HE YiKun

    2007-01-01

    MinD is a ubiquitous ATPase that plays a crucial role in selection of the division site in eubacteria, chloroplasts, and probably Archaea. In four green algae, Mesostigma viride, Nephroselmis olivacea, Chlorella vulgaris and Prototheca wickerhamii, MinD homologues are encoded in the plastid genome. However, in Arabidopsis, MinD is a nucleus-encoded, chloroplast-targeted protein involved in chloroplast division, which suggests that MinD has been transferred to the nucleus in higher land plants. Yet the lateral gene transfer (LGT) of MinD from plastid to nucleus during plastid evolution remains poorly understood. Here, we identified a nucleus-encoded MinD homologue from unicellular green alga Chlamydomonas reinhardtii, a basal species in the green plant lineage. Overexpression of CrMinD in wild type E. coli inhibited cell division and resulted in the filamentous cell formation, clearly demonstrated the conservation of the MinD protein during the evolution of photosynthetic eukaryotes. The transient expression of CrMinD-egfp confirmed the role of CrMinD protein in the regulation of plastid division. Searching all the published plastid genomic sequences of land plants, no MinD homologues were found, which suggests that the transfer of MinD from plastid to nucleus might have occurred before the evolution of land plants.

  3. SMRT sequencing only de novo assembly of the sugar beet (Beta vulgaris) chloroplast genome.

    Science.gov (United States)

    Stadermann, Kai Bernd; Weisshaar, Bernd; Holtgräwe, Daniela

    2015-09-16

    Third generation sequencing methods, like SMRT (Single Molecule, Real-Time) sequencing developed by Pacific Biosciences, offer much longer read length in comparison to Next Generation Sequencing (NGS) methods. Hence, they are well suited for de novo- or re-sequencing projects. Sequences generated for these purposes will not only contain reads originating from the nuclear genome, but also a significant amount of reads originating from the organelles of the target organism. These reads are usually discarded but they can also be used for an assembly of organellar replicons. The long read length supports resolution of repetitive regions and repeats within the organelles genome which might be problematic when just using short read data. Additionally, SMRT sequencing is less influenced by GC rich areas and by long stretches of the same base. We describe a workflow for a de novo assembly of the sugar beet (Beta vulgaris ssp. vulgaris) chloroplast genome sequence only based on data originating from a SMRT sequencing dataset targeted on its nuclear genome. We show that the data obtained from such an experiment are sufficient to create a high quality assembly with a higher reliability than assemblies derived from e.g. Illumina reads only. The chloroplast genome is especially challenging for de novo assembling as it contains two large inverted repeat (IR) regions. We also describe some limitations that still apply even though long reads are used for the assembly. SMRT sequencing reads extracted from a dataset created for nuclear genome (re)sequencing can be used to obtain a high quality de novo assembly of the chloroplast of the sequenced organism. Even with a relatively small overall coverage for the nuclear genome it is possible to collect more than enough reads to generate a high quality assembly that outperforms short read based assemblies. However, even with long reads it is not always possible to clarify the order of elements of a chloroplast genome sequence reliantly

  4. Complete genome sequence of chloroplast DNA (cpDNA) of Chlorella sorokiniana.

    Science.gov (United States)

    Orsini, Massimiliano; Cusano, Roberto; Costelli, Cristina; Malavasi, Veronica; Concas, Alessandro; Angius, Andrea; Cao, Giacomo

    2016-01-01

    The complete chloroplast genome sequence of Chlorella sorokiniana strain (SAG 111-8 k) is presented in this study. The genome consists of circular chromosomes of 109,811 bp, which encode a total of 109 genes, including 74 proteins, 3 rRNAs and 31 tRNAs. Moreover, introns are not detected and all genes are present in single copy. The overall AT contents of the C. sorokiniana cpDNA is 65.9%, the coding sequence is 59.1% and a large inverted repeat (IR) is not observed.

  5. Heterologous expression of a chloroplast outer envelope protein from Suaeda salsa confers oxidative stress tolerance and induces chloroplast aggregation in transgenic Arabidopsis plants.

    Science.gov (United States)

    Wang, Fang; Yang, Chun-Lin; Wang, Li-Li; Zhong, Nai-Qin; Wu, Xiao-Min; Han, Li-Bo; Xia, Gui-Xian

    2012-03-01

    Suaeda salsa is a euhalophytic plant that is tolerant to coastal seawater salinity. In this study, we cloned a cDNA encoding an 8.4 kDa chloroplast outer envelope protein (designated as SsOEP8) from S. salsa and characterized its cellular function. Steady-state transcript levels of SsOEP8 in S. salsa were up-regulated in response to oxidative stress. Consistently, ectopic expression of SsOEP8 conferred enhanced oxidative stress tolerance in transgenic Bright Yellow 2 (BY-2) cells and Arabidopsis, in which H(2) O(2) content was reduced significantly in leaf cells. Further studies revealed that chloroplasts aggregated to the sides of mesophyll cells in transgenic Arabidopsis leaves, and this event was accompanied by inhibited expression of genes encoding proteins for chloroplast movements such as AtCHUP1, a protein involved in actin-based chloroplast positioning and movement. Moreover, organization of actin cytoskeleton was found to be altered in transgenic BY-2 cells. Together, these results suggest that SsOEP8 may play a critical role in oxidative stress tolerance by changing actin cytoskeleton-dependent chloroplast distribution, which may consequently lead to the suppressed production of reactive oxygen species (ROS) in chloroplasts. One significantly novel aspect of this study is the finding that the small chloroplast envelope protein is involved in oxidative stress tolerance.

  6. Identification of chloroplast genome loci suitable for high-resolution phylogeographic studies of Colocasia esculenta (L.) Schott (Araceae) and closely related taxa.

    Science.gov (United States)

    Ahmed, Ibrar; Matthews, Peter J; Biggs, Patrick J; Naeem, Muhammad; McLenachan, Patricia A; Lockhart, Peter J

    2013-09-01

    Recently, we reported the chloroplast genome-wide association of oligonucleotide repeats, indels and nucleotide substitutions in aroid chloroplast genomes. We hypothesized that the distribution of oligonucleotide repeat sequences in a single representative genome can be used to identify mutational hotspots and loci suitable for population genetic, phylogenetic and phylogeographic studies. Using information on the location of oligonucleotide repeats in the chloroplast genome of taro (Colocasia esculenta), we designed 30 primer pairs to amplify and sequence polymorphic loci. The primers have been tested in a range of intra-specific to intergeneric comparisons, including ten taro samples (Colocasia esculenta) from diverse geographical locations, four other Colocasia species (C. affinis, C. fallax, C. formosana, C. gigantea) and three other aroid genera (represented by Remusatia vivipara, Alocasia brisbanensis and Amorphophallus konjac). Multiple sequence alignments for the intra-specific comparison revealed nucleotide substitutions (point mutations) at all 30 loci and microsatellite polymorphisms at 14 loci. The primer pairs reported here reveal levels of genetic variation suitable for high-resolution phylogeographic and evolutionary studies of taro and other closely related aroids. Our results confirm that information on repeat distribution can be used to identify loci suitable for such studies, and we expect that this approach can be used in other plant groups.

  7. Structure and organization of Marchantia polymorpha chloroplast genome. I. Cloning and gene identification.

    Science.gov (United States)

    Ohyama, K; Fukuzawa, H; Kohchi, T; Sano, T; Sano, S; Shirai, H; Umesono, K; Shiki, Y; Takeuchi, M; Chang, Z

    1988-09-20

    We have determined the complete nucleotide sequence of chloroplast DNA from a liverwort, Marchantia polymorpha, using a clone bank of chloroplast DNA fragments. The circular genome consists of 121,024 base-pairs and includes two large inverted repeats (IRA and IRB, each 10,058 base-pairs), a large single-copy region (LSC, 81,095 base-pairs), and a small single-copy region (SSC, 19,813 base-pairs). The nucleotide sequence was analysed with a computer to deduce the entire gene organization, assuming the universal genetic code and the presence of introns in the coding sequences. We detected 136 possible genes. 103 gene products of which are related to known stable RNA or protein molecules. Stable RNA genes for four species of ribosomal RNA and 32 species of tRNA were located, although one of the tRNA genes may be defective. Twenty genes encoding polypeptides involved in photosynthesis and electron transport were identified by comparison with known chloroplast genes. Twenty-five open reading frames (ORFs) show structural similarities to Escherichia coli RNA polymerase subunits, 19 ribosomal proteins and two related proteins. Seven ORFs are comparable with human mitochondrial NADH dehydrogenase genes. A computer-aided homology search predicted possible chloroplast homologues of bacterial proteins; two ORFs for bacterial 4Fe-4S-type ferredoxin, two for distinct subunits of a protein-dependent transport system, one ORF for a component of nitrogenase, and one for an antenna protein of a light-harvesting complex. The other 33 ORFs, consisting of 29 to 2136 codons, remain to be identified, but some of them seem to be conserved in evolution. Detailed information on gene identification is presented in the accompanying papers. We postulated that there were 22 introns in 20 genes (8 tRNA genes and 12 ORFs), which may be classified into the groups I and II found in fungal mitochondrial genes. The structural gene for ribosomal protein S12 is trans-split on the opposite DNA strand

  8. The complete chloroplast genome sequence of the Bambusa multiplex (Poaceae: Bambusoideae).

    Science.gov (United States)

    Gao, Ju; Li, Kui; Gao, Li-zhi

    2016-01-01

    The complete nucleotide sequence of the Bambusa multiplex chloroplast genome (cpDNA) was determined in this study. The cpDNA was 139,394 bp in length, containing a pair of 21,798 bp inverted repeat regions (IR), which were separated by small and large single copy regions (SSC and LSC) of 12,875 and 82,923 bp, respectively. The B. multiplex cp genome encodes 129 predicted functional genes; 110 are unique (77 protein-coding genes, 29 tRNA genes, 4 rRNA), 19 are duplicated in the IR regions and one gene extended into the IR region in the junctions between IR and SSC. 43.20% of the genome sequence encodes proteins. The B. multiplex cp genome is AT-rich (61.08%). In these genes, fourteen genes contained one intron, while one gene had two introns.

  9. The complete chloroplast genome sequence of the Phyllostachys sulphurea (Poaceae: Bambusoideae).

    Science.gov (United States)

    Gao, Ju; Gao, Li-zhi

    2016-01-01

    The complete nucleotide sequence of the Phyllostachys sulphurea chloroplast genome (cpDNA) was determined in this study. The cpDNA was 139,731 bp in length, containing a pair of 21,798 bp inverted repeat regions (IR), which were separated by small and large single copy regions (SSC and LSC) of 12,879 and 83,256 bp, respectively. The P. sulphurea cp genome encodes 129 predicted functional genes; 110 are unique (77 protein-coding genes, 29 tRNA genes, 4 rRNA), 19 are duplicated in the IR regions and one gene extended into the IR region in the junctions between IR and SSC. 43.06% of the genome sequence encodes proteins. The P. sulphurea cp genome is AT-rich (61.11%). In these genes, fourteen genes contained one intron, while one gene had two introns.

  10. The complete chloroplast genome of Cupressus gigantea, an endemic conifer species to Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Li, Huie; Guo, Qiqiang; Zheng, Weilie

    2016-09-01

    The complete chloroplast genome of the wild Cupressus gigantea (Cupressaceae) is determined in this study. The circular genome is 128 244 bp in length with 115 single copy genes and two duplicated genes (trnI-CAU and trnQ-UUG). This genome contains 82 protein-coding genes, four ribosomal RNA genes and 31 transfer RNA genes. In these genes, eight genes (atpF, rpoC1, ndhA, ndhB, petB, petD, rpl16 and rpl2) harbor a single intron and two genes (rps12 and ycf3) harbor two introns. This genome does not contain canonical IRs, and the overall GC content is 34.7%. A maximum parsimony phylogenetic analysis revealed that C. gigantea and C. sempervirens are more closely related.

  11. Assembly of the Complete Sitka Spruce Chloroplast Genome Using 10X Genomics’ GemCode Sequencing Data

    Science.gov (United States)

    Coombe, Lauren; Jackman, Shaun D.; Yang, Chen; Vandervalk, Benjamin P.; Moore, Richard A.; Pleasance, Stephen; Coope, Robin J.; Bohlmann, Joerg; Holt, Robert A.; Jones, Steven J. M.; Birol, Inanc

    2016-01-01

    The linked read sequencing library preparation platform by 10X Genomics produces barcoded sequencing libraries, which are subsequently sequenced using the Illumina short read sequencing technology. In this new approach, long fragments of DNA are partitioned into separate micro-reactions, where the same index sequence is incorporated into each of the sequencing fragment inserts derived from a given long fragment. In this study, we exploited this property by using reads from index sequences associated with a large number of reads, to assemble the chloroplast genome of the Sitka spruce tree (Picea sitchensis). Here we report on the first Sitka spruce chloroplast genome assembled exclusively from P. sitchensis genomic libraries prepared using the 10X Genomics protocol. We show that the resulting 124,049 base pair long genome shares high sequence similarity with the related white spruce and Norway spruce chloroplast genomes, but diverges substantially from a previously published P. sitchensis- P. thunbergii chimeric genome. The use of reads from high-frequency indices enabled separation of the nuclear genome reads from that of the chloroplast, which resulted in the simplification of the de Bruijn graphs used at the various stages of assembly. PMID:27632164

  12. The Complete Mitochondrial Genome of Gossypium hirsutum and Evolutionary Analysis of Higher Plant Mitochondrial Genomes

    Science.gov (United States)

    Su, Aiguo; Geng, Jianing; Grover, Corrinne E.; Hu, Songnian; Hua, Jinping

    2013-01-01

    Background Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. Methodology/Principal Findings We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. Conclusion The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species. PMID:23940520

  13. The complete mitochondrial genome of Gossypium hirsutum and evolutionary analysis of higher plant mitochondrial genomes.

    Directory of Open Access Journals (Sweden)

    Guozheng Liu

    Full Text Available BACKGROUND: Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L. is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt genome could be helpful for the evolution research of plant mt genomes. METHODOLOGY/PRINCIPAL FINDINGS: We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. CONCLUSION: The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.

  14. The complete chloroplast genome sequence of date palm (Phoenix dactylifera L..

    Directory of Open Access Journals (Sweden)

    Meng Yang

    Full Text Available BACKGROUND: Date palm (Phoenix dactylifera L., a member of Arecaceae family, is one of the three major economically important woody palms--the two other palms being oil palm and coconut tree--and its fruit is a staple food among Middle East and North African nations, as well as many other tropical and subtropical regions. Here we report a complete sequence of the data palm chloroplast (cp genome based on pyrosequencing. METHODOLOGY/PRINCIPAL FINDINGS: After extracting 369,022 cp sequencing reads from our whole-genome-shotgun data, we put together an assembly and validated it with intensive PCR-based verification, coupled with PCR product sequencing. The date palm cp genome is 158,462 bp in length and has a typical quadripartite structure of the large (LSC, 86,198 bp and small single-copy (SSC, 17,712 bp regions separated by a pair of inverted repeats (IRs, 27,276 bp. Similar to what has been found among most angiosperms, the date palm cp genome harbors 112 unique genes and 19 duplicated fragments in the IR regions. The junctions between LSC/IRs and SSC/IRs show different features of sequence expansion in evolution. We identified 78 SNPs as major intravarietal polymorphisms within the population of a specific cp genome, most of which were located in genes with vital functions. Based on RNA-sequencing data, we also found 18 polycistronic transcription units and three highly expression-biased genes--atpF, trnA-UGC, and rrn23. CONCLUSIONS: Unlike most monocots, date palm has a typical cp genome similar to that of tobacco--with little rearrangement and gene loss or gain. High-throughput sequencing technology facilitates the identification of intravarietal variations in cp genomes among different cultivars. Moreover, transcriptomic analysis of cp genes provides clues for uncovering regulatory mechanisms of transcription and translation in chloroplasts.

  15. Chloroplast movement.

    Science.gov (United States)

    Wada, Masamitsu

    2013-09-01

    Chloroplast movement is important for plant survival under high light and for efficient photosynthesis under low light. This review introduces recent knowledge on chloroplast movement and shows how to analyze the responses and the moving mechanisms, potentially inspiring research in this field. Avoidance from the strong light is mediated by blue light receptor phototropin 2 (phot2) plausibly localized on the chloroplast envelop and accumulation at the week light-irradiated area is mediated by phot1 and phot2 localized on the plasma membrane. Chloroplasts move by chloroplast actin (cp-actin) filaments that must be polymerized by Chloroplast Unusual Positioning1 (CHUP1) at the front side of moving chloroplast. To understand the signal transduction pathways and the mechanism of chloroplast movement, that is, from light capture to motive force-generating mechanism, various methods should be employed based on the various aspects. Observation of chloroplast distribution pattern under different light condition by fixed cell sectioning is somewhat an old-fashioned technique but the most basic and important way. However, most importantly, precise chloroplast behavior during and just after the induction of chloroplast movement by partial cell irradiation using an irradiator with either low light or strong light microbeam should be recorded by time lapse photographs under infrared light and analyzed. Recently various factors involved in chloroplast movement, such as cp-actin filaments and CHUP1, could be traced in Arabidopsis transgenic lines with fluorescent protein tags under a confocal laser scanning microscope (CLSM) and/or a total internal reflection fluorescence microscope (TIRFM). These methods are listed and their advantages and disadvantages are evaluated.

  16. A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies

    Directory of Open Access Journals (Sweden)

    Turmel Monique

    2007-01-01

    Full Text Available Abstract Background The Viridiplantae comprise two major phyla: the Streptophyta, containing the charophycean green algae and all land plants, and the Chlorophyta, containing the remaining green algae. Despite recent progress in unravelling phylogenetic relationships among major green plant lineages, problematic nodes still remain in the green tree of life. One of the major issues concerns the scaly biflagellate Mesostigma viride, which is either regarded as representing the earliest divergence of the Streptophyta or a separate lineage that diverged before the Chlorophyta and Streptophyta. Phylogenies based on chloroplast and mitochondrial genomes support the latter view. Because some green plant lineages are not represented in these phylogenies, sparse taxon sampling has been suspected to yield misleading topologies. Here, we describe the complete chloroplast DNA (cpDNA sequence of the early-diverging charophycean alga Chlorokybus atmophyticus and present chloroplast genome-based phylogenies with an expanded taxon sampling. Results The 152,254 bp Chlorokybus cpDNA closely resembles its Mesostigma homologue at the gene content and gene order levels. Using various methods of phylogenetic inference, we analyzed amino acid and nucleotide data sets that were derived from 45 protein-coding genes common to the cpDNAs of 37 green algal/land plant taxa and eight non-green algae. Unexpectedly, all best trees recovered a robust clade uniting Chlorokybus and Mesostigma. In protein trees, this clade was sister to all streptophytes and chlorophytes and this placement received moderate support. In contrast, gene trees provided unequivocal support to the notion that the Mesostigma + Chlorokybus clade represents the earliest-diverging branch of the Streptophyta. Independent analyses of structural data (gene content and/or gene order and of subsets of amino acid data progressively enriched in slow-evolving sites led us to conclude that the latter topology

  17. Signalling by the global regulatory molecule ppGpp in bacteria and chloroplasts of land plants.

    Science.gov (United States)

    Tozawa, Y; Nomura, Y

    2011-09-01

    The hyperphosphorylated guanine ribonucleotide ppGpp mediates the stringent response in bacteria. Biochemical and genetic studies of this response in Escherichia coli have shown that the biosynthesis of ppGpp is catalysed by two homologous enzymes, RelA and SpoT. RelA is activated in response to amino acid starvation, and SpoT responds to abiotic physical stress beside nutritional stress. All free-living bacteria, including Gram-positive firmicutes, contain RelA-SpoT homologues (RSH). Further, novel ppGpp biosynthetic enzymes, designated small alarmone synthetases (SASs), were recently identified in a subset of bacteria, including the Gram-positive organism Bacillus subtilis, and were shown to consist only of a ppGpp synthetase domain. Studies suggest that these SAS proteins contribute to ppGpp signalling in response to stressful conditions in a manner distinct from that of RelA-SpoT enzymes. SAS proteins currently appear to always occur in addition to RSH enzymes in various combinations but never alone. RSHs have also been identified in chloroplasts, organelles of photosynthetic eukaryotes that originated from endosymbiotic photosynthetic bacteria. These chloroplast RSHs are exclusively encoded in nuclear DNA and targeted into chloroplasts. The findings suggest that ppGpp may regulate chloroplast functions similar to those regulated in bacteria, including transcription and translation. In addition, a novel ppGpp synthetase that is regulated by Ca²⁺ as a result of the presence of two EF-hand motifs at its COOH terminus was recently identified in chloroplasts of land plants. This finding indicates the existence of a direct connection between eukaryotic Ca²⁺ signalling and prokaryotic ppGpp signalling in chloroplasts. The new observations with regard to ppGpp signalling in land plants suggest that such signalling contributes to the regulation of a wider range of cellular functions than previously anticipated.

  18. Influence of nitrogen deficiency on photosynthesis and chloroplast ultrastructure of pepper plants (Research Note

    Directory of Open Access Journals (Sweden)

    S. DONCHEVA

    2008-12-01

    Full Text Available Pepper plants (Capsicum annuum L. cv. Zlaten Medal were grown on nutrient solution without nitrogen, and photosynthetic response of plants was examined by determination of leaf CO2 fixation and chlorophyll and carotenoid contents. The absence of nitrogen in the medium resulted in a decrease of the leaf area and of plant biomass accumulation, and in an increase of the root-shoot dry weight ratio. The photosynthetic activity and chlorophyll and carotenoid contents decreased significantly under nitrogen deprivation. Examination of nitrogen deficient leaves by transmission electron microscopy showed dramatic changes in chloroplast ultrastructure. The proportion of starch granules and plastoglobules in the stroma matrix was increased and internal membrane system was greatly reduced. It seems that nitrogen plays an important role in the formation of chloroplast structure and hence to the photosynthetic intensity and productivity of pepper plants.

  19. Multiple feedbacks between chloroplast and whole plant in the context of plant adaptation and acclimation to the environment

    Science.gov (United States)

    Demmig-Adams, Barbara; Stewart, Jared J.; Adams, William W.

    2014-01-01

    This review focuses on feedback pathways that serve to match plant energy acquisition with plant energy utilization, and thereby aid in the optimization of chloroplast and whole-plant function in a given environment. First, the role of source–sink signalling in adjusting photosynthetic capacity (light harvesting, photochemistry and carbon fixation) to meet whole-plant carbohydrate demand is briefly reviewed. Contrasting overall outcomes, i.e. increased plant growth versus plant growth arrest, are described and related to respective contrasting environments that either do or do not present opportunities for plant growth. Next, new insights into chloroplast-generated oxidative signals, and their modulation by specific components of the chloroplast's photoprotective network, are reviewed with respect to their ability to block foliar phloem-loading complexes, and, thereby, affect both plant growth and plant biotic defences. Lastly, carbon export capacity is described as a newly identified tuning point that has been subjected to the evolution of differential responses in plant varieties (ecotypes) and species from different geographical origins with contrasting environmental challenges. PMID:24591724

  20. The complete chloroplast genome sequence of Gentiana lawrencei var. farreri (Gentianaceae and comparative analysis with its congeneric species

    Directory of Open Access Journals (Sweden)

    Peng-Cheng Fu

    2016-09-01

    Full Text Available Background The chloroplast (cp genome is useful in plant systematics, genetic diversity analysis, molecular identification and divergence dating. The genus Gentiana contains 362 species, but there are only two valuable complete cp genomes. The purpose of this study is to report the characterization of complete cp genome of G. lawrencei var. farreri, which is endemic to the Qinghai-Tibetan Plateau (QTP. Methods Using high throughput sequencing technology, we got the complete nucleotide sequence of the G. lawrencei var. farreri cp genome. The comparison analysis including genome difference and gene divergence was performed with its congeneric species G. straminea. The simple sequence repeats (SSRs and phylogenetics were studied as well. Results The cp genome of G. lawrencei var. farreri is a circular molecule of 138,750 bp, containing a pair of 24,653 bp inverted repeats which are separated by small and large single-copy regions of 11,365 and 78,082 bp, respectively. The cp genome contains 130 known genes, including 85 protein coding genes (PCGs, eight ribosomal RNA genes and 37 tRNA genes. Comparative analyses indicated that G. lawrencei var. farreri is 10,241 bp shorter than its congeneric species G. straminea. Four large gaps were detected that are responsible for 85% of the total sequence loss. Further detailed analyses revealed that 10 PCGs were included in the four gaps that encode nine NADH dehydrogenase subunits. The cp gene content, order and orientation are similar to those of its congeneric species, but with some variation among the PCGs. Three genes, ndhB, ndhF and clpP, have high nonsynonymous to synonymous values. There are 34 SSRs in the G. lawrencei var. farreri cp genome, of which 25 are mononucleotide repeats: no dinucleotide repeats were detected. Comparison with the G. straminea cp genome indicated that five SSRs have length polymorphisms and 23 SSRs are species-specific. The phylogenetic analysis of 48 PCGs from 12 Gentianales

  1. Characterization of the snowy cotyledon 1 mutant of Arabidopsis thaliana: the impact of chloroplast elongation factor G on chloroplast development and plant vitality.

    Science.gov (United States)

    Albrecht, Verónica; Ingenfeld, Anke; Apel, Klaus

    2006-03-01

    During seedling development chloroplast formation marks the transition from heterotrophic to autotrophic growth. The development and activity of chloroplasts may differ in cotyledons that initially serve as a storage organ and true leaves whose primary function is photosynthesis. A genetic screen was used for the identification of genes that affect selectively chloroplast function in cotyledons of Arabidopsis thaliana. Several mutants exhibiting pale cotyledons and green true leaves were isolated and dubbed snowy cotyledon (sco). One of the mutants, sco1, was characterized in more detail. The mutated gene was identified using map-based cloning. The mutant contains a point mutation in a gene encoding the chloroplast elongation factor G, leading to an amino acid exchange within the predicted 70S ribosome-binding domain. The mutation results in a delay in the onset of germination. At this early developmental stage embryos still contain undifferentiated proplastids, whose proper function seems necessary for seed germination. In light-grown sco1 seedlings the greening of cotyledons is severely impaired, whereas the following true leaves develop normally as in wild-type plants. Despite this apparent similarity of chloroplast development in true leaves of mutant and wild-type plants various aspects of mature plant development are also affected by the sco1 mutation such as the onset of flowering, the growth rate, and seed production. The onset of senescence in the mutant and the wild-type plants occurs, however, at the same time, suggesting that in the mutant this particular developmental step does not seem to suffer from reduced protein translation efficiency in chloroplasts.

  2. The complete chloroplast DNA sequence of the green alga Oltmannsiellopsis viridis reveals a distinctive quadripartite architecture in the chloroplast genome of early diverging ulvophytes

    Directory of Open Access Journals (Sweden)

    Lemieux Claude

    2006-02-01

    Full Text Available Abstract Background The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. The basal position of the Prasinophyceae has been well documented, but the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae is currently debated. The four complete chloroplast DNA (cpDNA sequences presently available for representatives of these classes have revealed extensive variability in overall structure, gene content, intron composition and gene order. The chloroplast genome of Pseudendoclonium (Ulvophyceae, in particular, is characterized by an atypical quadripartite architecture that deviates from the ancestral type by a large inverted repeat (IR featuring an inverted rRNA operon and a small single-copy (SSC region containing 14 genes normally found in the large single-copy (LSC region. To gain insights into the nature of the events that led to the reorganization of the chloroplast genome in the Ulvophyceae, we have determined the complete cpDNA sequence of Oltmannsiellopsis viridis, a representative of a distinct, early diverging lineage. Results The 151,933 bp IR-containing genome of Oltmannsiellopsis differs considerably from Pseudendoclonium and other chlorophyte cpDNAs in intron content and gene order, but shares close similarities with its ulvophyte homologue at the levels of quadripartite architecture, gene content and gene density. Oltmannsiellopsis cpDNA encodes 105 genes, contains five group I introns, and features many short dispersed repeats. As in Pseudendoclonium cpDNA, the rRNA genes in the IR are transcribed toward the single copy region featuring the genes typically found in the ancestral LSC region, and the opposite single copy region harbours genes characteristic of both the ancestral SSC and LSC regions. The 52 genes that were transferred from the ancestral LSC to SSC region include 12 of those observed in Pseudendoclonium cpDNA. Surprisingly, the overall gene organization of

  3. De novo assembly and characterization of the complete chloroplast genome of radish (Raphanus sativus L.).

    Science.gov (United States)

    Jeong, Young-Min; Chung, Won-Hyung; Mun, Jeong-Hwan; Kim, Namshin; Yu, Hee-Ju

    2014-11-01

    Radish (Raphanus sativus L.) is an edible root vegetable crop that is cultivated worldwide and whose genome has been sequenced. Here we report the complete nucleotide sequence of the radish cultivar WK10039 chloroplast (cp) genome, along with a de novo assembly strategy using whole genome shotgun sequence reads obtained by next generation sequencing. The radish cp genome is 153,368 bp in length and has a typical quadripartite structure, composed of a pair of inverted repeat regions (26,217 bp each), a large single copy region (83,170 bp), and a small single copy region (17,764 bp). The radish cp genome contains 87 predicted protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Sequence analysis revealed the presence of 91 simple sequence repeats (SSRs) in the radish cp genome. Phylogenetic analysis of 62 protein-coding gene sequences from the 17 cp genomes of the Brassicaceae family suggested that the radish cp genome is most closely related to the cp genomes of Brassica rapa and Brassicanapus. Comparisons with the B. rapa and B. napus cp genomes revealed highly divergent intergenic sequences and introns that can potentially be developed as diagnostic cp markers. Synonymous and nonsynonymous substitutions of cp genes suggested that nucleotide substitutions have occurred at similar rates in most genes. The complete sequence of the radish cp genome would serve as a valuable resource for the development of new molecular markers and the study of the phylogenetic relationships of Raphanus species in the Brassicaceae family.

  4. Role of chloroplasts and other plastids in ageing and death of plants and animals: a tale of Vishnu and Shiva.

    Science.gov (United States)

    van Doorn, Wouter G; Yoshimoto, Kohki

    2010-04-01

    Chloroplasts (chlorophyll-containing plastids) and other plastids are found in all plants and many animals. They are crucial to the survival of plants and most of the animals that harbour them. An example of a non-photosynthesizing plastid in animals is the apicoplast in the malaria-causing Plasmodium species, which is required for survival of the parasite. Many animals (such as sea slugs, sponges, reef corals, and clams) consume prey containing chloroplasts, or feed on algae. Some of these incorporate the chloroplasts from their food, or whole algal cells, into their own cells. Other species from these groups place algal cells between their own cells. Reef-building corals often lose their intracellular algae as a result of environmental changes, resulting in coral bleaching and death. The sensitivity of the chloroplast internal membranes to temperature stress is one of the reasons for coral death. Chloroplasts can also be a causal factor in the processes leading to whole-plant death, as the knockout of a gene encoding a chloroplast protein delayed the yellowing that proceeds death in tobacco plants. It is concluded that chloroplasts and other plastids are essential to individual survival in many species, including animals, and that they also play a role in triggering death in some plant and animal species.

  5. In vivo monitoring of intracellular chloroplast movements in intact leaves of C4 plants using two-photon microscopy.

    Science.gov (United States)

    Ryu, Jeongeun; Nam, Hyoseok; Kim, Hae Koo; Joo, Yongjoon; Lee, Sang Joon; Kim, Ki Hean

    2014-10-01

    Dynamic changes in the spatial distribution of chloroplasts are essential for optimizing photosynthetic capacity under changing light conditions. Light-induced movement of chloroplasts has been widely investigated, but most studies were conducted on isolated tissues or protoplasts. In this study, a two-photon microscopy (TPM) system was adapted to monitor the intracellular 3-dimensional (3D) movements of chloroplasts in intact leaves of plants during dark to light transitions. The TPM imaging was based on autofluorescence of chlorophyll generated by a femto-second Ti:Sapphire laser. All chloroplasts did not exhibit the same motion in response to irradiation variation. In the sub-epidermal mesophyll cells, chloroplasts generally moved away from the surface following blue light treatment, however many chloroplasts did not show any movement. Such spatial heterogeneity in chloroplast motility underlines the importance of monitoring intracellular orientation and movement of individual chloroplasts across intact leaves. Our investigation shows that the 3D imaging of chloroplasts using TPM can help to understand the changes in local photosynthetic capacity in intact leaves under changing environmental conditions.

  6. The complete chloroplast genome sequence of Cephalotaxus oliveri (Cephalotaxaceae): evolutionary comparison of cephalotaxus chloroplast DNAs and insights into the loss of inverted repeat copies in gymnosperms.

    Science.gov (United States)

    Yi, Xuan; Gao, Lei; Wang, Bo; Su, Ying-Juan; Wang, Ting

    2013-01-01

    We have determined the complete chloroplast (cp) genome sequence of Cephalotaxus oliveri. The genome is 134,337 bp in length, encodes 113 genes, and lacks inverted repeat (IR) regions. Genome-wide mutational dynamics have been investigated through comparative analysis of the cp genomes of C. oliveri and C. wilsoniana. Gene order transformation analyses indicate that when distinct isomers are considered as alternative structures for the ancestral cp genome of cupressophyte and Pinaceae lineages, it is not possible to distinguish between hypotheses favoring retention of the same IR region in cupressophyte and Pinaceae cp genomes from a hypothesis proposing independent loss of IRA and IRB. Furthermore, in cupressophyte cp genomes, the highly reduced IRs are replaced by short repeats that have the potential to mediate homologous recombination, analogous to the situation in Pinaceae. The importance of repeats in the mutational dynamics of cupressophyte cp genomes is also illustrated by the accD reading frame, which has undergone extreme length expansion in cupressophytes. This has been caused by a large insertion comprising multiple repeat sequences. Overall, we find that the distribution of repeats, indels, and substitutions is significantly correlated in Cephalotaxus cp genomes, consistent with a hypothesis that repeats play a role in inducing substitutions and indels in conifer cp genomes.

  7. Noncoding RNA mediated traffic of foreign mRNA into chloroplasts reveals a novel signaling mechanism in plants.

    Directory of Open Access Journals (Sweden)

    Gustavo Gómez

    Full Text Available Communication between chloroplasts and the nucleus is one of the milestones of the evolution of plants on earth. Proteins encoded by ancestral chloroplast-endogenous genes were transferred to the nucleus during the endosymbiotic evolution and originated this communication, which is mainly dependent on specific transit-peptides. However, the identification of nuclear-encoded proteins targeted to the chloroplast lacking these canonical signals suggests the existence of an alternative cellular pathway tuning this metabolic crosstalk. Non-coding RNAS (NcRNAs are increasingly recognized as regulators of gene expression as they play roles previously believed to correspond to proteins. Avsunviroidae family viroids are the only noncoding functional RNAs that have been reported to traffic inside the chloroplasts. Elucidating mechanisms used by these pathogens to enter this organelle will unearth novel transport pathways in plant cells. Here we show that a viroid-derived NcRNA acting as a 5'UTR-end mediates the functional import of Green Fluorescent Protein (GFP mRNA into chloroplast. This claim is supported by the observation at confocal microscopy of a selective accumulation of GFP in the chloroplast of the leaves expressing the chimeric vd-5'UTR/GFP and by the detection of the GFP mRNA in chloroplasts isolated from cells expressing this construct. These results support the existence of an alternative signaling mechanism in plants between the host cell and chloroplasts, where an ncRNA functions as a key regulatory molecule to control the accumulation of nuclear-encoded proteins in this organelle. In addition, our findings provide a conceptual framework to develop new biotechnological tools in systems using plant chloroplast as bioreactors. Finally, viroids of the family Avsunviroidae have probably evolved to subvert this signaling mechanism to regulate their differential traffic into the chloroplast of infected cells.

  8. Maternal inheritance of mitochondrial genomes and complex inheritance of chloroplast genomes in Actinidia Lind.: evidences from interspecific crosses.

    Science.gov (United States)

    Li, Dawei; Qi, Xiaoqiong; Li, Xinwei; Li, Li; Zhong, Caihong; Huang, Hongwen

    2013-04-01

    The inheritance pattern of chloroplast and mitochondria is a critical determinant in studying plant phylogenetics, biogeography and hybridization. To better understand chloroplast and mitochondrial inheritance patterns in Actinidia (traditionally called kiwifruit), we performed 11 artificial interspecific crosses and studied the ploidy levels, morphology, and sequence polymorphisms of chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) of parents and progenies. Sequence analysis showed that the mtDNA haplotypes of F1 hybrids entirely matched those of the female parents, indicating strictly maternal inheritance of Actinidia mtDNA. However, the cpDNA haplotypes of F1 hybrids, which were predominantly derived from the male parent (9 crosses), could also originate from the mother (1 cross) or both parents (1 cross), demonstrating paternal, maternal, and biparental inheritance of Actinidia cpDNA. The inheritance patterns of the cpDNA in Actinidia hybrids differed according to the species and genotypes chosen to be the parents, rather than the ploidy levels of the parent selected. The multiple inheritance modes of Actinidia cpDNA contradicted the strictly paternal inheritance patterns observed in previous studies, and provided new insights into the use of cpDNA markers in studies of phylogenetics, biogeography and introgression in Actinidia and other angiosperms.

  9. Expressing PHB synthetic genes through chloroplast genetic engineering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Chloroplast integration and expression vector containing expression cassettes for phbB, phbA, phbC and aadA genes was constructed and bombarded into the tobacco chloroplast genome. Transplastomic plants were analyzed with PCR and Southern blot. Their homoplastomy was also judged. Northern dot and RT-PCR analysis were employed to investigate transgene expression at transcriptional level. The results indicate that the chloroplast transformation system is compatible for poly-3-hydroxybutyrate (PHB) production.

  10. Complex chloroplast RNA metabolism: just debugging the genetic programme?

    Directory of Open Access Journals (Sweden)

    Schmitz-Linneweber Christian

    2008-08-01

    Full Text Available Abstract Background The gene expression system of chloroplasts is far more complex than that of their cyanobacterial progenitor. This gain in complexity affects in particular RNA metabolism, specifically the transcription and maturation of RNA. Mature chloroplast RNA is generated by a plethora of nuclear-encoded proteins acquired or recruited during plant evolution, comprising additional RNA polymerases and sigma factors, and sequence-specific RNA maturation factors promoting RNA splicing, editing, end formation and translatability. Despite years of intensive research, we still lack a comprehensive explanation for this complexity. Results We inspected the available literature and genome databases for information on components of RNA metabolism in land plant chloroplasts. In particular, new inventions of chloroplast-specific mechanisms and the expansion of some gene/protein families detected in land plants lead us to suggest that the primary function of the additional nuclear-encoded components found in chloroplasts is the transgenomic suppression of point mutations, fixation of which occurred due to an enhanced genetic drift exhibited by chloroplast genomes. We further speculate that a fast evolution of transgenomic suppressors occurred after the water-to-land transition of plants. Conclusion Our inspections indicate that several chloroplast-specific mechanisms evolved in land plants to remedy point mutations that occurred after the water-to-land transition. Thus, the complexity of chloroplast gene expression evolved to guarantee the functionality of chloroplast genetic information and may not, with some exceptions, be involved in regulatory functions.

  11. Bizonoplast, a unique chloroplast in the epidermal cells of microphylls in the shade plant Selaginella erythropus (Selaginellaceae).

    Science.gov (United States)

    Sheue, Chiou-Rong; Sarafis, Vassilios; Kiew, Ruth; Liu, Ho-Yih; Salino, Alexandre; Kuo-Huang, Ling-Long; Yang, Yuen-Po; Tsai, Chi-Chu; Lin, Chun-Hung; Yong, Jean W H; Ku, Maurice S B

    2007-12-01

    Study of the unique leaf anatomy and chloroplast structure in shade-adapted plants will aid our understanding of how plants use light efficiently in low light environments. Unusual chloroplasts in terms of size and thylakoid membrane stacking have been described previously in several deep-shade plants. In this study, a single giant cup-shaped chloroplast, termed a bizonoplast, was found in the abaxial epidermal cells of the dorsal microphylls and the adaxial epidermal cells of the ventral microphylls in the deep-shade spike moss Selaginella erythropus. Bizonoplasts are dimorphic in ultrastructure: the upper zone is occupied by numerous layers of 2-4 stacked thylakoid membranes while the lower zone contains both unstacked stromal thylakoids and thylakoid lamellae stacked in normal grana structure oriented in different directions. In contrast, other cell types in the microphylls contain chloroplasts with typical structure. This unique chloroplast has not been reported from any other species. The enlargement of epidermal cells into funnel-shaped, photosynthetic cells coupled with specific localization of a large bizonoplast in the lower part of the cells and differential modification in ultrastructure within the chloroplast may allow the plant to better adapt to low light. Further experiments are required to determine whether this shade-adapted organism derives any evolutionary or ecophysiological fitness from these unique chloroplasts.

  12. Changes in chloroplast ultrastructure in some high-alpine plants: adaptation to metabolic demands and climate?

    Science.gov (United States)

    Lütz, C; Engel, L

    2007-01-01

    The cytology of leaf cells from five different high-alpine plants was studied and compared with structures in chloroplasts from the typical high-alpine plant Ranunculus glacialis previously described as having frequent envelope plus stroma protrusions. The plants under investigation ranged from subalpine/alpine Geum montanum through alpine Geum reptans, Poa alpina var. vivipara, and Oxyria digyna to nival Cerastium uniflorum and R. glacialis. The general leaf structure (by light microscopy) and leaf mesophyll cell ultrastructure (by transmission electron microscopy [TEM]) did not show any specialized structures unique to these mountain species. However, chloroplast protrusion formation could be found in G. reptans and, to a greater extent, in O. digyna. The other species exhibited only a low percentage of such chloroplast structural changes. Occurrence of protrusions in samples of G. montanum and O. digyna growing in a mild climate at about 50 m above sea level was drastically reduced. Serial TEM sections of O. digyna cells showed that the protrusions can appear as rather broad and long appendices of plastids, often forming pocketlike structures where mitochondria and microbodies are in close vicinity to the plastid and to each other. It is suggested that some high-alpine plants may form such protrusions to facilitate fast exchange of molecules between cytoplasm and plastid as an adaptation to the short, often unfavorable vegetation period in the Alps, while other species may have developed different types of adaptation that are not expressed in ultrastructural changes of the plastids.

  13. Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA.

    Science.gov (United States)

    Kane, Nolan; Sveinsson, Saemundur; Dempewolf, Hannes; Yang, Ji Yong; Zhang, Dapeng; Engels, Johannes M M; Cronk, Quentin

    2012-02-01

    To reliably identify lineages below the species level such as subspecies or varieties, we propose an extension to DNA-barcoding using next-generation sequencing to produce whole organellar genomes and substantial nuclear ribosomal sequence. Because this method uses much longer versions of the traditional DNA-barcoding loci in the plastid and ribosomal DNA, we call our approach ultra-barcoding (UBC). We used high-throughput next-generation sequencing to scan the genome and generate reliable sequence of high copy number regions. Using this method, we examined whole plastid genomes as well as nearly 6000 bases of nuclear ribosomal DNA sequences for nine genotypes of Theobroma cacao and an individual of the related species T. grandiflorum, as well as an additional publicly available whole plastid genome of T. cacao. All individuals of T. cacao examined were uniquely distinguished, and evidence of reticulation and gene flow was observed. Sequence variation was observed in some of the canonical barcoding regions between species, but other regions of the chloroplast were more variable both within species and between species, as were ribosomal spacers. Furthermore, no single region provides the level of data available using the complete plastid genome and rDNA. Our data demonstrate that UBC is a viable, increasingly cost-effective approach for reliably distinguishing varieties and even individual genotypes of T. cacao. This approach shows great promise for applications where very closely related or interbreeding taxa must be distinguished.

  14. Completion of Eight Gynostemma BL. (Cucurbitaceae Chloroplast Genomes: Characterization, Comparative Analysis, and Phylogenetic Relationships

    Directory of Open Access Journals (Sweden)

    Xiao Zhang

    2017-09-01

    Full Text Available Gynostemma BL., belonging to the family Cucurbitaceae, is a genus containing 17 creeping herbaceous species mainly distributed in East Asia. It can be divided into two subgenera based on different fruit morphology. Herein, we report eight complete chloroplast genome sequences of the genus Gynostemma, which were obtained by Illumina paired-end sequencing, assembly, and annotation. The length of the eight complete cp genomes ranged from 157,576 bp (G. pentaphyllum to 158,273 bp (G. laxiflorum. Each encoded 133 genes, including 87 protein-coding genes, 37 tRNA genes, eight rRNA genes, and one pseudogene. The four types of repeated sequences had been discovered and indicated that the repeated structure for species in the Subgen. Triostellum was greater than that for species in the Subgen. Gynostemma. The percentage of variation of the eight cp genomes in different regions were calculated, which demonstrated that the coding and inverted repeats regions were highly conserved. Phylogenetic analysis based on Bayesian inference and maximum likelihood methods strongly supported the phylogenetic position of the genus Gynostemma as a member of family Cucurbitaceae. The phylogenetic relationships among the eight species were clearly resolved using the complete cp genome sequences in this study. It will also provide potential molecular markers and candidate DNA barcodes for future studies and enrich the valuable complete cp genome resources of Cucurbitaceae.

  15. Comparative chloroplast genomes of eleven Schima (Theaceae) species: Insights into DNA barcoding and phylogeny.

    Science.gov (United States)

    Yu, Xiang-Qin; Drew, Bryan T; Yang, Jun-Bo; Gao, Lian-Ming; Li, De-Zhu

    2017-01-01

    Schima is an ecologically and economically important woody genus in tea family (Theaceae). Unresolved species delimitations and phylogenetic relationships within Schima limit our understanding of the genus and hinder utilization of the genus for economic purposes. In the present study, we conducted comparative analysis among the complete chloroplast (cp) genomes of 11 Schima species. Our results indicate that Schima cp genomes possess a typical quadripartite structure, with conserved genomic structure and gene order. The size of the Schima cp genome is about 157 kilo base pairs (kb). They consistently encode 114 unique genes, including 80 protein-coding genes, 30 tRNAs, and 4 rRNAs, with 17 duplicated in the inverted repeat (IR). These cp genomes are highly conserved and do not show obvious expansion or contraction of the IR region. The percent variability of the 68 coding and 93 noncoding (>150 bp) fragments is consistently less than 3%. The seven most widely touted DNA barcode regions as well as one promising barcode candidate showed low sequence divergence. Eight mutational hotspots were identified from the 11 cp genomes. These hotspots may potentially be useful as specific DNA barcodes for species identification of Schima. The 58 cpSSR loci reported here are complementary to the microsatellite markers identified from the nuclear genome, and will be leveraged for further population-level studies. Phylogenetic relationships among the 11 Schima species were resolved with strong support based on the cp genome data set, which corresponds well with the species distribution pattern. The data presented here will serve as a foundation to facilitate species identification, DNA barcoding and phylogenetic reconstructions for future exploration of Schima.

  16. Interaction between photosynthetic electron transport and chloroplast sinks triggers protection and signalling important for plant productivity

    OpenAIRE

    Gollan, Peter J.; LIMA-MELO,YUGO; Tiwari, Arjun; Tikkanen, Mikko; Aro, Eva-Mari

    2017-01-01

    The photosynthetic light reactions provide energy that is consumed and stored in electron sinks, the products of photosynthesis. A balance between light reactions and electron consumption in the chloroplast is vital for plants, and is protected by several photosynthetic regulation mechanisms. Photosystem I (PSI) is particularly susceptible to photoinhibition when these factors become unbalanced, which can occur in low temperatures or in high light. In this study we used the pgr5 Arabidopsis m...

  17. Expression and membrane-targeting of an active plant cytochrome P450 in the chloroplast of the green alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Gangl, Doris; Zedler, Julie A Z; Włodarczyk, Artur; Jensen, Poul Erik; Purton, Saul; Robinson, Colin

    2015-02-01

    The unicellular green alga Chlamydomonas reinhardtii has potential as a cell factory for the production of recombinant proteins and other compounds, but mainstream adoption has been hindered by a scarcity of genetic tools and a need to identify products that can be generated in a cost-effective manner. A promising strategy is to use algal chloroplasts as a site for synthesis of high value bioactive compounds such as diterpenoids since these are derived from metabolic building blocks that occur naturally within the organelle. However, synthesis of these complex plant metabolites requires the introduction of membrane-associated enzymes including cytochrome P450 enzymes (P450s). Here, we show that a gene (CYP79A1) encoding a model P450 can be introduced into the C. reinhardtii chloroplast genome using a simple transformation system. The gene is stably expressed and the P450 is efficiently targeted into chloroplast membranes by means of its endogenous N-terminal anchor domain, where it is active and accounts for 0.4% of total cell protein. These results provide proof of concept for the introduction of diterpenoid synthesis pathways into the chloroplast of C. reinhardtii.

  18. Identifying the Basal Angiosperm Node in Chloroplast GenomePhylogenies: Sampling One's Way Out of the Felsenstein Zone

    Energy Technology Data Exchange (ETDEWEB)

    Leebens-Mack, Jim; Raubeson, Linda A.; Cui, Liying; Kuehl,Jennifer V.; Fourcade, Matthew H.; Chumley, Timothy W.; Boore, JeffreyL.; Jansen, Robert K.; dePamphilis, Claude W.

    2005-05-27

    While there has been strong support for Amborella and Nymphaeales (water lilies) as branching from basal-most nodes in the angiosperm phylogeny, this hypothesis has recently been challenged by phylogenetic analyses of 61 protein-coding genes extracted from the chloroplast genome sequences of Amborella, Nymphaea and 12 other available land plant chloroplast genomes. These character-rich analyses placed the monocots, represented by three grasses (Poaceae), as sister to all other extant angiosperm lineages. We have extracted protein-coding regions from draft sequences for six additional chloroplast genomes to test whether this surprising result could be an artifact of long-branch attraction due to limited taxon sampling. The added taxa include three monocots (Acorus, Yucca and Typha), a water lily (Nuphar), a ranunculid(Ranunculus), and a gymnosperm (Ginkgo). Phylogenetic analyses of the expanded DNA and protein datasets together with microstructural characters (indels) provided unambiguous support for Amborella and the Nymphaeales as branching from the basal-most nodes in the angiospermphylogeny. However, their relative positions proved to be dependent on method of analysis, with parsimony favoring Amborella as sister to all other angiosperms, and maximum likelihood and neighbor-joining methods favoring an Amborella + Nympheales clade as sister. The maximum likelihood phylogeny supported the later hypothesis, but the likelihood for the former hypothesis was not significantly different. Parametric bootstrap analysis, single gene phylogenies, estimated divergence dates and conflicting in del characters all help to illuminate the nature of the conflict in resolution of the most basal nodes in the angiospermphylogeny. Molecular dating analyses provided median age estimates of 161 mya for the most recent common ancestor of all extant angiosperms and 145 mya for the most recent common ancestor of monocots, magnoliids andeudicots. Whereas long sequences reduce variance in

  19. Maternal inheritance of chloroplast genome and paternal inheritance of mitochondrial genome in bananas (Musa acuminata).

    Science.gov (United States)

    Fauré, S; Noyer, J L; Carreel, F; Horry, J P; Bakry, F; Lanaud, C

    1994-03-01

    Restriction fragment length polymorphisms (RFLPs) were used as markers to determine the transmission of cytoplasmic DNA in diploid banana crosses. Progenies from two controlled crosses were studied with heterologous cytoplasmic probes. This analysis provided evidence for a strong bias towards maternal transmission of chloroplast DNA and paternal transmission of mitochondrial DNA in Musa acuminata. These results suggest the existence of two separate mechanisms of organelle transmission and selection, but no model to explain this can be proposed at the present time. Knowledge of the organelle mode of inheritance constitutes an important point for phylogeny analyses in bananas and may offer a powerful tool to confirm hybrid origins.

  20. In silico analysis of Simple Sequence Repeats from chloroplast genomes of Solanaceae species

    Directory of Open Access Journals (Sweden)

    Evandro Vagner Tambarussi

    2009-01-01

    Full Text Available The availability of chloroplast genome (cpDNA sequences of Atropa belladonna, Nicotiana sylvestris, N.tabacum, N. tomentosiformis, Solanum bulbocastanum, S. lycopersicum and S. tuberosum, which are Solanaceae species,allowed us to analyze the organization of cpSSRs in their genic and intergenic regions. In general, the number of cpSSRs incpDNA ranged from 161 in S. tuberosum to 226 in N. tabacum, and the number of intergenic cpSSRs was higher than geniccpSSRs. The mononucleotide repeats were the most frequent in studied species, but we also identified di-, tri-, tetra-, pentaandhexanucleotide repeats. Multiple alignments of all cpSSRs sequences from Solanaceae species made the identification ofnucleotide variability possible and the phylogeny was estimated by maximum parsimony. Our study showed that the plastomedatabase can be exploited for phylogenetic analysis and biotechnological approaches.

  1. Phylogenetic Relationships of the Fern Cyrtomium falcatum (Dryopteridaceae) from Dokdo Island Based on Chloroplast Genome Sequencing.

    Science.gov (United States)

    Raman, Gurusamy; Choi, Kyoung Su; Park, SeonJoo

    2016-12-02

    Cyrtomium falcatum is a popular ornamental fern cultivated worldwide. Native to the Korean Peninsula, Japan, and Dokdo Island in the Sea of Japan, it is the only fern present on Dokdo Island. We isolated and characterized the chloroplast (cp) genome of C. falcatum, and compared it with those of closely related species. The genes trnV-GAC and trnV-GAU were found to be present within the cp genome of C. falcatum, whereas trnP-GGG and rpl21 were lacking. Moreover, cp genomes of Cyrtomium devexiscapulae and Adiantum capillus-veneris lack trnP-GGG and rpl21, suggesting these are not conserved among angiosperm cp genomes. The deletion of trnR-UCG, trnR-CCG, and trnSeC in the cp genomes of C. falcatum and other eupolypod ferns indicates these genes are restricted to tree ferns, non-core leptosporangiates, and basal ferns. The C. falcatum cp genome also encoded ndhF and rps7, with GUG start codons that were only conserved in polypod ferns, and it shares two significant inversions with other ferns, including a minor inversion of the trnD-GUC region and an approximate 3 kb inversion of the trnG-trnT region. Phylogenetic analyses showed that Equisetum was found to be a sister clade to Psilotales-Ophioglossales with a 100% bootstrap (BS) value. The sister relationship between Pteridaceae and eupolypods was also strongly supported by a 100% BS, but Bayesian molecular clock analyses suggested that C. falcatum diversified in the mid-Paleogene period (45.15 ± 4.93 million years ago) and might have moved from Eurasia to Dokdo Island.

  2. Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts.

    Science.gov (United States)

    Back, Kyoungwhan; Tan, Dun-Xian; Reiter, Russel J

    2016-11-01

    Melatonin is an animal hormone as well as a signaling molecule in plants. It was first identified in plants in 1995, and almost all enzymes responsible for melatonin biosynthesis had already been characterized in these species. Melatonin biosynthesis from tryptophan requires four-step reactions. However, six genes, that is, TDC, TPH, T5H, SNAT, ASMT, and COMT, have been implicated in the synthesis of melatonin in plants, suggesting the presence of multiple pathways. Two major pathways have been proposed based on the enzyme kinetics: One is the tryptophan/tryptamine/serotonin/N-acetylserotonin/melatonin pathway, which may occur under normal growth conditions; the other is the tryptophan/tryptamine/serotonin/5-methoxytryptamine/melatonin pathway, which may occur when plants produce large amounts of serotonin, for example, upon senescence. The melatonin biosynthetic capacity associated with conversion of tryptophan to serotonin is much higher than that associated with conversion of serotonin to melatonin, which yields a low level of melatonin synthesis in plants. Many melatonin intermediates are produced in various subcellular compartments, such as the cytoplasm, endoplasmic reticulum, and chloroplasts, which either facilitates or impedes the subsequent enzymatic steps. Depending on the pathways, the final subcellular sites of melatonin synthesis vary at either the cytoplasm or chloroplasts, which may differentially affect the mode of action of melatonin in plants. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Dynamics of Chloroplast Translation during Chloroplast Differentiation in Maize.

    Directory of Open Access Journals (Sweden)

    Prakitchai Chotewutmontri

    2016-07-01

    Full Text Available Chloroplast genomes in land plants contain approximately 100 genes, the majority of which reside in polycistronic transcription units derived from cyanobacterial operons. The expression of chloroplast genes is integrated into developmental programs underlying the differentiation of photosynthetic cells from non-photosynthetic progenitors. In C4 plants, the partitioning of photosynthesis between two cell types, bundle sheath and mesophyll, adds an additional layer of complexity. We used ribosome profiling and RNA-seq to generate a comprehensive description of chloroplast gene expression at four stages of chloroplast differentiation, as displayed along the maize seedling leaf blade. The rate of protein output of most genes increases early in development and declines once the photosynthetic apparatus is mature. The developmental dynamics of protein output fall into several patterns. Programmed changes in mRNA abundance make a strong contribution to the developmental shifts in protein output, but output is further adjusted by changes in translational efficiency. RNAs with prioritized translation early in development are largely involved in chloroplast gene expression, whereas those with prioritized translation in photosynthetic tissues are generally involved in photosynthesis. Differential gene expression in bundle sheath and mesophyll chloroplasts results primarily from differences in mRNA abundance, but differences in translational efficiency amplify mRNA-level effects in some instances. In most cases, rates of protein output approximate steady-state protein stoichiometries, implying a limited role for proteolysis in eliminating unassembled or damaged proteins under non-stress conditions. Tuned protein output results from gene-specific trade-offs between translational efficiency and mRNA abundance, both of which span a large dynamic range. Analysis of ribosome footprints at sites of RNA editing showed that the chloroplast translation machinery

  4. Dynamics of Chloroplast Translation during Chloroplast Differentiation in Maize.

    Science.gov (United States)

    Chotewutmontri, Prakitchai; Barkan, Alice

    2016-07-01

    Chloroplast genomes in land plants contain approximately 100 genes, the majority of which reside in polycistronic transcription units derived from cyanobacterial operons. The expression of chloroplast genes is integrated into developmental programs underlying the differentiation of photosynthetic cells from non-photosynthetic progenitors. In C4 plants, the partitioning of photosynthesis between two cell types, bundle sheath and mesophyll, adds an additional layer of complexity. We used ribosome profiling and RNA-seq to generate a comprehensive description of chloroplast gene expression at four stages of chloroplast differentiation, as displayed along the maize seedling leaf blade. The rate of protein output of most genes increases early in development and declines once the photosynthetic apparatus is mature. The developmental dynamics of protein output fall into several patterns. Programmed changes in mRNA abundance make a strong contribution to the developmental shifts in protein output, but output is further adjusted by changes in translational efficiency. RNAs with prioritized translation early in development are largely involved in chloroplast gene expression, whereas those with prioritized translation in photosynthetic tissues are generally involved in photosynthesis. Differential gene expression in bundle sheath and mesophyll chloroplasts results primarily from differences in mRNA abundance, but differences in translational efficiency amplify mRNA-level effects in some instances. In most cases, rates of protein output approximate steady-state protein stoichiometries, implying a limited role for proteolysis in eliminating unassembled or damaged proteins under non-stress conditions. Tuned protein output results from gene-specific trade-offs between translational efficiency and mRNA abundance, both of which span a large dynamic range. Analysis of ribosome footprints at sites of RNA editing showed that the chloroplast translation machinery does not generally

  5. Translational genomics for plant breeding with the genome sequence explosion.

    Science.gov (United States)

    Kang, Yang Jae; Lee, Taeyoung; Lee, Jayern; Shim, Sangrea; Jeong, Haneul; Satyawan, Dani; Kim, Moon Young; Lee, Suk-Ha

    2016-04-01

    The use of next-generation sequencers and advanced genotyping technologies has propelled the field of plant genomics in model crops and plants and enhanced the discovery of hidden bridges between genotypes and phenotypes. The newly generated reference sequences of unstudied minor plants can be annotated by the knowledge of model plants via translational genomics approaches. Here, we reviewed the strategies of translational genomics and suggested perspectives on the current databases of genomic resources and the database structures of translated information on the new genome. As a draft picture of phenotypic annotation, translational genomics on newly sequenced plants will provide valuable assistance for breeders and researchers who are interested in genetic studies.

  6. Genomic Aspects of Research Involving Polyploid Plants

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaohan [ORNL; Ye, Chuyu [ORNL; Tschaplinski, Timothy J [ORNL; Wullschleger, Stan D [ORNL; Tuskan, Gerald A [ORNL

    2011-01-01

    Almost all extant plant species have spontaneously doubled their genomes at least once in their evolutionary histories, resulting in polyploidy which provided a rich genomic resource for evolutionary processes. Moreover, superior polyploid clones have been created during the process of crop domestication. Polyploid plants generated by evolutionary processes and/or crop domestication have been the intentional or serendipitous focus of research dealing with the dynamics and consequences of genome evolution. One of the new trends in genomics research is to create synthetic polyploid plants which provide materials for studying the initial genomic changes/responses immediately after polyploid formation. Polyploid plants are also used in functional genomics research to study gene expression in a complex genomic background. In this review, we summarize the recent progress in genomics research involving ancient, young, and synthetic polyploid plants, with a focus on genome size evolution, genomics diversity, genomic rearrangement, genetic and epigenetic changes in duplicated genes, gene discovery, and comparative genomics. Implications on plant sciences including evolution, functional genomics, and plant breeding are presented. It is anticipated that polyploids will be a regular subject of genomics research in the foreseeable future as the rapid advances in DNA sequencing technology create unprecedented opportunities for discovering and monitoring genomic and transcriptomic changes in polyploid plants. The fast accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.

  7. Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing

    Directory of Open Access Journals (Sweden)

    Zdepski Anna

    2011-05-01

    Full Text Available Abstract Background High throughput sequencing (HTS technologies have revolutionized the field of genomics by drastically reducing the cost of sequencing, making it feasible for individual labs to sequence or resequence plant genomes. Obtaining high quality, high molecular weight DNA from plants poses significant challenges due to the high copy number of chloroplast and mitochondrial DNA, as well as high levels of phenolic compounds and polysaccharides. Multiple methods have been used to isolate DNA from plants; the CTAB method is commonly used to isolate total cellular DNA from plants that contain nuclear DNA, as well as chloroplast and mitochondrial DNA. Alternatively, DNA can be isolated from nuclei to minimize chloroplast and mitochondrial DNA contamination. Results We describe optimized protocols for isolation of nuclear DNA from eight different plant species encompassing both monocot and eudicot species. These protocols use nuclei isolation to minimize chloroplast and mitochondrial DNA contamination. We also developed a protocol to determine the number of chloroplast and mitochondrial DNA copies relative to the nuclear DNA using quantitative real time PCR (qPCR. We compared DNA isolated from nuclei to total cellular DNA isolated with the CTAB method. As expected, DNA isolated from nuclei consistently yielded nuclear DNA with fewer chloroplast and mitochondrial DNA copies, as compared to the total cellular DNA prepared with the CTAB method. This protocol will allow for analysis of the quality and quantity of nuclear DNA before starting a plant whole genome sequencing or resequencing experiment. Conclusions Extracting high quality, high molecular weight nuclear DNA in plants has the potential to be a bottleneck in the era of whole genome sequencing and resequencing. The methods that are described here provide a framework for researchers to extract and quantify nuclear DNA in multiple types of plants.

  8. The P6 protein of Cauliflower mosaic virus interacts with CHUP1, a plant protein which moves chloroplasts on actin microfilaments.

    Science.gov (United States)

    Angel, Carlos A; Lutz, Lindy; Yang, Xiaohua; Rodriguez, Andres; Adair, Adam; Zhang, Yu; Leisner, Scott M; Nelson, Richard S; Schoelz, James E

    2013-09-01

    The gene VI product, protein 6 (P6), of Cauliflower mosaic virus (CaMV) assembles into large, amorphous inclusion bodies (IBs) that are considered sites for viral protein synthesis and viral genome replication and encapsidation. P6 IBs align with microfilaments and require them for intracellular trafficking, a result implying that P6 IBs function to move virus complexes or virions within the cell to support virus physiology. Through a yeast two-hybrid screen we determined that CHUP1, a plant protein allowing chloroplast transport through an interaction with chloroplast and microfilament, interacts with P6. The interaction between CHUP1 and P6 was confirmed through colocalization in vivo and co-immunoprecipitation assays. A truncated CHUP1 fused with enhanced cyan fluorescent protein, unable to transport chloroplasts, inhibited intracellular movement of P6-Venus inclusions. Silencing of CHUP1 in N. edwardsonii impaired the ability of CaMV to infect plants. The findings suggest that CHUP1 supports CaMV infection through an interaction with P6.

  9. Interaction between photosynthetic electron transport and chloroplast sinks triggers protection and signalling important for plant productivity.

    Science.gov (United States)

    Gollan, Peter J; Lima-Melo, Yugo; Tiwari, Arjun; Tikkanen, Mikko; Aro, Eva-Mari

    2017-09-26

    The photosynthetic light reactions provide energy that is consumed and stored in electron sinks, the products of photosynthesis. A balance between light reactions and electron consumption in the chloroplast is vital for plants, and is protected by several photosynthetic regulation mechanisms. Photosystem I (PSI) is particularly susceptible to photoinhibition when these factors become unbalanced, which can occur in low temperatures or in high light. In this study we used the pgr5 Arabidopsis mutant that lacks ΔpH-dependent regulation of photosynthetic electron transport as a model to study the consequences of PSI photoinhibition under high light. We found that PSI damage severely inhibits carbon fixation and starch accumulation, and attenuates enzymatic oxylipin synthesis and chloroplast regulation of nuclear gene expression after high light stress. This work shows that modifications to regulation of photosynthetic light reactions, which may be designed to improve yield in crop plants, can negatively impact metabolism and signalling, and thereby threaten plant growth and stress tolerance.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Authors.

  10. The chloroplast genome sequence of the green alga Leptosira terrestris: multiple losses of the inverted repeat and extensive genome rearrangements within the Trebouxiophyceae

    Directory of Open Access Journals (Sweden)

    Turmel Monique

    2007-07-01

    Full Text Available Abstract Background In the Chlorophyta – the green algal phylum comprising the classes Prasinophyceae, Ulvophyceae, Trebouxiophyceae and Chlorophyceae – the chloroplast genome displays a highly variable architecture. While chlorophycean chloroplast DNAs (cpDNAs deviate considerably from the ancestral pattern described for the prasinophyte Nephroselmis olivacea, the degree of remodelling sustained by the two ulvophyte cpDNAs completely sequenced to date is intermediate relative to those observed for chlorophycean and trebouxiophyte cpDNAs. Chlorella vulgaris (Chlorellales is currently the only photosynthetic trebouxiophyte whose complete cpDNA sequence has been reported. To gain insights into the evolutionary trends of the chloroplast genome in the Trebouxiophyceae, we sequenced cpDNA from the filamentous alga Leptosira terrestris (Ctenocladales. Results The 195,081-bp Leptosira chloroplast genome resembles the 150,613-bp Chlorella genome in lacking a large inverted repeat (IR but differs greatly in gene order. Six of the conserved genes present in Chlorella cpDNA are missing from the Leptosira gene repertoire. The 106 conserved genes, four introns and 11 free standing open reading frames (ORFs account for 48.3% of the genome sequence. This is the lowest gene density yet observed among chlorophyte cpDNAs. Contrary to the situation in Chlorella but similar to that in the chlorophycean Scenedesmus obliquus, the gene distribution is highly biased over the two DNA strands in Leptosira. Nine genes, compared to only three in Chlorella, have significantly expanded coding regions relative to their homologues in ancestral-type green algal cpDNAs. As observed in chlorophycean genomes, the rpoB gene is fragmented into two ORFs. Short repeats account for 5.1% of the Leptosira genome sequence and are present mainly in intergenic regions. Conclusion Our results highlight the great plasticity of the chloroplast genome in the Trebouxiophyceae and indicate

  11. Chloroplastic and stomatal aspects of ozone-induced reduction of net photosynthesis in plants

    Energy Technology Data Exchange (ETDEWEB)

    Torsethaugen, Gro

    1998-09-01

    The present thesis relates to ozone-induced reduction of photosynthesis in plants. As a photochemical oxidant O{sub 3} is formed by the interaction of hydrocarbons, nitrogen oxides and oxygen in sunlight. Ozone (O{sub 3}) is the most phytotoxic of all the air pollutants and is known to reduce plant growth and net photosynthesis, cause stomatal closure, induce visible injury, accelerate senescence and induce or inhibit transcription of a variety of genes with a corresponding increase/decrease in protein products. The underlying cellular mechanisms for many of these changes are unknown. Following fields are investigated: Ozone-induced reduction of net photosynthesis; ozone and the photosynthetic apparatus in the chloroplasts; ozone and stomata; ozone effects on plant membranes; protection against ozone injury in plants. 249 refs., 22 figs., 4 tabs.

  12. Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions.

    Science.gov (United States)

    Lee, Hae-Lim; Jansen, Robert K; Chumley, Timothy W; Kim, Ki-Joong

    2007-05-01

    The chloroplast (cp) DNA sequence of Jasminum nudiflorum (Oleaceae-Jasmineae) is completed and compared with the large single-copy region sequences from 6 related species. The cp genomes of the tribe Jasmineae (Jasminum and Menodora) show several distinctive rearrangements, including inversions, gene duplications, insertions, inverted repeat expansions, and gene and intron losses. The ycf4-psaI region in Jasminum section Primulina was relocated as a result of 2 overlapping inversions of 21,169 and 18,414 bp. The 1st, larger inversion is shared by all members of the Jasmineae indicating that it occurred in the common ancestor of the tribe. Similar rearrangements were also identified in the cp genome of Menodora. In this case, 2 fragments including ycf4 and rps4-trnS-ycf3 genes were moved by 2 additional inversions of 14 and 59 kb that are unique to Menodora. Other rearrangements in the Oleaceae are confined to certain regions of the Jasminum and Menodora cp genomes, including the presence of highly repeated sequences and duplications of coding and noncoding sequences that are inserted into clpP and between rbcL and psaI. These insertions are correlated with the loss of 2 introns in clpP and a serial loss of segments of accD. The loss of the accD gene and clpP introns in both the monocot family Poaceae and the eudicot family Oleaceae are clearly independent evolutionary events. However, their genome organization is surprisingly similar despite the distant relationship of these 2 angiosperm families.

  13. The Chloroplast Genome of Euglena mutabilis-Cluster Arrangement, Intron Analysis, and Intrageneric Trends.

    Science.gov (United States)

    Dabbagh, Nadja; Preisfeld, Angelika

    2017-01-01

    A comparative analysis of the chloroplast genome of Euglena mutabilis underlined a high diversity in the evolution of plastids in euglenids. Gene clusters in more derived Euglenales increased in complexity with only a few, but remarkable changes in the genus Euglena. Euglena mutabilis differed from other Euglena species in a mirror-inverted arrangement of 12 from 15 identified clusters, making it very likely that the emergence at the base of the genus Euglena, which has been considered a long branch artifact, is truly a probable position. This was corroborated by many similarities in gene arrangement and orientation with Strombomonas and Monomorphina, rendering the genome organization of E. mutabilis in certain clusters as plesiomorphic feature. By RNA analysis exact exon-intron boundaries and the type of the 77 introns identified were mostly determined unambiguously. A detailed intron study of psbC pointed at two important issues: First, the number of introns varied even between species, and no trend from few to many introns could be observed. Second, mat1 was localized in Eutreptiales exclusively in intron 1, and mat2 was not identified. With the emergence of Euglenaceae in most species, a new intron containing mat2 inserted in front of the previous intron 1 and thereby became intron 2 with mat1.

  14. Effects of plant density on the photosynthetic and chloroplast characteristics of maize under high-yielding conditions

    Science.gov (United States)

    Ren, Baizhao; Liu, Wei; Zhang, Jiwang; Dong, Shuting; Liu, Peng; Zhao, Bin

    2017-04-01

    Plant density has been recognized as a major factor determining the grain yield. The photosynthetic performance changes as the density increases. The main objective of this research was to evaluate responses of photosynthetic performance and chloroplast ultrastructure to planting densities in two summer maize ( Zea mays L.) hybrids Denghai661 (DH661) and Nongda108 (ND108). DH661 was planted at densities of 30,000, 45,000, 60,000, 75,000, 90,000, 105,000, 120,000, or 135,000 plants ha-1. ND108 was planted at densities of 30,000, 45,000, 60,000, 75,000, or 90,000 plants ha-1. Research variables included leaf area, grain yield, chlorophyll content, leaf gas exchange parameters, number of chloroplasts, and chloroplast ultrastructure. As plant density increased, chlorophyll a and b content significantly decreased; carotenoids initially decreased and then increased; the net photosynthetic rate during each growth period significantly decreased; the membrane structure of mesophyll cells was gradually damaged; the number of chloroplasts significantly decreased; the external form of chloroplasts shifted from long and oval to elliptical or circular; the number of grana significantly decreased, while the number of grana lamellae increased; grana gradually became hypogenetic and eventually dissolved; plot yield increased; and yield per plant significantly decreased. The yield per plant of DH661 at 135,000 plants ha-1 and that of ND108 at 90,000 plants ha-1 decreased by 65.8 and 42.5%, respectively, compared with those at 30,000 plants ha-1.

  15. The KAC family of kinesin-like proteins is essential for the association of chloroplasts with the plasma membrane in land plants.

    Science.gov (United States)

    Suetsugu, Noriyuki; Sato, Yoshikatsu; Tsuboi, Hidenori; Kasahara, Masahiro; Imaizumi, Takato; Kagawa, Takatoshi; Hiwatashi, Yuji; Hasebe, Mitsuyasu; Wada, Masamitsu

    2012-11-01

    Chloroplasts require association with the plasma membrane for movement in response to light and for appropriate positioning within the cell to capture photosynthetic light efficiently. In Arabidopsis, CHLOROPLAST UNUSUAL POSITIONING 1 (CHUP1), KINESIN-LIKE PROTEIN FOR ACTIN-BASED CHLOROPLAST MOVEMENT 1 (KAC1) and KAC2 are required for both the proper movement of chloroplasts and the association of chloroplasts with the plasma membrane, through the reorganization of short actin filaments located on the periphery of the chloroplasts. Here, we show that KAC and CHUP1 orthologs (AcKAC1, AcCHUP1A and AcCHUP1B, and PpKAC1 and PpKAC2) play important roles in chloroplast positioning in the fern Adiantum capillus-veneris and the moss Physcomitrella patens. The knockdown of AcKAC1 and two AcCHUP1 genes induced the aggregation of chloroplasts around the nucleus. Analyses of A. capillus-veneris mutants containing perinuclear-aggregated chloroplasts confirmed that AcKAC1 is required for chloroplast-plasma membrane association. In addition, P. patens lines in which two KAC genes had been knocked out showed an aggregated chloroplast phenotype similar to that of the fern kac1 mutants. These results indicate that chloroplast positioning and movement are mediated through the activities of KAC and CHUP1 proteins, which are conserved in land plants.

  16. Gramene database: navigating plant comparative genomics resources

    Science.gov (United States)

    Gramene (http://www.gramene.org) is an online, open source, curated resource for plant comparative genomics and pathway analysis designed to support researchers working in plant genomics, breeding, evolutionary biology, system biology, and metabolic engineering. It exploits phylogenetic relationship...

  17. Comparative Analysis of the Chloroplast Genomic Information of Cunninghamia lanceolata (Lamb. Hook with Sibling Species from the Genera Cryptomeria D. Don, Taiwania Hayata, and Calocedrus Kurz

    Directory of Open Access Journals (Sweden)

    Weiwei Zheng

    2016-07-01

    Full Text Available Chinese fir (Cunninghamia lanceolata (Lamb. Hook is an important coniferous tree species for timber production, which accounts for ~40% of log supply from plantations in southern China. Chloroplast genetic engineering is an exciting field to engineer several valuable tree traits. In this study, we revisited the published complete Chinese fir (NC_021437 and four other coniferous species chloroplast genome sequence in Taxodiaceae. Comparison of their chloroplast genomes revealed three unique inversions found in the downstream of the gene clusters and evolutionary divergence were found, although overall the chloroplast genomic structure of the Cupressaceae linage was conserved. We also investigated the phylogenetic position of Chinese fir among conifers by examining gene functions, selection forces, substitution rates, and the full chloroplast genome sequence. Consistent with previous molecular systematics analysis, the results provided a well-supported phylogeny framework for the Cupressaceae that strongly confirms the “basal” position of Cunninghamia lanceolata. The structure of the Cunninghamia lanceolata chloroplast genome showed a partial lack of one IR copy, rearrangements clearly occurred and slight evolutionary divergence appeared among the cp genome of C. lanceolata, Taiwania cryptomerioides, Taiwania flousiana, Calocedrus formosana and Cryptomeria japonica. The information from sequence divergence and length variation of genes could be further considered for bioengineering research.

  18. Comparative Analysis of the Chloroplast Genomic Information of Cunninghamia lanceolata (Lamb.) Hook with Sibling Species from the Genera Cryptomeria D. Don, Taiwania Hayata, and Calocedrus Kurz.

    Science.gov (United States)

    Zheng, Weiwei; Chen, Jinhui; Hao, Zhaodong; Shi, Jisen

    2016-07-07

    Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is an important coniferous tree species for timber production, which accounts for ~40% of log supply from plantations in southern China. Chloroplast genetic engineering is an exciting field to engineer several valuable tree traits. In this study, we revisited the published complete Chinese fir (NC_021437) and four other coniferous species chloroplast genome sequence in Taxodiaceae. Comparison of their chloroplast genomes revealed three unique inversions found in the downstream of the gene clusters and evolutionary divergence were found, although overall the chloroplast genomic structure of the Cupressaceae linage was conserved. We also investigated the phylogenetic position of Chinese fir among conifers by examining gene functions, selection forces, substitution rates, and the full chloroplast genome sequence. Consistent with previous molecular systematics analysis, the results provided a well-supported phylogeny framework for the Cupressaceae that strongly confirms the "basal" position of Cunninghamia lanceolata. The structure of the Cunninghamia lanceolata chloroplast genome showed a partial lack of one IR copy, rearrangements clearly occurred and slight evolutionary divergence appeared among the cp genome of C. lanceolata, Taiwania cryptomerioides, Taiwania flousiana, Calocedrus formosana and Cryptomeria japonica. The information from sequence divergence and length variation of genes could be further considered for bioengineering research.

  19. Study on the Relationship Between the Ploidy Level of Microspore-Derived Plants and the Number of Chloroplast in Stomatal Guard Cells in Brassica oleracea

    Institute of Scientific and Technical Information of China (English)

    YUAN Su-xia; LIU Yu-mei; FANG Zhi-yuan; YANG Li-mei; ZHUANG Mu; ZHANG Yang-yong; SUN Pei-tian

    2009-01-01

    The relationship between the ploidy level of microspore-derived plants and chloroplast number in stomatal guard cells was studied in cabbage, broccoli, and Chinese kale. In the experiment, distribution statistics analysis and t-test were used to perform statistical analysis on chloroplast number of different ploidy level in those stomatal guard cells mentioned above, and morphology identifying and chromosome counting were used to test accuracy of counting chloroplast number in stomatal guard cells. The chloroplast average number in stomatal guard cells was very similar among the different leaf positions on the same plant and among the different locations in the same leaf, while the chloroplast number varied significantly among the different ploidy stoma in the same variety. All the distributions of the chloroplast number in different ploidy stoma were normal distribution fitted. A correlation has been established between ploidy and chloroplast number in the stomatal guard cells. In every single stoma of microspore-derived plants, the chloroplast number for a haploid should not be more than 10, diploids 11 to 15, and polyploids more than 15. The accuracy of this method for identification of different ploidy plants was 93.93%. Furthermore, the accuracy of this method was reliable and did not vary with the plants growth conditions. Therefore, the chromosome ploidy of plants derived from microspore culture in cabbage, broccoli, and Chinese kale can be identified by simply counting the chloroplast number in stomatal guard cells.

  20. The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Sabeeha S

    2007-04-09

    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.

  1. A Phylogenetic Analysis of 34 Chloroplast Genomes Elucidates the Relationships between Wild and Domestic Species within the Genus Citrus.

    Science.gov (United States)

    Carbonell-Caballero, Jose; Alonso, Roberto; Ibañez, Victoria; Terol, Javier; Talon, Manuel; Dopazo, Joaquin

    2015-08-01

    Citrus genus includes some of the most important cultivated fruit trees worldwide. Despite being extensively studied because of its commercial relevance, the origin of cultivated citrus species and the history of its domestication still remain an open question. Here, we present a phylogenetic analysis of the chloroplast genomes of 34 citrus genotypes which constitutes the most comprehensive and detailed study to date on the evolution and variability of the genus Citrus. A statistical model was used to estimate divergence times between the major citrus groups. Additionally, a complete map of the variability across the genome of different citrus species was produced, including single nucleotide variants, heteroplasmic positions, indels (insertions and deletions), and large structural variants. The distribution of all these variants provided further independent support to the phylogeny obtained. An unexpected finding was the high level of heteroplasmy found in several of the analyzed genomes. The use of the complete chloroplast DNA not only paves the way for a better understanding of the phylogenetic relationships within the Citrus genus but also provides original insights into other elusive evolutionary processes, such as chloroplast inheritance, heteroplasmy, and gene selection. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Loss of matK RNA editing in seed plant chloroplasts

    Directory of Open Access Journals (Sweden)

    Maier Uwe G

    2009-08-01

    Full Text Available Abstract Background RNA editing in chloroplasts of angiosperms proceeds by C-to-U conversions at specific sites. Nuclear-encoded factors are required for the recognition of cis-elements located immediately upstream of editing sites. The ensemble of editing sites in a chloroplast genome differs widely between species, and editing sites are thought to evolve rapidly. However, large-scale analyses of the evolution of individual editing sites have not yet been undertaken. Results Here, we analyzed the evolution of two chloroplast editing sites, matK-2 and matK-3, for which DNA sequences from thousands of angiosperm species are available. Both sites are found in most major taxa, including deep-branching families such as the nymphaeaceae. However, 36 isolated taxa scattered across the entire tree lack a C at one of the two matK editing sites. Tests of several exemplary species from this in silico analysis of matK processing unexpectedly revealed that one of the two sites remain unedited in almost half of all species examined. A comparison of sequences between editors and non-editors showed that specific nucleotides co-evolve with the C at the matK editing sites, suggesting that these nucleotides are critical for editing-site recognition. Conclusion (i Both matK editing sites were present in the common ancestor of all angiosperms and have been independently lost multiple times during angiosperm evolution. (ii The editing activities corresponding to matK-2 and matK-3 are unstable. (iii A small number of third-codon positions in the vicinity of editing sites are selectively constrained independent of the presence of the editing site, most likely because of interacting RNA-binding proteins.

  3. Exploring photosynthesis evolution by comparative analysis of metabolic networks between chloroplasts and photosynthetic bacteria

    Directory of Open Access Journals (Sweden)

    Hou Jing

    2006-04-01

    Full Text Available Abstract Background Chloroplasts descended from cyanobacteria and have a drastically reduced genome following an endosymbiotic event. Many genes of the ancestral cyanobacterial genome have been transferred to the plant nuclear genome by horizontal gene transfer. However, a selective set of metabolism pathways is maintained in chloroplasts using both chloroplast genome encoded and nuclear genome encoded enzymes. As an organelle specialized for carrying out photosynthesis, does the chloroplast metabolic network have properties adapted for higher efficiency of photosynthesis? We compared metabolic network properties of chloroplasts and prokaryotic photosynthetic organisms, mostly cyanobacteria, based on metabolic maps derived from genome data to identify features of chloroplast network properties that are different from cyanobacteria and to analyze possible functional significance of those features. Results The properties of the entire metabolic network and the sub-network that consists of reactions directly connected to the Calvin Cycle have been analyzed using hypergraph representation. Results showed that the whole metabolic networks in chloroplast and cyanobacteria both possess small-world network properties. Although the number of compounds and reactions in chloroplasts is less than that in cyanobacteria, the chloroplast's metabolic network has longer average path length, a larger diameter, and is Calvin Cycle -centered, indicating an overall less-dense network structure with specific and local high density areas in chloroplasts. Moreover, chloroplast metabolic network exhibits a better modular organization than cyanobacterial ones. Enzymes involved in the same metabolic processes tend to cluster into the same module in chloroplasts. Conclusion In summary, the differences in metabolic network properties may reflect the evolutionary changes during endosymbiosis that led to the improvement of the photosynthesis efficiency in higher plants. Our

  4. The complete chloroplast genome sequence of sugar beet (Beta vulgaris ssp. vulgaris).

    Science.gov (United States)

    Li, Han; Cao, Hua; Cai, Yan-Fei; Wang, Ji-Hua; Qu, Su-Ping; Huang, Xing-Qi

    2014-06-01

    The complete nucleotide sequence of the sugar beet (Beta vulgaris ssp. vulgaris) chloroplast genome (cpDNA) was determined in this study. The cpDNA was 149,637 bp in length, containing a pair of 24,439 bp inverted repeat regions (IR), which were separated by small and large single copy regions (SSC and LSC) of 17,701 and 83,057 bp, respectively. 53.4% of the sugar beet cpDNA consisted of gene coding regions (protein coding and RNA genes). The gene content and relative positions of 113 individual genes (79 protein encoding genes, 30 tRNA genes, 4 rRNA genes) were almost identical to those of tobacco cpDNA. The overall AT contents of the sugar beet cpDNA were 63.6% and in the LSC, SSC and IR regions were 65.9%, 70.8% and 57.8%, respectively. Fifteen genes contained one intron, while three genes had two introns.

  5. Regulation of Chloroplast Protein Import by the Ubiquitin E3 Ligase SP1 Is Important for Stress Tolerance in Plants.

    Science.gov (United States)

    Ling, Qihua; Jarvis, Paul

    2015-10-05

    Chloroplasts are the organelles responsible for photosynthesis in plants [1, 2]. The chloroplast proteome comprises ∼3,000 different proteins, including components of the photosynthetic apparatus, which are highly abundant. Most chloroplast proteins are nucleus-encoded and imported following synthesis in the cytosol. Such import is mediated by multiprotein complexes in the envelope membranes that surround each organelle [3, 4]. The translocon at the outer envelope membrane of chloroplasts (TOC) mediates client protein recognition and early stages of import. The TOC apparatus is regulated by the ubiquitin-proteasome system (UPS) in a process controlled by the envelope-localized ubiquitin E3 ligase SUPPRESSOR OF PPI1 LOCUS1 (SP1) [5, 6]. Previous work showed that SP1-mediated regulation of chloroplast protein import contributes to the organellar proteome changes that occur during plant development (e.g., during de-etiolation). Here, we reveal a critical role for SP1 in plant responses to abiotic stress, which is a major and increasing cause of agricultural yield losses globally [7]. Arabidopsis plants lacking SP1 are hypersensitive to salt, osmotic, and oxidative stresses, whereas plants overexpressing SP1 are considerably more stress tolerant than wild-type. We present evidence that SP1 acts to deplete the TOC apparatus under stress conditions to limit the import of photosynthetic apparatus components, which may attenuate photosynthetic activity and reduce the potential for reactive oxygen species production and photo-oxidative damage. Our results indicate that chloroplast protein import is responsive to environmental cues, enabling dynamic regulation of the organellar proteome, and suggest new approaches for improving stress tolerance in crops.

  6. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences

    Directory of Open Access Journals (Sweden)

    Liu Chang

    2012-12-01

    Full Text Available Abstract Background The complete sequences of chloroplast genomes provide wealthy information regarding the evolutionary history of species. With the advance of next-generation sequencing technology, the number of completely sequenced chloroplast genomes is expected to increase exponentially, powerful computational tools annotating the genome sequences are in urgent need. Results We have developed a web server CPGAVAS. The server accepts a complete chloroplast genome sequence as input. First, it predicts protein-coding and rRNA genes based on the identification and mapping of the most similar, full-length protein, cDNA and rRNA sequences by integrating results from Blastx, Blastn, protein2genome and est2genome programs. Second, tRNA genes and inverted repeats (IR are identified using tRNAscan, ARAGORN and vmatch respectively. Third, it calculates the summary statistics for the annotated genome. Fourth, it generates a circular map ready for publication. Fifth, it can create a Sequin file for GenBank submission. Last, it allows the extractions of protein and mRNA sequences for given list of genes and species. The annotation results in GFF3 format can be edited using any compatible annotation editing tools. The edited annotations can then be uploaded to CPGAVAS for update and re-analyses repeatedly. Using known chloroplast genome sequences as test set, we show that CPGAVAS performs comparably to another application DOGMA, while having several superior functionalities. Conclusions CPGAVAS allows the semi-automatic and complete annotation of a chloroplast genome sequence, and the visualization, editing and analysis of the annotation results. It will become an indispensible tool for researchers studying chloroplast genomes. The software is freely accessible from http://www.herbalgenomics.org/cpgavas.

  7. Comparison of the chloroplast peroxidase system in the chlorophyte Chlamydomonas reinhardtii, the bryophyte Physcomitrella patens, the lycophyte Selaginella moellendorffii and the seed plant Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Baier Margarete

    2010-06-01

    Full Text Available Abstract Background Oxygenic photosynthesis is accompanied by the formation of reactive oxygen species (ROS, which damage proteins, lipids, DNA and finally limit plant yield. The enzymes of the chloroplast antioxidant system are exclusively nuclear encoded. During evolution, plastid and mitochondrial genes were post-endosymbiotically transferred to the nucleus, adapted for eukaryotic gene expression and post-translational protein targeting and supplemented with genes of eukaryotic origin. Results Here, the genomes of the green alga Chlamydomonas reinhardtii, the moss Physcomitrella patens, the lycophyte Selaginella moellendorffii and the seed plant Arabidopsis thaliana were screened for ORFs encoding chloroplast peroxidases. The identified genes were compared for their amino acid sequence similarities and gene structures. Stromal and thylakoid-bound ascorbate peroxidases (APx share common splice sites demonstrating that they evolved from a common ancestral gene. In contrast to most cormophytes, our results predict that chloroplast APx activity is restricted to the stroma in Chlamydomonas and to thylakoids in Physcomitrella. The moss gene is of retrotransposonal origin. The exon-intron-structures of 2CP genes differ between chlorophytes and streptophytes indicating an independent evolution. According to amino acid sequence characteristics only the A-isoform of Chlamydomonas 2CP may be functionally equivalent to streptophyte 2CP, while the weakly expressed B- and C-isoforms show chlorophyte specific surfaces and amino acid sequence characteristics. The amino acid sequences of chloroplast PrxII are widely conserved between the investigated species. In the analyzed streptophytes, the genes are unspliced, but accumulated four introns in Chlamydomonas. A conserved splice site indicates also a common origin of chlorobiont PrxQ. The similarity of splice sites also demonstrates that streptophyte glutathione peroxidases (GPx are of common origin. Besides

  8. Polyploidy and genome evolution in plants.

    Science.gov (United States)

    Soltis, Pamela S; Marchant, D Blaine; Van de Peer, Yves; Soltis, Douglas E

    2015-12-01

    Plant genomes vary in size and complexity, fueled in part by processes of whole-genome duplication (WGD; polyploidy) and subsequent genome evolution. Despite repeated episodes of WGD throughout the evolutionary history of angiosperms in particular, the genomes are not uniformly large, and even plants with very small genomes carry the signatures of ancient duplication events. The processes governing the evolution of plant genomes following these ancient events are largely unknown. Here, we consider mechanisms of diploidization, evidence of genome reorganization in recently formed polyploid species, and macroevolutionary patterns of WGD in plant genomes and propose that the ongoing genomic changes observed in recent polyploids may illustrate the diploidization processes that result in ancient signatures of WGD over geological timescales. Copyright © 2015. Published by Elsevier Ltd.

  9. Direct chloroplast sequencing: comparison of sequencing platforms and analysis tools for whole chloroplast barcoding.

    Directory of Open Access Journals (Sweden)

    Marta Brozynska

    Full Text Available Direct sequencing of total plant DNA using next generation sequencing technologies generates a whole chloroplast genome sequence that has the potential to provide a barcode for use in plant and food identification. Advances in DNA sequencing platforms may make this an attractive approach for routine plant identification. The HiSeq (Illumina and Ion Torrent (Life Technology sequencing platforms were used to sequence total DNA from rice to identify polymorphisms in the whole chloroplast genome sequence of a wild rice plant relative to cultivated rice (cv. Nipponbare. Consensus chloroplast sequences were produced by mapping sequence reads to the reference rice chloroplast genome or by de novo assembly and mapping of the resulting contigs to the reference sequence. A total of 122 polymorphisms (SNPs and indels between the wild and cultivated rice chloroplasts were predicted by these different sequencing and analysis methods. Of these, a total of 102 polymorphisms including 90 SNPs were predicted by both platforms. Indels were more variable with different sequencing methods, with almost all discrepancies found in homopolymers. The Ion Torrent platform gave no apparent false SNP but was less reliable for indels. The methods should be suitable for routine barcoding using appropriate combinations of sequencing platform and data analysis.

  10. Cloning and molecular genetics analyses of Deschampsia antarctica Desv. chloroplast and mitochondrial DNA sequence

    Directory of Open Access Journals (Sweden)

    O.P. Savchuk

    2012-03-01

    Full Text Available Chloroplast and mitochondrial DNA sequences of Deschampsia antarctica were studied. We had made comparison analysis with completely sequenced genomes of other temperateness plants to find homology.

  11. Comparative chloroplast genomics: Analyses including new sequencesfrom the angiosperms Nuphar advena and Ranunculus macranthus

    Energy Technology Data Exchange (ETDEWEB)

    Raubeso, Linda A.; Peery, Rhiannon; Chumley, Timothy W.; Dziubek,Chris; Fourcade, H. Matthew; Boore, Jeffrey L.; Jansen, Robert K.

    2007-03-01

    The number of completely sequenced plastid genomes available is growing rapidly. This new array of sequences presents new opportunities to perform comparative analyses. In comparative studies, it is most useful to compare across wide phylogenetic spans and, within angiosperms, to include representatives from basally diverging lineages such as the new genomes reported here: Nuphar advena (from a basal-most lineage) and Ranunculus macranthus (from the basal group of eudicots). We report these two new plastid genome sequences and make comparisons (within angiosperms, seed plants, or all photosynthetic lineages) to evaluate features such as the status of ycf15 and ycf68 as protein coding genes, the distribution of simple sequence repeats (SSRs) and longer dispersed repeats (SDR), and patterns of nucleotide composition.

  12. Proton equilibration in the chloroplast modulates multiphasic kinetics of nonphotochemical quenching of fluorescence in plants.

    Science.gov (United States)

    Joliot, Pierre A; Finazzi, Giovanni

    2010-07-13

    In plants, the major route for dissipating excess light is the nonphotochemical quenching of absorbed light (NPQ), which is associated with thylakoid lumen acidification. Our data offer an interpretation for the complex relationship between changes in luminal pH and the NPQ response. Upon steady-state illumination, fast NPQ relaxation in the dark reflects the equilibration between the electrochemical proton gradient established in the light and the cellular ATP/ADP+Pi ratio. This is followed by a slower phase, which reflects the decay of the proton motive force at equilibrium, due to gradual cellular ATP consumption. In transient conditions, a sustained lag appears in both quenching onset and relaxation, which is modulated by the size of the antenna complexes of photosystem II and by cyclic electron flow around photosystem I. We propose that this phenomenon reflects the signature of protonation of specific domains in the antenna and of slow H(+) diffusion in the different domains of the chloroplast.

  13. The chloroplast permease PIC1 regulates plant growth and development by directing homeostasis and transport of iron.

    Science.gov (United States)

    Duy, Daniela; Stübe, Roland; Wanner, Gerhard; Philippar, Katrin

    2011-04-01

    The membrane-spanning protein PIC1 (for permease in chloroplasts 1) in Arabidopsis (Arabidopsis thaliana) was previously described to mediate iron transport across the inner envelope membrane of chloroplasts. The albino phenotype of pic1 knockout mutants was reminiscent of iron-deficiency symptoms and characterized by severely impaired plastid development and plant growth. In addition, plants lacking PIC1 showed a striking increase in chloroplast ferritin clusters, which function in protection from oxidative stress by sequestering highly reactive free iron in their spherical protein shell. In contrast, PIC1-overexpressing lines (PIC1ox) in this study rather resembled ferritin loss-of-function plants. PIC1ox plants suffered from oxidative stress and leaf chlorosis, most likely originating from iron overload in chloroplasts. Later during growth, plants were characterized by reduced biomass as well as severely defective flower and seed development. As a result of PIC1 protein increase in the inner envelope membrane of plastids, flower tissue showed elevated levels of iron, while the content of other transition metals (copper, zinc, manganese) remained unchanged. Seeds, however, specifically revealed iron deficiency, suggesting that PIC1 overexpression sequestered iron in flower plastids, thereby becoming unavailable for seed iron loading. In addition, expression of genes associated with metal transport and homeostasis as well as photosynthesis was deregulated in PIC1ox plants. Thus, PIC1 function in plastid iron transport is closely linked to ferritin and plastid iron homeostasis. In consequence, PIC1 is crucial for balancing plant iron metabolism in general, thereby regulating plant growth and in particular fruit development.

  14. Real-Time PCR Quantification of Chloroplast DNA Supports DNA Barcoding of Plant Species.

    Science.gov (United States)

    Kikkawa, Hitomi S; Tsuge, Kouichiro; Sugita, Ritsuko

    2016-03-01

    Species identification from extracted DNA is sometimes needed for botanical samples. DNA quantification is required for an accurate and effective examination. If a quantitative assay provides unreliable estimates, a higher quantity of DNA than the estimated amount may be used in additional analyses to avoid failure to analyze samples from which extracting DNA is difficult. Compared with conventional methods, real-time quantitative PCR (qPCR) requires a low amount of DNA and enables quantification of dilute DNA solutions accurately. The aim of this study was to develop a qPCR assay for quantification of chloroplast DNA from taxonomically diverse plant species. An absolute quantification method was developed using primers targeting the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene using SYBR Green I-based qPCR. The calibration curve was generated using the PCR amplicon as the template. DNA extracts from representatives of 13 plant families common in Japan. This demonstrates that qPCR analysis is an effective method for quantification of DNA from plant samples. The results of qPCR assist in the decision-making will determine the success or failure of DNA analysis, indicating the possibility of optimization of the procedure for downstream reactions.

  15. Chloroplast signaling within, between and beyond cells.

    Directory of Open Access Journals (Sweden)

    Krzysztof eBobik

    2015-10-01

    Full Text Available The most conspicuous function of the plastid is oxygenic photosynthesis of chloroplasts, yet plastids are super-factories that produce a plethora of compounds that are indispensable for proper plant physiology and development. Given their origins as free-living prokaryotes, it is not surprising that the plastid possesses its own genome whose expression is essential to plastid function. This semi-autonomous character of plastids requires the existence of sophisticated regulatory mechanisms that provide reliable communication between them and other cellular compartments. Such intracellular signaling is necessary for coordinating whole-cell responses to constantly varying environmental cues and cellular metabolic needs. This is achieved by plastids acting as receivers and transmitters of specific signals that coordinate expression of the nuclear and plastid genomes according to particular needs. In this review we will consider the so-called retrograde signaling occurring between plastids and nucleus, and between plastids and other organelles. Another important role of the plastid we will discuss is the involvement of plastid signaling in biotic and abiotic stress that, in addition to influencing retrograde signaling has direct effects on several cellular compartments including the cell wall. We will also review recent evidence pointing to an intriguing function of chloroplasts in regulating intercellular symplasmic transport. Finally, we consider an intriguing yet neglected aspect of plant biology, chloroplast signaling from the perspective of the entire plant. Thus, accumulating evidence highlights that chloroplasts, with their complex signaling pathways, provide a mechanism for exquisite regulation of plant development, metabolism and responses to the environment. As chloroplast processes are targeted for engineering for improved productivity the effect of such modifications on chloroplast signaling will have to be carefully considered in order

  16. Chloroplast gene arrangement variation within a closely related group of green algae (Trebouxiophyceae, Chlorophyta).

    Science.gov (United States)

    Letsch, Molly R; Lewis, Louise A

    2012-09-01

    The 22 published chloroplast genomes of green algae, representing sparse taxonomic sampling of diverse lineages that span over one billion years of evolution, each possess a unique gene arrangement. In contrast, many of the >190 published embryophyte (land plant) chloroplast genomes have relatively conserved architectures. To determine the phylogenetic depth at which chloroplast gene rearrangements occur in green algae, a 1.5-4 kb segment of the chloroplast genome was compared across nine species in three closely related genera of Trebouxiophyceae (Chlorophyta). In total, four distinct gene arrangements were obtained for the three genera Elliptochloris, Hemichloris, and Coccomyxa. In Elliptochloris, three distinct chloroplast gene arrangements were detected, one of which is shared with members of its sister genus Hemichloris. Both species of Coccomyxa examined share the fourth arrangement of this genome region, one characterized by very long spacers. Next, the order of genes found in this segment of the chloroplast genome was compared across green algae and land plants. As taxonomic ranks are not equivalent among different groups of organisms, the maximum molecular divergence among taxa sharing a common gene arrangement in this genome segment was compared. Well-supported clades possessing a single gene order had similar phylogenetic depth in green algae and embryophytes. When the dominant gene order of this chloroplast segment in embryophytes was assumed to be ancestral for land plants, the maximum molecular divergence was found to be over two times greater in embryophytes than in trebouxiophyte green algae. This study greatly expands information about chloroplast genome variation in green algae, is the first to demonstrate such variation among congeneric green algae, and further illustrates the fluidity of green algal chloroplast genome architecture in comparison to that of many embryophytes.

  17. Comparative analysis of single nucleotide polymorphisms in the nuclear, chloroplast, and mitochondrial genomes in identification of phylogenetic association among seven melon (Cucumis melo L.) cultivars.

    Science.gov (United States)

    Zhu, Qianglong; Gao, Peng; Liu, Shi; Amanullah, Sikandar; Luan, Feishi

    2016-12-01

    A variety of melons are cultivated worldwide, and their specific biological properties make them an attractive model for molecular studies. This study aimed to investigate the single nucleotide polymorphisms (SNPs) from the mitochondrial, chloroplast, and nuclear genomes of seven melon accessions (Cucumis melo L.) to identify the phylogenetic relationships among melon cultivars with the Illumina HiSeq 2000 platform and bioinformatical analyses. The data showed that there were a total of 658 mitochondrial SNPs (207-295 in each), while there were 0-60 chloroplast SNPs among these seven melon cultivars, compared to the reference genome. Bioinformatical analysis showed that the mitochondrial tree topology was unable to separate the melon features, whereas the maximum parsimony/neighbor joining (MP/NJ) tree of the chloroplast SNPs could define melon features such as seed length, width, thickness, 100-seed weight, and type. SNPs of the nuclear genome were better than the mitochondrial and chloroplast SNPs in the identification of melon features. The data demonstrated the usefulness of mitochondrial, chloroplast, and nuclear SNPs in identification of phylogenetic associations among these seven melon cultivars.

  18. Green Light to Plant Responses to Pathogens: The Role of Chloroplast Light-Dependent Signaling in Biotic Stress.

    Science.gov (United States)

    Delprato, María Laura; Krapp, Adriana R; Carrillo, Néstor

    2015-01-01

    Light has a key impact on the outcome of biotic stress responses in plants by providing most of the energy and many signals for the deployment of defensive barriers. Within this context, chloroplasts are not only the major source of energy in the light; they also host biosynthetic pathways for the production of stress hormones and secondary metabolites, as well as reactive oxygen species and other signals which modulate nuclear gene expression and plant resistance to pathogens. Environmental, and in particular, light-dependent regulation of immune responses may allow plants to anticipate and react more effectively to pathogen threats. As more information is gathered, increasingly complex models are developed to explain how light and reactive oxygen species signaling could interact with endogenous defense pathways to elicit efficient protective responses against invading microorganisms. The emerging picture places chloroplasts in a key position of an intricate regulatory network which involves several other cellular compartments. This article reviews current knowledge on the extent and the main features of chloroplast contribution to plant defensive strategies against biotic stress. © 2015 The American Society of Photobiology.

  19. Plant mitochondrial genome peculiarities evolving in the earliest vascular plant lineages

    Institute of Scientific and Technical Information of China (English)

    Volker KNOOP

    2013-01-01

    In plants,the mitochondrial DNA has evolved in peculiar ways.Simple circular mitochondrial genomes found in most other eukaryotic lineages have expanded tremendously in size.Mitochondrial DNAs in some flowering plants may in fact be larger than genomes of free-living bacteria.Introns,retrotransposons,pseudogene fragments,and promiscuous DNA copied from the chloroplast or nuclear genome contribute to the size expansion but most intergenic DNA remains unaccounted for so far.Additionally,frequent recombination results in heterogeneous pools of coexisting,subgenomic mtDNA molecules in angiosperms.In contrast,the mitochondrial DNAs of bryophytes,the extant representatives of very early splits in plant phylogeny,are more conservative in structural evolution and seem to be devoid of active recombination.However,whereas mitochondrial introns are highly conserved among seed plants (spermatophytes),not a single one of more than 80 different introns in bryophyte mtDNAs is conserved among the three divisions,liverworts,mosses,and hornworts.Lycophytes are now unequivocally identified as living representatives of the earliest vascular plant branch in a crucial phylogenetic position between bryophytes and later diversifying tracheophytes including spermatophytes.Very recently,mtDNAs have become available for the three orders of extant lycophytes-Isoetales,Selaginellales,and Lycopodiales.As I will discuss here,the lycophyte mtDNAs not only show a surprising diversity of features but also previously unseen novelties of plant mitochondrial DNA evolution.The transition from a gametophyte-dominated bryophyte lifestyle to a sporophytedominated vascular plant lifestyle apparently gave rise to several peculiar independent changes in plant chondrome evolution.

  20. Reconstruction of Metabolic Pathways, Protein Expression, and Homeostasis Machineries across Maize Bundle Sheath and Mesophyll Chloroplasts: Large-Scale Quantitative Proteomics Using the First Maize Genome Assembly1[W][OA

    Science.gov (United States)

    Friso, Giulia; Majeran, Wojciech; Huang, Mingshu; Sun, Qi; van Wijk, Klaas J.

    2010-01-01

    Chloroplasts in differentiated bundle sheath (BS) and mesophyll (M) cells of maize (Zea mays) leaves are specialized to accommodate C4 photosynthesis. This study provides a reconstruction of how metabolic pathways, protein expression, and homeostasis functions are quantitatively distributed across BS and M chloroplasts. This yielded new insights into cellular specialization. The experimental analysis was based on high-accuracy mass spectrometry, protein quantification by spectral counting, and the first maize genome assembly. A bioinformatics workflow was developed to deal with gene models, protein families, and gene duplications related to the polyploidy of maize; this avoided overidentification of proteins and resulted in more accurate protein quantification. A total of 1,105 proteins were assigned as potential chloroplast proteins, annotated for function, and quantified. Nearly complete coverage of primary carbon, starch, and tetrapyrole metabolism, as well as excellent coverage for fatty acid synthesis, isoprenoid, sulfur, nitrogen, and amino acid metabolism, was obtained. This showed, for example, quantitative and qualitative cell type-specific specialization in starch biosynthesis, arginine synthesis, nitrogen assimilation, and initial steps in sulfur assimilation. An extensive overview of BS and M chloroplast protein expression and homeostasis machineries (more than 200 proteins) demonstrated qualitative and quantitative differences between M and BS chloroplasts and BS-enhanced levels of the specialized chaperones ClpB3 and HSP90 that suggest active remodeling of the BS proteome. The reconstructed pathways are presented as detailed flow diagrams including annotation, relative protein abundance, and cell-specific expression pattern. Protein annotation and identification data, and projection of matched peptides on the protein models, are available online through the Plant Proteome Database. PMID:20089766

  1. Mesophyll cells of C4 plants have fewer chloroplasts than those of closely related C3 plants.

    Science.gov (United States)

    Stata, Matt; Sage, Tammy L; Rennie, Troy D; Khoshravesh, Roxana; Sultmanis, Stefanie; Khaikin, Yannay; Ludwig, Martha; Sage, Rowan F

    2014-11-01

    The evolution of C(4) photosynthesis from C(3) ancestors eliminates ribulose bisphosphate carboxylation in the mesophyll (M) cell chloroplast while activating phosphoenolpyruvate (PEP) carboxylation in the cytosol. These changes may lead to fewer chloroplasts and different chloroplast positioning within M cells. To evaluate these possibilities, we compared chloroplast number, size and position in M cells of closely related C(3), C(3) -C(4) intermediate and C(4) species from 12 lineages of C(4) evolution. All C(3) species had more chloroplasts per M cell area than their C(4) relatives in high-light growth conditions. C(3) species also had higher chloroplast coverage of the M cell periphery than C(4) species, particularly opposite intercellular air spaces. In M cells from 10 of the 12 C(4) lineages, a greater fraction of the chloroplast envelope was pulled away from the plasmalemma in the C(4) species than their C(3) relatives. C(3) -C(4) intermediate species generally exhibited similar patterns as their C(3) relatives. We interpret these results to reflect adaptive shifts that facilitate efficient C(4) function by enhancing diffusive access to the site of primary carbon fixation in the cytosol. Fewer chloroplasts in C(4) M cells would also reduce shading of the bundle sheath chloroplasts, which also generate energy required by C(4) photosynthesis.

  2. High-Throughput Sequencing of Six Bamboo Chloroplast Genomes: Phylogenetic Implications for Temperate Woody Bamboos (Poaceae: Bambusoideae)

    Science.gov (United States)

    Li, De-Zhu

    2011-01-01

    Background Bambusoideae is the only subfamily that contains woody members in the grass family, Poaceae. In phylogenetic analyses, Bambusoideae, Pooideae and Ehrhartoideae formed the BEP clade, yet the internal relationships of this clade are controversial. The distinctive life history (infrequent flowering and predominance of asexual reproduction) of woody bamboos makes them an interesting but taxonomically difficult group. Phylogenetic analyses based on large DNA fragments could only provide a moderate resolution of woody bamboo relationships, although a robust phylogenetic tree is needed to elucidate their evolutionary history. Phylogenomics is an alternative choice for resolving difficult phylogenies. Methodology/Principal Findings Here we present the complete nucleotide sequences of six woody bamboo chloroplast (cp) genomes using Illumina sequencing. These genomes are similar to those of other grasses and rather conservative in evolution. We constructed a phylogeny of Poaceae from 24 complete cp genomes including 21 grass species. Within the BEP clade, we found strong support for a sister relationship between Bambusoideae and Pooideae. In a substantial improvement over prior studies, all six nodes within Bambusoideae were supported with ≥0.95 posterior probability from Bayesian inference and 5/6 nodes resolved with 100% bootstrap support in maximum parsimony and maximum likelihood analyses. We found that repeats in the cp genome could provide phylogenetic information, while caution is needed when using indels in phylogenetic analyses based on few selected genes. We also identified relatively rapidly evolving cp genome regions that have the potential to be used for further phylogenetic study in Bambusoideae. Conclusions/Significance The cp genome of Bambusoideae evolved slowly, and phylogenomics based on whole cp genome could be used to resolve major relationships within the subfamily. The difficulty in resolving the diversification among three clades of

  3. High-throughput sequencing of six bamboo chloroplast genomes: phylogenetic implications for temperate woody bamboos (Poaceae: Bambusoideae.

    Directory of Open Access Journals (Sweden)

    Yun-Jie Zhang

    Full Text Available BACKGROUND: Bambusoideae is the only subfamily that contains woody members in the grass family, Poaceae. In phylogenetic analyses, Bambusoideae, Pooideae and Ehrhartoideae formed the BEP clade, yet the internal relationships of this clade are controversial. The distinctive life history (infrequent flowering and predominance of asexual reproduction of woody bamboos makes them an interesting but taxonomically difficult group. Phylogenetic analyses based on large DNA fragments could only provide a moderate resolution of woody bamboo relationships, although a robust phylogenetic tree is needed to elucidate their evolutionary history. Phylogenomics is an alternative choice for resolving difficult phylogenies. METHODOLOGY/PRINCIPAL FINDINGS: Here we present the complete nucleotide sequences of six woody bamboo chloroplast (cp genomes using Illumina sequencing. These genomes are similar to those of other grasses and rather conservative in evolution. We constructed a phylogeny of Poaceae from 24 complete cp genomes including 21 grass species. Within the BEP clade, we found strong support for a sister relationship between Bambusoideae and Pooideae. In a substantial improvement over prior studies, all six nodes within Bambusoideae were supported with ≥0.95 posterior probability from Bayesian inference and 5/6 nodes resolved with 100% bootstrap support in maximum parsimony and maximum likelihood analyses. We found that repeats in the cp genome could provide phylogenetic information, while caution is needed when using indels in phylogenetic analyses based on few selected genes. We also identified relatively rapidly evolving cp genome regions that have the potential to be used for further phylogenetic study in Bambusoideae. CONCLUSIONS/SIGNIFICANCE: The cp genome of Bambusoideae evolved slowly, and phylogenomics based on whole cp genome could be used to resolve major relationships within the subfamily. The difficulty in resolving the diversification among

  4. Enabling plant synthetic biology through genome engineering.

    Science.gov (United States)

    Baltes, Nicholas J; Voytas, Daniel F

    2015-02-01

    Synthetic biology seeks to create new biological systems, including user-designed plants and plant cells. These systems can be employed for a variety of purposes, ranging from producing compounds of industrial or therapeutic value, to reducing crop losses by altering cellular responses to pathogens or climate change. To realize the full potential of plant synthetic biology, techniques are required that provide control over the genetic code - enabling targeted modifications to DNA sequences within living plant cells. Such control is now within reach owing to recent advances in the use of sequence-specific nucleases to precisely engineer genomes. We discuss here the enormous potential provided by genome engineering for plant synthetic biology.

  5. Gramene database: Navigating plant comparative genomics resources

    Directory of Open Access Journals (Sweden)

    Parul Gupta

    2016-11-01

    Full Text Available Gramene (http://www.gramene.org is an online, open source, curated resource for plant comparative genomics and pathway analysis designed to support researchers working in plant genomics, breeding, evolutionary biology, system biology, and metabolic engineering. It exploits phylogenetic relationships to enrich the annotation of genomic data and provides tools to perform powerful comparative analyses across a wide spectrum of plant species. It consists of an integrated portal for querying, visualizing and analyzing data for 44 plant reference genomes, genetic variation data sets for 12 species, expression data for 16 species, curated rice pathways and orthology-based pathway projections for 66 plant species including various crops. Here we briefly describe the functions and uses of the Gramene database.

  6. Genomics and the Instrinsic Value of Plants

    NARCIS (Netherlands)

    Gremmen, H.G.J.

    2005-01-01

    In discussions on genetic engineering and plant breeding, the intrinsic value of plants and crops is used as an argument against this technology. This paper focuses on the new field of plant genomics, which, according to some, is almost the same as genetic engineering. This raises the question wheth

  7. Genomics and the Instrinsic Value of Plants

    NARCIS (Netherlands)

    Gremmen, H.G.J.

    2005-01-01

    In discussions on genetic engineering and plant breeding, the intrinsic value of plants and crops is used as an argument against this technology. This paper focuses on the new field of plant genomics, which, according to some, is almost the same as genetic engineering. This raises the question wheth

  8. Genomics and the Instrinsic Value of Plants

    NARCIS (Netherlands)

    Gremmen, H.G.J.

    2005-01-01

    In discussions on genetic engineering and plant breeding, the intrinsic value of plants and crops is used as an argument against this technology. This paper focuses on the new field of plant genomics, which, according to some, is almost the same as genetic engineering. This raises the question

  9. Gene enrichment in plant genomic shotgun libraries.

    Science.gov (United States)

    Rabinowicz, Pablo D; McCombie, W Richard; Martienssen, Robert A

    2003-04-01

    The Arabidopsis genome (about 130 Mbp) has been completely sequenced; whereas a draft sequence of the rice genome (about 430 Mbp) is now available and the sequencing of this genome will be completed in the near future. The much larger genomes of several important crop species, such as wheat (about 16,000 Mbp) or maize (about 2500 Mbp), may not be fully sequenced with current technology. Instead, sequencing-analysis strategies are being developed to obtain sequencing and mapping information selectively for the genic fraction (gene space) of complex plant genomes.

  10. Comprehensive Survey of Genetic Diversity in Chloroplast Genomes and 45S nrDNAs within Panax ginseng Species

    Science.gov (United States)

    Kim, Kyunghee; Lee, Sang-Choon; Lee, Junki; Lee, Hyun Oh; Joh, Ho Jun; Kim, Nam-Hoon; Park, Hyun-Seung; Yang, Tae-Jin

    2015-01-01

    We report complete sequences of chloroplast (cp) genome and 45S nuclear ribosomal DNA (45S nrDNA) for 11 Panax ginseng cultivars. We have obtained complete sequences of cp and 45S nrDNA, the representative barcoding target sequences for cytoplasm and nuclear genome, respectively, based on low coverage NGS sequence of each cultivar. The cp genomes sizes ranged from 156,241 to 156,425 bp and the major size variation was derived from differences in copy number of tandem repeats in the ycf1 gene and in the intergenic regions of rps16-trnUUG and rpl32-trnUAG. The complete 45S nrDNA unit sequences were 11,091 bp, representing a consensus single transcriptional unit with an intergenic spacer region. Comparative analysis of these sequences as well as those previously reported for three Chinese accessions identified very rare but unique polymorphism in the cp genome within P. ginseng cultivars. There were 12 intra-species polymorphisms (six SNPs and six InDels) among 14 cultivars. We also identified five SNPs from 45S nrDNA of 11 Korean ginseng cultivars. From the 17 unique informative polymorphic sites, we developed six reliable markers for analysis of ginseng diversity and cultivar authentication. PMID:26061692

  11. The chloroplast genome hidden in plain sight, open access publishing and anti-fragile distributed data sources.

    Science.gov (United States)

    McKernan, Kevin Judd

    2016-11-01

    We sequenced several cannabis genomes in 2011 of June and the first and the longest contigs to emerge were the chloroplast and mitochondrial genomes. Having been a contributor to the Human Genome Project and an eye-witness to the real benefits of immediate data release, I have first hand experience with the potential mal-investment of millions of dollars of tax payer money narrowly averted due to the adopted global rapid data release policy. The policy was vital in reducing duplication of effort and economic waste. As a result, we felt obligated to publish the Cannabis genome data in a similar spirit and placed them immediately on a cloud based Amazon server in August of 2011. While these rapid data release practices were heralded by many in the media, we still find some authors fail to find or reference said work and hope to compel the readership that this omission has more pervasive repercussions than bruised egos and is a regression for our community.

  12. Complete Chloroplast Genome Sequence of Tartary Buckwheat (Fagopyrum tataricum and Comparative Analysis with Common Buckwheat (F. esculentum.

    Directory of Open Access Journals (Sweden)

    Kwang-Soo Cho

    Full Text Available We report the chloroplast (cp genome sequence of tartary buckwheat (Fagopyrum tataricum obtained by next-generation sequencing technology and compared this with the previously reported common buckwheat (F. esculentum ssp. ancestrale cp genome. The cp genome of F. tataricum has a total sequence length of 159,272 bp, which is 327 bp shorter than the common buckwheat cp genome. The cp gene content, order, and orientation are similar to those of common buckwheat, but with some structural variation at tandem and palindromic repeat frequencies and junction areas. A total of seven InDels (around 100 bp were found within the intergenic sequences and the ycf1 gene. Copy number variation of the 21-bp tandem repeat varied in F. tataricum (four repeats and F. esculentum (one repeat, and the InDel of the ycf1 gene was 63 bp long. Nucleotide and amino acid have highly conserved coding sequence with about 98% homology and four genes--rpoC2, ycf3, accD, and clpP--have high synonymous (Ks value. PCR based InDel markers were applied to diverse genetic resources of F. tataricum and F. esculentum, and the amplicon size was identical to that expected in silico. Therefore, these InDel markers are informative biomarkers to practically distinguish raw or processed buckwheat products derived from F. tataricum and F. esculentum.

  13. Complete Chloroplast Genome Sequence of Tartary Buckwheat (Fagopyrum tataricum) and Comparative Analysis with Common Buckwheat (F. esculentum).

    Science.gov (United States)

    Cho, Kwang-Soo; Yun, Bong-Kyoung; Yoon, Young-Ho; Hong, Su-Young; Mekapogu, Manjulatha; Kim, Kyung-Hee; Yang, Tae-Jin

    2015-01-01

    We report the chloroplast (cp) genome sequence of tartary buckwheat (Fagopyrum tataricum) obtained by next-generation sequencing technology and compared this with the previously reported common buckwheat (F. esculentum ssp. ancestrale) cp genome. The cp genome of F. tataricum has a total sequence length of 159,272 bp, which is 327 bp shorter than the common buckwheat cp genome. The cp gene content, order, and orientation are similar to those of common buckwheat, but with some structural variation at tandem and palindromic repeat frequencies and junction areas. A total of seven InDels (around 100 bp) were found within the intergenic sequences and the ycf1 gene. Copy number variation of the 21-bp tandem repeat varied in F. tataricum (four repeats) and F. esculentum (one repeat), and the InDel of the ycf1 gene was 63 bp long. Nucleotide and amino acid have highly conserved coding sequence with about 98% homology and four genes--rpoC2, ycf3, accD, and clpP--have high synonymous (Ks) value. PCR based InDel markers were applied to diverse genetic resources of F. tataricum and F. esculentum, and the amplicon size was identical to that expected in silico. Therefore, these InDel markers are informative biomarkers to practically distinguish raw or processed buckwheat products derived from F. tataricum and F. esculentum.

  14. The mitochondrial genome of the lycophyte Huperzia squarrosa: the most archaic form in vascular plants.

    Directory of Open Access Journals (Sweden)

    Yang Liu

    Full Text Available Mitochondrial genomes have maintained some bacterial features despite their residence within eukaryotic cells for approximately two billion years. One of these features is the frequent presence of polycistronic operons. In land plants, however, it has been shown that all sequenced vascular plant chondromes lack large polycistronic operons while bryophyte chondromes have many of them. In this study, we provide the completely sequenced mitochondrial genome of a lycophyte, from Huperzia squarrosa, which is a member of the sister group to all other vascular plants. The genome, at a size of 413,530 base pairs, contains 66 genes and 32 group II introns. In addition, it has 69 pseudogene fragments for 24 of the 40 protein- and rRNA-coding genes. It represents the most archaic form of mitochondrial genomes of all vascular plants. In particular, it has one large conserved gene cluster containing up to 10 ribosomal protein genes, which likely represents a polycistronic operon but has been disrupted and greatly reduced in the chondromes of other vascular plants. It also has the least rearranged gene order in comparison to the chondromes of other vascular plants. The genome is ancestral in vascular plants in several other aspects: the gene content resembling those of charophytes and most bryophytes, all introns being cis-spliced, a low level of RNA editing, and lack of foreign DNA of chloroplast or nuclear origin.

  15. Comparative analysis of complete chloroplast genome sequences of two tropical trees Machilus yunnanensis and Machilus balansae in the family Lauraceae.

    Science.gov (United States)

    Song, Yu; Dong, Wenpan; Liu, Bing; Xu, Chao; Yao, Xin; Gao, Jie; Corlett, Richard T

    2015-01-01

    Machilus is a large (c. 100 sp.) genus of trees in the family Lauraceae, distributed in tropical and subtropical East Asia. Both molecular species identification and phylogenetic studies of this morphologically uniform genus have been constrained by insufficient variable sites among frequently used biomarkers. To better understand the mutation patterns in the chloroplast genome of Machilus, the complete plastomes of two species were sequenced. The plastomes of Machilus yunnanensis and M. balansae were 152, 622 and 152, 721 bp, respectively. Seven highly variable regions between the two Machilus species were identified and 297 mutation events, including one micro-inversion in the ccsA-ndhD region, 65 indels, and 231 substitutions, were accurately located. Thirty-six microsatellite sites were found for use in species identification and 95 single-nucleotide changes were identified in gene coding regions.

  16. Comparative Analysis of Complete Chloroplast Genome Sequences of two tropical trees Machilus yunnanensis and Machilus balansae in the family Lauraceae

    Directory of Open Access Journals (Sweden)

    Yu eSONG

    2015-08-01

    Full Text Available Machilus is a large (c. 100 spp. genus of trees in the family Lauraceae, distributed in tropical and subtropical East Asia. Both molecular species identification and phylogenetic studies of this morphologically uniform genus have been constrained by insufficient variable sites among frequently-used biomarkers. To better understand the mutation patterns in the chloroplast genome of Machilus, the complete plastomes of two species were sequenced. The plastomes of M. yunnanensis and M. balansae were 152, 622 bp and 152, 721 bp respectively. Seven highly variable regions between the two Machilus species and three of them between Machilus and Cinnamomum were identified and 297 mutation events, including one micro-inversion in the ccsA-ndhD region, 65 indels, and 231 substitutions, were accurately located. Thirty-six microsatellite sites were found for use in species identification and 95 single-nucleotide changes were identified in gene coding regions.

  17. The stay-green phenotype of TaNAM-RNAi wheat plants is associated with maintenance of chloroplast structure and high enzymatic antioxidant activity.

    Science.gov (United States)

    Checovich, Mariana L; Galatro, Andrea; Moriconi, Jorge I; Simontacchi, Marcela; Dubcovsky, Jorge; Santa-María, Guillermo E

    2016-07-01

    TaNAM transcription factors play an important role in controlling senescence, which in turn, influences the delivery of nitrogen, iron and other elements to the grain of wheat (Triticum aestivum) plants, thus contributing to grain nutritional value. While lack or diminished expression of TaNAMs determines a stay-green phenotype, the precise effect of these factors on chloroplast structure has not been studied. In this work we focused on the events undergone by chloroplasts in two wheat lines having either control or diminished TaNAM expression due to RNA interference (RNAi). It was found that in RNAi plants maintenance of chlorophyll levels and maximal photochemical efficiency of photosystem II were associated with lack of chloroplast dismantling. Flow cytometer studies and electron microscope analysis showed that RNAi plants conserved organelle ultrastructure and complexity. It was also found that senescence in control plants was accompanied by a low leaf enzymatic antioxidant activity. Lack of chloroplast dismantling in RNAi plants was associated with maintenance of protein and iron concentration in the flag leaf, the opposite being observed in control plants. These data provide a structural basis for the observation that down regulation of TaNAMs confers a functional stay-green phenotype and indicate that the low export of iron and nitrogen from the flag leaf of these plants is concomitant, within the developmental window studied, with lack of chloroplast degradation and high enzymatic antioxidant activity.

  18. Phylogenetic Relationships of the Fern Cyrtomium falcatum (Dryopteridaceae) from Dokdo Island, Sea of East Japan, Based on Chloroplast Genome Sequencing.

    Science.gov (United States)

    Raman, Gurusamy; Choi, Kyoung Su; Park, SeonJoo

    2016-12-02

    Cyrtomium falcatum is a popular ornamental fern cultivated worldwide. Native to the Korean Peninsula, Japan, and Dokdo Island in the Sea of Japan, it is the only fern present on Dokdo Island. We isolated and characterized the chloroplast (cp) genome of C. falcatum, and compared it with those of closely related species. The genes trnV-GAC and trnV-GAU were found to be present within the cp genome of C. falcatum, whereas trnP-GGG and rpl21 were lacking. Moreover, cp genomes of Cyrtomium devexiscapulae and Adiantum capillus-veneris lack trnP-GGG and rpl21, suggesting these are not conserved among angiosperm cp genomes. The deletion of trnR-UCG, trnR-CCG, and trnSeC in the cp genomes of C. falcatum and other eupolypod ferns indicates these genes are restricted to tree ferns, non-core leptosporangiates, and basal ferns. The C. falcatum cp genome also encoded ndhF and rps7, with GUG start codons that were only conserved in polypod ferns, and it shares two significant inversions with other ferns, including a minor inversion of the trnD-GUC region and an approximate 3 kb inversion of the trnG-trnT region. Phylogenetic analyses showed that Equisetum was found to be a sister clade to Psilotales-Ophioglossales with a 100% bootstrap (BS) value. The sister relationship between Pteridaceae and eupolypods was also strongly supported by a 100% BS, but Bayesian molecular clock analyses suggested that C. falcatum diversified in the mid-Paleogene period (45.15 ± 4.93 million years ago) and might have moved from Eurasia to Dokdo Island.

  19. Capturing the biofuel wellhead and powerhouse: the chloroplast and mitochondrial genomes of the leguminous feedstock tree Pongamia pinnata.

    Directory of Open Access Journals (Sweden)

    Stephen H Kazakoff

    Full Text Available Pongamia pinnata (syn. Millettia pinnata is a novel, fast-growing arboreal legume that bears prolific quantities of oil-rich seeds suitable for the production of biodiesel and aviation biofuel. Here, we have used Illumina® 'Second Generation DNA Sequencing (2GS' and a new short-read de novo assembler, SaSSY, to assemble and annotate the Pongamia chloroplast (152,968 bp; cpDNA and mitochondrial (425,718 bp; mtDNA genomes. We also show that SaSSY can be used to accurately assemble 2GS data, by re-assembling the Lotus japonicus cpDNA and in the process assemble its mtDNA (380,861 bp. The Pongamia cpDNA contains 77 unique protein-coding genes and is almost 60% gene-dense. It contains a 50 kb inversion common to other legumes, as well as a novel 6.5 kb inversion that is responsible for the non-disruptive, re-orientation of five protein-coding genes. Additionally, two copies of an inverted repeat firmly place the species outside the subclade of the Fabaceae lacking the inverted repeat. The Pongamia and L. japonicus mtDNA contain just 33 and 31 unique protein-coding genes, respectively, and like other angiosperm mtDNA, have expanded intergenic and multiple repeat regions. Through comparative analysis with Vigna radiata we measured the average synonymous and non-synonymous divergence of all three legume mitochondrial (1.59% and 2.40%, respectively and chloroplast (8.37% and 8.99%, respectively protein-coding genes. Finally, we explored the relatedness of Pongamia within the Fabaceae and showed the utility of the organellar genome sequences by mapping transcriptomic data to identify up- and down-regulated stress-responsive gene candidates and confirm in silico predicted RNA editing sites.

  20. Bioinformatics for plant genome annotation

    NARCIS (Netherlands)

    Fiers, M.W.E.J.

    2006-01-01

    Large amounts of genome sequence data are available and much more will become available in the near future. A DNA sequence alone has, however, limited use. Genome annotation is required to assign biological interpretation to the DNA sequence. This thesis describ

  1. Plant cytogenetics in genome databases

    Science.gov (United States)

    Cytogenetic maps provide an integrated representation of genetic and cytological information that can be used to enhance genome and chromosome research. As genome analysis technologies become more affordable, the density of markers on cytogenetic maps increases, making these resources more useful a...

  2. Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe.

    Directory of Open Access Journals (Sweden)

    Christopher P Middleton

    Full Text Available Using Roche/454 technology, we sequenced the chloroplast genomes of 12 Triticeae species, including bread wheat, barley and rye, as well as the diploid progenitors and relatives of bread wheat Triticum urartu, Aegilops speltoides and Ae. tauschii. Two wild tetraploid taxa, Ae. cylindrica and Ae. geniculata, were also included. Additionally, we incorporated wild Einkorn wheat Triticum boeoticum and its domesticated form T. monococcum and two Hordeum spontaneum (wild barley genotypes. Chloroplast genomes were used for overall sequence comparison, phylogenetic analysis and dating of divergence times. We estimate that barley diverged from rye and wheat approximately 8-9 million years ago (MYA. The genome donors of hexaploid wheat diverged between 2.1-2.9 MYA, while rye diverged from Triticum aestivum approximately 3-4 MYA, more recently than previously estimated. Interestingly, the A genome taxa T. boeoticum and T. urartu were estimated to have diverged approximately 570,000 years ago. As these two have a reproductive barrier, the divergence time estimate also provides an upper limit for the time required for the formation of a species boundary between the two. Furthermore, we conclusively show that the chloroplast genome of hexaploid wheat was contributed by the B genome donor and that this unknown species diverged from Ae. speltoides about 980,000 years ago. Additionally, sequence alignments identified a translocation of a chloroplast segment to the nuclear genome which is specific to the rye/wheat lineage. We propose the presented phylogeny and divergence time estimates as a reference framework for future studies on Triticeae.

  3. Analysis of whole chloroplast genomes from the genera of the Clauseneae, the curry tribe (Rutaceae, Citrus family).

    Science.gov (United States)

    Shivakumar, Vikram S; Appelhans, Marc S; Johnson, Gabriel; Carlsen, Monica; Zimmer, Elizabeth A

    2016-12-11

    The Clauseneae (Aurantioideae, Rutaceae) is a tribe in the Citrus family that, although economically important as it contains the culinary and medicinally-useful curry tree (Bergera koenigii), has been relatively understudied. Due to the recent significant taxonomic changes made to this tribe, a closer inspection of the genetic relationships among its genera has been warranted. Whole genome skimming was used to generate chloroplast genomes from six species, representing each of the four genera (Bergera, Clausena, Glycosmis, Micromelum) in the Clauseneae tribe plus one closely related outgroup (Merrillia), using the published plastome sequence of Citrus sinensis as a reference. Phylogenetically informative character (PIC) data were analyzed using a genome alignment of the seven species, and variability frequency among the species was recorded for each coding and non-coding region, with the regions of highest variability identified for future phylogenetic studies. Non-coding regions exhibited a higher percentage of variable characters as expected, and the phylogenetic markers ycf1, matK, rpoC2, ndhF, trnS-trnG spacer, and trnH-psbA spacer proved to be among the most variable regions. Other markers that are frequently used in phylogenetic studies, e.g. rps16, atpB-rbcL, rps4-trnT, and trnL-trnF, proved to be far less variable. Phylogenetic analyses of the aligned sequences were conducted using Bayesian inference (MrBayes) and Maximum Likelihood (RAxML), yielding highly supported divisions among the four genera.

  4. Brassinosteroid-induced CO{sub 2} assimilation is associated with increased stability of redox-sensitive photosynthetic enzymes in the chloroplasts in cucumber plants

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yu Ping; Cheng, Fei; Zhou, Yan Hong; Xia, Xiao Jian; Mao, Wei Hua; Shi, Kai [Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058 (China); Chen, Zhi Xiang [Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058 (China); Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054 (United States); Yu, Jing Quan, E-mail: jqyu@zju.edu.cn [Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058 (China); Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture of China, Yuhangtang Road 866, Hangzhou 310058 (China)

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer Activity of certain Calvin cycle enzymes and CO{sub 2} assimilation are induced by BRs. Black-Right-Pointing-Pointer BRs upregulate the activity of the ascorbate-glutathione cycle in the chloroplasts. Black-Right-Pointing-Pointer BRs increase the chloroplast thiol reduction state. Black-Right-Pointing-Pointer A BR-induced reducing environment increases the stability of photosynthetic enzymes. -- Abstract: Brassinosteroids (BRs) play important roles in plant growth, development, photosynthesis and stress tolerance; however, the mechanism underlying BR-enhanced photosynthesis is currently unclear. Here, we provide evidence that an increase in the BR level increased the quantum yield of PSII, activities of Rubisco activase (RCA) and fructose-1,6-bisphosphatase (FBPase), and CO{sub 2} assimilation. BRs upregulated the transcript levels of genes and activity of enzymes involved in the ascorbate-glutathione cycle in the chloroplasts, leading to an increased ratio of reduced (GSH) to oxidized (GSSG) glutathione in the chloroplasts. An increased GSH/GSSG ratio protected RCA from proteolytic digestion and increased the stability of redox-sensitive enzymes in the chloroplasts. These results strongly suggest that BRs are capable of regulating the glutathione redox state in the chloroplasts through the activation of the ascorbate-glutathione cycle. The resulting increase in the chloroplast thiol reduction state promotes CO{sub 2} assimilation, at least in part, by enhancing the stability and activity of redox-sensitive photosynthetic enzymes through post-translational modifications.

  5. Phototropin encoded by a single-copy gene mediates chloroplast photorelocation movements in the liverwort Marchantia polymorpha.

    Science.gov (United States)

    Komatsu, Aino; Terai, Mika; Ishizaki, Kimitsune; Suetsugu, Noriyuki; Tsuboi, Hidenori; Nishihama, Ryuichi; Yamato, Katsuyuki T; Wada, Masamitsu; Kohchi, Takayuki

    2014-09-01

    Blue-light-induced chloroplast photorelocation movement is observed in most land plants. Chloroplasts move toward weak-light-irradiated areas to efficiently absorb light (the accumulation response) and escape from strong-light-irradiated areas to avoid photodamage (the avoidance response). The plant-specific kinase phototropin (phot) is the blue-light receptor for chloroplast movements. Although the molecular mechanisms for chloroplast photorelocation movement have been analyzed, the overall aspects of signal transduction common to land plants are still unknown. Here, we show that the liverwort Marchantia polymorpha exhibits the accumulation and avoidance responses exclusively induced by blue light as well as specific chloroplast positioning in the dark. Moreover, in silico and Southern-blot analyses revealed that the M. polymorpha genome encodes a single PHOT gene, MpPHOT, and its knockout line displayed none of the chloroplast photorelocation movements, indicating that the sole MpPHOT gene mediates all types of movement. Mpphot was localized on the plasma membrane and exhibited blue-light-dependent autophosphorylation both in vitro and in vivo. Heterologous expression of MpPHOT rescued the defects in chloroplast movement of phot mutants in the fern Adiantum capillus-veneris and the seed plant Arabidopsis (Arabidopsis thaliana). These results indicate that Mpphot possesses evolutionarily conserved regulatory activities for chloroplast photorelocation movement. M. polymorpha offers a simple and versatile platform for analyzing the fundamental processes of phototropin-mediated chloroplast photorelocation movement common to land plants.

  6. Why Assembling Plant Genome Sequences Is So Challenging

    Directory of Open Access Journals (Sweden)

    Pedro Seoane

    2012-09-01

    Full Text Available In spite of the biological and economic importance of plants, relatively few plant species have been sequenced. Only the genome sequence of plants with relatively small genomes, most of them angiosperms, in particular eudicots, has been determined. The arrival of next-generation sequencing technologies has allowed the rapid and efficient development of new genomic resources for non-model or orphan plant species. But the sequencing pace of plants is far from that of animals and microorganisms. This review focuses on the typical challenges of plant genomes that can explain why plant genomics is less developed than animal genomics. Explanations about the impact of some confounding factors emerging from the nature of plant genomes are given. As a result of these challenges and confounding factors, the correct assembly and annotation of plant genomes is hindered, genome drafts are produced, and advances in plant genomics are delayed.

  7. Why Assembling Plant Genome Sequences Is So Challenging

    Science.gov (United States)

    Claros, Manuel Gonzalo; Bautista, Rocío; Guerrero-Fernández, Darío; Benzerki, Hicham; Seoane, Pedro; Fernández-Pozo, Noé

    2012-01-01

    In spite of the biological and economic importance of plants, relatively few plant species have been sequenced. Only the genome sequence of plants with relatively small genomes, most of them angiosperms, in particular eudicots, has been determined. The arrival of next-generation sequencing technologies has allowed the rapid and efficient development of new genomic resources for non-model or orphan plant species. But the sequencing pace of plants is far from that of animals and microorganisms. This review focuses on the typical challenges of plant genomes that can explain why plant genomics is less developed than animal genomics. Explanations about the impact of some confounding factors emerging from the nature of plant genomes are given. As a result of these challenges and confounding factors, the correct assembly and annotation of plant genomes is hindered, genome drafts are produced, and advances in plant genomics are delayed. PMID:24832233

  8. 77 FR 75425 - Interagency Working Group on Plant Genomics (IWGPG): The National Plant Genome Initiative-What's...

    Science.gov (United States)

    2012-12-20

    ... Interagency Working Group on Plant Genomics (IWGPG): The National Plant Genome Initiative--What's Next? AGENCY... Group on Plant Genomics (IWGPG). DATES: Saturday, January 12, 2013, 1:30 p.m. to 3:40 p.m. ADDRESSES... production, with a specific focus on the management of plant genomics data, metadata, and...

  9. Heterologous expression of chloroplast-localized geranylgeranyl pyrophosphate synthase confers fast plant growth, early flowering and increased seed yield.

    Science.gov (United States)

    Tata, Sandeep Kumar; Jung, Jihye; Kim, Yoon-Ha; Choi, Jun Young; Jung, Ji-Yul; Lee, In-Jung; Shin, Jeong Sheop; Ryu, Stephen Beungtae

    2016-01-01

    Geranylgeranyl pyrophosphate synthase (GGPS) is a key enzyme for a structurally diverse class of isoprenoid biosynthetic metabolites including gibberellins, carotenoids, chlorophylls and rubber. We expressed a chloroplast-targeted GGPS isolated from sunflower (Helianthus annuus) under control of the cauliflower mosaic virus 35S promoter in tobacco (Nicotiana tabacum). The resulting transgenic tobacco plants expressing heterologous GGPS showed remarkably enhanced growth (an increase in shoot and root biomass and height), early flowering, increased number of seed pods and greater seed yield compared with that of GUS-transgenic lines (control) or wild-type plants. The gibberellin levels in HaGGPS-transgenic plants were higher than those in control plants, indicating that the observed phenotype may result from increased gibberellin content. However, in HaGGPS-transformant tobacco plants, we did not observe the phenotypic defects such as reduced chlorophyll content and greater petiole and stalk length, which were previously reported for transgenic plants expressing gibberellin biosynthetic genes. Fast plant growth was also observed in HaGGPS-expressing Arabidopsis and dandelion plants. The results of this study suggest that GGPS expression in crop plants may yield desirable agronomic traits, including enhanced growth of shoots and roots, early flowering, greater numbers of seed pods and/or higher seed yield. This research has potential applications for fast production of plant biomass that provides commercially valuable biomaterials or bioenergy. © 2015 Korea Research Institute of Bioscience & Biotechnology. Plant Biotechnology Journal published by John Wiley & Sons Ltd and Society for Experimental Biology, Association of Applied Biologists.

  10. Update on Chloroplast Research: New Tools, New Topics, and New Trends

    Institute of Scientific and Technical Information of China (English)

    Ute Armbruster; Paolo Pesaresi; Mathias Pribil; Alexander Hertle; Dario Leister

    2011-01-01

    Chloroplasts, the green differentiation form of plastids, are the sites of photosynthesis and other important plant functions. Genetic and genomic technologies have greatly boosted the rate of discovery and functional characterization of chloroplast proteins during the past decade. Indeed, data obtained using high-throughput methodologies, in particular proteomics and transcriptomics, are now routinely used to assign functions to chloroplast proteins. Our knowledge of many chloroplast processes, notably photosynthesis and photorespiration, has reached such an advanced state that biotechnological approaches to crop improvement now seem feasible. Meanwhile, efforts to identify the entire complement of chloroplast proteins and their interactions are progressing rapidly, making the organelle a prime target for systems biology research in plants.

  11. Plant MITEs: Useful Tools for Plant Genetics and Genomics

    Institute of Scientific and Technical Information of China (English)

    Ying Feng

    2003-01-01

    MITEs (Miniature inverted-repeat transposable elements) are reminiscence of non-autonomous DNA (class Ⅱ) elements, which are distinguished from other transpos-able elements by their small size, short terminal inverted repeats (TIRs), high copynumbers, genic preference, and DNA sequence identity among family members. Al-though MITEs were first discovered in plants and still actively reshaping genomes,they have been isolated from a wide range of eukaryotic organisms. MITEs canbe divided into Tourist-like, Stowaway-like, and pogo-like groups, according tosimilarities of their TIRs and TSDs (target site duplications). In despite of sev-eral models to explain the origin and amplification of MITEs, their mechanisms oftransposition and accumulation in eukaryotic genomes remain poorly understoodowing to insufficient experimental data. The unique properties of MITEs have beenexploited as useful genetic tools for plant genome analysis. Utilization of MITEsas effective and informative genomic markers and potential application of MITEsin plants systematic, phylogenetic, and genetic studies are discussed.

  12. JGI Plant Genomics Gene Annotation Pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Shengqiang; Rokhsar, Dan; Goodstein, David; Hayes, David; Mitros, Therese

    2014-07-14

    Plant genomes vary in size and are highly complex with a high amount of repeats, genome duplication and tandem duplication. Gene encodes a wealth of information useful in studying organism and it is critical to have high quality and stable gene annotation. Thanks to advancement of sequencing technology, many plant species genomes have been sequenced and transcriptomes are also sequenced. To use these vastly large amounts of sequence data to make gene annotation or re-annotation in a timely fashion, an automatic pipeline is needed. JGI plant genomics gene annotation pipeline, called integrated gene call (IGC), is our effort toward this aim with aid of a RNA-seq transcriptome assembly pipeline. It utilizes several gene predictors based on homolog peptides and transcript ORFs. See Methods for detail. Here we present genome annotation of JGI flagship green plants produced by this pipeline plus Arabidopsis and rice except for chlamy which is done by a third party. The genome annotations of these species and others are used in our gene family build pipeline and accessible via JGI Phytozome portal whose URL and front page snapshot are shown below.

  13. Genome editing with engineered nucleases in plants.

    Science.gov (United States)

    Osakabe, Yuriko; Osakabe, Keishi

    2015-03-01

    Numerous examples of successful 'genome editing' now exist. Genome editing uses engineered nucleases as powerful tools to target specific DNA sequences to edit genes precisely in the genomes of both model and crop plants, as well as a variety of other organisms. The DNA-binding domains of zinc finger (ZF) proteins were the first to be used as genome editing tools, in the form of designed ZF nucleases (ZFNs). More recently, transcription activator-like effector nucleases (TALENs), as well as the clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) system, which utilizes RNA-DNA interactions, have proved useful. A key step in genome editing is the generation of a double-stranded DNA break that is specific to the target gene. This is achieved by custom-designed endonucleases, which enable site-directed mutagenesis via a non-homologous end-joining (NHEJ) repair pathway and/or gene targeting via homologous recombination (HR) to occur efficiently at specific sites in the genome. This review provides an overview of recent advances in genome editing technologies in plants, and discusses how these can provide insights into current plant molecular biology research and molecular breeding technology.

  14. Spontaneous capture of oilseed rape (Brassica napus) chloroplasts by wild B. rapa: implications for the use of chloroplast transformation for biocontainment.

    Science.gov (United States)

    Haider, Nadia; Allainguillaume, Joel; Wilkinson, Mike J

    2009-04-01

    Environmental concerns over the cultivation of Genetically Modified (GM) crops largely centre on the ecological consequences following gene flow to wild relatives. One attractive solution is to deploy biocontainment measures that prevent hybridization. Chloroplast transformation is the most advanced biocontainment method but is compromised by chloroplast capture (hybridization through the maternal lineage). To date, however, there is a paucity of information on the frequency of chloroplast capture in the wild. Oilseed rape (Brassica napus, AACC) frequently hybridises with wild Brassica rapa (AA, as paternal parent) and yields B. rapa-like introgressed individuals after only two generations. In this study we used chloroplast CAPS markers that differentiate between the two species to survey wild and weedy populations of B. rapa for the capture of B. napus chloroplasts. A total of 464 B. rapa plants belonging to 14 populations growing either in close proximity to B. napus (i.e. sympatric 1 km) were assessed for chloroplast capture using PCR (trnL-F) and CAPS (trnT-L-Xba I) markers. The screen revealed that two sympatric B. rapa populations included 53 plants that possessed the chloroplast of B. napus. In order to discount these B. rapa plants as F(1) crop-wild hybrids, we used a C-genome-specific marker and found that 45 out of 53 plants lacked the C-genome and so were at least second generation introgressants. The most plausible explanation is that these individuals represent multiple cases of chloroplast capture following introgressive hybridisation through the female germ line from the crop. The abundance of such plants in sympatric sites thereby questions whether the use of chloroplast transformation would provide a sufficient biocontainment for GM oilseed rape in the United Kingdom.

  15. Plantagora: modeling whole genome sequencing and assembly of plant genomes.

    Directory of Open Access Journals (Sweden)

    Roger Barthelson

    Full Text Available BACKGROUND: Genomics studies are being revolutionized by the next generation sequencing technologies, which have made whole genome sequencing much more accessible to the average researcher. Whole genome sequencing with the new technologies is a developing art that, despite the large volumes of data that can be produced, may still fail to provide a clear and thorough map of a genome. The Plantagora project was conceived to address specifically the gap between having the technical tools for genome sequencing and knowing precisely the best way to use them. METHODOLOGY/PRINCIPAL FINDINGS: For Plantagora, a platform was created for generating simulated reads from several different plant genomes of different sizes. The resulting read files mimicked either 454 or Illumina reads, with varying paired end spacing. Thousands of datasets of reads were created, most derived from our primary model genome, rice chromosome one. All reads were assembled with different software assemblers, including Newbler, Abyss, and SOAPdenovo, and the resulting assemblies were evaluated by an extensive battery of metrics chosen for these studies. The metrics included both statistics of the assembly sequences and fidelity-related measures derived by alignment of the assemblies to the original genome source for the reads. The results were presented in a website, which includes a data graphing tool, all created to help the user compare rapidly the feasibility and effectiveness of different sequencing and assembly strategies prior to testing an approach in the lab. Some of our own conclusions regarding the different strategies were also recorded on the website. CONCLUSIONS/SIGNIFICANCE: Plantagora provides a substantial body of information for comparing different approaches to sequencing a plant genome, and some conclusions regarding some of the specific approaches. Plantagora also provides a platform of metrics and tools for studying the process of sequencing and assembly

  16. Genome-enabled plant metabolomics.

    Science.gov (United States)

    Tohge, Takayuki; de Souza, Leonardo Perez; Fernie, Alisdair R

    2014-09-01

    The grand challenge currently facing metabolomics is that of comprehensitivity whilst next generation sequencing and advanced proteomics methods now allow almost complete and at least 50% coverage of their respective target molecules, metabolomics platforms at best offer coverage of just 10% of the small molecule complement of the cell. Here we discuss the use of genome sequence information as an enabling tool for peak identity and for translational metabolomics. Whilst we argue that genome information is not sufficient to compute the size of a species metabolome it is highly useful in predicting the occurrence of a wide range of common metabolites. Furthermore, we describe how via gene functional analysis in model species the identity of unknown metabolite peaks can be resolved. Taken together these examples suggest that genome sequence information is current (and likely will remain), a highly effective tool in peak elucidation in mass spectral metabolomics strategies. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Translocation of the precursor of 5-enolpyruvylshikimate-3-phosphate synthase into chloroplasts of higher plants in vitro

    OpenAIRE

    Della-Cioppa, Guy; Bauer, S. Christopher; Klein, Barbara K.; Dilip M Shah; Fraley, Robert T.; Kishore, Ganesh M.

    1986-01-01

    5-enolPyruvylshikimate-3-phosphate synthase (EPSP synthase; 3-phosphoshikimate 1-carboxyvinyl-transferase; EC 2.5.1.19) is a chloroplast-localized enzyme of the shikimate pathway in plants. This enzyme is the target for the nonselective herbicide glyphosate (N-phosphonomethylglycine). We have previously isolated a full-length cDNA clone of EPSP synthase from Petunia hybrida. DNA sequence analysis suggested that the enzyme is synthesized as a cytosolic precursor (pre-EPSP synthase) with an ami...

  18. Auxin and chloroplast movements.

    Science.gov (United States)

    Eckstein, Aleksandra; Krzeszowiec, Weronika; Waligórski, Piotr; Gabryś, Halina

    2016-03-01

    Auxin is involved in a wide spectrum of physiological processes in plants, including responses controlled by the blue light photoreceptors phototropins: phototropic bending and stomatal movement. However, the role of auxin in phototropin-mediated chloroplast movements has never been studied. To address this question we searched for potential interactions between auxin and the chloroplast movement signaling pathway using different experimental approaches and two model plants, Arabidopsis thaliana and Nicotiana tabacum. We observed that the disturbance of auxin homeostasis by shoot decapitation caused a decrease in chloroplast movement parameters, which could be rescued by exogenous auxin application. In several cases, the impairment of polar auxin transport, by chemical inhibitors or in auxin carrier mutants, had a similar negative effect on chloroplast movements. This inhibition was not correlated with changes in auxin levels. Chloroplast relocations were also affected by the antiauxin p-chlorophenoxyisobutyric acid and mutations in genes encoding some of the elements of the SCF(TIR1)-Aux/IAA auxin receptor complex. The observed changes in chloroplast movement parameters are not prominent, which points to a modulatory role of auxin in this process. Taken together, the obtained results suggest that auxin acts indirectly to regulate chloroplast movements, presumably by regulating gene expression via the SCF(TIR1)-Aux/IAA-ARF pathway. Auxin does not seem to be involved in controlling the expression of phototropins.

  19. Terpene metabolic engineering via nuclear or chloroplast genomes profoundly and globally impacts off-target pathways through metabolite signalling.

    Science.gov (United States)

    Pasoreck, Elise K; Su, Jin; Silverman, Ian M; Gosai, Sager J; Gregory, Brian D; Yuan, Joshua S; Daniell, Henry

    2016-09-01

    The impact of metabolic engineering on nontarget pathways and outcomes of metabolic engineering from different genomes are poorly understood questions. Therefore, squalene biosynthesis genes FARNESYL DIPHOSPHATE SYNTHASE (FPS) and SQUALENE SYNTHASE (SQS) were engineered via the Nicotiana tabacum chloroplast (C), nuclear (N) or both (CN) genomes to promote squalene biosynthesis. SQS levels were ~4300-fold higher in C and CN lines than in N, but all accumulated ~150-fold higher squalene due to substrate or storage limitations. Abnormal leaf and flower phenotypes, including lower pollen production and reduced fertility, were observed regardless of the compartment or level of transgene expression. Substantial changes in metabolomes of all lines were observed: levels of 65-120 unrelated metabolites, including the toxic alkaloid nicotine, changed by as much as 32-fold. Profound effects of transgenesis on nontarget gene expression included changes in the abundance of 19 076 transcripts by up to 2000-fold in CN; 7784 transcripts by up to 1400-fold in N; and 5224 transcripts by as much as 2200-fold in C. Transporter-related transcripts were induced, and cell cycle-associated transcripts were disproportionally repressed in all three lines. Transcriptome changes were validated by qRT-PCR. The mechanism underlying these large changes likely involves metabolite-mediated anterograde and/or retrograde signalling irrespective of the level of transgene expression or end product, due to imbalance of metabolic pools, offering new insight into both anticipated and unanticipated consequences of metabolic engineering.

  20. Chloroplast Avoidance Movement Causes Increasing PAR Reflectance in Water Stressed Plants and May Distort Biophysical Estimates Based On Spectral Indices

    Science.gov (United States)

    Zygielbaum, A. I.; Arkebauer, T. J.; Walter-Shea, E.

    2013-12-01

    Vegetation photoprotective responses impact the reflected spectra in the visible or photosynthetically active (PAR) spectral region. Earlier, we presented a case that the increasing PAR reflectance which accompanies increasing water stress was due to one such response, chloroplast avoidance movement. This increasing reflectance has been reported in published papers for several decades and dismissed as operator error or a result of changes in leaf turgor or optical pathway. We showed, however, that such changes in the PAR region, which occurred with no significant change in chlorophyll content, were caused by decreasing absorption, not changes in light scatter. Further, we demonstrated that the changes in reflectance were correlated with changes in ambient light (downwelling radiance). To further refine the case that chloroplast movement is the basis of these observations, excised leaves were exposed separately to either red light or white light illumination of equal photon flux densities. The transmittance observed as these leaves dried increased in the leaves exposed to white light and remained constant in the leaves exposed to red light. Since chloroplast movement is driven by blue light, our conjecture is strengthened. We have also observed distinct morning vs. afternoon differences in reflectance spectra of greenhouse-grown plants; indices derived from these spectra also vary diurnally--leading us to coin the phase 'apparent chlorophyll'. All observations previously reported were the result of greenhouse experiments. We report herein on observations of leaf and canopy reflectances under field conditions and on the impact the increasing reflectance has on estimation of chlorophyll content using spectral indices. We also present evidence that increasing reflectance which is concomitant with increasing plant stress may not correlate with stress indications using the photochemical reflectance index (PRI) and discuss the implications of that observation.

  1. Chloroplast DNA sequence of the green alga Oedogonium cardiacum (Chlorophyceae: Unique genome architecture, derived characters shared with the Chaetophorales and novel genes acquired through horizontal transfer

    Directory of Open Access Journals (Sweden)

    Lemieux Claude

    2008-06-01

    Full Text Available Abstract Background To gain insight into the branching order of the five main lineages currently recognized in the green algal class Chlorophyceae and to expand our understanding of chloroplast genome evolution, we have undertaken the sequencing of chloroplast DNA (cpDNA from representative taxa. The complete cpDNA sequences previously reported for Chlamydomonas (Chlamydomonadales, Scenedesmus (Sphaeropleales, and Stigeoclonium (Chaetophorales revealed tremendous variability in their architecture, the retention of only few ancestral gene clusters, and derived clusters shared by Chlamydomonas and Scenedesmus. Unexpectedly, our recent phylogenies inferred from these cpDNAs and the partial sequences of three other chlorophycean cpDNAs disclosed two major clades, one uniting the Chlamydomonadales and Sphaeropleales (CS clade and the other uniting the Oedogoniales, Chaetophorales and Chaetopeltidales (OCC clade. Although molecular signatures provided strong support for this dichotomy and for the branching of the Oedogoniales as the earliest-diverging lineage of the OCC clade, more data are required to validate these phylogenies. We describe here the complete cpDNA sequence of Oedogonium cardiacum (Oedogoniales. Results Like its three chlorophycean homologues, the 196,547-bp Oedogonium chloroplast genome displays a distinctive architecture. This genome is one of the most compact among photosynthetic chlorophytes. It has an atypical quadripartite structure, is intron-rich (17 group I and 4 group II introns, and displays 99 different conserved genes and four long open reading frames (ORFs, three of which are clustered in the spacious inverted repeat of 35,493 bp. Intriguingly, two of these ORFs (int and dpoB revealed high similarities to genes not usually found in cpDNA. At the gene content and gene order levels, the Oedogonium genome most closely resembles its Stigeoclonium counterpart. Characters shared by these chlorophyceans but missing in members

  2. Isolation of intact and pure chloroplasts from leaves of Arabidopsis thaliana plants acclimated to low irradiance for studies on Rubisco regulation

    Directory of Open Access Journals (Sweden)

    Magda Grabsztunowicz

    2012-11-01

    Full Text Available A protocol is presented for low-cost and fast isolation of intact and pure chloroplasts from leaves of plants acclimated to low irradiance. The protocol is based on a differential centrifugation of cleared leaf homogenate and omits a centrifugation on Percoll gradient step. The intactness and purity of the chloroplasts isolated from leaves of low irradiance-acclimated plants by using this protocol (confirmed by phase contrast microscopy as well as enzymatic and immunological approaches allows plausible studies on low irradiance-dependent Rubisco regulation.

  3. Complete chloroplast genome sequences of Drimys, Liriodendron, andPiper: Implications for the phylogeny of magnoliids and the evolution ofGC content

    Energy Technology Data Exchange (ETDEWEB)

    Zhengqiu, C.; Penaflor, C.; Kuehl, J.V.; Leebens-Mack, J.; Carlson, J.; dePamphilis, C.W.; Boore, J.L.; Jansen, R.K.

    2006-06-01

    The magnoliids represent the largest basal angiosperm clade with four orders, 19 families and 8,500 species. Although several recent angiosperm molecular phylogenies have supported the monophyly of magnoliids and suggested relationships among the orders, the limited number of genes examined resulted in only weak support, and these issues remain controversial. Furthermore, considerable incongruence has resulted in phylogenies supporting three different sets of relationships among magnoliids and the two large angiosperm clades, monocots and eudicots. This is one of the most important remaining issues concerning relationships among basal angiosperms. We sequenced the chloroplast genomes of three magnoliids, Drimys (Canellales), Liriodendron (Magnoliales), and Piper (Piperales), and used these data in combination with 32 other completed angiosperm chloroplast genomes to assess phylogenetic relationships among magnoliids. The Drimys and Piper chloroplast genomes are nearly identical in size at 160,606 and 160,624 bp, respectively. The genomes include a pair of inverted repeats of 26,649 bp (Drimys) and 27,039 (Piper), separated by a small single copy region of 18,621 (Drimys) and 18,878 (Piper) and a large single copy region of 88,685 bp (Drimys) and 87,666 bp (Piper). The gene order of both taxa is nearly identical to many other unrearranged angiosperm chloroplast genomes, including Calycanthus, the other published magnoliid genome. Comparisons of angiosperm chloroplast genomes indicate that GC content is not uniformly distributed across the genome. Overall GC content ranges from 34-39%, and coding regions have a substantially higher GC content than non-coding regions (both intergenic spacers and introns). Among protein-coding genes, GC content varies by codon position with 1st codon > 2nd codon > 3rd codon, and it varies by functional group with photosynthetic genes having the highest percentage and NADH genes the lowest. Across the genome, GC content is highest in

  4. Antiviral Defenses in Plants through Genome Editing

    Science.gov (United States)

    Romay, Gustavo; Bragard, Claude

    2017-01-01

    Plant–virus interactions based-studies have contributed to increase our understanding on plant resistance mechanisms, providing new tools for crop improvement. In the last two decades, RNA interference, a post-transcriptional gene silencing approach, has been used to induce antiviral defenses in plants with the help of genetic engineering technologies. More recently, the new genome editing systems (GES) are revolutionizing the scope of tools available to confer virus resistance in plants. The most explored GES are zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats/Cas9 endonuclease. GES are engineered to target and introduce mutations, which can be deleterious, via double-strand breaks at specific DNA sequences by the error-prone non-homologous recombination end-joining pathway. Although GES have been engineered to target DNA, recent discoveries of GES targeting ssRNA molecules, including virus genomes, pave the way for further studies programming plant defense against RNA viruses. Most of plant virus species have an RNA genome and at least 784 species have positive ssRNA. Here, we provide a summary of the latest progress in plant antiviral defenses mediated by GES. In addition, we also discuss briefly the GES perspectives in light of the rebooted debate on genetic modified organisms (GMOs) and the current regulatory frame for agricultural products involving the use of such engineering technologies. PMID:28167937

  5. Formation kinetics and H2O2 distribution in chloroplasts and protoplasts of photosynthetic leaf cells of higher plants under illumination.

    Science.gov (United States)

    Naydov, I A; Mubarakshina, M M; Ivanov, B N

    2012-02-01

    The dye H(2)DCF-DA, which forms the fluorescent molecule DCF in the reaction with hydrogen peroxide, H(2)O(2), was used to study light-induced H(2)O(2) production in isolated intact chloroplasts and in protoplasts of mesophyll cells of Arabidopsis, pea, and maize. A technique to follow the kinetics of light-induced H(2)O(2) production in the photosynthesizing cells using this dye has been developed. Distribution of DCF fluorescence in these cells in the light has been investigated. It was found that for the first minutes of illumination the intensity of DCF fluorescence increases linearly after a small lag both in isolated chloroplasts and in chloroplasts inside protoplast. In protoplasts of Arabidopsis mutant vtc2-2 with disturbed biosynthesis of ascorbate, the rate of increase in DCF fluorescence intensity in chloroplasts was considerably higher than in protoplasts of the wild type plant. Illumination of protoplasts also led to an increase in DCF fluorescence intensity in mitochondria. Intensity of DCF fluorescence in chloroplasts increased much more rapidly than in cytoplasm. The cessation of cytoplasmic movement under illumination lowered the rate of DCF fluorescence intensity increase in chloroplasts and sharply accelerated it in the cytoplasm. It was revealed that in response to switching off the light, the intensity of fluorescence of both DCF and fluorescent dye FDA increases in the cytoplasm in the vicinity of chloroplasts, while it decreases in the chloroplasts; the opposite changes occur in response to switching on the light again. It was established that these phenomena are connected with proton transport from chloroplasts in the light. In the presence of nigericin, which prevents the establishment of transmembrane proton gradients, the level of DCF fluorescence in cytoplasm was higher and increased more rapidly than in the chloroplasts from the very beginning of illumination. These results imply the presence of H(2)O(2) export from chloroplasts to

  6. Fat Metabolism in Higher Plants: LXII. Stearl-acyl Carrier Protein Desaturase from Spinach Chloroplasts.

    Science.gov (United States)

    Jacobson, B S; Jaworski, J G; Stumpf, P K

    1974-10-01

    Stearyl-acyl carrier protein desaturase (EC 1.14.99.6), present in the stroma fraction of spinach (Spinacia oleracea) chloroplasts, rapidly desaturated enzymatically prepared stearyl-acyl carrier protein to oleic acid. No other substrates were desaturated. In addition to stearyl-acyl carrier protein, reduced ferredoxin was an essential component of the system. The electron donor systems were either ascorbate, dichlorophenolindophenol, photosystem I and light, or NADPH and ferredoxin-NADP reductase. The desaturase was more active in extracts prepared from chloroplasts obtained from immature spinach leaves than from mature leaves. Stearyl-acyl carrier protein desaturase also occurs in soluble extracts of avocado (Persea americana Mill.) mesocarp and of developing safflower (Carthamus tinctorius) seeds.

  7. Genomic analyses of the CAM plant pineapple.

    Science.gov (United States)

    Zhang, Jisen; Liu, Juan; Ming, Ray

    2014-07-01

    The innovation of crassulacean acid metabolism (CAM) photosynthesis in arid and/or low CO2 conditions is a remarkable case of adaptation in flowering plants. As the most important crop that utilizes CAM photosynthesis, the genetic and genomic resources of pineapple have been developed over many years. Genetic diversity studies using various types of DNA markers led to the reclassification of the two genera Ananas and Pseudananas and nine species into one genus Ananas and two species, A. comosus and A. macrodontes with five botanical varieties in A. comosus. Five genetic maps have been constructed using F1 or F2 populations, and high-density genetic maps generated by genotype sequencing are essential resources for sequencing and assembling the pineapple genome and for marker-assisted selection. There are abundant expression sequence tag resources but limited genomic sequences in pineapple. Genes involved in the CAM pathway has been analysed in several CAM plants but only a few of them are from pineapple. A reference genome of pineapple is being generated and will accelerate genetic and genomic research in this major CAM crop. This reference genome of pineapple provides the foundation for studying the origin and regulatory mechanism of CAM photosynthesis, and the opportunity to evaluate the classification of Ananas species and botanical cultivars.

  8. A CRM domain protein functions dually in group I and group II intron splicing in land plant chloroplasts.

    Science.gov (United States)

    Asakura, Yukari; Barkan, Alice

    2007-12-01

    The CRM domain is a recently recognized RNA binding domain found in three group II intron splicing factors in chloroplasts, in a bacterial protein that associates with ribosome precursors, and in a family of uncharacterized proteins in plants. To elucidate the functional repertoire of proteins with CRM domains, we studied CFM2 (for CRM Family Member 2), which harbors four CRM domains. RNA coimmunoprecipitation assays showed that CFM2 in maize (Zea mays) chloroplasts is associated with the group I intron in pre-trnL-UAA and group II introns in the ndhA and ycf3 pre-mRNAs. T-DNA insertions in the Arabidopsis thaliana ortholog condition a defective-seed phenotype (strong allele) or chlorophyll-deficient seedlings with impaired splicing of the trnL group I intron and the ndhA, ycf3-int1, and clpP-int2 group II introns (weak alleles). CFM2 and two previously described CRM proteins are bound simultaneously to the ndhA and ycf3-int1 introns and act in a nonredundant fashion to promote their splicing. With these findings, CRM domain proteins are implicated in the activities of three classes of catalytic RNA: group I introns, group II introns, and 23S rRNA.

  9. Phytozome: a comparative platform for green plant genomics

    OpenAIRE

    Goodstein, David M.; Shu, Shengqiang; Howson, Russell; Neupane, Rochak; Hayes, Richard D.; Fazo, Joni; Mitros, Therese; Dirks, William; Hellsten, Uffe; Putnam, Nicholas ; Rokhsar, Daniel S.

    2011-01-01

    The number of sequenced plant genomes and associated genomic resources is growing rapidly with the advent of both an increased focus on plant genomics from funding agencies, and the application of inexpensive next generation sequencing. To interact with this increasing body of data, we have developed Phytozome (http://www.phytozome.net), a comparative hub for plant genome and gene family data and analysis. Phytozome provides a view of the evolutionary history of every plant gene at the level ...

  10. The complete chloroplast genome sequence of the chlorophycean green alga Scenedesmus obliquus reveals a compact gene organization and a biased distribution of genes on the two DNA strands

    Directory of Open Access Journals (Sweden)

    Lemieux Claude

    2006-04-01

    Full Text Available Abstract Background The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. While the basal position of the Prasinophyceae is well established, the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae (UTC remains uncertain. The five complete chloroplast DNA (cpDNA sequences currently available for representatives of these classes display considerable variability in overall structure, gene content, gene density, intron content and gene order. Among these genomes, that of the chlorophycean green alga Chlamydomonas reinhardtii has retained the least ancestral features. The two single-copy regions, which are separated from one another by the large inverted repeat (IR, have similar sizes, rather than unequal sizes, and differ radically in both gene contents and gene organizations relative to the single-copy regions of prasinophyte and ulvophyte cpDNAs. To gain insights into the various changes that underwent the chloroplast genome during the evolution of chlorophycean green algae, we have sequenced the cpDNA of Scenedesmus obliquus, a member of a distinct chlorophycean lineage. Results The 161,452 bp IR-containing genome of Scenedesmus features single-copy regions of similar sizes, encodes 96 genes, i.e. only two additional genes (infA and rpl12 relative to its Chlamydomonas homologue and contains seven group I and two group II introns. It is clearly more compact than the four UTC algal cpDNAs that have been examined so far, displays the lowest proportion of short repeats among these algae and shows a stronger bias in clustering of genes on the same DNA strand compared to Chlamydomonas cpDNA. Like the latter genome, Scenedesmus cpDNA displays only a few ancestral gene clusters. The two chlorophycean genomes share 11 gene clusters that are not found in previously sequenced trebouxiophyte and ulvophyte cpDNAs as well as a few genes that have an unusual structure; however, their single

  11. Origins of the plant chloroplasts and mitochondria based on comparisons of 5S ribosomal RNAs

    Science.gov (United States)

    Delihas, N.; Fox, G. E.

    1987-01-01

    In this paper, we provide macromolecular comparisons utilizing the 5S ribosomal RNA structure to suggest extant bacteria that are the likely descendants of chloroplast and mitochondria endosymbionts. The genetic stability and near universality of the 5S ribosomal gene allows for a useful means to study ancient evolutionary changes by macromolecular comparisons. The value in current and future ribosomal RNA comparisons is in fine tuning the assignment of ancestors to the organelles and in establishing extant species likely to be descendants of bacteria involved in presumed multiple endosymbiotic events.

  12. Plant MITEs: useful tools for plant genetics and genomics.

    Science.gov (United States)

    Feng, Ying

    2003-05-01

    MITEs (Miniature inverted-repeat transposable elements) are reminiscence of non-autonomous DNA (class II) elements, which are distinguished from other transposable elements by their small size, short terminal inverted repeats (TIRs), high copy numbers, genic preference, and DNA sequence identity among family members. Although MITEs were first discovered in plants and still actively reshaping genomes, they have been isolated from a wide range of eukaryotic organisms. MITEs can be divided into Tourist-like, Stowaway-like, and pogo-like groups, according to similarities of their TIRs and TSDs (target site duplications). In despite of several models to explain the origin and amplification of MITEs, their mechanisms of transposition and accumulation in eukaryotic genomes remain poorly understood owing to insufficient experimental data. The unique properties of MITEs have been exploited as useful genetic tools for plant genome analysis. Utilization of MITEs as effective and informative genomic markers and potential application of MITEs in plants systematic, phylogenetic, and genetic studies are discussed.

  13. Overexpression of a natural chloroplast-encoded antisense RNA in tobacco destabilizes 5S rRNA and retards plant growth

    Directory of Open Access Journals (Sweden)

    Stern David B

    2010-09-01

    Full Text Available Abstract Background The roles of non-coding RNAs in regulating gene expression have been extensively studied in both prokaryotes and eukaryotes, however few reports exist as to their roles in organellar gene regulation. Evidence for accumulation of natural antisense RNAs (asRNAs in chloroplasts comes from the expressed sequence tag database and cDNA libraries, while functional data have been largely obtained from artificial asRNAs. In this study, we used Nicotiana tabacum to investigate the effect on sense strand transcripts of overexpressing a natural chloroplast asRNA, AS5, which is complementary to the region which encodes the 5S rRNA and tRNAArg. Results AS5-overexpressing (AS5ox plants obtained by chloroplast transformation exhibited slower growth and slightly pale green leaves. Analysis of AS5 transcripts revealed four distinct species in wild-type (WT and AS5ox plants, and additional AS5ox-specific products. Of the corresponding sense strand transcripts, tRNAArg overaccumulated several-fold in transgenic plants whereas 5S rRNA was unaffected. However, run-on transcription showed that the 5S-trnR region was transcribed four-fold more in the AS5ox plants compared to WT, indicating that overexpression of AS5 was associated with decreased stability of 5S rRNA. In addition, polysome analysis of the transformants showed less 5S rRNA and rbcL mRNA associated with ribosomes. Conclusions Our results suggest that AS5 can modulate 5S rRNA levels, giving it the potential to affect Chloroplast translation and plant growth. More globally, overexpression of asRNAs via chloroplast transformation may be a useful strategy for defining their functions.

  14. Overexpression of a natural chloroplast-encoded antisense RNA in tobacco destabilizes 5S rRNA and retards plant growth.

    Science.gov (United States)

    Hotto, Amber M; Huston, Zoe E; Stern, David B

    2010-09-29

    The roles of non-coding RNAs in regulating gene expression have been extensively studied in both prokaryotes and eukaryotes, however few reports exist as to their roles in organellar gene regulation. Evidence for accumulation of natural antisense RNAs (asRNAs) in chloroplasts comes from the expressed sequence tag database and cDNA libraries, while functional data have been largely obtained from artificial asRNAs. In this study, we used Nicotiana tabacum to investigate the effect on sense strand transcripts of overexpressing a natural chloroplast asRNA, AS5, which is complementary to the region which encodes the 5S rRNA and tRNAArg. AS5-overexpressing (AS5ox) plants obtained by chloroplast transformation exhibited slower growth and slightly pale green leaves. Analysis of AS5 transcripts revealed four distinct species in wild-type (WT) and AS5ox plants, and additional AS5ox-specific products. Of the corresponding sense strand transcripts, tRNAArg overaccumulated several-fold in transgenic plants whereas 5S rRNA was unaffected. However, run-on transcription showed that the 5S-trnR region was transcribed four-fold more in the AS5ox plants compared to WT, indicating that overexpression of AS5 was associated with decreased stability of 5S rRNA. In addition, polysome analysis of the transformants showed less 5S rRNA and rbcL mRNA associated with ribosomes. Our results suggest that AS5 can modulate 5S rRNA levels, giving it the potential to affect Chloroplast translation and plant growth. More globally, overexpression of asRNAs via chloroplast transformation may be a useful strategy for defining their functions.

  15. Genomics-based plant germplasm research (GPGR

    Directory of Open Access Journals (Sweden)

    Jizeng Jia

    2017-04-01

    Full Text Available Plant germplasm underpins much of crop genetic improvement. Millions of germplasm accessions have been collected and conserved ex situ and/or in situ, and the major challenge is now how to exploit and utilize this abundant resource. Genomics-based plant germplasm research (GPGR or “Genoplasmics” is a novel cross-disciplinary research field that seeks to apply the principles and techniques of genomics to germplasm research. We describe in this paper the concept, strategy, and approach behind GPGR, and summarize current progress in the areas of the definition and construction of core collections, enhancement of germplasm with core collections, and gene discovery from core collections. GPGR is opening a new era in germplasm research. The contribution, progress and achievements of GPGR in the future are predicted.

  16. Suppression of Reactive Oxygen Species Accumulation in Chloroplasts Prevents Leaf Damage but Not Growth Arrest in Salt-Stressed Tobacco Plants.

    Directory of Open Access Journals (Sweden)

    Anabella F Lodeyro

    Full Text Available Crop yield reduction due to salinity is a growing agronomical concern in many regions. Increased production of reactive oxygen species (ROS in plant cells accompanies many abiotic stresses including salinity, acting as toxic and signaling molecules during plant stress responses. While ROS are generated in various cellular compartments, chloroplasts represent a main source in the light, and plastid ROS synthesis and/or elimination have been manipulated to improve stress tolerance. Transgenic tobacco plants expressing a plastid-targeted cyanobacterial flavodoxin, a flavoprotein that prevents ROS accumulation specifically in chloroplasts, displayed increased tolerance to many environmental stresses, including drought, excess irradiation, extreme temperatures and iron starvation. Surprisingly, flavodoxin expression failed to protect transgenic plants against NaCl toxicity. However, when high salt was directly applied to leaf discs, flavodoxin did increase tolerance, as reflected by preservation of chlorophylls, carotenoids and photosynthetic activities. Flavodoxin decreased salt-dependent ROS accumulation in leaf tissue from discs and whole plants, but this decline did not improve tolerance at the whole plant level. NaCl accumulation in roots, as well as increased osmotic pressure and salt-induced root damage, were not prevented by flavodoxin expression. The results indicate that ROS formed in chloroplasts have a marginal effect on plant responses during salt stress, and that sensitive targets are present in roots which are not protected by flavodoxin.

  17. Multiple RNA processing defects and impaired chloroplast function in plants deficient in the organellar protein-only RNase P enzyme.

    Directory of Open Access Journals (Sweden)

    Wenbin Zhou

    Full Text Available Transfer RNA (tRNA precursors undergo endoribonucleolytic processing of their 5' and 3' ends. 5' cleavage of the precursor transcript is performed by ribonuclease P (RNase P. While in most organisms RNase P is a ribonucleoprotein that harbors a catalytically active RNA component, human mitochondria and the chloroplasts (plastids and mitochondria of seed plants possess protein-only RNase P enzymes (PRORPs. The plant organellar PRORP (PRORP1 has been characterized to some extent in vitro and by transient gene silencing, but the molecular, phenotypic and physiological consequences of its down-regulation in stable transgenic plants have not been assessed. Here we have addressed the function of the dually targeted organellar PRORP enzyme in vivo by generating stably transformed Arabidopsis plants in which expression of the PRORP1 gene was suppressed by RNA interference (RNAi. PRORP1 knock-down lines show defects in photosynthesis, while mitochondrial respiration is not appreciably affected. In both plastids and mitochondria, the effects of PRORP1 knock-down on the processing of individual tRNA species are highly variable. The drastic reduction in the levels of mature plastid tRNA-Phe(GAA and tRNA-Arg(ACG suggests that these two tRNA species limit plastid gene expression in the PRORP1 mutants and, hence, are causally responsible for the mutant phenotype.

  18. Intra-individual polymorphism in chloroplasts from NGS data: where does it come from and how to handle it?

    Science.gov (United States)

    Scarcelli, N; Mariac, C; Couvreur, T L P; Faye, A; Richard, D; Sabot, F; Berthouly-Salazar, C; Vigouroux, Y

    2016-03-01

    Next-generation sequencing allows access to a large quantity of genomic data. In plants, several studies used whole chloroplast genome sequences for inferring phylogeography or phylogeny. Even though the chloroplast is a haploid organelle, NGS plastome data identified a nonnegligible number of intra-individual polymorphic SNPs. Such observations could have several causes such as sequencing errors, the presence of heteroplasmy or transfer of chloroplast sequences in the nuclear and mitochondrial genomes. The occurrence of allelic diversity has practical important impacts on the identification of diversity, the analysis of the chloroplast data and beyond that, significant evolutionary questions. In this study, we show that the observed intra-individual polymorphism of chloroplast sequence data is probably the result of plastid DNA transferred into the mitochondrial and/or the nuclear genomes. We further assess nine different bioinformatics pipelines' error rates for SNP and genotypes calling using SNPs identified in Sanger sequencing. Specific pipelines are adequate to deal with this issue, optimizing both specificity and sensitivity. Our results will allow a proper use of whole chloroplast NGS sequence and will allow a better handling of NGS chloroplast sequence diversity.

  19. A high-throughput method for detection of DNA in chloroplasts using flow cytometry

    Directory of Open Access Journals (Sweden)

    Oldenburg Delene J

    2007-03-01

    Full Text Available Abstract Background The amount of DNA in the chloroplasts of some plant species has been shown recently to decline dramatically during leaf development. A high-throughput method of DNA detection in chloroplasts is now needed in order to facilitate the further investigation of this process using large numbers of tissue samples. Results The DNA-binding fluorophores 4',6-diamidino-2-phenylindole (DAPI, SYBR Green I (SG, SYTO 42, and SYTO 45 were assessed for their utility in flow cytometric analysis of DNA in Arabidopsis chloroplasts. Fluorescence microscopy and real-time quantitative PCR (qPCR were used to validate flow cytometry data. We found neither DAPI nor SYTO 45 suitable for flow cytometric analysis of chloroplast DNA (cpDNA content, but did find changes in cpDNA content during development by flow cytometry using SG and SYTO 42. The latter dye provided more sensitive detection, and the results were similar to those from the fluorescence microscopic analysis. Differences in SYTO 42 fluorescence were found to correlate with differences in cpDNA content as determined by qPCR using three primer sets widely spaced across the chloroplast genome, suggesting that the whole genome undergoes copy number reduction during development, rather than selective reduction/degradation of subgenomic regions. Conclusion Flow cytometric analysis of chloroplasts stained with SYTO 42 is a high-throughput method suitable for determining changes in cpDNA content during development and for sorting chloroplasts on the basis of DNA content.

  20. Targeted Genome Regulation and Editing in Plants

    KAUST Repository

    Piatek, Agnieszka

    2016-03-01

    The ability to precisely regulate gene expression patterns and to modify genome sequence in a site-specific manner holds much promise in determining gene function and linking genotype to phenotype. DNA-binding modules have been harnessed to generate customizable and programmable chimeric proteins capable of binding to site-specific DNA sequences and regulating the genome and epigenome. Modular DNA-binding domains from zinc fingers (ZFs) and transcriptional activator-like effectors (TALEs) are amenable to engineering to bind any DNA target sequence of interest. Deciphering the code of TALE repeat binding to DNA has helped to engineer customizable TALE proteins capable of binding to any sequence of interest. Therefore TALE repeats provide a rich resource for bioengineering applications. However, the TALE system is limited by the requirement to re-engineer one or two proteins for each new target sequence. Recently, the clustered regularly interspaced palindromic repeats (CRISPR)/ CRISPR associated 9 (Cas9) has been used as a versatile genome editing tool. This machinery has been also repurposed for targeted transcriptional regulation. Due to the facile engineering, simplicity and precision, the CRISPR/Cas9 system is poised to revolutionize the functional genomics studies across diverse eukaryotic species. In this dissertation I employed transcription activator-like effectors and CRISPR/Cas9 systems for targeted genome regulation and editing and my achievements include: 1) I deciphered and extended the DNA-binding code of Ralstonia TAL effectors providing new opportunities for bioengineering of customizable proteins; 2) I repurposed the CRISPR/Cas9 system for site-specific regulation of genes in plant genome; 3) I harnessed the power of CRISPR/Cas9 gene editing tool to study the function of the serine/arginine-rich (SR) proteins.

  1. Analysis of chloroplast movement and relocation in Arabidopsis.

    Science.gov (United States)

    Wada, Masamitsu; Kong, Sam-Geun

    2011-01-01

    Chloroplast photorelocation movement is essential for the sessile plant survival and plays a role for efficient photosynthesis and avoiding photodamage of chloroplasts. There are several ways to observe or detect chloroplast movement directly or indirectly. Here, techniques for the induction of chloroplast movement and how to detect the responses, as well as various points of attention and advice for the experiments, are described.

  2. Codon Usage Bias and Determining Forces in Green Plant Mitochondrial Genomes

    Institute of Scientific and Technical Information of China (English)

    Bin Wang; Jing Yuan; Jing Liu; Liang Jin; Jian-Qun Chen

    2011-01-01

    The phenomenon of codon usage bias has been observed in a wide range of organisms. As organisms evolve, how their codon usage pattern change is still an intriguing question. In this article, we focused on the green plant mitochondrial genomes to analyze the codon usage patterns in different lineages,and more importantly, to investigate the possible change of determining forces during the plant evolution. Two patterns were observed between the separate lineages of green plants: Chlorophyta and Streptophyta. In Chlorophyta lineages, their codon usages showed substantial variation (from strongly A, T-biased to strongly G, C-biased); while in Streptophyta lineages, especially in the land plants, the overall codon usages are interestingly stable. Further, based on the Nc-GC3s plots and Akashi's scaled XZ-tests, we found that lineages within Chlorophyta exhibit much stronger evidence of deviating from neutrality; while lineages within Streptophyta rarely do so. Such differences, together with previous reports based on the chloroplast data, suggests that after plants colonized the land, their codon usages in organellar genomes are more reluctant to be shaped by selection force.

  3. Micro satellite mapping of plant genomes

    Directory of Open Access Journals (Sweden)

    Prodanović Slaven

    2001-01-01

    Full Text Available Micro satellites are DNA markers, based on the repeated nucleotide sequences number polymorphism. They belong to a group of PCR markers and are mainly used as an addition to other types of markers. Their characteristics and technical aspects of their application are discussed in the present study. Furthermore, some results obtained by the use of the micro satellite DNA in genetic mapping of plant genomes are also presented. Although micro satellites provide the identification of genotypes within a species, inadequacy of comparative mapping of different species is their serious blemish. .

  4. A chloroplast "wake up" mechanism: Illumination with weak light activates the photosynthetic antenna function in dark-adapted plants.

    Science.gov (United States)

    Janik, Ewa; Bednarska, Joanna; Zubik, Monika; Luchowski, Rafal; Mazur, Radoslaw; Sowinski, Karol; Grudzinski, Wojciech; Garstka, Maciej; Gruszecki, Wieslaw I

    2017-03-01

    The efficient and fluent operation of photosynthesis in plants relies on activity of pigment-protein complexes called antenna, absorbing light and transferring excitations toward the reaction centers. Here we show, based on the results of the fluorescence lifetime imaging analyses of single chloroplasts, that pigment-protein complexes, in dark-adapted plants, are not able to act effectively as photosynthetic antennas, due to pronounced, adverse excitation quenching. It appeared that the antenna function could be activated by a short (on a minute timescale) illumination with light of relatively low intensity, substantially below the photosynthesis saturation threshold. The low-light-induced activation of the antenna function was attributed to phosphorylation of the major accessory light-harvesting complex LHCII, based on the fact that such a mechanism was not observed in the stn7 Arabidopsis thaliana mutant, with impaired LHCII phosphorylation. It is proposed that the protein phosphorylation-controlled change in the LHCII clustering ability provides mechanistic background for this regulatory process.

  5. Plant database resources at The Institute for Genomic Research.

    Science.gov (United States)

    Chan, Agnes P; Rabinowicz, Pablo D; Quackenbush, John; Buell, C Robin; Town, Chris D

    2007-01-01

    With the completion of the genome sequences of the model plants Arabidopsis and rice, and the continuing sequencing efforts of other economically important crop plants, an unprecedented amount of genome sequence data is now available for large-scale genomics studies and analyses, such as the identification and discovery of novel genes, comparative genomics, and functional genomics. Efficient utilization of these large data sets is critically dependent on the ease of access and organization of the data. The plant databases at The Institute for Genomic Research (TIGR) have been set up to maintain various data types including genomic sequence, annotation and analyses, expressed transcript assemblies and analyses, and gene expression profiles from microarray studies. We present here an overview of the TIGR database resources for plant genomics and describe methods to access the data.

  6. Mitochondria and chloroplasts shared in animal and plant tissues: significance of communication.

    Science.gov (United States)

    Snyder, Christopher; Stefano, George B

    2015-05-25

    Mitochondria have long been recognized as the main source of energy production for the eukaryotic cell. Recent studies have found that the mitochondria have a variety of dynamic functions aside from the production of energy. It communicates bidirectionally with other organelles in order to modulate its energy balance efficiently, as well as maintain homeostasis, ultimately prolonging its own and the cell's longevity. The mitochondria achieves this level of regulation via specific and common bidirectional chemical messengers, especially involving the endoplasmic/sarcoplasmic reticulum (ER/SR), deoxyribonucleoside triphosphates (dNTP's), ATP and the generation of reactive oxygen species (ROS). Its communication network is also involved in stress associated events. In this regard, the activation of the Bax family proteins and the release of cytochrome c occurs during cellular stress. The communication can also promote apoptosis of the cell. When mitochondrial abnormalities cannot be dealt with, there is an increased chance that major illnesses like type 2 diabetes, Alzheimer's disease, and cancer may occur. Importantly, functioning chloroplasts can be found in animals, suggesting conserved chemical messengers during its evolutionary path. The dynamic capacity of mitochondria is also noted by their ability to function anaerobically. Indeed, this latter phenomenon may represent a return to an earlier developmental stage of mitochondria, suggesting certain disorders result from its untimely appearance.

  7. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots

    Directory of Open Access Journals (Sweden)

    Wu Chun-Lin

    2008-01-01

    Full Text Available Abstract Background Various expansions or contractions of inverted repeats (IRs in chloroplast genomes led to fluxes in the IR-LSC (large single copy junctions. Previous studies revealed that some monocot IRs contain a trnH-rps19 gene cluster, and it has been speculated that this may be an evidence of a duplication event prior to the divergence of monocot lineages. Therefore, we compared the organizations of genes flanking two IR-LSC junctions in 123 angiosperm representatives to uncover the evolutionary dynamics of IR-LSC junctions in basal angiosperms and monocots. Results The organizations of genes flanking IR-LSC junctions in angiosperms can be classified into three types. Generally each IR of monocots contains a trnH-rps19 gene cluster near the IR-LSC junctions, which differs from those in non-monocot angiosperms. Moreover, IRs expanded more progressively in monocots than in non-monocot angiosperms. IR-LSC junctions commonly occurred at polyA tract or A-rich regions in angiosperms. Our RT-PCR assays indicate that in monocot IRA the trnH-rps19 gene cluster is regulated by two opposing promoters, S10A and psbA. Conclusion Two hypotheses are proposed to account for the evolution of IR expansions in monocots. Based on our observations, the inclusion of a trnH-rps19 cluster in majority of monocot IRs could be reasonably explained by the hypothesis that a DSB event first occurred at IRB and led to the expansion of IRs to trnH, followed by a successive DSB event within IRA and lead to the expansion of IRs to rps19 or to rpl22 so far. This implies that the duplication of trnH-rps19 gene cluster was prior to the diversification of extant monocot lineages. The duplicated trnH genes in the IRB of most monocots and non-monocot angiosperms have distinct fates, which are likely regulated by different expression levels of S10A and S10B promoters. Further study is needed to unravel the evolutionary significance of IR expansion in more recently diverged

  8. Analysis of gene sequences indicates that quantity not quality of chloroplast small HSPs improves thermotolerance in C4 and CAM plants.

    Science.gov (United States)

    Shakeel, Samina N; Ul Haq, Noor; Heckathorn, Scott; Luthe, D S

    2012-10-01

    Chloroplast-localized small heat-shock proteins (Cp-sHSP) protect Photosystem II and thylakoid membranes during heat and other stresses, and Cp-sHSP production levels are related to plant thermotolerance. However, to date, a paucity of Cp-sHSP sequences from C4 or CAM species, or from other extremely heat-tolerant species, has precluded an examination to determine if Cp-sHSP genes or proteins might differ among plants with photosynthetic pathways or between heat-sensitive and heat-tolerant species. To investigate this, we isolated and characterized novel Cp-sHSP genes in four plant species: two moderately heat-tolerant C4 species, Spartina alterniflora (monocot) and Amaranthus retroflexus (eudicot), and two very heat-tolerant CAM species, Agave americana (monocot) and Ferocactus wislizenii (eudicot) (respective genes: SasHSP27.12, ArsHSP26.43, AasHSP26.85 and FwsHSP27.52) by PCR-based genome walking and cDNA RACE. Analysis of these Cp-sHSPs has confirmed the presence of conserved domains common to previously examined species. As expected, the transit peptide was found to be the most variable part of these proteins. Promoter analysis of these genes revealed differences in CAM versus C3 and C4 species that were independent of a general difference between monocots and eudicots observed for the entire protein. Heat-induced gene and protein expression indicated that Cp-sHSP protein levels were correlated with thermotolerance of photosynthetic electron transport, and that in most cases protein and transcript levels were correlated. Thus, available evidence indicates little variation in the amino acid sequence of Cp-sHSP mature proteins between heat-sensitive and -tolerant species, but that variation in Cp-sHSP protein production is related to heat tolerance or photosynthetic pathway (CAM vs. C3 and C4) and is driven by promoter differences. Key message We isolated and characterized four novel Cp-sHSP genes with promoters from wild plants, analysis has shown qualitative

  9. Automatic Chloroplast Movement Analysis.

    Science.gov (United States)

    Johansson, Henrik; Zeidler, Mathias

    2016-01-01

    In response to low or high intensities of light, the chloroplasts in the mesophyll cells of the leaf are able to increase or decrease their exposure to light by accumulating at the upper and lower sides or along the side walls of the cell respectively. This movement, regulated by the phototropin blue light photoreceptors phot1 and phot2, results in a decreased or increased transmission of light through the leaf. This way the plant is able to optimize harvesting of the incoming light or avoid damage caused by excess light. Here we describe a method that indirectly measures the movement of chloroplasts by taking advantage of the resulting change in leaf transmittance. By using a microplate reader, quantitative measurements of chloroplast accumulation or avoidance can be monitored over time, for multiple samples with relatively little hands-on time.

  10. Chloroplast Redox Poise

    DEFF Research Database (Denmark)

    Steccanella, Verdiana

    the redox status of the plastoquinone pool and chlorophyll biosynthesis. Furthermore, in the plant cell, the equilibrium between redox reactions and ROS signals is also maintained by various balancing mechanisms among which the thioredoxin reductase-thioredoxin system (TR-Trx) stands out as a mediator......The redox state of the chloroplast is maintained by a delicate balance between energy production and consumption and is affected by the need to avoid increased production of reactive oxygen species (ROS). Redox power and ROS generated in the chloroplast are essential for maintaining physiological...... metabolic pathways and for optimizing chloroplast functions. The redox poise of photosynthetic electron transport components like plastoquinone is crucial to initiate signaling cascades and might also be involved in key biosynthetic pathways such as chlorophyll biosynthesis. We, therefore, explored...

  11. Draft Genome Sequences of Klebsiella variicola Plant Isolates.

    Science.gov (United States)

    Martínez-Romero, Esperanza; Silva-Sanchez, Jesús; Barrios, Humberto; Rodríguez-Medina, Nadia; Martínez-Barnetche, Jesús; Téllez-Sosa, Juan; Gómez-Barreto, Rosa Elena; Garza-Ramos, Ulises

    2015-09-10

    Three endophytic Klebsiella variicola isolates-T29A, 3, and 6A2, obtained from sugar cane stem, maize shoots, and banana leaves, respectively-were used for whole-genome sequencing. Here, we report the draft genome sequences of circular chromosomes and plasmids. The genomes contain plant colonization and cellulases genes. This study will help toward understanding the genomic basis of K. variicola interaction with plant hosts.

  12. The genomics of plant sex chromosomes.

    Science.gov (United States)

    Vyskot, Boris; Hobza, Roman

    2015-07-01

    Around six percent of flowering species are dioecious, with separate female and male individuals. Sex determination is mostly based on genetics, but morphologically distinct sex chromosomes have only evolved in a few species. Of these, heteromorphic sex chromosomes have been most clearly described in the two model species - Silene latifolia and Rumex acetosa. In both species, the sex chromosomes are the largest chromosomes in the genome. They are hence easily distinguished, can be physically separated and analyzed. This review discusses some recent experimental data on selected model dioecious species, with a focus on S. latifolia. Phylogenetic analyses show that dioecy in plants originated independently and repeatedly even within individual genera. A cogent question is whether there is genetic degeneration of the non-recombining part of the plant Y chromosome, as in mammals, and, if so, whether reduced levels of gene expression in the heterogametic sex are equalized by dosage compensation. Current data provide no clear conclusion. We speculate that although some transcriptome analyses indicate the first signs of degeneration, especially in S. latifolia, the evolutionary processes forming plant sex chromosomes in plants may, to some extent, differ from those in animals.

  13. Rapid plant identification using species- and group-specific primers targeting chloroplast DNA.

    Directory of Open Access Journals (Sweden)

    Corinna Wallinger

    Full Text Available Plant identification is challenging when no morphologically assignable parts are available. There is a lack of broadly applicable methods for identifying plants in this situation, for example when roots grow in mixture and for decayed or semi-digested plant material. These difficulties have also impeded the progress made in ecological disciplines such as soil- and trophic ecology. Here, a PCR-based approach is presented which allows identifying a variety of plant taxa commonly occurring in Central European agricultural land. Based on the trnT-F cpDNA region, PCR assays were developed to identify two plant families (Poaceae and Apiaceae, the genera Trifolium and Plantago, and nine plant species: Achillea millefolium, Fagopyrum esculentum, Lolium perenne, Lupinus angustifolius, Phaseolus coccineus, Sinapis alba, Taraxacum officinale, Triticum aestivum, and Zea mays. These assays allowed identification of plants based on size-specific amplicons ranging from 116 bp to 381 bp. Their specificity and sensitivity was consistently high, enabling the detection of small amounts of plant DNA, for example, in decaying plant material and in the intestine or faeces of herbivores. To increase the efficacy of identifying plant species from large number of samples, specific primers were combined in multiplex PCRs, allowing screening for multiple species within a single reaction. The molecular assays outlined here will be applicable manifold, such as for root- and leaf litter identification, botanical trace evidence, and the analysis of herbivory.

  14. Membrane heredity and early chloroplast evolution.

    Science.gov (United States)

    Cavalier-Smith, T

    2000-04-01

    Membrane heredity was central to the unique symbiogenetic origin from cyanobacteria of chloroplasts in the ancestor of Plantae (green plants, red algae, glaucophytes) and to subsequent lateral transfers of plastids to form even more complex photosynthetic chimeras. Each symbiogenesis integrated disparate genomes and several radically different genetic membranes into a more complex cell. The common ancestor of Plantae evolved transit machinery for plastid protein import. In later secondary symbiogeneses, signal sequences were added to target proteins across host perialgal membranes: independently into green algal plastids (euglenoids, chlorarachneans) and red algal plastids (alveolates, chromists). Conservatism and innovation during early plastid diversification are discussed.

  15. Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants

    Energy Technology Data Exchange (ETDEWEB)

    van Baren, Marijke J.; Bachy, Charles; Reistetter, Emily Nahas; Purvine, Samuel O.; Grimwood, Jane; Sudek, Sebastian; Yu, Hang; Poirier, Camille; Deerinck, Thomas J.; Kuo, Alan; Grigoriev, Igor V.; Wong, Chee-Hong; Smith, Richard D.; Callister, Stephen J.; Wei, Chia-Lin; Schmutz, Jeremy; Worden, Alexandra Z.

    2016-03-31

    Prasinophytes are widespread marine green algae that are related to plants. Abundance of the genus Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these organisms are important for marine ecology and understanding Virdiplantae evolution and diversification. We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb Micromonas commoda (RCC299) shows they share less than 8,142of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequenced eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26%) GC splice donors. Micromonas has more genus-specific protein families (19%) than other genome sequenced prasinophytes (11%). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and most plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other claasses retain the entire PG pathway, like moss and glaucophyte algae. Multiple vascular plants that share a unique bi-domain protein also have the pathway, except the Penicillin-Binding-Protein. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in the PG-pathway retention and implicate a role in chloroplast structure of division in several extant Vridiplantae lineages. Extensive differences in gene loss and architecture between related prasinophytes underscore their extensive divergence. PG biosynthesis genes from the cyanobacterial endosymbiont that became the

  16. Chloroplast ultra structure, photosynthesis and enzyme activities in regenerated plants of Stevia rebaudiana (Bert.) Bertoni as influenced by copper sulphate in the medium.

    Science.gov (United States)

    Jain, Pourvi; Kachhwaha, Sumita; Kothari, S L

    2014-09-01

    Stevia rebaudiana (Bert.) Bertoni is an important medicinal plant used as noncaloric commercial sweetener. Plants regenerated with higher levels of copper sulphate in the medium exhibited enhanced activity of peroxidase and polyphenoloxidase (PPO) enzymes. Transmission electron microscopy (TEM) revealed increase in size and number of electron dense inclusions in the chloroplasts of plants regenerated at optimised level of copper sulphate (0.5 microM) in the medium. There was decrease in chlorogenic acid (CGA) content. Chl-a-fluorescence transient pattern (OJIP) showed that the photosynthesis process was more efficient at 0.5 microM CuSO4 in the medium.

  17. An internal part of the chloroplast atpA gene sequence is present in the mitochondrial genome of Triticum aestivum: molecular organisation and evolutionary aspects.

    Science.gov (United States)

    Jubier, M F; Lucas, H; Delcher, E; Hartmann, C; Quétier, F; Lejeune, B

    1990-06-01

    An internal part of the chloroplast atpA gene has been identified in the mitochondrial DNA of Triticum aestivum. It is located near the 18S-5S ribosomal genes and partially contained within a repeated sequence. Comparison of the transferred sequence with the original ct sequence reveals several nucleotide changes and shows that neither 5' nor 3' ends are present in the mt genome. No transcript of this region could be detected by Northern analysis. This sequence is present in mitochondrial genomes of other tetraploid and diploid species of Triticum, also in the vicinity of the 18S-5S ribosomal genes, suggesting a unique transfer event. The date of this event is discussed.

  18. Phytozome: a comparative platform for green plant genomics.

    Science.gov (United States)

    Goodstein, David M; Shu, Shengqiang; Howson, Russell; Neupane, Rochak; Hayes, Richard D; Fazo, Joni; Mitros, Therese; Dirks, William; Hellsten, Uffe; Putnam, Nicholas; Rokhsar, Daniel S

    2012-01-01

    The number of sequenced plant genomes and associated genomic resources is growing rapidly with the advent of both an increased focus on plant genomics from funding agencies, and the application of inexpensive next generation sequencing. To interact with this increasing body of data, we have developed Phytozome (http://www.phytozome.net), a comparative hub for plant genome and gene family data and analysis. Phytozome provides a view of the evolutionary history of every plant gene at the level of sequence, gene structure, gene family and genome organization, while at the same time providing access to the sequences and functional annotations of a growing number (currently 25) of complete plant genomes, including all the land plants and selected algae sequenced at the Joint Genome Institute, as well as selected species sequenced elsewhere. Through a comprehensive plant genome database and web portal, these data and analyses are available to the broader plant science research community, providing powerful comparative genomics tools that help to link model systems with other plants of economic and ecological importance.

  19. The mitochondrial genome of Malus domestica and the import-driven hypothesis of mitochondrial genome expansion in seed plants.

    Science.gov (United States)

    Goremykin, Vadim V; Lockhart, Peter J; Viola, Roberto; Velasco, Riccardo

    2012-08-01

    Mitochondrial genomes of spermatophytes are the largest of all organellar genomes. Their large size has been attributed to various factors; however, the relative contribution of these factors to mitochondrial DNA (mtDNA) expansion remains undetermined. We estimated their relative contribution in Malus domestica (apple). The mitochondrial genome of apple has a size of 396 947 bp and a one to nine ratio of coding to non-coding DNA, close to the corresponding average values for angiosperms. We determined that 71.5% of the apple mtDNA sequence was highly similar to sequences of its nuclear DNA. Using nuclear gene exons, nuclear transposable elements and chloroplast DNA as markers of promiscuous DNA content in mtDNA, we estimated that approximately 20% of the apple mtDNA consisted of DNA sequences imported from other cell compartments, mostly from the nucleus. Similar marker-based estimates of promiscuous DNA content in the mitochondrial genomes of other species ranged between 21.2 and 25.3% of the total mtDNA length for grape, between 23.1 and 38.6% for rice, and between 47.1 and 78.4% for maize. All these estimates are conservative, because they underestimate the import of non-functional DNA. We propose that the import of promiscuous DNA is a core mechanism for mtDNA size expansion in seed plants. In apple, maize and grape this mechanism contributed far more to genome expansion than did homologous recombination. In rice the estimated contribution of both mechanisms was found to be similar.

  20. Architecture and evolution of a minute plant genome

    Science.gov (United States)

    Ibarra-Laclette, Enrique; Lyons, Eric; Hernández-Guzmán, Gustavo; Pérez-Torres, Claudia Anahí; Carretero-Paulet, Lorenzo; Chang, Tien-Hao; Lan, Tianying; Welch, Andreanna J.; Juárez, María Jazmín Abraham; Simpson, June; Fernández-Cortés, Araceli; Arteaga-Vázquez, Mario; Góngora-Castillo, Elsa; Acevedo-Hernández, Gustavo; Schuster, Stephan C.; Himmelbauer, Heinz; Minoche, André E.; Xu, Sen; Lynch, Michael; Oropeza-Aburto, Araceli; Cervantes-Pérez, Sergio Alan; de Jesús Ortega-Estrada, María; Cervantes-Luevano, Jacob Israel; Michael, Todd P.; Mockler, Todd; Bryant, Douglas; Herrera-Estrella, Alfredo; Albert, Victor A.; Herrera-Estrella, Luis

    2016-01-01

    It has been argued that the evolution of plant genome size is principally unidirectional and increasing owing to the varied action of whole-genome duplications (WGDs) and mobile element proliferation1. However, extreme genome size reductions have been reported in the angiosperm family tree. Here we report the sequence of the 82-megabase genome of the carnivorous bladderwort plant Utricularia gibba. Despite its tiny size, the U. gibba genome accommodates a typical number of genes for a plant, with the main difference from other plant genomes arising from a drastic reduction in non-genic DNA. Unexpectedly, we identified at least three rounds of WGD in U. gibba since common ancestry with tomato (Solanum) and grape (Vitis). The compressed architecture of the U. gibba genome indicates that a small fraction of intergenic DNA, with few or no active retrotransposons, is sufficient to regulate and integrate all the processes required for the development and reproduction of a complex organism. PMID:23665961

  1. Transfer of the cytochrome P450-dependent dhurrin pathway from Sorghum bicolor into Nicotiana tabacum chloroplasts for light-driven synthesis

    DEFF Research Database (Denmark)

    Gnanasekaran, Thiyagarajan; Karcher, Daniel; Nielsen, Agnieszka Janina Zygadlo;

    2016-01-01

    Plant chloroplasts are light-driven cell factories that have great potential to act as a chassis for metabolic engineering applications. Using plant chloroplasts, we demonstrate how photosynthetic reducing power can drive a metabolic pathway to synthesise a bio-active natural product....... For this purpose, we stably engineered the dhurrin pathway from Sorghum bicolor into the chloroplasts of Nicotiana tabacum (tobacco). Dhurrin is a cyanogenic glucoside and its synthesis from the amino acid tyrosine is catalysed by two membrane-bound cytochrome P450 enzymes (CYP79A1 and CYP71E1) and a soluble...... glucosyltransferase (UGT85B1), and is dependent on electron transfer from a P450 oxidoreductase. The entire pathway was introduced into the chloroplast by integrating CYP79A1, CYP71E1, and UGT85B1 into a neutral site of the N. tabacum chloroplast genome. The two P450s and the UGT85B1 were functional when expressed...

  2. Chloroplast NDH: A different enzyme with a structure similar to that of respiratory NADH dehydrogenase.

    Science.gov (United States)

    Shikanai, Toshiharu

    2016-07-01

    Eleven genes encoding chloroplast NADH dehydrogenase-like (NDH) complex have been discovered in plastid genomes on the basis of their homology with genes encoding respiratory complex I. Despite this structural similarity, chloroplast NDH and its evolutionary origin NDH-1 in cyanobacteria accept electrons from ferredoxin (Fd), indicating that chloroplast NDH is an Fd-dependent plastoquinone (PQ) reductase rather than an NAD(P)H dehydrogenase. In Arabidopsis thaliana, chloroplast NDH interacts with photosystem I (PSI); this interaction is needed to stabilize NDH, especially under high light. On the basis of these distinct characters of chloroplast and cyanobacterial NDH, it can be distinguished as a photosynthetic NDH from respiratory complex I. In fact, chloroplast NDH forms part of the machinery of photosynthesis by mediating the minor pathway of PSI cyclic electron transport. Along with the antimycin A-sensitive main pathway of PSI cyclic electron transport, chloroplast NDH compensates the ATP/NADPH production ratio in the light reactions of photosynthesis. In this review, I revisit the original concept of chloroplast NDH on the basis of its similarity to respiratory complex I and thus introduce current progress in the field to researchers focusing on respiratory complex I. I summarize recent progress on the basis of structure and function. Finally, I introduce the results of our examination of the process of assembly of chloroplast NDH. Although the process requires many plant-specific non-subunit factors, the core processes of assembly are conserved between chloroplast NDH and respiratory complex I. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Sputnik: a database platform for comparative plant genomics.

    Science.gov (United States)

    Rudd, Stephen; Mewes, Hans-Werner; Mayer, Klaus F X

    2003-01-01

    Two million plant ESTs, from 20 different plant species, and totalling more than one 1000 Mbp of DNA sequence, represents a formidable transcriptomic resource. Sputnik uses the potential of this sequence resource to fill some of the information gap in the un-sequenced plant genomes and to serve as the foundation for in silicio comparative plant genomics. The complexity of the individual EST collections has been reduced using optimised EST clustering techniques. Annotation of cluster sequences is performed by exploiting and transferring information from the comprehensive knowledgebase already produced for the completed model plant genome (Arabidopsis thaliana) and by performing additional state of-the-art sequence analyses relevant to today's plant biologist. Functional predictions, comparative analyses and associative annotations for 500 000 plant EST derived peptides make Sputnik (http://mips.gsf.de/proj/sputnik/) a valid platform for contemporary plant genomics.

  4. Comparison of intraspecific, interspecific and intergeneric chloroplast diversity in Cycads

    Science.gov (United States)

    Jiang, Guo-Feng; Hinsinger, Damien Daniel; Strijk, Joeri Sergej

    2016-01-01

    Cycads are among the most threatened plant species. Increasing the availability of genomic information by adding whole chloroplast data is a fundamental step in supporting phylogenetic studies and conservation efforts. Here, we assemble a dataset encompassing three taxonomic levels in cycads, including ten genera, three species in the genus Cycas and two individuals of C. debaoensis. Repeated sequences, SSRs and variations of the chloroplast were analyzed at the intraspecific, interspecific and intergeneric scale, and using our sequence data, we reconstruct a phylogenomic tree for cycads. The chloroplast was 162,094 bp in length, with 133 genes annotated, including 87 protein-coding, 37 tRNA and 8 rRNA genes. We found 7 repeated sequences and 39 SSRs. Seven loci showed promising levels of variations for application in DNA-barcoding. The chloroplast phylogeny confirmed the division of Cycadales in two suborders, each of them being monophyletic, revealing a contradiction with the current family circumscription and its evolution. Finally, 10 intraspecific SNPs were found. Our results showed that despite the extremely restricted distribution range of C. debaoensis, using complete chloroplast data is useful not only in intraspecific studies, but also to improve our understanding of cycad evolution and in defining conservation strategies for this emblematic group. PMID:27558458

  5. The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants.

    Science.gov (United States)

    Sugiyama, Y; Watase, Y; Nagase, M; Makita, N; Yagura, S; Hirai, A; Sugiura, M

    2005-02-01

    Tobacco is a valuable model system for investigating the origin of mitochondrial DNA (mtDNA) in amphidiploid plants and studying the genetic interaction between mitochondria and chloroplasts in the various functions of the plant cell. As a first step, we have determined the complete mtDNA sequence of Nicotiana tabacum. The mtDNA of N. tabacum can be assumed to be a master circle (MC) of 430,597 bp. Sequence comparison of a large number of clones revealed that there are four classes of boundaries derived from homologous recombination, which leads to a multipartite organization with two MCs and six subgenomic circles. The mtDNA of N. tabacum contains 36 protein-coding genes, three ribosomal RNA genes and 21 tRNA genes. Among the first class, we identified the genes rps1 and psirps14, which had previously been thought to be absent in tobacco mtDNA on the basis of Southern analysis. Tobacco mtDNA was compared with those of Arabidopsis thaliana, Beta vulgaris, Oryza sativa and Brassica napus. Since repeated sequences show no homology to each other among the five angiosperms, it can be supposed that these were independently acquired by each species during the evolution of angiosperms. The gene order and the sequences of intergenic spacers in mtDNA also differ widely among the five angiosperms, indicating multiple reorganizations of genome structure during the evolution of higher plants. Among the conserved genes, the same potential conserved nonanucleotide-motif-type promoter could only be postulated for rrn18-rrn5 in four of the dicotyledonous plants, suggesting that a coding sequence does not necessarily move with the promoter upon reorganization of the mitochondrial genome.

  6. Impact of genomics approaches on plant genetics and physiology.

    Science.gov (United States)

    Tabata, Satoshi

    2002-08-01

    Comprehensive analysis of genetic information in higher plants is under way for several plants of biological and agronomical importance. Among them, Arabidopsis thaliana, a member of Brassica family, and Oryza sativa(rice) have been chosen as model plants most suitable for genome analysis. Sequencing of the genome of A. thaliana was completed in December 2000, and rice genome sequencing is in progress. The accumulated genome sequences, together with the hundreds of thousands of ESTs from several tens of plant species, have drastically changed the strategy of plant genetics. By utilizing the information on the genome and gene structures, comprehensive approaches for genome-wide functional analysis of the genes, including transcriptome analysis using microarray systems and a comprehensive analysis of a large number of insertion mutant lines, have been widely adopted. As a consequence, a large quantity of information on both the structure and function of genes in these model plants has been accumulated. However, other plant species may have their own characteristics and advantages to study individual phenomena. Application of knowledge from the model plants to other plant species and vice versa through the common language, namely the genome information, should facilitate understanding of the genetic systems underlying a variety of biological phenomena. Introduction of this common language may not be very simple, especially in the case of complex pathways such as a process of cell-covering formation. Nevertheless, it should be emphasized that genomics approaches are the most promising way to understand these processes.

  7. Photosynthesis of root chloroplasts developed in Arabidopsis lines overexpressing GOLDEN2-LIKE transcription factors.

    Science.gov (United States)

    Kobayashi, Koichi; Sasaki, Daichi; Noguchi, Ko; Fujinuma, Daiki; Komatsu, Hirohisa; Kobayashi, Masami; Sato, Mayuko; Toyooka, Kiminori; Sugimoto, Keiko; Niyogi, Krishna K; Wada, Hajime; Masuda, Tatsuru

    2013-08-01

    In plants, genes involved in photosynthesis are encoded separately in nuclei and plastids, and tight cooperation between these two genomes is therefore required for the development of functional chloroplasts. Golden2-like (GLK) transcription factors are involved in chloroplast development, directly targeting photosynthesis-associated nuclear genes for up-regulation. Although overexpression of GLKs leads to chloroplast development in non-photosynthetic organs, the mechanisms of coordination between the nuclear gene expression influenced by GLKs and the photosynthetic processes inside chloroplasts are largely unknown. To elucidate the impact of GLK-induced expression of photosynthesis-associated nuclear genes on the construction of photosynthetic systems, chloroplast morphology and photosynthetic characteristics in greenish roots of Arabidopsis thaliana lines overexpressing GLKs were compared with those in wild-type roots and leaves. Overexpression of GLKs caused up-regulation of not only their direct targets but also non-target nuclear and plastid genes, leading to global induction of chloroplast biogenesis in the root. Large antennae relative to reaction centers were observed in wild-type roots and were further enhanced by GLK overexpression due to the increased expression of target genes associated with peripheral light-harvesting antennae. Photochemical efficiency was lower in the root chloroplasts than in leaf chloroplasts, suggesting that the imbalance in the photosynthetic machinery decreases the efficiency of light utilization in root chloroplasts. Despite the low photochemical efficiency, root photosynthesis contributed to carbon assimilation in Arabidopsis. Moreover, GLK overexpression increased CO₂ fixation and promoted phototrophic performance of the root, showing the potential of root photosynthesis to improve effective carbon utilization in plants.

  8. Evolutionary aspects of plastid proteins involved in transcription: the transcription of a tiny genome is mediated by a complicated machinery.

    Science.gov (United States)

    Yagi, Yusuke; Shiina, Takashi

    2012-01-01

    Chloroplasts in land plants have a small genome consisting of only 100 genes encoding partial sets of proteins for photosynthesis, transcription and translation. Although it has been thought that chloroplast transcription is mediated by a basically cyanobacterium-derived system, due to the endosymbiotic origin of plastids, recent studies suggest the existence of a hybrid transcription machinery containing non-bacterial proteins that have been newly acquired during plant evolution. Here, we highlight chloroplast-specific non-bacterial transcription mechanisms by which land plant chloroplasts have gained novel functions.

  9. PGSB/MIPS Plant Genome Information Resources and Concepts for the Analysis of Complex Grass Genomes.

    Science.gov (United States)

    Spannagl, Manuel; Bader, Kai; Pfeifer, Matthias; Nussbaumer, Thomas; Mayer, Klaus F X

    2016-01-01

    PGSB (Plant Genome and Systems Biology; formerly MIPS-Munich Institute for Protein Sequences) has been involved in developing, implementing and maintaining plant genome databases for more than a decade. Genome databases and analysis resources have focused on individual genomes and aim to provide flexible and maintainable datasets for model plant genomes as a backbone against which experimental data, e.g., from high-throughput functional genomics, can be organized and analyzed. In addition, genomes from both model and crop plants form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny) between related species on macro- and micro-levels.The genomes of many economically important Triticeae plants such as wheat, barley, and rye present a great challenge for sequence assembly and bioinformatic analysis due to their enormous complexity and large genome size. Novel concepts and strategies have been developed to deal with these difficulties and have been applied to the genomes of wheat, barley, rye, and other cereals. This includes the GenomeZipper concept, reference-guided exome assembly, and "chromosome genomics" based on flow cytometry sorted chromosomes.

  10. Role of CBFs as Integrators of Chloroplast Redox, Phytochrome and Plant Hormone Signaling during Cold Acclimation

    Directory of Open Access Journals (Sweden)

    Norman P. A. Hüner

    2013-06-01

    Full Text Available Cold acclimation of winter cereals and other winter hardy species is a prerequisite to increase subsequent freezing tolerance. Low temperatures upregulate the expression of C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB1 which in turn induce the expression of COLD-REGULATED (COR genes. We summarize evidence which indicates that the integration of these interactions is responsible for the dwarf phenotype and enhanced photosynthetic performance associated with cold-acclimated and CBF-overexpressing plants. Plants overexpressing CBFs but grown at warm temperatures mimic the cold-tolerant, dwarf, compact phenotype; increased photosynthetic performance; and biomass accumulation typically associated with cold-acclimated plants. In this review, we propose a model whereby the cold acclimation signal is perceived by plants through an integration of low temperature and changes in light intensity, as well as changes in light quality. Such integration leads to the activation of the CBF-regulon and subsequent upregulation of COR gene and GA 2-oxidase (GA2ox expression which results in a dwarf phenotype coupled with increased freezing tolerance and enhanced photosynthetic performance. We conclude that, due to their photoautotrophic nature, plants do not rely on a single low temperature sensor, but integrate changes in light intensity, light quality, and membrane viscosity in order to establish the cold-acclimated state. CBFs appear to act as master regulators of these interconnecting sensing/signaling pathways.

  11. Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance.

    Science.gov (United States)

    Rathinasabapathi, B; McCue, K F; Gage, D A; Hanson, A D

    1994-01-01

    Certain higher plants synthesize and accumulate glycine betaine, a compound with osmoprotectant properties. Biosynthesis of glycine betaine proceeds via the pathway choline-->betaine aldehyde-->glycine betaine. Plants such as tobacco (Nicotiana tabacum L.) which do not accumulate glycine betaine lack the enzymes catalyzing both reactions. As a step towards engineering glycine betaine accumulation into a non-accumulator, spinach and sugar beet complementary-DNA sequences encoding the second enzyme of glycine-betaine synthesis (betaine aldehyde dehydrogenase, BADH, EC 1.2.1.8) were expressed in tobacco. Despite the absence of a typical transit peptide, BADH was targeted to the chloroplast in leaves of transgenic plants. Levels of extractable BADH were comparable to those in spinach and sugar beet, and the molecular weight, isoenzyme profile and Km for betaine aldehyde of the BADH enzymes from transgenic plants were the same as for native spinach or sugar beet BADH. Transgenic plants converted supplied betaine aldehyde to glycine betaine at high rates, demonstrating that they were able to transport betaine aldehyde across both the plasma membrane and the chloroplast envelope. The glycine betaine produced in this way was not further metabolized and reached concentrations similar to those in plants which accumulate glycine betaine naturally. Betaine aldehyde was toxic to non-transformed tobacco tissues whereas transgenic tissues were resistant due to detoxification of betaine aldehyde to glycine betaine. Betaine aldehyded ehydrogenase is therefore of interest as a potential selectable marker, as well as in the metabolic engineering of osmoprotectant biosynthesis.

  12. cpSSR: a New Tool to Analyze Chloroplast Genome of Citrus Somatic Hybrids%叶绿体S S R标记:柑橘体细胞杂种胞质遗传分析的一种新方法

    Institute of Scientific and Technical Information of China (English)

    程运江; 郭文武; 邓秀新

    2003-01-01

    Chloroplast simple sequence repeat (cpSSR) markers in Citrus were developed and success-fully used to analyze chloroplast genome inheritance of Citrus somatic hybrids. Twenty-two previouslyreported cpSSR primer pairs from pine (Pinus thunbergii Parl.), rice (Oryza sativa L.) and tobacco (Nicotianatabacum L.) were tested in Citrus, nine of which could amplify intensive PCR products by agarose gelelectrophoresis. Chloroplast genome inheritance of Citrus somatic hybrids from nine fusions was thenanalyzed, and five of the nine pre-screened primer pairs showed polymorphisms by polyacrylamide gelelectrophoresis. The results revealed the random inheritance nature of chloroplast genome in all analyzedCitrus somatic hybrids, which was in agreement with previous reports based on RFLP or CAPS analyses. Itwas also shown that cpSSR is a more efficient tool in chloroplast genome analyses of somatic hybrids inhigher plants, compared with the conventional RFLP or CAPS analyses.%从水稻(Oryza sativa L.)、烟草(Nicotiana tabacum L.)和黑松(Pinus thunbergiiParl.)等植物的22对叶绿体SSR引物中筛选出 5对能用于柑橘叶绿体SSR分析的引物,应用这5对引物对9个组合的柑橘体细胞杂种的叶绿体遗传进行了分析.结果表明:这些组合再生的杂种中叶绿体都呈现随机分离,该现象与以前报道的RFLP分析结果一致,而且其可靠性已被CAPS分析所证实.表明柑橘叶绿体SSR同RFLP及CAPS一样可靠,并且更简单高效、易于操作,特别适合对柑橘等植物体细胞杂种进行早期胞质遗传组成分析.

  13. The highest-copy repeats are methylated in the small genome of the early divergent vascular plant Selaginella moellendorffii

    Directory of Open Access Journals (Sweden)

    Quan Hui

    2008-06-01

    Full Text Available Abstract Background The lycophyte Selaginella moellendorffii is a vascular plant that diverged from the fern/seed plant lineage at least 400 million years ago. Although genomic information for S. moellendorffii is starting to be produced, little is known about basic aspects of its molecular biology. In order to provide the first glimpse to the epigenetic landscape of this early divergent vascular plant, we used the methylation filtration technique. Methylation filtration genomic libraries select unmethylated DNA clones due to the presence of the methylation-dependent restriction endonuclease McrBC in the bacterial host. Results We conducted a characterization of the DNA methylation patterns of the S. moellendorffii genome by sequencing a set of S. moellendorffii shotgun genomic clones, along with a set of methylation filtered clones. Chloroplast DNA, which is typically unmethylated, was enriched in the filtered library relative to the shotgun library, showing that there is DNA methylation in the extremely small S. moellendorffii genome. The filtered library also showed enrichment in expressed and gene-like sequences, while the highest-copy repeats were largely under-represented in this library. These results show that genes and repeats are differentially methylated in the S. moellendorffii genome, as occurs in other plants studied. Conclusion Our results shed light on the genome methylation pattern in a member of a relatively unexplored plant lineage. The DNA methylation data reported here will help understanding the involvement of this epigenetic mark in fundamental biological processes, as well as the evolutionary aspects of epigenetics in land plants.

  14. Transformation of phaG and phaC Genes into Tobacco Chloroplast Genome and Genetic Analysis%phaG和phaC基因在烟草叶绿体中的转化及其遗传分析

    Institute of Scientific and Technical Information of China (English)

    王玉华; 吴忠义; 张秀海; 王永勤; 黄丛林; 贾敬芬

    2009-01-01

    present, novel efforts are focused on using the transgenic plants as bioreactors to produce PHAs. Both 3-hydroxyacyl-CoA-ACP-transferase and type Ⅱ PHA synthase are the key enzymes for mcl-PHAs biosynthesis. The gene phaG encoding 3-hydroxyacyl-CoA-ACP-transferase was placed under the control of psbA-pro and psbA-ter of rice to construct phaG expression cassette, and the gene phaC encoding type Ⅱ PHA synthase was placed under the control of prm and rbcL-ter of rice to construct phaC expression cassette, which were ligated with the screening marker gene aadA expression cassette prm-aadA-TpsbA-ter. These recombined fragments were cloned between the plastid rbcL and accD genes of tobacco for targeting to the large single copy region of chloroplast genome. Chloroplast expression vector of pTGC was constructed and then transformed into tobacco chloroplast genome through particle bombardment. Six trans-plastomic tobacco plants were obtained by spectinomycin screening. PCR and Southern blot analysis confirmed integration of phaG andphaC genes into chloroplast genome of T_0 and T_1 transgenic plants, and T_1 transgenic plants exhibited homogenization. The expression of phaC and phaG at transcription level was detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Recombinant transgenes in the tobacco chloroplast genome were maternally inherited and were not transmitted via pollen when out-crossed with untransformed female plants.

  15. Flow cytogenetics and plant genome mapping.

    Science.gov (United States)

    Dolezel, Jaroslav; Kubaláková, Marie; Bartos, Jan; Macas, Jirí

    2004-01-01

    The application of flow cytometry and sorting (flow cytogenetics) to plant chromosomes did not begin until the mid-1980s, having been delayed by difficulties in preparation of suspensions of intact chromosomes and discrimination of individual chromosome types. These problems have been overcome during the last ten years. So far, chromosome analysis and sorting has been reported in 17 species, including major legume and cereal crops. While chromosome classification by flow cytometry (flow karyotyping) may be used for quantitative detection of structural and numerical chromosome changes, chromosomes purified by flow sorting were found to be invaluable in a broad range of applications. These included physical mapping using PCR, high-resolution cytogenetic mapping using FISH and PRINS, production of recombinant DNA libraries, targeted isolation of markers, and protein analysis. A great potential is foreseen for the use of sorted chromosomes for construction of chromosome and chromosome-arm-specific BAC libraries, targeted isolation of low-copy (genic) sequences, high-throughput physical mapping of ESTs and other DNA sequences by hybridization to DNA arrays, and global characterization of chromosomal proteins using approaches of proteomics. This paper provides a comprehensive review of the methodology and application of flow cytogenetics, and assesses its potential for plant genome analysis.

  16. GENETICS AND GENOMICS OF PLANT GENETIC RESOURCES

    Directory of Open Access Journals (Sweden)

    Börner A.

    2012-08-01

    Full Text Available Plant genetic resources play a major role for global food security. The most significant and widespread mean of conserving plant genetic resources is ex situ conservation. Most conserved accessions are kept in specialized facilities known as genebanks maintained by public or private institutions. World-wide 7.4 million accessions are stored in about 1,500 ex situ genebanks.In addition, series of genetic stocks including chromosome substitution lines, alloplasmic lines, single chromosome recombinant lines, introgression lines, etc. have been created. Analysing these genetic stocks many qualitative and quantitative inherited traits were associated to certain chromosomes, chromosome arms or introgressed segments. Today, genetic stocks are supplemented by a huge number of genotyped mapping populations. Beside progenies of bi-parental crosses (doubled haploid lines, recombinant inbred lines, etc. panels for association mapping were created recently.In our presentation we give examples for the successful utilisation of genebank accessions and genetic stocks for genetic and genomic studies. Using both segregation and association mapping approaches, data on mapping of loci/marker trait associations for a range of different traits are presented.

  17. CHUP1 mediates actin-based light-induced chloroplast avoidance movement in the moss Physcomitrella patens.

    Science.gov (United States)

    Usami, Hiroka; Maeda, Takuma; Fujii, Yusuke; Oikawa, Kazusato; Takahashi, Fumio; Kagawa, Takatoshi; Wada, Masamitsu; Kasahara, Masahiro

    2012-12-01

    Chloroplasts change their intracellular distribution in response to light intensity. CHUP1 (CHLOROPLAST UNUSUAL POSITIONING1) is indispensable for this response in Arabidopsis thaliana. However, involvement of CHUP1 in light-induced chloroplast movement is unknown in other plants. In this study, CHUP1 orthologues were isolated from a moss, Physcomitrella patens, and a fern, Adiantum capillus-veneris, by cDNA library screening and PCR cloning based on the P. patens genome sequence. Functional motifs found in CHUP1 of A. thaliana were conserved among the CHUP1 orthologues. In addition to the putative functional regions, the C-terminal regions (approximately 250 amino acids), which are unique in CHUP1s, were highly conserved. Green fluorescent protein (GFP) fusions of P. patens CHUP1s (PpCHUP1A, PpCHUP1B and PpCHUP1C) were transiently expressed in protoplast cells. All GFP fusions were localized on the chloroplasts. Light-induced chloroplast avoidance movement of chup1 disruptants of P. patens was examined in the presence of cytoskeletal inhibitors because of the utilization of both microtubules and actin filaments for the movement in P. patens. When actin filaments were disrupted by cytochalasin B, the wild type (WT) and all chup1 disruptants showed chloroplast avoidance movement. However, when microtubules were disrupted by Oryzalin, chloroplasts in ∆chup1A and ∆chup1A/B rarely moved and stayed in the strong light-irradiated area. On the other hand, WT, ∆chup1B and ∆chup1C showed chloroplast avoidance movement. These results suggest that PpCHUP1A predominantly mediates the actin-based light-induced chloroplast avoidance movement. This study reveals that CHUP1 functions on the chloroplasts and is involved in the actin-based light-induced chloroplast avoidance movement in P. patens.

  18. Mitochondrion-to-Chloroplast DNA Transfers and Intragenomic Proliferation of Chloroplast Group II Introns in Gloeotilopsis Green Algae (Ulotrichales, Ulvophyceae).

    Science.gov (United States)

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2016-09-19

    To probe organelle genome evolution in the Ulvales/Ulotrichales clade, the newly sequenced chloroplast and mitochondrial genomes of Gloeotilopsis planctonica and Gloeotilopsis sarcinoidea (Ulotrichales) were compared with those of Pseudendoclonium akinetum (Ulotrichales) and of the few other green algae previously sampled in the Ulvophyceae. At 105,236 bp, the G planctonica mitochondrial DNA (mtDNA) is the largest mitochondrial genome reported so far among chlorophytes, whereas the 221,431-bp G planctonica and 262,888-bp G sarcinoidea chloroplast DNAs (cpDNAs) are the largest chloroplast genomes analyzed among the Ulvophyceae. Gains of non-coding sequences largely account for the expansion of these genomes. Both Gloeotilopsis cpDNAs lack the inverted repeat (IR) typically found in green plants, indicating that two independent IR losses occurred in the Ulvales/Ulotrichales. Our comparison of the Pseudendoclonium and Gloeotilopsis cpDNAs offered clues regarding the mechanism of IR loss in the Ulotrichales, suggesting that internal sequences from the rDNA operon were differentially lost from the two original IR copies during this process. Our analyses also unveiled a number of genetic novelties. Short mtDNA fragments were discovered in two distinct regions of the G sarcinoidea cpDNA, providing the first evidence for intracellular inter-organelle gene migration in green algae. We identified for the first time in green algal organelles, group II introns with LAGLIDADG ORFs as well as group II introns inserted into untranslated gene regions. We discovered many group II introns occupying sites not previously documented for the chloroplast genome and demonstrated that a number of them arose by intragenomic proliferation, most likely through retrohoming.

  19. Molecular Mechanism Involved in Chloroplast Division in Plants%植物叶绿体分裂的分子机制

    Institute of Scientific and Technical Information of China (English)

    谌志伟; 胡勇

    2013-01-01

    叶绿体是植物细胞内一种重要的细胞器.它不仅是光合作用的场所,还是其它多种中间代谢的场所.叶绿体起源于蓝细菌,与其原核祖先类似,通过二分裂方式进行增殖.最近的研究表明,叶绿体的分裂装置包含原核起源和真核起源的蛋白质,它们在叶绿体的内膜内侧和外膜外侧协同作用以完成叶绿体的分裂.在过去十几年里,包括丝状温度敏感蛋白Z(FtsZ)、Min系统蛋白、质体分裂蛋白(PDV)和ARC蛋白等在内的多个叶绿体分裂相关组分被分离鉴定.本文简要介绍了叶绿体分裂装置各成员的发现、叶绿体被膜的收缩和叶绿体分裂位点的选择机制.另外,植物发育过程中叶绿体分裂可能受到细胞的控制,但目前对细胞如何调控叶绿体分裂知之甚少.本文对该领域的最新研究进展也进行了综述.%The chloroplast is a specific organelle in photosynthetic eukaryotes that houses many essential metabolic pathways. It arose from an endosymbiotic event in which a cyanobacterium was engulfed by a heterotrophic eukaryotic host cell. Similar to its prokaryotic ancestor, each chloroplast arises from a preexisting chloroplast by binary division. Recent studies have revealed that chloroplast division is executed by the coordinated action of prokaryote-derived and host-derived proteins at the division site, encompassing both the inside and the outside of the two envelope membranes. Several chloroplast division components such as filamentous temperature-sensitive protein Z ( FtsZ) , Min, plastid division protein (PDV) and ARC have been identified in the past several years. Here we reviewed the progress in identifying the components of the chloroplast division complex to understand the mechanisms of envelope constriction and division-site placement in plants. The chloroplast division process may be controlled and coordinated by the host cell during proliferation and differentiation, but little is known

  20. Comparative genomic paleontology across plant kingdom reveals the dynamics of TE-driven genome evolution.

    Science.gov (United States)

    El Baidouri, Moaine; Panaud, Olivier

    2013-01-01

    Long terminal repeat-retrotransposons (LTR-RTs) are the most abundant class of transposable elements (TEs) in plants. They strongly impact the structure, function, and evolution of their host genome, and, in particular, their role in genome size variation has been clearly established. However, the dynamics of the process through which LTR-RTs have differentially shaped plant genomes is still poorly understood because of a lack of comparative studies. Using a new robust and automated family classification procedure, we exhaustively characterized the LTR-RTs in eight plant genomes for which a high-quality sequence is available (i.e., Arabidopsis thaliana, A. lyrata, grapevine, soybean, rice, Brachypodium dystachion, sorghum, and maize). This allowed us to perform a comparative genome-wide study of the retrotranspositional landscape in these eight plant lineages from both monocots and dicots. We show that retrotransposition has recurrently occurred in all plant genomes investigated, regardless their size, and through bursts, rather than a continuous process. Moreover, in each genome, only one or few LTR-RT families have been active in the recent past, and the difference in genome size among the species studied could thus mostly be accounted for by the extent of the latest transpositional burst(s). Following these bursts, LTR-RTs are efficiently eliminated from their host genomes through recombination and deletion, but we show that the removal rate is not lineage specific. These new findings lead us to propose a new model of TE-driven genome evolution in plants.

  1. A large population of small chloroplasts in tobacco leaf cells allows more effective chloroplast movement than a few enlarged chloroplasts.

    Science.gov (United States)

    Jeong, Won Joong; Park, Youn-Il; Suh, KyeHong; Raven, John A; Yoo, Ook Joon; Liu, Jang Ryol

    2002-05-01

    We generated transgenic tobacco (Nicotiana tabacum cv Xanthi) plants that contained only one to three enlarged chloroplasts per leaf mesophyll cell by introducing NtFtsZ1-2, a cDNA for plastid division. These plants were used to investigate the advantages of having a large population of small chloroplasts rather than a few enlarged chloroplasts in a leaf mesophyll cell. Despite the similarities in photosynthetic components and ultrastructure of photosynthetic machinery between wild-type and transgenic plants, the overall growth of transgenic plants under low- and high-light conditions was retarded. In wild-type plants, the chloroplasts moved toward the face position under low light and toward the profile position under high-light conditions. However, chloroplast rearrangement in transgenic plants in response to light conditions was not evident. In addition, transgenic plant leaves showed greatly diminished changes in leaf transmittance values under both light conditions, indicating that chloroplast rearrangement was severely retarded. Therefore, under low-light conditions the incomplete face position of the enlarged chloroplasts results in decreased absorbance of light energy. This, in turn, reduces plant growth. Under high-light conditions, the amount of absorbed light exceeds the photosynthetic utilization capacity due to the incomplete profile position of the enlarged chloroplasts, resulting in photodamage to the photosynthetic machinery, and decreased growth. The presence of a large number of small and/or rapidly moving chloroplasts in the cells of higher land plants permits more effective chloroplast phototaxis and, hence, allows more efficient utilization of low-incident photon flux densities. The photosynthetic apparatus is, consequently, protected from damage under high-incident photon flux densities.

  2. Chloroplasts in seeds and dark-grown seedlings of lotus.

    Science.gov (United States)

    Ushimaru, Takashi; Hasegawa, Takahiro; Amano, Toyoki; Katayama, Masao; Tanaka, Shigeyasu; Tsuji, Hideo

    2003-03-01

    In most higher plants, mature dry seeds have no chloroplasts but etioplasts. Here we show that in a hydrophyte, lotus (Nelumbo nucifera), young chloroplasts already exist in shoots of mature dry seeds and that they give rise to mature chloroplasts during germination, even in darkness. These shoots contain chlorophyll and chlorophyll-binding proteins CP1 and LHCP. The unique features of chloroplast formation in N. nucifera suggest a unique adaptive strategy for seedling development correlated with the plant's habitat.

  3. Evolution and genome architecture in fungal plant pathogens.

    Science.gov (United States)

    Möller, Mareike; Stukenbrock, Eva H

    2017-08-07

    The fungal kingdom comprises some of the most devastating plant pathogens. Sequencing the genomes of fungal pathogens has shown a remarkable variability in genome size and architecture. Population genomic data enable us to understand the mechanisms and the history of changes in genome size and adaptive evolution in plant pathogens. Although transposable elements predominantly have negative effects on their host, fungal pathogens provide prominent examples of advantageous associations between rapidly evolving transposable elements and virulence genes that cause variation in virulence phenotypes. By providing homogeneous environments at large regional scales, managed ecosystems, such as modern agriculture, can be conducive for the rapid evolution and dispersal of pathogens. In this Review, we summarize key examples from fungal plant pathogen genomics and discuss evolutionary processes in pathogenic fungi in the context of molecular evolution, population genomics and agriculture.

  4. Control of meiotic recombination frequency in plant genomes.

    Science.gov (United States)

    Henderson, Ian R

    2012-11-01

    Sexual eukaryotes reproduce via the meiotic cell division, where ploidy is halved and homologous chromosomes undergo reciprocal genetic exchange, termed crossover (CO). CO frequency has a profound effect on patterns of genetic variation and species evolution. Relative CO rates vary extensively both within and between plant genomes. Plant genome size varies by over 1000-fold, largely due to differential expansion of repetitive sequences, and increased genome size is associated with reduced CO frequency. Gene versus repeat sequences associate with distinct chromatin modifications, and evidence from plant genomes indicates that this epigenetic information influences CO patterns. This is consistent with data from diverse eukaryotes that demonstrate the importance of chromatin structure for control of meiotic recombination. In this review I will discuss CO frequency patterns in plant genomes and recent advances in understanding recombination distributions.

  5. Exploration of plant genomes in the FLAGdb++ environment

    Directory of Open Access Journals (Sweden)

    Leplé Jean-Charles

    2011-03-01

    Full Text Available Abstract Background In the contexts of genomics, post-genomics and systems biology approaches, data integration presents a major concern. Databases provide crucial solutions: they store, organize and allow information to be queried, they enhance the visibility of newly produced data by comparing them with previously published results, and facilitate the exploration and development of both existing hypotheses and new ideas. Results The FLAGdb++ information system was developed with the aim of using whole plant genomes as physical references in order to gather and merge available genomic data from in silico or experimental approaches. Available through a JAVA application, original interfaces and tools assist the functional study of plant genes by considering them in their specific context: chromosome, gene family, orthology group, co-expression cluster and functional network. FLAGdb++ is mainly dedicated to the exploration of large gene groups in order to decipher functional connections, to highlight shared or specific structural or functional features, and to facilitate translational tasks between plant species (Arabidopsis thaliana, Oryza sativa, Populus trichocarpa and Vitis vinifera. Conclusion Combining original data with the output of experts and graphical displays that differ from classical plant genome browsers, FLAGdb++ presents a powerful complementary tool for exploring plant genomes and exploiting structural and functional resources, without the need for computer programming knowledge. First launched in 2002, a 15th version of FLAGdb++ is now available and comprises four model plant genomes and over eight million genomic features.

  6. Plant-based raw material: Improved food quality for better nutrition via plant genomics

    NARCIS (Netherlands)

    Meer, van der I.M.; Bovy, A.G.; Bosch, H.J.

    2001-01-01

    Plants form the basis of the human food chain. Characteristics of plants are therefore crucial to the quantity and quality of human food. In this review, it is discussed how technological developments in the area of plant genomics and plant genetics help to mobilise the potential of plants to improv

  7. Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis

    Directory of Open Access Journals (Sweden)

    Zhou Xiangjun

    2011-11-01

    Full Text Available Abstract Background Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and the regulatory control of chloroplast biogenesis and development remain to be elucidated. Results Green cauliflower mutant causes ectopic development of chloroplasts in the curd tissue of the plant, turning the otherwise white curd green. To investigate the transcriptional control of chloroplast development, we compared gene expression between green and white curds using the RNA-seq approach. Deep sequencing produced over 15 million reads with lengths of 86 base pairs from each cDNA library. A total of 7,155 genes were found to exhibit at least 3-fold changes in expression between green and white curds. These included light-regulated genes, genes encoding chloroplast constituents, and genes involved in chlorophyll biosynthesis. Moreover, we discovered that the cauliflower ELONGATED HYPOCOTYL5 (BoHY5 was expressed higher in green curds than white curds and that 2616 HY5-targeted genes, including 1600 up-regulated genes and 1016 down-regulated genes, were differently expressed in green in comparison to white curd tissue. All these 1600 up-regulated genes were HY5-targeted genes in the light. Conclusions The genome-wide profiling of gene expression by RNA-seq in green curds led to the identification of large numbers of genes associated with chloroplast development, and suggested the role of regulatory genes in the high hierarchy of light signaling pathways in mediating the ectopic chloroplast development in the green curd cauliflower mutant.

  8. Genomics of adaptation to host-plants in herbivorous insects.

    Science.gov (United States)

    Simon, Jean-Christophe; d'Alençon, Emmanuelle; Guy, Endrick; Jacquin-Joly, Emmanuelle; Jaquiéry, Julie; Nouhaud, Pierre; Peccoud, Jean; Sugio, Akiko; Streiff, Réjane

    2015-11-01

    Herbivorous insects represent the most species-rich lineages of metazoans. The high rate of diversification in herbivorous insects is thought to result from their specialization to distinct host-plants, which creates conditions favorable for the build-up of reproductive isolation and speciation. These conditions rely on constraints against the optimal use of a wide range of plant species, as each must constitute a viable food resource, oviposition site and mating site for an insect. Utilization of plants involves many essential traits of herbivorous insects, as they locate and select their hosts, overcome their defenses and acquire nutrients while avoiding intoxication. Although advances in understanding insect-plant molecular interactions have been limited by the complexity of insect traits involved in host use and the lack of genomic resources and functional tools, recent studies at the molecular level, combined with large-scale genomics studies at population and species levels, are revealing the genetic underpinning of plant specialization and adaptive divergence in non-model insect herbivores. Here, we review the recent advances in the genomics of plant adaptation in hemipterans and lepidopterans, two major insect orders, each of which includes a large number of crop pests. We focus on how genomics and post-genomics have improved our understanding of the mechanisms involved in insect-plant interactions by reviewing recent molecular discoveries in sensing, feeding, digesting and detoxifying strategies. We also present the outcomes of large-scale genomics approaches aimed at identifying loci potentially involved in plant adaptation in these insects.

  9. Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    2016-05-01

    Full Text Available Plants have varying abilities to tolerate chilling (low but not freezing temperatures, and it is largely unknown how plants such as Arabidopsis thaliana achieve chilling tolerance. Here, we describe a genome-wide screen for genes important for chilling tolerance by their putative knockout mutants in Arabidopsis thaliana. Out of 11,000 T-DNA insertion mutant lines representing half of the genome, 54 lines associated with disruption of 49 genes had a drastic chilling sensitive phenotype. Sixteen of these genes encode proteins with chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. Study of one of these proteins RBD1 with an RNA binding domain further reveals the importance of chloroplast translation in chilling tolerance. RBD1 is expressed in the green tissues and is localized in the chloroplast nucleoid. It binds directly to 23S rRNA and the binding is stronger under chilling than at normal growth temperatures. The rbd1 mutants are defective in generating mature 23S rRNAs and deficient in chloroplast protein synthesis especially under chilling conditions. Together, our study identifies RBD1 as a regulator of 23S rRNA processing and reveals the importance of chloroplast function especially protein translation in chilling tolerance.

  10. Genomic resources in fruit plants: an assessment of current status.

    Science.gov (United States)

    Rai, Manoj K; Shekhawat, N S

    2015-01-01

    The availability of many genomic resources such as genome sequences, functional genomics resources including microarrays and RNA-seq, sufficient numbers of molecular markers, express sequence tags (ESTs) and high-density genetic maps is causing a rapid acceleration of genetics and genomic research of many fruit plants. This is leading to an increase in our knowledge of the genes that are linked to many horticultural and agronomically important traits. Recently, some progress has also been made on the identification and functional analysis of miRNAs in some fruit plants. This is one of the most active research fields in plant sciences. The last decade has witnessed development of genomic resources in many fruit plants such as apple, banana, citrus, grapes, papaya, pears, strawberry etc.; however, many of them are still not being exploited. Furthermore, owing to lack of resources, infrastructure and research facilities in many lesser-developed countries, development of genomic resources in many underutilized or less-studied fruit crops, which grow in these countries, is limited. Thus, research emphasis should be given to those fruit crops for which genomic resources are relatively scarce. The development of genomic databases of these less-studied fruit crops will enable biotechnologists to identify target genes that underlie key horticultural and agronomical traits. This review presents an overview of the current status of the development of genomic resources in fruit plants with the main emphasis being on genome sequencing, EST resources, functional genomics resources including microarray and RNA-seq, identification of quantitative trait loci and construction of genetic maps as well as efforts made on the identification and functional analysis of miRNAs in fruit plants.

  11. Local repeat sequence organization of an intergenic spacer in the chloroplast genome of Chlamydomonas reinhardtii leads to DNA expansion and sequence scrambling: a complex mode of “copy-choice replication”?

    Indian Academy of Sciences (India)

    Mahendra D Wagle; Subhojit Sen; Basuthkar J Rao

    2001-12-01

    Parent-specific, randomly amplified polymorphic DNA (RAPD) markers were obtained from total genomic DNA of Chlamydomonas reinhardtii. Such parent-specific RAPD bands (genomic fingerprints) segregated uniparentally (through mt+) in a cross between a pair of polymorphic interfertile strains of Chlamydomonas (C. reinhardtii and C. minnesotti), suggesting that they originated from the chloroplast genome. Southern analysis mapped the RAPD-markers to the chloroplast genome. One of the RAPD-markers, ``P2” (1.6 kb) was cloned, sequenced and was fine mapped to the 3 kb region encompassing 3′ end of 23S, full 5S and intergenic region between 5S and psbA. This region seems divergent enough between the two parents, such that a specific PCR designed for a parental specific chloroplast sequence within this region, amplified a marker in that parent only and not in the other, indicating the utility of RAPD-scan for locating the genomic regions of sequence divergence. Remarkably, the RAPD-product, ``P2” seems to have originated from a PCR-amplification of a much smaller (about 600 bp), but highly repeat-rich (direct and inverted) domain of the 3 kb region in a manner that yielded no linear sequence alignment with its own template sequence. The amplification yielded the same uniquely ``sequence-scrambled” product, whether the template used for PCR was total cellular DNA, chloroplast DNA or a plasmid clone DNA corresponding to that region. The PCR product, a ``unique” new sequence, had lost the repetitive organization of the template genome where it had originated from and perhaps represented a ``complex path” of copy-choice replication.

  12. Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium.

    Science.gov (United States)

    Sonah, Humira; Deshmukh, Rupesh K; Sharma, Anshul; Singh, Vinay P; Gupta, Deepak K; Gacche, Raju N; Rana, Jai C; Singh, Nagendra K; Sharma, Tilak R

    2011-01-01

    Plant genomes are complex and contain large amounts of repetitive DNA including microsatellites that are distributed across entire genomes. Whole genome sequences of several monocot and dicot plants that are available in the public domain provide an opportunity to study the origin, distribution and evolution of microsatellites, and also facilitate the development of new molecular markers. In the present investigation, a genome-wide analysis of microsatellite distribution in monocots (Brachypodium, sorghum and rice) and dicots (Arabidopsis, Medicago and Populus) was performed. A total of 797,863 simple sequence repeats (SSRs) were identified in the whole genome sequences of six plant species. Characterization of these SSRs revealed that mono-nucleotide repeats were the most abundant repeats, and that the frequency of repeats decreased with increase in motif length both in monocots and dicots. However, the frequency of SSRs was higher in dicots than in monocots both for nuclear and chloroplast genomes. Interestingly, GC-rich repeats were the dominant repeats only in monocots, with the majority of them being present in the coding region. These coding GC-rich repeats were found to be involved in different biological processes, predominantly binding activities. In addition, a set of 22,879 SSR markers that were validated by e-PCR were developed and mapped on different chromosomes in Brachypodium for the first time, with a frequency of 101 SSR markers per Mb. Experimental validation of 55 markers showed successful amplification of 80% SSR markers in 16 Brachypodium accessions. An online database 'BraMi' (Brachypodium microsatellite markers) of these genome-wide SSR markers was developed and made available in the public domain. The observed differential patterns of SSR marker distribution would be useful for studying microsatellite evolution in a monocot-dicot system. SSR markers developed in this study would be helpful for genomic studies in Brachypodium and related

  13. Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium.

    Directory of Open Access Journals (Sweden)

    Humira Sonah

    Full Text Available Plant genomes are complex and contain large amounts of repetitive DNA including microsatellites that are distributed across entire genomes. Whole genome sequences of several monocot and dicot plants that are available in the public domain provide an opportunity to study the origin, distribution and evolution of microsatellites, and also facilitate the development of new molecular markers. In the present investigation, a genome-wide analysis of microsatellite distribution in monocots (Brachypodium, sorghum and rice and dicots (Arabidopsis, Medicago and Populus was performed. A total of 797,863 simple sequence repeats (SSRs were identified in the whole genome sequences of six plant species. Characterization of these SSRs revealed that mono-nucleotide repeats were the most abundant repeats, and that the frequency of repeats decreased with increase in motif length both in monocots and dicots. However, the frequency of SSRs was higher in dicots than in monocots both for nuclear and chloroplast genomes. Interestingly, GC-rich repeats were the dominant repeats only in monocots, with the majority of them being present in the coding region. These coding GC-rich repeats were found to be involved in different biological processes, predominantly binding activities. In addition, a set of 22,879 SSR markers that were validated by e-PCR were developed and mapped on different chromosomes in Brachypodium for the first time, with a frequency of 101 SSR markers per Mb. Experimental validation of 55 markers showed successful amplification of 80% SSR markers in 16 Brachypodium accessions. An online database 'BraMi' (Brachypodium microsatellite markers of these genome-wide SSR markers was developed and made available in the public domain. The observed differential patterns of SSR marker distribution would be useful for studying microsatellite evolution in a monocot-dicot system. SSR markers developed in this study would be helpful for genomic studies in Brachypodium

  14. Evolution and function of genomic imprinting in plants.

    Science.gov (United States)

    Rodrigues, Jessica A; Zilberman, Daniel

    2015-12-15

    Genomic imprinting, an inherently epigenetic phenomenon defined by parent of origin-dependent gene expression, is observed in mammals and flowering plants. Genome-scale surveys of imprinted expression and the underlying differential epigenetic marks have led to the discovery of hundreds of imprinted plant genes and confirmed DNA and histone methylation as key regulators of plant imprinting. However, the biological roles of the vast majority of imprinted plant genes are unknown, and the evolutionary forces shaping plant imprinting remain rather opaque. Here, we review the mechanisms of plant genomic imprinting and discuss theories of imprinting evolution and biological significance in light of recent findings. © 2015 Rodrigues and Zilberman; Published by Cold Spring Harbor Laboratory Press.

  15. Did RNA editing in plant organellar genomes originate under natural selection or through genetic drift?

    Directory of Open Access Journals (Sweden)

    Jobson Richard W

    2008-10-01

    Full Text Available Abstract Background The C↔U substitution types of RNA editing have been observed frequently in organellar genomes of land plants. Although various attempts have been made to explain why such a seemingly inefficient genetic mechanism would have evolved, no satisfactory explanation exists in our view. In this study, we examined editing patterns in chloroplast genomes of the hornwort Anthoceros formosae and the fern Adiantum capillus-veneris and in mitochondrial genomes of the angiosperms Arabidopsis thaliana, Beta vulgaris and Oryza sativa, to gain an understanding of the question of how RNA editing originated. Results We found that 1 most editing sites were distributed at the 2nd and 1st codon positions, 2 editing affected codons that resulted in larger hydrophobicity and molecular size changes much more frequently than those with little change involved, 3 editing uniformly increased protein hydrophobicity, 4 editing occurred more frequently in ancestrally T-rich sequences, which were more abundant in genes encoding membrane-bound proteins with many hydrophobic amino acids than in genes encoding soluble proteins, and 5 editing occurred most often in genes found to be under strong selective constraint. Conclusion These analyses show that editing mostly affects functionally important and evolutionarily conserved codon positions, codons and genes encoding membrane-bound proteins. In particular, abundance of RNA editing in plant organellar genomes may be associated with disproportionately large percentages of genes in these two genomes that encode membrane-bound proteins, which are rich in hydrophobic amino acids and selectively constrained. These data support a hypothesis that natural selection imposed by protein functional constraints has contributed to selective fixation of certain editing sites and maintenance of the editing activity in plant organelles over a period of more than four hundred millions years. The retention of genes encoding RNA

  16. Azolla - A Model Organism for Plant Genomic Studies

    Institute of Scientific and Technical Information of China (English)

    Yin-Long Qiu; Jun Yu

    2003-01-01

    The aquatic ferns of the genus Azolla are nitrogen-fixing plants that have great potentials in agricultural production and environmental conservation. Azolla in many aspects is qualified to serve as a model organism for genomic studies because of its importance in agriculture, its unique position in plant evolution, its symbiotic relationship with the N2-fixing cyanobacterium, Anabaena azollae, and its moderate-sized genome. The goals of this genome project are not only to understand the biology of the Azolla genome to promote its applications in biological research and agriculture practice but also to gain critical insights about evolution of plant genomes. Together with the strategic and technical improvement as well as cost reduction of DNA sequencing, the deciphering of their genetic code is imminent.

  17. Azolla—A Model Organism for Plant Genomic Studies

    Institute of Scientific and Technical Information of China (English)

    Yin-LongQiu; JunYu

    2003-01-01

    The aquatic ferns of the genus Azolla are nitrogen-fixing plants that have great potentials in agricultural production and environmental conservation.Azolla in many aspects is qualified to serve as a model organism for genomic studies because of its importance in agriculture,its unique position in plant evolution,its symbiotic relationship with the N2-fixing cyanobacterium,Anabaena azollae,and its moderate-sized genome.The goals of this genome project are not only to understand the biology of the Azolla genome to promote its applications in biological research and agriculture practice but also to gain critical insights about evolution of plant genomes.Together with the strategic and technical improvement as well as cost reduction of DNA sequencing,the deciphering of their genetic code is imminent.

  18. Genome editing in plant cells by zinc finger nucleases.

    Science.gov (United States)

    Weinthal, Dan; Tovkach, Andriy; Zeevi, Vardit; Tzfira, Tzvi

    2010-06-01

    Gene targeting is a powerful tool for functional gene studies. However, only a handful of reports have been published describing the successful targeting of genome sequences in model and crop plants. Gene targeting can be stimulated by induction of double-strand breaks at specific genomic sites. The expression of zinc finger nucleases (ZFNs) can induce genomic double-strand breaks. Indeed, ZFNs have been used to drive the replacement of native DNA sequences with foreign DNA molecules, to mediate the integration of the targeted transgene into native genome sequences, to stimulate the repair of defective transgenes, and as site-specific mutagens in model and crop plant species. This review introduces the principles underlying the use of ZFNs for genome editing, with an emphasis on their recent use for plant research and biotechnology.

  19. GenomicusPlants: a web resource to study genome evolution in flowering plants.

    Science.gov (United States)

    Louis, Alexandra; Murat, Florent; Salse, Jérôme; Crollius, Hugues Roest

    2015-01-01

    Comparative genomics combined with phylogenetic reconstructions are powerful approaches to study the evolution of genes and genomes. However, the current rapid expansion of the volume of genomic information makes it increasingly difficult to interrogate, integrate and synthesize comparative genome data while taking into account the maximum breadth of information available. GenomicusPlants (http://www.genomicus.biologie.ens.fr/genomicus-plants) is an extension of the Genomicus webserver that addresses this issue by allowing users to explore flowering plant genomes in an intuitive way, across the broadest evolutionary scales. Extant genomes of 26 flowering plants can be analyzed, as well as 23 ancestral reconstructed genomes. Ancestral gene order provides a long-term chronological view of gene order evolution, greatly facilitating comparative genomics and evolutionary studies. Four main interfaces ('views') are available where: (i) PhyloView combines phylogenetic trees with comparisons of genomic loci across any number of genomes; (ii) AlignView projects loci of interest against all other genomes to visualize its topological conservation; (iii) MatrixView compares two genomes in a classical dotplot representation; and (iv) Karyoview visualizes chromosome karyotypes 'painted' with colours of another genome of interest. All four views are interconnected and benefit from many customizable features.

  20. Chloroplast outer envelope protein CHUP1 is essential for chloroplast anchorage to the plasma membrane and chloroplast movement.

    Science.gov (United States)

    Oikawa, Kazusato; Yamasato, Akihiro; Kong, Sam-Geun; Kasahara, Masahiro; Nakai, Masato; Takahashi, Fumio; Ogura, Yasunobu; Kagawa, Takatoshi; Wada, Masamitsu

    2008-10-01

    Chloroplasts change their intracellular distribution in response to light intensity. Previously, we isolated the chloroplast unusual positioning1 (chup1) mutant of Arabidopsis (Arabidopsis thaliana). This mutant is defective in normal chloroplast relocation movement and shows aggregation of chloroplasts at the bottom of palisade mesophyll cells. The isolated gene encodes a protein with an actin-binding motif. Here, we used biochemical analyses to determine the subcellular localization of full-length CHUP1 on the chloroplast outer envelope. A CHUP1-green fluorescent protein (GFP) fusion, which was detected at the outermost part of mesophyll cell chloroplasts, complemented the chup1 phenotype, but GFP-CHUP1, which was localized mainly in the cytosol, did not. Overexpression of the N-terminal hydrophobic region (NtHR) of CHUP1 fused with GFP (NtHR-GFP) induced a chup1-like phenotype, indicating a dominant-negative effect on chloroplast relocation movement. A similar pattern was found in chloroplast OUTER ENVELOPE PROTEIN7 (OEP7)-GFP transformants, and a protein containing OEP7 in place of NtHR complemented the mutant phenotype. Physiological analyses of transgenic Arabidopsis plants expressing truncated CHUP1 in a chup1 mutant background and cytoskeletal inhibitor experiments showed that the coiled-coil region of CHUP1 anchors chloroplasts firmly on the plasma membrane, consistent with the localization of coiled-coil GFP on the plasma membrane. Thus, CHUP1 localization on chloroplasts, with the N terminus inserted into the chloroplast outer envelope and the C terminus facing the cytosol, is essential for CHUP1 function, and the coiled-coil region of CHUP1 prevents chloroplast aggregation and participates in chloroplast relocation movement.

  1. Chloroplast Redox Poise

    DEFF Research Database (Denmark)

    Steccanella, Verdiana

    The redox state of the chloroplast is maintained by a delicate balance between energy production and consumption and is affected by the need to avoid increased production of reactive oxygen species (ROS). Redox power and ROS generated in the chloroplast are essential for maintaining physiological...... the redox status of the plastoquinone pool and chlorophyll biosynthesis. Furthermore, in the plant cell, the equilibrium between redox reactions and ROS signals is also maintained by various balancing mechanisms among which the thioredoxin reductase-thioredoxin system (TR-Trx) stands out as a mediator...... it lacks some of the key enzymes for ROS scavenging and it is the only, so far, known species to have two NTRC genes. Our aim was to elucidate the role of the two NTRC isoforms found in moss as an alternative system for protection against oxidative damage, providing the first partial attempt of a molecular...

  2. Genomic profile of the plants with pharmaceutical value

    OpenAIRE

    Gantait, Saikat; Debnath, Sandip; Nasim Ali, Md.

    2014-01-01

    There is an ample genetic diversity of plants with medicinal importance around the globe and this pool of genetic variation serves as the base for selection as well as for plant improvement. Thus, identification, characterization and documentation of the gene pool of medicinal plants are essential for this purpose. Genomic information of many a medicinal plant species has increased rapidly since the past decade and genetic resources available for domestication and improvement programs include...

  3. Genomic analysis of plant chromosomes based on meiotic pairing

    Directory of Open Access Journals (Sweden)

    Lisete Chamma Davide

    2007-12-01

    Full Text Available This review presents the principles and applications of classical genomic analysis, with emphasis on plant breeding. The main mathematical models used to estimate the preferential chromosome pairing in diploid or polyploid, interspecific or intergenera hybrids are presented and discussed, with special reference to the applications and studies for the definition of genome relationships among species of the Poaceae family.

  4. Recent updates and developments to plant genome size databases

    Science.gov (United States)

    Garcia, Sònia; Leitch, Ilia J.; Anadon-Rosell, Alba; Canela, Miguel Á.; Gálvez, Francisco; Garnatje, Teresa; Gras, Airy; Hidalgo, Oriane; Johnston, Emmeline; Mas de Xaxars, Gemma; Pellicer, Jaume; Siljak-Yakovlev, Sonja; Vallès, Joan; Vitales, Daniel; Bennett, Michael D.

    2014-01-01

    Two plant genome size databases have been recently updated and/or extended: the Plant DNA C-values database (http://data.kew.org/cvalues), and GSAD, the Genome Size in Asteraceae database (http://www.asteraceaegenomesize.com). While the first provides information on nuclear DNA contents across land plants and some algal groups, the second is focused on one of the largest and most economically important angiosperm families, Asteraceae. Genome size data have numerous applications: they can be used in comparative studies on genome evolution, or as a tool to appraise the cost of whole-genome sequencing programs. The growing interest in genome size and increasing rate of data accumulation has necessitated the continued update of these databases. Currently, the Plant DNA C-values database (Release 6.0, Dec. 2012) contains data for 8510 species, while GSAD has 1219 species (Release 2.0, June 2013), representing increases of 17 and 51%, respectively, in the number of species with genome size data, compared with previous releases. Here we provide overviews of the most recent releases of each database, and outline new features of GSAD. The latter include (i) a tool to visually compare genome size data between species, (ii) the option to export data and (iii) a webpage containing information about flow cytometry protocols. PMID:24288377

  5. Ferns, mosses and liverworts as model systems for light-mediated chloroplast movements.

    Science.gov (United States)

    Suetsugu, Noriyuki; Higa, Takeshi; Wada, Masamitsu

    2016-11-17

    Light-induced chloroplast movement is found in most plant species, including algae and land plants. In land plants with multiple small chloroplasts, under weak light conditions, the chloroplasts move towards the light and accumulate on the periclinal cell walls to efficiently perceive light for photosynthesis (the accumulation response). Under strong light conditions, chloroplasts escape from light to avoid photodamage (the avoidance response). In most plant species, blue light induces chloroplast movement, and phototropin receptor kinases are the blue light receptors. Molecular mechanisms for photoreceptors, signal transduction and chloroplast motility systems are being studied using the model plant Arabidopsis thaliana. However, to further understand the molecular mechanisms and evolutionary history of chloroplast movement in green plants, analyses using other plant systems are required. Here, we review recent works on chloroplast movement in green algae, liverwort, mosses and ferns that provide new insights on chloroplast movement.

  6. Adaptive Evolutionary Analysis of Chloroplast Genes in Euphyllophytes Based on Complete Chloroplast Genome Sequences%基于叶绿体基因组全序列分析真叶植物叶绿体基因的适应性进化

    Institute of Scientific and Technical Information of China (English)

    王博; 高磊; 苏应娟; 王艇

    2012-01-01

    Euphyllophytes comprise fems, gymnosperms, and angiosperms. Relatively abundant chloro-plast genome sequence data has been available for them. In this research, chloroplast gene sequences of 29 euphyllophyte species were extracted from their completely sequenced chloroplast genomes; then an a-daptive evolutionary analysis was performed on the chloroplast genes by running PAML under models allowing w (nonsynonymous/synonymous rate ratio) to vary among sites. The results showed that: ①The percentage of chloroplast genes under positive selection in ferns, gymnosperms, and angiosperms were 6. 5%, 7.5% and 19. 2% , respectively. The number of positively selected genes in angiosperms appeared significantly larger than that of ferns and gymnosperms. ②Most positively selected genes were genetic system or photosynthesis-related genes. Their coding proteins often functioned in chloroplast protein synthesis, gene transcription, energy transformation and regulation, and photosynthesis. We infer that the chloroplast functional genes may have played key roles during the adaptation of euphyllophytes to terrestrial ecosystems.%真叶植物包括蕨类、裸子植物和被子植物.迄今已积累有较为丰富的真叶植物叶绿体基因组全序列数据.选取了29种真叶植物的叶绿体基因组全序列,采用PAML软件基于位点间可变ω模型,分别分析了蕨类、裸子植物和被子植物叶绿体基因的适应性进化.结果显示:①蕨类、裸子植物和被子植物各有6.5%、7.5%和19.2%的叶绿体基因受正选择作用;被子植物经历正选择的叶绿体基因明显比蕨类和裸子植物为多;②被正选择作用的叶绿体基因主要是遗传系统和光合系统基因,它们的编码产物涉及叶绿体蛋白质合成、基因转录、能量转化与调节及光合作用等过程.推测叶绿体功能基因可能在真叶植物对陆生生态环境的适应过程中起着重要作用.

  7. Genomics 4.0 : syntenic gene and genome duplication drives diversification of plant secondary metabolism and innate immunity in flowering plants : advanced pattern analytics in duplicate genomes

    NARCIS (Netherlands)

    Hofberger, J.A.

    2015-01-01

    Genomics 4.0 - Syntenic Gene and Genome Duplication Drives Diversification of Plant Secondary Metabolism and Innate Immunity in Flowering Plants   Johannes A. Hofberger1, 2, 3 1 Biosystematics Group, Wageningen University & Research Center, Droevendaalsesteeg 1, 6708 PB Wageningen, The Neth

  8. Plastid endosymbiosis, genome evolution and the origin of green plants.

    Science.gov (United States)

    Stiller, John W

    2007-09-01

    Evolutionary relationships among complex, multicellular eukaryotes are generally interpreted within the framework of molecular sequence-based phylogenies that suggest green plants and animals are only distantly related on the eukaryotic tree. However, important anomalies have been reported in phylogenomic analyses, including several that relate specifically to green plant evolution. In addition, plants and animals share molecular, biochemical and genome-level features that suggest a relatively close relationship between the two groups. This article explores the impacts of plastid endosymbioses on nuclear genomes, how they can explain incongruent phylogenetic signals in molecular data sets and reconcile conflicts among different sources of comparative data. Specifically, I argue that the large influx of plastid DNA into plant and algal nuclear genomes has resulted in tree-building artifacts that obscure a relatively close evolutionary relationship between green plants and animals.

  9. The plant ontology as a tool for comparative plant anatomy and genomic analyses

    Science.gov (United States)

    Plant science is now a major player in the fields of genomics, gene expression analysis, phenomics and metabolomics. Recent advances in sequencing technologies have led to a windfall of data, with new species being added rapidly to the list of species whose genomes have been decoded. The Plant Ontol...

  10. DNA Barcoding: Amplification and sequence analysis of rbcl and matK genome regions in three divergent plant species

    Directory of Open Access Journals (Sweden)

    Javed Iqbal Wattoo

    2016-11-01

    Full Text Available Background: DNA barcoding is a novel method of species identification based on nucleotide diversity of conserved sequences. The establishment and refining of plant DNA barcoding systems is more challenging due to high genetic diversity among different species. Therefore, targeting the conserved nuclear transcribed regions would be more reliable for plant scientists to reveal genetic diversity, species discrimination and phylogeny. Methods: In this study, we amplified and sequenced the chloroplast DNA regions (matk+rbcl of Solanum nigrum, Euphorbia helioscopia and Dalbergia sissoo to study the functional annotation, homology modeling and sequence analysis to allow a more efficient utilization of these sequences among different plant species. These three species represent three families; Solanaceae, Euphorbiaceae and Fabaceae respectively. Biological sequence homology and divergence of amplified sequences was studied using Basic Local Alignment Tool (BLAST. Results: Both primers (matk+rbcl showed good amplification in three species. The sequenced regions reveled conserved genome information for future identification of different medicinal plants belonging to these species. The amplified conserved barcodes revealed different levels of biological homology after sequence analysis. The results clearly showed that the use of these conserved DNA sequences as barcode primers would be an accurate way for species identification and discrimination. Conclusion: The amplification and sequencing of conserved genome regions identified a novel sequence of matK in native species of Solanum nigrum. The findings of the study would be applicable in medicinal industry to establish DNA based identification of different medicinal plant species to monitor adulteration.

  11. PLANT GENETICS:From Genome to Functional Genomics.

    Science.gov (United States)

    Kaiser, J

    2000-06-09

    Even before the first genetic sequence of a flowering plant, a wild mustard called Arabidopsis thaliana, is completed, a group of plant scientists has hatched an ambitious plan for the next phase: figuring out the functions of all 25,000 genes. Announced last week, the plan, which has the blessing of the National Science Foundation, came with another bit of good news for the Arabidopsis community: the unexpected release of a set of molecular markers for finding those genes.

  12. Synthesis of medium-chain- length-polyhydroxyalkanoates in tobacco via chloroplast genetic engineering

    Institute of Scientific and Technical Information of China (English)

    WANG Yuhua; WU Zhongyi; ZHANG Xiuhai; CHEN Guoqiang; WU Qiong; HUANG Conglin; YANG Qing

    2005-01-01

    Medium-chain-length-polyhydroxyalkanoates (mcl-PHAs) belong to the group of microbial polyesters containing monomers ranging from 6 to 14 carbons in length. The key enzymes of their biosynthesis are PHA-polymerase (product of phaC gene) and 3-hydroxyacyl-acyl carrier protein-CoA transferase (product of phaG gene). With aadA (aminoglycoside 3′-adenylyltransferase) gene as screening marker, two chloroplast transformation vectors of pTC2 harboring phaC2 gene only and pTGC harboring both phaC and phaG genes were constructed and introduced into tobacco chloroplast genome through particle bombardment. PCR and Southern blot analysis confirmed the insertion of the introduced genes into chloroplast genome. The content of mcl-PHAs accumulated in transgenic plants was analyzed by gas chromatography, mcl-PHAs accumulated up to 4.8 mg/g dry weight (dw) in transgenic line S4-3; their monomers were 3-hydroxyoctanoate and 3-hydroxydecanoate. Accumulation of mcl-PHAs polymers in the tobacco chloroplast was also observed by transmission electron microscopy. To our knowledge, this is the first report on the synthesis of mcl- PHAs in tobacco via chloroplast genetic engineering.

  13. Plant microbe interactions in post genomic era: perspectives and applications

    Directory of Open Access Journals (Sweden)

    Jahangir Imam

    2016-09-01

    Full Text Available Deciphering plant-microbe interactions is a promising aspect to understand the benefits and the pathogenic effect of microbes and crop improvement. The advancement in sequencing technologies and various ‘omics’ tool has impressively accelerated the research in biological sciences in this area. The recent and ongoing developments provide a unique approach to describing these intricate interactions and test hypotheses. In the present review, we discuss the role of plant-pathogen interaction in crop improvement. The plant innate immunity has always been an important aspect of research and leads to some interesting information like the adaptation of unique immune mechanisms of plants against pathogens. The development of new techniques in the post - genomic era has greatly enhanced our understanding of the regulation of plant defense mechanisms against pathogens. The present review also provides an overview of beneficial plant-microbe interactions with special reference to Agrobacterium tumefaciens-plant interactions where plant derived signal molecules and plant immune responses are important in pathogenicity and transformation efficiency. The construction of various Genome-scale metabolic models of microorganisms and plants presented a better understanding of all metabolic interactions activated during the interactions. This review also lists the emerging repertoire of phytopathogens and its impact on plant disease resistance. Outline of different aspects of plant-pathogen interactions is presented in this review to bridge the gap between plant microbial ecology and their immune responses.

  14. Plant Microbe Interactions in Post Genomic Era: Perspectives and Applications.

    Science.gov (United States)

    Imam, Jahangir; Singh, Puneet K; Shukla, Pratyoosh

    2016-01-01

    Deciphering plant-microbe interactions is a promising aspect to understand the benefits and the pathogenic effect of microbes and crop improvement. The advancement in sequencing technologies and various 'omics' tool has impressively accelerated the research in biological sciences in this area. The recent and ongoing developments provide a unique approach to describing these intricate interactions and test hypotheses. In the present review, we discuss the role of plant-pathogen interaction in crop improvement. The plant innate immunity has always been an important aspect of research and leads to some interesting information like the adaptation of unique immune mechanisms of plants against pathogens. The development of new techniques in the post - genomic era has greatly enhanced our understanding of the regulation of plant defense mechanisms against pathogens. The present review also provides an overview of beneficial plant-microbe interactions with special reference to Agrobacterium tumefaciens-plant interactions where plant derived signal molecules and plant immune responses are important in pathogenicity and transformation efficiency. The construction of various Genome-scale metabolic models of microorganisms and plants presented a better understanding of all metabolic interactions activated during the interactions. This review also lists the emerging repertoire of phytopathogens and its impact on plant disease resistance. Outline of different aspects of plant-pathogen interactions is presented in this review to bridge the gap between plant microbial ecology and their immune responses.

  15. The copy number of chloroplast gene minicircles changes dramatically with growth phase in the dinoflagellate Amphidinium operculatum.

    Science.gov (United States)

    Koumandou, V L; Howe, Christopher J

    2007-01-01

    The chloroplast genome of algae and plants typically comprises a circular DNA molecule of 100-200kb, which harbours approximately 120 genes, and is present in 50-100 copies per chloroplast. However, in peridinin dinoflagellates, an ecologically important group of unicellular algae, the chloroplast genome is fragmented into plasmid-like 'minicircles', each of 2-3kb. Furthermore, the chloroplast gene content of dinoflagellates is dramatically reduced. Only 14 genes have been found on dinoflagellate minicircles, and recent evidence from EST studies suggests that most of the genes typically located in the chloroplast in other algae and plants are located in the nucleus. In this study, Southern blot analysis was used to estimate the copy number per cell of a variety of minicircles during different growth stages in the dinoflagellate Amphidinium operculatum. It was found that minicircle copy number is low during the exponential growth stage but increases during the later growth phase to resemble the situation seen in other plants and algae. The control of minicircle replication is discussed in the light of these findings.

  16. Thiol-Based Peroxidases and Ascorbate Peroxidases: Why Plants Rely on Multiple Peroxidase Systems in the Photosynthesizing Chloroplast?

    Science.gov (United States)

    Dietz, Karl-Josef

    2016-01-01

    Photosynthesis is a highly robust process allowing for rapid adjustment to changing environmental conditions. The efficient acclimation depends on balanced redox metabolism and control of reactive oxygen species release which triggers signaling cascades and potentially detrimental oxidation reactions. Thiol peroxidases of the peroxiredoxin and glutathione peroxidase type, and ascorbate peroxidases are the main peroxide detoxifying enzymes of the chloroplast. They use different electron donors and are linked to distinct redox networks. In addition, the peroxiredoxins serve functions in redox regulation and retrograde signaling. The complexity of plastid peroxidases is discussed in context of suborganellar localization, substrate preference, metabolic coupling, protein abundance, activity regulation, interactions, signaling functions, and the conditional requirement for high antioxidant capacity. Thus the review provides an opinion on the advantage of linking detoxification of peroxides to different enzymatic systems and implementing mechanisms for their inactivation to enforce signal propagation within and from the chloroplast.

  17. Velocity of chloroplast avoidance movement is fluence rate dependent.

    Science.gov (United States)

    Kagawa, Takatoshi; Wada, Masamitsu

    2004-06-01

    In Arabidopsis leaves, chloroplast movement is fluence rate dependent. At optimal, lower light fluences, chloroplasts accumulate at the cell surface to maximize photosynthetic potential. Under high fluence rates, chloroplasts avoid incident light to escape photodamage. In this paper, we examine the phenomenon of chloroplast avoidance movement in greater detail and demonstrate a proportional relationship between fluence rate and the velocity of chloroplast avoidance. In addition we show that the amount of light-activated phototropin2, the photoreceptor for the avoidance response, likely plays a role in this phenomenon, as heterozygous mutant plants show a reduced avoidance velocity compared to that of homozygous wild type plants.

  18. Primers for the Amplification of the Circular Chloroplast DNA from the A-genome Group of Cultivated Cotton

    Institute of Scientific and Technical Information of China (English)

    IBRAHIM Rashid Ismael Hag; AZUMA Jun-Ichi; SAKAMOTO Masahiro

    2008-01-01

    @@ The availability of the plastid genome sequences is one of the bases for comparative,functional,and structural genomic studies of plastid-containing living organisms,in addition to the application of plastid genetic engineering technology.The past efforts to sequence plastid genomes involve complicated preparation protocols.One procedure starts with the isolation of plastids,which was tiresome and time wasting that followed by a second step to extract plastid DNA from the isolated plastids,then finally the build up of plasmid or bacterial artificial chromosome (BAC) library.

  19. Genome-Editing Technologies for Enhancing Plant Disease Resistance

    Science.gov (United States)

    Andolfo, Giuseppe; Iovieno, Paolo; Frusciante, Luigi; Ercolano, Maria R.

    2016-01-01

    One of the greatest challenges for agricultural science in the 21st century is to improve yield stability through the progressive development of superior cultivars. The increasing numbers of infectious plant diseases that are caused by plant-pathogens make it ever more necessary to develop new strategies for plant disease resistance breeding. Targeted genome engineering allows the introduction of precise modifications directly into a commercial variety, offering a viable alternative to traditional breeding methods. Genome editing is a powerful tool for modifying crucial players in the plant immunity system. In this work, we propose and discuss genome-editing strategies and targets for improving resistance to phytopathogens. First of all, we present the opportunities to rewrite the effector-target sequence for avoiding effector-target molecular interaction and also to modify effector-target promoters for increasing the expression of target genes involved in the resistance process. In addition, we describe potential approaches for obtaining synthetic R-genes through genome-editing technologies (GETs). Finally, we illustrate a genome editing flowchart to modify the pathogen recognition sites and engineer an R-gene that mounts resistance to some phylogenetically divergent pathogens. GETs potentially mark the beginning of a new era, in which synthetic biology affords a basis for obtaining a reinforced plant defense system. Nowadays it is conceivable that by modulating the function of the major plant immunity players, we will be able to improve crop performance for a sustainable agriculture. PMID:27990151

  20. Next-Generation Sequencing and Genome Editing in Plant Virology

    OpenAIRE

    Hadidi, Ahmed; Flores, Ricardo; Candresse, Thierry; Barba, Marina

    2016-01-01

    Next-generation sequencing (NGS) has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA, or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21–24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant vir...

  1. Glycolate oxidation in A. thaliana chloroplasts improves biomass production

    Directory of Open Access Journals (Sweden)

    Alexandra eMaier

    2012-02-01

    Full Text Available A complete glycolate catabolic cycle was established in chloroplasts of the C3-model plant Arabidopsis thaliana by which one molecule of glycolate is completely oxidized within the chloroplast to two molecules of CO2. Genes coding for glycolate oxidase, malate synthase, and catalase were introduced into the nuclear genome of A. thaliana by step-wise transformation. Other genes required for a fully operational pathway are the endogenous NADP-malic enzyme and pyruvate dehydrogenase. Transgenic lines expressing the complete novel pathway produced rossettes with more leaves and higher fresh and dry weight but individual leaves were flatter and thinner than the wild type. The photosynthetic rates of the transgenic plants were higher on a dry weight and chlorophyll basis, but there were no differences in the compensation point. In addition, transgenic plants showed a lower glycine/serine ratio than the wild type indicating a reduction of the flux through the photorespiratory pathway. In this way, due to the increased oxidation of glycolate inside the chloroplasts, a photorespiratory bypass was created, which resulted in higher CO2 assimilation and enhanced biomass production.

  2. Comprehensive Survey of Genetic Diversity in Chloroplast Genomes and 45S nrDNAs within Panax ginseng Species

    National Research Council Canada - National Science Library

    Kim, Kyunghee; Lee, Sang-Choon; Lee, Junki; Lee, Hyun Oh; Joh, Ho Jun; Kim, Nam-Hoon; Park, Hyun-Seung; Yang, Tae-Jin

    2015-01-01

    ...) for 11 Panax ginseng cultivars. We have obtained complete sequences of cp and 45S nrDNA, the representative barcoding target sequences for cytoplasm and nuclear genome, respectively, based on low coverage NGS sequence of each cultivar...

  3. Genome analysis methods - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us PGDBj Registered...ear Year of genome analysis Sequencing method Sequencing method Read counts Read counts Covered genome region Covered...otation method Number of predicted genes Number of predicted genes Genome database Genome database informati... License Update History of This Database Site Policy | Contact Us Genome analysis... methods - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive ...

  4. MIPS PlantsDB: a database framework for comparative plant genome research.

    Science.gov (United States)

    Nussbaumer, Thomas; Martis, Mihaela M; Roessner, Stephan K; Pfeifer, Matthias; Bader, Kai C; Sharma, Sapna; Gundlach, Heidrun; Spannagl, Manuel

    2013-01-01

    The rapidly increasing amount of plant genome (sequence) data enables powerful comparative analyses and integrative approaches and also requires structured and comprehensive information resources. Databases are needed for both model and crop plant organisms and both intuitive search/browse views and comparative genomics tools should communicate the data to researchers and help them interpret it. MIPS PlantsDB (http://mips.helmholtz-muenchen.de/plant/genomes.jsp) was initially described in NAR in 2007 [Spannagl,M., Noubibou,O., Haase,D., Yang,L., Gundlach,H., Hindemitt, T., Klee,K., Haberer,G., Schoof,H. and Mayer,K.F. (2007) MIPSPlantsDB-plant database resource for integrative and comparative plant genome research. Nucleic Acids Res., 35, D834-D840] and was set up from the start to provide data and information resources for individual plant species as well as a framework for integrative and comparative plant genome research. PlantsDB comprises database instances for tomato, Medicago, Arabidopsis, Brachypodium, Sorghum, maize, rice, barley and wheat. Building up on that, state-of-the-art comparative genomics tools such as CrowsNest are integrated to visualize and investigate syntenic relationships between monocot genomes. Results from novel genome analysis strategies targeting the complex and repetitive genomes of triticeae species (wheat and barley) are provided and cross-linked with model species. The MIPS Repeat Element Database (mips-REdat) and Catalog (mips-REcat) as well as tight connections to other databases, e.g. via web services, are further important components of PlantsDB.

  5. Phylogeny of Panax using chloroplast trnC-trnD intergenic region and the utility of trnC-trnD in interspecific studies of plants.

    Science.gov (United States)

    Lee, Chunghee; Wen, Jun

    2004-06-01

    Sequences of the chloroplast trnC-trnD region and the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA were obtained for all species of Panax L. (the ginseng plant genus, Araliaceae) to reconstruct phylogenetic relationships. The trnC-trnD phylogeny is congruent with the ITS phylogeny for the diploid taxa of Panax. This study is the first use of the trnC-trnD sequence data for phylogenetic analysis at the interspecific level. We evaluated this DNA region for its phylogenetic utility at the lower taxonomic level for flowering plants. The trnC-trnD region includes the trnC-petN intergenic spacer, the petN gene, the petN-psbM intergenic spacer, the psbM gene, and the psbM-trnD intergenic spacer. The petN and psbM genes are small, 90 and 104-114 bp across angiosperms, respectively, and have conserved sequences. We have designed universal amplification and sequencing primers within these two genes. Using these primers, we have successfully amplified the entire trnC-trnD region for a diversity of flowering plant groups, including Aralia L. (Araliaceae), Calycanthus L. (Calycanthaceae), Corylus L. (Betulaceae), Hamamelis L. (Hamamelidaceae), Hydrocotyle L. (Apiaceae), Illigera Blume (Hernandiaceae), Nelumbo Adans. (Nelumbonaceae), Nolana L. ex L.f. (Solanaceae), Prunus L. (Rosaceae), and Staphylea L. (Staphyleaceae). In Panax, the trnC-trnD region provides a similar number of informative phylogenetic characters as the ITS regions and a slightly higher number of informative characters than the chloroplast ndhF gene. We thus demonstrate the utility of the trnC-trnD region for lower-level phylogenetic studies in flowering plants.

  6. Chloroplast-encoded serotonin N-acetyltransferase in the red alga Pyropia yezoensis: gene transition to the nucleus from chloroplasts.

    Science.gov (United States)

    Byeon, Yeong; Yool Lee, Hyoung; Choi, Dong-Woog; Back, Kyoungwhan

    2015-02-01

    Melatonin biosynthesis involves the N-acetylation of arylalkylamines such as serotonin, which is catalysed by serotonin N-acetyltransferase (SNAT), the penultimate enzyme of melatonin biosynthesis in both animals and plants. Here, we report the functional characterization of a putative N-acetyltransferase gene in the chloroplast genome of the alga laver (Pyropia yezoensis, formerly known as Porphyra yezoensis) with homology to the rice SNAT gene. To confirm that the putative Pyropia yezoensis SNAT (PySNAT) gene encodes an SNAT, we cloned the full-length chloroplastidic PySNAT gene by PCR and purified the recombinant PySNAT protein from Escherichia coli. PySNAT was 174 aa and had 50% amino acid identity with cyanobacteria SNAT. Purified recombinant PySNAT showed a peak activity at 55 °C with a K m of 467 µM and V max of 28 nmol min-1 mg(-1) of protein. Unlike other plant SNATs, PySNAT localized to the cytoplasm due to a lack of N-terminal chloroplast transit peptides. Melatonin was present at 0.16ng g(-1) of fresh mass but increased during heat stress. Phylogenetic analysis of the sequence suggested that PySNAT has evolved from the cyanobacteria SNAT gene via endosymbiotic gene transfer. Additionally, the chloroplast transit peptides of plant SNATs were acquired 1500 million years ago, concurrent with the appearance of green algae. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. PLASTID MOVEMENT IMPAIRED1 and PLASTID MOVEMENT IMPAIRED1-RELATED1 Mediate Photorelocation Movements of Both Chloroplasts and Nuclei.

    Science.gov (United States)

    Suetsugu, Noriyuki; Higa, Takeshi; Kong, Sam-Geun; Wada, Masamitsu

    2015-10-01

    Organelle movement and positioning play important roles in fundamental cellular activities and adaptive responses to environmental stress in plants. To optimize photosynthetic light utilization, chloroplasts move toward weak blue light (the accumulation response) and escape from strong blue light (the avoidance response). Nuclei also move in response to strong blue light by utilizing the light-induced movement of attached plastids in leaf cells. Blue light receptor phototropins and several factors for chloroplast photorelocation movement have been identified through molecular genetic analysis of Arabidopsis (Arabidopsis thaliana). PLASTID MOVEMENT IMPAIRED1 (PMI1) is a plant-specific C2-domain protein that is required for efficient chloroplast photorelocation movement. There are two PLASTID MOVEMENT IMPAIRED1-RELATED (PMIR) genes, PMIR1 and PMIR2, in the Arabidopsis genome. However, the mechanism in which PMI1 regulates chloroplast and nuclear photorelocation movements and the involvement of PMIR1 and PMIR2 in these organelle movements remained unknown. Here, we analyzed chloroplast and nuclear photorelocation movements in mutant lines of PMI1, PMIR1, and PMIR2. In mesophyll cells, the pmi1 single mutant showed severe defects in both chloroplast and nuclear photorelocation movements resulting from the impaired regulation of chloroplast-actin filaments. In pavement cells, pmi1 mutant plants were partially defective in both plastid and nuclear photorelocation movements, but pmi1pmir1 and pmi1pmir1pmir2 mutant lines lacked the blue light-induced movement responses of plastids and nuclei completely. These results indicated that PMI1 is essential for chloroplast and nuclear photorelocation movements in mesophyll cells and that both PMI1 and PMIR1 are indispensable for photorelocation movements of plastids and thus, nuclei in pavement cells.

  8. Next-Generation Sequencing and Genome Editing in Plant Virology

    Directory of Open Access Journals (Sweden)

    Ahmed Hadidi

    2016-08-01

    Full Text Available Next-generation sequencing (NGS has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21-24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant virology including, but not limited to, discovery of novel viruses and viroids as well as detection and identification of those pathogens already known, analysis of genome diversity and evolution, and study of pathogen epidemiology. The genome engineering editing method, clustered regularly interspaced short palindromic repeats (CRISPR-Cas9 system has been successfully used recently to engineer resistance to DNA geminiviruses (family, Geminiviridae by targeting different viral genome sequences in infected Nicotiana benthamiana or Arabidopsis plants. The DNA viruses targeted include tomato yellow leaf curl virus and merremia mosaic virus (begomovirus; beet curly top virus and beet severe curly top virus (curtovirus; and bean yellow dwarf virus (mastrevirus. The technique has also been used against the RNA viruses zucchini yellow mosaic virus, papaya ringspot virus and turnip mosaic virus (potyvirus and cucumber vein yellowing virus (ipomovirus, family, Potyviridae by targeting the translation initiation genes eIF4E in cucumber or Arabidopsis plants. From these recent advances of major importance, it is expected that NGS and CRISPR-Cas technologies will play a significant role in the very near future in advancing the field of plant virology and connecting it with other related fields of biology.Keywords: Next-generation sequencing, NGS, plant virology, plant viruses, viroids, resistance to plant viruses by CRISPR-Cas9

  9. BRAD, the genetics and genomics database for Brassica plants

    Directory of Open Access Journals (Sweden)

    Li Pingxia

    2011-10-01

    Full Text Available Abstract Background Brassica species include both vegetable and oilseed crops, which are very important to the daily life of common human beings. Meanwhile, the Brassica species represent an excellent system for studying numerous aspects of plant biology, specifically for the analysis of genome evolution following polyploidy, so it is also very important for scientific research. Now, the genome of Brassica rapa has already been assembled, it is the time to do deep mining of the genome data. Description BRAD, the Brassica database, is a web-based resource focusing on genome scale genetic and genomic data for important Brassica crops. BRAD was built based on the first whole genome sequence and on further data analysis of the Brassica A genome species, Brassica rapa (Chiifu-401-42. It provides datasets, such as the complete genome sequence of B. rapa, which was de novo assembled from Illumina GA II short reads and from BAC clone sequences, predicted genes and associated annotations, non coding RNAs, transposable elements (TE, B. rapa genes' orthologous to those in A. thaliana, as well as genetic markers and linkage maps. BRAD offers useful searching and data mining tools, including search across annotation datasets, search for syntenic or non-syntenic orthologs, and to search the flanking regions of a certain target, as well as the tools of BLAST and Gbrowse. BRAD allows users to enter almost any kind of information, such as a B. rapa or A. thaliana gene ID, physical position or genetic marker. Conclusion BRAD, a new database which focuses on the genetics and genomics of the Brassica plants has been developed, it aims at helping scientists and breeders to fully and efficiently use the information of genome data of Brassica plants. BRAD will be continuously updated and can be accessed through http://brassicadb.org.

  10. Phylogenomic analysis of transcriptomic sequences of mitochondria and chloroplasts of essential brown algae (Phaeophyceae) in China

    Institute of Scientific and Technical Information of China (English)

    JIA Shangang; LIU Tao; WU Shuangxiu; WANG Xumin; LI Tianyong; QIAN Hao; SUN Jing; WANG Liang; YU Jun; REN Lufeng; YIN Jinlong

    2014-01-01

    The chloroplast and mitochondrion of brown algae (Class Phaeophyceae of Phylum Ochrophyta) may have originated from different endosymbiosis. In this study, we carried out phylogenomic analysis to distinguish their evolutionary lineages by using algal RNA-seq datasets of the 1 000 Plants (1KP) Project and publicly available complete genomes of mitochondria and chloroplasts of Kingdom Chromista. We have found that there is a split between Class Phaeophyceae of Phylum Ochrophyta and the others (Phylum Cryptophyta and Haptophyta) in Kingdom Chromista, and identified more diversity in chloroplast genes than mitochondrial ones in their phylogenetic trees. Taxonomy resolution for Class Phaeophyceae showed that it was divided into Laminariales-Ectocarpales clade and Fucales clade, and phylogenetic positions of Kjellmaniella crassi-folia, Hizikia fusifrome and Ishige okamurai were confirmed. Our analysis provided the basic phylogenetic relationships of Chromista algae, and demonstrated their potential ability to study endosymbiotic events.

  11. Advances in Genetical Genomics of Plants

    NARCIS (Netherlands)

    Joosen, R.V.L.; Ligterink, W.; Hilhorst, H.W.M.; Keurentjes, J.J.B.

    2009-01-01

    Natural variation provides a valuable resource to study the genetic regulation of quantitative traits. In quantitative trait locus (QTL) analyses this variation, captured in segregating mapping populations, is used to identify the genomic regions affecting these traits. The identification of the cau

  12. Towards social acceptance of plant breeding by genome editing.

    Science.gov (United States)

    Araki, Motoko; Ishii, Tetsuya

    2015-03-01

    Although genome-editing technologies facilitate efficient plant breeding without introducing a transgene, it is creating indistinct boundaries in the regulation of genetically modified organisms (GMOs). Rapid advances in plant breeding by genome-editing require the establishment of a new global policy for the new biotechnology, while filling the gap between process-based and product-based GMO regulations. In this Opinion article we review recent developments in producing major crops using genome-editing, and we propose a regulatory model that takes into account the various methodologies to achieve genetic modifications as well as the resulting types of mutation. Moreover, we discuss the future integration of genome-editing crops into society, specifically a possible response to the 'Right to Know' movement which demands labeling of food that contains genetically engineered ingredients.

  13. TALENs: Customizable Molecular DNA Scissors for Genome Engineering of Plants

    Institute of Scientific and Technical Information of China (English)

    Kunling Chen; Caixia Gao

    2013-01-01

    Precise genome modification with engineered nucleases is a powerful tool for studying basic biology and applied biotechnology.Transcription activator-like effector nucleases (TALENs),consisting of an engineered specific (TALE) DNA binding domain and a Fok I cleavage domain,are newly developed versatile reagents for genome engineering in different organisms.Because of the simplicity of the DNA recognition code and their modular assembly,TALENs can act as customizable molecular DNA scissors inducing double-strand breaks (DSBs) at given genomic location.Thus,they provide a valuable approach to targeted genome modifications such as mutations,insertions,replacements or chromosome rearrangements.In this article,we review the development of TALENs,and summarize the principles and tools for TALEN-mediated gene targeting in plant cells,as well as current and potential strategies for use in plant research and crop improvement.

  14. Evolution of chloroplast vesicle transport.

    Science.gov (United States)

    Westphal, Sabine; Soll, Jürgen; Vothknecht, Ute C

    2003-02-01

    Vesicle traffic plays a central role in eukaryotic transport. The presence of a vesicle transport system inside chloroplasts of spermatophytes raises the question of its phylogenetic origin. To elucidate the evolution of this transport system we analyzed organisms belonging to different lineages that arose from the first photosynthetic eukaryote, i.e. glaucocystophytes, chlorophytes, rhodophytes, and charophytes/embryophytes. Intriguingly, vesicle transport is not apparent in any group other than embryophytes. The transfer of this eukaryotic-type vesicle transport system from the cytosol into the chloroplast thus seems a late evolutionary development that was acquired by land plants in order to adapt to new environmental challenges.

  15. Does genomic selection have a future in plant breeding?

    Science.gov (United States)

    Jonas, Elisabeth; de Koning, Dirk-Jan

    2013-09-01

    Plant breeding largely depends on phenotypic selection in plots and only for some, often disease-resistance-related traits, uses genetic markers. The more recently developed concept of genomic selection, using a black box approach with no need of prior knowledge about the effect or function of individual markers, has also been proposed as a great opportunity for plant breeding. Several empirical and theoretical studies have focused on the possibility to implement this as a novel molecular method across various species. Although we do not question the potential of genomic selection in general, in this Opinion, we emphasize that genomic selection approaches from dairy cattle breeding cannot be easily applied to complex plant breeding.

  16. RNAi and functional genomics in plant parasitic nematodes.

    Science.gov (United States)

    Rosso, M N; Jones, J T; Abad, P

    2009-01-01

    Plant nematology is currently undergoing a revolution with the availability of the first genome sequences as well as comprehensive expressed sequence tag (EST) libraries from a range of nematode species. Several strategies are being used to exploit this wealth of information. Comparative genomics is being used to explore the acquisition of novel genes associated with parasitic lifestyles. Functional analyses of nematode genes are moving toward larger scale studies including global transcriptome profiling. RNA interference (RNAi) has been shown to reduce expression of a range of plant parasitic nematode genes and is a powerful tool for functional analysis of nematode genes. RNAi-mediated suppression of genes essential for nematode development, survival, or parasitism is revealing new targets for nematode control. Plant nematology in the genomics era is now facing the challenge to develop RNAi screens adequate for high-throughput functional analyses.

  17. Transcriptomics and molecular evolutionary rate analysis of the bladderwort (Utricularia, a carnivorous plant with a minimal genome

    Directory of Open Access Journals (Sweden)

    Herrera-Estrella Alfredo

    2011-06-01

    Full Text Available Abstract Background The carnivorous plant Utricularia gibba (bladderwort is remarkable in having a minute genome, which at ca. 80 megabases is approximately half that of Arabidopsis. Bladderworts show an incredible diversity of forms surrounding a defined theme: tiny, bladder-like suction traps on terrestrial, epiphytic, or aquatic plants with a diversity of unusual vegetative forms. Utricularia plants, which are rootless, are also anomalous in physiological features (respiration and carbon distribution, and highly enhanced molecular evolutionary rates in chloroplast, mitochondrial and nuclear ribosomal sequences. Despite great interest in the genus, no genomic resources exist for Utricularia, and the substitution rate increase has received limited study. Results Here we describe the sequencing and analysis of the Utricularia gibba transcriptome. Three different organs were surveyed, the traps, the vegetative shoot bodies, and the inflorescence stems. We also examined the bladderwort transcriptome under diverse stress conditions. We detail aspects of functional classification, tissue similarity, nitrogen and phosphorus metabolism, respiration, DNA repair, and detoxification of reactive oxygen species (ROS. Long contigs of plastid and mitochondrial genomes, as well as sequences for 100 individual nuclear genes, were compared with those of other plants to better establish information on molecular evolutionary rates. Conclusion The Utricularia transcriptome provides a detailed genomic window into processes occurring in a carnivorous plant. It contains a deep representation of the complex metabolic pathways that characterize a putative minimal plant genome, permitting its use as a source of genomic information to explore the structural, functional, and evolutionary diversity of the genus. Vegetative shoots and traps are the most similar organs by functional classification of their transcriptome, the traps expressing hydrolytic enzymes for prey

  18. Complete Chloroplast and Mitochondrial Genome Sequences of the Hydrocarbon Oil-Producing Green Microalga Botryococcus braunii Race B (Showa).

    Science.gov (United States)

    Blifernez-Klassen, Olga; Wibberg, Daniel; Winkler, Anika; Blom, Jochen; Goesmann, Alexander; Kalinowski, Jörn; Kruse, Olaf

    2016-06-09

    The green alga Botryococcus braunii is capable of the production and excretion of high quantities of long-chain hydrocarbons and exopolysaccharides. In this study, we present the complete plastid and mitochondrial genomes of the hydrocarbon-producing microalga Botryococcus braunii race B (Showa), with a total length of 156,498 and 129,356 bp, respectively.

  19. Early genome duplications in conifers and other seed plants.

    Science.gov (United States)

    Li, Zheng; Baniaga, Anthony E; Sessa, Emily B; Scascitelli, Moira; Graham, Sean W; Rieseberg, Loren H; Barker, Michael S

    2015-11-01

    Polyploidy is a common mode of speciation and evolution in angiosperms (flowering plants). In contrast, there is little evidence to date that whole genome duplication (WGD) has played a significant role in the evolution of their putative extant sister lineage, the gymnosperms. Recent analyses of the spruce genome, the first published conifer genome, failed to detect evidence of WGDs in gene age distributions and attributed many aspects of conifer biology to a lack of WGDs. We present evidence for three ancient genome duplications during the evolution of gymnosperms, based on phylogenomic analyses of transcriptomes from 24 gymnosperms and 3 outgroups. We use a new algorithm to place these WGD events in phylogenetic context: two in the ancestry of major conifer clades (Pinaceae and cupressophyte conifers) and one in Welwitschia (Gnetales). We also confirm that a WGD hypothesized to be restricted to seed plants is indeed not shared with ferns and relatives (monilophytes), a result that was unclear in earlier studies. Contrary to previous genomic research that reported an absence of polyploidy in the ancestry of contemporary gymnosperms, our analyses indicate that polyploidy has contributed to the evolution of conifers and other gymnosperms. As in the flowering plants, the evolution of the large genome sizes of gymnosperms involved both polyploidy and repetitive element activity.

  20. [DNA barcoding is a new approach in comparative genomics of plants].

    Science.gov (United States)

    Shneer, V S

    2009-11-01

    DNA barcoding was proposed as a method for recognition and identification of eukaryotic species through comparison of sequences of a standard short DNA fragment--DNA barcode--from an unknown specimen to a library of reference sequences from known species. This allows identifying an organism at any stage of development from a very small tissue sample, fresh or conserved many years ago. Molecular identification of plant samples can be used in various scientific and applied fields. It would also help to find new species, which is particularly important for cryptogamic plants. An optimal DNA barcode region is a small fragment present in all species of a major taxonomic group, having invariable nucleotide sequence in all members of the same species, but with sufficient variation to discriminate among the species. This fragment should be flanked by low-variable regions for use of universal primers in PCR for amplification and sequencing. The DNA barcode that is well established in animals is a sequence of a fragment of the mitochondrial cytochrome c oxidase gene CO1. However, searching for DNA barcode in plants proved to be a more challenging task. No DNA region universally suitable for all plants and meeting all of the necessary criteria has been found. Apparently, a multilocus or two-stage approach should be applied for this purpose. Several fragments of the chloroplast genome (trnH-psbA, matK, rpoC, rpoB, rbcL) in combinations of two or three regions were suggested as candidate regions with highest potential, but more representative samples should be examined to choose the best candidate. The possibility is discussed to use as DNA barcode internal transcribed spacers (ITS) of nuclear rRNA genes, which are highly variable, widely employed in molecular phylogenetic studies at the species level, but also have some limitations.

  1. Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomics Data.

    Science.gov (United States)

    Bolser, Dan; Staines, Daniel M; Pritchard, Emily; Kersey, Paul

    2016-01-01

    Ensembl Plants ( http://plants.ensembl.org ) is an integrative resource presenting genome-scale information for a growing number of sequenced plant species (currently 33). Data provided includes genome sequence, gene models, functional annotation, and polymorphic loci. Various additional information are provided for variation data, including population structure, individual genotypes, linkage, and phenotype data. In each release, comparative analyses are performed on whole genome and protein sequences, and genome alignments and gene trees are made available that show the implied evolutionary history of each gene family. Access to the data is provided through a genome browser incorporating many specialist interfaces for different data types, and through a variety of additional methods for programmatic access and data mining. These access routes are consistent with those offered through the Ensembl interface for the genomes of non-plant species, including those of plant pathogens, pests, and pollinators.Ensembl Plants is updated 4-5 times a year and is developed in collaboration with our international partners in the Gramene ( http://www.gramene.org ) and transPLANT projects ( http://www.transplantdb.org ).

  2. Molecular basis of chloroplast photorelocation movement.

    Science.gov (United States)

    Kong, Sam-Geun; Wada, Masamitsu

    2016-03-01

    Chloroplast photorelocation movement is an essential physiological response for sessile plant survival and the optimization of photosynthetic ability. Simple but effective experiments on the physiological, cell biological and molecular genetic aspects have been widely used to investigate the signaling components of chloroplast photorelocation movement in Arabidopsis for the past few decades. Although recent knowledge on chloroplast photorelocation movement has led us to a deeper understanding of its physiological and molecular basis, the biochemical roles of the downstream factors remain largely unknown. In this review, we briefly summarize recent advances regarding chloroplast photorelocation movement and propose that a new high-resolution approach is necessary to investigate the molecular mechanism underlying actin-based chloroplast photorelocation movement.

  3. Coat protein mutations in an attenuated Cucumber mosaic virus encoding mutant 2b protein that lacks RNA silencing suppressor activity induces chlorosis with photosynthesis gene repression and chloroplast abnormalities in infected tobacco plants.

    Science.gov (United States)

    Mochizuki, Tomofumi; Yamazaki, Ryota; Wada, Tomoya; Ohki, Satoshi T

    2014-05-01

    In tobacco plants, the Cucumber mosaic virus (CMV) pepo strain induces mosaic symptoms, including pale green chlorosis and malformed tissues. Here, we characterized the involvement of 2b protein and coat protein (CP) in the development of mosaic symptoms. A 2b mutant (R46C) that lacks viral suppressor of RNA silencing (VSR) activity showed an asymptomatic phenotype with low levels of virus accumulation. Tomato spotted wilt virus NSs protein did not complement the virulence of the R46C, although it did restore high-level virus accumulation. However, R46C mutants expressing mutated CP in which the amino acid P129 was mutated to A, E, C, Q, or S induced chlorosis that was associated with reduced expression of chloroplast and photosynthesis related genes (CPRGs) and abnormal chloroplasts with fewer thylakoid membranes. These results suggest that the CP of the CMV pepo strain acquires virulence by amino acid mutations, which causes CPRG repression and chloroplast abnormalities.

  4. Chloroplast DNA inversions and the origin of the grass family (Poaceae).

    OpenAIRE

    Doyle, J.J.; Davis, J I; Soreng, R J; Garvin, D; Anderson, M J

    1992-01-01

    The phylogenetic affinities of the grass family (Poaceae) have long been debated. The chloroplast genomes of at least some grasses have been known to possess three inversions relative to the typical gene arrangement found in most flowering plants. We have surveyed for the presence of these inversions in grasses and other monocots by polymerase chain reaction amplification with primers constructed from sequences flanking the inversion end points. Amplification phenotypes diagnostic for the lar...

  5. Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana

    OpenAIRE

    Suetsugu, Noriyuki; Yamada, Noboru; Kagawa, Takatoshi; Yonekura, Hisashi; Uyeda, Taro Q. P.; Kadota, Akeo; Wada, Masamitsu

    2010-01-01

    Organelle movement is essential for efficient cellular function in eukaryotes. Chloroplast photorelocation movement is important for plant survival as well as for efficient photosynthesis. Chloroplast movement generally is actin dependent and mediated by blue light receptor phototropins. In Arabidopsis thaliana, phototropins mediate chloroplast movement by regulating short actin filaments on chloroplasts (cp-actin filaments), and the chloroplast outer envelope protein CHUP1 is necessary for c...

  6. Next-Generation Sequencing and Genome Editing in Plant Virology.

    Science.gov (United States)

    Hadidi, Ahmed; Flores, Ricardo; Candresse, Thierry; Barba, Marina

    2016-01-01

    Next-generation sequencing (NGS) has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA, or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21-24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant virology including, but not limited to, discovery of novel viruses and viroids as well as detection and identification of those pathogens already known, analysis of genome diversity and evolution, and study of pathogen epidemiology. The genome engineering editing method, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been successfully used recently to engineer resistance to DNA geminiviruses (family, Geminiviridae) by targeting different viral genome sequences in infected Nicotiana benthamiana or Arabidopsis plants. The DNA viruses targeted include tomato yellow leaf curl virus and merremia mosaic virus (begomovirus); beet curly top virus and beet severe curly top virus (curtovirus); and bean yellow dwarf virus (mastrevirus). The technique has also been used against the RNA viruses zucchini yellow mosaic virus, papaya ringspot virus and turnip mosaic virus (potyvirus) and cucumber vein yellowing virus (ipomovirus, family, Potyviridae) by targeting the translation initiation genes eIF4E in cucumber or Arabidopsis plants. From these recent advances of major importance, it is expected that NGS and CRISPR-Cas technologies will play a significant role in the very near future in advancing the field of plant virology and connecting it with other related fields of biology.

  7. Next-Generation Sequencing and Genome Editing in Plant Virology

    Science.gov (United States)

    Hadidi, Ahmed; Flores, Ricardo; Candresse, Thierry; Barba, Marina

    2016-01-01

    Next-generation sequencing (NGS) has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA, or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21–24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant virology including, but not limited to, discovery of novel viruses and viroids as well as detection and identification of those pathogens already known, analysis of genome diversity and evolution, and study of pathogen epidemiology. The genome engineering editing method, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been successfully used recently to engineer resistance to DNA geminiviruses (family, Geminiviridae) by targeting different viral genome sequences in infected Nicotiana benthamiana or Arabidopsis plants. The DNA viruses targeted include tomato yellow leaf curl virus and merremia mosaic virus (begomovirus); beet curly top virus and beet severe curly top virus (curtovirus); and bean yellow dwarf virus (mastrevirus). The technique has also been used against the RNA viruses zucchini yellow mosaic virus, papaya ringspot virus and turnip mosaic virus (potyvirus) and cucumber vein yellowing virus (ipomovirus, family, Potyviridae) by targeting the translation initiation genes eIF4E in cucumber or Arabidopsis plants. From these recent advances of major importance, it is expected that NGS and CRISPR-Cas technologies will play a significant role in the very near future in advancing the field of plant virology and connecting it with other related fields of biology. PMID:27617007

  8. [Non-LTR retrotransposons: LINEs and SINEs in plant genome].

    Science.gov (United States)

    Cheng, Xu-Dong; Ling, Hong-Qing

    2006-06-01

    Retrotransposons are one of the drivers of genome evolution. They include LTR (long terminal repeat) retrotransposons, which widespread in Eukaryotagenomes, show structural similarity to retroviruses. Non-LTR retrotransposons were first discovered in animal genomes and then identified as ubiquitous components of nuclear genomes in many species across the plant kingdom. They constitute a large fraction of the repetitive DNA. Non-LTR retrotransposons are divided into LINEs (long interspersed nuclear elements) and SINEs (short interspersed nuclear elements). Transposition of non-LTR retrotransposons is rarely observed in plants indicating that most of them are inactive and/or under regulation of the host genome. Transposition is poorly understood, but experimental evidence from other genetic systems shows that LINEs are able to transpose autonomously while non-autonomous SINEs depend on the reverse transcription machinery of other retrotransposons. Phylogenic analysis shows LINEs are probably the most ancient class of retrotransposons in plant genomes, while the origin of SINEs is unknown. This review sums up the above data and wants to show readers a clear picture of non-LTR retrotransposons.

  9. The reference genome of the halophytic plant Eutrema salsugineum

    Directory of Open Access Journals (Sweden)

    Ruolin eYang

    2013-03-01

    Full Text Available A halophyte refers to a plant that can naturally tolerate high concentrations of salt in the soil, and its tolerance to salt stress may occur through various evolutionary and molecular mechanisms. Eutrema salsugineum is one of the halophytic species in the Brassicaceae family that can naturally tolerate multiple types of abiotic stresses that typically limit crop productivity, such as extreme salinity and cold. It has been widely used as a laboratorial model for stress biology research in plants. Here, we present the reference genome sequence (241 Mb of E. salsugineum at 8x coverage sequenced by traditional Sanger sequencing-based approach with comparison to its close relative Arabidopsis thaliana. The E. salsugineum genome contains 26,531 protein-coding genes and 51.4% of its genome is composed of repetitive sequences that mostly reside in pericentromeric regions. Comparative analyses of the genome structures, protein-coding genes, microRNAs, stress-related pathways and estimated translation efficiency of proteins between E. salsugineum and A. thaliana suggest adaptation of halophyte to environmental stresses may occur via a global network adjustment of multiple regulatory mechanisms. The E. salsugineum genome provides a resource to identify naturally occurring genetic alterations contributing to the adaptation of the halophyte plants to salinity might be bioengineered in related crop species.

  10. Involvement of plastid, mitochondrial and nuclear genomes in plant-to-plant horizontal gene transfer

    Directory of Open Access Journals (Sweden)

    Maria Virginia Sanchez-Puerta

    2014-12-01

    Full Text Available This review focuses on plant-to-plant horizontal gene transfer (HGT involving the three DNA-containing cellular compartments. It highlights the great incidence of HGT in the mitochondrial genome (mtDNA of angiosperms, the increasing number of examples in plant nuclear genomes, and the lack of any convincing evidence for HGT in the well-studied plastid genome of land plants. Most of the foreign mitochondrial genes are non-functional, generally found as pseudogenes in the recipient plant mtDNA that maintains its functional native genes. The few exceptions involve chimeric HGT, in which foreign and native copies recombine leading to a functional and single copy of the gene. Maintenance of foreign genes in plant mitochondria is probably the result of genetic drift, but a possible evolutionary advantage may be conferred through the generation of genetic diversity by gene conversion between native and foreign copies. Conversely, a few cases of nuclear HGT in plants involve functional transfers of novel genes that resulted in adaptive evolution. Direct cell-to-cell contact between plants (e.g. host-parasite relationships or natural grafting facilitate the exchange of genetic material, in which HGT has been reported for both nuclear and mitochondrial genomes, and in the form of genomic DNA, instead of RNA. A thorough review of the literature indicates that HGT in mitochondrial and nuclear genomes of angiosperms is much more frequent than previously expected and that the evolutionary impact and mechanisms underlying plant-to-plant HGT remain to be uncovered.

  11. Plant genetics: RNA cache or genome trash?

    Science.gov (United States)

    Ray, Animesh

    2005-09-01

    According to classical mendelian genetics, individuals homozygous for an allele always breed true. Lolle et al. report a pattern of non-mendelian inheritance in the hothead (hth) mutant of Arabidopsis thaliana, in which a plant homozygous at a particular locus upon self-crossing produces progeny that are 10% heterozygous; they claim that this is the result of the emerging allele having been reintroduced into the chromosome from a cache of RNA inherited from a previous generation. Here I suggest that these results are equally compatible with a gene conversion that occurred through the use as a template of DNA fragments that were inherited from a previous generation and propagated in archival form in the meristem cells that generate the plant germ lines. This alternative model is compatible with several important observations by Lolle et al..

  12. Chloroplast anchoring: its implications for the regulation of intracellular chloroplast distribution.

    Science.gov (United States)

    Takagi, Shingo; Takamatsu, Hideyasu; Sakurai-Ozato, Nami

    2009-01-01

    The intracellular distribution of organelles plays a pivotal role in the maintenance and adaptation of a wide spectrum of cellular activities in plants. Chloroplasts are a special type of organelle able to photosynthesize, capturing light energy to fix atmospheric CO2. Consequently, the intracellular positioning of chloroplasts is crucial for plant growth and development. Knowledge of the photoreceptors and cellular apparatus responsible for chloroplast movement has gradually accumulated over time, yet recent advances have allowed improved understanding. In this article, several aspects of research progress into the mechanisms for maintaining the specific intracellular distribution patterns of chloroplasts, namely, chloroplast anchoring, are summarized, together with a brief consideration of the future prospects of this subject. Our discussion covers developmental, physiological, ecophysiological, and recent cell biological research areas.

  13. Polyuridylylation and processing of transcripts from multiple gene minicircles in chloroplasts of the dinoflagellate Amphidinium carterae

    KAUST Repository

    Barbrook, Adrian C.

    2012-05-05

    Although transcription and transcript processing in the chloroplasts of plants have been extensively characterised, the RNA metabolism of other chloroplast lineages across the eukaryotes remains poorly understood. In this paper, we use RT-PCR to study transcription and transcript processing in the chloroplasts of Amphidinium carterae, a model peridinin-containing dinoflagellate. These organisms have a highly unusual chloroplast genome, with genes located on multiple small \\'minicircle\\' elements, and a number of idiosyncratic features of RNA metabolism including transcription via a rolling circle mechanism, and 3′ terminal polyuridylylation of transcripts. We demonstrate that transcription occurs in A. carterae via a rolling circle mechanism, as previously shown in the dinoflagellate Heterocapsa, and present evidence for the production of both polycistronic and monocistronic transcripts from A. carterae minicircles, including several regions containing ORFs previously not known to be expressed. We demonstrate the presence of both polyuridylylated and non-polyuridylylated transcripts in A. carterae, and show that polycistronic transcripts can be terminally polyuridylylated. We present a model for RNA metabolism in dinoflagellate chloroplasts where long polycistronic precursors are processed to form mature transcripts. Terminal polyuridylylation may mark transcripts with the correct 3′ end. © 2012 Springer Science+Business Media B.V.

  14. Recombination and Heterologous Expression of Allophycocyanin Gene in the Chloroplast of Chlamydomonas reinhardtii

    Institute of Scientific and Technical Information of China (English)

    Zhong-Liang SU; Kai-Xian QIAN; Cong-Ping TAN; Chun-Xiao MENG; Song QIN

    2005-01-01

    Heterogeneous expression of multiple genes in the nucleus of transgenic plants requires the introduction of an individual gene and the subsequent backcross to reconstitute multi-subunit proteins or metabolic pathways. In order to accomplish the expression of multiple genes in a single transformation event, we inserted both large and small subunits of allophycocyanin gene (apcA and apcB) into Chlamydomonas reinhardtii chloroplast expression vector, resulting in papc-S. The constructed vector was then introduced into the chloroplast of C. reinhardtii by micro-particle bombardment. Polymerase chain reaction and Southern blot analysis revealed that the two genes had integrated into the chloroplast genome. Western blot and enzyme-linked immunosorbent assay showed that the two genes from the prokaryotic cyanobacteria could be correctly expressed in the chloroplasts of C. reinhardtii. The expressed foreign protein in transformants accounted for about 2%-3% of total soluble proteins. These findings pave the way to the reconstitution of multi-subunit proteins or metabolic pathways in transgenic C. reinhardtii chloroplasts in a single transformation event.

  15. Evolutionary genomics of LysM genes in land plants

    Directory of Open Access Journals (Sweden)

    Stacey Gary

    2009-08-01

    Full Text Available Abstract Background The ubiquitous LysM motif recognizes peptidoglycan, chitooligosaccharides (chitin and, presumably, other structurally-related oligosaccharides. LysM-containing proteins were first shown to be involved in bacterial cell wall degradation and, more recently, were implicated in perceiving chitin (one of the established pathogen-associated molecular patterns and lipo-chitin (nodulation factors in flowering plants. However, the majority of LysM genes in plants remain functionally uncharacterized and the evolutionary history of complex LysM genes remains elusive. Results We show that LysM-containing proteins display a wide range of complex domain architectures. However, only a simple core architecture is conserved across kingdoms. Each individual kingdom appears to have evolved a distinct array of domain architectures. We show that early plant lineages acquired four characteristic architectures and progressively lost several primitive architectures. We report plant LysM phylogenies and associated gene, protein and genomic features, and infer the relative timing of duplications of LYK genes. Conclusion We report a domain architecture catalogue of LysM proteins across all kingdoms. The unique pattern of LysM protein domain architectures indicates the presence of distinctive evolutionary paths in individual kingdoms. We describe a comparative and evolutionary genomics study of LysM genes in plant kingdom. One of the two groups of tandemly arrayed plant LYK genes likely resulted from an ancient genome duplication followed by local genomic rearrangement, while the origin of the other groups of tandemly arrayed LYK genes remains obscure. Given the fact that no animal LysM motif-containing genes have been functionally characterized, this study provides clues to functional characterization of plant LysM genes and is also informative with regard to evolutionary and functional studies of animal LysM genes.

  16. Evolutionary genomics of LysM genes in land plants.

    Science.gov (United States)

    Zhang, Xue-Cheng; Cannon, Steven B; Stacey, Gary

    2009-08-03

    The ubiquitous LysM motif recognizes peptidoglycan, chitooligosaccharides (chitin) and, presumably, other structurally-related oligosaccharides. LysM-containing proteins were first shown to be involved in bacterial cell wall degradation and, more recently, were implicated in perceiving chitin (one of the established pathogen-associated molecular patterns) and lipo-chitin (nodulation factors) in flowering plants. However, the majority of LysM genes in plants remain functionally uncharacterized and the evolutionary history of complex LysM genes remains elusive. We show that LysM-containing proteins display a wide range of complex