WorldWideScience

Sample records for plant carotenoid biosynthesis

  1. Occurrence and biosynthesis of carotenoids in phytoplankton.

    Science.gov (United States)

    Huang, Jim Junhui; Lin, Shaoling; Xu, Wenwen; Cheung, Peter Chi Keung

    2017-09-01

    Naturally occurring carotenoids are important sources of antioxidants, anti-cancer compounds and anti-inflammatory agents and there is thus considerable market demand for their pharmaceutical applications. Carotenoids are widely distributed in marine and freshwater organisms including microalgae, phytoplankton, crustaceans and fish, as well as in terrestrial plants and birds. Recently, phytoplankton-derived carotenoids have received much attention due to their abundance, rapid rate of biosynthesis and unique composition. The carotenoids that accumulate in particular phytoplankton phyla are synthesized by specific enzymes and play unique physiological roles. This review focuses on studies related to the occurrence of carotenoids in different phytoplankton phyla and the molecular aspects of their biosynthesis. Recent biotechnological advances in the isolation and characterization of some representative carotenoid synthases in phytoplankton are also discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Carotenoid Metabolism in Plants: The Role of Plastids.

    Science.gov (United States)

    Sun, Tianhu; Yuan, Hui; Cao, Hongbo; Yazdani, Mohammad; Tadmor, Yaakov; Li, Li

    2018-01-08

    Carotenoids are indispensable to plants and critical in human diets. Plastids are the organelles for carotenoid biosynthesis and storage in plant cells. They exist in various types, which include proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. These plastids have dramatic differences in their capacity to synthesize and sequester carotenoids. Clearly, plastids play a central role in governing carotenogenic activity, carotenoid stability, and pigment diversity. Understanding of carotenoid metabolism and accumulation in various plastids expands our view on the multifaceted regulation of carotenogenesis and facilitates our efforts toward developing nutrient-enriched food crops. In this review, we provide a comprehensive overview of the impact of various types of plastids on carotenoid biosynthesis and accumulation, and discuss recent advances in our understanding of the regulatory control of carotenogenesis and metabolic engineering of carotenoids in light of plastid types in plants. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  3. Disruption of plant carotenoid biosynthesis through virus-induced gene silencing affects oviposition behaviour of the butterfly Pieris rapae

    NARCIS (Netherlands)

    Zheng, S.J.; Snoeren, T.A.L.; Hogewoning, S.W.; Loon, van J.J.A.; Dicke, M.

    2010-01-01

    Optical plant characteristics are important cues to plant-feeding insects. In this article, we demonstrate for the first time that silencing the phytoene desaturase (PDS) gene, encoding a key enzyme in plant carotenoid biosynthesis, affects insect oviposition site selection behaviour. Virus-induced

  4. Arabidopsis OR proteins are the major post-transcriptional regulators of phytoene synthase in mediating carotenoid biosynthesis

    Science.gov (United States)

    Carotenoids are indispensable natural pigments to plants and humans. Phytoene synthase (PSY), the rate-limiting enzyme in carotenoid biosynthetic pathway, and ORANGE (OR), a regulator of chromoplast differentiation and enhancer of carotenoid biosynthesis, represent two key proteins that control caro...

  5. In silico identification of transcription factors associated with the biosynthesis of carotenoids in corn ( Zea mays L.

    Directory of Open Access Journals (Sweden)

    Zahra Zinati

    2017-05-01

    Full Text Available Carotenoids, a diverse group of colorful pigments, contribute to the development, light harvesting and photoprotection in plants as well as human health. Due to the interesting properties of carotenoids, enhanced carotenoid biosynthesis has been of ongoing interest. Recent advances in computational biology and bioinformatics make it more feasible to understand the transcriptional regulatory network underlying carotenoid biosynthesis. Studies on carotenoid biosynthesis in corn ( Zea mays L. have indicated the pivotal role of the phytoene synthase gene PSY1 (accession: GRMZM2G300348 in endosperm color and carotenoid accumulation in corn kernels. Computational approaches such as Genomatix, PlantPAN, PlantCARE, PlantTFDB and IGDE6 have been used for promoter prediction, regulatory features and transcription factor identification, as well as pairwise promoter comparisons. Four transcripts have been identified for the PSY1 gene. Based on Genomatix and PlantPAN, the promoter predicted for GRMZM2G300348_T01 was different from that predicted for the other three transcripts (GRMZM2G300348_T02, GRMZM2G300348_T03 and GRMZM2G300348_T04. The results indiated that the promoter of GRMZM2G300348_T01 has more diverse motifs involved in hormonal/environmental stress responses. The most significant result obtained from this study is the discovery of two transcription factors belonging to the HB family that are co-expressed with all four transcripts of PSY1 under environmental stresses. It is, therefore, likely that these transcription factors may act as critical regulators of PSY1 gene expression in corn. Identification of the proteins acting upstream of PSY1 within corn will shed light on the fine tuning of PSY1 expression regulation. Such an understanding would also contribute to metabolic engineering aimed at enhanced carotenoid biosynthesis.

  6. Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion.

    Science.gov (United States)

    Apel, Wiebke; Bock, Ralph

    2009-09-01

    Carotenoids are essential pigments of the photosynthetic apparatus and an indispensable component of the human diet. In addition to being potent antioxidants, they also provide the vitamin A precursor beta-carotene. In tomato (Solanum lycopersicum) fruits, carotenoids accumulate in specialized plastids, the chromoplasts. How the carotenoid biosynthetic pathway is regulated and what limits total carotenoid accumulation in fruit chromoplasts is not well understood. Here, we have introduced the lycopene beta-cyclase genes from the eubacterium Erwinia herbicola and the higher plant daffodil (Narcissus pseudonarcissus) into the tomato plastid genome. While expression of the bacterial enzyme did not strongly alter carotenoid composition, expression of the plant enzyme efficiently converted lycopene, the major storage carotenoid of the tomato fruit, into provitamin A (beta-carotene). In green leaves of the transplastomic tomato plants, more lycopene was channeled into the beta-branch of carotenoid biosynthesis, resulting in increased accumulation of xanthophyll cycle pigments and correspondingly reduced accumulation of the alpha-branch xanthophyll lutein. In fruits, most of the lycopene was converted into beta-carotene with provitamin A levels reaching 1 mg per g dry weight. Unexpectedly, transplastomic tomatoes also showed a >50% increase in total carotenoid accumulation, indicating that lycopene beta-cyclase expression enhanced the flux through the pathway in chromoplasts. Our results provide new insights into the regulation of carotenoid biosynthesis and demonstrate the potential of plastids genome engineering for the nutritional enhancement of food crops.

  7. Plastids and Carotenoid Accumulation.

    Science.gov (United States)

    Li, Li; Yuan, Hui; Zeng, Yunliu; Xu, Qiang

    Plastids are ubiquitously present in plants and are the organelles for carotenoid biosynthesis and storage. Based on their morphology and function, plastids are classified into various types, i.e. proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. All plastids, except proplastids, can synthesize carotenoids. However, plastid types have a profound effect on carotenoid accumulation and stability. In this chapter, we discuss carotenoid biosynthesis and regulation in various plastids with a focus on carotenoids in chromoplasts. Plastid transition related to carotenoid biosynthesis and the different capacity of various plastids to sequester carotenoids and the associated effect on carotenoid stability are described in light of carotenoid accumulation in plants.

  8. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rock, C.D.; Zeevaart, J.A.D. (Michigan State Univ., East Lansing (United States))

    1991-09-01

    The three mutant alleles of the ABA locus of Arabidopsis thaliana result in plants that are deficient in the plant growth regulator abscisic acid (ABA). The authors have used {sup 18}O{sub 2} to label ABA in water-stressed leaves of mutant and wild-type Arabidopsis. Analysis by selected ion monitoring and tandem mass spectrometry of ({sup 18}O)ABA and its catabolites, phaseic acid and ABA-glucose ester ({beta}-D-glucopyranosyl abscisate), indicates that the aba genotypes are impaired in ABA biosynthesis and have a small ABA precursor pool of compounds that contain oxygens on the rings, presumably oxygenated carotenoids (xanthophylls). Quantitation of the carotenoids form mutant and wild-type leaves establishes that the aba alleles cause a deficiency of the epoxy-carotenoids violaxanthin and neoxanthin and an accumulation of their biosynthetic precursor, zeaxanthin. These results provide evidence that ABA is synthesized by oxidative cleavage of epoxy-carotenoids (the indirect pathway). Furthermore the carotenoid mutant they describe undergoes normal greening. Thus the aba alleles provide an opportunity to study the physiological roles of epoxy-carotenoids in photosynthesis in a higher plants.

  9. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation

    OpenAIRE

    López-Ráez, Juan A.; Charnikhova, Tatsiana;; Gómez-Roldán,Victoria;; Matusova, Radoslava;; Kohlen, Wouter;; De Vos, Ric;; Verstappe, Francel;; Puech-Pages, Virginie;; Bécard, Guillaume;; Mulder, Patrick;; Bouwmeester, Harro;

    2008-01-01

    Strigolactones are rhizosphere signalling compounds that mediate host location in arbuscular mycorrhizal (AM) fungi and parasitic plants. Here, the regulation of the biosynthesis of strigolactones is studied in tomato (Solanum lycopersicum). * Strigolactone production under phosphate starvation, in the presence of the carotenoid biosynthesis inhibitor fluridone and in the abscisic acid (ABA) mutant notabilis were assessed using a germination bioassay with seeds of Orobanche ramosa; a hyphal b...

  10. Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Maresca, Julia A; Yunker, Colleen E

    2004-01-01

    The green sulfur bacterium Chlorobium tepidum is a strict anaerobe and an obligate photoautotroph. On the basis of sequence similarity with known enzymes or sequence motifs, nine open reading frames encoding putative enzymes of carotenoid biosynthesis were identified in the genome sequence of C....... tepidum, and all nine genes were inactivated. Analysis of the carotenoid composition in the resulting mutants allowed the genes encoding the following six enzymes to be identified: phytoene synthase (crtB/CT1386), phytoene desaturase (crtP/CT0807), zeta-carotene desaturase (crtQ/CT1414), gamma......-carotene desaturase (crtU/CT0323), carotenoid 1',2'-hydratase (crtC/CT0301), and carotenoid cis-trans isomerase (crtH/CT0649). Three mutants (CT0180, CT1357, and CT1416 mutants) did not exhibit a discernible phenotype. The carotenoid biosynthetic pathway in C. tepidum is similar to that in cyanobacteria and plants...

  11. Biochemistry and Molecular Biology of Carotenoid Biosynthesis in Chili Peppers (Capsicum spp.

    Directory of Open Access Journals (Sweden)

    María del Rocío Gómez-García

    2013-09-01

    Full Text Available Capsicum species produce fruits that synthesize and accumulate carotenoid pigments, which are responsible for the fruits’ yellow, orange and red colors. Chili peppers have been used as an experimental model for studying the biochemical and molecular aspects of carotenoid biosynthesis. Most reports refer to the characterization of carotenoids and content determination in chili pepper fruits from different species, cultivars, varieties or genotypes. The types and levels of carotenoids differ between different chili pepper fruits, and they are also influenced by environmental conditions. Yellow-orange colors of chili pepper fruits are mainly due to the accumulation of α- and β-carotene, zeaxanthin, lutein and β-cryptoxanthin. Carotenoids such as capsanthin, capsorubin and capsanthin-5,6-epoxide confer the red colors. Chromoplasts are the sites of carotenoid pigment synthesis and storage. According to the most accepted theory, the synthesis of carotenoids in chili peppers is controlled by three loci: c1, c2 and y. Several enzymes participating in carotenoid biosynthesis in chili pepper fruits have been isolated and characterized, and the corresponding gene sequences have been reported. However, there is currently limited information on the molecular mechanisms that regulate this biosynthetic pathway. Approaches to gain more knowledge of the regulation of carotenoid biosynthesis are discussed.

  12. Biochemistry and Molecular Biology of Carotenoid Biosynthesis in Chili Peppers (Capsicum spp.)

    Science.gov (United States)

    del Rocío Gómez-García, María; Ochoa-Alejo, Neftalí

    2013-01-01

    Capsicum species produce fruits that synthesize and accumulate carotenoid pigments, which are responsible for the fruits’ yellow, orange and red colors. Chili peppers have been used as an experimental model for studying the biochemical and molecular aspects of carotenoid biosynthesis. Most reports refer to the characterization of carotenoids and content determination in chili pepper fruits from different species, cultivars, varieties or genotypes. The types and levels of carotenoids differ between different chili pepper fruits, and they are also influenced by environmental conditions. Yellow-orange colors of chili pepper fruits are mainly due to the accumulation of α- and β-carotene, zeaxanthin, lutein and β-cryptoxanthin. Carotenoids such as capsanthin, capsorubin and capsanthin-5,6-epoxide confer the red colors. Chromoplasts are the sites of carotenoid pigment synthesis and storage. According to the most accepted theory, the synthesis of carotenoids in chili peppers is controlled by three loci: c1, c2 and y. Several enzymes participating in carotenoid biosynthesis in chili pepper fruits have been isolated and characterized, and the corresponding gene sequences have been reported. However, there is currently limited information on the molecular mechanisms that regulate this biosynthetic pathway. Approaches to gain more knowledge of the regulation of carotenoid biosynthesis are discussed. PMID:24065101

  13. Strigolactones, a novel carotenoid-derived plant hormone

    KAUST Repository

    Al-Babili, Salim

    2015-04-29

    Strigolactones (SLs) are carotenoid-derived plant hormones and signaling molecules. When released into the soil, SLs indicate the presence of a host to symbiotic fungi and root parasitic plants. In planta, they regulate several developmental processes that adapt plant architecture to nutrient availability. Highly branched/tillered mutants in Arabidopsis, pea, and rice have enabled the identification of four SL biosynthetic enzymes: a cis/trans-carotene isomerase, two carotenoid cleavage dioxygenases, and a cytochrome P450 (MAX1). In vitro and in vivo enzyme assays and analysis of mutants have shown that the pathway involves a combination of new reactions leading to carlactone, which is converted by a rice MAX1 homolog into an SL parent molecule with a tricyclic lactone moiety. In this review, we focus on SL biosynthesis, describe the hormonal and environmental factors that determine this process, and discuss SL transport and downstream signaling as well as the role of SLs in regulating plant development. ©2015 by Annual Reviews. All rights reserved.

  14. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation.

    Science.gov (United States)

    López-Ráez, Juan Antonio; Charnikhova, Tatsiana; Gómez-Roldán, Victoria; Matusova, Radoslava; Kohlen, Wouter; De Vos, Ric; Verstappen, Francel; Puech-Pages, Virginie; Bécard, Guillaume; Mulder, Patrick; Bouwmeester, Harro

    2008-01-01

    * Strigolactones are rhizosphere signalling compounds that mediate host location in arbuscular mycorrhizal (AM) fungi and parasitic plants. Here, the regulation of the biosynthesis of strigolactones is studied in tomato (Solanum lycopersicum). * Strigolactone production under phosphate starvation, in the presence of the carotenoid biosynthesis inhibitor fluridone and in the abscisic acid (ABA) mutant notabilis were assessed using a germination bioassay with seeds of Orobanche ramosa; a hyphal branching assay with Gigaspora spp; and by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis. * The root exudates of tomato cv. MoneyMaker induced O. ramosa seed germination and hyphal branching in AM fungi. Phosphate starvation markedly increased, and fluridone strongly decreased, this activity. Exudates of notabilis induced approx. 40% less germination than the wild-type. The LC-MS/MS analysis confirmed that the biological activity and changes therein were due to the presence of several strigolactones; orobanchol, solanacol and two or three didehydro-orobanchol isomers. * These results show that the AM branching factors and parasitic plant germination stimulants in tomato root exudate are strigolactones and that they are biosynthetically derived from carotenoids. The dual activity of these signalling compounds in attracting beneficial AM fungi and detrimental parasitic plants is further strengthened by environmental conditions such as phosphate availability.

  15. Molecular Link between Leaf Coloration and Gene Expression of Flavonoid and Carotenoid Biosynthesis in Camellia sinensis Cultivar ‘Huangjinya’

    Directory of Open Access Journals (Sweden)

    Lubin Song

    2017-05-01

    Full Text Available ‘Huangjinya’ is an excellent albino tea germplasm cultivated in China because of its bright color and high amino acid content. It is light sensitive, with yellow leaves under intense light while green leaves under weak light. As well, the flavonoid and carotenoid levels increased after moderate shading treatment. However, the mechanism underlying this interesting phenomenon remains unclear. In this study, the transcriptome of ‘Huangjinya’ plants exposed to sunlight and shade were analyzed by high-throughput sequencing followed by de novo assembly. Shading ‘Huangjinya’ made its leaf color turn green. De novo assembly showed that the transcriptome of ‘Huangjinya’ leaves comprises of 127,253 unigenes, with an average length of 914 nt. Among the 81,128 functionally annotated unigenes, 207 differentially expressed genes were identified, including 110 up-regulated and 97 down-regulated genes under moderate shading compared to full light. Gene ontology (GO indicated that the differentially expressed genes are mainly involved in protein and ion binding and oxidoreductase activity. Antioxidation-related pathways, including flavonoid and carotenoid biosynthesis, were highly enriched in these functions. Shading inhibited the expression of flavonoid biosynthesis-associated genes and induced carotenoid biosynthesis-related genes. This would suggest that decreased flavonoid biosynthetic gene expression coincides with increased flavonoids (e.g., catechin content upon moderate shading, while carotenoid levels and biosynthetic gene expression are positively correlated in ‘Huangjinya.’ In conclusion, the leaf color changes in ‘Huangjinya’ are largely determined by the combined effects of flavonoid and carotenoid biosynthesis.

  16. A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments

    KAUST Repository

    Rodrigo, María J.

    2013-09-04

    Citrus is the first tree crop in terms of fruit production. The colour of Citrus fruit is one of the main quality attributes, caused by the accumulation of carotenoids and their derivative C30 apocarotenoids, mainly ?-citraurin (3-hydroxy-?-apo-8?-carotenal), which provide an attractive orange-reddish tint to the peel of oranges and mandarins. Though carotenoid biosynthesis and its regulation have been extensively studied in Citrus fruits, little is known about the formation of C30 apocarotenoids. The aim of this study was to the identify carotenoid cleavage enzyme(s) [CCD(s)] involved in the peel-specific C30 apocarotenoids. In silico data mining revealed a new family of five CCD4-type genes in Citrus. One gene of this family, CCD4b1, was expressed in reproductive and vegetative tissues of different Citrus species in a pattern correlating with the accumulation of C30 apocarotenoids. Moreover, developmental processes and treatments which alter Citrus fruit peel pigmentation led to changes of ?-citraurin content and CCD4b1 transcript levels. These results point to the involvement of CCD4b1 in ?-citraurin formation and indicate that the accumulation of this compound is determined by the availability of the presumed precursors zeaxanthin and ?-cryptoxanthin. Functional analysis of CCD4b1 by in vitro assays unequivocally demonstrated the asymmetric cleavage activity at the 7?,8? double bond in zeaxanthin and ?-cryptoxanthin, confrming its role in C30 apocarotenoid biosynthesis. Thus, a novel plant carotenoid cleavage activity targeting the 7?,8? double bond of cyclic C40 carotenoids has been identified. These results suggest that the presented enzyme is responsible for the biosynthesis of C30 apocarotenoids in Citrus which are key pigments in fruit coloration. The Author 2013.

  17. A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments

    KAUST Repository

    Rodrigo, Marí a J.; Alqué zar, Berta; Aló s, Enriqueta; Medina, Ví ctor; Carmona, Lourdes; Bruno, Mark; Al-Babili, Salim; Zacarí as, Lorenzo

    2013-01-01

    Citrus is the first tree crop in terms of fruit production. The colour of Citrus fruit is one of the main quality attributes, caused by the accumulation of carotenoids and their derivative C30 apocarotenoids, mainly ?-citraurin (3-hydroxy-?-apo-8?-carotenal), which provide an attractive orange-reddish tint to the peel of oranges and mandarins. Though carotenoid biosynthesis and its regulation have been extensively studied in Citrus fruits, little is known about the formation of C30 apocarotenoids. The aim of this study was to the identify carotenoid cleavage enzyme(s) [CCD(s)] involved in the peel-specific C30 apocarotenoids. In silico data mining revealed a new family of five CCD4-type genes in Citrus. One gene of this family, CCD4b1, was expressed in reproductive and vegetative tissues of different Citrus species in a pattern correlating with the accumulation of C30 apocarotenoids. Moreover, developmental processes and treatments which alter Citrus fruit peel pigmentation led to changes of ?-citraurin content and CCD4b1 transcript levels. These results point to the involvement of CCD4b1 in ?-citraurin formation and indicate that the accumulation of this compound is determined by the availability of the presumed precursors zeaxanthin and ?-cryptoxanthin. Functional analysis of CCD4b1 by in vitro assays unequivocally demonstrated the asymmetric cleavage activity at the 7?,8? double bond in zeaxanthin and ?-cryptoxanthin, confrming its role in C30 apocarotenoid biosynthesis. Thus, a novel plant carotenoid cleavage activity targeting the 7?,8? double bond of cyclic C40 carotenoids has been identified. These results suggest that the presented enzyme is responsible for the biosynthesis of C30 apocarotenoids in Citrus which are key pigments in fruit coloration. The Author 2013.

  18. Establishment of an Arabidopsis callus system to study the interrelations of biosynthesis, degradation and accumulation of carotenoids

    Science.gov (United States)

    Schaub, Patrick; Rodriguez-Franco, Marta; Cazzonelli, Christopher Ian; Álvarez, Daniel; Wüst, Florian

    2018-01-01

    The net amounts of carotenoids accumulating in plant tissues are determined by the rates of biosynthesis and degradation. While biosynthesis is rate-limited by the activity of PHYTOENE SYNTHASE (PSY), carotenoid losses are caused by catabolic enzymatic and non-enzymatic degradation. We established a system based on non-green Arabidopsis callus which allowed investigating major determinants for high steady-state levels of β-carotene. Wild-type callus development was characterized by strong carotenoid degradation which was only marginally caused by the activity of carotenoid cleavage oxygenases. In contrast, carotenoid degradation occurred mostly non-enzymatically and selectively affected carotenoids in a molecule-dependent manner. Using carotenogenic pathway mutants, we found that linear carotenes such as phytoene, phytofluene and pro-lycopene resisted degradation and accumulated while β-carotene was highly susceptible towards degradation. Moderately increased pathway activity through PSY overexpression was compensated by degradation revealing no net increase in β-carotene. However, higher pathway activities outcompeted carotenoid degradation and efficiently increased steady-state β-carotene amounts to up to 500 μg g-1 dry mass. Furthermore, we identified oxidative β-carotene degradation products which correlated with pathway activities, yielding β-apocarotenals of different chain length and various apocarotene-dialdehydes. The latter included methylglyoxal and glyoxal as putative oxidative end products suggesting a potential recovery of carotenoid-derived carbon for primary metabolic pathways. Moreover, we investigated the site of β-carotene sequestration by co-localization experiments which revealed that β-carotene accumulated as intra-plastid crystals which was confirmed by electron microscopy with carotenoid-accumulating roots. The results are discussed in the context of using the non-green calli carotenoid assay system for approaches targeting high

  19. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana

    KAUST Repository

    Meier, Stuart; Tzfadia, Oren; Vallabhaneni, Ratnakar; Gehring, Christoph A; Wurtzel, Eleanore T

    2011-01-01

    Background: The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana.Results: A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR) but was inhibited by abscisic acid (ABA). Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs) and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced and uncoupled from that of

  20. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana

    KAUST Repository

    Meier, Stuart

    2011-05-19

    Background: The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana.Results: A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR) but was inhibited by abscisic acid (ABA). Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs) and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced and uncoupled from that of

  1. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Vallabhaneni Ratnakar

    2011-05-01

    Full Text Available Abstract Background The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana. Results A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR but was inhibited by abscisic acid (ABA. Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced

  2. A root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in arabidopsis.

    Directory of Open Access Journals (Sweden)

    M Águila Ruiz-Sola

    Full Text Available Abscisic acid (ABA is a hormone that plays a vital role in mediating abiotic stress responses in plants. Salt exposure induces the synthesis of ABA through the cleavage of carotenoid precursors (xanthophylls, which are found at very low levels in roots. Here we show that de novo ABA biosynthesis in salt-treated Arabidopsis thaliana roots involves an organ-specific induction of the carotenoid biosynthetic pathway. Upregulation of the genes encoding phytoene synthase (PSY and other enzymes of the pathway producing ABA precursors was observed in roots but not in shoots after salt exposure. A pharmacological block of the carotenoid pathway substantially reduced ABA levels in stressed roots, confirming that an increase in carotenoid accumulation contributes to fuel hormone production after salt exposure. Treatment with exogenous ABA was also found to upregulate PSY expression only in roots, suggesting an organ-specific feedback regulation of the carotenoid pathway by ABA. Taken together, our results show that the presence of high concentrations of salt in the growth medium rapidly triggers a root-specific activation of the carotenoid pathway, probably to ensure a proper supply of ABA precursors required for a sustained production of the hormone.

  3. Carotenoid biosynthesis in bacteria: In vitro studies of a crt/bch transcription factor from Rhodobacter capsulatus and carotenoid enzymes from Erwinia herbicola

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, D.A.

    1992-11-01

    A putative transcription factor in Rhodobactor capsulatus which binds upstream of the crt and bch pigment biosynthesis operons and appears to play a role in the adaptation of the organism from the aerobic to the anaerobic-photosynthetic growth mode was characterized. Chapter 2 describes the identification of this factor through an in vitro mobility shift assay, as well as the determination of its binding properties and sequence specificity. Chapter 3 focuses on the isolation of this factor. Biochemistry of later carotenoid biosynthesis enzymes derived from the non-photosynthetic bacterium, Erwinia herbicola. Chapter 4 describes the separate overexpression and in vitro analysis of two enzymes involved in the main sequence of the carotenoid biosynthesis pathway, lycopene cyclase and 5-carotene hydroxylase. Chapter 5 examines the overexpression and enzymology of functionally active zeaxanthin glucosyltransferase, an enzyme which carries out a more unusual transformation, converting a carotenoid into its more hydrophilic mono- and diglucoside derivatives. In addition, amino acid homology with other glucosyltransferases suggests a putative binding site for the UDP-activated glucose substrate.

  4. Carotenoid metabolism in plants

    Science.gov (United States)

    Carotenoids are mostly C40 terpenoids, a class of hydrocarbons that participate in various biological processes in plants, such as photosynthesis, photomorphogenesis, photoprotection, and development. Carotenoids also serve as precursors for two plant hormones and a diverse set of apocarotenoids. Th...

  5. Interplay between Carotenoids, Abscisic Acid and Jasmonate Guides the Compatible Rice-Meloidogyne graminicola Interaction

    Directory of Open Access Journals (Sweden)

    Tina Kyndt

    2017-06-01

    Full Text Available In this study, we have characterized the role of carotenoids and chlorophyll in the compatible interaction between the sedentary root knot nematode (RKN Meloidogyne graminicola and the monocot model plant rice (Oryza sativa. Previous transcriptome data showed a differential expression of carotenoid and chlorophyll biosynthesis genes in nematode-induced giant cells and gall tissue. Metabolite measurement showed that galls indeed accumulate chlorophyll a, b and carotenoids, as well as the hormone abscisic acid (ABA. When ABA was externally applied on rice plants, or when ABA-biosynthesis was inhibited, a significant increase in gall formation and nematode development was found, showing the complex role of ABA in this interaction. ABA application suppressed jasmonic acid (JA levels in the plants, while ABA-biosynthesis inhibition lead to increased JA levels confirming an antagonism between ABA and JA in rice roots. In addition, combined applications of ABA and JA showed that the ABA-effect can overcome JA-induced defense. Based on these observations, we hypothesized that the accumulation of chlorophyll and carotenoid precursors would be beneficial to nematode infection. Indeed, when chemically blocking the carotenoid biosynthesis pathway at different steps, which leads to differential accumulation of carotenoids and chlorophyll in the plants, a positive and clear link between accumulation of carotenoids and chlorophyll and rice susceptibility to RKN was detected.

  6. Significance of Genetic, Environmental, and Pre- and Postharvest Factors Affecting Carotenoid Contents in Crops: A Review.

    Science.gov (United States)

    Saini, Ramesh Kumar; Keum, Young-Soo

    2018-05-30

    Carotenoids are a diverse group of tetraterpenoid pigments that play indispensable roles in plants and animals. The biosynthesis of carotenoids in plants is strictly regulated at the transcriptional and post-transcriptional levels in accordance with inherited genetic signals and developmental requirements and in response to external environmental stimulants. The alteration in the biosynthesis of carotenoids under the influence of external environmental stimulants, such as high light, drought, salinity, and chilling stresses, has been shown to significantly influence the nutritional value of crop plants. In addition to these stimulants, several pre- and postharvesting cultivation practices significantly influence carotenoid compositions and contents. Thus, this review discusses how various environmental stimulants and pre- and postharvesting factors can be positively modulated for the enhanced biosynthesis and accumulation of carotenoids in the edible parts of crop plants, such as the leaves, roots, tubers, flowers, fruit, and seeds. In addition, future research directions in this context are identified.

  7. A molecular genetic analysis of carotenoid biosynthesis and the effects of carotenoid mutations on other photosynthetic genes in Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, G.A.

    1989-04-01

    The nine known R. capsulatus carotenoid genes are contained within the 46 kilobase (kb) photosynthesis gene cluster. An 11 kb subcluster containing eight of these genes has been cloned and its nucleotide sequence determined. A new gene, crtK, has been located in the middle of the subcluster. The carotenoid gene cluster contains sequences homologous to Escherichia coli ..omega../sup 70/ promoters, rho-independent transcription terminators, and prokaryotic transcriptional factor binding sites. The phenotypes and genotypes of ten transposon Tn5.7 insertion mutations within the carotenoid gene cluster have been analyzed, by characterization of the carotenoids accumulated and high resolution mapping of the Tn5.7 insertions. The enzymatic blockages in previously uncharacterized early carotenoid mutants have been determined using a new in vitro synthesis system, suggesting specific roles for the CrtB and CrtE gene products. The expression of six of the eight carotenoid genes in the cluster is induced upon the shift from dark chemoheterotrophic to anaerobic photosynthetic growth. The magnitude of the induction is equivalent to that of genes encoding structural photosynthesis polypeptides, although the carotenoid genes are induced earlier after the growth shift. Different means of regulating photosynthesis genes in R. capsulatus are discussed, and a rationale for the temporal pattern of expression of the carotenoid genes during photosynthetic adaptation is presented. Comparison of the deduced amino acid sequences of the two dehydrogenases of the R. capsulatus carotenoid biosynthesis pathway reveals two regions of strong similarity. The effect of carotenoid mutations on the photosynthetic phenotype has been studied by examining growth rates, pigments, pigment-protein complexes and gene expression for a complete set of carotenoid mutants. 161 refs.

  8. A molecular genetic analysis of carotenoid biosynthesis and the effects of carotenoid mutations on other photosynthetic genes in Rhodobacter capsulatus

    International Nuclear Information System (INIS)

    Armstrong, G.A.

    1989-04-01

    The nine known R. capsulatus carotenoid genes are contained within the 46 kilobase (kb) photosynthesis gene cluster. An 11 kb subcluster containing eight of these genes has been cloned and its nucleotide sequence determined. A new gene, crtK, has been located in the middle of the subcluster. The carotenoid gene cluster contains sequences homologous to Escherichia coli ω 70 promoters, rho-independent transcription terminators, and prokaryotic transcriptional factor binding sites. The phenotypes and genotypes of ten transposon Tn5.7 insertion mutations within the carotenoid gene cluster have been analyzed, by characterization of the carotenoids accumulated and high resolution mapping of the Tn5.7 insertions. The enzymatic blockages in previously uncharacterized early carotenoid mutants have been determined using a new in vitro synthesis system, suggesting specific roles for the CrtB and CrtE gene products. The expression of six of the eight carotenoid genes in the cluster is induced upon the shift from dark chemoheterotrophic to anaerobic photosynthetic growth. The magnitude of the induction is equivalent to that of genes encoding structural photosynthesis polypeptides, although the carotenoid genes are induced earlier after the growth shift. Different means of regulating photosynthesis genes in R. capsulatus are discussed, and a rationale for the temporal pattern of expression of the carotenoid genes during photosynthetic adaptation is presented. Comparison of the deduced amino acid sequences of the two dehydrogenases of the R. capsulatus carotenoid biosynthesis pathway reveals two regions of strong similarity. The effect of carotenoid mutations on the photosynthetic phenotype has been studied by examining growth rates, pigments, pigment-protein complexes and gene expression for a complete set of carotenoid mutants. 161 refs

  9. Mechanistic aspects of carotenoid biosynthesis

    KAUST Repository

    Moïse, Alexander R.

    2014-01-08

    Carotenoid synthesis is based on the analysis of the phenotype of several mutant strains of tomato lacking carotenoid synthetic genes. Carotenoids are tetraterpenes derived through the condensation of the five-carbon (C5) universal isoprenoid precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). A recently developed concept that could explain the role of the poly-cis pathway in carotenoid synthesis is that the intermediates of this pathway have additional physiological roles that extend beyond serving as precursors of lycopene. This concept is based on the analysis of the phenotype of several mutant strains of tomato lacking carotenoid synthetic genes. The feedback regulation of early carotenoid synthetic genes in response to a block in upstream metabolism represents a paradigm shift in our understanding of the mechanism and regulation of carotenoid synthesis and of metabolic regulation in general. The molecular details of a signaling pathway that regulates carotenogenesis in response to the levels of carotenoid precursors are still unclear.

  10. Fluridone and norflurazon, carotenoid-biosynthesis inhibitors, promote seed conditioning and germination of the holoparasite Orobanche minor.

    Science.gov (United States)

    Chae, Sang Heon; Yoneyama, Koichi; Takeuchi, Yasutomo; Joel, Daniel M.

    2004-02-01

    Fluridone and norflurazon, two carotenoid-biosynthesis inhibitors, shortened the conditioning period required by seeds of Orobanche minor in order to respond to the germination stimulant strigol. Neither fluridone nor norflurazon alone induced seed germination of O. minor, they promoted strigol-induced germination. In addition, these compounds restored the conditioning and germination of seeds at a supraoptimal temperature (30 degrees C) as well as in the light. Gibberellic acid (GA(3)) showed similar promotive and protective effects on the conditioning and germination of O. minor seeds. Although fluridone and norflurazon are known to prevent abscisic acid (ABA)-biosynthesis, and stresses such as supraoptimal temperatures have been reported to induce ABA accumulation in plants, the amount of ABA in the seeds or that released from the seeds into the conditioning media was not affected by the fluridone treatment and by exposure to the supraoptimal temperature. These results indicate that the promotive and protective effects of fluridone and norflurazon on the conditioning and germination of O. minor seeds would be attributed to other perturbations rather than the inhibition of ABA-biosynthesis.

  11. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers.

    Science.gov (United States)

    Sagawa, Janelle M; Stanley, Lauren E; LaFountain, Amy M; Frank, Harry A; Liu, Chang; Yuan, Yao-Wu

    2016-02-01

    Carotenoids are yellow, orange, and red pigments that contribute to the beautiful colors and nutritive value of many flowers and fruits. The structural genes in the highly conserved carotenoid biosynthetic pathway have been well characterized in multiple plant systems, but little is known about the transcription factors that control the expression of these structural genes. By analyzing a chemically induced mutant of Mimulus lewisii through bulk segregant analysis and transgenic experiments, we have identified an R2R3-MYB, Reduced Carotenoid Pigmentation 1 (RCP1), as the first transcription factor that positively regulates carotenoid biosynthesis during flower development. Loss-of-function mutations in RCP1 lead to down-regulation of all carotenoid biosynthetic genes and reduced carotenoid content in M. lewisii flowers, a phenotype recapitulated by RNA interference in the wild-type background. Overexpression of this gene in the rcp1 mutant background restores carotenoid production and, unexpectedly, results in simultaneous decrease of anthocyanin production in some transgenic lines by down-regulating the expression of an activator of anthocyanin biosynthesis. Identification of transcriptional regulators of carotenoid biosynthesis provides the 'toolbox' genes for understanding the molecular basis of flower color diversification in nature and for potential enhancement of carotenoid production in crop plants via genetic engineering. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  12. Potential production of carotenoids from Neurospora

    Directory of Open Access Journals (Sweden)

    SRI PRIATNI

    2014-05-01

    Full Text Available Priatni S. 2014. Review: Potential production of carotenoids from Neurospora. Nusantara Bioscience 6: 63-68. Carotenoids are abundant and widely distributed in plants, animals and microorganisms. Commercial use of carotenoids competes between microorganisms and synthetic manufacture. Carotenoids production can be increased by improving the efficiency of carotenoid synthesis in microbes. Some of the cultural and environmental stimulants are positively affecting the carotenoid content of carotenogenic strains such as Neurospora. Neurospora is a fungus that exhibits the formation of spores and conidia, the part of the cell for carotenoids biosynthesis. The Indonesian traditional fermented food, red peanut cake or oncom, especially in West Java, is produced from legume residues of Neurospora sp. This fungus has been isolated and identified as Neurospora intermedia. In order to apply this pigment for food and cosmetic colorants, encapsulation techniques of carotenoids have been developed to improve its solubility and stability.

  13. Use of Several waste substrates for carotenoid-rich yeast biomass production

    International Nuclear Information System (INIS)

    Marova, I.; Carnecka, M.; Halienova, A.; Dvorakova, T.; Haronikova, A.

    2009-01-01

    Carotenoids are industrially significant pigments produced in many bacteria, fungi, and plants. Carotenoid biosynthesis in yeasts is involved in stress response mechanisms. Thus, control ed physiological and nutrition stress can be used for enhanced pigment production. Huge commercial demand for natural carotenoids has focused attention on developing of suitable biotechnological techniques including use of liquid waste substrates as carbon and/or nitrogen source. (Author)

  14. More than meets the eye: from carotenoid biosynthesis to new insights into apocarotenoid signaling

    Science.gov (United States)

    Carotenoids are a class of isoprenoid compounds synthesized almost exclusively in plants and are involved in a myriad of roles including the provision of flower and fruit pigmentation for the attraction of pollinators and seed dispersing organisms. While carotenoids are essential throughout plant de...

  15. Biological roles of fungal carotenoids.

    Science.gov (United States)

    Avalos, Javier; Carmen Limón, M

    2015-08-01

    Carotenoids are terpenoid pigments widespread in nature, produced by bacteria, fungi, algae and plants. They are also found in animals, which usually obtain them through the diet. Carotenoids in plants provide striking yellow, orange or red colors to fruits and flowers, and play important metabolic and physiological functions, especially relevant in photosynthesis. Their functions are less clear in non-photosynthetic microorganisms. Different fungi produce diverse carotenoids, but the mutants unable to produce them do not exhibit phenotypic alterations in the laboratory, apart of lack of pigmentation. This review summarizes the current knowledge on the functional basis for carotenoid production in fungi. Different lines of evidence support a protective role of carotenoids against oxidative stress and exposure to visible light or UV irradiation. In addition, the carotenoids are intermediary products in the biosynthesis of physiologically active apocarotenoids or derived compounds. This is the case of retinal, obtained from the symmetrical oxidative cleavage of β-carotene. Retinal is the light-absorbing prosthetic group of the rhodopsins, membrane-bound photoreceptors present also in many fungal species. In Mucorales, β-carotene is an intermediary in the synthesis of trisporoids, apocarotenoid derivatives that include the sexual hormones the trisporic acids, and they are also presumably used in the synthesis of sporopollenin polymers. In conclusion, fungi have adapted their ability to produce carotenoids for different non-essential functions, related with stress tolerance or with the synthesis of physiologically active by-products.

  16. Differential selection on carotenoid biosynthesis genes as a function of gene position in the metabolic pathway: a study on the carrot and dicots.

    Directory of Open Access Journals (Sweden)

    Jérémy Clotault

    Full Text Available Selection of genes involved in metabolic pathways could target them differently depending on the position of genes in the pathway and on their role in controlling metabolic fluxes. This hypothesis was tested in the carotenoid biosynthesis pathway using population genetics and phylogenetics.Evolutionary rates of seven genes distributed along the carotenoid biosynthesis pathway, IPI, PDS, CRTISO, LCYB, LCYE, CHXE and ZEP, were compared in seven dicot taxa. A survey of deviations from neutrality expectations at these genes was also undertaken in cultivated carrot (Daucus carota subsp. sativus, a species that has been intensely bred for carotenoid pattern diversification in its root during its cultivation history. Parts of sequences of these genes were obtained from 46 individuals representing a wide diversity of cultivated carrots. Downstream genes exhibited higher deviations from neutral expectations than upstream genes. Comparisons of synonymous and nonsynonymous substitution rates between genes among dicots revealed greater constraints on upstream genes than on downstream genes. An excess of intermediate frequency polymorphisms, high nucleotide diversity and/or high differentiation of CRTISO, LCYB1 and LCYE in cultivated carrot suggest that balancing selection may have targeted genes acting centrally in the pathway.Our results are consistent with relaxed constraints on downstream genes and selection targeting the central enzymes of the carotenoid biosynthesis pathway during carrot breeding history.

  17. Strigolactones, a novel carotenoid-derived plant hormone

    KAUST Repository

    Al-Babili, Salim; Bouwmeester, Harro J.

    2015-01-01

    Strigolactones (SLs) are carotenoid-derived plant hormones and signaling molecules. When released into the soil, SLs indicate the presence of a host to symbiotic fungi and root parasitic plants. In planta, they regulate several developmental

  18. Carotenoids in staple cereals: Metabolism, regulation, and genetic manipulation

    Directory of Open Access Journals (Sweden)

    shengnan zhai

    2016-08-01

    Full Text Available Carotenoids play a critical role in animal and human health. Animals and humans are unable to synthesize carotenoids de novo, and therefore rely upon diet as sources of these compounds. However, major staple cereals often contain only small amounts of carotenoids in their grain. Consequently, there is considerable interest in genetic manipulation of carotenoid content in cereal grain. In this review, we focus on carotenoid metabolism and regulation in non-green plant tissues, as well as genetic manipulation in staple cereals such as rice, maize, and wheat. Significant progress has been made in three aspects: (1 seven carotenogenes play vital roles in carotenoid regulation in non-green plant tissues, including DXS (1-deoxyxylulose-5-phosphate synthase influencing isoprenoid precursor supply, PSY (phytoene synthase, LCYB (β-cyclase and LCYE (ε-cyclase controlling biosynthesis, HYDB (1-hydroxy-2-methyl-2-(E-butenyl 4-diphosphate reductase and CCDs (carotenoid cleavage dioxygenases responsible for degradation, and OR (orange conditioning sequestration sink; (2 pro-vitamin A-biofortified crops, such as rice and maize, were developed by either metabolic engineering or marker-assisted breeding; (3 QTLs for carotenoid content on chromosomes 3B, 7A, and 7B were consistently identified, eight carotenogenes including 23 loci were detected, and ten gene-specific markers for carotenoid accumulation were developed and applied in wheat improvement. A comprehensive and deeper understanding of the regulatory mechanisms of carotenoid metabolism in crops will be benefitical in improving our precision in improving carotenoid contents. Genomic selection and gene editing are emerging as transformative technologies for vitamin A biofortification.

  19. Carotenoid inhibitors reduce strigolactone production and Striga hermonthica infection in rice.

    Science.gov (United States)

    Jamil, Muhammad; Charnikhova, Tatsiana; Verstappen, Francel; Bouwmeester, Harro

    2010-12-01

    The strigolactones are internal and rhizosphere signalling molecules in plants that are biosynthesised through carotenoid cleavage. They are secreted by host roots into the rhizosphere where they signal host-presence to the symbiotic arbuscular mycrorrhizal (AM) fungi and the parasitic plants of the Orobanche, Phelipanche and Striga genera. The seeds of these parasitic plants germinate after perceiving these signalling molecules. After attachment to the host root, the parasite negatively affects the host plant by withdrawing water, nutrients and assimilates through a direct connection with the host xylem. In many areas of the world these parasites are a threat to agriculture but so far very limited success has been achieved to minimize losses due to these parasitic weeds. Considering the carotenoid origin of the strigolactones, in the present study we investigated the possibilities to reduce strigolactone production in the roots of plants by blocking carotenoid biosynthesis using carotenoid inhibitors. Hereto the carotenoid inhibitors fluridone, norflurazon, clomazone and amitrole were applied to rice either through irrigation or through foliar spray. Irrigation application of all carotenoid inhibitors and spray application of amitrole significantly decreased strigolactone production, Striga hermonthica germination and Striga infection, also in concentrations too low to affect growth and development of the host plant. Hence, we demonstrate that the application of carotenoid inhibitors to plants can affect S. hermonthica germination and attachment indirectly by reducing the strigolactone concentration in the rhizosphere. This finding is useful for further studies on the relevance of the strigolactones in rhizosphere signalling. Since these inhibitors are available and accessible, they may represent an efficient technology for farmers, including poor subsistence farmers in the African continent, to control these harmful parasitic weeds. Copyright © 2010 Elsevier Inc

  20. Perturbations in the Photosynthetic Pigment Status Result in Photooxidation-Induced Crosstalk between Carotenoid and Porphyrin Biosynthetic Pathways

    Directory of Open Access Journals (Sweden)

    Joon-Heum Park

    2017-11-01

    Full Text Available Possible crosstalk between the carotenoid and porphyrin biosynthetic pathways under photooxidative conditions was investigated by using their biosynthetic inhibitors, norflurazon (NF and oxyfluorfen (OF. High levels of protoporphyrin IX (Proto IX accumulated in rice plants treated with OF, whereas Proto IX decreased in plants treated with NF. Both NF and OF treatments resulted in greater decreases in MgProto IX, MgProto IX methyl ester, and protochlorophyllide. Activities and transcript levels of most porphyrin biosynthetic enzymes, particularly in the Mg-porphyrin branch, were greatly down-regulated in NF and OF plants. In contrast, the transcript levels of GSA, PPO1, and CHLD as well as FC2 and HO2 were up-regulated in NF-treated plants, while only moderate increases in FC2 and HO2 were observed in the early stage of OF treatment. Phytoene, antheraxanthin, and zeaxanthin showed high accumulation in NF-treated plants, whereas other carotenoid intermediates greatly decreased. Transcript levels of carotenoid biosynthetic genes, PSY1 and PDS, decreased in response to NF and OF, whereas plants in the later stage of NF treatment exhibited up-regulation of BCH and VDE as well as recovery of PDS. However, perturbed porphyrin biosynthesis by OF did not noticeably influence levels of carotenoid metabolites, regardless of the strong down-regulation of carotenoid biosynthetic genes. Both NF and OF plants appeared to provide enhanced protection against photooxidative damage, not only by scavenging of Mg-porphyrins, but also by up-regulating FC2, HO2, and Fe-chelatase, particularly with increased levels of zeaxanthin via up-regulation of BCH and VDE in NF plants. On the other hand, the up-regulation of GSA, PPO1, and CHLD under inhibition of carotenogenic flux may be derived from the necessity to recover impaired chloroplast biogenesis during photooxidative stress. Our study demonstrates that perturbations in carotenoid and porphyrin biosynthesis coordinate

  1. Perturbations in the Photosynthetic Pigment Status Result in Photooxidation-Induced Crosstalk between Carotenoid and Porphyrin Biosynthetic Pathways.

    Science.gov (United States)

    Park, Joon-Heum; Tran, Lien H; Jung, Sunyo

    2017-01-01

    Possible crosstalk between the carotenoid and porphyrin biosynthetic pathways under photooxidative conditions was investigated by using their biosynthetic inhibitors, norflurazon (NF) and oxyfluorfen (OF). High levels of protoporphyrin IX (Proto IX) accumulated in rice plants treated with OF, whereas Proto IX decreased in plants treated with NF. Both NF and OF treatments resulted in greater decreases in MgProto IX, MgProto IX methyl ester, and protochlorophyllide. Activities and transcript levels of most porphyrin biosynthetic enzymes, particularly in the Mg-porphyrin branch, were greatly down-regulated in NF and OF plants. In contrast, the transcript levels of GSA, PPO1 , and CHLD as well as FC2 and HO2 were up-regulated in NF-treated plants, while only moderate increases in FC2 and HO2 were observed in the early stage of OF treatment. Phytoene, antheraxanthin, and zeaxanthin showed high accumulation in NF-treated plants, whereas other carotenoid intermediates greatly decreased. Transcript levels of carotenoid biosynthetic genes, PSY1 and PDS , decreased in response to NF and OF, whereas plants in the later stage of NF treatment exhibited up-regulation of BCH and VDE as well as recovery of PDS . However, perturbed porphyrin biosynthesis by OF did not noticeably influence levels of carotenoid metabolites, regardless of the strong down-regulation of carotenoid biosynthetic genes. Both NF and OF plants appeared to provide enhanced protection against photooxidative damage, not only by scavenging of Mg - porphyrins, but also by up-regulating FC2, HO2 , and Fe-chelatase, particularly with increased levels of zeaxanthin via up-regulation of BCH and VDE in NF plants. On the other hand, the up-regulation of GSA, PPO1 , and CHLD under inhibition of carotenogenic flux may be derived from the necessity to recover impaired chloroplast biogenesis during photooxidative stress. Our study demonstrates that perturbations in carotenoid and porphyrin biosynthesis coordinate the

  2. Evidence for abscisic acid biosynthesis in Cuscuta reflexa, a parasitic plant lacking neoxanthin.

    Science.gov (United States)

    Qin, Xiaoqiong; Yang, Seung Hwan; Kepsel, Andrea C; Schwartz, Steven H; Zeevaart, Jan A D

    2008-06-01

    Abscisic acid (ABA) is a plant hormone found in all higher plants; it plays an important role in seed dormancy, embryo development, and adaptation to environmental stresses, most notably drought. The regulatory step in ABA synthesis is the cleavage reaction of a 9-cis-epoxy-carotenoid catalyzed by the 9-cis-epoxy-carotenoid dioxygenases (NCEDs). The parasitic angiosperm Cuscuta reflexa lacks neoxanthin, one of the common precursors of ABA in all higher plants. Thus, is C. reflexa capable of synthesizing ABA, or does it acquire ABA from its host plants? Stem tips of C. reflexa were cultured in vitro and found to accumulate ABA in the absence of host plants. This demonstrates that this parasitic plant is capable of synthesizing ABA. Dehydration of detached stem tips caused a big rise in ABA content. During dehydration, 18O was incorporated into ABA from 18O2, indicating that ABA was synthesized de novo in C. reflexa. Two NCED genes, CrNCED1 and CrNCED2, were cloned from C. reflexa. Expression of CrNCEDs was up-regulated significantly by dehydration. In vitro enzyme assays with recombinant CrNCED1 protein showed that the protein is able to cleave both 9-cis-violaxanthin and 9'-cis-neoxanthin to give xanthoxin. Thus, despite the absence of neoxanthin in C. reflexa, the biochemical activity of CrNCED1 is similar to that of NCEDs from other higher plants. These results provide evidence for conservation of the ABA biosynthesis pathway among members of the plant kingdom.

  3. Engineering Plant Architecture via CRISPR/Cas9-mediated Alteration of Strigolactone Biosynthesis

    KAUST Repository

    Butt, Haroon

    2018-01-28

    Precision plant genome engineering holds much promise for targeted improvement of crop traits via unprecedented single-base level control over the genetic material. Strigolactones (SLs) are a key determinant of plant architecture, known for their role in inhibiting shoot branching (tillering). Here, we used CRISPR/Cas9 in rice (Oryza sativa) for targeted disruption of CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7), which controls a key step in SL biosynthesis. The ccd7 mutants exhibited a striking increase in tillering, combined with a dwarf phenotype, which could be rescued by application of the synthetic SL analog GR24. Striga germination assays and liquid chromatography mass spectrometry analysis showed that root exudates of ccd7 mutants were also SL deficient. Taken together, our results show the power of CRISPR/Cas9 for targeted engineering of plant architecture and for elucidating the molecular underpinnings of architecture-related traits.

  4. Engineering Plant Architecture via CRISPR/Cas9-mediated Alteration of Strigolactone Biosynthesis

    KAUST Repository

    Butt, Haroon; Jamil, Muhammad; Wang, Jian You; Al-Babili, Salim; Mahfouz, Magdy M.

    2018-01-01

    Precision plant genome engineering holds much promise for targeted improvement of crop traits via unprecedented single-base level control over the genetic material. Strigolactones (SLs) are a key determinant of plant architecture, known for their role in inhibiting shoot branching (tillering). Here, we used CRISPR/Cas9 in rice (Oryza sativa) for targeted disruption of CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7), which controls a key step in SL biosynthesis. The ccd7 mutants exhibited a striking increase in tillering, combined with a dwarf phenotype, which could be rescued by application of the synthetic SL analog GR24. Striga germination assays and liquid chromatography mass spectrometry analysis showed that root exudates of ccd7 mutants were also SL deficient. Taken together, our results show the power of CRISPR/Cas9 for targeted engineering of plant architecture and for elucidating the molecular underpinnings of architecture-related traits.

  5. The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Wang, Zhenyu

    2011-05-01

    Osmotic stress activates the biosynthesis of abscisic acid (ABA). One major step in ABA biosynthesis is the carotenoid cleavage catalyzed by a 9-cis epoxycarotenoid dioxygenase (NCED). To understand the mechanism for osmotic stress activation of ABA biosynthesis, we screened for Arabidopsis thaliana mutants that failed to induce the NCED3 genee xpression in response to osmotic stress treatments. The ced1 (for 9-cis epoxycarotenoid dioxy genase defective 1) mutant isolated in this study showed markedly reduced expression of NCED3 in response to osmotic stress (polyethylene glycol)treatments compared with the wild type. Other ABA biosynthesis genes are also greatly reduced in ced1 under osmotic stress. ced1 mutant plants are very sensitive to even mild osmotic stress. Map-based cloning revealed unexpectedly thatCED1 encodes a putative a/b hydrolase domain-containing protein and is allelic to the BODYGUARD gene that was recently shown to be essential for cuticle biogenesis. Further studies discovered that other cut in biosynthesis mutants are also impaired in osmotic stress induction of ABA biosynthesis genes and are sensitive to osmotic stress. Our work demonstrates that the cuticle functions not merely as a physical barrier to minimize water loss but also mediates osmotic stress signaling and tolerance by regulating ABA biosynthesis and signaling. © 2011 American Society of Plant Biologists. All rights reserved.

  6. Carotenoid Cleavage Oxygenases from Microbes and Photosynthetic Organisms: Features and Functions

    Directory of Open Access Journals (Sweden)

    Oussama Ahrazem

    2016-10-01

    Full Text Available Apocarotenoids are carotenoid-derived compounds widespread in all major taxonomic groups, where they play important roles in different physiological processes. In addition, apocarotenoids include compounds with high economic value in food and cosmetics industries. Apocarotenoid biosynthesis starts with the action of carotenoid cleavage dioxygenases (CCDs, a family of non-heme iron enzymes that catalyze the oxidative cleavage of carbon–carbon double bonds in carotenoid backbones through a similar molecular mechanism, generating aldehyde or ketone groups in the cleaving ends. From the identification of the first CCD enzyme in plants, an increasing number of CCDs have been identified in many other species, including microorganisms, proving to be a ubiquitously distributed and evolutionarily conserved enzymatic family. This review focuses on CCDs from plants, algae, fungi, and bacteria, describing recent progress in their functions and regulatory mechanisms in relation to the different roles played by the apocarotenoids in these organisms.

  7. Virus-Induced Silencing of Key Genes Leads to Differential Impact on Withanolide Biosynthesis in the Medicinal Plant, Withania somnifera.

    Science.gov (United States)

    Agarwal, Aditya Vikram; Singh, Deeksha; Dhar, Yogeshwar Vikram; Michael, Rahul; Gupta, Parul; Chandra, Deepak; Trivedi, Prabodh Kumar

    2018-02-01

    Withanolides are a collection of naturally occurring, pharmacologically active, secondary metabolites synthesized in the medicinally important plant, Withania somnifera. These bioactive molecules are C28-steroidal lactone triterpenoids and their synthesis is proposed to take place via the mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways through the sterol pathway using 24-methylene cholesterol as substrate flux. Although the phytochemical profiles as well as pharmaceutical activities of Withania extracts have been well studied, limited genomic information and difficult genetic transformation have been a major bottleneck towards understanding the participation of specific genes in withanolide biosynthesis. In this study, we used the Tobacco rattle virus (TRV)-mediated virus-induced gene silencing (VIGS) approach to study the participation of key genes from MVA, MEP and triterpenoid biosynthesis for their involvement in withanolide biosynthesis. TRV-infected W. somnifera plants displayed unique phenotypic characteristics and differential accumulation of total Chl as well as carotenoid content for each silenced gene suggesting a reduction in overall isoprenoid synthesis. Comprehensive expression analysis of putative genes of withanolide biosynthesis revealed transcriptional modulations conferring the presence of complex regulatory mechanisms leading to withanolide biosynthesis. In addition, silencing of genes exhibited modulated total and specific withanolide accumulation at different levels as compared with control plants. Comparative analysis also suggests a major role for the MVA pathway as compared with the MEP pathway in providing substrate flux for withanolide biosynthesis. These results demonstrate that transcriptional regulation of selected Withania genes of the triterpenoid biosynthetic pathway critically affects withanolide biosynthesis, providing new horizons to explore this process further, in planta.

  8. Mechanistic aspects of carotenoid biosynthesis

    KAUST Repository

    Moï se, Alexander R.; Al-Babili, Salim; Wurtzel, Eleanore T.

    2014-01-01

    precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). A recently developed concept that could explain the role of the poly-cis pathway in carotenoid synthesis is that the intermediates of this pathway have additional physiological

  9. The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Wang, Zhenyu; Xiong, Liming; Li, Wenbo; Zhu, Jian-Kang; Zhu, Jianhua

    2011-01-01

    Osmotic stress activates the biosynthesis of abscisic acid (ABA). One major step in ABA biosynthesis is the carotenoid cleavage catalyzed by a 9-cis epoxycarotenoid dioxygenase (NCED). To understand the mechanism for osmotic stress activation of ABA

  10. UVA, UVB Light, and Methyl Jasmonate, Alone or Combined, Redirect the Biosynthesis of Glucosinolates, Phenolics, Carotenoids, and Chlorophylls in Broccoli Sprouts

    Science.gov (United States)

    Moreira-Rodríguez, Melissa; Benavides, Jorge

    2017-01-01

    Broccoli sprouts contain health-promoting phytochemicals that can be enhanced by applying ultraviolet light (UV) or phytohormones. The separate and combined effects of methyl jasmonate (MJ), UVA, or UVB lights on glucosinolate, phenolic, carotenoid, and chlorophyll profiles were assessed in broccoli sprouts. Seven-day-old broccoli sprouts were exposed to UVA (9.47 W/m2) or UVB (7.16 W/m2) radiation for 120 min alone or in combination with a 25 µM MJ solution, also applied to sprouts without UV supplementation. UVA + MJ and UVB + MJ treatments increased the total glucosinolate content by ~154% and ~148%, respectively. MJ induced the biosynthesis of indole glucosinolates, especially neoglucobrassicin (~538%), showing a synergistic effect with UVA stress. UVB increased the content of aliphatic and indole glucosinolates, such as glucoraphanin (~78%) and 4-methoxy-glucobrassicin (~177%). UVA increased several phenolics such as gallic acid (~57%) and a kaempferol glucoside (~25.4%). MJ treatment decreased most phenolic levels but greatly induced accumulation of 5-sinapoylquinic acid (~239%). MJ treatments also reduced carotenoid and chlorophyll content, while UVA increased lutein (~23%), chlorophyll b (~31%), neoxanthin (~34%), and chlorophyll a (~67%). Results indicated that UV- and/or MJ-treated broccoli sprouts redirect the carbon flux to the biosynthesis of specific glucosinolates, phenolics, carotenoids, and chlorophylls depending on the type of stress applied. PMID:29113068

  11. UVA, UVB Light, and Methyl Jasmonate, Alone or Combined, Redirect the Biosynthesis of Glucosinolates, Phenolics, Carotenoids, and Chlorophylls in Broccoli Sprouts.

    Science.gov (United States)

    Moreira-Rodríguez, Melissa; Nair, Vimal; Benavides, Jorge; Cisneros-Zevallos, Luis; Jacobo-Velázquez, Daniel A

    2017-11-04

    Broccoli sprouts contain health-promoting phytochemicals that can be enhanced by applying ultraviolet light (UV) or phytohormones. The separate and combined effects of methyl jasmonate (MJ), UVA, or UVB lights on glucosinolate, phenolic, carotenoid, and chlorophyll profiles were assessed in broccoli sprouts. Seven-day-old broccoli sprouts were exposed to UVA (9.47 W/m²) or UVB (7.16 W/m²) radiation for 120 min alone or in combination with a 25 µM MJ solution, also applied to sprouts without UV supplementation. UVA + MJ and UVB + MJ treatments increased the total glucosinolate content by ~154% and ~148%, respectively. MJ induced the biosynthesis of indole glucosinolates, especially neoglucobrassicin (~538%), showing a synergistic effect with UVA stress. UVB increased the content of aliphatic and indole glucosinolates, such as glucoraphanin (~78%) and 4-methoxy-glucobrassicin (~177%). UVA increased several phenolics such as gallic acid (~57%) and a kaempferol glucoside (~25.4%). MJ treatment decreased most phenolic levels but greatly induced accumulation of 5-sinapoylquinic acid (~239%). MJ treatments also reduced carotenoid and chlorophyll content, while UVA increased lutein (~23%), chlorophyll b (~31%), neoxanthin (~34%), and chlorophyll a (~67%). Results indicated that UV- and/or MJ-treated broccoli sprouts redirect the carbon flux to the biosynthesis of specific glucosinolates, phenolics, carotenoids, and chlorophylls depending on the type of stress applied.

  12. Clp Protease and OR Directly Control the Proteostasis of Phytoene Synthase, the Crucial Enzyme for Carotenoid Biosynthesis in Arabidopsis.

    Science.gov (United States)

    Welsch, Ralf; Zhou, Xiangjun; Yuan, Hui; Álvarez, Daniel; Sun, Tianhu; Schlossarek, Dennis; Yang, Yong; Shen, Guoxin; Zhang, Hong; Rodriguez-Concepcion, Manuel; Thannhauser, Theodore W; Li, Li

    2018-01-08

    Phytoene synthase (PSY) is the crucial plastidial enzyme in the carotenoid biosynthetic pathway. However, its post-translational regulation remains elusive. Likewise, Clp protease constitutes a central part of the plastid protease network, but its substrates for degradation are not well known. In this study, we report that PSY is a substrate of the Clp protease. PSY was uncovered to physically interact with various Clp protease subunits (i.e., ClpS1, ClpC1, and ClpD). High levels of PSY and several other carotenogenic enzyme proteins overaccumulate in the clpc1, clpp4, and clpr1-2 mutants. The overaccumulated PSY was found to be partially enzymatically active. Impairment of Clp activity in clpc1 results in a reduced rate of PSY protein turnover, further supporting the role of Clp protease in degrading PSY protein. On the other hand, the ORANGE (OR) protein, a major post-translational regulator of PSY with holdase chaperone activity, enhances PSY protein stability and increases the enzymatically active proportion of PSY in clpc1, counterbalancing Clp-mediated proteolysis in maintaining PSY protein homeostasis. Collectively, these findings provide novel insights into the quality control of plastid-localized proteins and establish a hitherto unidentified post-translational regulatory mechanism of carotenogenic enzymes in modulating carotenoid biosynthesis in plants. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  13. Metabolic regulation of carotenoid-enriched Golden rice line

    Directory of Open Access Journals (Sweden)

    Dipak Gayen

    2016-10-01

    Full Text Available Vitamin A deficiency (VAD is the leading cause of blindness among children and is associated with high risk of maternal mortality. In order to enhance the bioavailability of vitamin A, high carotenoid transgenic golden rice has been developed by manipulating enzymes, such as phytoene synthase (psy and phytoene desaturase (crtI. In this study, proteome and metabolite analyses were carried out to comprehend metabolic regulation and adaptation of transgenic golden rice after the manipulation of endosperm specific carotenoid pathways. The main alteration was observed in carbohydrate metabolism pathways of the transgenic seeds. The 2D based proteomic studies demonstrated that carbohydrate metabolism-related enzymes, such as pullulanase, UDP-glucose pyrophosphorylase and glucose-1-phosphate adenylyl transferase, were primarily up-regulated in transgenic rice seeds. In addition, the enzyme PPDK was also elevated in transgenic seeds thus enhancing pyruvate biosynthesis, which is the precursor in the carotenoids biosynthetic pathway. GC-MS based metabolite profiling demonstrated an increase in the levels of glyceric acid, fructo-furanose, and galactose, while decrease in galactonic acid and gentiobiose in the transgenic rice compared to WT. It is noteworthy to mention that the carotenoid content, especially β-carotene level in transgenic rice (4.3 µg/g was significantly enhanced. The present study highlights the metabolic adaptation process of a transgenic golden rice line (homozygous T4 progeny of SKBR-244 after enhancing carotenoid biosynthesis. The presented information would be helpful in the development of crops enriched in carotenoids by expressing metabolic flux of pyruvate biosynthesis.

  14. Enhanced accumulation of carotenoids in sweetpotato plants overexpressing IbOr-Ins gene in purple-fleshed sweetpotato cultivar.

    Science.gov (United States)

    Park, Sung-Chul; Kim, Sun Ha; Park, Seyeon; Lee, Hyeong-Un; Lee, Joon Seol; Park, Woo Sung; Ahn, Mi-Jeong; Kim, Yun-Hee; Jeong, Jae Cheol; Lee, Haeng-Soon; Kwak, Sang-Soo

    2015-01-01

    Sweetpotato [Ipomoea batatas (L.) Lam] is an important root crop that produces low molecular weight antioxidants such as carotenoids and anthocyanin. The sweetpotato orange (IbOr) protein is involved in the accumulation of carotenoids. To increase the levels of carotenoids in the storage roots of sweetpotato, we generated transgenic sweetpotato plants overexpressing IbOr-Ins under the control of the cauliflower mosaic virus (CaMV) 35S promoter in an anthocyanin-rich purple-fleshed cultivar (referred to as IbOr plants). IbOr plants exhibited increased carotenoid levels (up to 7-fold) in their storage roots compared to wild type (WT) plants, as revealed by HPLC analysis. The carotenoid contents of IbOr plants were positively correlated with IbOr transcript levels. The levels of zeaxanthin were ∼ 12 times elevated in IbOr plants, whereas β-carotene increased ∼ 1.75 times higher than those of WT. Quantitative RT-PCR analysis revealed that most carotenoid biosynthetic pathway genes were up-regulated in the IbOr plants, including PDS, ZDS, LCY-β, CHY-β, ZEP and Pftf, whereas LCY-ɛ was down-regulated. Interestingly, CCD1, CCD4 and NCED, which are related to the degradation of carotenoids, were also up-regulated in the IbOr plants. Anthocyanin contents and transcription levels of associated biosynthetic genes seemed to be altered in the IbOr plants. The yields of storage roots and aerial parts of IbOr plants and WT plants were not significantly different under field cultivation. Taken together, these results indicate that overexpression of IbOr-Ins can increase the carotenoid contents of sweetpotato storage roots. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Evidence for Abscisic Acid Biosynthesis in Cuscuta reflexa, a Parasitic Plant Lacking Neoxanthin1[W][OA

    Science.gov (United States)

    Qin, Xiaoqiong; Yang, Seung Hwan; Kepsel, Andrea C.; Schwartz, Steven H.; Zeevaart, Jan A.D.

    2008-01-01

    Abscisic acid (ABA) is a plant hormone found in all higher plants; it plays an important role in seed dormancy, embryo development, and adaptation to environmental stresses, most notably drought. The regulatory step in ABA synthesis is the cleavage reaction of a 9-cis-epoxy-carotenoid catalyzed by the 9-cis-epoxy-carotenoid dioxygenases (NCEDs). The parasitic angiosperm Cuscuta reflexa lacks neoxanthin, one of the common precursors of ABA in all higher plants. Thus, is C. reflexa capable of synthesizing ABA, or does it acquire ABA from its host plants? Stem tips of C. reflexa were cultured in vitro and found to accumulate ABA in the absence of host plants. This demonstrates that this parasitic plant is capable of synthesizing ABA. Dehydration of detached stem tips caused a big rise in ABA content. During dehydration, 18O was incorporated into ABA from 18O2, indicating that ABA was synthesized de novo in C. reflexa. Two NCED genes, CrNCED1 and CrNCED2, were cloned from C. reflexa. Expression of CrNCEDs was up-regulated significantly by dehydration. In vitro enzyme assays with recombinant CrNCED1 protein showed that the protein is able to cleave both 9-cis-violaxanthin and 9′-cis-neoxanthin to give xanthoxin. Thus, despite the absence of neoxanthin in C. reflexa, the biochemical activity of CrNCED1 is similar to that of NCEDs from other higher plants. These results provide evidence for conservation of the ABA biosynthesis pathway among members of the plant kingdom. PMID:18441226

  16. Elucidation of a carotenoid biosynthesis gene cluster encoding a novel enzyme, 2,2'-beta-hydroxylase, from Brevundimonas sp. strain SD212 and combinatorial biosynthesis of new or rare xanthophylls.

    Science.gov (United States)

    Nishida, Yasuhiro; Adachi, Kyoko; Kasai, Hiroaki; Shizuri, Yoshikazu; Shindo, Kazutoshi; Sawabe, Akiyoshi; Komemushi, Sadao; Miki, Wataru; Misawa, Norihiko

    2005-08-01

    A carotenoid biosynthesis gene cluster mediating the production of 2-hydroxyastaxanthin was isolated from the marine bacterium Brevundimonas sp. strain SD212 by using a common crtI sequence as the probe DNA. A sequence analysis revealed this cluster to contain 12 open reading frames (ORFs), including the 7 known genes, crtW, crtY, crtI, crtB, crtE, idi, and crtZ. The individual ORFs were functionally analyzed by complementation studies using Escherichia coli that accumulated various carotenoid precursors due to the presence of other bacterial crt genes. In addition to functionally identifying the known crt genes, we found that one (ORF11, named crtG) coded for a novel enzyme, carotenoid 2,2'-beta-hydroxylase, which showed intriguingly partial homology with animal sterol-C5-desaturase. When this crtG gene was introduced into E. coli accumulating zeaxanthin and canthaxanthin, the resulting transformants produced their 2-hydroxylated and 2,2'-dihydroxylated products which were structurally novel or rare xanthophylls, as determined by their nuclear magnetic resonance and high-performance liquid chromatography/photodiode array detector/atmospheric pressure chemical ionization mass spectrometry spectral data. The new carotenoid produced was suggested to have a strong inhibitory effect on lipid peroxidation.

  17. From Carotenoids to Strigolactones

    KAUST Repository

    Jia, Kunpeng

    2017-12-13

    Strigolactones (SLs) are phytohormones that regulate different plant developmental and adaptation processes. When released into soil, SLs act as chemical signals attracting symbiotic arbuscular fungi and inducing seed germination in root parasitic weeds. SLs are carotenoid-derivatives characterized by the presence of a butenolide ring that is connected by an enol ether bridge to a less conserved, second moiety. Carotenoids are isopenoid pigments that differ in structure, number of conjugated double bonds and stereo-configuration. Genetic analysis and enzymatic studies demonstrate that SLs originate from all-trans-β-carotene in a pathway that involves the all-trans-/9-cis-β-carotene isomerase DWARF27 (D27) and the carotenoid cleavage dioxygenase 7 and 8 (CCD7, 8). The CCD7-mediated, regio- and stereospecific double bond cleavage of 9-cis-β-carotene leads to a 9-cis-configured intermediate that is converted by CCD8 via a combination of reactions into the central metabolite carlactone. By catalyzing repeated oxygenation reactions that can be coupled to ring closure, CYP711 enzymes convert carlactone into tricyclic ring containing, canonical and non-canonical SLs. Mostly unknown, modifying enzymes further increase SLs diversity. In this review, we touch on carotenogenesis, provide an update on SL biosynthesis, with emphasis on the substrate specificity and reactions catalyzed by the different enzymes, and describe the regulation of the pathway.

  18. Ethylene Responses in Rice Roots and Coleoptiles Are Differentially Regulated by a Carotenoid Isomerase-Mediated Abscisic Acid Pathway[OPEN

    Science.gov (United States)

    Yin, Cui-Cui; Ma, Biao; Collinge, Derek Phillip; Pogson, Barry James; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Chen, Hui; Yang, Chao; Lu, Xiang; Wang, Yi-Qin; Zhang, Wan-Ke; Chu, Cheng-Cai; Sun, Xiao-Hong; Fang, Shuang; Chu, Jin-Fang; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice. PMID:25841037

  19. Elucidation of a Carotenoid Biosynthesis Gene Cluster Encoding a Novel Enzyme, 2,2′-β-Hydroxylase, from Brevundimonas sp. Strain SD212 and Combinatorial Biosynthesis of New or Rare Xanthophylls

    Science.gov (United States)

    Nishida, Yasuhiro; Adachi, Kyoko; Kasai, Hiroaki; Shizuri, Yoshikazu; Shindo, Kazutoshi; Sawabe, Akiyoshi; Komemushi, Sadao; Miki, Wataru; Misawa, Norihiko

    2005-01-01

    A carotenoid biosynthesis gene cluster mediating the production of 2-hydroxyastaxanthin was isolated from the marine bacterium Brevundimonas sp. strain SD212 by using a common crtI sequence as the probe DNA. A sequence analysis revealed this cluster to contain 12 open reading frames (ORFs), including the 7 known genes, crtW, crtY, crtI, crtB, crtE, idi, and crtZ. The individual ORFs were functionally analyzed by complementation studies using Escherichia coli that accumulated various carotenoid precursors due to the presence of other bacterial crt genes. In addition to functionally identifying the known crt genes, we found that one (ORF11, named crtG) coded for a novel enzyme, carotenoid 2,2′-β-hydroxylase, which showed intriguingly partial homology with animal sterol-C5-desaturase. When this crtG gene was introduced into E. coli accumulating zeaxanthin and canthaxanthin, the resulting transformants produced their 2-hydroxylated and 2,2′-dihydroxylated products which were structurally novel or rare xanthophylls, as determined by their nuclear magnetic resonance and high-performance liquid chromatography/photodiode array detector/atmospheric pressure chemical ionization mass spectrometry spectral data. The new carotenoid produced was suggested to have a strong inhibitory effect on lipid peroxidation. PMID:16085816

  20. The p450 monooxygenase BcABA1 is essential for abscisic acid biosynthesis in Botrytis cinerea

    DEFF Research Database (Denmark)

    Siewers, V.; Smedsgaard, Jørn; Tudzynski, P.

    2004-01-01

    The phytopathogenic ascomycete Botrytis cinerea is known to produce abscisic acid (ABA), which is thought to be involved in host-pathogen interaction. Biochemical analyses had previously shown that, in contrast to higher plants, the fungal ABA biosynthesis probably does not proceed via carotenoids...

  1. Incorporation of [1-C14] Isopentenyl Pyrophosphate into Carotenoids and Homo carotenoids using a Cell-free Preparation of Micrococcus Luteus

    International Nuclear Information System (INIS)

    Al-Wandawi, H.

    1998-01-01

    The early steps up to the formation of acyclic unsaturated carotenes (e.g.,phytoene to lycopene) are presumed to be common to the biosynthesis of all carotenoids with 40 or more carbon atoms, nevertheless, no direct evidence so far available to confirm this for homo carotenoids (c 45 and c 50 carotenoids). In the present study, an active cell-free preparation was obtained from diphenylamine-inhibited cells of Micrococcus Iuteus and found to be capable to incorporate radioactivity from Isopentenyl pyrophosphate (labelled with C-14)into carotenoids and homo carotenoids, providing for the first time a direct evidence which suggests that both carotenoids and homo carotenoids are sharing the same biological origin. Furthermore, the technique developed in this study may be considered as a valuable method for preparation of biological-active labelled compounds which may have some advantages over conventional chemical syntheses methods

  2. Carotenoid deposition in plant and animal foods and its impact on bioavailability.

    Science.gov (United States)

    Schweiggert, R M; Carle, R

    2017-06-13

    Over the past decades, an enormous body of literature dealing with the natural deposition of carotenoids in plant- and animal-based foods has accumulated. Prominent examples are the large solid-crystalline aggregates in carrots and tomatoes or the lipid-dissolved forms in dairy products and egg yolk. Latest research has identified lipid-dissolved forms in a rare number of plant foods, such as tangerine tomatoes and peach palm fruit (Bactris gasipaes Kunth). In addition, liquid-crystalline forms were assumed in so-called tubular chromoplasts of numerous fruits, e.g., in papaya, mango, and bell pepper. The bioavailability of carotenoids from fresh and processed foods strongly depends on their genuine deposition form, since their effective absorption to the human organism requires their liberation from the food matrix and subsequent solubilization into mixed micelles in the small intestine. Consequently, a broad overview about the natural array of carotenoid deposition forms should be helpful to better understand and modulate their bioavailability from foods. Furthermore, naturally highly bioavailable forms may provide biomimetic models for the improved formulation of carotenoids in food supplements. Therefore, this review paper presents scientific evidence from human intervention studies associating carotenoid deposition forms with their bioavailability, thus suggesting novel technological and dietary strategies for their enhanced absorption.

  3. Effect of UV radiation and its implications on carotenoid pathway in Bixa orellana L.

    Science.gov (United States)

    Sankari, M; Hridya, H; Sneha, P; George Priya Doss, C; Ramamoorthy, Siva

    2017-11-01

    The current study was undertaken to analyse the effect of short-term UV-B and UV-C radiations in provoking carotenoid biosynthesis in Bixa orellana. Seeds of B. orellana were germinated and exposed to the short term UV pre-treatment under controlled environmental condition for 5days. The UV treated young seedlings response in pigment contents; antioxidant enzyme activity and mRNA gene expression level were analysed. The pigment content such as chlorophyll was increased in both UV-B and UV-C treated seedlings, but the total carotenoid level was decreased when compared to the control seedlings this can be attributed to the plant adaptability to survive in a stressed condition. The β-carotene level was increased in UV-B, and UV-C treated young seedlings. No significant changes have occurred in the secondary pigment such as bixin and ABA. The activity of the antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase was significantly increased in UV-B treated seedlings when compared to the UV-C treated seedlings and control. The mRNA expression of the genes involved in bixin biosynthesis pathways such as DXS, PSY, PDS, LCY-β, LCY-ε, CMT, LCD, ADH and CCD genes showed different expression pattern in UV-B and UV-C treated young seedlings. Further we analysed the gene co-expression network to identify the genes which are mainly involved in carotenoid/bixin biosynthesis pathway. Form our findings the CCD, LCY, PDS, ZDS and PSY showed a close interaction. The result of our study shows that the short term UV-B and UV-C radiations induce pigment content, antioxidant enzyme activity and different gene expression pattern allowing the plant to survive in the oxidative stress condition. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Identification of a carotenoid oxygenase synthesizing acyclic xanthophylls: combinatorial biosynthesis and directed evolution.

    Science.gov (United States)

    Mijts, Benjamin N; Lee, Pyung Cheon; Schmidt-Dannert, Claudia

    2005-04-01

    A carotenoid desaturase homolog from Staphylococcus aureus (CrtOx) was identified. When expressed in engineered E. coli cells synthesizing linear C(30) carotenoids, polar carotenoid products were generated, identified as aldehyde and carboxylic acid C(30) carotenoid derivatives. The major product in this engineered pathway is the fully desaturated C(30) dialdehyde carotenoid 4,4'-diapolycopen-4,4'-dial. Very low carotenoid yields were observed when CrtOx was complemented with the C(40) carotenoid lycopene pathway. But extension of an in vitro evolved pathway of the fully desaturated 2,4,2',4'-tetradehydrolycopene produced the structurally novel fully desaturated C(40) dialdehyde carotenoid 2,4,2',4'-tetradehydrolycopendial. Directed evolution of CrtOx by error-prone PCR resulted in a number of variants with higher activity on C(40) carotenoid substrates and improved product profiles. These findings may provide new biosynthetic routes to highly polar carotenoids with unique spectral properties desirable for a number of industrial and pharmaceutical applications.

  5. De novo Assembly of the Camellia nitidissima Transcriptome Reveals Key Genes of Flower Pigment Biosynthesis

    Directory of Open Access Journals (Sweden)

    Xingwen Zhou

    2017-09-01

    Full Text Available The golden camellia, Camellia nitidissima Chi., is a well-known ornamental plant that is known as “the queen of camellias” because of its golden yellow flowers. The principal pigments in the flowers are carotenoids and flavonol glycosides. Understanding the biosynthesis of the golden color and its regulation is important in camellia breeding. To obtain a comprehensive understanding of flower development in C. nitidissima, a number of cDNA libraries were independently constructed during flower development. Using the Illumina Hiseq2500 platform, approximately 71.8 million raw reads (about 10.8 gigabase pairs were obtained and assembled into 583,194 transcripts and 466, 594 unigenes. A differentially expressed genes (DEGs and co-expression network was constructed to identify unigenes correlated with flower color. The analysis of DEGs and co-expressed network involved in the carotenoid pathway indicated that the biosynthesis of carotenoids is regulated mainly at the transcript level and that phytoene synthase (PSY, β -carotene 3-hydroxylase (CrtZ, and capsanthin synthase (CCS1 exert synergistic effects in carotenoid biosynthesis. The analysis of DEGs and co-expressed network involved in the flavonoid pathway indicated that chalcone synthase (CHS, naringenin 3-dioxygenase (F3H, leucoanthocyanidin dioxygenase(ANS, and flavonol synthase (FLS play critical roles in regulating the formation of flavonols and anthocyanidin. Based on the gene expression analysis of the carotenoid and flavonoid pathways, and determinations of the pigments, we speculate that the high expression of PSY and CrtZ ensures the production of adequate levels of carotenoids, while the expression of CHS, FLS ensures the production of flavonols. The golden yellow color is then the result of the accumulation of carotenoids and flavonol glucosides in the petals. This study of the mechanism of color formation in golden camellia points the way to breeding strategies that exploit gene

  6. The carotenoid content in certain plants from Abisko National Park (Swedish Lapland

    Directory of Open Access Journals (Sweden)

    B. Czeczuga

    2015-01-01

    Full Text Available By means of columnar and thin-layer chromatography, the presence of carotenoids in Lichens (2 species, Sphagnaceae (l species, Lycopodiaceae (l species and in 23 species of the higher plants from Abisko National Park (Swedish Lapland was studied. 34 carotenoids were identified and total content ranged from 0.05 mg/g to 0.85 mg/g dry mass.

  7. Novel expression patterns of carotenoid pathway-related gene in citrus leaves and maturing fruits

    Science.gov (United States)

    Carotenoids are abundant in citrus fruits and vary among cultivars and species. In the present study, HPLC and real-time PCR were used to investigate the expression patterns of 23 carotenoid biosynthesis gene family members and their possible relation with carotenoid accumulation in flavedo, juice s...

  8. Metabolite Profiling of Peppers of Various Colors Reveals Relationships Between Tocopherol, Carotenoid, and Phytosterol Content.

    Science.gov (United States)

    Kim, Tae Jin; Choi, Jaehyuk; Kim, Kil Won; Ahn, Soon Kil; Ha, Sun-Hwa; Choi, Yongsoo; Park, Nam Il; Kim, Jae Kwang

    2017-12-01

    Peppers are widely consumed in Korea; the varietal development of peppers with increased content of beneficial plant metabolites is, therefore, of considerable interest. This requires a comprehensive understanding of the metabolic profile of pepper plants and the factors affecting this profile. To this end, we determined the content of various metabolites, such as hydrophilic and lipophilic compounds, phenolic acids, carotenoids, and capsaicinoids in peppers of various colors (green, red, pale green, and violet peppers) and in a high-pungency (green) pepper. We also performed principal component analysis (PCA), Pearson's correlation analysis, and hierarchical clustering analysis (HCA) to determine the relationships among these metabolites in peppers. PCA results indicated no significant variances among the 3 sample replicates. The HCA showed correlations between the metabolites resulting from common or closely linked biosynthesis pathways. Our results showed that carotenoids correlated positively with tocopherols and negatively with phytosterols; our findings also indicated a close relationship between the methylerythritol 4-phosphate and mevalonic acid biosynthesis pathways, providing evidence in favor of an earlier hypothesis regarding crosstalk across the chloroplast membrane. We, thus, demonstrate that metabolic profiling combined with multivariate analysis is a useful tool for analyzing metabolic networks. A total of 71 metabolites were measured in 5 peppers of different colors. The metabolic profiling with multivariate analysis revealed that tocopherol content had a positive correlation with the carotenoid content and a negative correlation with the phytosterol content. The results of this study may help in breeding programs to produce new germplasm with enhanced nutritional quality. © 2017 Institute of Food Technologists®.

  9. Carotenogenic gene expression and carotenoid accumulation in three varieties of Cucurbita pepo during fruit development.

    Science.gov (United States)

    Obrero, Ángeles; González-Verdejo, Clara I; Die, Jose V; Gómez, Pedro; Del Río-Celestino, Mercedes; Román, Belén

    2013-07-03

    The control of gene expression is a crucial regulatory mechanism in carotenoid accumulation of fruits and flowers. We investigated the role of transcriptional regulation of nine genes involved in the carotenoid biosynthesis pathway in three varieties of Cucurbita pepo with evident differences in fruit color. The transcriptional levels of the key genes involved in the carotenoid biosynthesis were higher in flower-, leaf-, and fruit skin tissues than flesh tissues. This correlated with higher concentration of carotenoid content in these tissues. The differential expression among the colored and white cultivars detected for some genes, such as LCYe, in combination with other regulatory mechanisms, could explain the large differences found in terms of carotenoid content among the three varieties. These results are a first step to elucidate carotenogenesis in C. pepo and demonstrate that, in general, regulation of the pathway genes is a critical factor that determines the accumulation of these compounds.

  10. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis

    KAUST Repository

    Frusciante, Sarah; Diretto, Gianfranco; Bruno, Mark; Ferrante, Paola; Pietrella, Marco; Prado-Cabrero, Alfonso; Rubio-Moraga, Á ngela L.; Beyer, Peter D.; Gó mez-Gó mez, Lourdes; Al-Babili, Salim; Giuliano, Giovanni

    2014-01-01

    Crocus sativus stigmas are the source of the saffron spice and accumulate the apocarotenoids crocetin, crocins, picrocrocin, and safranal, responsible for its color, taste, and aroma. Through deep transcriptome sequencing, we identified a novel dioxygenase, carotenoid cleavage dioxygenase 2 (CCD2), expressed early during stigma development and closely related to, but distinct from, the CCD1 dioxygenase family. CCD2 is the only identified member of a novel CCD clade, presents the structural features of a bona fide CCD, and is able to cleave zeaxanthin, the presumed precursor of saffron apocarotenoids, both in Escherichia coli and in maize endosperm. The cleavage products, identified through high-resolution mass spectrometry and comigration with authentic standards, are crocetin dialdehyde and crocetin, respectively. In vitro assays show that CCD2 cleaves sequentially the 7,8 and 7′,8′ double bonds adjacent to a 3-OH-β-ionone ring and that the conversion of zeaxanthin to crocetin dialdehyde proceeds via the C30 intermediate 3-OH-β-apo-8′-carotenal. In contrast, zeaxanthin cleavage dioxygenase (ZCD), an enzyme previously claimed to mediate crocetin formation, did not cleave zeaxanthin or 3-OH-β-apo-8′-carotenal in the test systems used. Sequence comparison and structure prediction suggest that ZCD is an N-truncated CCD4 form, lacking one blade of the β-propeller structure conserved in all CCDs. These results constitute strong evidence that CCD2 catalyzes the first dedicated step in crocin biosynthesis. Similar to CCD1, CCD2 has a cytoplasmic localization, suggesting that it may cleave carotenoids localized in the chromoplast outer envelope.

  11. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis

    KAUST Repository

    Frusciante, Sarah

    2014-08-05

    Crocus sativus stigmas are the source of the saffron spice and accumulate the apocarotenoids crocetin, crocins, picrocrocin, and safranal, responsible for its color, taste, and aroma. Through deep transcriptome sequencing, we identified a novel dioxygenase, carotenoid cleavage dioxygenase 2 (CCD2), expressed early during stigma development and closely related to, but distinct from, the CCD1 dioxygenase family. CCD2 is the only identified member of a novel CCD clade, presents the structural features of a bona fide CCD, and is able to cleave zeaxanthin, the presumed precursor of saffron apocarotenoids, both in Escherichia coli and in maize endosperm. The cleavage products, identified through high-resolution mass spectrometry and comigration with authentic standards, are crocetin dialdehyde and crocetin, respectively. In vitro assays show that CCD2 cleaves sequentially the 7,8 and 7′,8′ double bonds adjacent to a 3-OH-β-ionone ring and that the conversion of zeaxanthin to crocetin dialdehyde proceeds via the C30 intermediate 3-OH-β-apo-8′-carotenal. In contrast, zeaxanthin cleavage dioxygenase (ZCD), an enzyme previously claimed to mediate crocetin formation, did not cleave zeaxanthin or 3-OH-β-apo-8′-carotenal in the test systems used. Sequence comparison and structure prediction suggest that ZCD is an N-truncated CCD4 form, lacking one blade of the β-propeller structure conserved in all CCDs. These results constitute strong evidence that CCD2 catalyzes the first dedicated step in crocin biosynthesis. Similar to CCD1, CCD2 has a cytoplasmic localization, suggesting that it may cleave carotenoids localized in the chromoplast outer envelope.

  12. Morphological observation, RNA-Seq quantification, and expression profiling: novel insight into grafting-responsive carotenoid biosynthesis in watermelon grafted onto pumpkin rootstock.

    Science.gov (United States)

    Liu, Guang; Yang, Xingping; Xu, Jinhua; Zhang, Man; Hou, Qian; Zhu, Lingli; Huang, Ying; Xiong, Aisheng

    2017-03-01

    Watermelon is an important and economical horticultural crop in China, where ~20% of the plants are grafted. The development of grafted watermelon fruit involves a diverse range of gene interactions that results in dynamic changes in fruit. However, the molecular mechanisms underlying grafting-induced fruit quality change are unclear. In the present study, we measured the lycopene content by high-performance liquid chromatography and used RNA-Seq (quantification) to perform a genome-wide transcript analysis of fruits from watermelon grafted onto pumpkin rootstock (pumpkin-grafted watermelon, PGW), self-grafted watermelon (SGW), and non-grafted watermelon (NGW). The results showed variation in the lycopene content in the flesh of PGW fruits, first increasing and then decreasing in the four stages, which was different from the trend in the flesh of NGW and SGW fruits. The transcriptome profiling data provided new information on the grafting-induced gene regulation of lycopene biosynthesis during fruit growth and development. The expression levels of 33 genes from 8 gene families (GGPS, PSY, PDS, ZDS, CRTISO, LCYb, LCYe, and CHY) related to lycopene biosynthesis, which play critical roles in fruit coloration and contribute significantly to fruit phytonutrient values, were monitored during the four periods of fruit development in watermelon. Compared with those of NGW and SGW, 14 genes were differentially expressed in PGW during fruit development, suggesting that these genes possibly help to mediate lycopene biosynthesis in grafted watermelon fruit. Our work provides some novel insights into grafting-responsive carotenoid metabolism and its potential roles during PGW fruit development and ripening. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Generation of structurally novel short carotenoids and study of their biological activity

    DEFF Research Database (Denmark)

    Kim, Se Hyeuk; Kim, Moon S.; Lee, Bun Y.

    2016-01-01

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored...... thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid...... structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-atocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid...

  14. [Carotenoids: 1. Metabolism and physiology].

    Science.gov (United States)

    Faure, H; Fayol, V; Galabert, C; Grolier, P; Le Moël, G; Steghens, J P; Van Kappel, A; Nabet, F

    1999-01-01

    Carotenoids are a family of pigments with at least 600 members. They derive from lycopene after steps of cyclisation, dehydrogenation and oxidation. It is their chemical structure that determines their physiochemical properties and, in part, their biological activities. About 50 carotenoids can be found in human diet and about 20 of them have been found in plasma and tissues. There is no RDA (Recommended Daily Allowance) for carotenoids. Quantities of carotenoids in diet are difficult to estimate, partly because methods used for the establishment of food composition tables were not specific and sensitive enough. Also, given values do not always take into account variations due to season and region of culture. Absorption of beta-carotene in humans has been the subject of numerous studies but only very little is known about other carotenoids. In general, absorption depends on bioavailability from the food matrix and solubility in micelles. After absorption through passive diffusion, carotenoids follow the chylomicrons metabolism. They are taken up by the liver and released in the blood stream in lipoproteins (VLDL). Carotenoids with no-substituted beta-ionone cycles (alpha and beta-carotene and beta-cryptoxanthin) have provitamin A activity. Highest activity has been found for all-trans beta-carotene. Not all steps of vitamin A biosynthesis and metabolism of other carotenoids have been clarified yet. Besides their provitamin A activity, carotenoids have numerous biological functions. They are efficient scavengers of free radicals, particularly of 1O2. In vitro they have been shown to protect LDL. However, results in vivo are inconsistent. Other functions include enhancement of gap junctions, immunomodulation and regulation of enzyme activity involved in carcinogenesis.

  15. The carotenoid biosynthetic and catabolic genes in wheat and their association with yellow pigments.

    Science.gov (United States)

    Colasuonno, Pasqualina; Lozito, Maria Luisa; Marcotuli, Ilaria; Nigro, Domenica; Giancaspro, Angelica; Mangini, Giacomo; De Vita, Pasquale; Mastrangelo, Anna Maria; Pecchioni, Nicola; Houston, Kelly; Simeone, Rosanna; Gadaleta, Agata; Blanco, Antonio

    2017-01-31

    In plants carotenoids play an important role in the photosynthetic process and photo-oxidative protection, and are the substrate for the synthesis of abscisic acid and strigolactones. In addition to their protective role as antioxidants and precursors of vitamin A, in wheat carotenoids are important as they influence the colour (whiteness vs. yellowness) of the grain. Understanding the genetic basis of grain yellow pigments, and identifying associated markers provide the basis for improving wheat quality by molecular breeding. Twenty-four candidate genes involved in the biosynthesis and catabolism of carotenoid compounds have been identified in wheat by comparative genomics. Single nucleotide polymorphisms (SNPs) found in the coding sequences of 19 candidate genes allowed their chromosomal location and accurate map position on two reference consensus maps to be determined. The genome-wide association study based on genotyping a tetraploid wheat collection with 81,587 gene-associated SNPs validated quantitative trait loci (QTLs) previously detected in biparental populations and discovered new QTLs for grain colour-related traits. Ten carotenoid genes mapped in chromosome regions underlying pigment content QTLs indicating possible functional relationships between candidate genes and the trait. The availability of linked, candidate gene-based markers can facilitate breeding wheat cultivars with desirable levels of carotenoids. Identifying QTLs linked to carotenoid pigmentation can contribute to understanding genes underlying carotenoid accumulation in the wheat kernels. Together these outputs can be combined to exploit the genetic variability of colour-related traits for the nutritional and commercial improvement of wheat products.

  16. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation

    NARCIS (Netherlands)

    Lopez Raez, J.A.; Charnikhova, T.; Gomez-Roldan, M.V.; Matusova, R.; Kohlen, W.; Vos, de C.H.; Verstappen, F.W.A.; Puech-Pages, V.; Becard, G.; Mulder, P.P.J.; Bouwmeester, H.J.

    2008-01-01

    Strigolactones are rhizosphere signalling compounds that mediate host location in arbuscular mycorrhizal (AM) fungi and parasitic plants. Here, the regulation of the biosynthesis of strigolactones is studied in tomato (Solanum lycopersicum). Strigolactone production under phosphate starvation, in

  17. Generation of structurally novel short carotenoids and study of their biological activity.

    Science.gov (United States)

    Kim, Se H; Kim, Moon S; Lee, Bun Y; Lee, Pyung C

    2016-02-23

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-α-tocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid 4,4'-diapotorulene on rat bone marrow mesenchymal stem cells. Our results demonstrate that a series of structurally novel carotenoids possessing biologically beneficial properties can be synthesized in E. coli.

  18. Genetic manipulation of carotenoid biosynthesis and photoprotection.

    Science.gov (United States)

    Pogson, B J; Rissler, H M

    2000-10-29

    There are multiple complementary and redundant mechanisms to provide protection against photo-oxidative damage, including non-photochemical quenching (NPQ). NPQ dissipates excess excitation energy as heat by using xanthophylls in combination with changes to the light-harvesting complex (LHC) antenna. The xanthophylls are oxygenated carotenoids that in addition to contributing to NPQ can quench singlet or triplet chlorophyll and are necessary for the assembly and stability of the antenna. We have genetically manipulated the expression of the epsilon-cyclase and beta-carotene hydroxylase carotenoid biosynthetic enzymes in Arabidopsis thaliana. The epsilon-cyclase overexpression confirmed that lut2 (lutein deficient) is a mutation in the epsilon-cyclase gene and demonstrated that lutein content can be altered at the level of mRNA abundance with levels ranging from 0 to 180% of wild-type. Also, it is clear that lutein affects the induction and extent of NPQ. The deleterious effects of lutein deficiency on NPQ in Arabidopsis and Chlamydomonas are additive, no matter what the genetic background, whether npq1 (zeaxanthin deficient), aba1 or antisense beta-hydroxylase (xanthophyll cycle pool decreased). Additionally, increasing lutein content causes a marginal, but significant, increase in the rate of induction of NPQ despite a reduction in the xanthophyll cycle pool size.

  19. Carotenoids from Capsicum annuum fruits: Influence of spectral quality of radiation

    International Nuclear Information System (INIS)

    Lopez, M.; Candela, M.E.; Sabater, F.

    1986-01-01

    Capsicum annuum L. cv. Ramillete fruits grown in the field were covered 60 d after flowering with “white”, yellow, red and blue cellophane filters. Two other sets were left in full sunlight and under cover, respectively. After 30 d of treatment, during the ripening period, the contents of individual carotenoids were analyzed. The red radiation was the most effective to increase the carotenoid biosynthesis, but the green and blue radiations inhibited their production. Either class of filters inhibited the formation of capsanthin, the most important carotenoid in the production of red colour of the maturation, but capsorubin, the other carotenoid responsible for the maturation colour, was more enhanced in the shade and under red radiation. Neither type of radiation was so efficient in increasing the total carotenoids content as the full sun radiation

  20. Influence of exogenously applied abscisic acid on carotenoid content and water uptake in flowers of the tea plant (Camellia sinensis).

    Science.gov (United States)

    Baldermann, Susanne; Yang, Ziyin; Sakai, Miwa; Fleischmann, Peter; Morita, Akio; Todoroki, Yasushi; Watanabe, Naoharu

    2013-05-01

    Carotenoids are a major class of plant pigments and fulfill many functions in different organisms that either produce or consume them. Although the color of the stamina of tea (Camellia sinensis) flowers is clearly due to the presence of carotenoids, the carotenoid profile and content remain to be discovered. We investigated the carotenoid profile of tea flowers and determined changes in concentrations over the floral development. The flowers contained oxygenated xanthophylls such as neoxanthin, lutein and zeaxanthin, as well as the hydrocarbons β-carotene and α-carotene. Flowers of the tea plant contain to vegetables comparable amounts of carotenoids. The content of 9'-cis-epoxycarotenoids, which serve as abscisic acid precursors, as well as changes in concentration of abscisic acid were studied. The concentrations of carotenoids decreased whereas the abscisic acid content increased over the floral development. Exogenously applied S-abscisic acid affected water uptake, flower opening and carotenoid accumulation. In summary, this paper reports, for the first time, the carotenoid profile and content of tea flowers. The study revealed that carotenoids in tea flowers are an interesting target in respect of possible applications of tea flower extracts as well as biological functions of abscisic acid during floral development. © 2012 Society of Chemical Industry.

  1. Cloning and Functional Characterization of the Maize (Zea mays L.) Carotenoid Epsilon Hydroxylase Gene

    Science.gov (United States)

    Sheng, Yanmin; Wang, Yingdian; Capell, Teresa; Shi, Lianxuan; Ni, Xiuzhen; Sandmann, Gerhard; Christou, Paul; Zhu, Changfu

    2015-01-01

    The assignment of functions to genes in the carotenoid biosynthesis pathway is necessary to understand how the pathway is regulated and to obtain the basic information required for metabolic engineering. Few carotenoid ε-hydroxylases have been functionally characterized in plants although this would provide insight into the hydroxylation steps in the pathway. We therefore isolated mRNA from the endosperm of maize (Zea mays L., inbred line B73) and cloned a full-length cDNA encoding CYP97C19, a putative heme-containing carotenoid ε hydroxylase and member of the cytochrome P450 family. The corresponding CYP97C19 genomic locus on chromosome 1 was found to comprise a single-copy gene with nine introns. We expressed CYP97C19 cDNA under the control of the constitutive CaMV 35S promoter in the Arabidopsis thaliana lut1 knockout mutant, which lacks a functional CYP97C1 (LUT1) gene. The analysis of carotenoid levels and composition showed that lutein accumulated to high levels in the rosette leaves of the transgenic lines but not in the untransformed lut1 mutants. These results allowed the unambiguous functional annotation of maize CYP97C19 as an enzyme with strong zeinoxanthin ε-ring hydroxylation activity. PMID:26030746

  2. ProCarDB: a database of bacterial carotenoids.

    Science.gov (United States)

    Nupur, L N U; Vats, Asheema; Dhanda, Sandeep Kumar; Raghava, Gajendra P S; Pinnaka, Anil Kumar; Kumar, Ashwani

    2016-05-26

    Carotenoids have important functions in bacteria, ranging from harvesting light energy to neutralizing oxidants and acting as virulence factors. However, information pertaining to the carotenoids is scattered throughout the literature. Furthermore, information about the genes/proteins involved in the biosynthesis of carotenoids has tremendously increased in the post-genomic era. A web server providing the information about microbial carotenoids in a structured manner is required and will be a valuable resource for the scientific community working with microbial carotenoids. Here, we have created a manually curated, open access, comprehensive compilation of bacterial carotenoids named as ProCarDB- Prokaryotic Carotenoid Database. ProCarDB includes 304 unique carotenoids arising from 50 biosynthetic pathways distributed among 611 prokaryotes. ProCarDB provides important information on carotenoids, such as 2D and 3D structures, molecular weight, molecular formula, SMILES, InChI, InChIKey, IUPAC name, KEGG Id, PubChem Id, and ChEBI Id. The database also provides NMR data, UV-vis absorption data, IR data, MS data and HPLC data that play key roles in the identification of carotenoids. An important feature of this database is the extension of biosynthetic pathways from the literature and through the presence of the genes/enzymes in different organisms. The information contained in the database was mined from published literature and databases such as KEGG, PubChem, ChEBI, LipidBank, LPSN, and Uniprot. The database integrates user-friendly browsing and searching with carotenoid analysis tools to help the user. We believe that this database will serve as a major information centre for researchers working on bacterial carotenoids.

  3. Carotenoids Database: structures, chemical fingerprints and distribution among organisms.

    Science.gov (United States)

    Yabuzaki, Junko

    2017-01-01

    To promote understanding of how organisms are related via carotenoids, either evolutionarily or symbiotically, or in food chains through natural histories, we built the Carotenoids Database. This provides chemical information on 1117 natural carotenoids with 683 source organisms. For extracting organisms closely related through the biosynthesis of carotenoids, we offer a new similarity search system 'Search similar carotenoids' using our original chemical fingerprint 'Carotenoid DB Chemical Fingerprints'. These Carotenoid DB Chemical Fingerprints describe the chemical substructure and the modification details based upon International Union of Pure and Applied Chemistry (IUPAC) semi-systematic names of the carotenoids. The fingerprints also allow (i) easier prediction of six biological functions of carotenoids: provitamin A, membrane stabilizers, odorous substances, allelochemicals, antiproliferative activity and reverse MDR activity against cancer cells, (ii) easier classification of carotenoid structures, (iii) partial and exact structure searching and (iv) easier extraction of structural isomers and stereoisomers. We believe this to be the first attempt to establish fingerprints using the IUPAC semi-systematic names. For extracting close profiled organisms, we provide a new tool 'Search similar profiled organisms'. Our current statistics show some insights into natural history: carotenoids seem to have been spread largely by bacteria, as they produce C30, C40, C45 and C50 carotenoids, with the widest range of end groups, and they share a small portion of C40 carotenoids with eukaryotes. Archaea share an even smaller portion with eukaryotes. Eukaryotes then have evolved a considerable variety of C40 carotenoids. Considering carotenoids, eukaryotes seem more closely related to bacteria than to archaea aside from 16S rRNA lineage analysis. : http://carotenoiddb.jp. © The Author(s) 2017. Published by Oxford University Press.

  4. Isolated etioplasts as test system for inhibitors of fatty acid biosynthesis

    International Nuclear Information System (INIS)

    Lichtenthaler, H.K.; Kobek, K.

    1989-01-01

    Isolated intact chloroplasts of mono- and dicotyledonous plants possess the capacity for de novo fatty acid biosynthesis, starting from 14 C-acetate. These can be taken as test system for herbicides affecting fatty acid biosynthesis as shown earlier in our laboratory. The incorporation rates of acetate into the total fatty acids depend on the photosynthetic cofactors ATP and NADPH and amount in the light to 33 kBq (oat) and 39 kBq (pea) per mg chlorophyll x h, whereas in the dark only ca. 10% of these rates are obtained. In order to establish a test system, which is fully independent of light, we isolated and characterized etioplast fractions from oat and pea seedlings with a very high capacity of de novo fatty acid biosynthesis (500 and 400 kBq per mg carotenoids in a 20 min period). This activity was blocked by herbicides such as cycloxydim, sethoxydim and diclofop in a dose-dependent manner. This new test system has the great advantage that one can verify whether inhibitors of photosynthesis affect fatty acid biosynthesis

  5. Molecular regulation of carotenoid biosynthesis in tomato fruits new biotechnological strategies /

    OpenAIRE

    D'Andrea, Lucio

    2016-01-01

    Los carotenoides son metabolitos isoprenoides de gran relevancia económica como pigmentos naturales y fitonutrientes. Durante la maduración del fruto de tomate (Solanum lycopersicum) se acumulan niveles elevados de carotenoides como β-caroteno (naranja) y licopeno (rojo) en un tipo de plasto especializado denominado cromoplasto. En la maduración se pueden distinguir tres estadios según el color del fruto: Verde Maduro (VM), Naranja (N) y Rojo (R). La transición de VM a N y por último a R, se ...

  6. Biotechnological production of value-added carotenoids from microalgae: Emerging technology and prospects.

    Science.gov (United States)

    Wichuk, Kristine; Brynjólfsson, Sigurður; Fu, Weiqi

    2014-01-01

    We recently evaluated the relationship between abiotic environmental stresses and lutein biosynthesis in the green microalga Dunaliella salina and suggested a rational design of stress-driven adaptive evolution experiments for carotenoids production in microalgae. Here, we summarize our recent findings regarding the biotechnological production of carotenoids from microalgae and outline emerging technology in this field. Carotenoid metabolic pathways are characterized in several representative algal species as they pave the way for biotechnology development. The adaptive evolution strategy is highlighted in connection with enhanced growth rate and carotenoid metabolism. In addition, available genetic modification tools are described, with emphasis on model species. A brief discussion on the role of lights as limiting factors in carotenoid production in microalgae is also included. Overall, our analysis suggests that light-driven metabolism and the photosynthetic efficiency of microalgae in photobioreactors are the main bottlenecks in enhancing biotechnological potential of carotenoid production from microalgae.

  7. Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels.

    Directory of Open Access Journals (Sweden)

    Dirk Maass

    Full Text Available BACKGROUND: As the first pathway-specific enzyme in carotenoid biosynthesis, phytoene synthase (PSY is a prime regulatory target. This includes a number of biotechnological approaches that have successfully increased the carotenoid content in agronomically relevant non-green plant tissues through tissue-specific PSY overexpression. We investigated the differential effects of constitutive AtPSY overexpression in green and non-green cells of transgenic Arabidopsis lines. This revealed striking similarities to the situation found in orange carrot roots with respect to carotenoid amounts and sequestration mechanism. METHODOLOGY/PRINCIPAL FINDINGS: In Arabidopsis seedlings, carotenoid content remained unaffected by increased AtPSY levels although the protein was almost quantitatively imported into plastids, as shown by western blot analyses. In contrast, non-photosynthetic calli and roots overexpressing AtPSY accumulated carotenoids 10 and 100-fold above the corresponding wild-type tissues and contained 1800 and 500 microg carotenoids per g dry weight, respectively. This increase coincided with a change of the pattern of accumulated carotenoids, as xanthophylls decreased relative to beta-carotene and carotene intermediates accumulated. As shown by polarization microscopy, carotenoids were found deposited in crystals, similar to crystalline-type chromoplasts of non-green tissues present in several other taxa. In fact, orange-colored carrots showed a similar situation with increased PSY protein as well as carotenoid levels and accumulation patterns whereas wild white-rooted carrots were similar to Arabidopsis wild type roots in this respect. Initiation of carotenoid crystal formation by increased PSY protein amounts was further confirmed by overexpressing crtB, a bacterial PSY gene, in white carrots, resulting in increased carotenoid amounts deposited in crystals. CONCLUSIONS: The sequestration of carotenoids into crystals can be driven by the

  8. Cancer Chemoprevention by Carotenoids

    Directory of Open Access Journals (Sweden)

    Takuji Tanaka

    2012-03-01

    Full Text Available Carotenoids are natural fat-soluble pigments that provide bright coloration to plants and animals. Dietary intake of carotenoids is inversely associated with the risk of a variety of cancers in different tissues. Preclinical studies have shown that some carotenoids have potent antitumor effects both in vitro and in vivo, suggesting potential preventive and/or therapeutic roles for the compounds. Since chemoprevention is one of the most important strategies in the control of cancer development, molecular mechanism-based cancer chemoprevention using carotenoids seems to be an attractive approach. Various carotenoids, such as β-carotene, a-carotene, lycopene, lutein, zeaxanthin, β-cryptoxanthin, fucoxanthin, canthaxanthin and astaxanthin, have been proven to have anti-carcinogenic activity in several tissues, although high doses of β-carotene failed to exhibit chemopreventive activity in clinical trials. In this review, cancer prevention using carotenoids are reviewed and the possible mechanisms of action are described.

  9. Carotenoids from Foods of Plant, Animal and Marine Origin: An Efficient HPLC-DAD Separation Method

    Directory of Open Access Journals (Sweden)

    Irini F. Strati

    2012-12-01

    Full Text Available Carotenoids are important antioxidant compounds, present in many foods of plant, animal and marine origin. The aim of the present study was to describe the carotenoid composition of tomato waste, prawn muscle and cephalothorax and avian (duck and goose egg yolks through the use of a modified gradient elution HPLC method with a C30 reversed-phase column for the efficient separation and analysis of carotenoids and their cis-isomers. Elution time was reduced from 60 to 45 min without affecting the separation efficiency. All-trans lycopene predominated in tomato waste, followed by all-trans-β-carotene, 13-cis-lutein and all-trans lutein, while minor amounts of 9-cis-lutein, 13-cis-β-carotene and 9-cis-β-carotene were also detected. Considering the above findings, tomato waste is confirmed to be an excellent source of recovering carotenoids, especially all-trans lycopene, for commercial use. Xanthophylls were the major carotenoids of avian egg yolks, all-trans lutein and all-trans zeaxanthin in duck and goose egg yolk, respectively. In the Penaeus kerathurus prawn, several carotenoids (zeaxanthin, all-trans-lutein, canthaxanthin, cryptoxanthin, optical and geometrical astaxanthin isomers were identified in considerable amounts by the same method. A major advantage of this HPLC method was the efficient separation of carotenoids and their cis-isomers, originating from a wide range of matrices.

  10. Structures and Analysis of Carotenoid Molecules.

    Science.gov (United States)

    Rodriguez-Amaya, Delia B

    Modifications of the usual C40 linear and symmetrical carotenoid skeleton give rise to a wide array of structures of carotenes and xanthophylls in plant tissues. These include acyclic, monocyclic and dicyclic carotenoids, along with hydroxy and epoxy xanthophylls and apocarotenoids. Carotenols can be unesterified or esterified (monoester) in one or two (diester) hydroxyl groups with fatty acids. E-Z isomerization increases the array of possible plant carotenoids even further. Screening and especially quantitative analysis are being carried out worldwide. Visible absorption spectrometry and near infrared reflectance spectroscopy have been used for the initial estimation of the total carotenoid content or the principal carotenoid content when large numbers of samples needed to be analyzed within a short time, as would be the case in breeding programs. Although inherently difficult, quantitative analysis of the individual carotenoids is essential. Knowledge of the sources of errors and means to avoid them has led to a large body of reliable quantitative compositional data on carotenoids. Reverse-phase HPLC with a photodiode array detector has been the preferred analytical technique, but UHPLC is increasingly employed. HPLC-MS has been used mainly for identification and NMR has been useful in unequivocally identifying geometric isomers.

  11. A review on factors influencing bioaccessibility and bioefficacy of carotenoids.

    Science.gov (United States)

    Priyadarshani, A M B

    2017-05-24

    Vitamin A deficiency is one of the most prevalent deficiency disorders in the world. As shown by many studies plant food based approaches have a real potential on prevention of vitamin A deficiency in a sustainable way. Carotenoids are important as precursors of vitamin A as well as for prevention of cancers, coronary heart diseases, age-related macular degeneration, cataract etc. Bioaccessibility and bioefficacy of carotenoids are known to be influenced by numerous factors including dietary factors such as fat, fiber, dosage of carotenoid, location of carotenoid in the plant tissue, heat treatment, particle size of food, carotenoid species, interactions among carotenoids, isomeric form and molecular linkage and subject characteristics. Therefore even when carotenoids are found in high quantities in plant foods their utilization may be unsatisfactory because some factors are known to interfere as negative effectors.

  12. Combinatorial Biosynthesis of Novel Multi-Hydroxy Carotenoids in the Red Yeast Xanthophyllomyces dendrorhous

    Directory of Open Access Journals (Sweden)

    Hendrik Pollmann

    2017-02-01

    Full Text Available The red yeast Xanthophyllomyces dendrorhous is an established platform for the synthesis of carotenoids. It was used for the generation of novel multi oxygenated carotenoid structures. This was achieved by a combinatorial approach starting with the selection of a β-carotene accumulating mutant, stepwise pathway engineering by integration of three microbial genes into the genome and finally the chemical reduction of the resulting 4,4’-diketo-nostoxanthin (2,3,2’,3’-tetrahydroxy-4,4’-diketo-β-carotene and 4-keto-nostoxanthin (2,3,2’,3’-tetrahydroxy-4-monoketo-β-carotene. Both keto carotenoids and the resulting 4,4’-dihydroxy-nostoxanthin (2,3,4,2’,3’,4’-hexahydroxy-β-carotene and 4-hydroxy-nostoxanthin (2,3,4,2’3’-pentahydroxy-β-carotene were separated by high-performance liquid chromatography (HPLC and analyzed by mass spectrometry. Their molecular masses and fragmentation patterns allowed the unequivocal identification of all four carotenoids.

  13. Perturbations in carotenoid and porphyrin status result in differential photooxidative stress signaling and antioxidant responses.

    Science.gov (United States)

    Park, Joon-Heum; Jung, Sunyo

    2018-02-12

    We examined differential photooxidative stress signaling and antioxidant responses in rice plants treated with norflurazon (NF) and oxyfluorfen (OF), which are inhibitors of carotenoid and porphyrin biosynthesis, respectively. Plants treated with OF markedly increased levels of cellular leakage and malondialdehyde, compared with NF-treated plants, showing that OF plants suffered greater oxidative damage with respect to membrane integrity. The enhanced production of H 2 O 2 in response to OF, but not NF, indicates the important role of H 2 O 2 in activation of photooxidative stress signaling in OF plants. In response to NF and OF, the increased levels of free salicylic acid as well as maintenance of the redox ratio of ascorbate and glutathione pools to a certain level are considered to be crucial factors in the protection against photooxidation. Plants treated with OF greatly up-regulated catalase (CAT) activity and Cat transcript levels, compared with NF-treated plants. Interestingly, NF plants showed no noticeable increase in oxidative metabolism, although they did show considerable increases in ascorbate peroxidase (APX) and peroxidase activities and transcript levels of APX, as in OF plants. Our results suggest that perturbations in carotenoid and porphyrin status by NF and OF can be sensed by differential photooxidative stress signaling, such as that involving H 2 O 2 , redox state of ascorbate and glutathione, and salicylic acid, which may be responsible for at least part of the induction of ROS-scavenging enzymes. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms.

    Directory of Open Access Journals (Sweden)

    Sacha Coesel

    Full Text Available Carotenoids are produced by all photosynthetic organisms, where they play essential roles in light harvesting and photoprotection. The carotenoid biosynthetic pathway of diatoms is largely unstudied, but is of particular interest because these organisms have a very different evolutionary history with respect to the Plantae and are thought to be derived from an ancient secondary endosymbiosis between heterotrophic and autotrophic eukaryotes. Furthermore, diatoms have an additional xanthophyll-based cycle for dissipating excess light energy with respect to green algae and higher plants. To explore the origins and functions of the carotenoid pathway in diatoms we searched for genes encoding pathway components in the recently completed genome sequences of two marine diatoms. Consistent with the supplemental xanthophyll cycle in diatoms, we found more copies of the genes encoding violaxanthin de-epoxidase (VDE and zeaxanthin epoxidase (ZEP enzymes compared with other photosynthetic eukaryotes. However, the similarity of these enzymes with those of higher plants indicates that they had very probably diversified before the secondary endosymbiosis had occurred, implying that VDE and ZEP represent early eukaryotic innovations in the Plantae. Consequently, the diatom chromist lineage likely obtained all paralogues of ZEP and VDE genes during the process of secondary endosymbiosis by gene transfer from the nucleus of the algal endosymbiont to the host nucleus. Furthermore, the presence of a ZEP gene in Tetrahymena thermophila provides the first evidence for a secondary plastid gene encoded in a heterotrophic ciliate, providing support for the chromalveolate hypothesis. Protein domain structures and expression analyses in the pennate diatom Phaeodactylum tricornutum indicate diverse roles for the different ZEP and VDE isoforms and demonstrate that they are differentially regulated by light. These studies therefore reveal the ancient origins of several

  15. Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms.

    Science.gov (United States)

    Coesel, Sacha; Oborník, Miroslav; Varela, Joao; Falciatore, Angela; Bowler, Chris

    2008-08-06

    Carotenoids are produced by all photosynthetic organisms, where they play essential roles in light harvesting and photoprotection. The carotenoid biosynthetic pathway of diatoms is largely unstudied, but is of particular interest because these organisms have a very different evolutionary history with respect to the Plantae and are thought to be derived from an ancient secondary endosymbiosis between heterotrophic and autotrophic eukaryotes. Furthermore, diatoms have an additional xanthophyll-based cycle for dissipating excess light energy with respect to green algae and higher plants. To explore the origins and functions of the carotenoid pathway in diatoms we searched for genes encoding pathway components in the recently completed genome sequences of two marine diatoms. Consistent with the supplemental xanthophyll cycle in diatoms, we found more copies of the genes encoding violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZEP) enzymes compared with other photosynthetic eukaryotes. However, the similarity of these enzymes with those of higher plants indicates that they had very probably diversified before the secondary endosymbiosis had occurred, implying that VDE and ZEP represent early eukaryotic innovations in the Plantae. Consequently, the diatom chromist lineage likely obtained all paralogues of ZEP and VDE genes during the process of secondary endosymbiosis by gene transfer from the nucleus of the algal endosymbiont to the host nucleus. Furthermore, the presence of a ZEP gene in Tetrahymena thermophila provides the first evidence for a secondary plastid gene encoded in a heterotrophic ciliate, providing support for the chromalveolate hypothesis. Protein domain structures and expression analyses in the pennate diatom Phaeodactylum tricornutum indicate diverse roles for the different ZEP and VDE isoforms and demonstrate that they are differentially regulated by light. These studies therefore reveal the ancient origins of several components of the

  16. Free and esterified carotenoids in pigmented wheat, tritordeum and barley grains.

    Science.gov (United States)

    Paznocht, Luboš; Kotíková, Zora; Šulc, Miloslav; Lachman, Jaromír; Orsák, Matyáš; Eliášová, Marie; Martinek, Petr

    2018-02-01

    Carotenoids are important phytonutrients responsible for the yellow endosperm color in cereal grains. Five carotenoids, namely lutein, zeaxanthin, antheraxanthin, α- and β-carotene, were quantified by HPLC-DAD-MS in fourteen genotypes of wheat, barley and tritordeum harvested in Czechia in 2014 and 2015. The highest carotenoid contents were found in yellow-grained tritordeum HT 439 (12.16μg/gDW), followed by blue-grained wheat V1-131-15 (7.46μg/gDW), and yellow-grained wheat TA 4024 (7.04μg/gDW). Comparing carotenoid contents, blue varieties had lower whereas purple ones had the same or higher levels than conventional bread wheat. Lutein was the main carotenoid found in wheat and tritordeum while zeaxanthin dominated in barley. The majority of cereals contained considerable levels of esterified forms (up to 61%) of which lutein esters prevailed. It was assessed that cereal genotype determines the proportion of free and esterified forms. High temperatures and drought during the growing season promoted carotenoid biosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Isolation and Functional Characterization of Carotenoid Cleavage Dioxygenase-1 from Laurus nobilis L. (Bay Laurel) Fruits.

    Science.gov (United States)

    Yahyaa, Mosaab; Berim, Anna; Isaacson, Tal; Marzouk, Sally; Bar, Einat; Davidovich-Rikanati, Rachel; Lewinsohn, Efraim; Ibdah, Mwafaq

    2015-09-23

    Bay laurel (Laurus nobilis L.) is an agriculturally important tree used in food, drugs, and the cosmetics industry. Many of the health beneficial properties of bay laurel are due to volatile terpene metabolites that they contain, including various norisoprenoids. Despite their importance, little is known about the norisoprenoid biosynthesis in Laurus nobilis fruits. We found that the volatile norisoprenoids 6-methyl-5-hepten-2-one, pseudoionone, and β-ionone accumulated in Laurus nobilis fruits in a pattern reflecting their carotenoid content. A full-length cDNA encoding a potential carotenoid cleavage dioxygenase (LnCCD1) was isolated. The LnCCD1 gene was overexpressed in Escherichia coli, and recombinant protein was assayed for its cleavage activity with an array of carotenoid substrates. The LnCCD1 protein was able to cleave a variety of carotenoids at the 9,10 (9',10') and 5,6 (5',6') positions to produce 6-methyl-5-hepten-2-one, pseudoionone, β-ionone, and α-ionone. Our results suggest a role for LnCCD1 in Laurus nobilis fruit flavor biosynthesis.

  18. BIOSYNTHESIS AND ACTION OF JASMONATES IN PLANTS.

    Science.gov (United States)

    Creelman, Robert A.; Mullet, John E.

    1997-06-01

    Jasmonic acid and its derivatives can modulate aspects of fruit ripening, production of viable pollen, root growth, tendril coiling, and plant resistance to insects and pathogens. Jasmonate activates genes involved in pathogen and insect resistance, and genes encoding vegetative storage proteins, but represses genes encoding proteins involved in photosynthesis. Jasmonic acid is derived from linolenic acid, and most of the enzymes in the biosynthetic pathway have been extensively characterized. Modulation of lipoxygenase and allene oxide synthase gene expression in transgenic plants raises new questions about the compartmentation of the biosynthetic pathway and its regulation. The activation of jasmonic acid biosynthesis by cell wall elicitors, the peptide systemin, and other compounds will be related to the function of jasmonates in plants. Jasmonate modulates gene expression at the level of translation, RNA processing, and transcription. Promoter elements that mediate responses to jasmonate have been isolated. This review covers recent advances in our understanding of how jasmonate biosynthesis is regulated and relates this information to knowledge of jasmonate modulated gene expression.

  19. Biosynthesis of Astaxanthin as a Main Carotenoid in the Heterobasidiomycetous Yeast Xanthophyllomyces dendrorhous

    Directory of Open Access Journals (Sweden)

    Jose L. Barredo

    2017-07-01

    Full Text Available Carotenoids are organic lipophilic yellow to orange and reddish pigments of terpenoid nature that are usually composed of eight isoprene units. This group of secondary metabolites includes carotenes and xanthophylls, which can be naturally obtained from photosynthetic organisms, some fungi, and bacteria. One of the microorganisms able to synthesise carotenoids is the heterobasidiomycetous yeast Xanthophyllomyces dendrorhous, which represents the teleomorphic state of Phaffia rhodozyma, and is mainly used for the production of the xanthophyll astaxanthin. Upgraded knowledge on the biosynthetic pathway of the main carotenoids synthesised by X. dendrorhous, the biotechnology-based improvement of astaxanthin production, as well as the current omics approaches available in this yeast are reviewed in depth.

  20. Ethylene regulation of carotenoid accumulation and carotenogenic gene expression in colour-contrasted apricot varieties (Prunus armeniaca).

    Science.gov (United States)

    Marty, I; Bureau, S; Sarkissian, G; Gouble, B; Audergon, J M; Albagnac, G

    2005-07-01

    In order to elucidate the regulation mechanisms of carotenoid biosynthesis in apricot fruit (Prunus armeniaca), carotenoid content and carotenogenic gene expression were analysed as a function of ethylene production in two colour-contrasted apricot varieties. Fruits from Goldrich (GO) were orange, while Moniqui (MO) fruits were white. Biochemical analysis showed that GO accumulated precursors of the uncoloured carotenoids, phytoene and phytofluene, and the coloured carotenoid, beta-carotene, while Moniqui (MO) fruits only accumulated phytoene and phytofluene but no beta-carotene. Physiological analysis showed that ethylene production was clearly weaker in GO than in MO. Carotenogenic gene expression (Psy-1, Pds, and Zds) and carotenoid accumulation were measured with respect to ethylene production which is initiated in mature green fruits at the onset of the climacteric stage or following exo-ethylene or ethylene-receptor inhibitor (1-MCP) treatments. Results showed (i) systematically stronger expression of carotenogenic genes in white than in orange fruits, even for the Zds gene involved in beta-carotene synthesis that is undetectable in MO fruits, (ii) ethylene-induction of Psy-1 and Pds gene expression and the corresponding product accumulation, (iii) Zds gene expression and beta-carotene production independent of ethylene. The different results obtained at physiological, biochemical, and molecular levels revealed the complex regulation of carotenoid biosynthesis in apricots and led to suggestions regarding some possible ways to regulate it.

  1. Host and Pathway Engineering for Enhanced Lycopene Biosynthesis in Yarrowia lipolytica

    Directory of Open Access Journals (Sweden)

    Cory Schwartz

    2017-11-01

    Full Text Available Carotenoids are a class of molecules with commercial value as food and feed additives with nutraceutical properties. Shifting carotenoid synthesis from petrochemical-based precursors to bioproduction from sugars and other biorenewable carbon sources promises to improve process sustainability and economics. In this work, we engineered the oleaginous yeast Yarrowia lipolytica to produce the carotenoid lycopene. To enhance lycopene production, we tested a series of strategies to modify host cell physiology and metabolism, the most successful of which were mevalonate pathway overexpression and alleviating auxotrophies previously engineered into the PO1f strain of Y. lipolytica. The beneficial engineering strategies were combined into a single strain, which was then cultured in a 1-L bioreactor to produce 21.1 mg/g DCW. The optimized strain overexpressed a total of eight genes including two copies of HMG1, two copies of CrtI, and single copies of MVD1, EGR8, CrtB, and CrtE. Recovering leucine and uracil biosynthetic capacity also produced significant enhancement in lycopene titer. The successful engineering strategies characterized in this work represent a significant increase in understanding carotenoid biosynthesis in Y. lipolytica, not only increasing lycopene titer but also informing future studies on carotenoid biosynthesis.

  2. Whole genome sequencing of Rhodotorula mucilaginosa isolated from the chewing stick (Distemonanthus benthamianus): insights into Rhodotorula phylogeny, mitogenome dynamics and carotenoid biosynthesis.

    Science.gov (United States)

    Gan, Han Ming; Thomas, Bolaji N; Cavanaugh, Nicole T; Morales, Grace H; Mayers, Ashley N; Savka, Michael A; Hudson, André O

    2017-01-01

    In industry, the yeast Rhodotorula mucilaginosa is commonly used for the production of carotenoids. The production of carotenoids is important because they are used as natural colorants in food and some carotenoids are precursors of retinol (vitamin A). However, the identification and molecular characterization of the carotenoid pathway/s in species belonging to the genus Rhodotorula is scarce due to the lack of genomic information thus potentially impeding effective metabolic engineering of these yeast strains for improved carotenoid production. In this study, we report the isolation, identification, characterization and the whole nuclear genome and mitogenome sequence of the endophyte R. mucilaginosa RIT389 isolated from Distemonanthus benthamianus, a plant known for its anti-fungal and antibacterial properties and commonly used as chewing sticks. The assembled genome of R. mucilaginosa RIT389 is 19 Mbp in length with an estimated genomic heterozygosity of 9.29%. Whole genome phylogeny supports the species designation of strain RIT389 within the genus in addition to supporting the monophyly of the currently sequenced Rhodotorula species. Further, we report for the first time, the recovery of the complete mitochondrial genome of R. mucilaginosa using the genome skimming approach. The assembled mitogenome is at least 7,000 bases larger than that of Rhodotorula taiwanensis which is largely attributed to the presence of large intronic regions containing open reading frames coding for homing endonuclease from the LAGLIDADG and GIY-YIG families. Furthermore, genomic regions containing the key genes for carotenoid production were identified in R. mucilaginosa RIT389, revealing differences in gene synteny that may play a role in the regulation of the biotechnologically important carotenoid synthesis pathways in yeasts.

  3. Whole genome sequencing of Rhodotorula mucilaginosa isolated from the chewing stick (Distemonanthus benthamianus): insights into Rhodotorula phylogeny, mitogenome dynamics and carotenoid biosynthesis

    Science.gov (United States)

    Thomas, Bolaji N.; Cavanaugh, Nicole T.; Morales, Grace H.; Mayers, Ashley N.; Savka, Michael A.

    2017-01-01

    In industry, the yeast Rhodotorula mucilaginosa is commonly used for the production of carotenoids. The production of carotenoids is important because they are used as natural colorants in food and some carotenoids are precursors of retinol (vitamin A). However, the identification and molecular characterization of the carotenoid pathway/s in species belonging to the genus Rhodotorula is scarce due to the lack of genomic information thus potentially impeding effective metabolic engineering of these yeast strains for improved carotenoid production. In this study, we report the isolation, identification, characterization and the whole nuclear genome and mitogenome sequence of the endophyte R. mucilaginosa RIT389 isolated from Distemonanthus benthamianus, a plant known for its anti-fungal and antibacterial properties and commonly used as chewing sticks. The assembled genome of R. mucilaginosa RIT389 is 19 Mbp in length with an estimated genomic heterozygosity of 9.29%. Whole genome phylogeny supports the species designation of strain RIT389 within the genus in addition to supporting the monophyly of the currently sequenced Rhodotorula species. Further, we report for the first time, the recovery of the complete mitochondrial genome of R. mucilaginosa using the genome skimming approach. The assembled mitogenome is at least 7,000 bases larger than that of Rhodotorula taiwanensis which is largely attributed to the presence of large intronic regions containing open reading frames coding for homing endonuclease from the LAGLIDADG and GIY-YIG families. Furthermore, genomic regions containing the key genes for carotenoid production were identified in R. mucilaginosa RIT389, revealing differences in gene synteny that may play a role in the regulation of the biotechnologically important carotenoid synthesis pathways in yeasts. PMID:29158974

  4. The LH2 complexes are assembled in the cells of purple sulfur bacterium Ectothiorhodospira haloalkaliphila with inhibition of carotenoid biosynthesis.

    Science.gov (United States)

    Ashikhmin, Aleksandr; Makhneva, Zoya; Moskalenko, Andrey

    2014-03-01

    The effect of the inhibitor of carotenoid (Car) biosynthesis, diphenylamine (DPA), on the cells of the purple sulfur bacterium Ectothiorhodospira (Ect.) haloalkaliphila has been studied. There occurs an inhibition of the biosynthesis of colored Cars (≥99 %) at 71 μM DPA. Considering "empty" Car pockets (Moskalenko and Makhneva 2012) the content of Cars in the DPA-treated samples is first calculated more correctly. The total content of the colored Cars in the sample at 71 μM DPA does not exceed 1 % of the wild type. In the DPA-treated cells (membranes) a complete set of pigment-protein complexes is retained. The LH2 complex at 71 μM DPA is isolated, which is identical to the LH2 complex of the wild type in near IR absorption spectra. This suggests that the principles for assembling this LH2 complex in vivo in the absence of colored Cars remain the same. These results are in full agreement with the data obtained earlier for Allochromatium (Alc.) minutissimum (Moskalenko and Makhneva 2012). They are as follows: (1) DPA almost entirely inhibits the biosynthesis of the colored Cars in Ect. haloalkaliphila cells. (2) In the DPA-treated samples non-colored Cars are detected at 53.25 μM DPA (as traces) and at 71 μM DPA. (3) DPA may affect both phytoene synthase (at ≤71 μM DPA) and phytoene desaturase (at ≥53.25 μM DPA). (4) The assembly of LH2 complex does occur without any colored Cars.

  5. PLANT VOLATILES. Biosynthesis of monoterpene scent compounds in roses.

    Science.gov (United States)

    Magnard, Jean-Louis; Roccia, Aymeric; Caissard, Jean-Claude; Vergne, Philippe; Sun, Pulu; Hecquet, Romain; Dubois, Annick; Hibrand-Saint Oyant, Laurence; Jullien, Frédéric; Nicolè, Florence; Raymond, Olivier; Huguet, Stéphanie; Baltenweck, Raymonde; Meyer, Sophie; Claudel, Patricia; Jeauffre, Julien; Rohmer, Michel; Foucher, Fabrice; Hugueney, Philippe; Bendahmane, Mohammed; Baudino, Sylvie

    2015-07-03

    The scent of roses (Rosa x hybrida) is composed of hundreds of volatile molecules. Monoterpenes represent up to 70% percent of the scent content in some cultivars, such as the Papa Meilland rose. Monoterpene biosynthesis in plants relies on plastid-localized terpene synthases. Combining transcriptomic and genetic approaches, we show that the Nudix hydrolase RhNUDX1, localized in the cytoplasm, is part of a pathway for the biosynthesis of free monoterpene alcohols that contribute to fragrance in roses. The RhNUDX1 protein shows geranyl diphosphate diphosphohydrolase activity in vitro and supports geraniol biosynthesis in planta. Copyright © 2015, American Association for the Advancement of Science.

  6. Qualitative and quantitative differences in carotenoid composition among Cucurbita moschata, Cucurbita maxima, and Cucurbita pepo.

    Science.gov (United States)

    Azevedo-Meleiro, Cristiane H; Rodriguez-Amaya, Delia B

    2007-05-16

    Squashes and pumpkins are important dietary sources of carotenoids worldwide. The carotenoid composition has been determined, but reported data have been highly variable, both qualitatively and quantitatively. In the present work, the carotenoid composition of squashes and pumpkins currently marketed in Campinas, Brazil, were determined by HPLC-DAD, complemented by HPLC-MS for identification. Cucurbita moschata 'Menina Brasileira' and C. moschata 'Goianinha' had similar profiles, with beta-carotene and alpha-carotene as the major carotenoids. The hybrid 'Tetsukabuto' resembled the Cucurbita pepo 'Mogango', lutein and beta-carotene being the principal carotenoids. Cucurbita maxima 'Exposição' had a different profile, with the predominance of violaxanthin, followed by beta-carotene and lutein. Combining data from the current study with those in the literature, profiles for the Cucurbita species could be observed. The principal carotenoids in C. moschata were beta-carotene and alpha-carotene, whlereas lutein and beta-carotene dominate in C. maxima and C. pepo. It appears that hydroxylation is a control point in carotenoid biosynthesis.

  7. Cloning of the Lycopene β-cyclase Gene in Nicotiana tabacum and Its Overexpression Confers Salt and Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Yanmei Shi

    2015-12-01

    Full Text Available Carotenoids are important pigments in plants that play crucial roles in plant growth and in plant responses to environmental stress. Lycopene β cyclase (β-LCY functions at the branch point of the carotenoid biosynthesis pathway, catalyzing the cyclization of lycopene. Here, a β-LCY gene from Nicotiana tabacum, designated as Ntβ-LCY1, was cloned and functionally characterized. Robust expression of Ntβ-LCY1 was found in leaves, and Ntβ-LCY1 expression was obviously induced by salt, drought, and exogenous abscisic acid treatments. Strong accumulation of carotenoids and expression of carotenoid biosynthesis genes resulted from Ntβ-LCY1 overexpression. Additionally, compared to wild-type plants, transgenic plants with overexpression showed enhanced tolerance to salt and drought stress with higher abscisic acid levels and lower levels of malondialdehyde and reactive oxygen species. Conversely, transgenic RNA interference plants had a clear albino phenotype in leaves, and some plants did not survive beyond the early developmental stages. The suppression of Ntβ-LCY1 expression led to lower expression levels of genes in the carotenoid biosynthesis pathway and to reduced accumulation of carotenoids, chlorophyll, and abscisic acid. These results indicate that Ntβ-LCY1 is not only a likely cyclization enzyme involved in carotenoid accumulation but also confers salt and drought stress tolerance in Nicotiana tabacum.

  8. Triterpene biosynthesis in plants.

    Science.gov (United States)

    Thimmappa, Ramesha; Geisler, Katrin; Louveau, Thomas; O'Maille, Paul; Osbourn, Anne

    2014-01-01

    The triterpenes are one of the most numerous and diverse groups of plant natural products. They are complex molecules that are, for the most part, beyond the reach of chemical synthesis. Simple triterpenes are components of surface waxes and specialized membranes and may potentially act as signaling molecules, whereas complex glycosylated triterpenes (saponins) provide protection against pathogens and pests. Simple and conjugated triterpenes have a wide range of applications in the food, health, and industrial biotechnology sectors. Here, we review recent developments in the field of triterpene biosynthesis, give an overview of the genes and enzymes that have been identified to date, and discuss strategies for discovering new triterpene biosynthetic pathways.

  9. Peripheral Light-Harvesting LH2 Complex Can Be Assembled in Cells of Nonsulfur Purple Bacterium Rhodoblastus acidophilus without Carotenoids.

    Science.gov (United States)

    Bol'shakov, M A; Ashikhmin, A A; Makhneva, Z K; Moskalenko, A A

    2015-09-01

    The effect of carotenoids on the assembly of LH2 complex in cells of the purple nonsulfur bacterium Rhodoblastus acidophilus was investigated. For this purpose, the bacterial culture was cultivated with an inhibitor of carotenoid biosynthesis - 71 µM diphenylamine (DPA). The inhibitor decreased the level of biosynthesis of the colored carotenoids in membranes by ~58%. It was found that a large amount of phytoene was accumulated in them. This carotenoid precursor was bound nonspecifically to LH2 complex and did not stabilize its structure. Thermostability testing of the isolated LH2 complex together with analysis of carotenoid composition revealed that the population of this complex was heterogeneous with respect to carotenoid composition. One fraction of the LH2 complex with carotenoid content around 90% remains stable and was not destroyed under heating for 15 min at 50°C. The other fraction of LH2 complex containing on average less than one molecule of carotenoid per complex was destroyed under heating, forming a zone of free pigments (and polypeptides). The data suggest that a certain part of the LH2 complexes is assembled without carotenoids in cells of the nonsulfur bacterium Rbl. acidophilus grown with DPA. These data contradict the fact that the LH2 complex from nonsulfur bacteria cannot be assembled without carotenoids, but on the other hand, they are in good agreement with the results demonstrated in our earlier studies of the sulfur bacteria Allochromatium minutissimum and Ectothiorhodospira haloalkaliphila. Carotenoidless LH2 complex was obtained from these bacteria with the use of DPA (Moskalenko, A. A., and Makhneva, Z. K. (2012) J. Photochem. Photobiol., 108, 1-7; Ashikhmin, A., et al. (2014) Photosynth. Res., 119, 291-303).

  10. Biologically active polymers from spontaneous carotenoid oxidation: a new frontier in carotenoid activity.

    Directory of Open Access Journals (Sweden)

    James B Johnston

    Full Text Available In animals carotenoids show biological activity unrelated to vitamin A that has been considered to arise directly from the behavior of the parent compound, particularly as an antioxidant. However, the very property that confers antioxidant activity on some carotenoids in plants also confers susceptibility to oxidative transformation. As an alternative, it has been suggested that carotenoid oxidative breakdown or metabolic products could be the actual agents of activity in animals. However, an important and neglected aspect of the behavior of the highly unsaturated carotenoids is their potential to undergo addition of oxygen to form copolymers. Recently we reported that spontaneous oxidation of ß-carotene transforms it into a product dominated by ß-carotene-oxygen copolymers. We now report that the polymeric product is biologically active. Results suggest an overall ability to prime innate immune function to more rapidly respond to subsequent microbial challenges. An underlying structural resemblance to sporopollenin, found in the outer shell of spores and pollen, may allow the polymer to modulate innate immune responses through interactions with the pattern recognition receptor system. Oxygen copolymer formation appears common to all carotenoids, is anticipated to be widespread, and the products may contribute to the health benefits of carotenoid-rich fruits and vegetables.

  11. Plant amino acid-derived vitamins: biosynthesis and function.

    Science.gov (United States)

    Miret, Javier A; Munné-Bosch, Sergi

    2014-04-01

    Vitamins are essential organic compounds for humans, having lost the ability to de novo synthesize them. Hence, they represent dietary requirements, which are covered by plants as the main dietary source of most vitamins (through food or livestock's feed). Most vitamins synthesized by plants present amino acids as precursors (B1, B2, B3, B5, B7, B9 and E) and are therefore linked to plant nitrogen metabolism. Amino acids play different roles in their biosynthesis and metabolism, either incorporated into the backbone of the vitamin or as amino, sulfur or one-carbon group donors. There is a high natural variation in vitamin contents in crops and its exploitation through breeding, metabolic engineering and agronomic practices can enhance their nutritional quality. While the underlying biochemical roles of vitamins as cosubstrates or cofactors are usually common for most eukaryotes, the impact of vitamins B and E in metabolism and physiology can be quite different on plants and animals. Here, we first aim at giving an overview of the biosynthesis of amino acid-derived vitamins in plants, with a particular focus on how this knowledge can be exploited to increase vitamin contents in crops. Second, we will focus on the functions of these vitamins in both plants and animals (and humans in particular), to unravel common and specific roles for vitamins in evolutionary distant organisms, in which these amino acid-derived vitamins play, however, an essential role.

  12. Tissue-Specific Apocarotenoid Glycosylation Contributes to Carotenoid Homeostasis in Arabidopsis Leaves1

    Science.gov (United States)

    Hübner, Michaela; Matsubara, Shizue; Beyer, Peter

    2015-01-01

    Attaining defined steady-state carotenoid levels requires balancing of the rates governing their synthesis and metabolism. Phytoene formation mediated by phytoene synthase (PSY) is rate limiting in the biosynthesis of carotenoids, whereas carotenoid catabolism involves a multitude of nonenzymatic and enzymatic processes. We investigated carotenoid and apocarotenoid formation in Arabidopsis (Arabidopsis thaliana) in response to enhanced pathway flux upon PSY overexpression. This resulted in a dramatic accumulation of mainly β-carotene in roots and nongreen calli, whereas carotenoids remained unchanged in leaves. We show that, in chloroplasts, surplus PSY was partially soluble, localized in the stroma and, therefore, inactive, whereas the membrane-bound portion mediated a doubling of phytoene synthesis rates. Increased pathway flux was not compensated by enhanced generation of long-chain apocarotenals but resulted in higher levels of C13 apocarotenoid glycosides (AGs). Using mutant lines deficient in carotenoid cleavage dioxygenases (CCDs), we identified CCD4 as being mainly responsible for the majority of AGs formed. Moreover, changed AG patterns in the carotene hydroxylase mutants lutein deficient1 (lut1) and lut5 exhibiting altered leaf carotenoids allowed us to define specific xanthophyll species as precursors for the apocarotenoid aglycons detected. In contrast to leaves, carotenoid hyperaccumulating roots contained higher levels of β-carotene-derived apocarotenals, whereas AGs were absent. These contrasting responses are associated with tissue-specific capacities to synthesize xanthophylls, which thus determine the modes of carotenoid accumulation and apocarotenoid formation. PMID:26134165

  13. Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway.

    Directory of Open Access Journals (Sweden)

    Gianfranco Diretto

    Full Text Available BACKGROUND: Since the creation of "Golden Rice", biofortification of plant-derived foods is a promising strategy for the alleviation of nutritional deficiencies. Potato is the most important staple food for mankind after the cereals rice, wheat and maize, and is extremely poor in provitamin A carotenoids. METHODOLOGY: We transformed potato with a mini-pathway of bacterial origin, driving the synthesis of beta-carotene (Provitamin A from geranylgeranyl diphosphate. Three genes, encoding phytoene synthase (CrtB, phytoene desaturase (CrtI and lycopene beta-cyclase (CrtY from Erwinia, under tuber-specific or constitutive promoter control, were used. 86 independent transgenic lines, containing six different promoter/gene combinations, were produced and analyzed. Extensive regulatory effects on the expression of endogenous genes for carotenoid biosynthesis are observed in transgenic lines. Constitutive expression of the CrtY and/or CrtI genes interferes with the establishment of transgenosis and with the accumulation of leaf carotenoids. Expression of all three genes, under tuber-specific promoter control, results in tubers with a deep yellow ("golden" phenotype without any adverse leaf phenotypes. In these tubers, carotenoids increase approx. 20-fold, to 114 mcg/g dry weight and beta-carotene 3600-fold, to 47 mcg/g dry weight. CONCLUSIONS: This is the highest carotenoid and beta-carotene content reported for biofortified potato as well as for any of the four major staple foods (the next best event being "Golden Rice 2", with 31 mcg/g dry weight beta-carotene. Assuming a beta-carotene to retinol conversion of 6ratio1, this is sufficient to provide 50% of the Recommended Daily Allowance of Vitamin A with 250 gms (fresh weight of "golden" potatoes.

  14. A rapid method for the extraction and analysis of carotenoids and other hydrophobic substances suitable for systems biology studies with photosynthetic bacteria.

    Science.gov (United States)

    Bóna-Lovász, Judit; Bóna, Aron; Ederer, Michael; Sawodny, Oliver; Ghosh, Robin

    2013-10-11

    A simple, rapid, and inexpensive extraction method for carotenoids and other non-polar compounds present in phototrophic bacteria has been developed. The method, which has been extensively tested on the phototrophic purple non-sulphur bacterium Rhodospirillum rubrum, is suitable for extracting large numbers of samples, which is common in systems biology studies, and yields material suitable for subsequent analysis using HPLC and mass spectroscopy. The procedure is particularly suitable for carotenoids and other terpenoids, including quinones, bacteriochlorophyll a and bacteriopheophytin a, and is also useful for the analysis of polar phospholipids. The extraction procedure requires only a single step extraction with a hexane/methanol/water mixture, followed by HPLC using a Spherisorb C18 column, with a mobile phase consisting of acetone-water and a non-linear gradient of 50%-100% acetone. The method was employed for examining the carotenoid composition observed during microaerophilic growth of R. rubrum strains, and was able to determine 18 carotenoids, 4 isoprenoid-quinones, bacteriochlorophyll a and bacteriopheophytin a as well as four different phosphatidylglycerol species of different acyl chain compositions. The analytical procedure was used to examine the dynamics of carotenoid biosynthesis in the major and minor pathways operating simultaneously in a carotenoid biosynthesis mutant of R. rubrum.

  15. A Rapid Method for the Extraction and Analysis of Carotenoids and Other Hydrophobic Substances Suitable for Systems Biology Studies with Photosynthetic Bacteria

    Directory of Open Access Journals (Sweden)

    Oliver Sawodny

    2013-10-01

    Full Text Available A simple, rapid, and inexpensive extraction method for carotenoids and other non-polar compounds present in phototrophic bacteria has been developed. The method, which has been extensively tested on the phototrophic purple non-sulphur bacterium Rhodospirillum rubrum, is suitable for extracting large numbers of samples, which is common in systems biology studies, and yields material suitable for subsequent analysis using HPLC and mass spectroscopy. The procedure is particularly suitable for carotenoids and other terpenoids, including quinones, bacteriochlorophyll a and bacteriopheophytin a, and is also useful for the analysis of polar phospholipids. The extraction procedure requires only a single step extraction with a hexane/methanol/water mixture, followed by HPLC using a Spherisorb C18 column, with a mobile phase consisting of acetone-water and a non-linear gradient of 50%–100% acetone. The method was employed for examining the carotenoid composition observed during microaerophilic growth of R. rubrum strains, and was able to determine 18 carotenoids, 4 isoprenoid-quinones, bacteriochlorophyll a and bacteriopheophytin a as well as four different phosphatidylglycerol species of different acyl chain compositions. The analytical procedure was used to examine the dynamics of carotenoid biosynthesis in the major and minor pathways operating simultaneously in a carotenoid biosynthesis mutant of R. rubrum.

  16. Fibrillin 5 Is Essential for Plastoquinone-9 Biosynthesis by Binding to Solanesyl Diphosphate Synthases in Arabidopsis

    Science.gov (United States)

    Kim, Eun-Ha; Lee, Yongjik

    2015-01-01

    Fibrillins are lipid-associated proteins in plastids and are ubiquitous in plants. They accumulate in chromoplasts and sequester carotenoids during the development of flowers and fruits. However, little is known about the functions of fibrillins in leaf tissues. Here, we identified fibrillin 5 (FBN5), which is essential for plastoquinone-9 (PQ-9) biosynthesis in Arabidopsis thaliana. Homozygous fbn5-1 mutations were seedling-lethal, and XVE:FBN5-B transgenic plants expressing low levels of FBN5-B had a slower growth rate and were smaller than wild-type plants. In chloroplasts, FBN5-B specifically interacted with solanesyl diphosphate synthases (SPSs) 1 and 2, which biosynthesize the solanesyl moiety of PQ-9. Plants containing defective FBN5-B accumulated less PQ-9 and its cyclized product, plastochromanol-8, but the levels of tocopherols were not affected. The reduced PQ-9 content of XVE:FBN5-B transgenic plants was consistent with their lower photosynthetic performance and higher levels of hydrogen peroxide under cold stress. These results indicate that FBN5-B is required for PQ-9 biosynthesis through its interaction with SPS. Our study adds FBN5 as a structural component involved in the biosynthesis of PQ-9. FBN5 binding to the hydrophobic solanesyl moiety, which is generated by SPS1 and SPS2, in FBN5-B/SPS homodimeric complexes stimulates the enzyme activity of SPS1 and SPS2. PMID:26432861

  17. LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae.

    Science.gov (United States)

    Ma, Ruijuan; Thomas-Hall, Skye R; Chua, Elvis T; Eltanahy, Eladl; Netzel, Michael E; Netzel, Gabriele; Lu, Yinghua; Schenk, Peer M

    2018-03-01

    The microalga Nannochloropsis produces high-value omega-3-rich fatty acids and carotenoids. In this study the effects of light intensity and wavelength on biomass, fatty acid, and carotenoid production with respect to light output efficiency were investigated. Similar biomass and fatty acid yields were obtained at high light intensity (150 μmol m -2  s -1 ) LEDs on day 7 and low light intensity (50 μmol m -2  s -1 ) LEDs on day 11 during cultivation, but the power efficiencies of biomass and fatty acid (specifically eicosapentaenoic acid) production were higher for low light intensity. Interestingly, low light intensity enhanced both, carotenoid power efficiency of carotenoid biosynthesis and yield. White LEDs were neither advantageous for biomass and fatty acid yields, nor the power efficiency of biomass, fatty acid, and carotenoid production. Noticeably, red LED resulted in the highest biomass and fatty acid power efficiency, suggesting that LEDs can be fine-tuned to grow Nannochloropsis algae more energy-efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Marine Carotenoids and Cardiovascular Risk Markers

    Directory of Open Access Journals (Sweden)

    Lorenza Speranza

    2011-06-01

    Full Text Available Marine carotenoids are important bioactive compounds with physiological activities related to prevention of degenerative diseases.found principally in plants, with potential antioxidant biological properties deriving from their chemical structure and interaction with biological membranes. They are substances with very special and remarkable properties that no other groups of substances possess and that form the basis of their many, varied functions and actions in all kinds of living organisms. The potential beneficial effects of marine carotenoids have been studied particularly in astaxanthin and fucoxanthin as they are the major marine carotenoids. Both these two carotenoids show strong antioxidant activity attributed to quenching singlet oxygen and scavenging free radicals. The potential role of these carotenoids as dietary anti-oxidants has been suggested to be one of the main mechanisms for their preventive effects against cancer and inflammatory diseases. The aim of this short review is to examine the published studies concerning the use of the two marine carotenoids, astaxanthin and fucoxanthin, in the prevention of cardiovascular diseases.

  19. Tyrosine biosynthesis, metabolism, and catabolism in plants.

    Science.gov (United States)

    Schenck, Craig A; Maeda, Hiroshi A

    2018-05-01

    L-Tyrosine (Tyr) is an aromatic amino acid (AAA) required for protein synthesis in all organisms, but synthesized de novo only in plants and microorganisms. In plants, Tyr also serves as a precursor of numerous specialized metabolites that have diverse physiological roles as electron carriers, antioxidants, attractants, and defense compounds. Some of these Tyr-derived plant natural products are also used in human medicine and nutrition (e.g. morphine and vitamin E). While the Tyr biosynthesis and catabolic pathways have been extensively studied in microbes and animals, respectively, those of plants have received much less attention until recently. Accumulating evidence suggest that the Tyr biosynthetic pathways differ between microbes and plants and even within the plant kingdom, likely to support the production of lineage-specific plant specialized metabolites derived from Tyr. The interspecies variations of plant Tyr pathway enzymes can now be used to enhance the production of Tyr and Tyr-derived compounds in plants and other synthetic biology platforms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Carotenoids from Haloarchaea and Their Potential in Biotechnology

    Science.gov (United States)

    Rodrigo-Baños, Montserrat; Garbayo, Inés; Vílchez, Carlos; Bonete, María José; Martínez-Espinosa, Rosa María

    2015-01-01

    The production of pigments by halophilic archaea has been analysed during the last half a century. The main reasons that sustains this research are: (i) many haloarchaeal species possess high carotenoids production availability; (ii) downstream processes related to carotenoid isolation from haloarchaea is relatively quick, easy and cheap; (iii) carotenoids production by haloarchaea can be improved by genetic modification or even by modifying several cultivation aspects such as nutrition, growth pH, temperature, etc.; (iv) carotenoids are needed to support plant and animal life and human well-being; and (v) carotenoids are compounds highly demanded by pharmaceutical, cosmetic and food markets. Several studies about carotenoid production by haloarchaea have been reported so far, most of them focused on pigments isolation or carotenoids production under different culture conditions. However, the understanding of carotenoid metabolism, regulation, and roles of carotenoid derivatives in this group of extreme microorganisms remains mostly unrevealed. The uses of those haloarchaeal pigments have also been poorly explored. This work summarises what has been described so far about carotenoids production by haloarchaea and their potential uses in biotechnology and biomedicine. In particular, new scientific evidence of improved carotenoid production by one of the better known haloarchaeon (Haloferax mediterranei) is also discussed. PMID:26308012

  1. Carotenoids from Haloarchaea and Their Potential in Biotechnology.

    Science.gov (United States)

    Rodrigo-Baños, Montserrat; Garbayo, Inés; Vílchez, Carlos; Bonete, María José; Martínez-Espinosa, Rosa María

    2015-08-25

    The production of pigments by halophilic archaea has been analysed during the last half a century. The main reasons that sustains this research are: (i) many haloarchaeal species possess high carotenoids production availability; (ii) downstream processes related to carotenoid isolation from haloarchaea is relatively quick, easy and cheap; (iii) carotenoids production by haloarchaea can be improved by genetic modification or even by modifying several cultivation aspects such as nutrition, growth pH, temperature, etc.; (iv) carotenoids are needed to support plant and animal life and human well-being; and (v) carotenoids are compounds highly demanded by pharmaceutical, cosmetic and food markets. Several studies about carotenoid production by haloarchaea have been reported so far, most of them focused on pigments isolation or carotenoids production under different culture conditions. However, the understanding of carotenoid metabolism, regulation, and roles of carotenoid derivatives in this group of extreme microorganisms remains mostly unrevealed. The uses of those haloarchaeal pigments have also been poorly explored. This work summarises what has been described so far about carotenoids production by haloarchaea and their potential uses in biotechnology and biomedicine. In particular, new scientific evidence of improved carotenoid production by one of the better known haloarchaeon (Haloferax mediterranei) is also discussed.

  2. Carotenoids of Microalgae Used in Food Industry and Medicine.

    Science.gov (United States)

    Gateau, Hélène; Solymosi, Katalin; Marchand, Justine; Schoefs, Benoît

    2017-01-01

    Since the industrial revolution, the consumption of processed food increased dramatically. During processing, food material loses many of its natural properties. The simple restoration of the original properties of the processed food as well as fortification require food supplementation with compounds prepared chemically or of natural origin. The observations that natural food additives are safer and better accepted by consumers than synthetic ones have strongly increased the demand for natural compounds. Because some of them have only a low abundance or are even rare, their market price can be very high. This is the case for most carotenoids of natural origin to which this review is dedicated. The increasing demand for food additives of natural origin contributes to an accelerated depletion of traditional natural resources already threatened by intensive agriculture and pollution. To overcome these difficulties and satisfy the demand, alternative sources for natural carotenoids have to be found. In this context, photosynthetic microalgae present a very high potential because they contain carotenoids and are able to produce particular carotenoids under stress. Their potential also resides in the fact that only ten thousands of microalgal strains have been described while hundred thousands of species are predicted to exist. Carotenoids have been known for ages for their antioxidant and coloring properties, and a large body of evidence has been accumulated about their health potential. This review summarizes both the medicinal and food industry applications of microalgae with emphasis on the former. In addition, traditional and alternative microalgal sources used for industrial carotenoid extraction, the chemical and physical properties, the biosynthesis and the localization of carotenoids in algae are also briefly discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Marine carotenoids: Bioactivities and potential benefits to human health.

    Science.gov (United States)

    Chuyen, Hoang Van; Eun, Jong-Bang

    2017-08-13

    Among natural pigments, carotenoids play important roles in physiological functions. The characteristics of carotenoids and their effects on human health have been reported for a long time, but most studies have focused on carotenoids from vegetables, fruits, and other parts of higher plants. Few reports are available on carotenoids from marine sources, such as seaweeds, microalgae, and marine animals, which have attracted attention in recent decades. Hundreds of carotenoids have been identified and isolated from marine organisms and their beneficial physiological functions, such as anticancer, antiobesity, antidiabetic, anti-inflammatory, and cardioprotective activities have been reported. The purpose of this review is to discuss the literature on the beneficial bioactivities of some of the most abundant marine carotenoids, including fucoxanthin, astaxanthin, cantaxanthin, peridinin, fucoxanthinol, and halocynthiaxanthin.

  4. Carotenoids from microalgae: A review of recent developments.

    Science.gov (United States)

    Gong, Mengyue; Bassi, Amarjeet

    2016-12-01

    Carotenoids have been receiving increasing attention due to their potential health benefits. Microalgae are recognized as a natural source of carotenoids and other beneficial byproducts. However, the production of micro-algal carotenoids is not yet sufficiently cost-effective to compete with traditional chemical synthetic methods and other technologies such as extraction from plant based sources. This review presents the recent biotechnological developments in microalgal carotenoid production. The current technologies involved in their bioprocessing including cultivation, harvesting, extraction, and purification are discussed with a specific focus on downstream processing. The recent advances in chemical and biochemical synthesis of carotenoids are also reviewed for a better understanding of suitable and economically feasible biotechnological strategies. Some possible future directions are also proposed. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Tilting Plant Metabolism for Improved Metabolite Biosynthesis and Enhanced Human Benefit

    Directory of Open Access Journals (Sweden)

    Bhekumthetho Ncube

    2015-07-01

    Full Text Available The immense chemical diversity of plant-derived secondary metabolites coupled with their vast array of biological functions has seen this group of compounds attract considerable research interest across a range of research disciplines. Medicinal and aromatic plants, in particular, have been exploited for this biogenic pool of phytochemicals for products such as pharmaceuticals, fragrances, dyes, and insecticides, among others. With consumers showing increasing interests in these products, innovative biotechnological techniques are being developed and employed to alter plant secondary metabolism in efforts to improve on the quality and quantity of specific metabolites of interest. This review provides an overview of the biosynthesis for phytochemical compounds with medicinal and other related properties and their associated biological activities. It also provides an insight into how their biosynthesis/biosynthetic pathways have been modified/altered to enhance production.

  6. Molecular Characterization of the Plant Growth Promoting Bacterium Enterobacter sp. SA187 upon Contact with Arabidopsis thaliana

    KAUST Repository

    Alsharif, Wiam

    2018-05-01

    Salt stress is a severe environmental challenge in agriculture, limiting the quality and productivity of the crops around the globe. Plant growth promoting rhizobacteria (PGPR) is proposed as a friendly solution to overcome those challenges. The desert plant endophytic bacterium, Enterobacter sp. SA187 has shown plant growth promotion and salt stress tolerance beneficial effect on the model plant Arabidopsis thaliana in vitro as well as under the field conditions on different crops. SA187 has a distinguished morphology of yellow colonies (SA187Y) that could be due to carotenoid biosynthesis. However, the bacteria tend to lose the yellow color upon incubation with the plants and the colonies turn to white (SA187W). In comparison to SA187Y, SA187W shows 50% reduction on the beneficial impact on A. thaliana fresh and dry weight of root and shoot system. By counting the CFU/plant, we showed that SA187Y and SA187W both have similar colonization rate in both shoots and roots. Under non-salt conditions, optimal bacterial colonization was observed on day 8 after inocubation, however, under the salt stress condition, the optimal colonization was observed at day 4. Moreover, during the time period of the incubation of the SA187Y with the plants, there was a consistent noticeable loss of the yellow color of the colonies. This change in color is only observed eight days after transfer and the number of white colonies increases with the increase of the incubation time. In addition, SA187W was GFP-tagged by Tn7 transposon system and visualized by confocal laser scanning microscopy. The SA187W-GFP colonies have shown a similar colonization pattern as SA187Y-GFP, bacteria were colonizing the differentiation zone and cell elongation zone in the roots. Finally, the gene expression of the carotenoid biosynthesis pathways genes in SA187Y showed an overall higher gene expression compared to SA187W. In conclusion, the color loss seems to affect the beneficial impact of the bacteria on

  7. Correlations of carotenoid content and transcript abundances for fibrillin and carotenogenic enzymes in Capsicum annum fruit pericarp.

    Science.gov (United States)

    Kilcrease, James; Rodriguez-Uribe, Laura; Richins, Richard D; Arcos, Juan Manuel Garcia; Victorino, Jesus; O'Connell, Mary A

    2015-03-01

    The fruits of Capsicum spp. are especially rich sites for carotenoid synthesis and accumulation, with cultivar-specific carotenoid accumulation profiles. Differences in chromoplast structure as well as carotenoid biosynthesis are correlated with distinct carotenoid accumulations and fruit color. In the present study, the inheritance of chromoplast shape, carotenoid accumulation profiles, and transcript levels of four genes were measured. Comparisons of these traits were conducted using fruit from contrasting variants, Costeño Amarillo versus Costeño Red, and from F1 hybrids; crosses between parental lines with novel versions of these traits. Intermediate chromoplast shapes were observed in the F1, but no association between specific carotenoid accumulation and chromoplast shape was detected. Increased total carotenoid content was associated with increased β-carotene and violaxanthin content. Transcript levels for phytoene synthase (Psy) and β-carotene hydroxylase (CrtZ-2) were positively correlated with increased levels of specific carotenoids. No correlation was detected between transcript levels of capsanthin/capsorubin synthase (Ccs) and carotenoid composition or chromoplast shape. Transcript levels of fibrillin, were differentially correlated with specific carotenoids, negatively correlated with accumulation of capsanthin, and positively correlated with violaxanthin. The regulation of carotenoid accumulation in chromoplasts in Capsicum fruit continues to be a complex process with multiple steps for control. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Evidence for a universal pathway of abscisic acid biosynthesis in higher plants from 18O incorporation patterns

    International Nuclear Information System (INIS)

    Zeevaart, J.A.D.; Heath, T.G.; Gage, D.A.

    1989-01-01

    Previous labeling studies of abscisic acid (ABA) with 18 O 2 have been mainly conducted with water-stressed leaves. In this study, 18 O incorporation into ABA of stressed leaves of various species was compared with 18 O labeling of ABA of turgid leaves and of fruit tissue in different stages of ripening. In stressed leaves of all six species investigated, avocado (Persea americana), barley (Hordeum vulgare), bean (Phaseolus vulgaris), cocklebur (Xanthium strumarium), spinach (Spinacia oleracea), and tobacco (Nicotiana tabacum), 18 O was most abundant in the carboxyl group, whereas incorporation of a second and third 18 O in the oxygen atoms on the ring of ABA was much less prominent after 24 h in 18 O 2 . ABA from turgid bean leaves showed significant 18 O incorporation, again with highest 18 O enrichment in the carboxyl group. On the basis of 18 O-labeling patterns observed in ABA from different tissues it is concluded that, despite variations in precusor pool sizes and intermediate turnover rates, there is a universal pathway of ABA biosynthesis in higher plants which involves cleavage of a larger precursor molecule, presumably an oxygenated carotenoid

  9. Enhancement of carotenoid production by disrupting the C22-sterol desaturase gene (CYP61 in Xanthophyllomyces dendrorhous

    Directory of Open Access Journals (Sweden)

    Loto Iris

    2012-10-01

    Full Text Available Abstract Background Xanthophyllomyces dendrorhous is a basidiomycetous yeast that synthesizes astaxanthin, which is a carotenoid with a great biotechnological impact. The ergosterol and carotenoid synthesis pathways are derived from the mevalonate pathway, and in both pathways, cytochrome P450 enzymes are involved. Results In this study, we isolated and described the X. dendrorhous CYP61 gene, which encodes a cytochrome P450 involved in ergosterol biosynthesis. This gene is composed of nine exons and encodes a 526 amino acid polypeptide that shares significant percentages of identity and similitude with the C22-sterol desaturase, CYP61, from other fungi. Mutants derived from different parental strains were obtained by disrupting the CYP61 gene with an antibiotic selection marker. These mutants were not able to produce ergosterol and accumulated ergosta-5,8,22-trien-3-ol and ergosta-5,8-dien-3-ol. Interestingly, all of the mutants had a more intense red color phenotype than their respective parental strains. The carotenoid composition was qualitatively and quantitatively analyzed by RP-HPLC, revealing that the carotenoid content was higher in the mutant strains without major changes in their composition. The expression of the HMGR gene, which encodes an enzyme involved in the mevalonate pathway (3-hydroxy-3-methylglutaryl-CoA reductase, was analyzed by RT-qPCR showing that its transcript levels are higher in the CYP61 mutants. Conclusions These results suggest that in X. dendrorhous, ergosterol regulates HMGR gene expression by a negative feedback mechanism and in this way; it contributes in the regulation of the carotenoid biosynthesis.

  10. Characterization of chromoplasts and carotenoids of red- and yellow-fleshed papaya (Carica papaya L.).

    Science.gov (United States)

    Schweiggert, Ralf M; Steingass, Christof B; Heller, Annerose; Esquivel, Patricia; Carle, Reinhold

    2011-11-01

    Chromoplast morphology and ultrastructure of red- and yellow-fleshed papaya (Carica papaya L.) were investigated by light and transmission electron microscopy. Carotenoid analyses by LC-MS revealed striking similarity of nutritionally relevant carotenoid profiles in both the red and yellow varieties. However, while yellow fruits contained only trace amounts of lycopene, the latter was found to be predominant in red papaya (51% of total carotenoids). Comparison of the pigment-loaded chromoplast ultrastructures disclosed tubular plastids to be abundant in yellow papaya, whereas larger crystalloid substructures characterized most frequent red papaya chromoplasts. Exclusively existent in red papaya, such crystalloid structures were associated with lycopene accumulation. Non-globular carotenoid deposition was derived from simple solubility calculations based on carotenoid and lipid contents of the differently colored fruit pulps. Since the physical state of carotenoid deposition may be decisive regarding their bioavailability, chromoplasts from lycopene-rich tomato fruit (Lycopersicon esculentum L.) were also assessed and compared to red papaya. Besides interesting analogies, various distinctions were ascertained resulting in the prediction of enhanced lycopene bioavailability from red papaya. In addition, the developmental pathway of red papaya chromoplasts was investigated during fruit ripening and carotenogenesis. In the early maturation stage of white-fleshed papaya, undifferentiated proplastids and globular plastids were predominant, corresponding to incipient carotenoid biosynthesis. Since intermediate plastids, e.g., amyloplasts or chloroplasts, were absent, chromoplasts are likely to emerge directly from proplastids.

  11. Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase

    Directory of Open Access Journals (Sweden)

    Papacchioli Velia

    2006-06-01

    Full Text Available Abstract Background Potato is a major staple food, and modification of its provitamin content is a possible means for alleviating nutritional deficiencies. beta-carotene is the main dietary precursor of vitamin A. Potato tubers contain low levels of carotenoids, composed mainly of the xanthophylls lutein, antheraxanthin, violaxanthin, and of xanthophyll esters. None of these carotenoids have provitamin A activity. Results We silenced the first dedicated step in the beta-epsilon- branch of carotenoid biosynthesis, lycopene epsilon cyclase (LCY-e, by introducing, via Agrobacterium-mediated transformation, an antisense fragment of this gene under the control of the patatin promoter. Real Time measurements confirmed the tuber-specific silencing of Lcy-e. Antisense tubers showed significant increases in beta-beta-carotenoid levels, with beta-carotene showing the maximum increase (up to 14-fold. Total carotenoids increased up to 2.5-fold. These changes were not accompanied by a decrease in lutein, suggesting that LCY-e is not rate-limiting for lutein accumulation. Tuber-specific changes in expression of several genes in the pathway were observed. Conclusion The data suggest that epsilon-cyclization of lycopene is a key regulatory step in potato tuber carotenogenesis. Upon tuber-specific silencing of the corresponding gene, beta-beta-carotenoid and total carotenoid levels are increased, and expression of several other genes in the pathway is modified.

  12. Cellulose biosynthesis in higher plants

    Directory of Open Access Journals (Sweden)

    Krystyna Kudlicka

    2014-01-01

    Full Text Available Knowledge of the control and regulation of cellulose synthesis is fundamental to an understanding of plant development since cellulose is the primary structural component of plant cell walls. In vivo, the polymerization step requires a coordinated transport of substrates across membranes and relies on delicate orientations of the membrane-associated synthase complexes. Little is known about the properties of the enzyme complexes, and many questions about the biosynthesis of cell wall components at the cell surface still remain unanswered. Attempts to purify cellulose synthase from higher plants have not been successful because of the liability of enzymes upon isolation and lack of reliable in vitro assays. Membrane preparations from higher plant cells incorporate UDP-glucose into a glucan polymer, but this invariably turns out to be predominantly β -1,3-linked rather than β -1,4-linked glucans. Various hypotheses have been advanced to explain this phenomenon. One idea is that callose and cellulose-synthase systems are the same, but cell disruption activates callose synthesis preferentially. A second concept suggests that a regulatory protein as a part of the cellulose-synthase complex is rapidly degraded upon cell disruption. With new methods of enzyme isolation and analysis of the in vitro product, recent advances have been made in the isolation of an active synthase from the plasma membrane whereby cellulose synthase was separated from callose synthase.

  13. Intraspecific Variation in Carotenoids of Brassica oleracea var. sabellica.

    Science.gov (United States)

    Mageney, Vera; Baldermann, Susanne; Albach, Dirk C

    2016-04-27

    Carotenoids are best known as a source of natural antioxidants. Physiologically, carotenoids are part of the photoprotection in plants as they act as scavengers of reactive oxygen species (ROS). An important source of carotenoids in European food is Brassica oleracea. Focusing on the most abundant carotenoids, we estimated the contents of ß-carotene, (9Z)-neoxanthin, zeaxanthin, and lutein as well as those of chlorophylls a and b to assess their variability in Brassica oleracea var. sabellica. Our analyses included more than 30 cultivars categorized in five distinct sets grouped according to morphological characteristics or geographical origin. Our results demonstrated specific carotenoid patterns characteristic for American, Italian, and red-colored kale cultivars. Moreover, we demonstrated a tendency of high zeaxanthin proportions under traditional harvest conditions, which accord to low-temperature regimes. We also compared the carotenoid patterns of self-generated hybrid lines. Corresponding findings indicated that crossbreeding has a high potential for carotenoid content optimization in kale.

  14. Metabolic and transcriptional elucidation of the carotenoid biosynthesis pathway in peel and flesh tissue of loquat fruit during on-tree development.

    Science.gov (United States)

    Hadjipieri, Margarita; Georgiadou, Egli C; Marin, Alicia; Diaz-Mula, Huertas M; Goulas, Vlasios; Fotopoulos, Vasileios; Tomás-Barberán, Francisco A; Manganaris, George A

    2017-06-14

    Carotenoids are the main colouring substances found in orange-fleshed loquat fruits. The aim of this study was to unravel the carotenoid biosynthetic pathway of loquat fruit (cv. 'Obusa') in peel and flesh tissue during distinct on-tree developmental stages through a targeted analytical and molecular approach. Substantial changes regarding colour parameters, both between peel and flesh and among the different developmental stages, were monitored, concomitant with a significant increment in carotenoid content. Key genes and individual compounds that are implicated in the carotenoid biosynthetic pathway were further dissected with the employment of molecular (RT-qPCR) and advanced analytical techniques (LC-MS). Results revealed significant differences in carotenoid composition between peel and flesh. Thirty-two carotenoids were found in the peel, while only eighteen carotenoids were identified in the flesh. Trans-lutein and trans-β-carotene were the major carotenoids in the peel; the content of the former decreased with the progress of ripening, while the latter registered a 7.2-fold increase. However, carotenoid profiling of loquat flesh indicated trans-β-cryptoxanthin, followed by trans-β-carotene and 5,8-epoxy-β-carotene to be the most predominant carotenoids. High amounts of trans-β-carotene in both tissues were supported by significant induction in a chromoplast-specific lycopene β-cyclase (CYCB) transcript levels. PSY1, ZDS, CYCB and BCH were up-regulated and CRTISO, LCYE, ECH and VDE were down-regulated in most of the developmental stages compared with the immature stage in both peel and flesh tissue. Overall, differential regulation of expression levels with the progress of on-tree fruit development was more evident in the middle and downstream genes of carotenoid biosynthetic pathway. Carotenoid composition is greatly affected during on-tree loquat development with striking differences between peel and flesh tissue. A link between gene up- or down

  15. Carotenoid content and root color of cultivated carrot: a candidate-gene association study using an original broad unstructured population.

    Directory of Open Access Journals (Sweden)

    Matthieu Jourdan

    Full Text Available Accumulated in large amounts in carrot, carotenoids are an important product quality attribute and therefore a major breeding trait. However, the knowledge of carotenoid accumulation genetic control in this root vegetable is still limited. In order to identify the genetic variants linked to this character, we performed an association mapping study with a candidate gene approach. We developed an original unstructured population with a broad genetic basis to avoid the pitfall of false positive detection due to population stratification. We genotyped 109 SNPs located in 17 candidate genes – mostly carotenoid biosynthesis genes – on 380 individuals, and tested the association with carotenoid contents and color components. Total carotenoids and β-carotene contents were significantly associated with genes zeaxanthin epoxydase (ZEP, phytoene desaturase (PDS and carotenoid isomerase (CRTISO while α-carotene was associated with CRTISO and plastid terminal oxidase (PTOX genes. Color components were associated most significantly with ZEP. Our results suggest the involvement of the couple PDS/PTOX and ZEP in carotenoid accumulation, as the result of the metabolic and catabolic activities respectively. This study brings new insights in the understanding of the carotenoid pathway in non-photosynthetic organs.

  16. Conservation of the 2-keto-3-deoxymanno-octulosonic acid (Kdo) biosynthesis pathway between plants and bacteria.

    Science.gov (United States)

    Smyth, Kevin M; Marchant, Alan

    2013-10-18

    The increasing prevalence of multi-drug resistant bacteria is driving efforts in the development of new antibacterial agents. This includes a resurgence of interest in the Gram-negative bacteria lipopolysaccharide (LPS) biosynthesis enzymes as drug targets. The six carbon acidic sugar 2-keto-3-deoxymanno-octulosonic acid (Kdo) is a component of the lipid A moiety of the LPS in Gram-negative bacteria. In most cases the lipid A substituted by Kdo is the minimum requirement for cell growth, thus presenting the possibility of targeting either the synthesis or incorporation of Kdo for the development of antibacterial agents. Indeed, potent in vitro inhibitors of Kdo biosynthesis enzymes have been reported but have so far failed to show sufficient in vivo action against Gram-negative bacteria. As part of an effort to design more potent antibacterial agents targeting Kdo biosynthesis, the crystal structures of the key Kdo biosynthesis enzymes from Escherichia coli have been solved and their structure based mechanisms characterized. In eukaryotes, Kdo is found as a component of the pectic polysaccharide rhamnogalacturonan II in the plant primary cell wall. Interestingly, despite incorporating Kdo into very different macromolecules the Kdo biosynthesis and activation pathway is almost completely conserved between plants and bacteria. This raises the possibility for plant research to exploit the increasingly detailed knowledge and resources being generated by the microbiology community. Likewise, insights into Kdo biosynthesis in plants will be potentially useful in efforts to produce new antimicrobial compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Screening and selection of high carotenoid producing in vitro tomato cell culture lines for [13C]-carotenoid production.

    Science.gov (United States)

    Engelmann, Nancy J; Campbell, Jessica K; Rogers, Randy B; Rupassara, S Indumathie; Garlick, Peter J; Lila, Mary Ann; Erdman, John W

    2010-09-22

    Isotopically labeled tomato carotenoids, phytoene, phytofluene, and lycopene, are needed for mammalian bioavailability and metabolism research but are currently commercially unavailable. The goals of this work were to establish and screen multiple in vitro tomato cell lines for carotenoid production, test the best producers with or without the bleaching herbicides, norflurazon and 2-(4-chlorophenyl-thio)triethylamine (CPTA), and to use the greatest carotenoid accumulator for in vitro 13C-labeling. Different Solanum lycopersicum allelic variants for high lycopene and varying herbicide treatments were compared for carotenoid accumulation in callus and suspension culture, and cell suspension cultures of the hp-1 line were chosen for isotopic labeling. When grown with [U]-13C-glucose and treated with CPTA, hp-1 suspensions yielded highly enriched 13C-lycopene with 45% of lycopene in the M+40 form and 88% in the M+35 to M+40 isotopomer range. To the authors' knowledge this is the first report of highly enriched 13C-carotenoid production from in vitro plant cell culture.

  18. Carotenoids: potential allies of cardiovascular health?

    Directory of Open Access Journals (Sweden)

    Maria Alessandra Gammone

    2015-02-01

    Full Text Available Carotenoids are a class of natural, fat-soluble pigments found principally in plants. They have potential antioxidant biological properties because of their chemical structure and interaction with biological membranes. Epidemiologic studies supported the hypothesis that antioxidants could be used as an inexpensive means of both primary and secondary cardiovascular disease (CVD prevention. In fact, the oxidation of low-density lipoproteins (LDL in the vessels plays a key role in the development of atherosclerotic lesions. The resistance of LDL to oxidation is increased by high dietary antioxidant intake, so that carotenoids, as part of food patterns such as the Mediterranean diet, may have beneficial effects on cardiovascular health too. Further properties of carotenoids leading to a potential reduction of cardiovascular risk are represented by lowering of blood pressure, reduction of pro-inflammatory cytokines and markers of inflammation (such as C-reactive protein, and improvement of insulin sensitivity in muscle, liver, and adipose tissues. In addition, recent nutrigenomics studies have focused on the exceptional ability of carotenoids in modulating the expression of specific genes involved in cell metabolism. The aim of this review is to focus attention to this effect of some carotenoids to prevent CVD.

  19. Biotechnological production of carotenoids by yeasts: an overview

    Science.gov (United States)

    2014-01-01

    Nowadays, carotenoids are valuable molecules in different industries such as chemical, pharmaceutical, poultry, food and cosmetics. These pigments not only can act as vitamin A precursors, but also they have coloring and antioxidant properties, which have attracted the attention of the industries and researchers. The carotenoid production through chemical synthesis or extraction from plants is limited by low yields that results in high production costs. This leads to research of microbial production of carotenoids, as an alternative that has shown better yields than other aforementioned. In addition, the microbial production of carotenoids could be a better option about costs, looking for alternatives like the use of low-cost substrates as agro-industrials wastes. Yeasts have demonstrated to be carotenoid producer showing an important growing capacity in several agro-industrial wastes producing high levels of carotenoids. Agro-industrial wastes provide carbon and nitrogen source necessary, and others elements to carry out the microbial metabolism diminishing the production costs and avoiding pollution from these agro-industrial wastes to the environmental. Herein, we discuss the general and applied concepts regarding yeasts carotenoid production and the factors influencing carotenogenesis using agro-industrial wastes as low-cost substrates. PMID:24443802

  20. Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway

    Science.gov (United States)

    Chi, Shuang C.; Mothersole, David J.; Dilbeck, Preston; Niedzwiedzki, Dariusz M.; Zhang, Hao; Qian, Pu; Vasilev, Cvetelin; Grayson, Katie J.; Jackson, Philip J.; Martin, Elizabeth C.; Li, Ying; Holten, Dewey; Neil Hunter, C.

    2015-01-01

    Carotenoids protect the photosynthetic apparatus against harmful radicals arising from the presence of both light and oxygen. They also act as accessory pigments for harvesting solar energy, and are required for stable assembly of many light-harvesting complexes. In the phototrophic bacterium Rhodobacter (Rba.) sphaeroides phytoene desaturase (CrtI) catalyses three sequential desaturations of the colourless carotenoid phytoene, extending the number of conjugated carbon–carbon double bonds, N, from three to nine and producing the yellow carotenoid neurosporene; subsequent modifications produce the yellow/red carotenoids spheroidene/spheroidenone (N = 10/11). Genomic crtI replacements were used to swap the native three-step Rba. sphaeroides CrtI for the four-step Pantoea agglomerans enzyme, which re-routed carotenoid biosynthesis and culminated in the production of 2,2′-diketo-spirilloxanthin under semi-aerobic conditions. The new carotenoid pathway was elucidated using a combination of HPLC and mass spectrometry. Premature termination of this new pathway by inactivating crtC or crtD produced strains with lycopene or rhodopin as major carotenoids. All of the spirilloxanthin series carotenoids are accepted by the assembly pathways for LH2 and RC–LH1–PufX complexes. The efficiency of carotenoid-to-bacteriochlorophyll energy transfer for 2,2′-diketo-spirilloxanthin (15 conjugated C 000000000000 000000000000 000000000000 111111111111 000000000000 111111111111 000000000000 000000000000 000000000000 C bonds; N = 15) in LH2 complexes is low, at 35%. High energy transfer efficiencies were obtained for neurosporene (N = 9; 94%), spheroidene (N = 10; 96%) and spheroidenone (N = 11; 95%), whereas intermediate values were measured for lycopene (N = 11; 64%), rhodopin (N = 11; 62%) and spirilloxanthin (N = 13; 39%). The variety and stability of these novel Rba. sphaeroides antenna complexes make them useful experimental models for investigating the

  1. Biosynthetic routes of hydroxylated carotenoids (xanthophylls) in Marchantia polymorpha, and production of novel and rare xanthophylls through pathway engineering in Escherichia coli.

    Science.gov (United States)

    Takemura, Miho; Maoka, Takashi; Misawa, Norihiko

    2015-03-01

    MpBHY codes for a carotene β-ring 3(,3')-hydroxylase responsible for both zeaxanthin and lutein biosynthesis in liverwort. MpCYP97C functions as an ε-ring hydroxylase (zeinoxanthin 3'-hydroxylase) to produce lutein in liverwort. Xanthophylls are oxygenated or hydroxylated carotenes that are most abundant in the light-harvesting complexes of plants. The plant-type xanthophylls consist of α-xanthophyll (lutein) and β-xanthophylls (zeaxanthin, antheraxanthin, violaxanthin and neoxanthin). The α-xanthophyll and β-xanthophylls are derived from α-carotene and β-carotene by carotene hydroxylase activities, respectively. β-Ring 3,3'-hydroxylase that mediates the route of zeaxanthin from β-carotene via β-cryptoxanthin is present in higher plants and is encoded by the BHY (BCH) gene. On the other hand, CYP97A (or BHY) and CYP97C genes are responsible for β-ring 3-hydroxylation and ε-ring 3'-hydroxylation, respectively, in routes from α-carotene to lutein. To elucidate the evolution of the biosynthetic routes of such hydroxylated carotenoids from carotenes in land plants, we identified and functionally analyzed carotenoid hydroxylase genes of liverwort Marchantia polymorpha L. Three genes homologous to higher plants, BHY, CYP97A, and CYP97C, were isolated and named MpBHY, MpCYP97A, and MpCYP97C, respectively. MpBHY was found to code for β-ring hydroxylase, which is responsible for both routes starting from β-carotene and α-carotene. MpCYP97C functioned as an ε-ring hydroxylase not for α-carotene but for zeinoxanthin, while MpCYP97A showed no hydroxylation activity for β-carotene or α-carotene. These findings suggest the original functions of the hydroxylation enzymes of carotenes in land plants, which are thought to diversify in higher plants. In addition, we generated recombinant Escherichia coli cells, which produced rare and novel carotenoids such as α-echinenone and 4-ketozeinoxanthin, through pathway engineering using bacterial carotenogenic genes

  2. Differential spatio-temporal expression of carotenoid cleavage dioxygenases regulates apocarotenoid fluxes during AM symbiosis.

    Science.gov (United States)

    López-Ráez, Juan A; Fernández, Iván; García, Juan M; Berrio, Estefanía; Bonfante, Paola; Walter, Michael H; Pozo, María J

    2015-01-01

    Apocarotenoids are a class of compounds that play important roles in nature. In recent years, a prominent role for these compounds in arbuscular mycorrhizal (AM) symbiosis has been shown. They are derived from carotenoids by the action of the carotenoid cleavage dioxygenase (CCD) enzyme family. In the present study, using tomato as a model, the spatio-temporal expression pattern of the CCD genes during AM symbiosis establishment and functioning was investigated. In addition, the levels of the apocarotenoids strigolactones (SLs), C13 α-ionol and C14 mycorradicin (C13/C14) derivatives were analyzed. The results suggest an increase in SLs promoted by the presence of the AM fungus at the early stages of the interaction, which correlated with an induction of the SL biosynthesis gene SlCCD7. At later stages, induction of SlCCD7 and SlCCD1 expression in arbusculated cells promoted the production of C13/C14 apocarotenoid derivatives. We show here that the biosynthesis of apocarotenoids during AM symbiosis is finely regulated throughout the entire process at the gene expression level, and that CCD7 constitutes a key player in this regulation. Once the symbiosis is established, apocarotenoid flux would be turned towards the production of C13/C14 derivatives, thus reducing SL biosynthesis and maintaining a functional symbiosis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Flavonoids biosynthesis in plants and its further analysis by capillary electrophoresis.

    Science.gov (United States)

    Singh, Baljinder; Kumar, Ashwini; Malik, Ashok Kumar

    2017-03-01

    Flavonoids represent an important bioactive component in plants. Accumulation of flavonoids often occurs in plants subjected to abiotic stresses, including the adaptation of plants to the environment and in overcoming their stress conditions. This fact makes their analysis and determination an attractive field in food science since they can give interesting information on the quality and safety of foods. In this study, we discuss reports on plants flavonoids biosynthesis against abiotic stresses and advances in analytical capillary electrophoresis used for their identification and quantification in plants. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Novel bioassay for the discovery of inhibitors of the 2-C-methyl-D-erythritol 4-phosphate (MEP and terpenoid pathways leading to carotenoid biosynthesis.

    Directory of Open Access Journals (Sweden)

    Natália Corniani

    Full Text Available The 2-C-methyl-D-erythritol 4-phosphate (MEP pathway leads to the synthesis of isopentenyl diphosphate in plastids. It is a major branch point providing precursors for the synthesis of carotenoids, tocopherols, plastoquinone and the phytyl chain of chlorophylls, as well as the hormones abscisic acid and gibberellins. Consequently, disruption of this pathway is harmful to plants. We developed an in vivo bioassay that can measure the carbon flow through the carotenoid pathway. Leaf cuttings are incubated in the presence of a phytoene desaturase inhibitor to induce phytoene accumulation. Any compound reducing the level of phytoene accumulation is likely to interfere with either one of the steps in the MEP pathway or the synthesis of geranylgeranyl diphosphate. This concept was tested with known inhibitors of steps of the MEP pathway. The specificity of this in vivo bioassay was also verified by testing representative herbicides known to target processes outside of the MEP and carotenoid pathways. This assay enables the rapid screen of new inhibitors of enzymes preceding the synthesis of phytoene, though there are some limitations related to the non-specific effect of some inhibitors on this assay.

  5. The physics of cellulose biosynthesis : polymerization and self-organization, from plants to bacteria

    NARCIS (Netherlands)

    Diotallevi, F.

    2007-01-01

    This thesis deals with many different biological problems concerning cellulose biosynthesis. Cellulose is made by all plants, and therefore it is probably the most abundant organic compound on Earth. Aside from being the primary building material for plants, this biopolymer is of great economic

  6. Effects of heavy metals and light levels on the biosynthesis of carotenoids and fatty acids in the macroalgae Gracilaria tenuistipitata (var. liui Zhang & Xia

    Directory of Open Access Journals (Sweden)

    Ernani Pinto

    2011-04-01

    Full Text Available We present here the effect of heavy metals and of different light intensities on the biosynthesis of fatty acids and pigments in the macroalga Gracilaria tenuistipitata (var. liui Zhang & Xia. In order to verify the fatty acid content, gas chromatography with flame ionization detection (GC-FID was employed. Pigments (major carotenoids and chlorophyl-a were monitored by liquid chromatography with diode array detection (HPLC-DAD. Cultures of G. tenuistipitata were exposed to cadmium (Cd2+, 200 ppb and copper (Cu2+, 200 ppb, as well as to different light conditions (low light: 100 µmol.photons.m-2.s-1, or high light: 1000 µmol.photons.m-2.s-1. Cd2+ and Cu2+ increased the saturated and monounsaturated fatty acid content [14:0, 16:0, 18:0, 18:1 (n-7 and 18:1 (n-9] and all major pigments (violaxanthin, antheraxanthin, lutein, zeaxanthin, chlorophyll-a and β-carotene. Both heavy metals decreased the levels of polyunsaturated fatty acids (PUFA [18:2 (n-6, 18:3 (n-6, 18:5 (n-4, 20:4 (n-6, 20:5 (n-3, 22:6 (n-3]. G. tenuistipitata cultures were exposed to high light intensity for five days and no statistically significant differences were observed in the content of fatty acids. On the other hand, the levels of pigments rose markedly for chlorophyll-a and all of the carotenoids studied.

  7. Biosynthesis and function of plant lipids

    International Nuclear Information System (INIS)

    Thomson, W.W.; Mudd, J.B.; Gibbs, M.

    1983-01-01

    The Sixth Annual Symposium in Botany and Plant Physiology was held January 13-15, 1983, at the University of California, Riverside. This volume comprises the papers that were presented. Subjects discussed at the symposium covered a wide range in the field of plant lipids. Biosynthesis of lipids occupied an important fraction of the presentations at the symposium. Subjects included detailed studies of the enzymes of fatty acid synthesis, several discussions of the incorporation of fatty acids into glycerolipids and the further modification of the fatty acids, and the synthesis of glycerolipids and desaturation of fatty acids in both maturing oilseeds and chloroplasts. The physicochemical studies of glycerolipids and sterols in artificial membranes have led to distinct conclusions about their behaviour which must be relevant in the biological membrane. Results on the functional consequences of modifying the galactolipid composition in the chloroplast were an encouraging sign of progress in the attempts to relate membrane lipid composition to physiological function

  8. The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway.

    Science.gov (United States)

    Matusova, Radoslava; Rani, Kumkum; Verstappen, Francel W A; Franssen, Maurice C R; Beale, Michael H; Bouwmeester, Harro J

    2005-10-01

    The seeds of parasitic plants of the genera Striga and Orobanche will only germinate after induction by a chemical signal exuded from the roots of their host. Up to now, several of these germination stimulants have been isolated and identified in the root exudates of a series of host plants of both Orobanche and Striga spp. In most cases, the compounds were shown to be isoprenoid and belong to one chemical class, collectively called the strigolactones, and suggested by many authors to be sesquiterpene lactones. However, this classification was never proven; hence, the biosynthetic pathways of the germination stimulants are unknown. We have used carotenoid mutants of maize (Zea mays) and inhibitors of isoprenoid pathways on maize, cowpea (Vigna unguiculata), and sorghum (Sorghum bicolor) and assessed the effects on the root exudate-induced germination of Striga hermonthica and Orobanche crenata. Here, we show that for these three host and two parasitic plant species, the strigolactone germination stimulants are derived from the carotenoid pathway. Furthermore, we hypothesize how the germination stimulants are formed. We also discuss this finding as an explanation for some phenomena that have been observed for the host-parasitic plant interaction, such as the effect of mycorrhiza on S. hermonthica infestation.

  9. GENETIC ANALYSIS OF ABSCISIC ACID BIOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    MCCARTY D R

    2012-01-10

    The carotenoid cleavage dioxygenases (CCD) catalyze synthesis of a variety of apo-carotenoid secondary metabolites in plants, animals and bacteria. In plants, the reaction catalyzed by the 11, 12, 9-cis-epoxy carotenoid dioxygenase (NCED) is the first committed and key regulated step in synthesis of the plant hormone, abscisic acid (ABA). ABA is a key regulator of plant stress responses and has critical functions in normal root and seed development. The molecular mechanisms responsible for developmental control of ABA synthesis in plant tissues are poorly understood. Five of the nine CCD genes present in the Arabidopsis genome encode NCED's involved in control of ABA synthesis in the plant. This project is focused on functional analysis of these five AtNCED genes as a key to understanding developmental regulation of ABA synthesis and dissecting the role of ABA in plant development. For this purpose, the project developed a comprehensive set of gene knockouts in the AtNCED genes that facilitate genetic dissection of ABA synthesis. These mutants were used in combination with key molecular tools to address the following specific objectives: (1) the role of ABA synthesis in root development; (2) developmental control of ABA synthesis in seeds; (3) analysis of ATNCED over-expressers; (4) preliminary crystallography of the maize VP14 protein.

  10. Homologous gene targeting of a carotenoids biosynthetic gene in Rhodosporidium toruloides by Agrobacterium-mediated transformation.

    Science.gov (United States)

    Sun, Wenyi; Yang, Xiaobing; Wang, Xueying; Lin, Xinping; Wang, Yanan; Zhang, Sufang; Luan, Yushi; Zhao, Zongbao K

    2017-07-01

    To target a carotenoid biosynthetic gene in the oleaginous yeast Rhodosporidium toruloides by using the Agrobacterium-mediated transformation (AMT) method. The RHTO_04602 locus of R. toruloides NP11, previously assigned to code the carotenoid biosynthetic gene CRTI, was amplified from genomic DNA and cloned into the binary plasmid pZPK-mcs, resulting in pZPK-CRT. A HYG-expression cassette was inserted into the CRTI sequence of pZPK-CRT by utilizing the restriction-free clone strategy. The resulted plasmid was used to transform R. toruloides cells according to the AMT method, leading to a few white transformants. Sequencing analysis of those transformants confirmed homologous recombination and insertional inactivation of CRTI. When the white variants were transformed with a CRTI-expression cassette, cells became red and produced carotenoids as did the wild-type strain NP11. Successful homologous targeting of the CrtI locus confirmed the function of RHTO_04602 in carotenoids biosynthesis in R. toruloides. It provided valuable information for metabolic engineering of this non-model yeast species.

  11. Metabolism of carotenoids and apocarotenoids during ripening of raspberry fruit

    DEFF Research Database (Denmark)

    Beekwilder, J; van der Meer, IM; Simicb, A

    2008-01-01

    Carotenoids are important lipophilic antioxidants in fruits. Apocarotenoids such as α-ionone and β-ionone, which are breakdown products of carotenoids, are important for the flavor characteristics of raspberry fruit, and have also been suggested to have beneficial effects on human health. Raspberry...... is one of the few fruits where fruit ripening is accompanied by the massive production of apocarotenoids. In this paper, changes in levels of carotenoids and apocarotenoids during raspberry fruit ripening are described. In addition, the isolation and characterization of a gene encoding a carotenoid...... cleavage dioxygenase (CCD), which putatively mediates the degradation of carotenoids to apocarotenoids during raspberry fruit ripening, is reported. Such information helps us to better understand how these compounds are produced in plants and may also enable us to develop novel strategies for improved...

  12. Evidence for a universal pathway of abscisic acid biosynthesis in higher plants from sup 18 O incorporation patterns

    Energy Technology Data Exchange (ETDEWEB)

    Zeevaart, J.A.D.; Heath, T.G.; Gage, D.A. (Michigan State University, East Lansing (USA))

    1989-12-01

    Previous labeling studies of abscisic acid (ABA) with {sup 18}O{sub 2} have been mainly conducted with water-stressed leaves. In this study, {sup 18}O incorporation into ABA of stressed leaves of various species was compared with {sup 18}O labeling of ABA of turgid leaves and of fruit tissue in different stages of ripening. In stressed leaves of all six species investigated, avocado (Persea americana), barley (Hordeum vulgare), bean (Phaseolus vulgaris), cocklebur (Xanthium strumarium), spinach (Spinacia oleracea), and tobacco (Nicotiana tabacum), {sup 18}O was most abundant in the carboxyl group, whereas incorporation of a second and third {sup 18}O in the oxygen atoms on the ring of ABA was much less prominent after 24 h in {sup 18}O{sub 2}. ABA from turgid bean leaves showed significant {sup 18}O incorporation, again with highest {sup 18}O enrichment in the carboxyl group. On the basis of {sup 18}O-labeling patterns observed in ABA from different tissues it is concluded that, despite variations in precusor pool sizes and intermediate turnover rates, there is a universal pathway of ABA biosynthesis in higher plants which involves cleavage of a larger precursor molecule, presumably an oxygenated carotenoid.

  13. Effect of red light irradiation on skin coloration and carotenoid composition of stored ''Miyauchi'' iyo (Citrus iyo hort. ex Tanaka) tangor fruit

    International Nuclear Information System (INIS)

    Ohishi, H.; Watanabe, J.; Kadoya, K.

    1996-01-01

    Effect of red light irradiation on skin color development and carotenoid composition of stylar end of Miyauchi iyo (citrus iyo hort. ex Tanaka) tangor fruit was examined during storage. Both increase in a and a/b value and decrease in b value were enhanced by the irradiation. The a/b values of the fruit exposed were higher than those of control during the whole storage period. HPLC analyses also revealed the increase in total carotenoids content, of which the carotenoids that were tentatively named B and F most greatly accumulated. Similar tendencies were observed at equator and stem end portions. These results indicate that red light irradiation is involved in not only acceleration of overall color development but also enhancement of red color pigmentation by influencing a certain specific pathway of carotenoid biosynthesis

  14. The Strigolactone Germination Stimulants of the Plant-Parasitic Striga and Orobanche spp. Are Derived from the Carotenoid Pathway1

    Science.gov (United States)

    Matusova, Radoslava; Rani, Kumkum; Verstappen, Francel W.A.; Franssen, Maurice C.R.; Beale, Michael H.; Bouwmeester, Harro J.

    2005-01-01

    The seeds of parasitic plants of the genera Striga and Orobanche will only germinate after induction by a chemical signal exuded from the roots of their host. Up to now, several of these germination stimulants have been isolated and identified in the root exudates of a series of host plants of both Orobanche and Striga spp. In most cases, the compounds were shown to be isoprenoid and belong to one chemical class, collectively called the strigolactones, and suggested by many authors to be sesquiterpene lactones. However, this classification was never proven; hence, the biosynthetic pathways of the germination stimulants are unknown. We have used carotenoid mutants of maize (Zea mays) and inhibitors of isoprenoid pathways on maize, cowpea (Vigna unguiculata), and sorghum (Sorghum bicolor) and assessed the effects on the root exudate-induced germination of Striga hermonthica and Orobanche crenata. Here, we show that for these three host and two parasitic plant species, the strigolactone germination stimulants are derived from the carotenoid pathway. Furthermore, we hypothesize how the germination stimulants are formed. We also discuss this finding as an explanation for some phenomena that have been observed for the host-parasitic plant interaction, such as the effect of mycorrhiza on S. hermonthica infestation. PMID:16183851

  15. Marine Carotenoids against Oxidative Stress: Effects on Human Health

    Directory of Open Access Journals (Sweden)

    Maria Alessandra Gammone

    2015-09-01

    Full Text Available Carotenoids are lipid-soluble pigments that are produced in some plants, algae, fungi, and bacterial species, which accounts for their orange and yellow hues. Carotenoids are powerful antioxidants thanks to their ability to quench singlet oxygen, to be oxidized, to be isomerized, and to scavenge free radicals, which plays a crucial role in the etiology of several diseases. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. In this respect, various novel marine carotenoids have recently been isolated from marine organisms and displayed several utilizations as nutraceuticals and pharmaceuticals. Marine carotenoids (astaxanthin, fucoxanthin, β-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol have recently shown antioxidant properties in reducing oxidative stress markers. This review aims to describe the role of marine carotenoids against oxidative stress and their potential applications in preventing and treating inflammatory diseases.

  16. Marine Carotenoids against Oxidative Stress: Effects on Human Health.

    Science.gov (United States)

    Gammone, Maria Alessandra; Riccioni, Graziano; D'Orazio, Nicolantonio

    2015-09-30

    Carotenoids are lipid-soluble pigments that are produced in some plants, algae, fungi, and bacterial species, which accounts for their orange and yellow hues. Carotenoids are powerful antioxidants thanks to their ability to quench singlet oxygen, to be oxidized, to be isomerized, and to scavenge free radicals, which plays a crucial role in the etiology of several diseases. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. In this respect, various novel marine carotenoids have recently been isolated from marine organisms and displayed several utilizations as nutraceuticals and pharmaceuticals. Marine carotenoids (astaxanthin, fucoxanthin, β-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol) have recently shown antioxidant properties in reducing oxidative stress markers. This review aims to describe the role of marine carotenoids against oxidative stress and their potential applications in preventing and treating inflammatory diseases.

  17. Carotenoids and Photosynthesis.

    Science.gov (United States)

    Hashimoto, Hideki; Uragami, Chiasa; Cogdell, Richard J

    2016-01-01

    Carotenoids are ubiquitous and essential pigments in photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This is an example of singlet-singlet energy transfer, and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. Triplet-triplet energy transfer from chlorophylls to carotenoids plays a key role in this photoprotective reaction. In the light-harvesting pigment-protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role of structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined first to provide a basis from which to describe carotenoid photochemistry, which underlies most of their important functions in photosynthesis.

  18. Investigations on photosynthetic pigments of Lemnaceae, pt. 14: The effect of UV-B radiation on deetiolating and autotrophically growing plants of Lemna gibba L

    International Nuclear Information System (INIS)

    Wejnar, R.; Döhler, D.

    1992-01-01

    In deetiolating plants of Lemma gibba L., the biosynthesis of photosynthetically active pigments (chlorophyll a and b, beta-carotene, lutein, violaxanthin and neoxanthin) was reduced by UV-B radiation (2,5 W cnt * m -2 ) in dependence on the exposure time (8-96-h). The biosynthesis of chlorophyll b was more inhibited than that of chlorophyll a, that of the chlorophylls more than that of the carotenoids and that of beta-carotene more than that of the xanthophylls notably lutein. In autotrophic plants. UV-B radiation (42, 72 and 120 h) causes a strong reduction of the pigment content. The alteration of the ratios between the pigments was the same as in deetiolating plants. In deetiolating as well as in autotropically cultivated plants of Lemma gibba, the termination of the UV-B radiation is followed by an approach to the original ratios

  19. An LL-diaminopimelate aminotransferase defines a novel variant of the lysine biosynthesis pathway in plants.

    Science.gov (United States)

    Hudson, André O; Singh, Bijay K; Leustek, Thomas; Gilvarg, Charles

    2006-01-01

    Although lysine (Lys) biosynthesis in plants is known to occur by way of a pathway that utilizes diaminopimelic acid (DAP) as a central intermediate, the available evidence suggests that none of the known DAP-pathway variants found in nature occur in plants. A new Lys biosynthesis pathway has been identified in Arabidopsis (Arabidopsis thaliana) that utilizes a novel transaminase that specifically catalyzes the interconversion of tetrahydrodipicolinate and LL-diaminopimelate, a reaction requiring three enzymes in the DAP-pathway variant found in Escherichia coli. The LL-DAP aminotransferase encoded by locus At4g33680 was able to complement the dapD and dapE mutants of E. coli. This result, in conjunction with the kinetic properties and substrate specificity of the enzyme, indicated that LL-DAP aminotransferase functions in the Lys biosynthetic direction under in vivo conditions. Orthologs of At4g33680 were identified in all the cyanobacterial species whose genomes have been sequenced. The Synechocystis sp. ortholog encoded by locus sll0480 showed the same functional properties as At4g33680. These results demonstrate that the Lys biosynthesis pathway in plants and cyanobacteria is distinct from the pathways that have so far been defined in microorganisms.

  20. Key to Xenobiotic Carotenoids

    Directory of Open Access Journals (Sweden)

    Hans-Richard Sliwka

    2012-03-01

    Full Text Available A listing of carotenoids with heteroatoms (X = F, Cl, Br, I, Si, N, S, Se, Fe directly attached to the carotenoid carbon skeleton has been compiled. The 178 listed carotenoids with C,H,X atoms demonstrate that the classical division of carotenoids into hydrocarbon carotenoids (C,H and xanthophylls (C,H,O has become obsolete.

  1. Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants.

    Science.gov (United States)

    Rogalski, Marcelo; Carrer, Helaine

    2011-06-01

    The ability to manipulate plant fatty acid biosynthesis by using new biotechnological approaches has allowed the production of transgenic plants with unusual fatty acid profile and increased oil content. This review focuses on the production of very long chain polyunsaturated fatty acids (VLCPUFAs) and the increase in oil content in plants using molecular biology tools. Evidences suggest that regular consumption of food rich in VLCPUFAs has multiple positive health benefits. Alternative sources of these nutritional fatty acids are found in cold-water fishes. However, fish stocks are in severe decline because of decades of overfishing, and also fish oils can be contaminated by the accumulation of toxic compounds. Recently, there is also an increase in oilseed use for the production of biofuels. This tendency is partly associated with the rapidly rising costs of petroleum, increased concern about the environmental impact of fossil oil and the attractive need to develop renewable sources of fuel. In contrast to this scenario, oil derived from crop plants is normally contaminant free and less environmentally aggressive. Genetic engineering of the plastid genome (plastome) offers a number of attractive advantages, including high-level foreign protein expression, marker-gene excision and transgene containment because of maternal inheritance of plastid genome in most crops. Here, we describe the possibility to improve fatty acid biosynthesis in plastids, production of new fatty acids and increase their content in plants by genetic engineering of plastid fatty acid biosynthesis via plastid transformation. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  2. Glucosinolates, Carotenoids, and Vitamins E and K Variation from Selected Kale and Collard Cultivars

    Directory of Open Access Journals (Sweden)

    Moo Jung Kim

    2017-01-01

    Full Text Available Glucosinolates, carotenoids, and fat-soluble vitamins E and K contents were analyzed from various kale and collard cultivars at mature stage. We found a significant difference in these phytonutrients among cultivars. Among kale cultivars, “Beira” and “Olympic Red” were the highest in the total glucosinolate and “Toscano” kale was the highest in total carotenoid content. “Scarlet” kale was highest in tocopherols. For collard, total glucosinolate was the highest in “Top Bunch” while carotenoids were the highest in “Green Glaze.” An accession PI261597 was the highest in phylloquinone. In addition to the total content of each phytonutrient class, their composition differed among cultivars, indicating that each cultivar may have differential regulatory mechanisms for biosynthesis of these phytonutrients. Our result indicates that cultivar selection may play an important role in consumption of kale and collard with greater nutritional benefit. Therefore, the result of this study will provide a more thorough profile of essential and nonessential phytonutrients of kale and collard cultivars for consumers’ choice and for future research on nutritional value of these crops.

  3. Study of 'Redhaven' peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism

    Directory of Open Access Journals (Sweden)

    Tartarini Stefano

    2011-01-01

    Full Text Available Abstract Background Carotenoids are plant metabolites which are not only essential in photosynthesis but also important quality factors in determining the pigmentation and aroma of flowers and fruits. To investigate the regulation of carotenoid metabolism, as related to norisoprenoids and other volatile compounds in peach (Prunus persica L. Batsch., and the role of carotenoid dioxygenases in determining differences in flesh color phenotype and volatile composition, the expression patterns of relevant carotenoid genes and metabolites were studied during fruit development along with volatile compound content. Two contrasted cultivars, the yellow-fleshed 'Redhaven' (RH and its white-fleshed mutant 'Redhaven Bianca' (RHB were examined. Results The two genotypes displayed marked differences in the accumulation of carotenoid pigments in mesocarp tissues. Lower carotenoid levels and higher levels of norisoprenoid volatiles were observed in RHB, which might be explained by differential activity of carotenoid cleavage dioxygenase (CCD enzymes. In fact, the ccd4 transcript levels were dramatically higher at late ripening stages in RHB with respect to RH. The two genotypes also showed differences in the expression patterns of several carotenoid and isoprenoid transcripts, compatible with a feed-back regulation of these transcripts. Abamine SG - an inhibitor of CCD enzymes - decreased the levels of both isoprenoid and non-isoprenoid volatiles in RHB fruits, indicating a complex regulation of volatile production. Conclusions Differential expression of ccd4 is likely to be the major determinant in the accumulation of carotenoids and carotenoid-derived volatiles in peach fruit flesh. More in general, dioxygenases appear to be key factors controlling volatile composition in peach fruit, since abamine SG-treated 'Redhaven Bianca' fruits had strongly reduced levels of norisoprenoids and other volatile classes. Comparative functional studies of peach carotenoid

  4. Carotenoid accumulation and carotenogenic gene expression during fruit development in novel interspecific inbred squash lines and their parents.

    Science.gov (United States)

    Nakkanong, Korakot; Yang, Jing Hua; Zhang, Ming Fang

    2012-06-13

    Carotenoid levels and composition during squash fruit development were compared in Cucurbita moschata , Cucurbita maxima , and two lines of their interspecific inbred lines, namely, Maxchata1 and Maxchata2. Eight genes associated with carotenoid biosynthesis were analyzed by quantitative RT-PCR. The two squash species and their interspecific inbred lines exhibited different qualitative and quantitative carotenoid profiles and regulatory mechanisms. C. moschata had the lowest total carotenoid content and mainly accumulated α-carotene and β-carotene, as expected in a fruit with pale-orange flesh. Low carotenoid content in this species was probably due to the comparatively low expression of all genes investigated, especially PSY1 gene, compared to the other squashes. The predominant carotenoids in C. maxima were violaxanthin and lutein, which produced a corresponding yellow flesh color in mature fruit. The relationship between the expression of the CHYB and ZEP genes may result in almost equal concentrations of violaxanthin and lutein in C. maxima at fruit ripening. In contrast, their interspecific inbred lines principally accumulated lutein and β-carotene, leading to orange flesh color. The PSY1 gene exhibited higher expression levels at earlier stages of fruit development in the Maxchata lines, potentially triggering the increased carotenoid accumulation seen in these fruits. Likewise, the higher transcription level of CHYB gene observed in the two interspecific inbred lines might be correlated with high lutein in these hybrids. However, this study could not explain the observed β-carotene accumulation on the basis of gene expression.

  5. Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin

    Directory of Open Access Journals (Sweden)

    Steuer Kristin

    2011-04-01

    Full Text Available Abstract Background The xanthophyll astaxanthin is a high-value compound with applications in the nutraceutical, cosmetic, food, and animal feed industries. Besides chemical synthesis and extraction from naturally producing organisms like Haematococcus pluvialis, heterologous biosynthesis in non-carotenogenic microorganisms like Escherichia coli, is a promising alternative for sustainable production of natural astaxanthin. Recent achievements in the metabolic engineering of E. coli strains have led to a significant increase in the productivity of carotenoids like lycopene or β-carotene by increasing the metabolic flux towards the isoprenoid precursors. For the heterologous biosynthesis of astaxanthin in E. coli, however, the conversion of β-carotene to astaxanthin is obviously the most critical step towards an efficient biosynthesis of astaxanthin. Results Here we report the construction of the first plasmid-free E. coli strain that produces astaxanthin as the sole carotenoid compound with a yield of 1.4 mg/g cdw (E. coli BW-ASTA. This engineered E. coli strain harbors xanthophyll biosynthetic genes from Pantoea ananatis and Nostoc punctiforme as individual expression cassettes on the chromosome and is based on a β-carotene-producing strain (E. coli BW-CARO recently developed in our lab. E. coli BW-CARO has an enhanced biosynthesis of the isoprenoid precursor isopentenyl diphosphate (IPP and produces β-carotene in a concentration of 6.2 mg/g cdw. The expression of crtEBIY along with the β-carotene-ketolase gene crtW148 (NpF4798 and the β-carotene-hydroxylase gene (crtZ under controlled expression conditions in E. coli BW-ASTA directed the pathway exclusively towards the desired product astaxanthin (1.4 mg/g cdw. Conclusions By using the λ-Red recombineering technique, genes encoding for the astaxanthin biosynthesis pathway were stably integrated into the chromosome of E. coli. The expression levels of chromosomal integrated recombinant

  6. De novo Sequencing and Analysis of Lemongrass Transcriptome Provides First Insights into the Essential Oil Biosynthesis of Aromatic Grasses

    Directory of Open Access Journals (Sweden)

    Seema Meena

    2016-07-01

    Full Text Available Aromatic grasses of the genus Cymbopogon (Poaceae family represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavour, fragrance, cosmetic and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step towards understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases (TPS, pyrophosphatases (PPase, alcohol dehydrogenases (ADH, aldo-keto reductases (AKR, carotenoid cleavage dioxygenases (CCD, alcohol acetyltransferases (AAT and aldehyde dehydrogenases (ALDH, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes and acetates. Molecular modeling and docking further supported the role of identified enzymes in aroma formation in Cymbopogon. Also, simple sequence repeats (SSRs were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition.

  7. De Novo Sequencing and Analysis of Lemongrass Transcriptome Provide First Insights into the Essential Oil Biosynthesis of Aromatic Grasses

    Science.gov (United States)

    Meena, Seema; Kumar, Sarma R.; Venkata Rao, D. K.; Dwivedi, Varun; Shilpashree, H. B.; Rastogi, Shubhra; Shasany, Ajit K.; Nagegowda, Dinesh A.

    2016-01-01

    Aromatic grasses of the genus Cymbopogon (Poaceae family) represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavor, fragrance, cosmetic, and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step toward understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass) by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases, pyrophosphatases, alcohol dehydrogenases, aldo-keto reductases, carotenoid cleavage dioxygenases, alcohol acetyltransferases, and aldehyde dehydrogenases, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type) with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes, and acetates. Molecular modeling and docking further supported the role of identified protein sequences in aroma formation in Cymbopogon. Also, simple sequence repeats were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition. PMID:27516768

  8. De Novo Sequencing and Analysis of Lemongrass Transcriptome Provide First Insights into the Essential Oil Biosynthesis of Aromatic Grasses.

    Science.gov (United States)

    Meena, Seema; Kumar, Sarma R; Venkata Rao, D K; Dwivedi, Varun; Shilpashree, H B; Rastogi, Shubhra; Shasany, Ajit K; Nagegowda, Dinesh A

    2016-01-01

    Aromatic grasses of the genus Cymbopogon (Poaceae family) represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavor, fragrance, cosmetic, and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step toward understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass) by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases, pyrophosphatases, alcohol dehydrogenases, aldo-keto reductases, carotenoid cleavage dioxygenases, alcohol acetyltransferases, and aldehyde dehydrogenases, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type) with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes, and acetates. Molecular modeling and docking further supported the role of identified protein sequences in aroma formation in Cymbopogon. Also, simple sequence repeats were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition.

  9. Carotenoids in Marine Animals

    Science.gov (United States)

    Maoka, Takashi

    2011-01-01

    Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine animal carotenoids from natural product chemistry, metabolism, food chain, and chemosystematic viewpoints, and also describe new structural carotenoids isolated from marine animals over the last decade. PMID:21566799

  10. Fast atom bombardment tandem mass spectrometry of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    van Breeman, R.B. [Univ. of Illinois, Chicago, IL (United States); Schmitz, H.H.; Schwartz, S.J. [North Carolina State Univ., Raleigh, NC (United States)

    1995-02-01

    Positive ion fast atom bombardment (FAB) tandem mass spectrometry (MS-MS) using a double-focusing mass spectrometer with linked scanning at constant B/E and high-energy collisionally activated dissociation (CAD) was used to differentiate 17 different cartenoids, including {beta}-apo-8{prime}- carotenal, astaxanthin, {alpha}-carotene, {beta}-carotene, {gamma}-carotene, {zeta}-carotene, canthaxanthin, {beta}-cryptoxanthin, isozeaxanthin bis (pelargonate), neoxanthin, neurosporene, nonaprene, lutein, lycopene, phytoene, phytofluene, and zeaxanthin. The carotenoids were either synthetic or isolated from plant tissues. The use of FAB ionization minimized degradation or rearrangement of the carotenoid structures due to the inherent thermal instability generally ascribed to these compounds. Instead of protonated molecules, both polar xanthophylls and nonpolar carotenes formed molecular ions, M{sup {center_dot}+}, during FAB ionization. Following collisionally activated dissociation, fragment ions of selected molecular ion precursors showed structural features indicative of the presence of hydroxyl groups, ring systems, ester groups, and aldehyde groups and the extent of aliphatic polyene conjugation. The fragmentation patterns observed in the mass spectra herein may be used as a reference for the structural determination of carotenoids isolated from plant and animal tissues. 18 refs., 4 figs.

  11. Novel procedure for the extraction and concentration of carotenoid-containing chromoplasts from selected plant systems.

    Science.gov (United States)

    Fish, Wayne W

    2007-02-21

    Natural sources of carotenoids for nutraceutical use are desired by the food industry as a result of the increased production of convenience and other highly processed foods. As new physiological roles are discovered for some of the minor carotenoids that are found in only small amounts in present sources, the need for discovery of new sources will amplify. Thus, a method is needed that will effectively and gently concentrate carotenoids from potential new sources for subsequent identification and analysis. A procedure is presented by which carotenoid-containing tissue chromoplasts can be extracted and subsequently concentrated by precipitation, all in an aqueous milieu. The chromoplasts are extracted and solubilized with 0.3% sodium dodecyl sulfate (SDS) in water. The addition of a nominally equal volume of acetonitrile to the chromoplasts in SDS immediately precipitates the chromoplasts out of solution with generally >90% recovery. Carotenoids contained in the concentrated, still-intact chromoplasts can then be solubilized by organic solvent extraction for subsequent analysis. This methodology offers a means to effectively and gently concentrate carotenoids from fruit tissues where yields are often low (e.g., yellow watermelon).

  12. Legume carotenoids.

    Science.gov (United States)

    Sri Kantha, S; Erdman, J W

    1987-01-01

    In recent years, the results of research studies have suggested a positive beneficial relationship between a vegetarian-based diet and low incidence of diseases, including coronary heart disease, cancer, obesity, dental caries, and osteoporosis. beta-Carotene has specifically been suggested as a nutrient with antitumorigenic properties. In this regard there is a need to evaluate the carotenoid content of foods. Legumes are one of the staple components of a vegetarian diet. This review specifically surveys the prevalence of carotenoids in food and forage legumes. In addition, the methods available for carotenoid analysis are discussed; factors affecting the determination of carotenoid content during maturation, germination, processing and storage are identified; research areas which have been inadequately explored are identified; and suggestions are made for future lines of investigation.

  13. SPECTROPHOTOMETRIC DETERMINATION OF CHLOROPHYLLS AND CAROTENOIDS. AN EFFECT OF SONICATION AND SAMPLE PROCESSING

    Directory of Open Access Journals (Sweden)

    Jana Braniša

    2014-02-01

    Full Text Available Chlorophylls and carotenoids are abundant pigments in plants, algae and cyanobacteria. In this study we verified the applicability of two previously developed UV-vis spectrophotometric methods for simultaneous quantitative determination of chlorophylls (a, b and carotenoids (lycopene, β-carotene or total carotenoids. The pigments were extracted from the strawberries, apricots and raspberries in both the acetone-water and acetone-hexane mixtures. Based on the statistical evaluation of the results the combination of mechanical disruption and sonication of fruit samples seems to be a suitable way to improve the pigment extraction efficiency from fruits in both types of solvents. In the case of apricot and raspberry fruit extracts the amount of chlorophylls and carotenoids calculated from the proposed equations was comparable to those published by other authors. However, the spectrophotometric determination of β-carotene content in strawberry acetone-hexane extract appeared to be problematic mainly due to the fact that carotenoids exhibited overlapping chlorophyll absorption bands. Overlap of bands leads to the negative values calculated from the proposed equation for the β-carotene content. The results indicate the limitations in use of the proposed set of equations for plant samples with comparable amounts of studied pigments.

  14. Key to Xenobiotic Carotenoids

    OpenAIRE

    Hans-Richard Sliwka; Vassilia Partali

    2012-01-01

    A listing of carotenoids with heteroatoms (X = F, Cl, Br, I, Si, N, S, Se, Fe) directly attached to the carotenoid carbon skeleton has been compiled. The 178 listed carotenoids with C,H,X atoms demonstrate that the classical division of carotenoids into hydrocarbon carotenoids (C,H) and xanthophylls (C,H,O) has become obsolete. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in...

  15. Cloning and characterization of genes involved in nostoxanthin biosynthesis of Sphingomonas elodea ATCC 31461.

    Directory of Open Access Journals (Sweden)

    Liang Zhu

    Full Text Available Most Sphingomonas species synthesize the yellow carotenoid nostoxanthin. However, the carotenoid biosynthetic pathway of these species remains unclear. In this study, we cloned and characterized a carotenoid biosynthesis gene cluster containing four carotenogenic genes (crtG, crtY, crtI and crtB and a β-carotene hydroxylase gene (crtZ located outside the cluster, from the gellan-gum producing bacterium Sphingomonas elodea ATCC 31461. Each of these genes was inactivated, and the biochemical function of each gene was confirmed based on chromatographic and spectroscopic analysis of the intermediates accumulated in the knockout mutants. Moreover, the crtG gene encoding the 2,2'-β-hydroxylase and the crtZ gene encoding the β-carotene hydroxylase, both responsible for hydroxylation of β-carotene, were confirmed by complementation studies using Escherichia coli producing different carotenoids. Expression of crtG in zeaxanthin and β-carotene accumulating E. coli cells resulted in the formation of nostoxanthin and 2,2'-dihydroxy-β-carotene, respectively. Based on these results, a biochemical pathway for synthesis of nostoxanthin in S. elodea ATCC 31461 is proposed.

  16. Cloning and characterization of genes involved in nostoxanthin biosynthesis of Sphingomonas elodea ATCC 31461.

    Science.gov (United States)

    Zhu, Liang; Wu, Xuechang; Li, Ou; Qian, Chaodong; Gao, Haichun

    2012-01-01

    Most Sphingomonas species synthesize the yellow carotenoid nostoxanthin. However, the carotenoid biosynthetic pathway of these species remains unclear. In this study, we cloned and characterized a carotenoid biosynthesis gene cluster containing four carotenogenic genes (crtG, crtY, crtI and crtB) and a β-carotene hydroxylase gene (crtZ) located outside the cluster, from the gellan-gum producing bacterium Sphingomonas elodea ATCC 31461. Each of these genes was inactivated, and the biochemical function of each gene was confirmed based on chromatographic and spectroscopic analysis of the intermediates accumulated in the knockout mutants. Moreover, the crtG gene encoding the 2,2'-β-hydroxylase and the crtZ gene encoding the β-carotene hydroxylase, both responsible for hydroxylation of β-carotene, were confirmed by complementation studies using Escherichia coli producing different carotenoids. Expression of crtG in zeaxanthin and β-carotene accumulating E. coli cells resulted in the formation of nostoxanthin and 2,2'-dihydroxy-β-carotene, respectively. Based on these results, a biochemical pathway for synthesis of nostoxanthin in S. elodea ATCC 31461 is proposed.

  17. On the substrate- and stereospecificity of the plant carotenoid cleavage dioxygenase 7

    KAUST Repository

    Bruno, Mark; Hofmann, Manuel; Vermathen, Martina; Alder, Adrian; Beyer, Peter D.; Al-Babili, Salim

    2014-01-01

    Strigolactones are phytohormones synthesized from carotenoids via a stereospecific pathway involving the carotenoid cleavage dioxygenases 7 (CCD7) and 8. CCD7 cleaves 9-cis-β-carotene to form a supposedly 9-cis-configured β-apo-10′-carotenal. CCD8 converts this intermediate through a combination of yet undetermined reactions into the strigolactone-like compound carlactone. Here, we investigated the substrate and stereo-specificity of the Arabidopsis and pea CCD7 and determined the stereo-configuration of the β-apo-10′-carotenal intermediate by using Nuclear Magnetic Resonance Spectroscopy. Our data unequivocally demonstrate the 9-cis-configuration of the intermediate. Both CCD7s cleave different 9-cis-carotenoids, yielding hydroxylated 9-cis-apo-10′-carotenals that may lead to hydroxylated carlactones, but show highest affinity for 9-cis-β-carotene. © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. On the substrate- and stereospecificity of the plant carotenoid cleavage dioxygenase 7

    KAUST Repository

    Bruno, Mark

    2014-05-01

    Strigolactones are phytohormones synthesized from carotenoids via a stereospecific pathway involving the carotenoid cleavage dioxygenases 7 (CCD7) and 8. CCD7 cleaves 9-cis-β-carotene to form a supposedly 9-cis-configured β-apo-10′-carotenal. CCD8 converts this intermediate through a combination of yet undetermined reactions into the strigolactone-like compound carlactone. Here, we investigated the substrate and stereo-specificity of the Arabidopsis and pea CCD7 and determined the stereo-configuration of the β-apo-10′-carotenal intermediate by using Nuclear Magnetic Resonance Spectroscopy. Our data unequivocally demonstrate the 9-cis-configuration of the intermediate. Both CCD7s cleave different 9-cis-carotenoids, yielding hydroxylated 9-cis-apo-10′-carotenals that may lead to hydroxylated carlactones, but show highest affinity for 9-cis-β-carotene. © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. Regulation of cell wall biosynthesis.

    Science.gov (United States)

    Zhong, Ruiqin; Ye, Zheng-Hua

    2007-12-01

    Plant cell walls differ in their amount and composition among various cell types and even in different microdomains of the wall of a given cell. Plants must have evolved regulatory mechanisms controlling biosynthesis, targeted secretion, and assembly of wall components to achieve the heterogeneity in cell walls. A number of factors, including hormones, the cytoskeleton, glycosylphosphatidylinositol-anchored proteins, phosphoinositides, and sugar nucleotide supply, have been implicated in the regulation of cell wall biosynthesis or deposition. In the past two years, there have been important discoveries in transcriptional regulation of secondary wall biosynthesis. Several transcription factors in the NAC and MYB families have been shown to be the key switches for activation of secondary wall biosynthesis. These studies suggest a transcriptional network comprised of a hierarchy of transcription factors is involved in regulating secondary wall biosynthesis. Further investigation and integration of the regulatory players participating in the making of cell walls will certainly lead to our understanding of how wall amounts and composition are controlled in a given cell type. This may eventually allow custom design of plant cell walls on the basis of our needs.

  20. Carotenoids in Microalgae.

    Science.gov (United States)

    Henríquez, Vitalia; Escobar, Carolina; Galarza, Janeth; Gimpel, Javier

    Carotenoids are a class of isoprenoids synthesized by all photosynthetic organisms as well as by some non-photosynthetic bacteria and fungi with broad applications in food, feed and cosmetics, and also in the nutraceutical and pharmaceutical industries. Microalgae represent an important source of high-value products, which include carotenoids, among others. Carotenoids play key roles in light harvesting and energy transfer during photosynthesis and in the protection of the photosynthetic apparatus against photooxidative damage. Carotenoids are generally divided into carotenes and xanthophyls, but accumulation in microalgae can also be classified as primary (essential for survival) and secondary (by exposure to specific stimuli).In this chapter, we outline the high value carotenoids produced by commercially important microalgae, their production pathways, the improved production rates that can be achieved by genetic engineering as well as their biotechnological applications.

  1. Molecular cloning and characterization of cDNAs encoding carotenoid cleavage dioxygenase in bitter melon (Momordica charantia).

    Science.gov (United States)

    Tuan, Pham Anh; Park, Sang Un

    2013-01-01

    Carotenoid cleavage dioxygenases (CCDs) are a family of enzymes that catalyze the oxidative cleavage of carotenoids at various chain positions to form a broad spectrum of apocarotenoids, including aromatic substances, pigments and phytohormones. Using the rapid amplification of cDNA ends (RACE) PCR method, we isolated three cDNA-encoding CCDs (McCCD1, McCCD4, and McNCED) from Momordica charantia. Amino acid sequence alignments showed that they share high sequence identity with other orthologous genes. Quantitative real-time RT PCR (reverse transcriptase PCR) analysis revealed that the expression of McCCD1 and McCCD4 was highest in flowers, and lowest in roots and old leaves (O-leaves). During fruit maturation, the two genes displayed differential expression, with McCCD1 peaking at mid-stage maturation while McCCD4 showed the lowest expression at that stage. The mRNA expression level of McNCED, a key enzyme involved in abscisic acid (ABA) biosynthesis, was high during fruit maturation and further increased at the beginning of seed germination. When first-leaf stage plants of M. charantia were exposed to dehydration stress, McNCED mRNA expression was induced primarily in the leaves and, to a lesser extend, in roots and stems. McNCED expression was also induced by high temperature and salinity, while treatment with exogenous ABA led to a decrease. These results should be helpful in determining the substrates and cleavage sites catalyzed by CCD genes in M. charantia, and also in defining the roles of CCDs in growth and development, and in the plant's response to environmental stress. Copyright © 2012 Elsevier GmbH. All rights reserved.

  2. Carotenoids in Marine Animals

    OpenAIRE

    Maoka, Takashi

    2011-01-01

    Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine a...

  3. A Single Amino Acid Substitution in an ORANGE Protein Promotes Carotenoid Overaccumulation in Arabidopsis1[OPEN

    Science.gov (United States)

    Yuan, Hui; Owsiany, Katherine; Sheeja, T.E.; Zhou, Xiangjun; Rodriguez, Caroline; Li, Yongxi; Welsch, Ralf; Chayut, Noam; Yang, Yong; Thannhauser, Theodore W.; Parthasarathy, Mandayam V.; Xu, Qiang; Deng, Xiuxin; Fei, Zhangjun; Schaffer, Ari; Katzir, Nurit; Burger, Joseph; Tadmor, Yaakov; Li, Li

    2015-01-01

    Carotenoids are crucial for plant growth and human health. The finding of ORANGE (OR) protein as a pivotal regulator of carotenogenesis offers a unique opportunity to comprehensively understand the regulatory mechanisms of carotenoid accumulation and develop crops with enhanced nutritional quality. Here, we demonstrated that alteration of a single amino acid in a wild-type OR greatly enhanced its ability to promote carotenoid accumulation. Whereas overexpression of OR from Arabidopsis (Arabidopsis thaliana; AtOR) or from the agronomically important crop sorghum (Sorghum bicolor; SbOR) increased carotenoid levels up to 2-fold, expression of AtORHis (R90H) or SbORHis (R104H) variants dramatically enhanced carotenoid accumulation by up to 7-fold in the Arabidopsis calli. Moreover, we found that AtORAla (R90A) functioned similarly to AtORHis to promote carotenoid overproduction. Neither AtOR nor AtORHis greatly affected carotenogenic gene expression. AtORHis exhibited similar interactions with phytoene synthase (PSY) as AtOR in posttranscriptionally regulating PSY protein abundance. AtORHis triggered biogenesis of membranous chromoplasts in the Arabidopsis calli, which shared structures similar to chromoplasts found in the curd of the orange cauliflower (Brassica oleracea) mutant. By contrast, AtOR did not cause plastid-type changes in comparison with the controls, but produced plastids containing larger and electron-dense plastoglobuli. The unique ability of AtORHis in mediating chromoplast biogenesis is responsible for its induced carotenoid overproduction. Our study demonstrates ORHis/Ala as powerful tools for carotenoid enrichment in plants, and provides insights into the mechanisms underlying ORHis-regulated carotenoid accumulation. PMID:26224804

  4. Simultaneous electrochemical-electron spin resonance studies of carotenoid cation radicals and dications

    International Nuclear Information System (INIS)

    Khaled, M.; Hadjipetrou, A.; Xinhai Chen; Kispert, L.

    1989-01-01

    Carotenoids are present in the chloroplasts of photosynthetic green plants and serve as photoprotect devices and antenna pigments, and active role in the photosynthetic electron-transport chain with the carotenoid cation radical as an integral part of the electron-transfer process. The research reported herein has confirmed that carotenoid cation radicals have a lifetime that is sensitive to solvent, being longest in CH 2 Cl 2 and are best prepared electrochemically. Semiempirical AM1 and INDO calculations of the trans and cis isomers of β-carotene, canthaxanthin and β-apo-8'-carotenal cation radicals predicted the unresolved EPR line whose linewidth varies to a measurable degree with carotenoid, which subsequent experimental observations affirmed. Simultaneous electrochemical - electron spin resonance studies of carotenoid cation radicals and dications have shown the radicals detected by EPR are formed by the one electron oxidation of the carotenoid, that dimers are not formed upon decay of the radical cations and an estimate of the rate of comproportionation as a function of carotenoid can be given. The formal rate constant K' for heterogenous electron transfer rate at the electrode surface has been deduced from rotating disc experiments. Upon deuteration, and in the presence of excess β-carotene, the half-life for decay of the carotenoid radical cation increased an order of magnitude due to the reaction between diffusion carotenoid dications and carotenoids to form additional radical cations. The carotenoid diffusion coefficients deduced by chronocoulometry substantiates this measurement. The produces formed upon electrochemical studies are being studied by HPLC and the isomers formed thermally are being separated. Additional radical reactions are currently being studied by EPR and electrochemical methods

  5. Nutritional aspects of phytoene and phytofluene, carotenoid precursors to lycopene.

    Science.gov (United States)

    Engelmann, Nancy J; Clinton, Steven K; Erdman, John W

    2011-01-01

    Epidemiological studies suggest an inverse relationship between tomato consumption and serum and tissue lycopene (LYC) levels with risk of some chronic diseases, including several cancers and cardiovascular disease. LYC, the red carotenoid found in tomatoes, is often considered to be the primary bioactive carotenoid in tomatoes that mediates health benefits, but other colorless precursor carotenoids, phytoene (PE) and phytofluene (PF), are also present in substantial quantities. PE and PF are readily absorbed from tomato foods and tomato extracts by humans. Animal models of carotenoid absorption suggest preferential accumulation of PE and PF in some tissues. The reasonably high concentrations of PE and PF detected in serum and tissues relative to the concentrations in foods suggest that absorption or metabolism of these compounds may be different from that of LYC. Experimental studies, both in vitro and in vivo, suggest that PE and PF exhibit bioactivity but little is known about their impact in humans. Methods for producing isotopically labeled PE, PF, and LYC tracers from tomato plant cell culture offer a unique tool for further understanding the differential bioavailability and metabolism of these 3 prominent tomato carotenoids and how they may affect health.

  6. Analysis of carotenoid compounds in aphids by Raman imaging and mass spectrometry

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Pierre Brat, Jean Christophe Valmalette, Christian Mertz, George de Sousa, Aviv Dombrovsky, Maria Capovilla & Alain Robichon ### Abstract Carotenoids are compounds synthesized in plants, bacteria and fungi, closely associated to the chlorophyll to perform photosynthesis. A spectacular evolutionary achievement allowed the aphid to produce carotenoids obviously by lateral transfer of genes from fungi. We have recently documented that these molecules are involved in photo condi...

  7. The genetic origins of biosynthesis and light-responsive control of the chemical UV screen of land plants

    International Nuclear Information System (INIS)

    Jorgensen, R.

    1994-01-01

    Most land plants possess the capacity to protect themselves from UV light, and do so by producing pigments that absorb efficiently in the UV-A and UV-B regions of the spectrum while allowing transmission of nearly all photosynthetically useful wavelengths. These UV-absorbing pigments are mainly phenylpropanoids and flavonoids. This chapter summarizes current understanding of the mechanism of UV protection in higher land plants, evaluates the information available from lower land plants and their green-algal relatives, and then considers the possible evolutionary origins of this use of chemical filters for selectively screening UV light from solar radiation. It is proposed that photo control over the biosynthesis of UV-absorbing phenylpropanoids and flavonoids may have evolved in concert with the evolution of the high biosynthetic activity necessary for UV protection. The toxicity of phenylpropanoids and flavonoids has been postulated to have been a barrier to the evolution of an effective chemical UV screen, and that some means for sequestering these compounds and/or for controlling their synthesis probably evolved prior to, or in concert with, the evolution of high rates of biosynthesis. The original photoreceptor and signal transduction system is speculated to have been based on photo isomerization of a phenylpropanoid ester and a pre-existing product feedback mechanism for controlling phenylpropanoid biosynthesis. Understanding the original mechanism for photo control of the chemical UV screen of land plants could be valuable for understanding the adaptability of extant land plants to rising levels of solar UV-B radiation and may suggest genetic strategies for engineering improved UV tolerance in crop plants. (author)

  8. Biosynthesis of tylophora alkaloids

    International Nuclear Information System (INIS)

    Mulchandani, N.B.; Iyer, S.S.; Badheka, L.P.

    1974-01-01

    Using labelled precursors, biosynthesis of the tylophora alkaloids, tylophorine, tylophorinidine and tylophorinide has been investigated in Tylophora asthmatica plants. The radioactive precursors, phenylalanine-2- 14 C, benzoic acid-1- 14 C, benzoic acid-ring 14 C, acetate-2- 14 C, ornithine-5- 14 C, acetate-2- 14 C, ornithine-5- 14 C and cinnamic acid-2- 14 C were administered to the plants individually by wick technique. Tylophorine was isolated in each case and assayed for its radioactivity to find out the incorporation of the label into it. The results indicate that: (1) phenylalanine via cinnamic acid is an important precursor in the biosynthesis of tylophorine (2) orinithine participates in tylophorine biosynthesis via pyrroline and (3) tylophorinidine may be a direct precursor of tylophorine. (M.G.B.)

  9. Food carotenoids: analysis, composition and alterations during storage and processing of foods.

    Science.gov (United States)

    Rodriguez-Amaya, Delia B

    2003-01-01

    Substantial progress has been achieved in recent years in refining the analytical methods and evaluating the accuracy of carotenoid data. Although carotenoid analysis is inherently difficult and continues to be error prone, more complete and reliable data are now available. Rather than expressing the analytical results as retinol equivalents, there is a tendency to present the concentrations of individual carotenoids, particularly beta-carotene, beta-cryptoxanthin, alpha-carotene, lycopene, lutein and zeaxanthin, carotenoids found in the human plasma and considered to be important to human health in terms of the provitamin A activity and/or reduction of the risk for developing degenerative diseases. With the considerable effort directed to carotenoid analysis, many food sources have now been analyzed in different countries. The carotenoid composition of foods vary qualitatively and quantitatively. Even in a given food, compositional variability occurs because of factors such as stage of maturity, variety or cultivar, climate or season, part of the plant consumed, production practices, post-harvest handling, processing and storage of food. During processing, isomerization of trans-carotenoids, the usual configuration in nature, to the cis-forms occurs, with consequent alteration of the carotenoids' bioavailability and biological activity. Isomerization is promoted by light, heat and acids. The principal cause of carotenoid loss during processing and storage of food is enzymatic or non-enzymatic oxidation of the highly unsaturated carotenoid molecules. The occurrence and extent of oxidation depends on the presence of oxygen, metals, enzymes, unsaturated lipids, prooxidants, antioxidants; exposure to light; type and physical state of the carotenoids present; severity and duration of processing; packaging material; storage conditions. Thus, retention of carotenoids has been the major concern in the preparation, processing and storage of foods. However, in recent years

  10. Contents of vitamin C, carotenoids, tocopherols, and tocotrienols in the subtropical plant species Cyphostemma digitatum as affected by processing.

    Science.gov (United States)

    Al-Duais, Mohammed; Hohbein, Juliane; Werner, Susanne; Böhm, Volker; Jetschke, Gottfried

    2009-06-24

    The subtropical plant species Cyphostemma digitatum, Vitaceae, is used in central Yemen in traditional medicine, as a culinary herb, and as a source of food flavoring. The contents of vitamin C, vitamin E, and carotenoids and changes caused by common processing were investigated. Carotenoids were determined by reversed phase C30-high-performance liquid chromatography (HPLC) with diode array detection at 470 nm, while tocopherols and tocotrienols were analyzed by using normal phase HPLC with fluorescence detection (excitation, 292 nm; emission, 330 nm). Ascorbic acid was determined spectrophotometrically after reaction with DNP by measuring the absorbance at 520 nm. For the raw material and for the processed commercial food product, both in dried form, reasonable quantities of carotenoids were found in the raw material as follows: lutein, 18.89 +/- 0.73 mg/100 g; zeaxanthin, 9.46 +/- 0.30 mg/100 g; canthaxanthin, 0.21 +/- 0.01 mg/100 g; beta-cryptoxanthin, 0.67 +/- 0.03 mg/100 g; and beta-carotene, 14.60 +/- 0.46 mg/100 g. Household processing reduced the carotenoid contents dramatically; only beta-carotene sustained the processing. Likewise, vitamin C, 49.50 +/- 0.01 mg/100 g in the raw material and 20.30 +/- 0.02 mg/100 g in the processed material, was affected negatively by processing; only 41% was retained after processing. In contrast, the outstanding high content of vitamin E, 82.74 +/- 0.63 mg/100 g in the raw material, was increased by processing to 101.20 +/- 1.38 mg/100 g; it was found in different forms, some of which were rare in other sources.

  11. Interrelationships between maternal carotenoid status and newborn infant macular pigment optical density and carotenoid status.

    Science.gov (United States)

    Henriksen, Bradley S; Chan, Gary; Hoffman, Robert O; Sharifzadeh, Mohsen; Ermakov, Igor V; Gellermann, Werner; Bernstein, Paul S

    2013-08-15

    Deposition of the macular pigment carotenoids lutein and zeaxanthin in the human retina occurs early in life. In this study, we examined the interrelationships of maternal carotenoid status and newborn infant macular pigment levels and systemic carotenoid status. As a secondary measure, we also evaluated the effects of intrauterine growth restriction (IUGR) on carotenoid status in term newborn infants. We measured mother and infant skin carotenoids using resonance Raman spectroscopy (RRS), serum carotenoids by HPLC, and mother breast milk carotenoids by HPLC. We measured infant macular pigment levels using noninvasive blue light reflectometry. We enrolled 30 healthy term infants, their mothers, and 10 IUGR infants and their mothers. A subset of 16 infants was imaged for macular pigment optical density (MPOD). Infant serum zeaxanthin levels correlated with MPOD (r = 0.68, P = 0.007). Mother serum zeaxanthin levels correlated with infant MPOD (r = 0.59, P = 0.032). Infant and mother serum lutein did not correlate with MPOD. Mother-infant correlations were found for total serum carotenoids (r = 0.42, P = 0.020) and skin carotenoids (r = 0.48, P = 0.001). No difference was seen between IUGR infants and controls in total serum or skin carotenoids. Mothers of IUGR infants had lower total serum carotenoids (P = 0.019) and breast milk carotenoids than controls (P = 0.006). Our findings suggest that maternal zeaxanthin status may play a more important role than lutein status in macular pigment deposition in utero. Controlled trials are needed to determine whether maternal zeaxanthin prenatal supplementation can raise infant macular pigment levels and/or improve ocular function.

  12. An improved UHPLC-UV method for separation and quantification of carotenoids in vegetable crops.

    Science.gov (United States)

    Maurer, Megan M; Mein, Jonathan R; Chaudhuri, Swapan K; Constant, Howard L

    2014-12-15

    Carotenoid identification and quantitation is critical for the development of improved nutrition plant varieties. Industrial analysis of carotenoids is typically carried out on multiple crops with potentially thousands of samples per crop, placing critical needs on speed and broad utility of the analytical methods. Current chromatographic methods for carotenoid analysis have had limited industrial application due to their low throughput, requiring up to 60 min for complete separation of all compounds. We have developed an improved UHPLC-UV method that resolves all major carotenoids found in broccoli (Brassica oleracea L. var. italica), carrot (Daucus carota), corn (Zea mays), and tomato (Solanum lycopersicum). The chromatographic method is completed in 13.5 min allowing for the resolution of the 11 carotenoids of interest, including the structural isomers lutein/zeaxanthin and α-/β-carotene. Additional minor carotenoids have also been separated and identified with this method, demonstrating the utility of this method across major commercial food crops. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. A Carotenoid Health Index Based on Plasma Carotenoids and Health Outcomes

    Science.gov (United States)

    Donaldson, Michael S.

    2011-01-01

    While there have been many studies on health outcomes that have included measurements of plasma carotenoids, this data has not been reviewed and assembled into a useful form. In this review sixty-two studies of plasma carotenoids and health outcomes, mostly prospective cohort studies or population-based case-control studies, are analyzed together to establish a carotenoid health index. Five cutoff points are established across the percentiles of carotenoid concentrations in populations, from the tenth to ninetieth percentile. The cutoff points (mean ± standard error of the mean) are 1.11 ± 0.08, 1.47 ± 0.08, 1.89 ± 0.08, 2.52 ± 0.13, and 3.07 ± 0.20 µM. For all cause mortality there seems to be a low threshold effect with protection above every cutoff point but the lowest. But for metabolic syndrome and cancer outcomes there tends to be significant positive health outcomes only above the higher cutoff points, perhaps as a triage effect. Based on this data a carotenoid health index is proposed with risk categories as follows: very high risk: 4 µM. Over 95 percent of the USA population falls into the moderate or high risk category of the carotenoid health index. PMID:22292108

  14. Carotenoid-cleavage activities of crude enzymes from Pandanous amryllifolius.

    Science.gov (United States)

    Ningrum, Andriati; Schreiner, Matthias

    2014-11-01

    Carotenoid degradation products, known as norisoprenoids, are aroma-impact compounds in several plants. Pandan wangi is a common name of the shrub Pandanus amaryllifolius. The genus name 'Pandanus' is derived from the Indonesian name of the tree, pandan. In Indonesia, the leaves from the plant are used for several purposes, e.g., as natural colorants and flavor, and as traditional treatments. The aim of this study was to determine the cleavage of β-carotene and β-apo-8'-carotenal by carotenoid-cleavage enzymes isolated from pandan leaves, to investigate dependencies of the enzymatic activities on temperature and pH, to determine the enzymatic reaction products by using Headspace Solid Phase Microextraction Gas Chromatography/Mass Spectrophotometry (HS-SPME GC/MS), and to investigate the influence of heat treatment and addition of crude enzyme on formation of norisoprenoids. Crude enzymes from pandan leaves showed higher activity against β-carotene than β-apo-8'-carotenal. The optimum temperature of crude enzymes was 70°, while the optimum pH value was 6. We identified β-ionone as the major volatile reaction product from the incubations of two different carotenoid substrates, β-carotene and β-apo-8'-carotenal. Several treatments, e.g., heat treatment and addition of crude enzymes in pandan leaves contributed to the norisoprenoid content. Our findings revealed that the crude enzymes from pandan leaves with carotenoid-cleavage activity might provide a potential application, especially for biocatalysis, in natural-flavor industry. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  15. Control of light-dependent keto carotenoid biosynthesis in Nostoc 7120 by the transcription factor NtcA.

    Science.gov (United States)

    Sandmann, Gerhard; Mautz, Jürgen; Breitenbach, Jürgen

    2016-09-01

    In Nostoc PCC 7120, two different ketolases, CrtW and CrtO are involved in the formation of keto carotenoids from β-carotene. In contrast to other cyanobacteria, CrtW catalyzes the formation of monoketo echinenone whereas CrtO is the only enzyme for the synthesis of diketo canthaxanthin. This is the major photo protective carotenoid in this cyanobacterium. Under high-light conditions, basic canthaxanthin formation was transcriptionally up-regulated. Upon transfer to high light, the transcript levels of all investigated carotenogenic genes including those coding for phytoene synthase, phytoene desaturase and both ketolases were increased. These transcription changes proceeded via binding of the transcription factor NtcA to the promoter regions of the carotenogenic genes. The binding was absolutely dependent on the presence of reductants and oxo-glutarate. Light-stimulated transcript formation was inhibited by DCMU. Therefore, photosynthetic electron transport is proposed as the sensor for high-light and a changing redox state as a signal for NtcA binding.

  16. Skin Carotenoid Response to a High-Carotenoid Juice in Children: A Randomized Clinical Trial.

    Science.gov (United States)

    Aguilar, Sheryl S; Wengreen, Heidi J; Dew, Jeffrey

    2015-11-01

    Previous studies have shown an increase in serum carotenoid status among children when fed carotenoids. This study looked at the effect and dose-response of a known amount of carotenoid consumption on change in skin carotenoid status among children. Participants were children aged 5 to 17 years from Cache County, UT (n=58). Children were randomly assigned to one of three groups: high (n=18) or low (n=18) dose of a carotenoid-rich juice (2.75 mg carotenoids/30 mL juice), or placebo juice (n=22). Children were asked to drink an assigned dose of the juice (30 to 120 mL/day) based on the weight of the child and group assignment, every day for 8 weeks. Skin carotenoids were measured every 2 weeks by resonance Raman spectroscopy. Participants were asked to maintain their usual diet throughout the study. Usual diet was assessed using three averaged 24-hour recalls; diet constancy was measured using food frequency questionnaires administered at baseline, Week 4, and Week 8. Repeated measures analysis of variance was used to assess the group differences in skin carotenoid status over time. The high-dose and low-dose groups had mean±standard deviation increases in skin carotenoid status of 11,515±1,134 and 10,009±1,439 Raman intensity counts, respectively (both P values juice significantly increased skin carotenoid status over an 8-week period among children aged 5 to 17 years. The amount of carotenoids found in this amount of juice is equal to the amount found in approximately 23 to 92 g cooked carrots per day. Copyright © 2015 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  17. Assessment of leaf carotenoids content with a new carotenoid index: Development and validation on experimental and model data

    Science.gov (United States)

    Zhou, Xianfeng; Huang, Wenjiang; Kong, Weiping; Ye, Huichun; Dong, Yingying; Casa, Raffaele

    2017-05-01

    Leaf carotenoids content (LCar) is an important indicator of plant physiological status. Accurate estimation of LCar provides valuable insight into early detection of stress in vegetation. With spectroscopy techniques, a semi-empirical approach based on spectral indices was extensively used for carotenoids content estimation. However, established spectral indices for carotenoids that generally rely on limited measured data, might lack predictive accuracy for carotenoids estimation in various species and at different growth stages. In this study, we propose a new carotenoid index (CARI) for LCar assessment based on a large synthetic dataset simulated from the leaf radiative transfer model PROSPECT-5, and evaluate its capability with both simulated data from PROSPECT-5 and 4SAIL and extensive experimental datasets: the ANGERS dataset and experimental data acquired in field experiments in China in 2004. Results show that CARI was the index most linearly correlated with carotenoids content at the leaf level using a synthetic dataset (R2 = 0.943, RMSE = 1.196 μg/cm2), compared with published spectral indices. Cross-validation results with CARI using ANGERS data achieved quite an accurate estimation (R2 = 0.545, RMSE = 3.413 μg/cm2), though the RBRI performed as the best index (R2 = 0.727, RMSE = 2.640 μg/cm2). CARI also showed good accuracy (R2 = 0.639, RMSE = 1.520 μg/cm2) for LCar assessment with leaf level field survey data, though PRI performed better (R2 = 0.710, RMSE = 1.369 μg/cm2). Whereas RBRI, PRI and other assessed spectral indices showed a good performance for a given dataset, overall their estimation accuracy was not consistent across all datasets used in this study. Conversely CARI was more robust showing good results in all datasets. Further assessment of LCar with simulated and measured canopy reflectance data indicated that CARI might not be very sensitive to LCar changes at low leaf area index (LAI) value, and in these conditions soil moisture

  18. An ll-Diaminopimelate Aminotransferase Defines a Novel Variant of the Lysine Biosynthesis Pathway in Plants1[W

    Science.gov (United States)

    Hudson, André O.; Singh, Bijay K.; Leustek, Thomas; Gilvarg, Charles

    2006-01-01

    Although lysine (Lys) biosynthesis in plants is known to occur by way of a pathway that utilizes diaminopimelic acid (DAP) as a central intermediate, the available evidence suggests that none of the known DAP-pathway variants found in nature occur in plants. A new Lys biosynthesis pathway has been identified in Arabidopsis (Arabidopsis thaliana) that utilizes a novel transaminase that specifically catalyzes the interconversion of tetrahydrodipicolinate and ll-diaminopimelate, a reaction requiring three enzymes in the DAP-pathway variant found in Escherichia coli. The ll-DAP aminotransferase encoded by locus At4g33680 was able to complement the dapD and dapE mutants of E. coli. This result, in conjunction with the kinetic properties and substrate specificity of the enzyme, indicated that ll-DAP aminotransferase functions in the Lys biosynthetic direction under in vivo conditions. Orthologs of At4g33680 were identified in all the cyanobacterial species whose genomes have been sequenced. The Synechocystis sp. ortholog encoded by locus sll0480 showed the same functional properties as At4g33680. These results demonstrate that the Lys biosynthesis pathway in plants and cyanobacteria is distinct from the pathways that have so far been defined in microorganisms. PMID:16361515

  19. Effects of carotenoids on lipid bilayers.

    Science.gov (United States)

    Johnson, Quentin R; Mostofian, Barmak; Fuente Gomez, Gabriel; Smith, Jeremy C; Cheng, Xiaolin

    2018-01-31

    Carotenoids have been found to be important in improving the integrity of biomembranes in eukaryotes. However, the molecular details of how carotenoids modulate the physical properties of biomembranes are unknown. To this end, we have conducted a series of molecular dynamics simulations of different biologically-relevant membranes in the presence of carotenoids. The carotenoid effect on the membrane was found to be specific to the identity of the carotenoid and the composition of the membrane itself. Therefore, different classes of carotenoids produce a different effect on the membrane, and different membrane phases are affected differently by carotenoids. It is apparent from our data that carotenoids do trigger the bilayer to become thinner. The mechanism by which this occurs depends on two competing factors, the ability of the lipid tails of opposing monolayers to either (1) compress or (2) interdigitate as the bilayer condenses. Indeed, carotenoids directly influence the physical properties via these two mechanisms, thus compacting the bilayer. However, the degree to which these competing mechanisms are utilized depends on the bilayer phase and the carotenoid identity.

  20. The binding of Xanthophylls to the bulk light-harvesting complex of photosystem II of higher plants. A specific requirement for carotenoids with a 3-hydroxy-beta-end group.

    Science.gov (United States)

    Phillip, Denise; Hobe, Stephan; Paulsen, Harald; Molnar, Peter; Hashimoto, Hideki; Young, Andrew J

    2002-07-12

    The pigment composition of the light-harvesting complexes (LHCs) of higher plants is highly conserved. The bulk complex (LHCIIb) binds three xanthophyll molecules in combination with chlorophyll (Chl) a and b. The structural requirements for binding xanthophylls to LHCIIb have been examined using an in vitro reconstitution procedure. Reassembly of the monomeric recombinant LHCIIb was performed using a wide range of native and nonnative xanthophylls, and a specific requirement for the presence of a hydroxy group at C-3 on a single beta-end group was identified. The presence of additional substituents (e.g. at C-4) did not interfere with xanthophyll binding, but they could not, on their own, support reassembly. cis isomers of zeaxanthin, violaxanthin, and lutein were not bound, whereas all-trans-neoxanthin and different chiral forms of lutein and zeaxanthin were incorporated into the complex. The C-3 and C-3' diols lactucaxanthin (a carotenoid native to many plant LHCs) and eschscholtzxanthin (a retro-carotenoid) both behaved very differently from lutein and zeaxanthin in that they would not support complex reassembly when used alone. Lactucaxanthin could, however, be bound when lutein was also present, and it showed a high affinity for xanthophyll binding site N1. In the presence of lutein, lactucaxanthin was readily bound to at least one lutein-binding site, suggesting that the ability to bind to the complex and initiate protein folding may be dependent on different structural features of the carotenoid molecule. The importance of carotenoid end group structure and ring-to-chain conformation around the C-6-C-7 torsion angle of the carotenoid molecule in binding and complex reassembly is discussed.

  1. ADP1 Affects Plant Architecture by Regulating Local Auxin Biosynthesis

    Science.gov (United States)

    Li, Shibai; Qin, Genji; Novák, Ondřej; Pěnčík, Aleš; Ljung, Karin; Aoyama, Takashi; Liu, Jingjing; Murphy, Angus; Gu, Hongya; Tsuge, Tomohiko; Qu, Li-Jia

    2014-01-01

    Plant architecture is one of the key factors that affect plant survival and productivity. Plant body structure is established through the iterative initiation and outgrowth of lateral organs, which are derived from the shoot apical meristem and root apical meristem, after embryogenesis. Here we report that ADP1, a putative MATE (multidrug and toxic compound extrusion) transporter, plays an essential role in regulating lateral organ outgrowth, and thus in maintaining normal architecture of Arabidopsis. Elevated expression levels of ADP1 resulted in accelerated plant growth rate, and increased the numbers of axillary branches and flowers. Our molecular and genetic evidence demonstrated that the phenotypes of plants over-expressing ADP1 were caused by reduction of local auxin levels in the meristematic regions. We further discovered that this reduction was probably due to decreased levels of auxin biosynthesis in the local meristematic regions based on the measured reduction in IAA levels and the gene expression data. Simultaneous inactivation of ADP1 and its three closest homologs led to growth retardation, relative reduction of lateral organ number and slightly elevated auxin level. Our results indicated that ADP1-mediated regulation of the local auxin level in meristematic regions is an essential determinant for plant architecture maintenance by restraining the outgrowth of lateral organs. PMID:24391508

  2. Carotenoids of human colostrum.

    Science.gov (United States)

    Patton, S; Canfield, L M; Huston, G E; Ferris, A M; Jensen, R G

    1990-03-01

    Colostrum, the initial postpartum secretion of the breast, ordinarily has a distinct yellow color due to carotenoids of its fat globules. This pigmentation progressively diminishes as milk production increases during the first week of lactation. Identity of these carotenoids was investigated by means of thin-layer chromatography, high performance liquid chromatography and spectral analysis. Alpha- and beta-carotene, lycopene and beta-cryptoxanthin were revealed as major chromogens. A component corresponding to lutein and/or zeaxanthin was also detected by both chromatographic techniques. Extracts of 23 saponified colostrum samples from 10 donors revealed considerable variation in total carotenoid concentration (0.34-7.57 micrograms/ml of colostrum). Multiparous mothers had greater mean colostrum carotenoid concentrations than did the primiparae, 2.18 +/- 1.94 vs 1.14 +/- 1.32 micrograms/ml, respectively. Seven of the eight primiparous donors' samples had little or no yellow color. These findings imply a difference in carotenoid transport by breasts that have lactated as compared to those that have not. The interrelation of carotenoids, lactation and breast cancer is discussed.

  3. In silico identification and analysis of phytoene synthase genes in plants.

    Science.gov (United States)

    Han, Y; Zheng, Q S; Wei, Y P; Chen, J; Liu, R; Wan, H J

    2015-08-14

    In this study, we examined phytoene synthetase (PSY), the first key limiting enzyme in the synthesis of carotenoids and catalyzing the formation of geranylgeranyl pyrophosphate in terpenoid biosynthesis. We used known amino acid sequences of the PSY gene in tomato plants to conduct a genome-wide search and identify putative candidates in 34 sequenced plants. A total of 101 homologous genes were identified. Phylogenetic analysis revealed that PSY evolved independently in algae as well as monocotyledonous and dicotyledonous plants. Our results showed that the amino acid structures exhibited 5 motifs (motifs 1 to 5) in algae and those in higher plants were highly conserved. The PSY gene structures showed that the number of intron in algae varied widely, while the number of introns in higher plants was 4 to 5. Identification of PSY genes in plants and the analysis of the gene structure may provide a theoretical basis for studying evolutionary relationships in future analyses.

  4. Accumulation of Carotenoids and Metabolic Profiling in Different Cultivars of Tagetes Flowers

    Directory of Open Access Journals (Sweden)

    Yun Ji Park

    2017-02-01

    Full Text Available Species of Tagetes, which belong to the family Asteraceae show different characteristics including, bloom size, shape, and color; plant size; and leaf shape. In this study, we determined the differences in primary metabolites and carotenoid yields among six cultivars from two Tagetes species, T. erecta and T. patula. In total, we detected seven carotenoids in the examined cultivars: violaxanthin, lutein, zeaxanthin, α-carotene, β-carotene, 9-cis-β-carotene, and 13-cis-β-carotene. In all the cultivars, lutein was the most abundant carotenoid. Furthermore, the contents of each carotenoid in flowers varied depending on the cultivar. Principal component analysis (PCA facilitated metabolic discrimination between Tagetes cultivars, with the exception of Inca Yellow and Discovery Orange. Moreover, PCA and orthogonal projection to latent structure-discriminant analysis (OPLS-DA results provided a clear discrimination between T. erecta and T. patula. Primary metabolites, including xylose, citric acid, valine, glycine, and galactose were the main components facilitating separation of the species. Positive relationships were apparent between carbon-rich metabolites, including those of the TCA cycle and sugar metabolism, and carotenoids.

  5. Photo-excitation of carotenoids causes cytotoxicity via singlet oxygen production

    International Nuclear Information System (INIS)

    Yoshii, Hiroshi; Yoshii, Yukie; Asai, Tatsuya; Furukawa, Takako; Takaichi, Shinichi; Fujibayashi, Yasuhisa

    2012-01-01

    Highlights: ► Some photo-excited carotenoids have photosensitizing ability. ► They are able to produce ROS. ► Photo-excited fucoxanthin can produce singlet oxygen through energy transfer. -- Abstract: Carotenoids, natural pigments widely distributed in algae and plants, have a conjugated double bond system. Their excitation energies are correlated with conjugation length. We hypothesized that carotenoids whose energy states are above the singlet excited state of oxygen (singlet oxygen) would possess photosensitizing properties. Here, we demonstrated that human skin melanoma (A375) cells are damaged through the photo-excitation of several carotenoids (neoxanthin, fucoxanthin and siphonaxanthin). In contrast, photo-excitation of carotenoids that possess energy states below that of singlet oxygen, such as β-carotene, lutein, loroxanthin and violaxanthin, did not enhance cell death. Production of reactive oxygen species (ROS) by photo-excited fucoxanthin or neoxanthin was confirmed using a reporter assay for ROS production with HeLa Hyper cells, which express a fluorescent indicator protein for intracellular ROS. Fucoxanthin and neoxanthin also showed high cellular penetration and retention. Electron spin resonance spectra using 2,2,6,6-tetramethil-4-piperidone as a singlet oxygen trapping agent demonstrated that singlet oxygen was produced via energy transfer from photo-excited fucoxanthin to oxygen molecules. These results suggest that carotenoids such as fucoxanthin, which are capable of singlet oxygen production through photo-excitation and show good penetration and retention in target cells, are useful as photosensitizers in photodynamic therapy for skin disease.

  6. Red pepper (Capsicum annuum) carotenoids as a source of natural food colors: analysis and stability-a review.

    Science.gov (United States)

    Arimboor, Ranjith; Natarajan, Ramesh Babu; Menon, K Ramakrishna; Chandrasekhar, Lekshmi P; Moorkoth, Vidya

    2015-03-01

    Carotenoids are increasingly drawing the attention of researchers as a major natural food color due to their inherent nutritional characteristics and the implicated possible role in prevention and protection against degenerative diseases. In this report, we review the role of red pepper as a source for natural carotenoids. The composition of the carotenoids in red pepper and the application of different methodologies for their analysis were discussed in this report. The stability of red pepper carotenoids during post-harvest processing and storage is also reviewed. This review highlights the potential of red pepper carotenoids as a source of natural food colors and also discusses the need for a standardized approach for the analysis and reporting of composition of carotenoids in plant products and designing model systems for stability studies.

  7. Mate choice for a male carotenoid-based ornament is linked to female dietary carotenoid intake and accumulation

    Directory of Open Access Journals (Sweden)

    Toomey Matthew B

    2012-01-01

    Full Text Available Abstract Background The coevolution of male traits and female mate preferences has led to the elaboration and diversification of sexually selected traits; however the mechanisms that mediate trait-preference coevolution are largely unknown. Carotenoid acquisition and accumulation are key determinants of the expression of male sexually selected carotenoid-based coloration and a primary mechanism maintaining the honest information content of these signals. Carotenoids also influence female health and reproduction in ways that may alter the costs and benefits of mate choice behaviours and thus provide a potential biochemical link between the expression of male traits and female preferences. To test this hypothesis, we manipulated the dietary carotenoid levels of captive female house finches (Carpodacus mexicanus and assessed their mate choice behavior in response to color-manipulated male finches. Results Females preferred to associate with red males, but carotenoid supplementation did not influence the direction or strength of this preference. Females receiving a low-carotenoid diet were less responsive to males in general, and discrimination among the colorful males was positively linked to female plasma carotenoid levels at the beginning of the study when the diet of all birds was carotenoid-limited. Conclusions Although female preference for red males was not influenced by carotenoid intake, changes in mating responsiveness and discrimination linked to female carotenoid status may alter how this preference is translated into choice. The reddest males, with the most carotenoid rich plumage, tend to pair early in the breeding season. If carotenoid-related variations in female choice behaviour shift the timing of pairing, then they have the potential to promote assortative mating by carotenoid status and drive the evolution of carotenoid-based male plumage coloration.

  8. Dietary factors that affect carotenoid bioavailability

    NARCIS (Netherlands)

    Hof, van het K.H.

    1999-01-01

    Carotenoids are thought to contribute to the beneficial effects of increased vegetable consumption. To better understand the potential benefits of carotenoids, we investigated the bioavailability of carotenoids from vegetables and dietary factors which might influence carotenoid

  9. Characterization of carotenoid hydroxylase gene promoter in Haematococcus pluvialis.

    Science.gov (United States)

    Meng, C X; Wei, W; Su, Z- L; Qin, S

    2006-10-01

    Astaxanthin, a high-value ketocarotenoid is mainly used in fish aquaculture. It also has potential in human health due to its higher antioxidant capacity than beta-carotene and vitamin E. The unicellular green alga Haematococcus pluvialis is known to accumulate astaxanthin in response to environmental stresses, such as high light intensity and salt stress. Carotenoid hydroxylase plays a key role in astaxanthin biosynthesis in H. pluvialis. In this paper, we report the characterization of a promoter-like region (-378 to -22 bp) of carotenoid hydroxylase gene by cloning, sequence analysis and functional verification of its 919 bp 5'-flanking region in H. pluvialis. The 5'-flanking region was characterized using micro-particle bombardment method and transient expression of LacZ reporter gene. Results of sequence analysis showed that the 5'-flanking region might have putative cis-acting elements, such as ABA (abscisic acid)-responsive element (ABRE), C-repeat/dehydration responsive element (C-repeat/DRE), ethylene-responsive element (ERE), heat-shock element (HSE), wound-responsive element (WUN-motif), gibberellin-responsive element (P-box), MYB-binding site (MBS) etc., except for typical TATA and CCAAT boxes. Results of 5' deletions construct and beta-galactosidase assays revealed that a highest promoter-like region might exist from -378 to -22 bp and some negative regulatory elements might lie in the region from -919 to -378 bp. Results of site-directed mutagenesis of a putative C-repeat/DRE and an ABRE-like motif in the promoter-like region (-378 to -22 bp) indicated that the putative C-repeat/DRE and ABRE-like motif might be important for expression of carotenoid hydroxylase gene.

  10. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis

    KAUST Repository

    Wang, Zhen-Yu; Gehring, Christoph A; Zhu, Jianhua; Li, Feng-Min; Zhu, Jian-Kang; Xiong, Liming

    2014-01-01

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.

  11. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis

    KAUST Repository

    Wang, Zhen-Yu

    2014-11-21

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.

  12. Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI.

    Science.gov (United States)

    Wang, Cheng; Zeng, Jian; Li, Yin; Hu, Wei; Chen, Ling; Miao, Yingjie; Deng, Pengyi; Yuan, Cuihong; Ma, Cheng; Chen, Xi; Zang, Mingli; Wang, Qiong; Li, Kexiu; Chang, Junli; Wang, Yuesheng; Yang, Guangxiao; He, Guangyuan

    2014-06-01

    Carotenoid content is a primary determinant of wheat nutritional value and affects its end-use quality. Wheat grains contain very low carotenoid levels and trace amounts of provitamin A content. In order to enrich the carotenoid content in wheat grains, the bacterial phytoene synthase gene (CrtB) and carotene desaturase gene (CrtI) were transformed into the common wheat cultivar Bobwhite. Expression of CrtB or CrtI alone slightly increased the carotenoid content in the grains of transgenic wheat, while co-expression of both genes resulted in a darker red/yellow grain phenotype, accompanied by a total carotenoid content increase of approximately 8-fold achieving 4.76 μg g(-1) of seed dry weight, a β-carotene increase of 65-fold to 3.21 μg g(-1) of seed dry weight, and a provitamin A content (sum of α-carotene, β-carotene, and β-cryptoxanthin) increase of 76-fold to 3.82 μg g(-1) of seed dry weight. The high provitamin A content in the transgenic wheat was stably inherited over four generations. Quantitative PCR analysis revealed that enhancement of provitamin A content in transgenic wheat was also a result of the highly coordinated regulation of endogenous carotenoid biosynthetic genes, suggesting a metabolic feedback regulation in the wheat carotenoid biosynthetic pathway. These transgenic wheat lines are not only valuable for breeding wheat varieties with nutritional benefits for human health but also for understanding the mechanism regulating carotenoid biosynthesis in wheat endosperm. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Modification of carotenoid levels by abscission agents and expression of carotenoid biosynthetic genes in 'valencia' sweet orange.

    Science.gov (United States)

    Alferez, Fernando; Pozo, Luis V; Rouseff, Russell R; Burns, Jacqueline K

    2013-03-27

    The effect of 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP) and ethephon on peel color, flavedo carotenoid gene expression, and carotenoid accumulation was investigated in mature 'Valencia' orange ( Citrus sinensis L. Osbeck) fruit flavedo at three maturation stages. Abscission agent application altered peel color. CMNP was more effective than ethephon in promoting green-to-red (a) and blue-to-yellow (b) color at the middle and late maturation stages and total carotenoid changes at all maturation stages. Altered flow of carotenoid precursors during maturation due to abscission agents was suggested by changes in phytoene desaturase (Pds) and ζ-carotene desaturase (Zds) gene expression. However, each abscission agent affected downstream expression differentially. Ethephon application increased β-carotene hydroxilase (β-Chx) transcript accumulation 12-fold as maturation advanced from the early to middle and late stages. CMNP markedly increased β- and ε-lycopene cyclase (Lcy) transcript accumulation 45- and 15-fold, respectively, at midmaturation. Patterns of carotenoid accumulation in flavedo were supported in part by gene expression changes. CMNP caused greater accumulation of total flavedo carotenoids at all maturation stages when compared with ethephon or controls. In general, CMNP treatment increased total red carotenoids more than ethephon or the control but decreased total yellow carotenoids at each maturation stage. In control fruit flavedo, total red carotenoids increased and yellow carotenoids decreased as maturation progressed. Trends in total red carotenoids during maturation were consistent with measured a values. Changes in carotenoid accumulation and expression patterns in flavedo suggest that regulation of carotenoid accumulation is under transcriptional, translational, and post-translational control.

  14. Supercritical Carbon Dioxide Extraction of Carotenoids from Pumpkin (Cucurbita spp.): A Review

    Science.gov (United States)

    Durante, Miriana; Lenucci, Marcello Salvatore; Mita, Giovanni

    2014-01-01

    Carotenoids are well known for their nutritional properties and health promoting effects representing attractive ingredients to develop innovative functional foods, nutraceutical and pharmaceutical preparations. Pumpkin (Cucurbita spp.) flesh has an intense yellow/orange color owing to the high level of carotenoids, mainly α-carotene, β-carotene, β-cryptoxanthin, lutein and zeaxanthin. There is considerable interest in extracting carotenoids and other bioactives from pumpkin flesh. Extraction procedures able to preserve nutritional and pharmacological properties of carotenoids are essential. Conventional extraction methods, such as organic solvent extraction (CSE), have been used to extract carotenoids from plant material for a long time. In recent years, supercritical carbon dioxide (SC-CO2) extraction has received a great deal of attention because it is a green technology suitable for the extraction of lipophylic molecules and is able to give extracts of high quality and totally free from potentially toxic chemical solvents. Here, we review the results obtained so far on SC-CO2 extraction efficiency and quali-quantitative composition of carotenoids from pumpkin flesh. In particular, we consider the effects of (1) dehydration pre-treatments; (2) extraction parameters (temperature and pressure); the use of water, ethanol and olive oil singularly or in combination as entrainers or pumpkin seeds as co-matrix. PMID:24756094

  15. Supercritical Carbon Dioxide Extraction of Carotenoids from Pumpkin (Cucurbita spp.: A Review

    Directory of Open Access Journals (Sweden)

    Miriana Durante

    2014-04-01

    Full Text Available Carotenoids are well known for their nutritional properties and health promoting effects representing attractive ingredients to develop innovative functional foods, nutraceutical and pharmaceutical preparations. Pumpkin (Cucurbita spp. flesh has an intense yellow/orange color owing to the high level of carotenoids, mainly α-carotene, β-carotene, β-cryptoxanthin, lutein and zeaxanthin. There is considerable interest in extracting carotenoids and other bioactives from pumpkin flesh. Extraction procedures able to preserve nutritional and pharmacological properties of carotenoids are essential. Conventional extraction methods, such as organic solvent extraction (CSE, have been used to extract carotenoids from plant material for a long time. In recent years, supercritical carbon dioxide (SC-CO2 extraction has received a great deal of attention because it is a green technology suitable for the extraction of lipophylic molecules and is able to give extracts of high quality and totally free from potentially toxic chemical solvents. Here, we review the results obtained so far on SC-CO2 extraction efficiency and quali-quantitative composition of carotenoids from pumpkin flesh. In particular, we consider the effects of (1 dehydration pre-treatments; (2 extraction parameters (temperature and pressure; the use of water, ethanol and olive oil singularly or in combination as entrainers or pumpkin seeds as co-matrix.

  16. Supercritical carbon dioxide extraction of carotenoids from pumpkin (Cucurbita spp.): a review.

    Science.gov (United States)

    Durante, Miriana; Lenucci, Marcello Salvatore; Mita, Giovanni

    2014-04-21

    Carotenoids are well known for their nutritional properties and health promoting effects representing attractive ingredients to develop innovative functional foods, nutraceutical and pharmaceutical preparations. Pumpkin (Cucurbita spp.) flesh has an intense yellow/orange color owing to the high level of carotenoids, mainly α-carotene, β-carotene, β-cryptoxanthin, lutein and zeaxanthin. There is considerable interest in extracting carotenoids and other bioactives from pumpkin flesh. Extraction procedures able to preserve nutritional and pharmacological properties of carotenoids are essential. Conventional extraction methods, such as organic solvent extraction (CSE), have been used to extract carotenoids from plant material for a long time. In recent years, supercritical carbon dioxide (SC-CO2) extraction has received a great deal of attention because it is a green technology suitable for the extraction of lipophylic molecules and is able to give extracts of high quality and totally free from potentially toxic chemical solvents. Here, we review the results obtained so far on SC-CO2 extraction efficiency and quali-quantitative composition of carotenoids from pumpkin flesh. In particular, we consider the effects of (1) dehydration pre-treatments; (2) extraction parameters (temperature and pressure); the use of water, ethanol and olive oil singularly or in combination as entrainers or pumpkin seeds as co-matrix.

  17. Investigations on the mechanism of oxygen-dependent plant processes: ethylene biosynthesis and cyanide-resistant respiration

    International Nuclear Information System (INIS)

    Stegink, S.J.

    1985-01-01

    Two oxygen-dependent plant processes were investigated. A cell-free preparation from pea (Pisum sativum L., cv. Alaska) was used to study ethylene biosynthesis from 1-aminocyclopropane-1-carboxylic acid. Mitochondrial cyanide-resistant respiration was investigated in studies with 14 C-butyl gallate and other respiratory effectors. Ethylene biosynthesis was not due to a specific enzyme, or oxygen radicals. Rather, hydrogen peroxide, generated at low levels, coupled with endogenous manganese produced ethylene. 14 C-butyl gallate bound specifically to mitochondria from cyanide-sensitive and -resistant higher plants and Neurospora crassa mitochondria. The amount of gallate bound was similar for all higher plant mitochondria. Rat liver mitochondria bound very little 14 C-butyl gallate. Plant mitochondria in which cyanide-resistance was induced bound as much 14 C-butyl gallate as before induction. However mitochondria from recently harvested white potato tubers did not bind the gallate. The observations suggest that an engaging factor couples with a gallate binding site in the mitochondrial membrane. With skunk cabbage spadix mitochondria the I 5 0 for antimycin A inhibition of oxygen uptake was decreased by salicylhydroxamic acid pretreatment; this was also true for reverse order additions. No shift was observed with mung bean hypocotyl or Jerusalem artichoke tuber mitochondria

  18. Hydrophilic Carotenoids: Recent Progress

    Directory of Open Access Journals (Sweden)

    Attila Agócs

    2012-04-01

    Full Text Available Carotenoids are substantially hydrophobic antioxidants. Hydrophobicity is this context is rather a disadvantage, because their utilization in medicine as antioxidants or in food chemistry as colorants would require some water dispersibility for their effective uptake or use in many other ways. In the past 15 years several attempts were made to synthetize partially hydrophilic carotenoids. This review compiles the recently synthetized hydrophilic carotenoid derivatives.

  19. Genetic Characterization of the Carotenoid Biosynthetic Pathway in Methylobacterium extorquens AM1 and Isolation of a Colorless Mutant

    OpenAIRE

    Van Dien, Stephen J.; Marx, Christopher J.; O'Brien, Brooke N.; Lidstrom, Mary E.

    2003-01-01

    Genomic searches were used to reconstruct the putative carotenoid biosynthesis pathway in the pink-pigmented facultative methylotroph Methylobacterium extorquens AM1. Four genes for putative phytoene desaturases were identified. A colorless mutant was obtained by transposon mutagenesis, and the insertion was shown to be in one of the putative phytoene desaturase genes. Mutations in the other three did not affect color. The tetracycline marker was removed from the original transposon mutant, r...

  20. Differences in carotenoid accumulation among three feeder-cricket species: implications for carotenoid delivery to captive insectivores.

    Science.gov (United States)

    Ogilvy, Victoria; Fidgett, Andrea L; Preziosi, Richard F

    2012-01-01

    There are a limited number of feeder-invertebrates available to feed captive insectivores, and many are deficient in certain nutrients. Gut-loading is used to increase the diversity of nutrients present in the captive insectivore diet; however, little is known about delivery of carotenoids via gut-loading. Carotenoids may influence health and reproduction due to their roles in immune and antioxidant systems. We assessed interspecific variation in carotenoid accumulation and retention in three feeder-cricket species (Gryllus bimaculatus, Gryllodes sigillatus and Acheta domesticus) fed one of three diets (wheat-bran, fish-food based formulated diet, and fresh fruit and vegetables). Out of the three species of feeder-cricket in the fish-food-based dietary treatment group, G. bimaculatus had the greatest total carotenoid concentration. All cricket species fed the wheat-bran diet had very low carotenoid concentrations. Species on the fish-food-based diet had intermediate carotenoid concentrations, and those on the fruit and vegetable diet had the highest concentrations. Carotenoid retention was poor across all species. Overall, this study shows that, by providing captive insectivores with G. bimaculatus crickets recently fed a carotenoid-rich diet, the quantity of carotenoids in the diet can be increased. © 2011 Wiley Periodicals, Inc.

  1. Lycopene cyclase paralog CruP protects against reactive oxygen species in oxygenic photosynthetic organisms

    OpenAIRE

    Bradbury, Louis M. T.; Shumskaya, Maria; Tzfadia, Oren; Wu, Shi-Biao; Kennelly, Edward J.; Wurtzel, Eleanore T.

    2012-01-01

    In photosynthetic organisms, carotenoids serve essential roles in photosynthesis and photoprotection. A previous report designated CruP as a secondary lycopene cyclase involved in carotenoid biosynthesis [Maresca J, et al. (2007) Proc Natl Acad Sci USA 104:11784–11789]. However, we found that cruP KO or cruP overexpression plants do not exhibit correspondingly reduced or increased production of cyclized carotenoids, which would be expected if CruP was a lycopene cyclase. Instead, we show that...

  2. Carotenoids: biochemistry, pharmacology and treatment.

    Science.gov (United States)

    Milani, Alireza; Basirnejad, Marzieh; Shahbazi, Sepideh; Bolhassani, Azam

    2017-06-01

    Carotenoids and retinoids have several similar biological activities such as antioxidant properties, the inhibition of malignant tumour growth and the induction of apoptosis. Supplementation with carotenoids can affect cell growth and modulate gene expression and immune responses. Epidemiological studies have shown a correlation between a high carotenoid intake in the diet with a reduced risk of breast, cervical, ovarian, colorectal cancers, and cardiovascular and eye diseases. Cancer chemoprevention by dietary carotenoids involves several mechanisms, including effects on gap junctional intercellular communication, growth factor signalling, cell cycle progression, differentiation-related proteins, retinoid-like receptors, antioxidant response element, nuclear receptors, AP-1 transcriptional complex, the Wnt/β-catenin pathway and inflammatory cytokines. Moreover, carotenoids can stimulate the proliferation of B- and T-lymphocytes, the activity of macrophages and cytotoxic T-cells, effector T-cell function and the production of cytokines. Recently, the beneficial effects of carotenoid-rich vegetables and fruits in health and in decreasing the risk of certain diseases has been attributed to the major carotenoids, β-carotene, lycopene, lutein, zeaxanthin, crocin (/crocetin) and curcumin, due to their antioxidant effects. It is thought that carotenoids act in a time- and dose-dependent manner. In this review, we briefly describe the biological and immunological activities of the main carotenoids used for the treatment of various diseases and their possible mechanisms of action. This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc. © 2016 The British Pharmacological Society.

  3. Evolution of plant senescence

    Directory of Open Access Journals (Sweden)

    Young Mike

    2009-07-01

    Full Text Available Abstract Background Senescence is integral to the flowering plant life-cycle. Senescence-like processes occur also in non-angiosperm land plants, algae and photosynthetic prokaryotes. Increasing numbers of genes have been assigned functions in the regulation and execution of angiosperm senescence. At the same time there has been a large expansion in the number and taxonomic spread of plant sequences in the genome databases. The present paper uses these resources to make a study of the evolutionary origins of angiosperm senescence based on a survey of the distribution, across plant and microbial taxa, and expression of senescence-related genes. Results Phylogeny analyses were carried out on protein sequences corresponding to genes with demonstrated functions in angiosperm senescence. They include proteins involved in chlorophyll catabolism and its control, homeoprotein transcription factors, metabolite transporters, enzymes and regulators of carotenoid metabolism and of anthocyanin biosynthesis. Evolutionary timelines for the origins and functions of particular genes were inferred from the taxonomic distribution of sequences homologous to those of angiosperm senescence-related proteins. Turnover of the light energy transduction apparatus is the most ancient element in the senescence syndrome. By contrast, the association of phenylpropanoid metabolism with senescence, and integration of senescence with development and adaptation mediated by transcription factors, are relatively recent innovations of land plants. An extended range of senescence-related genes of Arabidopsis was profiled for coexpression patterns and developmental relationships and revealed a clear carotenoid metabolism grouping, coordinated expression of genes for anthocyanin and flavonoid enzymes and regulators and a cluster pattern of genes for chlorophyll catabolism consistent with functional and evolutionary features of the pathway. Conclusion The expression and phylogenetic

  4. Carotenoid fluorescence in Dunaliella salina

    NARCIS (Netherlands)

    Kleinegris, D.M.M.; Es, van M.A.; Janssen, M.G.J.; Brandenburg, W.A.; Wijffels, R.H.

    2010-01-01

    Dunaliella salina is a halotolerant green alga that is well known for its carotenoid producing capacity. The produced carotenoids are mainly stored in lipid globules. For various research purposes, such as production and extraction kinetics, we would like to determine and/or localise the carotenoid

  5. A Review of the Biological Activities of Microalgal Carotenoids and Their Potential Use in Healthcare and Cosmetic Industries

    Directory of Open Access Journals (Sweden)

    Ramaraj Sathasivam

    2018-01-01

    Full Text Available Carotenoids are natural pigments that play pivotal roles in many physiological functions. The characteristics of carotenoids, their effects on health, and the cosmetic benefits of their usage have been under investigation for a long time; however, most reviews on this subject focus on carotenoids obtained from several microalgae, vegetables, fruits, and higher plants. Recently, microalgae have received much attention due to their abilities in producing novel bioactive metabolites, including a wide range of different carotenoids that can provide for health and cosmetic benefits. The main objectives of this review are to provide an updated view of recent work on the health and cosmetic benefits associated with carotenoid use, as well as to provide a list of microalgae that produce different types of carotenoids. This review could provide new insights to researchers on the potential role of carotenoids in improving human health.

  6. Tolerance to Ultraviolet Radiation of Psychrotolerant Yeasts and Analysis of Their Carotenoid, Mycosporine, and Ergosterol Content.

    Science.gov (United States)

    Villarreal, Pablo; Carrasco, Mario; Barahona, Salvador; Alcaíno, Jennifer; Cifuentes, Víctor; Baeza, Marcelo

    2016-01-01

    Yeasts colonizing the Antarctic region are exposed to a high ultraviolet radiation evolving mechanisms to minimize the UV radiation damages, such as the production of UV-absorbing or antioxidant compounds like carotenoid pigments and mycosporines. Ergosterol has also been suggested to play a role in this response. These compounds are also economically attractive for several industries such as pharmaceutical and food, leading to a continuous search for biological sources of them. In this work, the UV-C radiation tolerance of yeast species isolated from the sub-Antarctic region and their production of carotenoids, mycosporines, and ergosterol were evaluated. Dioszegia sp., Leuconeurospora sp. (T27Cd2), Rhodotorula laryngis, Rhodotorula mucilaginosa, and Cryptococcus gastricus showed the highest UV-C radiation tolerance. The yeasts with the highest content of carotenoids were Dioszegia sp. (OHK torulene), Rh. laryngis (torulene and lycopene), Rh. mucilaginosa, (torulene, gamma carotene, and lycopene), and Cr. gastricus (2-gamma carotene). Probable mycosporine molecules and biosynthesis intermediates were found in Rh. laryngis, Dioszegia sp., Mrakia sp., Le. creatinivora, and Leuconeurospora sp. (T27Cd2). Ergosterol was the only sterol detected in all yeasts, and M. robertii and Le. creatinivora showed amounts higher than 4 mg g−1. Although there was not a well-defined relation between UV-C tolerance and the production of these three kinds of compounds, the majority of the yeasts with lower amounts of carotenoids showed lower UV-C tolerance. Dioszegia sp., M. robertii, and Le. creatinivora were the greatest producers of carotenoids, ergosterol, and mycosporines, respectively, representing good candidates for future studies intended to increase their production for large-scale applications.

  7. Association Mapping of Total Carotenoids in Diverse Soybean Genotypes Based on Leaf Extracts and High-Throughput Canopy Spectral Reflectance Measurements.

    Directory of Open Access Journals (Sweden)

    Arun Prabhu Dhanapal

    Full Text Available Carotenoids are organic pigments that are produced predominantly by photosynthetic organisms and provide antioxidant activity to a wide variety of plants, animals, bacteria, and fungi. The carotenoid biosynthetic pathway is highly conserved in plants and occurs mostly in chromoplasts and chloroplasts. Leaf carotenoids play important photoprotective roles and targeted selection for leaf carotenoids may offer avenues to improve abiotic stress tolerance. A collection of 332 soybean [Glycine max (L. Merr.] genotypes was grown in two years and total leaf carotenoid content was determined using three different methods. The first method was based on extraction and spectrophotometric determination of carotenoid content (eCaro in leaf tissue, whereas the other two methods were derived from high-throughput canopy spectral reflectance measurements using wavelet transformed reflectance spectra (tCaro and a spectral reflectance index (iCaro. An association mapping approach was employed using 31,253 single nucleotide polymorphisms (SNPs to identify SNPs associated with total carotenoid content using a mixed linear model based on data from two growing seasons. A total of 28 SNPs showed a significant association with total carotenoid content in at least one of the three approaches. These 28 SNPs likely tagged 14 putative loci for carotenoid content. Six putative loci were identified using eCaro, five loci with tCaro, and nine loci with iCaro. Three of these putative loci were detected by all three carotenoid determination methods. All but four putative loci were located near a known carotenoid-related gene. These results showed that carotenoid markers can be identified in soybean using extract-based as well as by high-throughput canopy spectral reflectance-based approaches, demonstrating the utility of field-based canopy spectral reflectance phenotypes for association mapping.

  8. Melatonin is involved in skotomorphogenesis by regulating brassinosteroids biosynthesis in rice plants.

    Science.gov (United States)

    Hwang, Ok Jin; Back, Kyoungwhan

    2018-04-01

    Serotonin N-acetyltransferase (SNAT) is the penultimate enzyme in melatonin biosynthesis catalyzing the conversion of serotonin into N-acetylserotonin. In plants, SNAT is encoded by two isogenes of which SNAT1 is constitutively expressed and its overexpression confers increased yield in rice. However, the role of SNAT2 remains to be clarified. In contrast to SNAT1, the diurnal rhythm of SNAT2 mRNA expression peaks at night. In this study, transgenic rice plants in which SNAT2 expression was suppressed by RNAi technology showed a decrease in melatonin and a dwarf phenotype with erect leaves, reminiscent of brassinosteroids (BRs)-deficient mutants. Of note, the dwarf phenotype was dependent on the presence of dark, suggesting that melatonin is involved in dark growth (skotomorphogenesis). In support of this suggestion, SNAT2 RNAi lines exhibited photomorphogenic phenotypes such as inhibition of internodes and increased expression of light-inducible CAB genes in the dark. The causative gene for the melatonin-mediated BRs biosynthetic gene was DWARF4, a rate limiting BRs biosynthetic gene. Exogenous melatonin treatment induced several BRs biosynthetic genes, including DWARF4, D11, and RAVL1. As expected from the erect leaves, the SNAT2 RNAi lines produced less BRs than the wild type. Our results show for the first time that melatonin is a positive regulator of dark growth or shade outgrowth by regulating BR biosynthesis in plants. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Role of structural barriers in the in vitro bioaccessibility of anthocyanins in comparison with carotenoids.

    Science.gov (United States)

    Carrillo, Celia; Buvé, Carolien; Panozzo, Agnese; Grauwet, Tara; Hendrickx, Marc

    2017-07-15

    Although natural structural barriers are factors limiting nutrient bioaccessibility, their specific role in anthocyanin bioaccessibility is still unknown. To better understand how natural barriers govern bioactive compound bioaccessibility, an experimental approach comparing anthocyanins and carotenoids was designed, using a single plant matrix. Initial results revealed increased anthocyanin bioaccessibility in masticated black carrot. To explain this observation, samples with increasing levels of bioencapsulation (free-compound, homogenized-puree, puree) were examined. While carotenoid bioaccessibility was inversely proportional to the level of bioencapsulation, barrier disruption did not increase anthocyanin bioaccessibility. This means that mechanical processing is of particular importance in the case of carotenoid bioaccessibility. While micelle incorporation is the limiting factor for carotenoid bioaccessibility, anthocyanin degradation under alkaline conditions in the gastrointestinal tract dominates. In the absence of structural barriers, anthocyanin bioaccessibility is greater than that of carotenoids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Marine Carotenoids: Biological Functions and Commercial Applications

    Science.gov (United States)

    Vílchez, Carlos; Forján, Eduardo; Cuaresma, María; Bédmar, Francisco; Garbayo, Inés; Vega, José M.

    2011-01-01

    Carotenoids are the most common pigments in nature and are synthesized by all photosynthetic organisms and fungi. Carotenoids are considered key molecules for life. Light capture, photosynthesis photoprotection, excess light dissipation and quenching of singlet oxygen are among key biological functions of carotenoids relevant for life on earth. Biological properties of carotenoids allow for a wide range of commercial applications. Indeed, recent interest in the carotenoids has been mainly for their nutraceutical properties. A large number of scientific studies have confirmed the benefits of carotenoids to health and their use for this purpose is growing rapidly. In addition, carotenoids have traditionally been used in food and animal feed for their color properties. Carotenoids are also known to improve consumer perception of quality; an example is the addition of carotenoids to fish feed to impart color to farmed salmon. PMID:21556162

  11. Biosynthesis of bioactive diterpenoids in the medicinal plant Vitex agnus-castus.

    Science.gov (United States)

    Heskes, Allison M; Sundram, Tamil C M; Boughton, Berin A; Jensen, Niels B; Hansen, Nikolaj L; Crocoll, Christoph; Cozzi, Federico; Rasmussen, Simon; Hamberger, Britta; Hamberger, Björn; Staerk, Dan; Møller, Birger L; Pateraki, Irini

    2018-03-01

    Vitex agnus-castus L. (Lamiaceae) is a medicinal plant historically used throughout the Mediterranean region to treat menstrual cycle disorders, and is still used today as a clinically effective treatment for premenstrual syndrome. The pharmaceutical activity of the plant extract is linked to its ability to lower prolactin levels. This feature has been attributed to the presence of dopaminergic diterpenoids that can bind to dopamine receptors in the pituitary gland. Phytochemical analyses of V. agnus-castus show that it contains an enormous array of structurally related diterpenoids and, as such, holds potential as a rich source of new dopaminergic drugs. The present work investigated the localisation and biosynthesis of diterpenoids in V. agnus-castus. With the assistance of matrix-assisted laser desorption ionisation-mass spectrometry imaging (MALDI-MSI), diterpenoids were localised to trichomes on the surface of fruit and leaves. Analysis of a trichome-specific transcriptome database, coupled with expression studies, identified seven candidate genes involved in diterpenoid biosynthesis: three class II diterpene synthases (diTPSs); three class I diTPSs; and a cytochrome P450 (CYP). Combinatorial assays of the diTPSs resulted in the formation of a range of different diterpenes that can account for several of the backbones of bioactive diterpenoids observed in V. agnus-castus. The identified CYP, VacCYP76BK1, was found to catalyse 16-hydroxylation of the diol-diterpene, peregrinol, to labd-13Z-ene-9,15,16-triol when expressed in Saccharomyces cerevisiae. Notably, this product is a potential intermediate in the biosynthetic pathway towards bioactive furan- and lactone-containing diterpenoids that are present in this species. © 2018 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  12. What are carotenoids signaling? Immunostimulatory effects of dietary vitamin E, but not of carotenoids, in Iberian green lizards

    Science.gov (United States)

    Kopena, Renata; López, Pilar; Martín, José

    2014-12-01

    In spite that carotenoid-based sexual ornaments are one of the most popular research topics in sexual selection of animals, the antioxidant and immunostimulatory role of carotenoids, presumably signaled by these colorful ornaments, is still controversial. It has been suggested that the function of carotenoids might not be as an antioxidant per se, but that colorful carotenoids may indirectly reflect the levels of nonpigmentary antioxidants, such as melatonin or vitamin E. We experimentally fed male Iberian green lizards ( Lacerta schreiberi) additional carotenoids or vitamin E alone, or a combination of carotenoids and vitamin E dissolved in soybean oil, whereas a control group only received soybean oil. We examined the effects of the dietary supplementations on phytohaemagglutinin (PHA)-induced skin-swelling immune response and body condition. Lizards that were supplemented with vitamin E alone or a combination of vitamin E and carotenoids had greater immune responses than control lizards, but animals supplemented with carotenoids alone had lower immune responses than lizards supplemented with vitamin E and did not differ from control lizards. These results support the hypothesis that carotenoids in green lizards are not effective as immunostimulants, but that they may be visually signaling the immunostimulatory effects of non-pigmentary vitamin E. In contrast, lizards supplemented with carotenoids alone have higher body condition gains than lizards in the other experimental groups, suggesting that carotenoids may be still important to improve condition.

  13. Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores.

    Science.gov (United States)

    Yan, Liuhua; Zhai, Qingzhe; Wei, Jianing; Li, Shuyu; Wang, Bao; Huang, Tingting; Du, Minmin; Sun, Jiaqiang; Kang, Le; Li, Chang-Bao; Li, Chuanyou

    2013-01-01

    In response to insect attack and mechanical wounding, plants activate the expression of genes involved in various defense-related processes. A fascinating feature of these inducible defenses is their occurrence both locally at the wounding site and systemically in undamaged leaves throughout the plant. Wound-inducible proteinase inhibitors (PIs) in tomato (Solanum lycopersicum) provide an attractive model to understand the signal transduction events leading from localized injury to the systemic expression of defense-related genes. Among the identified intercellular molecules in regulating systemic wound response of tomato are the peptide signal systemin and the oxylipin signal jasmonic acid (JA). The systemin/JA signaling pathway provides a unique opportunity to investigate, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate plant systemic immunity. Here we describe the characterization of the tomato suppressor of prosystemin-mediated responses8 (spr8) mutant, which was isolated as a suppressor of (pro)systemin-mediated signaling. spr8 plants exhibit a series of JA-dependent immune deficiencies, including the inability to express wound-responsive genes, abnormal development of glandular trichomes, and severely compromised resistance to cotton bollworm (Helicoverpa armigera) and Botrytis cinerea. Map-based cloning studies demonstrate that the spr8 mutant phenotype results from a point mutation in the catalytic domain of TomLoxD, a chloroplast-localized lipoxygenase involved in JA biosynthesis. We present evidence that overexpression of TomLoxD leads to elevated wound-induced JA biosynthesis, increased expression of wound-responsive genes and, therefore, enhanced resistance to insect herbivory attack and necrotrophic pathogen infection. These results indicate that TomLoxD is involved in wound-induced JA biosynthesis and highlight the application potential of this gene for crop protection against insects and

  14. Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores.

    Directory of Open Access Journals (Sweden)

    Liuhua Yan

    Full Text Available In response to insect attack and mechanical wounding, plants activate the expression of genes involved in various defense-related processes. A fascinating feature of these inducible defenses is their occurrence both locally at the wounding site and systemically in undamaged leaves throughout the plant. Wound-inducible proteinase inhibitors (PIs in tomato (Solanum lycopersicum provide an attractive model to understand the signal transduction events leading from localized injury to the systemic expression of defense-related genes. Among the identified intercellular molecules in regulating systemic wound response of tomato are the peptide signal systemin and the oxylipin signal jasmonic acid (JA. The systemin/JA signaling pathway provides a unique opportunity to investigate, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate plant systemic immunity. Here we describe the characterization of the tomato suppressor of prosystemin-mediated responses8 (spr8 mutant, which was isolated as a suppressor of (prosystemin-mediated signaling. spr8 plants exhibit a series of JA-dependent immune deficiencies, including the inability to express wound-responsive genes, abnormal development of glandular trichomes, and severely compromised resistance to cotton bollworm (Helicoverpa armigera and Botrytis cinerea. Map-based cloning studies demonstrate that the spr8 mutant phenotype results from a point mutation in the catalytic domain of TomLoxD, a chloroplast-localized lipoxygenase involved in JA biosynthesis. We present evidence that overexpression of TomLoxD leads to elevated wound-induced JA biosynthesis, increased expression of wound-responsive genes and, therefore, enhanced resistance to insect herbivory attack and necrotrophic pathogen infection. These results indicate that TomLoxD is involved in wound-induced JA biosynthesis and highlight the application potential of this gene for crop protection against

  15. Control of plant defense mechanisms and fire blight pathogenesis through the regulation of 6-thioguanine biosynthesis in Erwinia amylovora.

    Science.gov (United States)

    Coyne, Sébastien; Litomska, Agnieszka; Chizzali, Cornelia; Khalil, Mohammed N A; Richter, Klaus; Beerhues, Ludger; Hertweck, Christian

    2014-02-10

    Fire blight is a devastating disease of Rosaceae plants, such as apple and pear trees. It is characterized by necrosis of plant tissue, caused by the phytopathogenic bacterium Erwinia amylovora. The plant pathogen produces the well-known antimetabolite 6-thioguanine (6TG), which plays a key role in fire blight pathogenesis. Here we report that YcfR, a member of the LTTR family, is a major regulator of 6TG biosynthesis in E. amylovora. Inactivation of the regulator gene (ycfR) led to dramatically decreased 6TG production. Infection assays with apple plants (Malus domestica cultivar Holsteiner Cox) and cell cultures of Sorbus aucuparia (mountain ash, rowan) revealed abortive fire blight pathogenesis and reduced plant response (biphenyl and dibenzofuran phytoalexin production). In the presence of the ΔycfR mutant, apple trees were capable of activating the abscission machinery to remove infected tissue. In addition to unveiling the regulation of 6TG biosynthesis in a major plant pathogen, we demonstrate for the first time that this antimetabolite plays a pivotal role in dysregulating the plant response to infection. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Expression and functional analysis of citrus carotene hydroxylases: unravelling the xanthophyll biosynthesis in citrus fruits.

    Science.gov (United States)

    Ma, Gang; Zhang, Lancui; Yungyuen, Witchulada; Tsukamoto, Issei; Iijima, Natsumi; Oikawa, Michiru; Yamawaki, Kazuki; Yahata, Masaki; Kato, Masaya

    2016-06-29

    Xanthophylls are oxygenated carotenoids and fulfill critical roles in plant growth and development. In plants, two different types of carotene hydroxylases, non-heme di-iron and heme-containing cytochrome P450, were reported to be involved in the biosynthesis of xanthophyll. Citrus fruits accumulate a high amount of xanthophylls, especially β,β-xanthophylls. To date, however, the roles of carotene hydroxylases in regulating xanthophyll content and composition have not been elucidated. In the present study, the roles of four carotene hydroxylase genes (CitHYb, CitCYP97A, CitCYP97B, and CitCYP97C) in the biosynthesis of xanthophyll in citrus fruits were investigated. Phylogenetic analysis showed that the four citrus carotene hydroxylases presented in four distinct clusters which have been identified in higher plants. CitHYb was a non-heme di-iron carotene hydroxylase, while CitCYP97A, CitCYP97B, and CitCYP97C were heme-containing cytochrome P450-type carotene hydroxylases. Gene expression results showed that the expression of CitHYb increased in the flavedo and juice sacs during the ripening process, which was well consistent with the accumulation of β,β-xanthophyll in citrus fruits. The expression of CitCYP97A and CitCYP97C increased with a peak in November, which might lead to an increase of lutein in the juice sacs during the ripening process. The expression level of CitCYP97B was much lower than that of CitHYb, CitCYP97A, and CitCYP97C in the juice sacs during the ripening process. Functional analysis showed that the CitHYb was able to catalyze the hydroxylation of the β-rings of β-carotene and α-carotene in Escherichia coli BL21 (DE3) cells. Meanwhile, when CitHYb was co-expressed with CitCYP97C, α-carotene was hydroxylated on the β-ring and ε-ring sequentially to produce lutein. CitHYb was a key gene for β,β-xanthophyll biosynthesis in citrus fruits. CitCYP97C functioned as an ε-ring hydroxylase to produce lutein using zeinoxanthin as a substrate

  17. Carotenoids in Adipose Tissue Biology and Obesity.

    Science.gov (United States)

    Bonet, M Luisa; Canas, Jose A; Ribot, Joan; Palou, Andreu

    2016-01-01

    Cell, animal and human studies dealing with carotenoids and carotenoid derivatives as nutritional regulators of adipose tissue biology with implications for the etiology and management of obesity and obesity-related metabolic diseases are reviewed. Most studied carotenoids in this context are β-carotene, cryptoxanthin, astaxanthin and fucoxanthin, together with β-carotene-derived retinoids and some other apocarotenoids. Studies indicate an impact of these compounds on essential aspects of adipose tissue biology including the control of adipocyte differentiation (adipogenesis), adipocyte metabolism, oxidative stress and the production of adipose tissue-derived regulatory signals and inflammatory mediators. Specific carotenoids and carotenoid derivatives restrain adipogenesis and adipocyte hypertrophy while enhancing fat oxidation and energy dissipation in brown and white adipocytes, and counteract obesity in animal models. Intake, blood levels and adipocyte content of carotenoids are reduced in human obesity. Specifically designed human intervention studies in the field, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. In summary, studies support a role of specific carotenoids and carotenoid derivatives in the prevention of excess adiposity, and suggest that carotenoid requirements may be dependent on body composition.

  18. Carotenoid Photoprotection in Artificial Photosynthetic Antennas

    Energy Technology Data Exchange (ETDEWEB)

    Kloz, Miroslav [VU Univ., Amsterdam (Netherlands); Pillai, Smitha [Arizona State Univ., Tempe, AZ (United States); Kodis, Gerdenis [Arizona State Univ., Tempe, AZ (United States); Gust, Devens [Arizona State Univ., Tempe, AZ (United States); Moore, Thomas A. [Arizona State Univ., Tempe, AZ (United States); Moore, Ana L. [Arizona State Univ., Tempe, AZ (United States); van Grondelle, Rienk [VU Univ., Amsterdam (Netherlands); Kennis, John T. M. [VU Univ., Amsterdam (Netherlands)

    2011-04-14

    A series of phthalocyanine-carotenoid dyads in which a phenylamino group links a phthalocyanine to carotenoids having 8-11 backbone double bonds were examined by visible and near-infrared femtosecond pump-probe spectroscopy combined with global fitting analysis. The series of molecules has permitted investigation of the role of carotenoids in the quenching of excited states of cyclic tetrapyrroles. The transient behavior varied dramatically with the length of the carotenoid and the solvent environment. Clear spectroscopic signatures of radical species revealed photoinduced electron transfer as the main quenching mechanism for all dyads dissolved in a polar solvent (THF), and the quenching rate was almost independent of carotenoid length. However, in a nonpolar solvent (toluene), quenching rates displayed a strong dependence on the conjugation length of the carotenoid and the mechanism did not include charge separation. The lack of any rise time components of a carotenoid S1 signature in all experiments in toluene suggests that an excitonic coupling between the carotenoid S1 state and phthalocyanine Q state, rather than a conventional energy transfer process, is the major mechanism of quenching. A pronounced inhomogeneity of the system was observed and attributed to the presence of a phenyl-amino linker between phthalocyanine and carotenoids. On the basis of accumulated work on various caroteno-phthalocyanine dyads and triads, we have now identified three mechanisms of tetrapyrrole singlet excited state quenching by carotenoids in artificial systems: (i) Car-Pc electron transfer and recombination; (ii)1Pc to Car S1 energy transfer and fast internal conversion to the Car ground state; (iii) excitonic coupling between 1Pc and Car S1 and ensuing internal conversion to the ground state of the carotenoid. The dominant mechanism depends upon the exact molecular architecture and solvent environment

  19. Carotenoid Biosynthetic Pathways Are Regulated by a Network of Multiple Cascades of Alternative Sigma Factors in Azospirillum brasilense Sp7.

    Science.gov (United States)

    Rai, Ashutosh Kumar; Dubey, Ashutosh Prakash; Kumar, Santosh; Dutta, Debashis; Mishra, Mukti Nath; Singh, Bhupendra Narain; Tripathi, Anil Kumar

    2016-11-01

    Carotenoids constitute an important component of the defense system against photooxidative stress in bacteria. In Azospirillum brasilense Sp7, a nonphotosynthetic rhizobacterium, carotenoid synthesis is controlled by a pair of extracytoplasmic function sigma factors (RpoEs) and their cognate zinc-binding anti-sigma factors (ChrRs). Its genome harbors two copies of the gene encoding geranylgeranyl pyrophosphate synthase (CrtE), the first critical step in the carotenoid biosynthetic pathway in bacteria. Inactivation of each of two crtE paralogs found in A. brasilense caused reduction in carotenoid content, suggesting their involvement in carotenoid synthesis. However, the effect of crtE1 deletion was more pronounced than that of crtE2 deletion. Out of the five paralogs of rpoH in A. brasilense, overexpression of rpoH1 and rpoH2 enhanced carotenoid synthesis. Promoters of crtE2 and rpoH2 were found to be dependent on RpoH2 and RpoE1, respectively. Using a two-plasmid system in Escherichia coli, we have shown that the crtE2 gene of A. brasilense Sp7 is regulated by two cascades of sigma factors: one consisting of RpoE1and RpoH2 and the other consisting of RpoE2 and RpoH1. In addition, expression of crtE1 was upregulated indirectly by RpoE1 and RpoE2. This study shows, for the first time in any carotenoid-producing bacterium, that the regulation of carotenoid biosynthetic pathway involves a network of multiple cascades of alternative sigma factors. Carotenoids play a very important role in coping with photooxidative stress in prokaryotes and eukaryotes. Although extracytoplasmic function (ECF) sigma factors are known to directly regulate the expression of carotenoid biosynthetic genes in bacteria, regulation of carotenoid biosynthesis by one or multiple cascades of sigma factors had not been reported. This study provides the first evidence of the involvement of multiple cascades of sigma factors in the regulation of carotenoid synthesis in any bacterium by showing the

  20. One Target, Two Mechanisms: The Impact of 'Candidatus Liberibacter asiaticus' and Its Vector, Diaphorina citri, on Citrus Leaf Pigments.

    Science.gov (United States)

    Killiny, Nabil; Nehela, Yasser

    2017-07-01

    Huanglongbing (HLB) is currently the largest threat to global citrus production. We examined the effect of HLB pathogen 'Candidatus Liberibacter asiaticus' infection or infestation by its vector, Diaphorina citri, on 'Valencia' sweet orange leaf pigments using high-performance liquid chromatography, followed by gene expression analysis for 46 involved genes in carotenoid and chlorophyll biosynthesis pathways. Both 'Ca. L. asiaticus' and D. citri alter the total citrus leaf pigment balance with a greater impact by 'Ca. L. asiaticus'. Although zeaxanthin was accumulated in 'Ca. L. asiaticus'-infected leaves, chlorophyllide a was increased in D. citri-infested plants. Our findings support the idea that both 'Ca. L. asiaticus' and D. citri affect the citrus pigments and promote symptom development but using two different mechanisms. 'Ca. L. asiaticus' promotes chlorophyll degradation but accelerates the biosynthesis of carotenoid pigments, resulting in accumulation of abscisic acid and its precursor, zeaxanthin. Zeaxanthin also has a photoprotective role. By contrast, D. citri induced the degradation of most carotenoids and accelerated chlorophyll biosynthesis, leading to chlorophyllide a accumulation. Chlorophyllide a might have an antiherbivory role. Accordingly, we suggest that citrus plants try to defend themselves against 'Ca. L. asiaticus' or D. citri using multifaceted defense systems, based on the stressor type. These findings will help in better understanding the tritrophic interactions among plant, pathogen, and vector.

  1. Influence of mineral medium components - calcium, phosphorus and potasium - on carotenoid biosynthesis in the alga Scenedesmus acuminatus

    Directory of Open Access Journals (Sweden)

    Anna Sykuta

    2015-01-01

    Full Text Available From the alga Scenedesmus acuminatus 10 carotenoids were isolated: α-carotene, β-carotene, neo-β-carotene, lutein, lutein-5,6-epoxide, violaxanthine, loroxanthine, neoxanthine, antheraxanthine and from old algae - echinenone. Algae cultured on calcium-free medium contained about 60 (per cent cartoenoids less than those from medium with Ca(NO32.

  2. Carotenoid-enriched transgenic corn delivers bioavailable carotenoids to poultry and protects them against coccidiosis.

    Science.gov (United States)

    Nogareda, Carmina; Moreno, Jose A; Angulo, Eduardo; Sandmann, Gerhard; Portero, Manuel; Capell, Teresa; Zhu, Changfu; Christou, Paul

    2016-01-01

    Carotenoids are health-promoting organic molecules that act as antioxidants and essential nutrients. We show that chickens raised on a diet enriched with an engineered corn variety containing very high levels of four key carotenoids (β-carotene, lycopene, zeaxanthin and lutein) are healthy and accumulate more bioavailable carotenoids in peripheral tissues, muscle, skin and fat, and more retinol in the liver, than birds fed on standard corn diets (including commercial corn supplemented with colour additives). Birds were challenged with the protozoan parasite Eimeria tenella and those on the high-carotenoid diet grew normally, suffered only mild disease symptoms (diarrhoea, footpad dermatitis and digital ulcers) and had lower faecal oocyst counts than birds on the control diet. Our results demonstrate that carotenoid-rich corn maintains poultry health and increases the nutritional value of poultry products without the use of feed additives. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Constitutive, Institutive and Up-Regulation of Carotenogenesis Regulatory Mechanism via In Vitro Culture Model System and Elicitors

    International Nuclear Information System (INIS)

    Rashidi Othman; Fatimah Azzahra Mohd Zaifuddin; Norazian Mohd Hassan

    2015-01-01

    Phyto hormone abscisic acid (ABA) plays a regulatory role in many physiological processes in plants and is regulated and controlled by specific key factors or genes. Different environmental stress conditions such as water, drought, cold, light, and temperature result in increased amounts of ABA. The action of ABA involves modification of gene expression and analysis of in vitro callus model system cultures revealed several potential of constitutive, institutive and up-regulation acting regulatory mechanisms. Therefore, this study was aimed at establishing in vitro cultures as potential research tools to study the regulatory mechanisms of the carotenoid biosynthesis in selected plant species through a controlled environment. The presence and absence of zeaxanthin and neoxanthin in callus cultures and intact plants could be explained by changes in gene expression in response to stress. Abiotic stress can alter gene expression and trigger cellular metabolism in plants. This study suggested that the key factors which involved in regulatory mechanisms of individual carotenoid biosynthesis in a particular biology system of plants can be either be silenced or activated. Therefore, based on the results in this study environmental stress is made possible for enhancement or enrichment of certain carotenoid of interest in food crops without altering the genes. (author)

  4. Effect of carotenoid supplementation on plasma carotenoids, inflammation and visual development in preterm infants.

    Science.gov (United States)

    Rubin, L P; Chan, G M; Barrett-Reis, B M; Fulton, A B; Hansen, R M; Ashmeade, T L; Oliver, J S; Mackey, A D; Dimmit, R A; Hartmann, E E; Adamkin, D H

    2012-06-01

    Dietary carotenoids (lutein, lycopene and β-carotene) may be important in preventing or ameliorating prematurity complications. Little is known about carotenoid status or effects of supplementation. This randomized controlled multicenter trial compared plasma carotenoid levels among preterm infants (n=203, lutein, lycopene and β-carotene with human milk (HM)-fed term infants. We assessed safety and health. Plasma carotenoid levels were higher in the supplemented group at all time points (Plutein levels correlated with the full field electroretinogram-saturated response amplitude in rod photoreceptors (r=0.361, P=0.05). The supplemented group also showed greater rod photoreceptor sensitivity (least squares means 6.1 vs 4.1; Plutein on preterm retina health and maturation.

  5. Trehalose biosynthesis promotes Pseudomonas aeruginosa pathogenicity in plants.

    Science.gov (United States)

    Djonović, Slavica; Urbach, Jonathan M; Drenkard, Eliana; Bush, Jenifer; Feinbaum, Rhonda; Ausubel, Jonathan L; Traficante, David; Risech, Martina; Kocks, Christine; Fischbach, Michael A; Priebe, Gregory P; Ausubel, Frederick M

    2013-03-01

    Pseudomonas aeruginosa strain PA14 is a multi-host pathogen that infects plants, nematodes, insects, and vertebrates. Many PA14 factors are required for virulence in more than one of these hosts. Noting that plants have a fundamentally different cellular architecture from animals, we sought to identify PA14 factors that are specifically required for plant pathogenesis. We show that synthesis by PA14 of the disaccharide trehalose is required for pathogenesis in Arabidopsis, but not in nematodes, insects, or mice. In-frame deletion of two closely-linked predicted trehalose biosynthetic operons, treYZ and treS, decreased growth in Arabidopsis leaves about 50 fold. Exogenously co-inoculated trehalose, ammonium, or nitrate, but not glucose, sulfate, or phosphate suppressed the phenotype of the double ΔtreYZΔtreS mutant. Exogenous trehalose or ammonium nitrate does not suppress the growth defect of the double ΔtreYZΔtreS mutant by suppressing the plant defense response. Trehalose also does not function intracellularly in P. aeruginosa to ameliorate a variety of stresses, but most likely functions extracellularly, because wild-type PA14 rescued the in vivo growth defect of the ΔtreYZΔtreS in trans. Surprisingly, the growth defect of the double ΔtreYZΔtreS double mutant was suppressed by various Arabidopsis cell wall mutants that affect xyloglucan synthesis, including an xxt1xxt2 double mutant that completely lacks xyloglucan, even though xyloglucan mutants are not more susceptible to pathogens and respond like wild-type plants to immune elicitors. An explanation of our data is that trehalose functions to promote the acquisition of nitrogen-containing nutrients in a process that involves the xyloglucan component of the plant cell wall, thereby allowing P. aeruginosa to replicate in the intercellular spaces in a leaf. This work shows how P. aeruginosa, a multi-host opportunistic pathogen, has repurposed a highly conserved "house-keeping" anabolic pathway (trehalose

  6. Trehalose biosynthesis promotes Pseudomonas aeruginosa pathogenicity in plants.

    Directory of Open Access Journals (Sweden)

    Slavica Djonović

    2013-03-01

    Full Text Available Pseudomonas aeruginosa strain PA14 is a multi-host pathogen that infects plants, nematodes, insects, and vertebrates. Many PA14 factors are required for virulence in more than one of these hosts. Noting that plants have a fundamentally different cellular architecture from animals, we sought to identify PA14 factors that are specifically required for plant pathogenesis. We show that synthesis by PA14 of the disaccharide trehalose is required for pathogenesis in Arabidopsis, but not in nematodes, insects, or mice. In-frame deletion of two closely-linked predicted trehalose biosynthetic operons, treYZ and treS, decreased growth in Arabidopsis leaves about 50 fold. Exogenously co-inoculated trehalose, ammonium, or nitrate, but not glucose, sulfate, or phosphate suppressed the phenotype of the double ΔtreYZΔtreS mutant. Exogenous trehalose or ammonium nitrate does not suppress the growth defect of the double ΔtreYZΔtreS mutant by suppressing the plant defense response. Trehalose also does not function intracellularly in P. aeruginosa to ameliorate a variety of stresses, but most likely functions extracellularly, because wild-type PA14 rescued the in vivo growth defect of the ΔtreYZΔtreS in trans. Surprisingly, the growth defect of the double ΔtreYZΔtreS double mutant was suppressed by various Arabidopsis cell wall mutants that affect xyloglucan synthesis, including an xxt1xxt2 double mutant that completely lacks xyloglucan, even though xyloglucan mutants are not more susceptible to pathogens and respond like wild-type plants to immune elicitors. An explanation of our data is that trehalose functions to promote the acquisition of nitrogen-containing nutrients in a process that involves the xyloglucan component of the plant cell wall, thereby allowing P. aeruginosa to replicate in the intercellular spaces in a leaf. This work shows how P. aeruginosa, a multi-host opportunistic pathogen, has repurposed a highly conserved "house-keeping" anabolic

  7. Carotenoids and Carotenoid Esters of Red and Yellow Physalis (Physalis alkekengi L. and P. pubescens L.) Fruits and Calyces.

    Science.gov (United States)

    Wen, Xin; Hempel, Judith; Schweiggert, Ralf M; Ni, Yuanying; Carle, Reinhold

    2017-08-02

    Carotenoid profiles of fruits and calyces of red (Physalis alkekengi L.) and yellow (P. pubescens L.) Physalis were characterized by HPLC-DAD-APCI-MS n . Altogether 69 carotenoids were detected in red Physalis, thereof, 45 were identified. In yellow Physalis, 40 carotenoids were detected and 33 were identified. Zeaxanthin esters with various fatty acids were found to be the most abundant carotenoids in red Physalis, accounting for 51-63% of total carotenoids, followed by β-cryptoxanthin esters (16-24%). In yellow Physalis, mainly free carotenoids such as lutein and β-carotene were found. Total carotenoid contents ranged between 19.8 and 21.6 mg/100 g fresh red Physalis fruits and 1.28-1.38 mg/100 g fresh yellow Physalis fruits, demonstrating that Physalis fruits are rich sources of dietary carotenoids. Yellow Physalis calyces contained only 153-306 μg carotenoids/g dry weight, while those of red Physalis contained substantially higher amounts (14.6-17.6 mg/g dry weight), thus possibly exhibiting great potential as a natural source for commercial zeaxanthin extraction.

  8. Effects of plant carotenoid spacers on the performance of a dye-sensitized solar cell using a chlorophyll derivative: Enhancement of photocurrent determined by one electron-oxidation potential of each carotenoid

    Science.gov (United States)

    Wang, Xiao-Feng; Matsuda, Arihiro; Koyama, Yasushi; Nagae, Hiroyoshi; Sasaki, Shin-ichi; Tamiaki, Hitoshi; Wada, Yuji

    2006-06-01

    Plant carotenoids (Cars) with 8-10 conjugated double bonds, having higher singlet energies than those of bacterial Cars with 9-13 conjugated double bonds, were added (by 20%) as redox spacers to a titania-based Grätzel-type solar cell using a chlorophyll derivative (PPB a) as the sensitizer. No clear indication of singlet-energy transfer from Car to PPB a was seen, but clear enhancement of photocurrent with the decreasing one electron-oxidation potential of Car was observed. An empirical equation correlating the increase in photocurrent to difference in one electron-oxidation potentials (PPB a minus Car) and the oscillator strength of Car is proposed.

  9. Identification of a Second Site of Pyrrolizidine Alkaloid Biosynthesis in Comfrey to Boost Plant Defense in Floral Stage.

    Science.gov (United States)

    Kruse, Lars H; Stegemann, Thomas; Sievert, Christian; Ober, Dietrich

    2017-05-01

    Pyrrolizidine alkaloids (PAs) are toxic secondary metabolites that are found in several distantly related families of the angiosperms. The first specific step in PA biosynthesis is catalyzed by homospermidine synthase (HSS), which has been recruited several times independently by duplication of the gene encoding deoxyhypusine synthase, an enzyme involved in the posttranslational activation of the eukaryotic initiation factor 5A. HSS shows highly diverse spatiotemporal gene expression in various PA-producing species. In comfrey ( Symphytum officinale ; Boraginaceae), PAs are reported to be synthesized in the roots, with HSS being localized in cells of the root endodermis. Here, we show that comfrey plants activate a second site of HSS expression when inflorescences start to develop. HSS has been localized in the bundle sheath cells of specific leaves. Tracer feeding experiments have confirmed that these young leaves express not only HSS but the whole PA biosynthetic route. This second site of PA biosynthesis results in drastically increased PA levels within the inflorescences. The boost of PA biosynthesis is proposed to guarantee optimal protection especially of the reproductive structures. © 2017 American Society of Plant Biologists. All Rights Reserved.

  10. Plasma carotenoid concentrations of infants are increased by feeding a milk-based infant formula supplemented with carotenoids.

    Science.gov (United States)

    Mackey, Amy D; Albrecht, Daniel; Oliver, Jeffery; Williams, Timberly; Long, Amy C; Price, Pamela T

    2013-06-01

    Human milk is the gold standard of infant nutrition and is a source of important substances, including carotenoids. Infant formulas are designed to mimic the composition and/or performance of human milk, although currently carotenoids are not routinely added to US infant formulas. The aim of this study was to assess plasma concentrations of β-carotene, lutein and lycopene 56 days after feeding infants milk-based infant formula without (CTRL) or with different concentrations of added carotenoids (L1 and L2). Plasma carotenoid concentrations increased in infants fed carotenoid-supplemented formulas as compared with the control formula with no added carotenoids. At study day 56, infants fed the supplemented formulas (L1 and L2) had mean plasma lutein, β-carotene and lycopene concentrations that were within the range of a concurrent group of human milk-fed infants (HM). Anthropometric measurements were comparable among all study groups. Plasma carotenoid concentrations of infants fed the supplemented formulas were within the range of the HM group and are consistent with reported plasma carotenoid ranges in human milk-fed infants. The experimental formulas were well tolerated and anthropometric measurements were comparable among all study groups. © 2012 Society of Chemical Industry.

  11. Fasting plasma carotenoids concentrations in Crohn's and pancreatic cancer patients compared to control subjects.

    Science.gov (United States)

    Drai, J; Borel, P; Faure, H; Galabert, C; Le Moël, G; Laromiguière, M; Fayol, V

    2009-03-01

    Carotenoids are colored molecules that are widespread in the plant kingdom, but animals cannot synthesize them. Carotenes are long, apolar molecules which require fully functioning digestive processes to be absorbed properly. Hence they could be interesting markers of intestinal absorption and digestion. Indeed, only few tests are available to assess these processes and only the D-xylose tolerance test is routinely used. However D-xylose is a sugar that tests only the absorption of water-soluble compounds and it only tests duodenal absorption. In this study, we have evaluated carotenoids as markers of digestion and absorption. We compared fasting plasma carotenoids concentrations in 21 control subjects, 20 patients with Crohn's disease, and 18 patients with pancreatic cancer. Crohn's disease alters intestinal absorption while pancreatic cancer decreases pancreatic enzyme secretion thus impairing digestion. Results show that all carotenoids are significantly lower in Crohn's and cancer patients as compared to control subjects and the multifactorial analysis shows that this decrease is mostly independent of dietary intake. Interestingly, maldigestion as seen in pancreatic cancer more strongly influences plasma lutein and lycopene concentrations while malabsorption in Crohn's disease acts on other carotenoids. Thus carotenoids could be interesting alternatives for testing and following patients that are suspected of having malabsorption or maldigestion syndromes.

  12. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits.

    Science.gov (United States)

    Gutensohn, Michael; Orlova, Irina; Nguyen, Thuong T H; Davidovich-Rikanati, Rachel; Ferruzzi, Mario G; Sitrit, Yaron; Lewinsohn, Efraim; Pichersky, Eran; Dudareva, Natalia

    2013-08-01

    Geranyl diphosphate (GPP), the precursor of most monoterpenes, is synthesized in plastids from dimethylallyl diphosphate and isopentenyl diphosphate by GPP synthases (GPPSs). In heterodimeric GPPSs, a non-catalytic small subunit (GPPS-SSU) interacts with a catalytic large subunit, such as geranylgeranyl diphosphate synthase, and determines its product specificity. Here, snapdragon (Antirrhinum majus) GPPS-SSU was over-expressed in tomato fruits under the control of the fruit ripening-specific polygalacturonase promoter to divert the metabolic flux from carotenoid formation towards GPP and monoterpene biosynthesis. Transgenic tomato fruits produced monoterpenes, including geraniol, geranial, neral, citronellol and citronellal, while exhibiting reduced carotenoid content. Co-expression of the Ocimum basilicum geraniol synthase (GES) gene with snapdragon GPPS-SSU led to a more than threefold increase in monoterpene formation in tomato fruits relative to the parental GES line, indicating that the produced GPP can be used by plastidic monoterpene synthases. Co-expression of snapdragon GPPS-SSU with the O. basilicum α-zingiberene synthase (ZIS) gene encoding a cytosolic terpene synthase that has been shown to possess both sesqui- and monoterpene synthase activities resulted in increased levels of ZIS-derived monoterpene products compared to fruits expressing ZIS alone. These results suggest that re-direction of the metabolic flux towards GPP in plastids also increases the cytosolic pool of GPP available for monoterpene synthesis in this compartment via GPP export from plastids. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  13. Antioxidant effects of carotenoids

    NARCIS (Netherlands)

    Bast, A.; Haenen, G.R.M.M.; Berg, R. van den; Berg, H. van den

    1998-01-01

    Surprisingly, neither the precise pharmacological effect nor the toxicological profile is usually established for food components. Carotenoids are no exception in this regard. Only limited insight into the pharmacology and toxicology of carotenoids exists. It is known that the antioxidant action of

  14. Spectrophotometric analysis of tomato plants produced from seeds exposed under space flight conditions for a long time

    Science.gov (United States)

    Nechitailo, Galina S.; Yurov, S.; Cojocaru, A.; Revin, A.

    The analysis of the lycopene and other carotenoids in tomatoes produced from seeds exposed under space flight conditions at the orbital station MIR for six years is presented in this work. Our previous experiments with tomato plants showed the germination of seeds to be 32%Genetic investigations revealed 18%in the experiment and 8%experiments were conducted to study the capacity of various stimulating factors to increase germination of seeds exposed for a long time to the action of space flight factors. An increase of 20%achieved but at the same time mutants having no analogues in the control variants were detected. For the present investigations of the third generation of plants produced from seeds stored for a long time under space flight conditions 80 tomatoes from forty plants were selected. The concentration of lycopene in the experimental specimens was 2.5-3 times higher than in the control variants. The spectrophotometric analysis of ripe tomatoes revealed typical three-peaked carotenoid spectra with a high maximum of lycopene (a medium maximum at 474 nm), a moderate maximum of its predecessor, phytoin, (a medium maximum at 267 nm) and a low maximum of carotenes. In green tomatoes, on the contrary, a high maximum of phytoin, a moderate maximum of lycopene and a low maximum of carotenes were observed. The results of the spectral analysis point to the retardation of biosynthesis of carotenes while the production of lycopene is increased and to the synthesis of lycopene from phytoin. Electric conduction of tomato juice in the experimental samples is increased thus suggesting higher amounts of carotenoids, including lycopene and electrolytes. The higher is the value of electric conduction of a specimen, the higher are the spectral maxima of lycopene. The hydrogen ion exponent of the juice of ripe tomatoes increases due to which the efficiency of ATP biosynthesis in cell mitochondria is likely to increase, too. The results demonstrating an increase in the content

  15. The effects of dietary carotenoid supplementation and retinal carotenoid accumulation on vision-mediated foraging in the house finch.

    Directory of Open Access Journals (Sweden)

    Matthew B Toomey

    Full Text Available BACKGROUND: For many bird species, vision is the primary sensory modality used to locate and assess food items. The health and spectral sensitivities of the avian visual system are influenced by diet-derived carotenoid pigments that accumulate in the retina. Among wild House Finches (Carpodacus mexicanus, we have found that retinal carotenoid accumulation varies significantly among individuals and is related to dietary carotenoid intake. If diet-induced changes in retinal carotenoid accumulation alter spectral sensitivity, then they have the potential to affect visually mediated foraging performance. METHODOLOGY/PRINCIPAL FINDINGS: In two experiments, we measured foraging performance of house finches with dietarily manipulated retinal carotenoid levels. We tested each bird's ability to extract visually contrasting food items from a matrix of inedible distracters under high-contrast (full and dimmer low-contrast (red-filtered lighting conditions. In experiment one, zeaxanthin-supplemented birds had significantly increased retinal carotenoid levels, but declined in foraging performance in the high-contrast condition relative to astaxanthin-supplemented birds that showed no change in retinal carotenoid accumulation. In experiments one and two combined, we found that retinal carotenoid concentrations predicted relative foraging performance in the low- vs. high-contrast light conditions in a curvilinear pattern. Performance was positively correlated with retinal carotenoid accumulation among birds with low to medium levels of accumulation (∼0.5-1.5 µg/retina, but declined among birds with very high levels (>2.0 µg/retina. CONCLUSION/SIGNIFICANCE: Our results suggest that carotenoid-mediated spectral filtering enhances color discrimination, but that this improvement is traded off against a reduction in sensitivity that can compromise visual discrimination. Thus, retinal carotenoid levels may be optimized to meet the visual demands of specific

  16. Using Raman spectroscopy and SERS for in situ studies of rhizosphere bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Mohseni, Hooman; Agahi, Massoud H.; Razeghi, Manijeh; Polisetti, Sneha; Baig, Nameera; Bible, Amber; Morrell-Falvey, Jennifer; Doktycz, Mitchel; Bohn, Paul W.

    2015-08-21

    Bacteria colonize plant roots to form a symbiotic relationship with the plant and can play in important role in promoting plant growth. Raman spectroscopy is a useful technique to study these bacterial systems and the chemical signals they utilize to interact with the plant. We present a Raman study of Pantoea YR343 that was isolated from the rhizosphere of Populus deltoides (Eastern Cottonwood). Pantoea sp. YR343 produce yellowish carotenoid pigment that play a role in protection against UV radiation, in the anti-oxidative pathways and in membrane fluidity. Raman spectroscopy is used to non-invasively characterize the membrane bound carotenoids. The spectra collected from a mutant strain created by knocking out the crtB gene that encodes a phytoene synthase responsible for early stage of carotenoid biosynthesis, lack the carotenoid peaks. Surface Enhanced Raman Spectroscopy is being employed to detect the plant phytoharmone indoleacetic acid that is synthesized by the bacteria. This work describes our recent progress towards utilizing Raman spectroscopy as a label free, non-destructive method of studying plant-bacteria interactions in the rhizosphere.

  17. Comparison of Two Static in Vitro Digestion Methods for Screening the Bioaccessibility of Carotenoids in Fruits, Vegetables, and Animal Products.

    Science.gov (United States)

    Rodrigues, Daniele B; Chitchumroonchokchai, Chureeporn; Mariutti, Lilian R B; Mercadante, Adriana Z; Failla, Mark L

    2017-12-27

    In vitro digestion methods are routinely used to assess the bioaccessibility of carotenoids and other dietary lipophilic compounds. Here, we compared the recovery of carotenoids and their efficiency of micellarization in digested fruits, vegetables, egg yolk, and salmon and also in mixed-vegetable salads with and without either egg yolk or salmon using the static INFOGEST method22 and the procedure of Failla et al.16 Carotenoid stability during the simulated digestion was ≥70%. The efficiencies of the partitioning of carotenoids into mixed micelles were similar when individual plant foods and salad meals were digested using the two static methods. Furthermore, the addition of cooked egg or salmon to vegetable salads increased the bioaccessibility of some carotenoids. Our findings showed that the two methods of in vitro digestion generated similar estimates of carotenoid retention and bioaccessibility for diverse foods.

  18. [1-14C]Glycolate metabolism and serine biosynthesis in soybean plants

    International Nuclear Information System (INIS)

    Calmes, J.; Viala, G.; Latche, J.C.; Cavalie, G.

    1977-01-01

    [1- 14 C]Glycolate metabolism was examined in leafy shoots of soybean plants (Glycine max (L.) Merr., var. Adepta). Only small amounts of 14 C were incorporated into evolved carbon dioxide and glucidic compounds. Free and protein glycine was labelled but higher levels of radioactivity were found in free serine. Changes in the distribution of 14 C with time showed that metabolic conversion glycollate → glycine → serine occurred very early and serine biosynthesis was more important in the shoot than in the leaves. Carbon dioxide labelling was always slight compared to serine labelling. These data suggest strong relations between glycollate and nitrogen metabolism

  19. Individual carotenoid content of SRM 1548 total diet and influence of storage temperature, lyophilization, and irradiation on dietary carotenoids

    International Nuclear Information System (INIS)

    Craft, N.E.; Wise, S.A.

    1993-01-01

    A modified version of the AOAC procedure for the extraction of carotenoids from mixed feeds was coupled with an isocratic reversed-phase liquid chromatography (LC) method to measure individual carotenoids in SRM 1548 total diet and in a high-carotenoid mixed diet (HCMD). The major carotenoids identified in SRM 1548 were lycopene, beta-carotene, lutein, alpha-carotene, and zeaxanthin in descending order of concentration. The concentration of all carotenoids in SRM 1548 decreased as storage temperature increased. Significant differences in carotenoid concentrations occurred between -80 and 4 degrees C storage temperatures. Lyophilization of the HCMD significantly decreased beta-carotene and lycopene concentrations and produced an apparent increase in xanthophyll concentrations. Exposure to gamma-irradiation significantly decreased alpha-carotene and beta-carotene concentrations and led to an apparent increase in P-cryptoxanthin. SRM 1548 was found to be unsuitable for use as a reference material for carotenoid measurements, while HCMD has greater potential as a reference material

  20. Structural Determinats Underlying Photoprotection in the Photoactive Orange Carotenoid Protein of Cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Adjele; Kinney, James N.; Zwart, Petrus H.; Punginelli, Claire; D' Haene, Sandrine; Perreau, Francois; Klein, Michael G.; Kirilovsky, Diana; Kerfeld, Cheryl

    2010-04-01

    The photoprotective processes of photosynthetic organisms involve the dissipation of excess absorbed light energy as heat. Photoprotection in cyanobacteria is mechanistically distinct from that in plants; it involves the Orange Carotenoid Protein (OCP), a water-soluble protein containing a single carotenoid. The OCP is a new member of the family of blue light photoactive proteins; blue-green light triggers the OCP-mediated photoprotective response. Here we report structural and functional characterization of the wildtype and two mutant forms of the OCP, from the model organism Synechocystis PCC6803. The structural analysis provides highresolution detail of the carotenoidprotein interactions that underlie the optical properties of the OCP, unique among carotenoid-proteins in binding a single pigment per polypeptide chain. Collectively, these data implicate several key amino acids in the function of the OCP and reveal that the photoconversion and photoprotective responses of the OCP to blue-green light can be decoupled.

  1. Nature’s packaging and organization of carotenoids in watermelon and cantaloupe chromoplasts

    Science.gov (United States)

    As a means to better understand factors influencing the bioavailability of carotenoids from natural sources, the properties of plant-derived precipitates of watermelon lycopene and cantaloupe B-carotene were examined in an aqueous environment. Electron microscopy and chemical analyses revealed that...

  2. X-ray scattering and electron cryomicroscopy study on the effect of carotenoid biosynthesis to the structure of Chlorobium tepidum chlorosomes

    DEFF Research Database (Denmark)

    Ikonen, T P; Li, H; Psencík, J

    2007-01-01

    effect on chlorosome biogenesis and structure. The results indicate that carotenoids with a sufficiently long conjugated system are important for the biogenesis of the chlorosome baseplate. Defects in the baseplate structure affected the shape of the chlorosomes and were correlated with differences...... studied by means of x-ray scattering and electron cryomicroscopy. The chlorosomes from each mutant strain exhibited a lamellar arrangement of the bacteriochlorophyll c aggregates, which are the major constituents of the chlorosome interior. However, the carotenoid content and composition had a pronounced...... in the arrangement of lamellae and spacing between the lamellar planes of bacteriochlorophyll aggregates. In addition, comparisons among the various mutants enabled refinement of the assignments of the x-ray scattering peaks. While the main scattering peaks come from the lamellar structure of bacteriochlorophyll c...

  3. Simultaneous analysis of carotenoids and tocopherols in botanical species using one step solid-liquid extraction followed by high performance liquid chromatography.

    Science.gov (United States)

    Valdivielso, Izaskun; Bustamante, María Ángeles; Ruiz de Gordoa, Juan Carlos; Nájera, Ana Isabel; de Renobales, Mertxe; Barron, Luis Javier R

    2015-04-15

    Carotenoids and tocopherols from botanical species abundant in Atlantic mountain grasslands were simultaneously extracted using one-step solid-liquid phase. A single n-hexane/2-propanol extract containing both types of compounds was injected twice under two different sets of HPLC conditions to separate the tocopherols by normal-phase chromatography and carotenoids by reverse-phase mode. The method allowed reproducible quantification in plant samples of very low amounts of α-, β-, γ- and δ-tocopherols (LOD from 0.0379 to 0.0720 μg g(-1) DM) and over 15 different xanthophylls and carotene isomers. The simplified one-step extraction without saponification significantly increased the recovery of tocopherols and carotenoids, thereby enabling the determination of α-tocopherol acetate in plant samples. The two different sets of chromatographic analysis provided near baseline separation of individual compounds without interference from other lipid compounds extracted from plants, and a very sensitive and accurate detection of tocopherols and carotenoids. The detection of minor individual components in botanical species from grasslands is nowadays of high interest in searching for biomarkers for foods derived from grazing animals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Pigment content (chlorophyll and carotenoids) in 37 species of trees and shrubs in northeastern mexico during summer season

    International Nuclear Information System (INIS)

    Rodriguez, H.G.; Avendano, E.; Maiti, R.; Kumari, C.A.

    2017-01-01

    Plant pigments play an important role in plant assimilatory systems and plant growth. A study was undertaken to determine chlorophyll a, chlorophyll b and carotenoids contents of thirty seven species of trees and shrubs in summer season, in Linares, northeastern Mexico. Large variations were observed in the contents of chlorophyll (a, b and total) and also carotenoids among species. Chlorophyll a was minimum (around 0.6 mg) in Leucophyllum frutescens and Acacia berlandieri and maximum (1.8 mg) in Ebenopsis ebano. Chlorophyll b was minimum in Forestiera angustifolia, Acacia berlandieri, and Leucophyllum frutescens (0.1 to 0.2 mg), while Ebenopsis ebano contained maximum (0.4 mg). Carotenoids content was minimum (around 0.2 mg) in Leucophyllum frutescens, Acacia berlandieri and Parkinsonia aculeata and others but maximum value (around 0.6 mg) was observed in Berberis trifoliata. Total chlorophyll (a+b) content minimum values (around 0.6 mg) were recorded in Leucophyllum frutescens, Forestiera angustifolia, Croton suaveolens and Acacia berlandieri, while maximum value (around 2 mg) was obtained in Ebenopsis ebano. Maximum values of chlorophyll (a:b) ratio (around 7) was seen in Forestiera angustifolia, Salix lasiolepis followed by Diospyros texana (around 6). The ratio of total chlorophyll/carotenoids was maximum in Parkinsonia aculeata (nearing 8), while minimum value was obtained in Berberis trifoliata (around 2). (author)

  5. Genetic Characterization of the Carotenoid Biosynthetic Pathway in Methylobacterium extorquens AM1 and Isolation of a Colorless Mutant

    Science.gov (United States)

    Van Dien, Stephen J.; Marx, Christopher J.; O'Brien, Brooke N.; Lidstrom, Mary E.

    2003-01-01

    Genomic searches were used to reconstruct the putative carotenoid biosynthesis pathway in the pink-pigmented facultative methylotroph Methylobacterium extorquens AM1. Four genes for putative phytoene desaturases were identified. A colorless mutant was obtained by transposon mutagenesis, and the insertion was shown to be in one of the putative phytoene desaturase genes. Mutations in the other three did not affect color. The tetracycline marker was removed from the original transposon mutant, resulting in a pigment-free strain with wild-type growth properties useful as a tool for future experiments. PMID:14660416

  6. Genetic characterization of the carotenoid biosynthetic pathway in Methylobacterium extorquens AM1 and isolation of a colorless mutant.

    Science.gov (United States)

    Van Dien, Stephen J; Marx, Christopher J; O'Brien, Brooke N; Lidstrom, Mary E

    2003-12-01

    Genomic searches were used to reconstruct the putative carotenoid biosynthesis pathway in the pink-pigmented facultative methylotroph Methylobacterium extorquens AM1. Four genes for putative phytoene desaturases were identified. A colorless mutant was obtained by transposon mutagenesis, and the insertion was shown to be in one of the putative phytoene desaturase genes. Mutations in the other three did not affect color. The tetracycline marker was removed from the original transposon mutant, resulting in a pigment-free strain with wild-type growth properties useful as a tool for future experiments.

  7. Stability of bacterial carotenoids in the presence of iron in a model of the gastric compartment - comparison with dietary reference carotenoids.

    Science.gov (United States)

    Sy, Charlotte; Dangles, Olivier; Borel, Patrick; Caris-Veyrat, Catherine

    2015-04-15

    Recently isolated spore-forming pigmented marine bacteria, Bacillus indicus HU36 and Bacillus firmus GB1 are sources of carotenoids (∼fifteen distinct yellow and orange pigments and ∼thirteen distinct pink pigments, respectively). They are glycosides of oxygenated lycopene derivatives (apo-lycopenoids) and are assumed to be more heat- and gastric-stable than common carotenoids. In this study, the oxidation by O2 of the bacterial carotenoids was initiated by free iron (Fe(II) and Fe(III)) or by heme iron (metmyoglobin) in a mildly acidic aqueous solution mimicking the gastro-intestinal compartment and compared to the oxidation of the common dietary carotenoids β-carotene, lycopene and astaxanthin. Under these conditions, all bacterial carotenoids appear more stable in the presence of heme iron vs. free iron. Carotenoid autoxidation initiated by Fe(II) is relatively fast and likely involves reactive oxygen-iron species derived from Fe(II) and O2. By contrast, the corresponding reaction with Fe(III) is kinetically blocked by the slow preliminary reduction of Fe(III) into Fe(II) by the carotenoids. The stability of carotenoids toward autoxidation increases as follows: β-carotenecarotenoids react more quickly than reference carotenoids with Fe(III), but much more slowly than the reference carotenoids with Fe(II). This reaction is correlated with the structure of the carotenoids, which can have opposite effects in a micellar system: bacterial carotenoids with electro-attracting terminal groups have a lower reducing capacity than β-carotene and lycopene. However, their polar head favours their location close to the interface of micelles, in closer contact with oxidative species. Kinetic analyses of the iron-induced autoxidation of astaxanthin and HU36 carotenoids has been performed and gives insights in the underlying mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Composition of Carotenoids and Flavonoids in Narcissus Cultivars and their Relationship with Flower Color.

    Directory of Open Access Journals (Sweden)

    Xin Li

    Full Text Available Narcissus is widely used for cut flowers and potted plants, and is one of the most important commercial bulbous flowers in the floricultural industry. In this study, ten carotenoid and eighteen flavonoid compounds from the perianths and coronas of fifteen narcissus cultivars were measured by HPLC-APCI-MS/MS and UPLC-Q-TOF-MS/MS. Among these, six carotenoids, a total of seventeen flavonols and chlorogenic acid were identified in narcissus for the first time. A multivariate analysis was used to explore the relationship between flower color and pigment composition. We found that all-trans-violaxanthin and total carotenoid content were the main factors that affected flower color. These investigations could provide a global view of flower color formation and a theoretical basis for hybridization breeding in narcissus.

  9. Resonance Raman Spectroscopic Evaluation of Skin Carotenoids as a Biomarker of Carotenoid Status for Human Studies

    Science.gov (United States)

    Mayne, Susan T.; Cartmel, Brenda; Scarmo, Stephanie; Jahns, Lisa; Ermakov, Igor V.; Gellermann, Werner

    2013-01-01

    Resonance Raman Spectroscopy (RRS) is a non-invasive method that has been developed to assess carotenoid status in human tissues including human skin in vivo. Skin carotenoid status has been suggested as a promising biomarker for human studies. This manuscript describes research done relevant to the development of this biomarker, including its reproducibility, validity, feasibility for use in field settings, and factors that affect the biomarker such as diet, smoking, and adiposity. Recent studies have evaluated the response of the biomarker to controlled carotenoid interventions, both supplement-based and dietary [e.g., provision of a high-carotenoid fruit and vegetable (F/V)-enriched diet], demonstrating consistent response to intervention. The totality of evidence supports the use of skin carotenoid status as an objective biomarker of F/V intake, although in the cross-sectional setting, diet explains only some of the variation in this biomarker. However, this limitation is also a strength in that skin carotenoids may effectively serve as an integrated biomarker of health, with higher status reflecting greater F/V intake, lack of smoking, and lack of adiposity. Thus, this biomarker holds promise as both a health biomarker and an objective indicator of F/V intake, supporting its further development and utilization for medical and public health purposes. PMID:23823930

  10. Latin American food sources of carotenoids.

    Science.gov (United States)

    Rodriguez-Amaya, D B

    1999-09-01

    Latin America has a wide variety of carotenogenic foods, notable for the diversity and high levels of carotenoids. A part of this natural wealth has been analyzed. Carrot, red palm oil and some cultivars of squash and pumpkin are sources of both beta-carotene and alpha-carotene. beta-carotene is the principal carotenoid of the palm fruits burití, tucumã and bocaiuva, other fruits such as loquat, marolo and West Indian cherry, and sweet potato. Buriti also has high amounts of alpha-carotene and gamma-carotene. beta-Cryptoxanthin is the major carotenoid in caja, nectarine, orange-fleshed papaya, orange, peach, tangerine and the tree tomato. Lycopene predominates in tomato, red-fleshed papaya, guava, pitanga and watermelon. Pitanga also has substantial amounts of beta-cryptoxanthin, gamma-carotene and rubixanthin. Zeaxanthin, principal carotenoid of corn, is also predominant only in piquí. delta-Carotene is the main carotenoid of the peach palm and zeta-carotene of passion fruit. Lutein and beta-carotene, in high concentrations, are encountered in the numerous leafy vegetables of the region, as well as in other green vegetables and in some varieties of squash and pumpkin. Violaxanthin is the principal carotenoid of mango and mamey and is also found in appreciable amounts in green vegetables. Quantitative, in some cases also qualitative, differences exist among cultivars of the same food. Generally, carotenoids are in greater concentrations in the peel than in the pulp, increase considerably during ripening and are in higher levels in foods produced in hot places. Other Latin America indigenous carotenogenic foods must be investigated before they are supplanted by introduced crops, which are often poorer sources of carotenoids.

  11. Carotenoid accumulation in the tissues of zebra finches: predictors of integumentary pigmentation and implications for carotenoid allocation strategies.

    Science.gov (United States)

    McGraw, Kevin J; Toomey, Matthew B

    2010-01-01

    Carotenoid pigments produce the bright yellow to red ornamental colors of many animals, especially birds, and must ultimately be derived from the diet. However, they are also valuable for many physiological functions (e.g., antioxidants, immunostimulants, photoprotection, visual tuning, yolk nourishment to embryos), and as a result they are present in numerous internal body tissues (e.g., liver, adipose tissue, retina) whose carotenoid types and amounts are rarely studied in the context of color acquisition. Because male and female animals typically place different priorities on fitness-enhancing activities (e.g., gametic investment in females, sexual attraction in males), carotenoid allocation may track such investment patterns in the two sexes, and we can test for such sex-specific priorities of carotenoids by assessing body-tissue distributions of these pigments. We used high-performance liquid chromatography to identify and quantify carotenoid pigments from the plasma, liver, adipose tissue, and retina as well as the beak and legs of male and female zebra finches (Taeniopygia guttata), a species in which males display sexually attractive, red, carotenoid-based beak coloration and females also display some (albeit a less rich orange) beak color. To our knowledge, this is the first study of the predictors of carotenoid-based leg coloration-another potentially important visual signal-in this species. The same suite of dietary (e.g., lutein, zeaxanthin, beta-cryptoxanthin) and metabolically derived (e.g., dehydrolutein, anhydrolutein) yellow and orange carotenoids was present in plasma, liver, and adipose tissue of both sexes. Retina contained two different metabolites (astaxanthin and galloxanthin) that serve specific functions in association with unique photoreceptor types in the eye. Beaks were enriched with four red ketocarotenoid derivatives in both sexes (alpha-doradexanthin, adonirubin, astaxanthin, and canthaxanthin), while the carotenoid profile of legs

  12. Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MSn.

    Science.gov (United States)

    Etzbach, Lara; Pfeiffer, Anne; Weber, Fabian; Schieber, Andreas

    2018-04-15

    Carotenoid profiles of goldenberry (Physalis peruviana L.) fruits differing in ripening states and in different fruit fractions (peel, pulp, and calyx of ripe fruits) were investigated by HPLC-DAD-APCI-MS n . Out of the 53 carotenoids detected, 42 were tentatively identified. The carotenoid profile of unripe fruits is dominated by (all-E)-lutein (51%), whereas in ripe fruits, (all-E)-β-carotene (55%) and several carotenoid fatty acid esters, especially lutein esters esterified with myristic and palmitic acid as monoesters or diesters, were found. In overripe fruits, carotenoid conversion products and a higher proportion of carotenoid monoesters to diesters compared to ripe fruits were observed. Overripe fruits showed a significant decrease in total carotenoids of about 31% due to degradation. The observed conversion and degradation processes included epoxidation, isomerization, and deesterification. The peel of ripe goldenberries showed a 2.8 times higher total carotenoid content of 332.00 µg/g dw compared to the pulp. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The intake of carotenoids in Denmark

    DEFF Research Database (Denmark)

    Leth, Torben; Jakobsen, Jette; Andersen, N. L.

    2000-01-01

    To estimate the intake of carotenoids in the Danish population Danish fruits and vegetables were screened with an HPLC method consisting of extraction with ethanol:tetrahydrofuran, separation by reversed phase HPLC with the mobile phase acetonitril:methanol:dichlormethan, triethylamin, BHT...... in the foods the mean intake and intake distribution of the carotenoids were calculated. Carrots and tomatoes have both high contents of carotenoids (8,450 mu g/100 g alpha- + beta-carotene and 4,790 mu g/100 g lycopene, respectively) and high intakes (19 and 15 g/day, respectively) and were responsible for 47......% and 32%, respectively, of the mean intake of carotenoids of 4.8 mg/day A median value of 4.1 mg/day was found indicating skewed intake distributions. The difference between men and women was 0.4 mg/day (p carotenoids, alpha-carotene, beta-carotene, lutein and lycopene, contributed...

  14. Carotenoids intake and asthma prevalence in Thai children

    Directory of Open Access Journals (Sweden)

    Sanguansak Rerksuppaphol

    2012-02-01

    Full Text Available Several antioxidant nutrients have been described to inversely correlate with asthma. In order to quantify the intake of these substances, it is possible to measure skin levels by Raman spectroscopy, a novel non-invasive technique that can also be used in children. This cross-sectional school-based study involved 423 children from a rural area of Thailand. Asthmatic children were diagnosed according to a Health Interview for Asthma Control questionnaire. Skin carotenoid levels were measured with Raman spectroscopy. Demographic data were obtained by directly interviewing children and their parents, whereas anthropometric parameters were measured by trained staff. Intake of carotenoids, vitamin A and C were evaluated by a food frequency questionnaire. Overall incidence of asthma in Thai schoolchildren (aged 3.5-17.8 years was 17.3%. There was no significant difference in dietary intake of carotenoids and vitamin A and C, and skin carotenoid level between asthmatic and nonasthmatic children. Skin carotenoid level significantly correlated with all carotenoids and vitamin A intake (P<0.05. Carotenoids and vitamin A and C intakes, and skin carotenoid levels were not associated with the risk of asthma in Thai children. Skin carotenoids correlated with all carotenoids and vitamin A intake in mild to moderate degrees. Raman spectroscopy was confirmed to be a useful tool to determine antioxidant skin levels.

  15. Biosynthetic pathway for γ-cyclic sarcinaxanthin in Micrococcus luteus: heterologous expression and evidence for diverse and multiple catalytic functions of C(50) carotenoid cyclases.

    Science.gov (United States)

    Netzer, Roman; Stafsnes, Marit H; Andreassen, Trygve; Goksøyr, Audun; Bruheim, Per; Brautaset, Trygve

    2010-11-01

    We report the cloning and characterization of the biosynthetic gene cluster (crtE, crtB, crtI, crtE2, crtYg, crtYh, and crtX) of the γ-cyclic C(50) carotenoid sarcinaxanthin in Micrococcus luteus NCTC2665. Expression of the complete and partial gene cluster in Escherichia coli hosts revealed that sarcinaxanthin biosynthesis from the precursor molecule farnesyl pyrophosphate (FPP) proceeds via C(40) lycopene, C(45) nonaflavuxanthin, C(50) flavuxanthin, and C(50) sarcinaxanthin. Glucosylation of sarcinaxanthin was accomplished by the crtX gene product. This is the first report describing the biosynthetic pathway of a γ-cyclic C(50) carotenoid. Expression of the corresponding genes from the marine M. luteus isolate Otnes7 in a lycopene-producing E. coli host resulted in the production of up to 2.5 mg/g cell dry weight sarcinaxanthin in shake flasks. In an attempt to experimentally understand the specific difference between the biosynthetic pathways of sarcinaxanthin and the structurally related ε-cyclic decaprenoxanthin, we constructed a hybrid gene cluster with the γ-cyclic C(50) carotenoid cyclase genes crtYg and crtYh from M. luteus replaced with the analogous ε-cyclic C(50) carotenoid cyclase genes crtYe and crtYf from the natural decaprenoxanthin producer Corynebacterium glutamicum. Surprisingly, expression of this hybrid gene cluster in an E. coli host resulted in accumulation of not only decaprenoxanthin, but also sarcinaxanthin and the asymmetric ε- and γ-cyclic C(50) carotenoid sarprenoxanthin, described for the first time in this work. Together, these data contributed to new insight into the diverse and multiple functions of bacterial C(50) carotenoid cyclases as key catalysts for the synthesis of structurally different carotenoids.

  16. Confocal laser scanning microscopy detection of chlorophylls and carotenoids in chloroplasts and chromoplasts of tomato fruit.

    Science.gov (United States)

    D'Andrea, Lucio; Amenós, Montse; Rodríguez-Concepción, Manuel

    2014-01-01

    Plant cells are unique among eukaryotic cells because of the presence of plastids, including chloroplasts and chromoplasts. Chloroplasts are found in green tissues and harbor the photosynthetic machinery (including chlorophyll molecules), while chromoplasts are present in non-photosynthetic tissues and accumulate large amounts of carotenoids. During tomato fruit development, chloroplasts are converted into chromoplasts that accumulate high levels of lycopene, a linear carotenoid responsible for the characteristic red color of ripe fruit. Here, we describe a simple and fast method to detect both types of fully differentiated plastids (chloroplasts and chromoplasts), as well as intermediate stages, in fresh tomato fruits. The method is based on the differential autofluorescence of chlorophylls and carotenoids (lycopene) detected by Confocal Laser Scanning Microscopy.

  17. Carotenoids

    Science.gov (United States)

    This short article indicated that greater understanding of the biological functions of carotenoids mediated via their oxidative metabolites through their effects on these important cellular pathways and molecular targets, as well as their significance to cancer prevention, is needed. In considering ...

  18. The Role of Carotenoids in Human Skin

    Directory of Open Access Journals (Sweden)

    Theognosia Vergou

    2011-12-01

    Full Text Available The human skin, as the boundary organ between the human body and the environment, is under the constant influence of free radicals (FR, both from the outside in and from the inside out. Carotenoids are known to be powerful antioxidant substances playing an essential role in the reactions of neutralization of FR (mainly reactive oxygen species ROS. Carotenoid molecules present in the tissue are capable of neutralizing several attacks of FR, especially ROS, and are then destroyed. Human skin contains carotenoids, such as α-, γ-, β-carotene, lutein, zeaxanthin, lycopene and their isomers, which serve the living cells as a protection against oxidation. Recent studies have reported the possibility to investigate carotenoids in human skin quickly and non-invasively by spectroscopic means. Results obtained from in-vivo studies on human skin have shown that carotenoids are vital components of the antioxidative protective system of the human skin and could serve as marker substances for the overall antioxidative status. Reflecting the nutritional and stress situation of volunteers, carotenoids must be administered by means of antioxidant-rich products, e.g., in the form of fruit and vegetables. Carotenoids are degraded by stress factors of any type, inter alia, sun radiation, contact with environmental hazards, illness, etc. The kinetics of the accumulation and degradation of carotenoids in the skin have been investigated.

  19. Side-effects of domestication: cultivated legume seeds contain similar tocopherols and fatty acids but less carotenoids than their wild counterparts.

    Science.gov (United States)

    Fernández-Marín, Beatriz; Milla, Rubén; Martín-Robles, Nieves; Arc, Erwann; Kranner, Ilse; Becerril, José María; García-Plazaola, José Ignacio

    2014-12-20

    Lipophilic antioxidants play dual key roles in edible seeds (i) as preservatives of cell integrity and seed viability by preventing the oxidation of fats, and (ii) as essential nutrients for human and animal life stock. It has been well documented that plant domestication and post-domestication evolution frequently resulted in increased seed size and palatability, and reduced seed dormancy. Nevertheless, and surprisingly, it is poorly understood how agricultural selection and cultivation affected the physiological fitness and the nutritional quality of seeds. Fabaceae have the greatest number of crop species of all plant families, and most of them are cultivated for their highly nutritious edible seeds. Here, we evaluate whether evolution of plants under cultivation has altered the integrated system formed by membranes (fatty acids) and lipophilic antioxidants (carotenoids and tocopherols), in the ten most economically important grain legumes and their closest wild relatives, i.e.: Arachis (peanut), Cicer (chickpea), Glycine (soybean), Lathyrus(vetch), Lens (lentil), Lupinus (lupin), Phaseolus (bean), Pisum (pea), Vicia (faba bean) and Vigna (cowpea). Unexpectedly, we found that following domestication, the contents of carotenoids, including lutein and zeaxanthin, decreased in all ten species (total carotenoid content decreased 48% in average). Furthermore, the composition of carotenoids changed, whereby some carotenoids were lost in most of the crops. An undirected change in the contents of tocopherols and fatty acids was found, with contents increasing in some species and decreasing in others, independently of the changes in carotenoids. In some species, polyunsaturated fatty acids (linolenic acid especially), α-tocopherol and γ-tocopherol decreased following domestication. The changes in carotenoids, tocopherols and fatty acids are likely side-effects of the selection for other desired traits such as the loss of seed dormancy and dispersal mechanisms, and

  20. Fenarimol, a Pyrimidine-Type Fungicide, Inhibits Brassinosteroid Biosynthesis

    Directory of Open Access Journals (Sweden)

    Keimei Oh

    2015-07-01

    Full Text Available The plant steroid hormone brassinosteroids (BRs are important signal mediators that regulate broad aspects of plant growth and development. With the discovery of brassinoazole (Brz, the first specific inhibitor of BR biosynthesis, several triazole-type BR biosynthesis inhibitors have been developed. In this article, we report that fenarimol (FM, a pyrimidine-type fungicide, exhibits potent inhibitory activity against BR biosynthesis. FM induces dwarfism and the open cotyledon phenotype of Arabidopsis seedlings in the dark. The IC50 value for FM to inhibit stem elongation of Arabidopsis seedlings grown in the dark was approximately 1.8 ± 0.2 μM. FM-induced dwarfism of Arabidopsis seedlings could be restored by brassinolide (BL but not by gibberellin (GA. Assessment of the target site of FM in BR biosynthesis by feeding BR biosynthesis intermediates indicated that FM interferes with the side chain hydroxylation of BR biosynthesis from campestanol to teasterone. Determination of the binding affinity of FM to purified recombinant CYP90D1 indicated that FM induced a typical type II binding spectrum with a Kd value of approximately 0.79 μM. Quantitative real-time PCR analysis of the expression level of the BR responsive gene in Arabidopsis seedlings indicated that FM induces the BR deficiency in Arabidopsis.

  1. Comparison of Effect of Brassinosteroid and Gibberellin Biosynthesis Inhibitors on Growth of Rice Seedlings

    Directory of Open Access Journals (Sweden)

    Tadashi Matusmoto

    2016-01-01

    Full Text Available Brassinosteroid (BR and gibberellin (GA are two predominant plant hormones that regulate plant cell elongation. Mutants disrupt the biosynthesis of these hormones and display different degrees of dwarf phenotypes in rice. Although the role of each plant hormone in promoting the longitudinal growth of plants has been extensively studied using genetic methods, their relationship is still poorly understood. In this study, we used two specific inhibitors targeting BR and GA biosynthesis to investigate the roles of BR and GA in growth of rice seedlings. Yucaizol, a specific inhibitor of BR biosynthesis, and Trinexapac-ethyl, a commercially available inhibitor of GA biosynthesis, were used. The effect of Yucaizol on rice seedlings indicated that Yucaizol significantly retarded stem elongation. The IC50 value was found to be approximately 0.8 μmol/L. Yucaizol also induced small leaf angle phenocopy in rice seedlings, similarly to BR-deficient rice, while Trinexapac-ethyl did not. When Yucaizol combined with Trinexapac-ethyl was applied to the rice plants, the mixture of these two inhibitors retarded stem elongation of rice at lower doses. Our results suggest that the use of a BR biosynthesis inhibitor combined with a GA biosynthesis inhibitor may be useful in the development of new technologies for controlling rice plant height.

  2. Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway.

    Science.gov (United States)

    Dilbeck, Preston L; Tang, Qun; Mothersole, David J; Martin, Elizabeth C; Hunter, C Neil; Bocian, David F; Holten, Dewey; Niedzwiedzki, Dariusz M

    2016-06-23

    Six light-harvesting-2 complexes (LH2) from genetically modified strains of the purple photosynthetic bacterium Rhodobacter (Rb.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. These strains were engineered to incorporate carotenoids for which the number of conjugated groups (N = NC═C + NC═O) varies from 9 to 15. The Rb. sphaeroides strains incorporate their native carotenoids spheroidene (N = 10) and spheroidenone (N = 11), as well as longer-chain analogues including spirilloxanthin (N = 13) and diketospirilloxantion (N = 15) normally found in Rhodospirillum rubrum. Measurements of the properties of the carotenoid first singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to those in LH2 complexes from various other bacterial species and thus are not significantly impacted by differences in polypeptide composition. Instead, variations in carotenoid-to-BChl a energy transfer are primarily regulated by the N-determined energy of the carotenoid S1 excited state, which for long-chain (N ≥ 13) carotenoids is not involved in energy transfer. Furthermore, the role of the long-chain carotenoids switches from a light-harvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S1 excited state B850*. This quenching is manifested as a substantial (∼2-fold) reduction of the B850* lifetime and the B850* fluorescence quantum yield for LH2 housing the longest carotenoids.

  3. The Phytoene synthase gene family of apple (Malus x domestica) and its role in controlling fruit carotenoid content.

    Science.gov (United States)

    Ampomah-Dwamena, Charles; Driedonks, Nicky; Lewis, David; Shumskaya, Maria; Chen, Xiuyin; Wurtzel, Eleanore T; Espley, Richard V; Allan, Andrew C

    2015-07-28

    Carotenoid compounds play essential roles in plants such as protecting the photosynthetic apparatus and in hormone signalling. Coloured carotenoids provide yellow, orange and red colour to plant tissues, as well as offering nutritional benefit to humans and animals. The enzyme phytoene synthase (PSY) catalyses the first committed step of the carotenoid biosynthetic pathway and has been associated with control of pathway flux. We characterised four PSY genes found in the apple genome to further understand their involvement in fruit carotenoid accumulation. The apple PSY gene family, containing six members, was predicted to have three functional members, PSY1, PSY2, and PSY4, based on translation of the predicted gene sequences and/or corresponding cDNAs. However, only PSY1 and PSY2 showed activity in a complementation assay. Protein localisation experiments revealed differential localization of the PSY proteins in chloroplasts; PSY1 and PSY2 localized to the thylakoid membranes, while PSY4 localized to plastoglobuli. Transcript levels in 'Granny Smith' and 'Royal Gala' apple cultivars showed PSY2 was most highly expressed in fruit and other vegetative tissues. We tested the transient activation of the apple PSY1 and PSY2 promoters and identified potential and differential regulation by AP2/ERF transcription factors, which suggested that the PSY genes are controlled by different transcriptional mechanisms. The first committed carotenoid pathway step in apple is controlled by MdPSY1 and MdPSY2, while MdPSY4 play little or no role in this respect. This has implications for apple breeding programmes where carotenoid enhancement is a target and would allow co-segregation with phenotypes to be tested during the development of new cultivars.

  4. Jasmonate mediates salt-induced nicotine biosynthesis in tobacco (Nicotiana tabacum L.

    Directory of Open Access Journals (Sweden)

    Xiaodong Chen

    2016-04-01

    Full Text Available Jasmonate (JA, as an important signal, plays a key role in multiple processes of plant growth, development and stress response. Nicotine and related pyridine alkaloids in tobacco (Nicotiana tabacum L. are essential secondary metabolites. Whether environmental factors control nicotine biosynthesis and the underlying mechanism remains previously unreported. Here, we applied physiological and biochemical approaches to investigate how salt stress affects nicotine biosynthesis in tobacco. We found that salt stress induced the biosynthesis of JA, which subsequently triggered the activation of JA-responsive gene expression and, ultimately, nicotine synthesis. Bioinformatics analysis revealed the existence of many NtMYC2a-recognized G-box motifs in the promoter regions of NtLOX, NtAOS, NtAOC and NtOPR genes. Applying exogenous JA increased nicotine content, while suppressing JA biosynthesis reduced nicotine biosynthesis. Salt treatment could not efficiently induce nicotine biosynthesis in transgenic anti-COI1 tobacco plants. These results demonstrate that JA acts as the essential signal which triggers nicotine biosynthesis in tobacco after salt stress.

  5. Health Effects of Carotenoids during Pregnancy and Lactation.

    Science.gov (United States)

    Zielińska, Monika A; Wesołowska, Aleksandra; Pawlus, Beata; Hamułka, Jadwiga

    2017-08-04

    Adequate nutrition is particularly important during pregnancy since it is needed not only for maintaining the health of the mother, but also determines the course of pregnancy and its outcome, fetus development as well as the child's health after birth and during the later period of life. Data coming from epidemiological and interventions studies support the observation that carotenoids intake provide positive health effects in adults and the elderly population. These health effects are the result of their antioxidant and anti-inflammatory properties. Recent studies have also demonstrated the significant role of carotenoids during pregnancy and infancy. Some studies indicate a correlation between carotenoid status and lower risk of pregnancy pathologies induced by intensified oxidative stress, but results of these investigations are equivocal. Carotenoids have been well studied in relation to their beneficial role in the prevention of preeclampsia. It is currently hypothesized that carotenoids can play an important role in the prevention of preterm birth and intrauterine growth restriction. Carotenoid status in the newborn depends on the nutritional status of the mother, but little is known about the transfer of carotenoids from the mother to the fetus. Carotenoids are among the few nutrients found in breast milk, in which the levels are determined by the mother's diet. Nutritional status of the newborn directly depends on its diet. Both mix feeding and artificial feeding may cause depletion of carotenoids since infant formulas contain only trace amounts of these compounds. Carotenoids, particularly lutein and zeaxanthin play a significant role in the development of vision and nervous system (among others, they are important for the development of retina as well as energy metabolism and brain electrical activity). Furthermore, more scientific evidence is emerging on the role of carotenoids in the prevention of disorders affecting preterm infants, who are

  6. Health Effects of Carotenoids during Pregnancy and Lactation

    Directory of Open Access Journals (Sweden)

    Monika A. Zielińska

    2017-08-01

    Full Text Available Adequate nutrition is particularly important during pregnancy since it is needed not only for maintaining the health of the mother, but also determines the course of pregnancy and its outcome, fetus development as well as the child’s health after birth and during the later period of life. Data coming from epidemiological and interventions studies support the observation that carotenoids intake provide positive health effects in adults and the elderly population. These health effects are the result of their antioxidant and anti-inflammatory properties. Recent studies have also demonstrated the significant role of carotenoids during pregnancy and infancy. Some studies indicate a correlation between carotenoid status and lower risk of pregnancy pathologies induced by intensified oxidative stress, but results of these investigations are equivocal. Carotenoids have been well studied in relation to their beneficial role in the prevention of preeclampsia. It is currently hypothesized that carotenoids can play an important role in the prevention of preterm birth and intrauterine growth restriction. Carotenoid status in the newborn depends on the nutritional status of the mother, but little is known about the transfer of carotenoids from the mother to the fetus. Carotenoids are among the few nutrients found in breast milk, in which the levels are determined by the mother’s diet. Nutritional status of the newborn directly depends on its diet. Both mix feeding and artificial feeding may cause depletion of carotenoids since infant formulas contain only trace amounts of these compounds. Carotenoids, particularly lutein and zeaxanthin play a significant role in the development of vision and nervous system (among others, they are important for the development of retina as well as energy metabolism and brain electrical activity. Furthermore, more scientific evidence is emerging on the role of carotenoids in the prevention of disorders affecting preterm

  7. Monoterpene biosynthesis potential of plant subcellular compartments

    NARCIS (Netherlands)

    Dong, L.; Jongedijk, E.J.; Bouwmeester, H.J.; Krol, van der A.R.

    2016-01-01

    Subcellular monoterpene biosynthesis capacity based on local geranyl diphosphate (GDP) availability or locally boosted GDP production was determined for plastids, cytosol and mitochondria. A geraniol synthase (GES) was targeted to plastids, cytosol, or mitochondria. Transient expression in Nicotiana

  8. Solid-phase extraction of carotenoids.

    Science.gov (United States)

    Shen, Yao; Hu, Yumin; Huang, Ke; Yin, Shi'an; Chen, Bo; Yao, Shouzhuo

    2009-07-24

    In this work, solid-phase extraction (SPE) trapping performance of lutein and beta-carotene, which were used as the model molecules of carotenoids, was investigated. The absorption, elution, and enrichment of carotenoids on SPE cartridges with four different sorbents, i.e. C(30), C(18), diol, and silica, were compared respectively with the help of frontal analysis technique. The high retentions of both lutein and beta-carotene were achieved on the C(18) and C(30) cartridges. The diol and silica cartridges only had good retention for lutein. The optimized SPE method for sample pretreatment for the carotenoids analysis was obtained after the investigation of trapping performance. The method was applied successfully to the analysis of biological sample, i.e. serum and human breast milk. The recovery, accuracy, and precision of SPE method comparing with those of traditional liquid-liquid extraction (LLE) method for the sample pretreatment for the analysis of carotenoids owned a number of advantages such as rapid, no chloroform used, and accurate versus LLE.

  9. Carotenoid-binding sites of the major light-harvesting complex II of higher plants

    NARCIS (Netherlands)

    Croce, Roberta; Weiss, Saskia; Bassi, Roberto

    1999-01-01

    Recombinant light-harvesting complex II (LHCII) proteins with modified carotenoid composition have been obtained by in vitro reconstitution of the Lhcb1 protein overexpressed in bacteria. The monomeric protein possesses three xanthophyll-binding sites. The L1 and L2 sites, localized by electron

  10. Effect of abiotic stress under light and dark conditions on carotenoid ...

    African Journals Online (AJOL)

    The aim of this study was to observe the effect of abiotic stress under light and dark conditions on pumpkin calluses carotenoid. Plant elicitors used to create abiotic stress in this study were Polyethylene Glycol 4000 for drought stress, Jasmonic Acid and Salicylic Acid for hormones stress and Murashige and Skoog Salt for ...

  11. Carotenoids and β-carotene in orange fleshed sweet potato: A possible solution to vitamin A deficiency.

    Science.gov (United States)

    Islam, Sheikh Nazrul; Nusrat, Tania; Begum, Parveen; Ahsan, Monira

    2016-05-15

    The present study, in line with a plant-food-based approach to address vitamin A deficiency, reports the analysis of total carotenoids, and trans- and cis-β-carotenes, in different varieties of raw and boiled orange-fleshed sweet potatoes (OFSP). Carotenoids were isolated using acetone-petroleum ether extraction followed by spectrophotometric determination. trans- and cis-β-Carotenes were analyzed by reversed-phase HPLC method using a mobile phase containing acetonitrile:methanol:2-propanol in the ratio of 85:15:33 with 0.01% ammonium acetate. Intra-varietal difference in carotenoids as well as trans- and cis-β-carotenes were noted in both the raw and boiled potatoes. Carotenoid content was found to be higher in the raw potatoes compared to the boiled samples from the same variety. Amongst the OFSP varieties, Kamalasundari (BARI SP-2) was found to contain the most carotenoids in both the raw and boiled samples. β-Carotene was significantly higher in the Kamalsundari and BARI SP-5 varieties. trans-β-Carotene was found to be the major carotenoid in all of the raw potatoes, but boiling was associated with an increase in cis-β-carotene and a decrease in the trans isomer. Kamalsundari and BARI SP-5 orange-fleshed sweet potatoes have the potential to be used as food-based supplements to reduce vitamin A deficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Composition and (in)homogeneity of carotenoid crystals in carrot cells revealed by high resolution Raman imaging

    Science.gov (United States)

    Roman, Maciej; Marzec, Katarzyna M.; Grzebelus, Ewa; Simon, Philipp W.; Baranska, Malgorzata; Baranski, Rafal

    2015-02-01

    Three categories of roots differing in both β/α-carotene ratio and in total carotenoid content were selected based on HPLC measurements: high α- and β-carotene (HαHβ), low α- and high β-carotene (LαHβ), and low α- and low β-carotene (LαLβ). Single carotenoid crystals present in the root cells were directly measured using high resolution Raman imaging technique with 532 nm and 488 nm lasers without compound extraction. Crystals of the HαHβ root had complex composition and consisted of β-carotene accompanied by α-carotene. In the LαHβ and LαLβ roots, measurements using 532 nm laser indicated the presence of β-carotene only, but measurements using 488 nm laser confirmed co-occurrence of xanthophylls, presumably lutein. Thus the results show that independently on carotenoid composition in the root, carotenoid crystals are composed of more than one compound. Individual spectra extracted from Raman maps every 0.2-1.0 μm had similar shapes in the 1500-1550 cm-1 region indicating that different carotenoid molecules were homogeneously distributed in the whole crystal volume. Additionally, amorphous carotenoids were identified and determined as composed of β-carotene molecules but they had a shifted the ν1 band probably due to the effect of bonding of other plant constituents like proteins or lipids.

  13. Seed Carotenoid and Tocochromanol Composition of Wild Fabaceae Species Is Shaped by Phylogeny and Ecological Factors

    Science.gov (United States)

    Fernández-Marín, Beatriz; Míguez, Fátima; Méndez-Fernández, Leire; Agut, Agustí; Becerril, José M.; García-Plazaola, José I.; Kranner, Ilse; Colville, Louise

    2017-01-01

    Carotenoids distribution and function in seeds have been very scarcely studied, notwithstanding their pivotal roles in plants that include photosynthesis and phytohormone synthesis, pigmentation, membrane stabilization and antioxidant activity. Their relationship with tocochromanols, whose critical role in maintaining seed viability has already been evidenced, and with chlorophylls, whose retention in mature seed is thought to have negative effects on storability, remain also unexplored. Here, we aimed at elucidating seed carotenoids relationship with tocochromanols and chlorophylls with regard to phylogenetic and ecological traits and at understanding their changes during germination. The composition and distribution of carotenoids were investigated in seeds of a wide range of wild species across the Fabaceae (the second-most economically important family after the Poaceae). Photosynthetic pigments and tocochromanols were analyzed by HPLC in mature dry seeds of 50 species representative of 5 subfamilies within the Fabaceae (including taxa that represent all continents, biomes and life forms within the family) and at key timepoints during seedling establishment in three species representative of distinct clades. Total-carotenoids content positively correlated with tocopherols in the basal subfamilies Detarioideae, Cercidoideae, and Dialioideae, and with chlorophylls in the Papilionoideae. Papilionoideae lacked tocotrienols and had the highest total-carotenoids, chlorophyll and γ-tocopherol contents. Interestingly, lutein epoxide was present in 72% of the species including several herbs from different subfamilies. Overall, species original from temperate biomes presented higher carotenoids and lower tocochromanols levels than those from tropical biomes. Also shrub species showed higher carotenoids content than herbs and trees. During germination, total content of photosynthetic pigments increased in parallel to changes in relative abundance of carotenoids

  14. An improved method for fast and selective separation of carotenoids by UPLC-MS

    Science.gov (United States)

    Carotenoids are a large class of compounds that are biosynthesized by condensation of isoprene units in plants, fungi, bacteria, and some animals. They are characteristically highly conjugated through double bonds, which lead to many isomers as well susceptibility to oxidation and other chemical mod...

  15. Carotenoids in the Gulf of Gdansk sediments- useful markers of environmental conditions in the past

    Science.gov (United States)

    Krajewska, Magdalena; Szymczak-Żyła, Małgorzata; Kowalewska, Grażyna

    2017-04-01

    Carotenoids are a large group of natural compounds widespread in the aquatic environment. Most of carotenoids in sediments originate from phytoplankton, macroalgae, vascular plants and bacteria. Carotenoids undergo different reactions in water column and after deposition in sediments. Concentration and relative composition of pigments in sediments depend on such factors like primary production, phytoplankton taxonomy, sedimentation and accumulation rate, hydrological and post-depositional conditions. Because some pigments are unstable and can be degraded both by abiotic and biotic factors - in the presence of light, oxygen, herbivores or microorganisms activity, they provide information about conditions in water column and in sediments. They differ in stability and, due to that, carotenoids in marine sediments are indicators, not only of organic matter sources but also of pre- and post-depositional conditions. This work presents a concentration and distribution of selected carotenoids in recent (6 cores 0-20 cm) and deep (1 core, up to 400 cm) sediments of the Gulf of Gdansk- a highly eutrophic area of high primary production and high sedimentation rate. The sediments were collected during two cruises and analysed in framework of CLISED ('Climate Change Impact on Ecosystem Health- Marine Sediment Indicators') Polish- Norwegian research Project, grant no. 196128. Just after collection, the samples were frozen and kept in such a state until analysis in land laboratory. There, after extraction, carotenoids were analysed using high performance liquid chromatography (HPLC-DAD). Sediment age has been defined using C-14 dating. Sediments contained parent carotenoids, markers of the main phytoplankton groups occurring in the Baltic, e.g. diatoms, green algae and cyanobacteria. B-carotene in sediments is a better, averaged, marker of primary production than chlorophyll- a and similarly stable one as sum of chloropigments-a. Presentation will focus on cyanobacteria and their

  16. An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Derong Lin

    2016-10-01

    Full Text Available In this paper, the biosynthesis process of phenolic compounds in plants is summarized, which includes the shikimate, pentose phosphate and phenylpropanoid pathways. Plant phenolic compounds can act as antioxidants, structural polymers (lignin, attractants (flavonoids and carotenoids, UV screens (flavonoids, signal compounds (salicylic acid and flavonoids and defense response chemicals (tannins and phytoalexins. From a human physiological standpoint, phenolic compounds are vital in defense responses, such as anti-aging, anti-inflammatory, antioxidant and anti-proliferative activities. Therefore, it is beneficial to eat such plant foods that have a high antioxidant compound content, which will cut down the incidence of certain chronic diseases, for instance diabetes, cancers and cardiovascular diseases, through the management of oxidative stress. Furthermore, berries and other fruits with low-amylase and high-glucosidase inhibitory activities could be regarded as candidate food items in the control of the early stages of hyperglycemia associated with type 2 diabetes.

  17. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis

    KAUST Repository

    Zhang, Yanxia; van Dijk, Aalt D J; Scaffidi, Adrian; Flematti, Gavin R.; Hofmann, Manuel; Charnikhova, Tatsiana; Verstappen, Francel; Hepworth, Jo; van der Krol, Sander; Leyser, Ottoline; Smith, Steven M.; Zwanenburg, Binne; Al-Babili, Salim; Ruyter-Spira, Carolien; Bouwmeester, Harro J.

    2014-01-01

    Strigolactones (SLs) are a class of phytohormones and rhizosphere signaling compounds with high structural diversity. Three enzymes, carotenoid isomerase DWARF27 and carotenoid cleavage dioxygenases CCD7 and CCD8, were previously shown to convert all-trans-β-carotene to carlactone (CL), the SL precursor. However, how CL is metabolized to SLs has remained elusive. Here, by reconstituting the SL biosynthetic pathway in Nicotiana benthamiana, we show that a rice homolog of Arabidopsis More Axillary Growth 1 (MAX1), encodes a cytochrome P450 CYP711 subfamily member that acts as a CL oxidase to stereoselectively convert CL into ent-2'-epi-5-deoxystrigol (B-C lactone ring formation), the presumed precursor of rice SLs. A protein encoded by a second rice MAX1 homolog then catalyzes the conversion of ent-2'-epi-5-deoxystrigol to orobanchol. We therefore report that two members of CYP711 enzymes can catalyze two distinct steps in SL biosynthesis, identifying the first enzymes involved in B-C ring closure and a subsequent structural diversification step of SLs.

  18. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis

    KAUST Repository

    Zhang, Yanxia

    2014-10-26

    Strigolactones (SLs) are a class of phytohormones and rhizosphere signaling compounds with high structural diversity. Three enzymes, carotenoid isomerase DWARF27 and carotenoid cleavage dioxygenases CCD7 and CCD8, were previously shown to convert all-trans-β-carotene to carlactone (CL), the SL precursor. However, how CL is metabolized to SLs has remained elusive. Here, by reconstituting the SL biosynthetic pathway in Nicotiana benthamiana, we show that a rice homolog of Arabidopsis More Axillary Growth 1 (MAX1), encodes a cytochrome P450 CYP711 subfamily member that acts as a CL oxidase to stereoselectively convert CL into ent-2\\'-epi-5-deoxystrigol (B-C lactone ring formation), the presumed precursor of rice SLs. A protein encoded by a second rice MAX1 homolog then catalyzes the conversion of ent-2\\'-epi-5-deoxystrigol to orobanchol. We therefore report that two members of CYP711 enzymes can catalyze two distinct steps in SL biosynthesis, identifying the first enzymes involved in B-C ring closure and a subsequent structural diversification step of SLs.

  19. Screening and Selection of High Carotenoid Producing in Vitro Tomato Cell Culture Lines for [13C]-Carotenoid Production

    OpenAIRE

    Engelmann, Nancy J.; Campbell, Jessica K.; Rogers, Randy B.; Rupassara, S. Indumathie; Garlick, Peter J.; Lila, Mary Ann; Erdman, John W.

    2010-01-01

    Isotopically labeled tomato carotenoids, phytoene, phytofluene, and lycopene, are needed for mammalian bioavailability and metabolism research but are currently commercially unavailable. The goals of this work were to establish and screen multiple in vitro tomato cell lines for carotenoid production, test the best producers with or without the bleaching herbicides, norflurazon and 2-(4-chlorophenyl-thio)-triethylamine (CPTA), and to use the greatest carotenoid accumulator for in vitro 13C-lab...

  20. Photolysis of carotenoids in chloroform: enhanced yields of carotenoid radical cations in the presence of a tryptophan ester

    International Nuclear Information System (INIS)

    El-Agamey, Ali; Burke, Marc; Edge, Ruth; Land, Edward J.; McGarvey, David J.; Truscott, T. George

    2005-01-01

    The presence of an acetyl tryptophan ester gives rise to enhanced yields of carotenoid radical cations in chloroform following 355 nm laser excitation of the carotenoid, even though the tryptophan does not absorb at this wavelength. The increase is attributed to positive charge transfer from semi-oxidized tryptophan itself generated by light absorbed by the carotenoid. The mechanism of these radical processes has been elucidated by pulse radiolysis studies

  1. Changes in the state of carotenoid pigments during greening of etiolated barley seedlings

    International Nuclear Information System (INIS)

    Dilova, S.

    1974-01-01

    Changes in the metabolism of carotenoid pigments during greening of etiolated barley seedlings have been studied. The experiments were carried out with six-day-old etiolated plants, having a well-developed first leaf, grown on 1/2 Knop nutrient solution. The plants were illuminated with light, 10 000 lux intensity. Samples for analysis were taken at nil, 2, 4, 6, 8 and 12 hours. The extraction of the pigments was effected with the aid of the fractionation method according to Chernomorski and Sapozhnikov. The specific radioactivity of the individual carotenoid pigments was measured. To this end the plants were placed on a solution of sodium acetate ( 14 C) for 18 hours before illumination. The radiochemical purification of the pigments was carried out on an aluminium oxide column, after their chromatographic separation on paper. The results obtained from the experiments show that the illumination of the plants leads to a 2.4-fold increase in the total amount of carotenoids. The amount of the carotene increases approximately about 8 times over a 24-hour period and that of the xanthophylles - almost two times. A rhythm is observed in the formation of lutein and violaxanthin, which is discussed in connection with the participation of these pigments in the formation and the activity of the photosynthetic apparatus. The data on the changes in the state of the individual pigments indicate differences in accordance with their nature. The distinct manifestation of the heterogeneity of the carotene is observed in the case where the photosynthesis apparatus is fully formed. Obviously, the manifestation of the heterogeneity of that pigment is related to the formation of chloroplast and changes in the environment. Data on changes in the specific radioactivity of the easily-extractable fractions of the lutein and the violaxanthin show that the newly-synthesized molecules are more easily extractable. (author)

  2. The fate of carotenoids in sediments: An overview

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Koopmans, M.P.

    1997-01-01

    Despite carotenoids being abundant natural products, there are only scattered literature reports of carotenoid derivatives (mainly in the form of their 'perhydro' derivatives) in ancient sediments and petroleum. This was thought to be due to the sensitivity of carotenoids toward oxygen and their

  3. Combinatorial biosynthesis of medicinal plant secondary metabolites

    NARCIS (Netherlands)

    Julsing, Mattijs K.; Koulman, Albert; Woerdenbag, Herman J.; Quax, Wim J.; Kayser, Oliver

    2006-01-01

    Combinatorial biosynthesis is a new tool in the generation of novel natural products and for the production of rare and expensive natural products. The basic concept is combining metabolic pathways in different organisms on a genetic level. As a consequence heterologous organisms provide precursors

  4. Multinational study of major breast milk carotenoids of healthy mothers.

    Science.gov (United States)

    Canfield, Louise M; Clandinin, M Thomas; Davies, David P; Fernandez, Maria C; Jackson, Joan; Hawkes, Jo; Goldman, William J; Pramuk, Kathryn; Reyes, Horacio; Sablan, Benjamin; Sonobe, Tomoyoshi; Bo, Xu

    2003-06-01

    Carotenoids in serum vary between countries and within populations with evidence suggesting a qualitative relationship to diet. Breast milk carotenoids furnish a source of vitamin A and potentially provide immunoprotection and other health benefits for infants. There have been numerous studies of milk carotenoid concentrations in undernourished populations; however, carotenoid concentrations have not previously been compared in populations of well-nourished mothers. To compare concentrations of five major carotenoid groups: alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein/zeaxanthin, and lycopene in breast milk of healthy women from Australia, Canada, Chile, China, Japan, Mexico, the Philippines, the United Kingdom, and the United States, and to qualitatively compare patterns of dietary intake with milk carotenoid concentrations. Breast milk collected from healthy lactating women was analyzed for concentrations of five carotenoids and retinol and quantitated relative to total milk lipid. All determinations were performed in a single research laboratory using standardized methodology. Mothers consumed their usual diets and provided a single 24-h dietary recall. Breast milk carotenoid concentrations varied greatly among countries, with the greatest differences in beta-cryptoxanthin (approximately 9-fold) and the least in alpha-carotene and lycopene (approximately 3-fold). Breast milk retinol concentrations varied approximately 2-fold across countries. The provitamin A carotenoids alpha-carotene, beta-carotene, and beta-cryptoxanthin as a group accounted for > 50 % of the carotenoids measured. Total breast milk carotenoids were highest in Japanese and lowest in Philippine mothers. Breast milk beta-carotene concentrations were highest in Chile and lowest in the Philippines. Patterns of breast milk carotenoids were unique to each country and qualitative patterns reflected the dietary carotenoid supply.

  5. Effects of salinity stress on chlorophyll and carotenoid contents and stomata size of grafted and ungrafted galia c8 melon cultivar

    International Nuclear Information System (INIS)

    Yarsi, G.; Sivaci, A.; Dasgan, H.Y.; Altuntas, O.

    2017-01-01

    Salinity is known as the most important abiotic stress that decreases crop production and plant growth, and changes the anatomy and morphology of plants. In this study, the growth rate of grafted and ungrafted melon plants were studied under salinity stress. Maximus F1, Shintoza F-90 F1 and Nun 9075 F1 (Cucurbita maxima x Cucurbita moschata) were used as a rootstock and Galia C8 melon cultivar was used as a scion. In this study, the stomata size and chlorophyll and carotenoid contents were investigated. According to the results, chlorophyll and carotenoid contents and stomata length and width of upper and lower surface of leaf were generally reduced under salinity stress. (author)

  6. Heterologous expression, purification, crystallization and preliminary X-ray analysis of raucaffricine glucosidase, a plant enzyme specifically involved in Rauvolfia alkaloid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, Martin [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Panjikar, Santosh [European Molecular Biology Laboratory Hamburg, Outstation Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Barleben, Leif [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Stöckigt, Joachim [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); College of Pharmaceutical Sciences, Zhejiang University, 353 Yan An Road, 310031 Hangzhou (China)

    2006-03-01

    Raucaffricine glucosidase, an enzyme involved in the biosynthesis of monoterpenoid indole alkaloids in the plant Rauvolfia serpentina, was crystallized by the hanging-drop vapour-diffusion method using PEG4000 as precipitant. The crystals diffract to 2.3 Å resolution and belong to space group I222. Raucaffricine glucosidase (RG) is an enzyme that is specifically involved in the biosynthesis of indole alkaloids from the plant Rauvolfia serpentina. After heterologous expression in Escherichia coli cells, crystals of RG were obtained by the hanging-drop vapour-diffusion technique at 293 K with 0.3 M ammonium sulfate, 0.1 M sodium acetate pH 4.6 buffer and 11% PEG 4000 as precipitant. Crystals belong to space group I222 and diffract to 2.30 Å, with unit-cell parameters a = 102.8, b = 127.3, c = 215.8 Å.

  7. Heterologous expression, purification, crystallization and preliminary X-ray analysis of raucaffricine glucosidase, a plant enzyme specifically involved in Rauvolfia alkaloid biosynthesis

    International Nuclear Information System (INIS)

    Ruppert, Martin; Panjikar, Santosh; Barleben, Leif; Stöckigt, Joachim

    2006-01-01

    Raucaffricine glucosidase, an enzyme involved in the biosynthesis of monoterpenoid indole alkaloids in the plant Rauvolfia serpentina, was crystallized by the hanging-drop vapour-diffusion method using PEG4000 as precipitant. The crystals diffract to 2.3 Å resolution and belong to space group I222. Raucaffricine glucosidase (RG) is an enzyme that is specifically involved in the biosynthesis of indole alkaloids from the plant Rauvolfia serpentina. After heterologous expression in Escherichia coli cells, crystals of RG were obtained by the hanging-drop vapour-diffusion technique at 293 K with 0.3 M ammonium sulfate, 0.1 M sodium acetate pH 4.6 buffer and 11% PEG 4000 as precipitant. Crystals belong to space group I222 and diffract to 2.30 Å, with unit-cell parameters a = 102.8, b = 127.3, c = 215.8 Å

  8. Two tomato GDP-D-mannose epimerase isoforms involved in ascorbate biosynthesis play specific roles in cell wall biosynthesis and development.

    Science.gov (United States)

    Mounet-Gilbert, Louise; Dumont, Marie; Ferrand, Carine; Bournonville, Céline; Monier, Antoine; Jorly, Joana; Lemaire-Chamley, Martine; Mori, Kentaro; Atienza, Isabelle; Hernould, Michel; Stevens, Rebecca; Lehner, Arnaud; Mollet, Jean Claude; Rothan, Christophe; Lerouge, Patrice; Baldet, Pierre

    2016-08-01

    GDP-D-mannose epimerase (GME, EC 5.1.3.18) converts GDP-D-mannose to GDP-L-galactose, and is considered to be a central enzyme connecting the major ascorbate biosynthesis pathway to primary cell wall metabolism in higher plants. Our previous work demonstrated that GME is crucial for both ascorbate and cell wall biosynthesis in tomato. The aim of the present study was to investigate the respective role in ascorbate and cell wall biosynthesis of the two SlGME genes present in tomato by targeting each of them through an RNAi-silencing approach. Taken individually SlGME1 and SlGME2 allowed normal ascorbate accumulation in the leaf and fruits, thus suggesting the same function regarding ascorbate. However, SlGME1 and SlGME2 were shown to play distinct roles in cell wall biosynthesis, depending on the tissue considered. The RNAi-SlGME1 plants harbored small and poorly seeded fruits resulting from alterations of pollen development and of pollination process. In contrast, the RNAi-SlGME2 plants exhibited vegetative growth delay while fruits remained unaffected. Analysis of SlGME1- and SlGME2-silenced seeds and seedlings further showed that the dimerization state of pectin rhamnogalacturonan-II (RG-II) was altered only in the RNAi-SlGME2 lines. Taken together with the preferential expression of each SlGME gene in different tomato tissues, these results suggest sub-functionalization of SlGME1 and SlGME2 and their specialization for cell wall biosynthesis in specific tomato tissues. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Involvement of a lipoxygenase-like enzyme in abscisic Acid biosynthesis.

    Science.gov (United States)

    Creelman, R A; Bell, E; Mullet, J E

    1992-07-01

    Several lines of evidence indicate that abscisic acid (ABA) is derived from 9'-cis-neoxanthin or 9'-cis-violaxanthin with xanthoxin as an intermediate. (18)O-labeling experiments show incorporation primarily into the side chain carboxyl group of ABA, suggesting that oxidative cleavage occurs at the 11, 12 (11', 12') double bond of xanthophylls. Carbon monoxide, a strong inhibitor of heme-containing P-450 monooxygenases, did not inhibit ABA accumulation, suggesting that the oxygenase catalyzing the carotenoid cleavage step did not contain heme. This observation, plus the ability of lipoxygenase to make xanthoxin from violaxanthin, suggested that a lipoxygenase-like enzyme is involved in ABA biosynthesis. To test this idea, the ability of several soybean (Glycine max L.) lipoxygenase inhibitors (5,8,11-eicosatriynoic acid, 5,8,11,14-eicosatetraynoic acid, nordihydroguaiaretic acid, and naproxen) to inhibit stress-induced ABA accumulation in soybean cell culture and soybean seedlings was determined. All lipoxygenase inhibitors significantly inhibited ABA accumulation in response to stress. These results suggest that the in vivo oxidative cleavage reaction involved in ABA biosynthesis requires activity of a nonheme oxygenase having lipoxygenase-like properties.

  10. Composição de carotenoides em canistel (Pouteria campechiana (Kunth Baehni Carotenoids composition of canistel (Pouteria campechiana (Kunth Baehni

    Directory of Open Access Journals (Sweden)

    Tânia da Silveira Agostini Costa

    2010-09-01

    Full Text Available O canistel (P. campechiana é uma fruta nativa da América Central e México, ainda pouco conhecida no Brasil. Apresenta uma polpa amarelo-alaranjada, rica em carotenoides, que tem despertado interesse como potencial de vitamina A. O objetivo deste trabalho foi determinar o teor de carotenoides e o valor provitamina A na polpa de canistel, assim como os teores de umidade e lipídeos na polpa e na semente. Os carotenoides foram separados por cromatografia em coluna aberta. O conteúdo de carotenoides totais foi de 226 ± 4 μg/g. Violaxantina e neoxantina foram os carotenóides predominantes, somando 196 ± 5 μg/g. seguidos por zetacaroteno, betacaroteno 5,6-epóxido, betacaroteno e fitoflueno. A semente foi a parte do fruto que apresentou maior teor de lipídeos totais, com 4,6 ± 0,2 %, e a polpa, 0,61 ± 0,03 %. Os resultados indicam que o canistel apresenta teores de carotenóides totais muito elevados e pode ser considerado uma boa fonte de provitamina A (59 ± 6 RAE/100g, se comparado com outras frutas normalmente consumidas. No entanto, os principais carotenoides encontrados em sua polpa são destituídos de atividade provitamina A.Canistel (Pouteria campechiana is a native fruit from Central America and Mexico. This fruit still not known in Brazil, presents an orange-yellow pulp rich in carotenoids, which has attracted interest as a potential source of vitamin A. The purpose of this study was to determine the carotenoids content and pro-vitamin A values in the pulp of canistel, as well as the percentage of moisture and lipids in the pulp and seeds. Carotenoids were separated by open column chromatography. The content of total carotenoids was 226 ± 4 μg/g. Violaxantin and neoxantin were the predominant carotenoids with 196 ± 5 μg/g followed by zeta-carotene, beta-carotene 5,6-epoxide, beta-carotene and phytofluene. The seeds presented higher levels of total lipids with 4.6 ± 0.2 %, while pulp had 0.61 ± 0.03 % of total lipid. These

  11. A recruiting protein of geranylgeranyl diphosphate synthase controls metabolic flux toward chlorophyll biosynthesis in rice.

    Science.gov (United States)

    Zhou, Fei; Wang, Cheng-Yuan; Gutensohn, Michael; Jiang, Ling; Zhang, Peng; Zhang, Dabing; Dudareva, Natalia; Lu, Shan

    2017-06-27

    In plants, geranylgeranyl diphosphate (GGPP) is produced by plastidic GGPP synthase (GGPPS) and serves as a precursor for vital metabolic branches, including chlorophyll, carotenoid, and gibberellin biosynthesis. However, molecular mechanisms regulating GGPP allocation among these biosynthetic pathways localized in the same subcellular compartment are largely unknown. We found that rice contains only one functionally active GGPPS, OsGGPPS1, in chloroplasts. A functionally active homodimeric enzyme composed of two OsGGPPS1 subunits is located in the stroma. In thylakoid membranes, however, the GGPPS activity resides in a heterodimeric enzyme composed of one OsGGPPS1 subunit and GGPPS recruiting protein (OsGRP). OsGRP is structurally most similar to members of the geranyl diphosphate synthase small subunit type II subfamily. In contrast to members of this subfamily, OsGRP enhances OsGGPPS1 catalytic efficiency and specificity of GGPP production on interaction with OsGGPPS1. Structural biology and protein interaction analyses demonstrate that affinity between OsGRP and OsGGPPS1 is stronger than between two OsGGPPS1 molecules in homodimers. OsGRP determines OsGGPPS1 suborganellar localization and directs it to a large protein complex in thylakoid membranes, consisting of geranylgeranyl reductase (OsGGR), light-harvesting-like protein 3 (OsLIL3), protochlorophyllide oxidoreductase (OsPORB), and chlorophyll synthase (OsCHLG). Taken together, genetic and biochemical analyses suggest OsGRP functions in recruiting OsGGPPS1 from the stroma toward thylakoid membranes, thus providing a mechanism to control GGPP flux toward chlorophyll biosynthesis.

  12. Enhancing Nutraceutical Bioavailability from Raw and Cooked Vegetables Using Excipient Emulsions: Influence of Lipid Type on Carotenoid Bioaccessibility from Carrots.

    Science.gov (United States)

    Zhang, Ruojie; Zhang, Zipei; Zou, Liqiang; Xiao, Hang; Zhang, Guodong; Decker, Eric Andrew; McClements, David Julian

    2015-12-09

    The influence of the nature of the lipid phase in excipient emulsions on the bioaccessibility and transformation of carotenoid from carrots was investigated using a gastrointestinal tract (GIT) model. Excipient emulsions were fabricated using whey protein as an emulsifier and medium-chain triglycerides (MCT), fish oil, or corn oil as the oil phase. Changes in particle size, charge, and microstructure were measured as the carrot-emulsion mixtures were passed through simulated mouth, stomach, and small intestine regions. Carotenoid bioaccessibility depended on the type of lipids used to form the excipient emulsions (corn oil > fish oil ≫ MCT), which was attributed to differences in the solubilization capacity of mixed micelles formed from different lipid digestion products. The transformation of carotenoids was greater for fish oil and corn oil than for MCT, which may have been due to greater oxidation or isomerization. The bioaccessibility of the carotenoids was higher from boiled than raw carrots, which was attributed to greater disruption of the plant tissue facilitating carotenoid release. In conclusion, excipient emulsions are highly effective at increasing carotenoid bioaccessibility from carrots, but lipid type must be optimized to ensure high efficacy.

  13. Electron paramagnetic resonance detection of carotenoid triplet states

    International Nuclear Information System (INIS)

    Frank, H.A.; Bolt, J.D.; deCosta, S.M.; Sauer, K.

    1980-01-01

    Triplet states of carotenoids have been detected by X-band electron paramagnetic resonance (EPR) and are reported here for the first time. The systems in which carotenoid triplets are observed include cells of photosynthetic bacteria, isolated bacteriochlorophyll-protein complexes, and detergent micelles which contain β-carotene. It is well known that if electron transfer is blocked following the initial acceptor in the bacterial photochemical reaction center, back reaction of the primary radical pair produces a bacteriochlorophyll dimer triplet. Previous optical studies have shown that in reaction centers containing carotenoids the bacteriochlorophyll dimer triplet sensitizes the carotenoid triplet. We have observed this carotenoid triplet state by EPR in reaction centers of Rhodopseudomonas sphaeroides, strain 2.4.1 (wild type), which contain the carotenoid spheroidene. The zero-field splitting parameters of the triplet spectrum are /D/ = 0.0290 +- 0.0005 cm -1 and /E/ = 0.0044 +-0.0006 cm -1 , in contrast with the parameters of the bacteriochlorophyll dimer triplet, which are /D/ = 0.0189 +- 0.0004 cm -1 and /E/ = 0.0032 +- 0.004 cm -1 . Bacteriochlorophyll in a light harvesting protein complex from Rps. sphaeroides, wild type, also sensitizes carotenoid triplet formation. In whole cells the EPR spectra vary with temperature between 100 and 10 K. Carotenoid triplets also have been observed by EPR in whole cells of Rps. sphaeroides and cells of Rhodospirillum rubrum which contain the carotenoid spirilloxanthin. Attempts to observe the triplet state EPR spectrum of β-carotene in numerous organic solvents failed. However, in nonionic detergent micelles and in phospholipid bilayer vesicles β-carotene gives a triplet state spectrum with /D/ = 0.0333 +- 0.0010 cm -1 and /E/ = 0.0037 +- 0.0010 cm -1 . 6 figures, 1 table

  14. Isolation of 14C labelled amino acids by biosynthesis in maize plants (Zea mais L.)

    International Nuclear Information System (INIS)

    Carreras, N.; Mazon, M.P.

    1983-01-01

    A method of obtaining 14 C labelled amino acids by biosynthesis in maize plants which had assimilated 14CO 2 , has been assayed. The plants were labelled for 60 minutes with 14 C O2 produced from Ba 14 C O3 (specific activity of 148 KBq/μmol). An extract of the soluble compounds was obtained with 80% ethanol and the amino acids were separated from the rest of the soluble compounds by ion exchange chromatography on column of Dowex 50-X8 resin. Finally, seventeen amino acids were isolated and identified from the purified extract. The acid amino acids were separated in anionic column (Dowex 1-X8) and the neutral and basic amino acids in cationic column (Dowex 50-X4). (Author) 56 refs

  15. Isolation of carbon 14 labelled amino acids by biosynthesis in maize plants (zea mais L.)

    International Nuclear Information System (INIS)

    Carreras, N.; Mazon, M.P.

    1983-01-01

    A method of obtaining 14 C labelled amino acids by biosynthesis in maize plants which had assimilated 14 CO 2 , has been assayed. The plants were labelled for 60 minutes with 14 CO 2 produced from Ba 14 CO 3 (specific activity of 148 KBq/μmol). An extract of the soluble compounds was obtained with 80% ethanol and the amino acids were separated from the rest of the soluble compounds by ion exchange chromatography on column of Dowex 50-X8 resin. Finally, seventeen amino acids were isolated and identified from the purified extract. The acid amino acids were separated in anionic column (Dowex 1-X8) and the neutral and basic amino acids in cationic columns (Dowex 50-X4). (author)

  16. Carotenoids and retinoids: molecular aspects and health issues

    National Research Council Canada - National Science Library

    Packer, Lester

    2005-01-01

    ... are byproducts of metabolism in humans. Indeed, the presence of carotenoids in the diet and their role in human health has become a subject of unprecedented interest. Some carotenoids are called provitamin A compounds because they are precursors of retinol and retinoic acid. The type of carotenoids found in human plasma depends on the...

  17. How carotenoids protect bacterial photosynthesis.

    OpenAIRE

    Cogdell, R J; Howard, T D; Bittl, R; Schlodder, E; Geisenheimer, I; Lubitz, W

    2000-01-01

    The essential function of carotenoids in photosynthesis is to act as photoprotective agents, preventing chlorophylls and bacteriochlorophylls from sensitizing harmful photodestructive reactions in the presence of oxygen. Based upon recent structural studies on reaction centres and antenna complexes from purple photosynthetic bacteria, the detailed organization of the carotenoids is described. Then with specific reference to bacterial antenna complexes the details of the photoprotective role, ...

  18. Development of a rapid, simple assay of plasma total carotenoids

    Science.gov (United States)

    2012-01-01

    Background Plasma total carotenoids can be used as an indicator of risk of chronic disease. Laboratory analysis of individual carotenoids by high performance liquid chromatography (HPLC) is time consuming, expensive, and not amenable to use beyond a research laboratory. The aim of this research is to establish a rapid, simple, and inexpensive spectrophotometric assay of plasma total carotenoids that has a very strong correlation with HPLC carotenoid profile analysis. Results Plasma total carotenoids from 29 volunteers ranged in concentration from 1.2 to 7.4 μM, as analyzed by HPLC. A linear correlation was found between the absorbance at 448 nm of an alcohol / heptane extract of the plasma and plasma total carotenoids analyzed by HPLC, with a Pearson correlation coefficient of 0.989. The average coefficient of variation for the spectrophotometric assay was 6.5% for the plasma samples. The limit of detection was about 0.3 μM and was linear up to about 34 μM without dilution. Correlations between the integrals of the absorption spectra in the range of carotenoid absorption and total plasma carotenoid concentration gave similar results to the absorbance correlation. Spectrophotometric assay results also agreed with the calculated expected absorbance based on published extinction coefficients for the individual carotenoids, with a Pearson correlation coefficient of 0.988. Conclusion The spectrophotometric assay of total carotenoids strongly correlated with HPLC analysis of carotenoids of the same plasma samples and expected absorbance values based on extinction coefficients. This rapid, simple, inexpensive assay, when coupled with the carotenoid health index, may be useful for nutrition intervention studies, population cohort studies, and public health interventions. PMID:23006902

  19. Plant oxidosqualene metabolism: cycloartenol synthase-dependent sterol biosynthesis in Nicotiana benthamiana.

    Science.gov (United States)

    Gas-Pascual, Elisabet; Berna, Anne; Bach, Thomas J; Schaller, Hubert

    2014-01-01

    The plant sterol pathway exhibits a major biosynthetic difference as compared with that of metazoans. The committed sterol precursor is the pentacyclic cycloartenol (9β,19-cyclolanost-24-en-3β-ol) and not lanosterol (lanosta-8,24-dien-3β-ol), as it was shown in the late sixties. However, plant genome mining over the last years revealed the general presence of lanosterol synthases encoding sequences (LAS1) in the oxidosqualene cyclase repertoire, in addition to cycloartenol synthases (CAS1) and to non-steroidal triterpene synthases that contribute to the metabolic diversity of C30H50O compounds on earth. Furthermore, plant LAS1 proteins have been unambiguously identified by peptidic signatures and by their capacity to complement the yeast lanosterol synthase deficiency. A dual pathway for the synthesis of sterols through lanosterol and cycloartenol was reported in the model Arabidopsis thaliana, though the contribution of a lanosterol pathway to the production of 24-alkyl-Δ(5)-sterols was quite marginal (Ohyama et al. (2009) PNAS 106, 725). To investigate further the physiological relevance of CAS1 and LAS1 genes in plants, we have silenced their expression in Nicotiana benthamiana. We used virus induced gene silencing (VIGS) based on gene specific sequences from a Nicotiana tabacum CAS1 or derived from the solgenomics initiative (http://solgenomics.net/) to challenge the respective roles of CAS1 and LAS1. In this report, we show a CAS1-specific functional sterol pathway in engineered yeast, and a strict dependence on CAS1 of tobacco sterol biosynthesis.

  20. Carotenoids from Marine Organisms: Biological Functions and Industrial Applications

    Directory of Open Access Journals (Sweden)

    Christian Galasso

    2017-11-01

    Full Text Available As is the case for terrestrial organisms, carotenoids represent the most common group of pigments in marine environments. They are generally biosynthesized by all autotrophic marine organisms, such as bacteria and archaea, algae and fungi. Some heterotrophic organisms also contain carotenoids probably accumulated from food or partly modified through metabolic reactions. These natural pigments are divided into two chemical classes: carotenes (such as lycopene and α- and β-carotene that are composed of hydrogen and carbon; xanthophylls (such as astaxanthin, fucoxanthin and lutein, which are constituted by hydrogen, carbon and oxygen. Carotenoids, as antioxidant compounds, assume a key role in the protection of cells. In fact, quenching of singlet oxygen, light capture and photosynthesis protection are the most relevant biological functions of carotenoids. The present review aims at describing (i the biological functions of carotenoids and their benefits for human health, (ii the most common carotenoids from marine organisms and (iii carotenoids having large success in pharmaceutical, nutraceutical and cosmeceutical industries, highlighting the scientific progress in marine species cultivation for natural pigments production.

  1. Carotenoids and colon cancer.

    Science.gov (United States)

    Slattery, M L; Benson, J; Curtin, K; Ma, K N; Schaeffer, D; Potter, J D

    2000-02-01

    Carotenoids have numerous biological properties that may underpin a role for them as chemopreventive agents. However, except for beta-carotene, little is known about how dietary carotenoids are associated with common cancers, including colon cancer. The objective of this study was to evaluate associations between dietary alpha-carotene, beta-carotene, lycopene, lutein, zeaxanthin, and beta-cryptoxanthin and the risk of colon cancer. Data were collected from 1993 case subjects with first primary incident adenocarcinoma of the colon and from 2410 population-based control subjects. Dietary data were collected from a detailed diet-history questionnaire and nutrient values for dietary carotenoids were obtained from the US Department of Agriculture-Nutrition Coordinating Center carotenoid database (1998 updated version). Lutein was inversely associated with colon cancer in both men and women [odds ratio (OR) for upper quintile of intake relative to lowest quintile of intake: 0.83; 95% CI: 0.66, 1.04; P = 0.04 for linear trend]. The greatest inverse association was observed among subjects in whom colon cancer was diagnosed when they were young (OR: 0.66; 95% CI: 0.48, 0.92; P = 0.02 for linear trend) and among those with tumors located in the proximal segment of the colon (OR: 0.65; 95% CI: 0.51, 0.91; P lettuce, tomatoes, oranges and orange juice, carrots, celery, and greens. These data suggest that incorporating these foods into the diet may help reduce the risk of developing colon cancer.

  2. Improved extraction procedure for carotenoids from human milk.

    Science.gov (United States)

    Schweigert, F J; Hurtienne, A; Bathe, K

    2000-05-01

    An improved method for the extraction of the major carotenoids from human milk is described. Carotenoids were extracted from milk first with ethanol and n-hexane. Then, polar xanthophylls were extracted from n-hexane into ethanol/water. The remaining n-hexane was evaporated, the residue combined with the ethanolic milk fraction and the mixture briefly saponified. Carotenoids were extracted from the hydrolysate with n-hexane, combined with the polar xanthophylls from the non-saponified ethanol/water-extract and separated by HPLC. Using this method we were able to significantly improve the recovery of xanthophylls such as lutein and zeaxanthin from human milk. The recovery rate of all carotenoids was > 90%. This method might not only be of value for milk but should be especially useful in the extraction of carotenoids from human tissues such as the adipose tissue.

  3. Heterogeneity of carotenoid content and composition in LH2 of the purple sulphur bacterium Allochromatium minutissimum grown under carotenoid-biosynthesis inhibition.

    Science.gov (United States)

    Makhneva, Zoya; Bolshakov, Maksim; Moskalenko, Andrey

    2008-01-01

    The effects brought about by growing Allochromatium (Alc.) minutissimum in the presence of different concentrations of the carotenoid (Car) biosynthetic inhibitor diphenylamine (DPA) have been investigated. A decrease of Car content (from approximately 70% to >5%) in the membranes was accompanied by an increase of the percentage of (immature) Cars with reduced numbers of conjugated C=C bonds (from neurosporene to phytoene). Based on the obtained results and the analysis of literature data, the conclusion is reached that accumulation of phytoene during inhibition did not occur. Surprisingly, DPA inhibited phytoene synthase instead of phytoene desaturase as generally assumed. The distribution of Cars in peripheral antenna (LH2) complexes and their effect on the stability of LH2 has been investigated using absorption spectroscopy and HPLC analysis. Heterogeneity of Car composition and contents in the LH2 pool is revealed. The Car contents in LH2 varied widely from control levels to complete absence. According to common view, the assembly of LH2 occurs only in the presence of Cars. Here, we show that the LH2 can be assembled without any Cars. The presence of Cars, however, is important for structural stability of LH2 complexes.

  4. Arogenate Dehydratase Isoforms Differentially Regulate Anthocyanin Biosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Chen, Qingbo; Man, Cong; Li, Danning; Tan, Huijuan; Xie, Ye; Huang, Jirong

    2016-12-05

    Anthocyanins, a group of L-phenylalanine (Phe)-derived flavonoids, have been demonstrated to play important roles in plant stress resistance and interactions between plants and insects. Although the anthocyanin biosynthetic pathway and its regulatory mechanisms have been extensively studied, it remains unclear whether the level of Phe supply affects anthocyanin biosynthesis. Here, we investigated the roles of arogenate dehydratases (ADTs), the key enzymes that catalyze the conversion of arogenate into Phe, in sucrose-induced anthocyanin biosynthesis in Arabidopsis. Genetic analysis showed that all six ADT isoforms function redundantly in anthocyanin biosynthesis but have differential contributions. ADT2 contributes the most to anthocyanin accumulation, followed by ADT1 and ADT3, and ADT4-ADT6. We found that anthocyanin content is positively correlated with the levels of Phe and sucrose-induced ADT transcripts in seedlings. Consistently, addition of Phe to the medium could dramatically increase anthocyanin content in the wild-type plants and rescue the phenotype of the adt1 adt3 double mutant regarding the anthocyanin accumulation. Moreover, transgenic plants overexpressing ADT4, which appears to be less sensitive to Phe than overexpression of ADT2, hyperaccumulate Phe and produce elevated level of anthocyanins. Taken together, our results suggest that the level of Phe is an important regulatory factor for sustaining anthocyanin biosynthesis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  5. Comparison of Effect of Brassinosteroid and Gibberellin Biosynthesis Inhibitors on Growth of Rice Seedlings

    OpenAIRE

    Matusmoto, Tadashi; Yamada, Kazuhiro; Yoshizawa, Yuko; Oh, Keimei

    2016-01-01

    Brassinosteroid (BR) and gibberellin (GA) are two predominant plant hormones that regulate plant cell elongation. Mutants disrupt the biosynthesis of these hormones and display different degrees of dwarf phenotypes in rice. Although the role of each plant hormone in promoting the longitudinal growth of plants has been extensively studied using genetic methods, their relationship is still poorly understood. In this study, we used two specific inhibitors targeting BR and GA biosynthesis to inve...

  6. Carotenoid levels in human lymphocytes, measured by Raman microspectroscopy

    NARCIS (Netherlands)

    Ramanauskaite, R B; SegersNolten, IGMJ; DeGrauw, K J; Sijtsema, N M; VanderMaas, L; Greve, J; Otto, C; Figdor, C G

    1997-01-01

    Carotenoid levels in lymphocytes obtained from peripheral blood of healthy people have been investigated by Raman microspectroscopy. We observed that carotenoids are concentrated in so-called ''Gall bodies''. The level of carotenoids in living human lymphocytes was found to be age-dependent and to

  7. Expression profiling of the triterpene saponin biosynthesis genes FPS, SS, SE, and DS in the medicinal plant Panax notoginseng.

    Science.gov (United States)

    Niu, Yunyun; Luo, Hongmei; Sun, Chao; Yang, Tae-Jin; Dong, Linlin; Huang, Linfang; Chen, Shilin

    2014-01-01

    Panax notoginseng (Burk) F. H. Chen, an economically significant medicinal plant with hemostatic and health tonic activities, has been used in Traditional Chinese Medicine (TCM) for more than 3,000 years. Triterpene saponins are responsible for most of the pharmacological activities of P. notoginseng. Here, we cloned five cDNA sequences encoding the key enzymes involved in triterpene saponin biosynthesis, namely, PnFPS, PnSS, PnSE1, PnSE2, and PnDS, and analyzed the conserved domains and phylogenetics of their corresponding proteins. Their organ-specific expression patterns in four-year-old P. notoginseng were detected by real-time PCR, showing that they were all most highly expressed in flowers. In addition, four of the genes, excluding PnSE2, were upregulated in leaves following stimulation with methyl jasmonate. This study is the first comprehensive analysis of the expression patterns of pivotal genes for triterpene saponin biosynthesis in P. notoginseng and provides a basis to further elucidate the molecular mechanism for the biosynthesis of these medically important compounds. © 2013.

  8. An improved method for fast and selective separation of carotenoids by LC-MS.

    Science.gov (United States)

    Abate-Pella, Daniel; Freund, Dana M; Slovin, Janet P; Hegeman, Adrian D; Cohen, Jerry D

    2017-11-01

    Carotenoids are a large class of compounds that are biosynthesized by condensation of isoprene units in plants, fungi, bacteria, and some animals. They are characteristically highly conjugated through double bonds, which lead to many isomers as well susceptibility to oxidation and other chemical modifications. Carotenoids are important because of their potent antioxidant activity and are the pigments responsible for color in a wide variety of foods. Human consumption is correlated to many health benefits including prevention of cancer, cardiovascular disease, and age-related disease. Extreme hydrophobicity, poor stability, and low concentration in biological samples make these compounds difficult to analyze and difficult to develop analytical methods for aimed towards identification and quantification. Examples in the literature frequently report the use of exotic stationary phases, solvents, and additives, such as ethyl acetate, dichloromethane, and methyl tert-butyl ether that are incompatible with liquid chromatography mass spectrometry (LC-MS). In order to address these issues, we implemented the use of LC-MS friendly conditions using a low-hydrophobicity cyano-propyl column (Agilent Zorbax SB-CN). We successfully differentiated between isomeric carotenoids by optimizing two gradient methods and using a mixture of 11 standards and LC-MS in positive ionization mode. Three complex biological samples from strawberry leaf, chicken feed supplement, and the photosynthetic bacterium Chloroflexus aurantiacus were analyzed and several carotenoids were resolved in these diverse backgrounds. Our results show this methodology is a significant improvement over other alternatives for analyzing carotenoids because of its ease of use, rapid analysis time, high selectivity, and, most importantly, its compatibility with typical LC-MS conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Involvement of a Lipoxygenase-Like Enzyme in Abscisic Acid Biosynthesis 1

    Science.gov (United States)

    Creelman, Robert A.; Bell, Erin; Mullet, John E.

    1992-01-01

    Several lines of evidence indicate that abscisic acid (ABA) is derived from 9′-cis-neoxanthin or 9′-cis-violaxanthin with xanthoxin as an intermediate. 18O-labeling experiments show incorporation primarily into the side chain carboxyl group of ABA, suggesting that oxidative cleavage occurs at the 11, 12 (11′, 12′) double bond of xanthophylls. Carbon monoxide, a strong inhibitor of heme-containing P-450 monooxygenases, did not inhibit ABA accumulation, suggesting that the oxygenase catalyzing the carotenoid cleavage step did not contain heme. This observation, plus the ability of lipoxygenase to make xanthoxin from violaxanthin, suggested that a lipoxygenase-like enzyme is involved in ABA biosynthesis. To test this idea, the ability of several soybean (Glycine max L.) lipoxygenase inhibitors (5,8,11-eicosatriynoic acid, 5,8,11,14-eicosatetraynoic acid, nordihydroguaiaretic acid, and naproxen) to inhibit stress-induced ABA accumulation in soybean cell culture and soybean seedlings was determined. All lipoxygenase inhibitors significantly inhibited ABA accumulation in response to stress. These results suggest that the in vivo oxidative cleavage reaction involved in ABA biosynthesis requires activity of a nonheme oxygenase having lipoxygenase-like properties. PMID:16668998

  10. Precursor uptake assays and metabolic analyses in isolated tomato fruit chromoplasts

    Directory of Open Access Journals (Sweden)

    Angaman Djédoux

    2012-01-01

    Full Text Available Abstract Background Carotenoids are the most widespread group of pigments found in nature. In addition to their role in the physiology of the plant, carotenoids also have nutritional relevance as their incorporation in the human diet provides health benefits. In non-photosynthetic tissues, carotenoids are synthesized and stored in specialized plastids called chromoplasts. At present very little is known about the origin of the metabolic precursors and cofactors required to sustain the high rate of carotenoid biosynthesis in these plastids. Recent proteomic data have revealed a number of biochemical and metabolic processes potentially operating in fruit chromoplasts. However, considering that chloroplast to chromoplast differentiation is a very rapid process during fruit ripening, there is the possibility that some of the proteins identified in the proteomic analysis could represent remnants no longer having a functional role in chromoplasts. Therefore, experimental validation is necessary to prove whether these predicted processes are actually operative in chromoplasts. Results A method has been established for high-yield purification of tomato fruit chromoplasts suitable for metabolic studies. Radiolabeled precursors were efficiently incorporated and further metabolized in isolated chromoplast. Analysis of labeled lipophilic compounds has revealed that lipid biosynthesis is a very efficient process in chromoplasts, while the relatively low incorporation levels found in carotenoids suggest that lipid production may represent a competing pathway for carotenoid biosynthesis. Malate and pyruvate are efficiently converted into acetyl-CoA, in agreement with the active operation of the malic enzyme and the pyruvate dehydrogenase complex in the chromoplast. Our results have also shown that isolated chromoplasts can actively sustain anabolic processes without the exogenous supply of ATP, thus suggesting that these organelles may generate this energetic

  11. Precursor uptake assays and metabolic analyses in isolated tomato fruit chromoplasts.

    Science.gov (United States)

    Angaman, Djédoux Maxime; Petrizzo, Rocco; Hernández-Gras, Francesc; Romero-Segura, Carmen; Pateraki, Irene; Busquets, Montserrat; Boronat, Albert

    2012-01-13

    Carotenoids are the most widespread group of pigments found in nature. In addition to their role in the physiology of the plant, carotenoids also have nutritional relevance as their incorporation in the human diet provides health benefits. In non-photosynthetic tissues, carotenoids are synthesized and stored in specialized plastids called chromoplasts. At present very little is known about the origin of the metabolic precursors and cofactors required to sustain the high rate of carotenoid biosynthesis in these plastids. Recent proteomic data have revealed a number of biochemical and metabolic processes potentially operating in fruit chromoplasts. However, considering that chloroplast to chromoplast differentiation is a very rapid process during fruit ripening, there is the possibility that some of the proteins identified in the proteomic analysis could represent remnants no longer having a functional role in chromoplasts. Therefore, experimental validation is necessary to prove whether these predicted processes are actually operative in chromoplasts. A method has been established for high-yield purification of tomato fruit chromoplasts suitable for metabolic studies. Radiolabeled precursors were efficiently incorporated and further metabolized in isolated chromoplast. Analysis of labeled lipophilic compounds has revealed that lipid biosynthesis is a very efficient process in chromoplasts, while the relatively low incorporation levels found in carotenoids suggest that lipid production may represent a competing pathway for carotenoid biosynthesis. Malate and pyruvate are efficiently converted into acetyl-CoA, in agreement with the active operation of the malic enzyme and the pyruvate dehydrogenase complex in the chromoplast. Our results have also shown that isolated chromoplasts can actively sustain anabolic processes without the exogenous supply of ATP, thus suggesting that these organelles may generate this energetic cofactor in an autonomous way. We have set up a

  12. Abscisic Acid Biosynthesis in Leaves and Roots of Xanthium strumarium.

    Science.gov (United States)

    Creelman, R A; Gage, D A; Stults, J T; Zeevaart, J A

    1987-11-01

    RESEARCH ON THE BIOSYNTHESIS OF ABSCISIC ACID (ABA) HAS FOCUSED PRIMARILY ON TWO PATHWAYS: (a) the direct pathway from farnesyl pyrophosphate, and (b) the indirect pathway involving a carotenoid precursor. We have investigated which biosynthetic pathway is operating in turgid and stressed Xanthium leaves, and in stressed Xanthium roots using long-term incubations in (18)O(2). It was found that in stressed leaves three atoms of (18)O from (18)O(2) are incorporated into the ABA molecule, and that the amount of (18)O incorporated increases with time. One (18)O atom is incorporated rapidly into the carboxyl group of ABA, whereas the other two atoms are very slowly incorporated into the ring oxygens. The fourth oxygen atom in the carboxyl group of ABA is derived from water. ABA from stressed roots of Xanthium incubated in (18)O(2) shows a labeling pattern similar to that of ABA in stressed leaves, but with incorporation of more (18)O into the tertiary hydroxyl group at C-1' after 6 and 12 hours than found in ABA from stressed leaves. It is proposed that the precursors to stress-induced ABA are xanthophylls, and that a xanthophyll lacking an oxygen function at C-6 (carotenoid numbering scheme) plays a crucial role in ABA biosynthesis in Xanthium roots. In turgid Xanthium leaves, (18)O is incorporated into ABA to a much lesser extent than it is in stressed leaves, whereas exogenously applied (14)C-ABA is completely catabolized within 48 hours. This suggests that ABA in turgid leaves is either (a) made via a biosynthetic pathway which is different from the one in stressed leaves, or (b) has a half-life on the order of days as compared with a half-life of 15.5 hours in water-stressed Xanthium leaves. Phaseic acid showed a labeling pattern similar to that of ABA, but with an additional (18)O incorporated during 8'-hydroxylation of ABA to phaseic acid.

  13. Lycosides, Unusual Carotenoid-Derived Terpenoid Glycosides from a Vegetable Juice, Inhibit Asexual Reproduction of the Plant Pathogen Phytophthora.

    Science.gov (United States)

    Iwai, Rika; Han, Chunguang; Govindam, Sudhakar V S; Ojika, Makoto

    2018-01-10

    Vegetable juices, typical culture media for the plant pathogen Phytophthora, effectively induce its asexual reproduction (zoosporangia formation). However, some chromatographic fractions from a vegetable juice were found to inhibit asexual reproduction. Bioassay-guided chromatographic steps led to the isolation of four novel compounds, named lycosides A-D, 1-4, that could be metabolic products from a carotenoid. They showed 50% inhibitory activity against the asexual reproduction of P. capsici at 2.1-7.6 μM. The structure-activity relationship and the universality of the inhibitory activity within the Phytophthora genus were also investigated. In addition, the quantitative analysis of lycosides in fresh vegetables and vegetable juices revealed that tomato is the source of these active substances. These food-derived chemicals could help provide safe agents to control the outbreak of the agricultural pest Phytophthora in fields.

  14. Comparative Study on the Antioxidant Activity of Leaf Extract and Carotenoids Extract from Ipomoea batatas var. Oren (Sweetpotato) Leaves

    OpenAIRE

    Seow-Mun Hue; Amru Nasrulhaq Boyce; Chandran Somasundram

    2011-01-01

    Ipomoea batatas (Sweetpotato) is currently ranked sixth in the total world food production and are planted mainly for their storage roots. The present study was undertaken to evaluate and compare the antioxidant properties of the leaf and carotenoids extract from the Ipomoea batatas var. Oren leaves. Total flavonoids in the leaf extract was 144.6 ± 40.5 μg/g compared to 114.86 ± 4.35 μg/g catechin equivalent in the carotenoids extract. Total polyphenols in the leaf extrac...

  15. Carotenoids assist in cyanobacterial Photosystem II assembly and function

    Directory of Open Access Journals (Sweden)

    Tomas eZakar

    2016-03-01

    Full Text Available Carotenoids (carotenes and xanthophylls are ubiquitous constituents of living organisms. They are protective agents against oxidative stresses and serve as modulators of membrane microviscosity. As antioxidants they can protect photosynthetic organisms from free radicals like reactive oxygen species that originate from water splitting, the first step of photosynthesis. We summarize the structural and functional roles of carotenoids in connection with cyanobacterial Photosystem II. Although carotenoids are hydrophobic molecules, their complexes with proteins also allow cytoplasmic localization. In cyanobacterial cells such complexes are called orange carotenoid proteins, and they protect Photosystem II and Photosystem I by preventing their overexcitation through phycobilisomes. Recently it has been observed that carotenoids are not only required for the proper functioning, but also for the structural stability of phycobilisomes.

  16. Systems Level Engineering of Plant Cell Wall Biosynthesis to Improve Biofuel Feedstock Quality

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Samuel

    2013-09-27

    Our new regulatory model of cell wall biosynthesis proposes original network architecture with several newly incorporated components. The mapped set of protein-DNA interactions will serve as a foundation for 1) understanding the regulation of a complex and integral plant component and 2) the manipulation of crop species for biofuel and biotechnology purposes. This study revealed interesting and novel aspects of grass growth and development and further enforce the importance of a grass model system. By functionally characterizing a suite of genes, we have begun to improve the sparse model for transcription regulation of biomass accumulation in grasses. In the process, we have advanced methodology and brachy molecular genetic tools that will serve as valuable community resource.

  17. Pulsed radiation studies of carotenoid radicals and excited states

    International Nuclear Information System (INIS)

    Burke, M.

    2001-04-01

    The one-electron reduction potentials of the radical cations of five dietary carotenoids, in aqueous micellar environments, have been obtained from a pulse radiolysis study of electron transfer between the carotenoids and tryptophan radical cations as a function of pH, and lie in the range 980 to 1060 mV. The decays of the carotenoid radical cations suggest a distribution of exponential lifetimes. The radicals persist for up to about one second, depending on the medium and may re-orientate within a biological environment to react with other biomolecules, such as tyrosine, cysteine or ascorbic acid, which was indeed confirmed. Spectral information of carotenoid pigmented liposomes has been collected, subsequently pulse radiolysis was used to generate the radical cations of β-carotene, zeaxanthin and lutein, in unilamellar vesicles of dipalmitoyl phosphatidyl choline. The rate constants for the 'repair' of these carotenoid radical cations by water-soluble vitamin C were found to be similar (∼1 x 10 7 M -1 s -1 ) for β-carotene and zeaxanthin and somewhat lower (∼0.5 x 10 7 M -1 s -1 ) for lutein. The results are discussed in terms of the microenvironment of the carotenoids and suggest that for β-carotene, a hydrocarbon carotenoid, the radical cation is able to interact with a water-soluble species even though the parent hydrocarbon carotenoid is probably entirely in the non-polar region of the liposome. Studies investigating the ability of ingested lycopene to protect human lymphoid cells against singlet oxygen and nitrogen dioxide radical mediated cell damage have shown that a high lycopene diet is beneficial in protecting human cells against reactive oxygen species. Triplet states of carotenoids were produced in benzene solvent and their triplet lifetimes were found to depend on the concentration of the parent molecule. The rate constants obtained for ground state quenching correlate with the number of conjugated double bonds, the longer chain systems having

  18. Expression of carotenoid biosynthetic pathway genes and changes in carotenoids during ripening in tomato (Lycopersicon esculentum).

    Science.gov (United States)

    Namitha, Kanakapura Krishnamurthy; Archana, Surya Narayana; Negi, Pradeep Singh

    2011-04-01

    To study the expression pattern of carotenoid biosynthetic pathway genes, changes in their expression at different stages of maturity in tomato fruit (cv. Arka Ahuti) were investigated. The genes regulating carotenoid production were quantified by a dot blot method using a DIG (dioxigenin) labelling and detection kit. The results revealed that there was an increase in the levels of upstream genes of the carotenoid biosynthetic pathway such as 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), 4-hydroxy-3-methyl-but-2-enyl diphosphate reductase (Lyt B), phytoene synthase (PSY), phytoene desaturase (PDS) and ζ-carotene desaturase (ZDS) by 2-4 fold at the breaker stage as compared to leaf. The lycopene and β-carotene content was analyzed by HPLC at different stages of maturity. The lycopene (15.33 ± 0.24 mg per 100 g) and β-carotene (10.37 ± 0.46 mg per 100 g) content were found to be highest at 5 days post-breaker and 10 days post-breaker stage, respectively. The lycopene accumulation pattern also coincided with the color values at different stages of maturity. These studies may provide insight into devising gene-based strategies for enhancing carotenoid accumulation in tomato fruits.

  19. Marine Carotenoids: Biological Functions and Commercial Applications

    NARCIS (Netherlands)

    Vilchez, C.; Forján, E.; Cuaresma, M.; Bédmar, F.; Garbayo, I.; Vega, J.M.

    2011-01-01

    Carotenoids are the most common pigments in nature and are synthesized by all photosynthetic organisms and fungi. Carotenoids are considered key molecules for life. Light capture, photosynthesis photoprotection, excess light dissipation and quenching of singlet oxygen are among key biological

  20. Biosynthesis and metabolic fate of phenylalanine in conifers

    Directory of Open Access Journals (Sweden)

    María Belén Pascual

    2016-07-01

    Full Text Available The amino acid phenylalanine (Phe is a critical metabolic node that plays an essential role in the interconnection between primary and secondary metabolism in plants. Phe is used as a protein building block but it is also as a precursor for numerous plant compounds that are crucial for plant reproduction, growth, development and defense against different types of stresses. The metabolism of Phe plays a central role in the channeling of carbon from photosynthesis to the biosynthesis of phenylpropanoids. The study of this metabolic pathway is particularly relevant in trees, which divert large amounts of carbon into the biosynthesis of Phe-derived compounds, particularly lignin, an important constituent of wood. The trunks of trees are metabolic sinks that consume a considerable percentage of carbon and energy from photosynthesis, and carbon is finally immobilized in wood. This paper reviews recent advances in the biosynthesis and metabolic utilization of Phe in conifer trees. Two alternative routes have been identified: the ancient phenylpyruvate pathway that is present in microorganisms, and the arogenate pathway that possibly evolved later during plant evolution. Additionally, an efficient nitrogen recycling mechanism is required to maintain sustained growth during xylem formation. The relevance of phenylalanine metabolic pathways in wood formation, the biotic interactions and ultraviolet protection is discussed. The genetic manipulation and transcriptional regulation of the pathways are also outlined.

  1. Biosynthesis and Metabolic Fate of Phenylalanine in Conifers.

    Science.gov (United States)

    Pascual, María B; El-Azaz, Jorge; de la Torre, Fernando N; Cañas, Rafael A; Avila, Concepción; Cánovas, Francisco M

    2016-01-01

    The amino acid phenylalanine (Phe) is a critical metabolic node that plays an essential role in the interconnection between primary and secondary metabolism in plants. Phe is used as a protein building block but it is also as a precursor for numerous plant compounds that are crucial for plant reproduction, growth, development, and defense against different types of stresses. The metabolism of Phe plays a central role in the channeling of carbon from photosynthesis to the biosynthesis of phenylpropanoids. The study of this metabolic pathway is particularly relevant in trees, which divert large amounts of carbon into the biosynthesis of Phe-derived compounds, particularly lignin, an important constituent of wood. The trunks of trees are metabolic sinks that consume a considerable percentage of carbon and energy from photosynthesis, and carbon is finally immobilized in wood. This paper reviews recent advances in the biosynthesis and metabolic utilization of Phe in conifer trees. Two alternative routes have been identified: the ancient phenylpyruvate pathway that is present in microorganisms, and the arogenate pathway that possibly evolved later during plant evolution. Additionally, an efficient nitrogen recycling mechanism is required to maintain sustained growth during xylem formation. The relevance of phenylalanine metabolic pathways in wood formation, the biotic interactions, and ultraviolet protection is discussed. The genetic manipulation and transcriptional regulation of the pathways are also outlined.

  2. Effects of Different Systemic Insecticides in Carotenoid Content, Antibacterial Activity and Morphological Characteristics of Tomato (Solanum lycopersicum var Diamante

    Directory of Open Access Journals (Sweden)

    LEXTER R. NATIVIDAD

    2014-02-01

    Full Text Available This study aimed to determine the effects of different systemic insecticides in tomato (Lycopersicon esculentum var. Diamante. The study also assessed different systemic insecticides used in other plants in their effectiveness and suitability to tomato by evaluating the carotenoid content and antibacterial activity of each insecticide. Morphological characteristics such as the weight, the number and the circumference of tomato fruits and the height of the plant were also observed. Moreover, the cost effectiveness was computed. Treatments were designated as follows: Treatment 1- plants sprayed with active ingredient (a.i. cartap hydrochloride; Treatment 2 - plants sprayed with a.i. indoxacarb; Treatment 3- plants sprayed with a.i. chlorantraniliprole and thiamethoxam; Treatment 4 - plants sprayed with a.i. dinotefuran (positive control; and Treatment 5 - no insecticide applied. The experimental design used was Randomized Complete Block Design (RCBD with three replications. The first three systemic insecticides with such active ingredient were not yet registered for tomato plant. Statistical analyses show that there were no significant differences among the weight, the number and the circumference of tomato fruits and the height of the plant for each treatment. Results showed that treatments 1, 2, 3, 4 and 5 extracts have 49.74, 44.16, 48.19, 52.57 and 50.60 μg/g of total carotenoids (TC, respectively. Statistical analysis shows that there no significant differences in the TC content of each treatment. The antibacterial activity of each plant sample showed no significant differences among treatments. Thin layer chromatographic analysis revealed that there were equal numbers of spots for all the plant samples.The study concluded that systemic insecticide with a.i. cartap hydrochloride be introduced to the farmers as insecticide for tomato plant since it shows comparable effect with the registered insecticide (T4 based on the morphological

  3. [Carotenoids: 2. Diseases and supplementation studies].

    Science.gov (United States)

    Faure, H; Fayol, V; Galabert, C; Grolier, P; Moël, G L; Stephens, J; Nabet, F

    1999-05-01

    Inverse correlations have been found in most studies on the relationship between dietary intake and plasma concentrations of carotenoids on one side and degenerative diseases such as cancer and cardiovascular diseases on the other side. Protective effects of carotenoids have been found for pathologies of the retina and the skin. Concentrations of these molecules in blood are lower in digestive pathologies and HIV. Short- and long-term toxicity of carotenoids was found to be low. In combination with the beneficial effects found for diets rich in carotenoids, this has initiated trials with relatively high doses of carotenoid supplements. In the study in Linxian (China) in a rural population with poor nutritional status, supplementation with beta-carotene, zinc, selenium and vitamin E lowered total mortality and mortality from stomach cancer. Other studies (ATBC, Caret.) on well-fed subjects did not show beneficial effects on mortality from cancer and cardiovascular diseases. On the contrary, higher mortality and lung cancer incidence was found in supplemented subjects that were also exposed to asbestos and cigarette smoke. In these studies, doses of supplemental beta-carotene were high and varied from 20 to 50 mg/day. One still ongoing study, called Suvimax, doses subjects for eight years with a cocktail of vitamins and minerals including 6 mg per day of beta-carotene. This supplementation with physiologically seen more "normal" doses might give clarity on the question if beta-carotene is the protective factor in fruits and vegetables.

  4. Limiting immunopathology: Interaction between carotenoids and enzymatic antioxidant defences.

    Science.gov (United States)

    Babin, A; Saciat, C; Teixeira, M; Troussard, J-P; Motreuil, S; Moreau, J; Moret, Y

    2015-04-01

    The release of reactive oxygen and nitrogen species (ROS and RNS) during the inflammatory response generates damages to host tissues, referred to as immunopathology, and is an important factor in ecological immunology. The integrated antioxidant system, comprising endogenous antioxidant enzymes (e.g. superoxide dismutase SOD, and catalase CAT) and dietary antioxidants (e.g. carotenoids), helps to cope with immune-mediated oxidative stress. Crustaceans store large amounts of dietary carotenoids for yet unclear reasons. While being immunostimulants and antioxidants, the interaction of these pigments with antioxidant enzymes remains unclear. Here, we tested the interaction between dietary supplementation with carotenoids and immune challenge on immune defences and the activity of the antioxidant enzymes SOD and CAT, in the amphipod crustacean Gammarus pulex. Dietary supplementation increased the concentrations of circulating carotenoids and haemocytes in the haemolymph, while the immune response induced the consumption of circulating carotenoids and a drop of haemocyte density. Interestingly, supplemented gammarids exhibited down-regulated SOD activity but high CAT activity compared to control ones. Our study reveals specific interactions of dietary carotenoids with endogenous antioxidant enzymes, and further underlines the potential importance of carotenoids in the evolution of immunity and/or of antioxidant mechanisms in crustaceans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. [Recent knowledge about intestinal absorption and cleavage of carotenoids].

    Science.gov (United States)

    Borel, P; Drai, J; Faure, H; Fayol, V; Galabert, C; Laromiguière, M; Le Moël, G

    2005-01-01

    Our knowledge about intestinal absorption and cleavage of carotenoids has rapidly grown during the last years. New facts about carotenoid absorption have emerged while some controversies about cleavage are close to end. The knowledge of the absorption and conversion processes is indispensable to understand and interpret the perturbations that can occur in the metabolism of carotenoids and vitamin A. Recently, it has been shown that the absorption of certain carotenoids is not passive - as believed for a long time - but is a facilitated process that requires, at least for lutein, the class B-type 1 scavenger receptor (SR-B1). Various epidemiological and clinical studies have shown wide variations in carotenoid absorption from one subject to another, such differences are now explained by the structure of the concerned carotenoid, by the nature of the food that is absorbed with the carotenoid, by diverse exogenous factors like the intake of medicines or interfering components, by diet factors, by genetic factors, and by the nutritional status of the subject. Recently, the precise mechanism of beta-carotene cleavage by betabeta-carotene 15,15' monooxygenase (EC 1.14.99.36) - formerly called beta-carotene 15,15' dioxygenase (ex EC 1.13.11.21) - has been discovered, and a second enzyme which cleaves asymmetrically the beta-carotene molecule has been found. beta-carotene 15,15' monooxygenase only acts on the 15,15' bond, thus forming two molecules of retinal from one molecule of beta-carotene by central cleavage. Even though the betabeta-carotene 15,15' monooxygenase is much more active on the beta-carotene molecule, a study has shown that it can act on all carotenoids. Searchers now agree that other enzymes that can catalyse an eccentric cleavage of carotenoids probably exist, but under physiological conditions the betabeta-carotene 15,15' monooxygenase is by far the most active, and it is mainly effective in the small bowel mucosa and in the liver. However the

  6. Oleic acid biosynthesis in cyanobacteria

    International Nuclear Information System (INIS)

    VanDusen, W.J.; Jaworski, J.G.

    1986-01-01

    The biosynthesis of fatty acids in cyanobacteria is very similar to the well characterized system found in green plants. However, the initial desaturation of stearic acid in cyanobacteria appears to represent a significant departure from plant systems in which stearoyl-ACP is the exclusive substrate for desaturation. In Anabaena variabilis, the substrate appears to be monoglucosyldiacylglycerol, a lipid not found in plants. The authors examined five different cyanobacteria to determine if the pathway in A. variabilis was generally present in other cyanobacteria. The cyanobacteria studied were A. variabilis, Chlorogloeopsis sp., Schizothrix calcicola, Anacystis marina, and Anacystis nidulans. Each were grown in liquid culture, harvested, and examined for stearoyl-ACP desaturase activity or incubated with 14 CO 2 . None of the cyanobacteria contained any stearoyl-ACP desaturase activity in whole homogenates or 105,000g supernatants. All were capable of incorporating 14 CO 2 into monoglucosyldiacylglycerol and results from incubations of 20 min, 1 hr, 1 hr + 10 hr chase were consistent with monoglucosyldiacylglycerol serving as precursor for monogalctosyldiacylglycerol. Thus, initial evidence is consistent with oleic acid biosynthesis occurring by desaturation of stearoyl-monoglucosyldiacylglycerol in all cyanobacteria

  7. Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit

    Science.gov (United States)

    2013-01-01

    Background Many fruits, including watermelon, are proficient in carotenoid accumulation during ripening. While most genes encoding steps in the carotenoid biosynthetic pathway have been cloned, few transcriptional regulators of these genes have been defined to date. Here we describe the identification of a set of putative carotenoid-related transcription factors resulting from fresh watermelon carotenoid and transcriptome analysis during fruit development and ripening. Our goal is to both clarify the expression profiles of carotenoid pathway genes and to identify candidate regulators and molecular targets for crop improvement. Results Total carotenoids progressively increased during fruit ripening up to ~55 μg g-1 fw in red-ripe fruits. Trans-lycopene was the carotenoid that contributed most to this increase. Many of the genes related to carotenoid metabolism displayed changing expression levels during fruit ripening generating a metabolic flux toward carotenoid synthesis. Constitutive low expression of lycopene cyclase genes resulted in lycopene accumulation. RNA-seq expression profiling of watermelon fruit development yielded a set of transcription factors whose expression was correlated with ripening and carotenoid accumulation. Nineteen putative transcription factor genes from watermelon and homologous to tomato carotenoid-associated genes were identified. Among these, six were differentially expressed in the flesh of both species during fruit development and ripening. Conclusions Taken together the data suggest that, while the regulation of a common set of metabolic genes likely influences carotenoid synthesis and accumulation in watermelon and tomato fruits during development and ripening, specific and limiting regulators may differ between climacteric and non-climacteric fruits, possibly related to their differential susceptibility to and use of ethylene during ripening. PMID:24219562

  8. CAR gene cluster and transcript levels of carotenogenic genes in Rhodotorula mucilaginosa.

    Science.gov (United States)

    Landolfo, Sara; Ianiri, Giuseppe; Camiolo, Salvatore; Porceddu, Andrea; Mulas, Giuliana; Chessa, Rossella; Zara, Giacomo; Mannazzu, Ilaria

    2018-01-01

    A molecular approach was applied to the study of the carotenoid biosynthetic pathway of Rhodotorula mucilaginosa. At first, functional annotation of the genome of R. mucilaginosa C2.5t1 was carried out and gene ontology categories were assigned to 4033 predicted proteins. Then, a set of genes involved in different steps of carotenogenesis was identified and those coding for phytoene desaturase, phytoene synthase/lycopene cyclase and carotenoid dioxygenase (CAR genes) proved to be clustered within a region of ~10 kb. Quantitative PCR of the genes involved in carotenoid biosynthesis showed that genes coding for 3-hydroxy-3-methylglutharyl-CoA reductase and mevalonate kinase are induced during exponential phase while no clear trend of induction was observed for phytoene synthase/lycopene cyclase and phytoene dehydrogenase encoding genes. Thus, in R. mucilaginosa the induction of genes involved in the early steps of carotenoid biosynthesis is transient and accompanies the onset of carotenoid production, while that of CAR genes does not correlate with the amount of carotenoids produced. The transcript levels of genes coding for carotenoid dioxygenase, superoxide dismutase and catalase A increased during the accumulation of carotenoids, thus suggesting the activation of a mechanism aimed at the protection of cell structures from oxidative stress during carotenoid biosynthesis. The data presented herein, besides being suitable for the elucidation of the mechanisms that underlie carotenoid biosynthesis, will contribute to boosting the biotechnological potential of this yeast by improving the outcome of further research efforts aimed at also exploring other features of interest.

  9. Correlations Between Macular, Skin, and Serum Carotenoids

    Science.gov (United States)

    Conrady, Christopher D.; Bell, James P.; Besch, Brian M.; Gorusupudi, Aruna; Farnsworth, Kelliann; Ermakov, Igor; Sharifzadeh, Mohsen; Ermakova, Maia; Gellermann, Werner; Bernstein, Paul S.

    2017-01-01

    Purpose Ocular and systemic measurement and imaging of the macular carotenoids lutein and zeaxanthin have been employed extensively as potential biomarkers of AMD risk. In this study, we systematically compare dual wavelength retinal autofluorescence imaging (AFI) of macular pigment with skin resonance Raman spectroscopy (RRS) and serum carotenoid levels in a clinic-based population. Methods Eighty-eight patients were recruited from retina and general ophthalmology practices from a tertiary referral center and excluded only if they did not have all three modalities tested, had a diagnosis of macular telangiectasia (MacTel) or Stargardt disease, or had poor AFI image quality. Skin, macular, and serum carotenoid levels were measured by RRS, AFI, and HPLC, respectively. Results Skin RRS measurements and serum zeaxanthin concentrations correlated most strongly with AFI macular pigment volume under the curve (MPVUC) measurements up to 9° eccentricity relative to MPVUC or rotationally averaged macular pigment optical density (MPOD) measurements at smaller eccentricities. These measurements were reproducible and not significantly affected by cataracts. We also found that these techniques could readily identify subjects taking oral carotenoid-containing supplements. Conclusions Larger macular pigment volume AFI and skin RRS measurements are noninvasive, objective, and reliable methods to assess ocular and systemic carotenoid levels. They are an attractive alternative to psychophysical and optical methods that measure MPOD at a limited number of eccentricities. Consequently, skin RRS and MPVUC at 9° are both reasonable biomarkers of macular carotenoid status that could be readily adapted to research and clinical settings. PMID:28728169

  10. Long-lived coherence in carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J A; Cannon, E; Van Dao, L; Hannaford, P [ARC Centre of Excellence for Coherent X-ray Science, Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Victoria 3122 (Australia); Quiney, H M; Nugent, K A, E-mail: jdavis@swin.edu.a [ARC Centre of Excellence for Coherent X-ray Science, School of Physics, University of Melbourne, Victoria 3010 (Australia)

    2010-08-15

    We use two-colour vibronic coherence spectroscopy to observe long-lived vibrational coherences in the ground electronic state of carotenoid molecules, with decoherence times in excess of 1 ps. Lycopene and spheroidene were studied isolated in solution, and within the LH2 light-harvesting complex extracted from purple bacteria. The vibrational coherence time is shown to increase significantly for the carotenoid in the complex, providing further support to previous assertions that long-lived electronic coherences in light-harvesting complexes are facilitated by in-phase motion of the chromophores and surrounding proteins. Using this technique, we are also able to follow the evolution of excited state coherences and find that for carotenoids in the light-harvesting complex the (S{sub 2}|S{sub 0}) superposition remains coherent for more than 70 fs. In addition to the implications of this long electronic decoherence time, the extended coherence allows us to observe the evolution of the excited state wavepacket. These experiments reveal an enhancement of the vibronic coupling to the first vibrational level of the C-C stretching mode and/or methyl-rocking mode in the ground electronic state 70 fs after the initial excitation. These observations open the door to future experiments and modelling that may be able to resolve the relaxation dynamics of carotenoids in solution and in natural light-harvesting systems.

  11. Long-lived coherence in carotenoids

    International Nuclear Information System (INIS)

    Davis, J A; Cannon, E; Van Dao, L; Hannaford, P; Quiney, H M; Nugent, K A

    2010-01-01

    We use two-colour vibronic coherence spectroscopy to observe long-lived vibrational coherences in the ground electronic state of carotenoid molecules, with decoherence times in excess of 1 ps. Lycopene and spheroidene were studied isolated in solution, and within the LH2 light-harvesting complex extracted from purple bacteria. The vibrational coherence time is shown to increase significantly for the carotenoid in the complex, providing further support to previous assertions that long-lived electronic coherences in light-harvesting complexes are facilitated by in-phase motion of the chromophores and surrounding proteins. Using this technique, we are also able to follow the evolution of excited state coherences and find that for carotenoids in the light-harvesting complex the (S 2 |S 0 ) superposition remains coherent for more than 70 fs. In addition to the implications of this long electronic decoherence time, the extended coherence allows us to observe the evolution of the excited state wavepacket. These experiments reveal an enhancement of the vibronic coupling to the first vibrational level of the C-C stretching mode and/or methyl-rocking mode in the ground electronic state 70 fs after the initial excitation. These observations open the door to future experiments and modelling that may be able to resolve the relaxation dynamics of carotenoids in solution and in natural light-harvesting systems.

  12. Assessment of carotenoids in pumpkins after different home cooking conditions

    Directory of Open Access Journals (Sweden)

    Lucia Maria Jaeger de Carvalho

    2014-06-01

    Full Text Available Carotenoids have antioxidant activity, but few are converted by the body into retinol, the active form of vitamin A. Among the 600 carotenoids with pro-vitamin A activity, the most common are α- and β-carotene. These carotenoids are susceptible to degradation (e.g., isomerization and oxidation during cooking. The aim of this study was to assess the total carotenoid, α- and β-carotene, and 9 and 13-Z- β-carotene isomer contents in C. moschata after different cooking processes. The raw pumpkin samples contained 236.10, 172.20, 39.95, 3.64 and 0.8610 µg.g- 1 of total carotenoids, β-carotene, α-carotene, 13-cis-β-carotene, and 9-Z-β-carotene, respectively. The samples cooked in boiling water contained 258.50, 184.80, 43.97, 6.80, and 0.77 µg.g- 1 of total carotenoids, β-carotene, α-carotene, 13-Z-β-carotene, and 9-Z-β-carotene, respectively. The steamed samples contained 280.77, 202.00, 47.09, 8.23, and 1.247 µg.g- 1 of total carotenoids, β-carotene, α-carotene,13-Z-β-carotene, and 9-Z-β-carotene, respectively. The samples cooked with added sugar contained 259.90, 168.80, 45.68, 8.31, and 2.03 µg.g- 1 of total carotenoid, β-carotene, α-carotene, 13-Z- β-carotene, and 9-Z- β-carotene, respectively. These results are promising considering that E- β-carotene has 100% pro-vitamin A activity. The total carotenoid and carotenoid isomers increased after the cooking methods, most likely as a result of a higher availability induced by the cooking processes.

  13. Carotenoid metabolism and regulation in horticultural crops

    Science.gov (United States)

    Carotenoids are a diverse group of pigments widely distributed in nature. The vivid yellow, orange, and red colors in many horticultural crops attribute to overaccumulation of carotenoids, which contribute to a critical agronomic trait for flowers and an important quality trait for fruits and vegeta...

  14. Essences in Metabolic Engineering of Lignan Biosynthesis

    Directory of Open Access Journals (Sweden)

    Honoo Satake

    2015-05-01

    Full Text Available Lignans are structurally and functionally diverse phytochemicals biosynthesized in diverse plant species and have received wide attentions as leading compounds of novel drugs for tumor treatment and healthy diets to reduce of the risks of lifestyle-related non-communicable diseases. However, the lineage-specific distribution and the low-amount of production in natural plants, some of which are endangered species, hinder the efficient and stable production of beneficial lignans. Accordingly, the development of new procedures for lignan production is of keen interest. Recent marked advances in the molecular and functional characterization of lignan biosynthetic enzymes and endogenous and exogenous factors for lignan biosynthesis have suggested new methods for the metabolic engineering of lignan biosynthesis cascades leading to the efficient, sustainable, and stable lignan production in plants, including plant cell/organ cultures. Optimization of light conditions, utilization of a wide range of elicitor treatments, and construction of transiently gene-transfected or transgenic lignan-biosynthesizing plants are mainly being attempted. This review will present the basic and latest knowledge regarding metabolic engineering of lignans based on their biosynthetic pathways and biological activities, and the perspectives in lignan production via metabolic engineering.

  15. Pulsed radiation studies of carotenoid radicals and excited states

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M

    2001-04-01

    The one-electron reduction potentials of the radical cations of five dietary carotenoids, in aqueous micellar environments, have been obtained from a pulse radiolysis study of electron transfer between the carotenoids and tryptophan radical cations as a function of pH, and lie in the range 980 to 1060 mV. The decays of the carotenoid radical cations suggest a distribution of exponential lifetimes. The radicals persist for up to about one second, depending on the medium and may re-orientate within a biological environment to react with other biomolecules, such as tyrosine, cysteine or ascorbic acid, which was indeed confirmed. Spectral information of carotenoid pigmented liposomes has been collected, subsequently pulse radiolysis was used to generate the radical cations of {beta}-carotene, zeaxanthin and lutein, in unilamellar vesicles of dipalmitoyl phosphatidyl choline. The rate constants for the 'repair' of these carotenoid radical cations by water-soluble vitamin C were found to be similar ({approx}1 x 10{sup 7} M{sup -1}s{sup -1}) for {beta}-carotene and zeaxanthin and somewhat lower ({approx}0.5 x 10{sup 7} M{sup -1}s{sup -1}) for lutein. The results are discussed in terms of the microenvironment of the carotenoids and suggest that for {beta}-carotene, a hydrocarbon carotenoid, the radical cation is able to interact with a water-soluble species even though the parent hydrocarbon carotenoid is probably entirely in the non-polar region of the liposome. Studies investigating the ability of ingested lycopene to protect human lymphoid cells against singlet oxygen and nitrogen dioxide radical mediated cell damage have shown that a high lycopene diet is beneficial in protecting human cells against reactive oxygen species. Triplet states of carotenoids were produced in benzene solvent and their triplet lifetimes were found to depend on the concentration of the parent molecule. The rate constants obtained for ground state quenching correlate with the number

  16. Bioaccessibility of pro-vitamin A carotenoids is minimally affected by non pro-vitamin a xanthophylls in maize (Zea mays sp.).

    Science.gov (United States)

    Thakkar, Sagar K; Failla, Mark L

    2008-12-10

    The absorption of some carotenoids has been reported to be decreased by coingestion of relatively high concentrations of other carotenoids. It is unclear if such interactions occur among carotenoids during the digestion of plant foods. Current varieties of maize contain limited amounts of the pro-vitamin A (pro-VA) carotenoids beta-carotene (BC) and beta-cryptoxanthin (BCX) and relatively higher levels of their oxygenated metabolites lutein (LUT) and zeaxanthin (ZEA). Here, we examined if LUT and ZEA attenuate the bioaccessibility of pro-VA carotenoids at amounts and ratios present in maize. BC incorporation into bile salt mixed micelles during chemical preparation and during simulated small intestinal digestion of carotenoid-enriched oil was slightly increased when the concentration of LUT was sixfold or more greater than BC. Likewise, the efficiency of BC micellarization was slightly increased during simulated small intestinal digestion of white maize porridge supplemented with oil containing ninefold molar excess of LUT to BC. Mean efficiencies of micellarization of BC, BCX, LUT, and ZEA were 16.7, 27.7, 30.3, and 27.9%, respectively, and independent of the ratio of LUT plus ZEA to pro-VA carotenoids during simulated digestion of maize porridge prepared from flours containing 0.4-11.3 microg/g endogenous pro-VA carotenoids. LUT attenuated uptake of BC by differentiated cultures of Caco-2 human cells from medium-containing micelles in a dose-dependent manner with inhibition reaching 35% when the molar ratio of LUT to BC was 13. Taken together, these results suggest that the bioaccessibility of pro-VA carotenoids in maize is likely to be minimally affected by the relative levels of xanthophylls lacking pro-VA activity present in cultivars of maize.

  17. Bioaccessibility of tocopherols, carotenoids, and ascorbic acid from milk- and soy-based fruit beverages: influence of food matrix and processing.

    Science.gov (United States)

    Cilla, Antonio; Alegría, Amparo; de Ancos, Begoña; Sánchez-Moreno, Concepción; Cano, M Pilar; Plaza, Lucía; Clemente, Gonzalo; Lagarda, María J; Barberá, Reyes

    2012-07-25

    A study was made of the effect of high-pressure processing (HPP) and thermal treatment (TT) on plant bioactive compounds (tocopherols, carotenoids, and ascorbic acid) in 12 fruit juice-milk beverages and of how the food matrix [whole milk (JW), skimmed milk (JS), and soy milk (JSy)] modulates their bioaccessibility (%). HPP (400 MPa/40 °C/5 min) produced a significant decrease in carotenoid and ascorbic acid bioaccessibility in all three beverages and maintained the bioaccessibility of tocopherols in JW and JS while decreasing it in JSy. TT (90 °C/30 s) produced a significant decrease in tocopherol and carotenoid bioaccessibility in all three beverages and increased the bioaccessibility of ascorbic acid. With regard to the food matrix, α-tocopherol and ascorbic acid bioaccessibility was greatest in JW beverages and lowest in JSy beverages, whereas no significant differences were found among the three beverages in terms of carotenoid bioaccessibility. HPP-treated samples showed higher tocopherol and carotenoid bioaccessibility than TT-treated samples, thus indicating that HPP combined with a milk matrix positively modulates the bioaccessibility of certain types of bioactive components of food, mainly those of a lipophilic nature.

  18. Genetic analysis of pathway regulation for enhancing branched-chain amino acid biosynthesis in plants

    KAUST Repository

    Chen, Hao

    2010-08-01

    The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that play critical roles in animal growth and development. Animals cannot synthesize these amino acids and must obtain them from their diet. Plants are the ultimate source of these essential nutrients, and they synthesize BCAAs through a conserved pathway that is inhibited by its end products. This feedback inhibition has prevented scientists from engineering plants that accumulate high levels of BCAAs by simply over-expressing the respective biosynthetic genes. To identify components critical for this feedback regulation, we performed a genetic screen for Arabidopsis mutants that exhibit enhanced resistance to BCAAs. Multiple dominant allelic mutations in the VALINE-TOLERANT 1 (VAT1) gene were identified that conferred plant resistance to valine inhibition. Map-based cloning revealed that VAT1 encodes a regulatory subunit of acetohydroxy acid synthase (AHAS), the first committed enzyme in the BCAA biosynthesis pathway. The VAT1 gene is highly expressed in young, rapidly growing tissues. When reconstituted with the catalytic subunit in vitro, the vat1 mutant-containing AHAS holoenzyme exhibits increased resistance to valine. Importantly, transgenic plants expressing the mutated vat1 gene exhibit valine tolerance and accumulate higher levels of BCAAs. Our studies not only uncovered regulatory characteristics of plant AHAS, but also identified a method to enhance BCAA accumulation in crop plants that will significantly enhance the nutritional value of food and feed. © 2010 Blackwell Publishing Ltd.

  19. Fructan active enzymes (FAZY) activities and biosynthesis of fructooligosaccharides in the vacuoles of Agave tequilana Weber Blue variety plants of different age.

    Science.gov (United States)

    Mellado-Mojica, Erika; González de la Vara, Luis E; López, Mercedes G

    2017-02-01

    Biosynthesis of agave fructans occurs in mesontle vacuoles which showed fluctuations in FAZY activities and synthesized a diverse spectrum of fructooligosaccharide isomers. Agave tequilana Weber Blue variety is an important agronomic crop in Mexico. Fructan metabolism in A. tequilana exhibits changes in fructan content, type, degree of polymerization (DP), and molecular structure. Specific activities of vacuolar fructan active enzymes (FAZY) in A. tequilana plants of different age and the biosynthesis of fructooligosaccharides (FOSs) were analyzed in this work. Vacuoles from mesontle (stem) protoplasts were isolated and collected from 2- to 7-year-old plants. For the first time, agave fructans were identified in the vacuolar content by HPAEC-PAD. Several FAZY activities (1-SST, 6-SFT, 6G-FFT, 1-FFT, and FEH) with fluctuations according to the plant age were found in protein vacuolar extracts. Among vacuolar FAZY, 1-SST activities appeared in all plant developmental stages, as well as 1-FFT and FEH activities. The enzymes 6G-FFT and 6-SST showed only minimal activities. Lowest and highest FAZY activities were found in 2- and 6-year-old plants, respectively. Synthesized products (FOS) were analyzed by TLC and HPAEC-PAD. Vacuolar FAZYs yielded large FOS isomers diversity, being 7-year-old plants the ones that synthesized a greater variety of fructans with different DP, linkages, and molecular structures. Based on the above, we are proposing a model for the FAZY activities constituting the FOS biosynthetic pathways in Agave tequilana Weber Blue variety.

  20. Pilot-plant cultivation of Streptomyces griseus producing homologues of nonactin by precursor-directed biosynthesis and their identification by LC/MS-ESI

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Prell, Aleš; Spížek, Jaroslav; Sigler, Karel

    2010-01-01

    Roč. 63, č. 8 (2010), s. 524-529 ISSN 0021-8820 R&D Projects: GA MŠk 1M06011 Institutional research plan: CEZ:AV0Z50200510 Keywords : liquid chromatography/MS-ESI * pilot-plant cultivation * precursor-directed biosynthesis Subject RIV: EE - Microbiology, Virology Impact factor: 1.628, year: 2010

  1. Induction of SA-signaling pathway and ethylene biosynthesis in Trichoderma harzianum-treated tomato plants after infection of the root-knot nematode Meloidogyne incognita.

    Science.gov (United States)

    Leonetti, Paola; Zonno, Maria Chiara; Molinari, Sergio; Altomare, Claudio

    2017-04-01

    Salicylic acid-signaling pathway and ethylene biosynthesis were induced in tomato treated with Trichoderma harzianum when infected by root-knot nematodes and limited the infection by activation of SAR and ethylene production. Soil pre-treatment with Trichoderma harzianum (Th) strains ITEM 908 (T908) and T908-5 decreased susceptibility of tomato to Meloidogyne incognita, as assessed by restriction in nematode reproduction and development. The effect of T. harzianum treatments on plant defense was detected by monitoring the expression of the genes PR-1/PR-5 and JERF3/ACO, markers of the SA- and JA/ET-dependent signaling pathways, respectively. The compatible nematode-plant interaction in absence of fungi caused a marked suppression of PR-1, PR-5, and ACO gene expressions, either locally or systemically, whilst expression of JERF3 gene resulted unaffected. Conversely, when plants were pre-treated with Th-strains, over-expression of PR-1, PR-5, and ACO genes was observed in roots 5 days after nematode inoculation. JERF3 gene expression did not change in Th-colonized plants challenged with nematodes. In the absence of nematodes, Trichoderma-root interaction was characterized by the inhibition of both SA-dependent signaling pathway and ET biosynthesis, and, in the case of PR-1 and ACO genes, this inhibition was systemic. JERF3 gene expression was systemically restricted only at the very early stages of plant-fungi interaction. Data presented indicate that Th-colonization primed roots for Systemic Acquired Resistance (SAR) against root-knot nematodes and reacted to nematode infection more efficiently than untreated plants. Such a response probably involves also activation of ET production, through an augmented transcription of the ACO gene, which encodes for the enzyme catalyzing the last step of ET biosynthesis. JA signaling and Induced Systemic Resistance (ISR) do not seem to be involved in the biocontrol action of the tested Th-strains against RKNs.

  2. Dietary intake of carotenoids and risk of type 2 diabetes

    NARCIS (Netherlands)

    Sluijs, I.; Cadier, E.; Beulens, J. W J; van der A, D. L.; Spijkerman, A. M W; van der Schouw, Y. T.

    Background and aims: Carotenoids may reduce diabetes risk, due to their antioxidant properties. However, the association between dietary carotenoids intake and type 2 diabetes risk is still unclear. Therefore, the objective of this study was to examine whether higher dietary carotenoid intakes

  3. New Insight into the Cleavage Reaction of Nostoc sp. Strain PCC 7120 Carotenoid Cleavage Dioxygenase in Natural and Nonnatural Carotenoids

    Science.gov (United States)

    Heo, Jinsol; Kim, Se Hyeuk

    2013-01-01

    Carotenoid cleavage dioxygenases (CCDs) are enzymes that catalyze the oxidative cleavage of carotenoids at a specific double bond to generate apocarotenoids. In this study, we investigated the activity and substrate preferences of NSC3, a CCD of Nostoc sp. strain PCC 7120, in vivo and in vitro using natural and nonnatural carotenoid structures. NSC3 cleaved β-apo-8′-carotenal at 3 positions, C-13C-14, C-15C-15′, and C-13′C-14′, revealing a unique cleavage pattern. NSC3 cleaves the natural structure of carotenoids 4,4′-diaponeurosporene, 4,4′-diaponeurosporen-4′-al, 4,4′-diaponeurosporen-4′-oic acid, 4,4′-diapotorulene, and 4,4′-diapotorulen-4′-al to generate novel cleavage products (apo-14′-diaponeurosporenal, apo-13′-diaponeurosporenal, apo-10′-diaponeurosporenal, apo-14′-diapotorulenal, and apo-10′-diapotorulenal, respectively). The study of carotenoids with natural or nonnatural structures produced by using synthetic modules could provide information valuable for understanding the cleavage reactions or substrate preferences of other CCDs in vivo and in vitro. PMID:23524669

  4. Fusarium proliferatum strains change fumonisin biosynthesis and accumulation when exposed to host plant extracts.

    Science.gov (United States)

    Górna, Karolina; Pawłowicz, Izabela; Waśkiewicz, Agnieszka; Stępień, Łukasz

    2016-01-01

    Fumonisin concentrations in mycelia and media were studied in liquid Fusarium proliferatum cultures supplemented with host plant extracts. Furthermore, the kinetics of fumonisin accumulation in media and mycelia collected before and after extract addition was analysed as well as the changes in the expression of the FUM1 gene. Fumonisin content in culture media increased in almost all F. proliferatum strains shortly after plant extracts were added. The asparagus extract induced the highest FB level increase and the garlic extract was the second most effective inducer. Fumonisin level decreased constantly until 14th day of culturing, though for some strains also at day 8th an elevated FB level was observed. Pineapple extract induced the highest increase of fum1 transcript levels as well as fumonisin synthesis in many strains, and the peas extract inhibited fungal growth and fumonisin biosynthesis. Moreover, fumonisins were accumulated in mycelia of studied strains and in the respective media. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  5. Molecular analysis of "de novo" purine biosynthesis in solanaceous species and in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    van der Graaff, Eric; Hooykaas, Paul; Lein, Wolfgang

    2004-01-01

    Purine nucleotides are essential components to sustain plant growth and development. In plants they are either synthesized "de novo" during the process of purine biosynthesis or are recycled from purine bases and purine nucleosides throughout the salvage pathway. Comparison between animals...... biosynthesis pathway in plants, and the in planta functional analysis of PRPP (5-phosphoribosyl-1-pyrophoshate) amidotransferase (ATase), catalyzing the first committed step of the "de novo" purine biosynthesis. The cloning of the genes involved in the purine biosynthesis pathway was attained by a screening...... strategy with heterologous cDNA probes and by using S. cerevisiae mutants for complementation. Southern hybridization showed a complex genomic organization for these genes in solanaceous species and their organ- and developmental specific expression was analyzed by Northern hybridization. The specific role...

  6. Flavonoid Biosynthesis Genes Putatively Identified in the Aromatic Plant Polygonum minus via Expressed Sequences Tag (EST Analysis

    Directory of Open Access Journals (Sweden)

    Zamri Zainal

    2012-02-01

    Full Text Available P. minus is an aromatic plant, the leaf of which is widely used as a food additive and in the perfume industry. The leaf also accumulates secondary metabolites that act as active ingredients such as flavonoid. Due to limited genomic and transcriptomic data, the biosynthetic pathway of flavonoids is currently unclear. Identification of candidate genes involved in the flavonoid biosynthetic pathway will significantly contribute to understanding the biosynthesis of active compounds. We have constructed a standard cDNA library from P. minus leaves, and two normalized full-length enriched cDNA libraries were constructed from stem and root organs in order to create a gene resource for the biosynthesis of secondary metabolites, especially flavonoid biosynthesis. Thus, large‑scale sequencing of P. minus cDNA libraries identified 4196 expressed sequences tags (ESTs which were deposited in dbEST in the National Center of Biotechnology Information (NCBI. From the three constructed cDNA libraries, 11 ESTs encoding seven genes were mapped to the flavonoid biosynthetic pathway. Finally, three flavonoid biosynthetic pathway-related ESTs chalcone synthase, CHS (JG745304, flavonol synthase, FLS (JG705819 and leucoanthocyanidin dioxygenase, LDOX (JG745247 were selected for further examination by quantitative RT-PCR (qRT-PCR in different P. minus organs. Expression was detected in leaf, stem and root. Gene expression studies have been initiated in order to better understand the underlying physiological processes.

  7. Carotenoids from Phaffia rhodozyma : Antioxidant activity and ...

    African Journals Online (AJOL)

    The main goal of this work was to establish the stability and antioxidant activity of the extracts obtained through different techniques for recovering carotenoids from Phaffia rhodozyma NRRL-Y 17268. The best conditions for extracting carotenoids through cell rupture with dimethylsulfoxide (DMSO) were found to be a ...

  8. Abscisic Acid Biosynthesis in Leaves and Roots of Xanthium strumarium1

    Science.gov (United States)

    Creelman, Robert A.; Gage, Douglas A.; Stults, John T.; Zeevaart, Jan A. D.

    1987-01-01

    Research on the biosynthesis of abscisic acid (ABA) has focused primarily on two pathways: (a) the direct pathway from farnesyl pyrophosphate, and (b) the indirect pathway involving a carotenoid precursor. We have investigated which biosynthetic pathway is operating in turgid and stressed Xanthium leaves, and in stressed Xanthium roots using long-term incubations in 18O2. It was found that in stressed leaves three atoms of 18O from 18O2 are incorporated into the ABA molecule, and that the amount of 18O incorporated increases with time. One 18O atom is incorporated rapidly into the carboxyl group of ABA, whereas the other two atoms are very slowly incorporated into the ring oxygens. The fourth oxygen atom in the carboxyl group of ABA is derived from water. ABA from stressed roots of Xanthium incubated in 18O2 shows a labeling pattern similar to that of ABA in stressed leaves, but with incorporation of more 18O into the tertiary hydroxyl group at C-1′ after 6 and 12 hours than found in ABA from stressed leaves. It is proposed that the precursors to stress-induced ABA are xanthophylls, and that a xanthophyll lacking an oxygen function at C-6 (carotenoid numbering scheme) plays a crucial role in ABA biosynthesis in Xanthium roots. In turgid Xanthium leaves, 18O is incorporated into ABA to a much lesser extent than it is in stressed leaves, whereas exogenously applied 14C-ABA is completely catabolized within 48 hours. This suggests that ABA in turgid leaves is either (a) made via a biosynthetic pathway which is different from the one in stressed leaves, or (b) has a half-life on the order of days as compared with a half-life of 15.5 hours in water-stressed Xanthium leaves. Phaseic acid showed a labeling pattern similar to that of ABA, but with an additional 18O incorporated during 8′-hydroxylation of ABA to phaseic acid. PMID:16665768

  9. Photodegradation of carotenoids in human subjects

    International Nuclear Information System (INIS)

    Roe, D.A.

    1987-01-01

    Photodegradation of vitamins in vitro is responsible for large losses of these nutrients in foods, beverages, and semisynthetic liquid formula diets. In vivo photodegradation of vitamins has been reported for riboflavin in jaundiced infants exposed to blue light and for folate in patients with chronic psoriasis given photochemotherapy. Two recent studies of normal subjects have also shown that photodegradation of carotenoids in plasma occurs with cumulative exposure of the skin to an artificial light source having maximal spectral emission in the UVA range. Females showed a larger effect of the UV light on their plasma carotenoid levels than males. These observations have identified a need for further investigation of the role of sunlight exposure as a determinant of plasma carotenoid levels and vitamin A status in human subjects

  10. Consuming High-Carotenoid Fruit and Vegetables Influences Skin Yellowness and Plasma Carotenoids in Young Women: A Single-Blind Randomized Crossover Trial.

    Science.gov (United States)

    Pezdirc, Kristine; Hutchesson, Melinda J; Williams, Rebecca L; Rollo, Megan E; Burrows, Tracy L; Wood, Lisa G; Oldmeadow, Christopher; Collins, Clare E

    2016-08-01

    Consumption of dietary carotenoids from fruits and vegetables (F/V) leads to accumulations in human skin, altering skin yellowness. The influence of the quantity of F/V consumed on skin yellowness and plasma carotenoid concentrations has not been examined previously. To compare the influence of consuming high-carotenoid-containing F/V (HCFV) (176,425 μg beta carotene/wk) vs low-carotenoid F/V (LCFV) (2,073 μg beta carotene/wk) on skin yellowness and plasma carotenoid concentrations, over 4 weeks. A single-blind randomized controlled crossover trial from October 2013 to March 2014. Thirty women were randomized to receive 7 daily servings of HCFV or LCFV for 4 weeks. Following a 2-week washout period they followed the alternate intervention. Skin color (Commission Internationale de l'Eclairage L*a*b* color space, where L* represents skin lightness and positive values of a* and b* represent degrees of redness and yellowness, respectively) was assessed by reflectance spectroscopy in both sun-exposed and nonexposed skin areas. Fasting plasma carotenoids were determined by high-performance liquid chromatography, before and after each intervention period. Linear mixed models were used to determine the HCFV and LCFV response on skin color and plasma carotenoids, adjusting for intervention order, time, and interaction between baseline differences and time. There were no significant differences in mean daily fruit (P=0.42) and vegetable (P=0.17) intakes between HCFV and LCFV groups. Dietary alpha carotene, beta carotene, lutein, and beta cryptoxanthin intakes were significantly different between the two groups (Pcarotenoid concentrations were significantly higher following HCFV than LCFV over 4 weeks. Copyright © 2016 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  11. Perturbations of carotenoid and tetrapyrrole biosynthetic pathways result in differential alterations in chloroplast function and plastid signaling

    International Nuclear Information System (INIS)

    Park, Joon-Heum; Jung, Sunyo

    2017-01-01

    In this study, we used the biosynthetic inhibitors of carotenoid and tetrapyrrole biosynthetic pathways, norflurazon (NF) and oxyfluorfen (OF), as tools to gain insight into mechanisms of photooxidation in rice plants. NF resulted in bleaching symptom on leaves of the treated plants, whereas OF treatment developed a fast symptom of an apparent necrotic phenotype. Both plants exhibited decreases in photosynthetic efficiency, as indicated by F v /F m . NF caused severe disruption in thylakoid membranes, whereas OF-treated plants exhibited disruption of chloroplast envelope and plasma membrane. Levels of Lhca and Lhcb proteins in photosystem I (PSI) and PSII were reduced by photooxidative stress in NF- and OF-treated plants, with a greater decrease in NF plants. The down-regulation of nuclear-encoded photosynthesis genes Lhcb and rbcS was also found in both NF- and OF-treated plants, whereas plastid-encoded photosynthetic genes including RbcL, PsaC, and PsbD accumulated normally in NF plants but decreased drastically in OF plants. This proposes that the plastids in NF plants retain their potential to develop thylakoid membranes and that photobleaching is mainly controlled by nuclear genes. Distinct photooxidation patterns between NF- and OF-treated plants developed differential signaling, which might enable the plant to coordinate the expression of photosynthetic genes from the nuclear and plastidic genomes. - Highlights: • Two modes of photooxidation by carotenoid and tetrapyrrole biosynthetic inhibitors. • We examine differential alterations in chloroplast function and plastid signaling. • NF and OF cause differential alterations in chloroplast ultrastructure and function. • Photooxidation coordinates photosynthetic gene expression from nucleus and plastid.

  12. Carboidratos e carotenoides totais em duas variedades de mangarito

    Directory of Open Access Journals (Sweden)

    Ana Paula Sato Ferreira

    2014-05-01

    Full Text Available O objetivo deste trabalho foi avaliar a composição de carboidratos e carotenoides em rizomas mãe e filhos das variedades de mangarito (Xanthosoma riedelianum pequeno e gigante. Amostras dos rizomas coletadas ao longo do ciclo cultural e após 90 dias de armazenamento foram avaliadas quanto aos teores de carboidratos e carotenoides totais. Os rizomas apresentaram aumento no teor de carboidratos, e o rizoma-mãe da variedade pequeno apresentou acréscimos lineares no teor de carotenoides, ao longo do cultivo. O armazenamento reduz os teores de carboidratos e de carotenoides totais em todos os rizomas.

  13. Structure, Biosynthesis, and Occurrence of Bacterial Pyrrolizidine Alkaloids.

    Science.gov (United States)

    Schimming, Olivia; Challinor, Victoria L; Tobias, Nicholas J; Adihou, Hélène; Grün, Peter; Pöschel, Laura; Richter, Christian; Schwalbe, Harald; Bode, Helge B

    2015-10-19

    Pyrrolizidine alkaloids (PAs) are widespread plant natural products with potent toxicity and bioactivity. Herein, the identification of bacterial PAs from entomopathogenic bacteria using differential analysis by 2D NMR spectroscopy (DANS) and mass spectrometry is described. Their biosynthesis was elucidated to involve a non-ribosomal peptide synthetase. The occurrence of these biosynthesis gene clusters in Gram-negative and Gram-positive bacteria indicates an important biological function in bacteria. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Functional Lycopene Cyclase (CruA) in Cyanobacterium, Arthrospira platensis NIES-39, and its Role in Carotenoid Synthesis.

    Science.gov (United States)

    Sugiyama, Kenjiro; Ebisawa, Masashi; Yamada, Masaharu; Nagashima, Yoshiki; Suzuki, Hideyuki; Maoka, Takashi; Takaichi, Shinichi

    2017-04-01

    The genus Arthrospira is filamentous, non-nitrogen-fixing cyanobacteria that is commercially important. We identified the molecular structures of carotenoids in Arthrospira platensis NIES-39. The major carotenoid identified was β-carotene. In addition, the hydroxyl derivatives of β-cryptoxanthin and (3R,3'R)-zeaxanthin were also found to be present. The carotenoid glycosides were identified as (3R,2'S)-myxol 2'-methylpentoside and oscillol 2,2'-dimethylpentoside. The methylpentoside moiety was a mixture of fucoside and chinovoside in an approximate ratio of 1 : 4. Trace amounts of the ketocarotenoid 3'-hydroxyechinenone were also found. Three types of lycopene cyclases have been functionally confirmed in carotenogenesis organisms. In cyanobacteria, the functional lycopene cyclases (CrtL, CruA and CruP) have only been found in four species. In this study, we found that CruA exhibited lycopene cyclase activity in transformed Escherichia coli, which contains lycopene, but CruP exhibited no lycopene cyclase activity and crtL was absent. This is the third cyanobacterial species in which CruA activity has been confirmed. Neurosporene was not a substrate of CruA in E. coli, whereas lycopene cyclases of CrtY (bacteria), CrtL (plants) and CrtYB (fungi) have been reported to convert neurosporene to 7,8-dihydro-β-carotene. β-Carotene hydroxylase (CrtR) was found to convert β-carotene to zeaxanthin in transformed E. coli, which contains β-carotene. Among the β-carotene hydroxylases, bacterial CrtZ and eukaryotic CrtR and BCH have similarities, whereas cyanobacterial CrtR appears to belong to another clade. Based on the identification of the carotenoids and the completion of the entire nucleotide sequence of the A. platensis NIES-39 genome, we propose a biosynthetic pathway for the carotenoids as well as the corresponding genes and enzymes. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved

  15. Carotenoids and carotenoid esters of orange- and yellow-fleshed mamey sapote (Pouteria sapota (Jacq.) H.E. Moore & Stearn) fruit and their post-prandial absorption in humans.

    Science.gov (United States)

    Chacón-Ordóñez, Tania; Schweiggert, Ralf M; Bosy-Westphal, Anja; Jiménez, Víctor M; Carle, Reinhold; Esquivel, Patricia

    2017-04-15

    Although different genotypes of mamey sapote with distinct pulp colors are consumed in countries from Central to South America, in-depth knowledge on genotype-related differences of their carotenoid profile is lacking. Since the fruit was found to contain the potentially vitamin A-active keto-carotenoids sapotexanthin and cryptocapsin, we sought to qualitatively and quantitatively describe the carotenoid profile of different genotypes by HPLC-DAD-MS n . Sapotexanthin and cryptocapsin were present in all genotypes. Keto-carotenoids such as cryptocapsin, capsoneoxanthin, and their esters were most abundant in orange-fleshed fruit, whereas several carotenoid epoxides prevailed in yellow-fleshed fruit. Differing carotenoid profiles were associated with different color hues of the fruit pulp, while the widely variable carotenoid content (3.7-8.0mg/100gFW) was mainly reflected by differences in color intensity (chroma C ∗ ). Furthermore, the post-prandial absorption of sapotexanthin to human plasma was proven for the first time. Besides sapotexanthin, cryptocapsin was found to be resorbed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Jasmonate-induced biosynthesis of andrographolide in Andrographis paniculata.

    Science.gov (United States)

    Sharma, Shiv Narayan; Jha, Zenu; Sinha, Rakesh Kumar; Geda, Arvind Kumar

    2015-02-01

    Andrographolide is a prominent secondary metabolite found in Andrographis paniculata that exhibits enormous pharmacological effects. In spite of immense value, the normal biosynthesis of andrographolide results in low amount of the metabolite. To induce the biosynthesis of andrographolide, we attempted elicitor-induced activation of andrographolide biosynthesis in cell cultures of A. paniculata. This was carried out by using methyl jasmonate (MeJA) as an elicitor. Among the various concentrations of MeJA tested at different time periods, 5 µM MeJA yielded 5.25 times more andrographolide content after 24 h of treatment. The accumulation of andrographolide was correlated with the expression level of known regulatory genes (hmgs, hmgr, dxs, dxr, isph and ggps) of mevalonic acid (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways. These results established the involvement of MeJA in andrographolide biosynthesis by inducing the transcription of its biosynthetic pathways genes. The coordination of isph, ggps and hmgs expression highly influenced the andrographolide biosynthesis. © 2014 Scandinavian Plant Physiology Society.

  17. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae

    Science.gov (United States)

    2013-01-01

    Background Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Results Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Conclusions Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of

  18. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae.

    Science.gov (United States)

    Cui, Hongli; Yu, Xiaona; Wang, Yan; Cui, Yulin; Li, Xueqin; Liu, Zhaopu; Qin, Song

    2013-07-08

    Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of green algae and higher plants

  19. Carotenoids and Their Isomers: Color Pigments in Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Yueming Jiang

    2011-02-01

    Full Text Available Fruits and vegetables are colorful pigment-containing food sources. Owing to their nutritional benefits and phytochemicals, they are considered as ‘functional food ingredients’. Carotenoids are some of the most vital colored phytochemicals, occurring as all-trans and cis-isomers, and accounting for the brilliant colors of a variety of fruits and vegetables. Carotenoids extensively studied in this regard include β-carotene, lycopene, lutein and zeaxanthin. Coloration of fruits and vegetables depends on their growth maturity, concentration of carotenoid isomers, and food processing methods. This article focuses more on several carotenoids and their isomers present in different fruits and vegetables along with their concentrations. Carotenoids and their geometric isomers also play an important role in protecting cells from oxidation and cellular damages.

  20. Effects of season and storage period on accumulation of individual carotenoids in pumpkin flesh (Cucurbita moschata).

    Science.gov (United States)

    Jaswir, Irwandi; Shahidan, Norshazila; Othman, Rashidi; Has-Yun Hashim, Yumi Zuhanis; Octavianti, Fitri; bin Salleh, Mohammad Noor

    2014-01-01

    Carotenoids are antioxidants with pharmaceutical potential. The major carotenoids important to humans are α-carotene, β-carotene, lycopene, lutein, zeaxanthin, and β-cryptoxanthin. Some of the biological functions and actions of these individual carotenoids are quite similar to each other, whereas others are specific. Besides genotype and location, other environmental effects such as temperature, light, mineral uptake, and pH have been found affect carotenoid development in plant tissues and organs. Therefore, this research investigated the effects of the season and storage periods during postharvest handling on the accumulation of carotenoid in pumpkin. This study shows that long-term storage of pumpkins resulted in the accumulation of lutein and β-carotene with a slight decrease in zeaxanthin. The amounts of β-carotene ranged from 174.583±2.105 mg/100g to 692.871±22.019 mg/100g, lutein from 19.841±9.693 mg/100g to 59.481±1.645 mg/100g, and zeaxanthin from not detected to 2.709±0.118 mg/100g. The pumpkins were collected three times in a year; they differed in that zeaxanthin was present only in the first season, while the amounts of β-carotene and lutein were the highest in the second and third seasons, respectively. By identifying the key factors among the postharvest handling conditions that control specific carotenoid accumulations, a greater understanding of how to enhance the nutritional values of pumpkin and other crops will be gained. Postharvest storage conditions can markedly enhance and influence the levels of zeaxanthin, lutein, and β-carotene in pumpkin. This study describes how the magnitudes of these effects depend on the storage period and season.

  1. Carotenoids as a Source of Antioxidants in the Diet.

    Science.gov (United States)

    Xavier, Ana Augusta Odorissi; Pérez-Gálvez, Antonio

    2016-01-01

    Carotenoids, widely distributed fat-soluble pigments, are responsible for the attractive colorations of several fruits and vegetables commonly present in our daily diet. They are particularly abundant in yellow-orange fruits (carrots, tomatoes, pumpkins, peppers, among others) and, although masked by chlorophylls, in dark green leafy vegetables. Several health benefits have been attributed to carotenoids or to foods rich in these pigments, by means of different mechanisms-of-action, including the role as provitamin A of almost 50 different carotenoids and the antioxidant activity that protects cells and tissues from damage of free radicals and singlet oxygen, providing enhancement of the immune function, protection from sunburn reactions and delaying the onset of certain types of cancer. Common food sources and the efficiency of the absorption of carotenoids, analytical approaches used for measurement of their antioxidant effect and an overview of some epidemiological studies that have been performed to assess the beneficial impact of carotenoids in human health are outlined in this chapter.

  2. Heavy metals in contaminated environment: Destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants.

    Science.gov (United States)

    Asgari Lajayer, Behnam; Ghorbanpour, Mansour; Nikabadi, Shahab

    2017-11-01

    Contamination of soils, water and air with toxic heavy metals by various human activities is a crucial environmental problem in both developing and developed countries. Heavy metals could be introduced into medicinal plant products through contaminated environment (soil, water and air resources) and/or poor production practices. Growing of medicinal plants in heavy metal polluted environments may eventually affect the biosynthesis of secondary metabolites, causing significant changes in the quantity and quality of these compounds. Certain medicinal and aromatic plants can absorb and accumulate metal contaminants in the harvestable foliage and, therefore, considered to be a feasible alternative for remediation of polluted sites without any contamination of essential oils. Plants use different strategies and complex arrays of enzymatic and non-enzymatic anti-oxidative defense systems to cope with overproduction of ROS causes from the heavy metals entered their cells through foliar and/or root systems. This review summarizes the reports of recent investigations involving heavy metal accumulation by medicinal plants and its effects on elicitation of secondary metabolites, toxicity and detoxification pathways, international standards regarding in plants and plant-based products, and human health risk assessment of heavy metals in soil-medicinal plants systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. [Isolation and preliminary characterization of carotenoids from pink-pigmented methylotrophs].

    Science.gov (United States)

    Konovalova, A M; Shylin, S O; Rokytko, P V

    2006-01-01

    An effective method was developed for complete removal of pigments from the cells and solvent mixture for further separation of pigments using thin layer chromatography on silica gel. Carotenoid samples that have been obtained in this way are of good purity for further investigations. Carotenoid pigments of pink-pigmented facultative methylotrophic bacteria Methylobacterium have been characterized. These carotenoids are represented mainly by xanthophylls, particularly hydroxycarotenoids. Strains M. fujisawaense B-3365 and M. mesophilicum B-3352 also have nonpolar carotenes in a small amount. Physico-chemical properties of carotenoids have been studied.

  4. The role of carotenoids in human health.

    Science.gov (United States)

    Johnson, Elizabeth J

    2002-01-01

    Dietary carotenoids are thought to provide health benefits in decreasing the risk of disease, particularly certain cancers and eye disease. The carotenoids that have been most studied in this regard are beta-carotene, lycopene, lutein, and zeaxanthin. In part, the beneficial effects of carotenoids are thought to be due to their role as antioxidants. beta-Carotene may have added benefits due its ability to be converted to vitamin A. Furthermore, lutein and zeaxanthin may be protective in eye disease because they absorb damaging blue light that enters the eye. Food sources of these compounds include a variety of fruits and vegetables, although the primary sources of lycopene are tomato and tomato products. Additionally, egg yolk is a highly bioavailable source of lutein and zeaxanthin. These carotenoids are available in supplement form. However, intervention trials with large doses of beta-carotene found an adverse effect on the incidence of lung cancer in smokers and workers exposed to asbestos. Until the efficacy and safety of taking supplements containing these nutrients can be determined, current dietary recommendations of diets high in fruits and vegetables are advised.

  5. Low-Molecular-Weight Metabolites from Diatoms: Structures, Biological Roles and Biosynthesis

    Directory of Open Access Journals (Sweden)

    Valentin Stonik

    2015-06-01

    Full Text Available Diatoms are abundant and important biological components of the marine environment that biosynthesize diverse natural products. These microalgae are rich in various lipids, carotenoids, sterols and isoprenoids, some of them containing toxins and other metabolites. Several groups of diatom natural products have attracted great interest due to their potential practical application as energy sources (biofuel, valuable food constituents, and prospective materials for nanotechnology. In addition, hydrocarbons, which are used in climate reconstruction, polyamines which participate in biomineralization, new apoptotic agents against tumor cells, attractants and deterrents that regulate the biochemical communications between marine species in seawaters have also been isolated from diatoms. However, chemical studies on these microalgae are complicated by difficulties, connected with obtaining their biomass, and the influence of nutrients and contaminators in their environment as well as by seasonal and climatic factors on the biosynthesis of the corresponding natural products. Overall, the number of chemically studied diatoms is lower than that of other algae, but further studies, particularly those connected with improvements in the isolation and structure elucidation technique as well as the genomics of diatoms, promise both to increase the number of studied species with isolated biologically active natural products and to provide a clearer perception of their biosynthesis.

  6. Testing the carotenoid trade-off hypothesis in the polychromatic Midas cichlid, Amphilophus citrinellus.

    Science.gov (United States)

    Lin, Susan M; Nieves-Puigdoller, Katherine; Brown, Alexandria C; McGraw, Kevin J; Clotfelter, Ethan D

    2010-01-01

    Many animals use carotenoid pigments derived from their diet for coloration and immunity. The carotenoid trade-off hypothesis predicts that, under conditions of carotenoid scarcity, individuals may be forced to allocate limited carotenoids to either coloration or immunity. In polychromatic species, the pattern of allocation may differ among individuals. We tested the carotenoid trade-off hypothesis in the Midas cichlid, Amphilophus citrinellus, a species with two ontogenetic color morphs, barred and gold, the latter of which is the result of carotenoid expression. We performed a diet-supplementation experiment in which cichlids of both color morphs were assigned to one of two diet treatments that differed only in carotenoid content (beta-carotene, lutein, and zeaxanthin). We measured integument color using spectrometry, quantified carotenoid concentrations in tissue and plasma, and assessed innate immunity using lysozyme activity and alternative complement pathway assays. In both color morphs, dietary carotenoid supplementation elevated plasma carotenoid circulation but failed to affect skin coloration. Consistent with observable differences in integument coloration, we found that gold fish sequestered more carotenoids in skin tissue than barred fish, but barred fish had higher concentrations of carotenoids in plasma than gold fish. Neither measure of innate immunity differed between gold and barred fish, or as a function of dietary carotenoid supplementation. Lysozyme activity, but not complement activity, was strongly affected by body condition. Our data show that a diet low in carotenoids is sufficient to maintain both coloration and innate immunity in Midas cichlids. Our data also suggest that the developmental transition from the barred to gold morph is not accompanied by a decrease in innate immunity in this species.

  7. On the role of labile oxocomplexes in carotenoids antioxidant activity

    International Nuclear Information System (INIS)

    Prokhorova, L.I.; Revina, A.A.

    2001-01-01

    Early stages of the interaction of carotenoids and molecular oxygen are studied and role of its interaction in the processes responsible for radiation resistance of carotenoids, superoxide dismutase activity to the singlet oxygen quenching. Ethanol and aqueous solutions of the carotenoids (phosphate buffer with pH 7.5) were exposed to accelerated electron flux at pulse regime and dose rate (0.7-2.0)x10 17 eV/ml imp in the dark and in case of combined effect of radiation and light. It is concluded that at the early stages of processes with the participation of carotenoids the formation of reversible complexes with charge transfer plays the important role. Properties and reaction capability of these complexes are determined by the peculiarities in chemical structure of carotenoid molecules [ru

  8. Monoterpene biosynthesis potential of plant subcellular compartments.

    Science.gov (United States)

    Dong, Lemeng; Jongedijk, Esmer; Bouwmeester, Harro; Van Der Krol, Alexander

    2016-01-01

    Subcellular monoterpene biosynthesis capacity based on local geranyl diphosphate (GDP) availability or locally boosted GDP production was determined for plastids, cytosol and mitochondria. A geraniol synthase (GES) was targeted to plastids, cytosol, or mitochondria. Transient expression in Nicotiana benthamiana indicated local GDP availability for each compartment but resulted in different product levels. A GDP synthase from Picea abies (PaGDPS1) was shown to boost GDP production. PaGDPS1 was also targeted to plastids, cytosol or mitochondria and PaGDPS1 and GES were coexpressed in all possible combinations. Geraniol and geraniol-derived products were analyzed by GC-MS and LC-MS, respectively. GES product levels were highest for plastid-targeted GES, followed by mitochondrial- and then cytosolic-targeted GES. For each compartment local boosting of GDP biosynthesis increased GES product levels. GDP exchange between compartments is not equal: while no GDP is exchanged from the cytosol to the plastids, 100% of GDP in mitochondria can be exchanged to plastids, while only 7% of GDP from plastids is available for mitochondria. This suggests a direct exchange mechanism for GDP between plastids and mitochondria. Cytosolic PaGDPS1 competes with plastidial GES activity, suggesting an effective drain of isopentenyl diphosphate from the plastids to the cytosol. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  9. Modification of lymphocyte DNA damage by carotenoid supplementation in postmenopausal women.

    Science.gov (United States)

    Zhao, Xianfeng; Aldini, Giancarlo; Johnson, Elizabeth J; Rasmussen, Helen; Kraemer, Klaus; Woolf, Herb; Musaeus, Nina; Krinsky, Norman I; Russell, Robert M; Yeum, Kyung-Jin

    2006-01-01

    Oxidative stress has been implicated in the pathogenesis of chronic diseases related to aging such as cancer and cardiovascular disease. Carotenoids could be a part of a protective strategy to minimize oxidative damage in vulnerable populations, such as the elderly. Our aim was to determine the protective effect of carotenoids against DNA damage. A randomized, double-blind, placebo-controlled intervention study was conducted. Thirty-seven healthy, nonsmoking postmenopausal women aged 50-70 y were randomly assigned to 1 of 5 groups and were instructed to consume a daily dose of mixed carotenoids (beta-carotene, lutein, and lycopene; 4 mg each), 12 mg of a single carotenoid (beta-carotene, lutein, or lycopene), or placebo for 56 d. Plasma carotenoid concentrations were analyzed by using HPLC, and lymphocyte DNA damage was measured by using a single-cell gel electrophoresis (comet) assay. At day 57, all carotenoid-supplemented groups showed significantly lower endogenous DNA damage than at baseline (P lutein, beta-carotene, and lycopene), an intake that can be achieved by diet, or a larger dose (12 mg) of individual carotenoids exerts protection against DNA damage.

  10. Biodisponibilidad de carotenoides

    Directory of Open Access Journals (Sweden)

    César M. Baracaldo

    1998-12-01

    Full Text Available La vitamina A y sus derivados conocidos como retinoides (de origen animal y compuestos pro-vitamina A denominados carotenoides (de origen vegetal son importantes en la prevención de cáncer, enfermedades crónicas y enfermedades relacionadas con la deficiencia de vitamina A; por tanto, es importante conocer la absorción, metabolismo, transporte y almacenamiento de estos compuestos en humanos. Debido a lo compleja que ha sido la utilización de modelos humanos para estudiar la biodisponibilidad de carotenoides de fuentes naturales y sintéticas, recientemente se han desarrollado modelos animales que permiten avances significativos en áreas de poca conocimiento. Esta revisión pretende dar la mayor información acerca de la farmacocinética y el metabolismo de este nutriente que permita a los interesados utilizar el modelo más apropiado para los fines que persiga.

  11. Identification of a Second Site of Pyrrolizidine Alkaloid Biosynthesis in Comfrey to Boost Plant Defense in Floral Stage1,2[OPEN

    Science.gov (United States)

    Stegemann, Thomas; Sievert, Christian

    2017-01-01

    Pyrrolizidine alkaloids (PAs) are toxic secondary metabolites that are found in several distantly related families of the angiosperms. The first specific step in PA biosynthesis is catalyzed by homospermidine synthase (HSS), which has been recruited several times independently by duplication of the gene encoding deoxyhypusine synthase, an enzyme involved in the posttranslational activation of the eukaryotic initiation factor 5A. HSS shows highly diverse spatiotemporal gene expression in various PA-producing species. In comfrey (Symphytum officinale; Boraginaceae), PAs are reported to be synthesized in the roots, with HSS being localized in cells of the root endodermis. Here, we show that comfrey plants activate a second site of HSS expression when inflorescences start to develop. HSS has been localized in the bundle sheath cells of specific leaves. Tracer feeding experiments have confirmed that these young leaves express not only HSS but the whole PA biosynthetic route. This second site of PA biosynthesis results in drastically increased PA levels within the inflorescences. The boost of PA biosynthesis is proposed to guarantee optimal protection especially of the reproductive structures. PMID:28275146

  12. In vitro propagation, carotenoid, fatty acid and tocopherol content of Ajuga multiflora Bunge.

    Science.gov (United States)

    Sivanesan, Iyyakkannu; Saini, Ramesh Kumar; Noorzai, Rafi; Zamany, Ahmad Jawid; Kim, Doo Hwan

    2016-06-01

    The effect of plant growth regulators on shoot proliferation from shoot tip explants of Ajuga multiflora was studied. The highest number of shoots (17.1) was observed when shoot tip explants were cultured on Murashige and Skoog (MS) medium fortified with 8.0 µM 6-Benzyladenine (BA) and 2.7 µM α-naphthaleneacetic acid (NAA). The mean number of shoots per explant was increased 1.6-fold in liquid medium as compared with semi-solid medium. Maximum rooting (100 %) with an average of 7.2 roots per shoot was obtained on MS basal medium. Rooted plantlets were successfully acclimatised in the greenhouse with 100 % survival rate. Composition of carotenoids, fatty acids and tocopherols was also studied from leaves of greenhouse-grown plants and in vitro-regenerated shoots of A. multiflora. The greatest amounts of carotenoids, fatty acids and tocopherols were obtained from leaves of in vitro-regenerated shoots cultured on MS basal medium, followed by leaves of greenhouse-grown plants and leaves of in vitro-regenerated shoots cultured on MS basal medium with 2.0 µM BA or thidiazuron. The most abundant carotenoid in A. multiflora leaves was all-E-lutein (89.4-382.6 μg g -1  FW) followed by all-E-β-carotene (32.0-156.7 μg g -1  FW), 9'-Z-neoxanthin (14.2-63.4 μg g -1  FW), all-E-violaxanthin (13.0-45.9 μg g -1  FW), all-E-zeaxanthin (1.3-2.5 μg g -1  FW) and all-E-β-cryptoxanthin (0.3-0.9 μg g -1  FW). α-Tocopherol was the predominant tocopherol in A. multiflora leaves. Linolenic acid (49.03-52.59 %) was detected in higher amounts in A. multiflora leaf samples followed by linoleic acid (18.95-21.39 %) and palmitic acid (15.79-18.66 %).

  13. Synthetic biology and metabolic engineering for marine carotenoids: new opportunities and future prospects.

    Science.gov (United States)

    Wang, Chonglong; Kim, Jung-Hun; Kim, Seon-Won

    2014-09-17

    Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations.

  14. Non-invasive in vivo measurement of macular carotenoids

    Science.gov (United States)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2009-01-01

    A non-invasive in vivo method for assessing macular carotenoids includes performing Optical Coherence Tomography (OCT) on a retina of a subject. A spatial representation of carotenoid levels in the macula based on data from the OCT of the retina can be generated.

  15. Benzylisoquinoline alkaloid biosynthesis in opium poppy.

    Science.gov (United States)

    Beaudoin, Guillaume A W; Facchini, Peter J

    2014-07-01

    Opium poppy (Papaver somniferum) is one of the world's oldest medicinal plants and remains the only commercial source for the narcotic analgesics morphine, codeine and semi-synthetic derivatives such as oxycodone and naltrexone. The plant also produces several other benzylisoquinoline alkaloids with potent pharmacological properties including the vasodilator papaverine, the cough suppressant and potential anticancer drug noscapine and the antimicrobial agent sanguinarine. Opium poppy has served as a model system to investigate the biosynthesis of benzylisoquinoline alkaloids in plants. The application of biochemical and functional genomics has resulted in a recent surge in the discovery of biosynthetic genes involved in the formation of major benzylisoquinoline alkaloids in opium poppy. The availability of extensive biochemical genetic tools and information pertaining to benzylisoquinoline alkaloid metabolism is facilitating the study of a wide range of phenomena including the structural biology of novel catalysts, the genomic organization of biosynthetic genes, the cellular and sub-cellular localization of biosynthetic enzymes and a variety of biotechnological applications. In this review, we highlight recent developments and summarize the frontiers of knowledge regarding the biochemistry, cellular biology and biotechnology of benzylisoquinoline alkaloid biosynthesis in opium poppy.

  16. Effects of organic and conventional growth systems on the content of carotenoids in carrot roots, and on intake and plasma status of carotenoids in humans

    DEFF Research Database (Denmark)

    Søltoft, Malene; Bysted, Anette; Madsen, K. H.

    2011-01-01

    BACKGROUND: The demand for organic food products has increased during the last decades due to their probable health effects, among others. A higher content of secondary metabolites such as carotenoids in organic food products has been claimed, though not documented, to contribute to increased...... health effects of organic foods. The aim was to study the impact of organic and conventional agricultural systems on the content of carotenoids in carrots and human diets. In addition, a human cross-over study was performed, measuring the plasma status of carotenoids in humans consuming diets made from...... crops from these agricultural systems. RESULTS: The content of carotenoids in carrot roots and human diets was not significantly affected by the agricultural production system or year, despite differences in fertilisation strategy and levels. The plasma status of carotenoids increased significantly...

  17. A new energy transfer channel from carotenoids to chlorophylls in purple bacteria.

    Science.gov (United States)

    Feng, Jin; Tseng, Chi-Wei; Chen, Tingwei; Leng, Xia; Yin, Huabing; Cheng, Yuan-Chung; Rohlfing, Michael; Ma, Yuchen

    2017-07-10

    It is unclear whether there is an intermediate dark state between the S 2 and S 1 states of carotenoids. Previous two-dimensional electronic spectroscopy measurements support its existence and its involvement in the energy transfer from carotenoids to chlorophylls, but there is still considerable debate on the origin of this dark state and how it regulates the energy transfer process. Here we use ab initio calculations on excited-state dynamics and simulated two-dimensional electronic spectrum of carotenoids from purple bacteria to provide evidence supporting that the dark state may be assigned to a new A g + state. Our calculations also indicate that groups on the conjugation backbone of carotenoids may substantially affect the excited-state levels and the energy transfer process. These results contribute to a better understanding of carotenoid excited states.Carotenoids harvest energy from light and transfer it to chlorophylls during photosynthesis. Here, Feng et al. perform ab initio calculations on excited-state dynamics and simulated 2D electronic spectrum of carotenoids, supporting the existence of a new excited state in carotenoids.

  18. No detectable carotenoid concentrations in serum of llamas and alpacas.

    Science.gov (United States)

    Raila, J; Schweigert, F J; Stanitznig, A; Lambacher, B; Franz, S; Baldermann, S; Wittek, T

    2017-08-01

    Carotenoids are lipid-soluble pigments and important for a variety of physiological functions. They are major dietary vitamin A precursors and act as lipophilic antioxidants in a variety of tissues and are associated with important health benefits in humans and animals. All animals must acquire carotenoids from their diet, but to our knowledge, there are no studies investigating the intestinal carotenoid absorption and their blood concentrations in New World camelids. The present study aimed to assess the serum concentrations of selected carotenoids in llamas (n = 13) and alpacas (n = 27). Serum carotenoids as well as retinol (vitamin A) and α-tocopherol (vitamin E) were determined by high-performance liquid chromatography coupled with mass spectrometry and these were unable to detect any carotenoids (α- and β-carotene, α- and β-cryptoxanthin, lutein, zeaxanthin, lycopene) in the samples. The concentrations of retinol in alpacas (2.89 ± 1.13 μmol/l; mean ± SD) were higher (p = 0.024) than those found in llamas (2.05 ± 0.87 μmol/l); however, the concentrations of α-tocopherol were not significantly (p = 0.166) different (llamas: 3.98 ± 1.83 μmol/l; alpacas: 4.95 ± 2.14 μmol/l). The results show that both llamas and alpacas are not able to absorb intact carotenoids, but efficiently convert provitamin A carotenoids to retinol. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  19. On the substrate specificity of the rice strigolactone biosynthesis enzyme DWARF27

    KAUST Repository

    Bruno, Mark

    2016-03-05

    Main conclusion: The β-carotene isomerase OsDWARF27 is stereo- and double bond-specific. It converts bicyclic carotenoids with at least one unsubstituted β-ionone ring. OsDWARF27 may contribute to the formation of α-carotene-based strigolactone-like compounds.Strigolactones (SLs) are synthesized from all-trans-β-carotene via a pathway involving the β-carotene isomerase DWARF27, the carotenoid cleavage dioxygenases 7 and 8 (CCD7, CCD8), and cytochrome P450 enzymes from the 711 clade (MAX1 in Arabidopsis). The rice enzyme DWARF27 was shown to catalyze the reversible isomerization of all-trans- into 9-cis-β-carotene in vitro. β-carotene occurs in different cis-isomeric forms, and plants accumulate other carotenoids, which may be substrates of DWARF27. Here, we investigated the stereo and substrate specificity of the rice enzyme DWARF27 in carotenoid-accumulating E. coli strains and in in vitro assays performed with heterologously expressed and purified enzyme. Our results suggest that OsDWARF27 is strictly double bond-specific, solely targeting the C9–C10 double bond. OsDWARF27 did not introduce a 9-cis-double bond in 13-cis- or 15-cis-β-carotene. Substrates isomerized by OsDWARF27 are bicyclic carotenoids, including β-, α-carotene and β,β-cryptoxanthin, that contain at least one unsubstituted β-ionone ring. Accordingly, OsDWARF27 did not produce the abscisic acid precursors 9-cis-violaxanthin or -neoxanthin from the corresponding all-trans-isomers, excluding a direct role in the formation of this carotenoid derived hormone. The conversion of all-trans-α-carotene yielded two different isomers, including 9′-cis-α-carotene that might be the precursor of strigolactones with an ε-ionone ring, such as the recently identified heliolactone. © 2016 Springer-Verlag Berlin Heidelberg

  20. Synthetic Biology and Metabolic Engineering for Marine Carotenoids: New Opportunities and Future Prospects

    Directory of Open Access Journals (Sweden)

    Chonglong Wang

    2014-09-01

    Full Text Available Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations.

  1. Synthetic Biology and Metabolic Engineering for Marine Carotenoids: New Opportunities and Future Prospects

    Science.gov (United States)

    Wang, Chonglong; Kim, Jung-Hun; Kim, Seon-Won

    2014-01-01

    Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations. PMID:25233369

  2. Biosynthesis of furanochromones in Pimpinella monoica

    Indian Academy of Sciences (India)

    polyketide origin of their aromatic and pyrone rings while the furan ring originates via an acetate-mevalonate pathway. The plant also utilises glycine and leucine as substrate via acetate. Biotransformation of 3-H-visnagin to (6) but not to (2) was also observed. Keywords. Biosynthesis; furochromones; polyketide origin; ...

  3. Carotenoids in Marine Invertebrates Living along the Kuroshio Current Coast

    Directory of Open Access Journals (Sweden)

    Yoshikazu Sakagami

    2011-08-01

    Full Text Available Carotenoids of the corals Acropora japonica, A. secale, and A. hyacinthus, the tridacnid clam Tridacna squamosa, the crown-of-thorns starfish Acanthaster planci, and the small sea snail Drupella fragum were investigated. The corals and the tridacnid clam are filter feeders and are associated with symbiotic zooxanthellae. Peridinin and pyrrhoxanthin, which originated from symbiotic zooxanthellae, were found to be major carotenoids in corals and the tridacnid clam. The crown-of-thorns starfish and the sea snail D. fragum are carnivorous and mainly feed on corals. Peridinin-3-acyl esters were major carotenoids in the sea snail D. fragum. On the other hand, ketocarotenoids such as 7,8-didehydroastaxanthin and astaxanthin were major carotenoids in the crown-of-thorns starfish. Carotenoids found in these marine animals closely reflected not only their metabolism but also their food chains.

  4. Absorption of Carotenoids and Mechanisms Involved in Their Health-Related Properties.

    Science.gov (United States)

    Cervantes-Paz, Braulio; Victoria-Campos, Claudia I; Ornelas-Paz, José de Jesús

    Carotenoids participate in the normal metabolism and function of the human body. They are involved in the prevention of several diseases, especially those related to the inflammation syndrome. Their main mechanisms of action are associated to their potent antioxidant activity and capacity to regulate the expression of specific genes and proteins. Recent findings suggest that carotenoid metabolites may explain several processes where the participation of their parent carotenoids was unclear. The health benefits of carotenoids strongly depend on their absorption and transformation during gastrointestinal digestion. The estimation of the 'bioaccessibility' of carotenoids through in vitro models have made possible the evaluation of the effect of a large number of factors on key stages of carotenoid digestion and intestinal absorption. The bioaccessibility of these compounds allows us to have a clear idea of their potential bioavailability, a term that implicitly involves the biological activity of these compounds.

  5. Utilization of Microemulsions from Rhinacanthus nasutus (L.) Kurz to Improve Carotenoid Bioavailability

    Science.gov (United States)

    Ho, Nai-Hsing; Inbaraj, Baskaran Stephen; Chen, Bing-Huei

    2016-01-01

    Carotenoids have been known to reduce the risk of several diseases including cancer and cardiovascular. However, carotenoids are unstable and susceptible to degradation. Rhinacanthus nasutus (L.) Kurz (R. nasutus), a Chinese medicinal herb rich in carotenoids, was reported to possess vital biological activities such as anti-cancer. This study intends to isolate carotenoids from R. nasutus by column chromatography, identify and quantify by HPLC-MS, and prepare carotenoid microemulsions for determination of absolute bioavailability in rats. Initially, carotenoid fraction was isolated using 250 mL ethyl acetate poured into an open-column packed with magnesium oxide-diatomaceous earth (1:3, w/w). Fourteen carotenoids including internal standard β-apo-8′-carotenal were resolved within 62 min by a YMC C30 column and gradient mobile phase of methanol-acetonitrile-water (82:14:4, v/v/v) and methylene chloride. Highly stable carotenoid microemulsions were prepared using a mixture of CapryolTM90, Transcutol®HP, Tween 80 and deionized water, with the mean particle being 10.4 nm for oral administration and 10.7 nm for intravenous injection. Pharmacokinetic study revealed that the absolute bioavailability of carotenoids in microemulsions and dispersion was 0.45% and 0.11%, respectively, while a much higher value of 6.25% and 1.57% were shown for lutein, demonstrating 4-fold enhancement in bioavailability upon incorporation of R. nasutus carotenoids into a microemulsion system. PMID:27150134

  6. A directed-overflow and damage-control N-glycosidase in riboflavin biosynthesis

    Science.gov (United States)

    Frelin, Océane; Huang, Lili; Hasnain, Ghulam; Jeffryes, James G.; Ziemak, Michael J.; Rocca, James R.; Wang, Bing; Rice, Jennifer; Roje, Sanja; Yurgel, Svetlana N.; Gregory, Jesse F.; Edison, Arthur S.; Henry, Christopher S.; deCrécy-Lagard, Valérie; Hanson, Andrew D.

    2015-01-01

    Plants and bacteria synthesize the essential human micronutrient riboflavin (vitamin B2) via the same multistep pathway. The early intermediates of this pathway are notoriously reactive, and may be overproduced in vivo because riboflavin biosynthesis enzymes lack feedback controls. Here we demonstrate disposal of riboflavin intermediates by COG3236 (DUF1768), a protein of previously unknown function that is fused to two different riboflavin pathway enzymes in plants and bacteria (RIBR and RibA, respectively). We present cheminformatic, biochemical, genetic, and genomic evidence to show that: (i) plant and bacterial COG3236 proteins cleave the N-glycosidic bond of the first two intermediates of riboflavin biosynthesis, yielding relatively innocuous products; (ii) certain COG3236 proteins are in a multienzyme riboflavin biosynthesis complex that gives them privileged access to riboflavin intermediates; and (iii) COG3236 action in Arabidopsis thaliana and Escherichia coli helps maintain flavin levels. COG3236 proteins thus illustrate two emerging principles in chemical biology: directed overflow metabolism, in which excess flux is diverted out of a pathway, and the pre-emption of damage from reactive metabolites. PMID:25431972

  7. Dynamic Action of Carotenoids in Cardioprotection and Maintenance of Cardiac Health

    Directory of Open Access Journals (Sweden)

    Dipak K. Das

    2012-04-01

    Full Text Available Oxidative stress has been considered universally and undeniably implicated in the pathogenesis of all major diseases, including those of the cardiovascular system. Oxidative stress activate transcriptional messengers, such as nuclear factor—κB, tangibly contributing to endothelial dysfunction, the initiation and progression of atherosclerosis, irreversible damage after ischemic reperfusion, and even arrhythmia, such as atrial fibrillation. Evidence is rapidly accumulating to support the role of reactive oxygen species (ROS and reactive nitrogen species (RNS as intracellular signaling molecules. Despite this connection between oxidative stress and cardiovascular disease (CVD, there are currently no recognized therapeutic interventions to address this important unmet need. Antioxidants that provide a broad, “upstream” approach via ROS/RNS quenching or free radical chain breaking seem an appropriate therapeutic option based on epidemiologic, dietary, and in vivo animal model data. Short-term dietary intervention trials suggest that diets rich in fruit and vegetable intake lead to improvements in coronary risk factors and reduce cardiovascular mortality. Carotenoids are such abundant, plant-derived, fat-soluble pigments that functions as antioxidants. They are stored in the liver or adipose tissue, and are lipid soluble by becoming incorporated into plasma lipoprotein particles during transport. For these reasons, carotenoids may represent one plausible mechanism by which fruits and vegetables reduce the risk of chronic diseases as cardiovascular disease (CVD. This review paper outlines the role of carotenoids in maintaining cardiac health and cardioprotection mediated by several mechanisms including redox signaling.

  8. Identification and determination of flavonoids, carotenoids and chlorophyll concentration in Cynodon dactylon (L.) by HPLC analysis.

    Science.gov (United States)

    Muthukrishnan, Saradha Devi; Kaliyaperumal, Ashokkumar; Subramaniyan, Annapoorani

    2015-01-01

    Cynodon dactylon (L.) is a potent medicinal plant in the traditional and current Indian medicinal systems. The objective of this research was to find out the levels of flavonoids, carotenoids and chlorophyll b in C. dactylon leaves by high-performance liquid chromatography (HPLC) equipped with a diode array detector. HPLC analysis revealed that total carotenoid and total flavonoid concentration were 62 mg/100 g and 249.1 μg/g, respectively. The mean chlorophyll b was 85.1 mg/100 g in C. dactylon. Among the flavonoids, quercetin (164.7 μg/g) was the major flavonoid followed by kaempferol (48.2 μg/g), rutin (18.4 μg/g), catechin (12.1 μg/g) and myricetin (5.7 μg/g). Of the carotenoids, β-carotene (35.2 mg/100 g) was predominant followed by lutein (17.0 mg/100 g), violaxanthin (5.8 mg/100 g) and zeaxanthin (4.2 mg/100 g). Chlorophyll b concentration was 85.1 mg/100 g in C. dactylon. The results of this investigation should be useful information for further pharmacological studies.

  9. Effect of Carotenoid Supplemented Formula on Carotenoid Bioaccumulation in Tissues of Infant Rhesus Macaques: A Pilot Study Focused on Lutein

    Directory of Open Access Journals (Sweden)

    Sookyoung Jeon

    2017-01-01

    Full Text Available Lutein is the predominant carotenoid in the developing primate brain and retina, and may have important functional roles. However, its bioaccumulation pattern during early development is not understood. In this pilot study, we investigated whether carotenoid supplementation of infant formula enhanced lutein tissue deposition in infant rhesus macaques. Monkeys were initially breastfed; from 1 to 3 months of age they were fed either a formula supplemented with lutein, zeaxanthin, β-carotene and lycopene, or a control formula with low levels of these carotenoids, for 4 months (n = 2/group. All samples were analyzed by high pressure liquid chromatography (HPLC. Final serum lutein in the supplemented group was 5 times higher than in the unsupplemented group. All brain regions examined showed a selective increase in lutein deposition in the supplemented infants. Lutein differentially accumulated across brain regions, with highest amounts in occipital cortex in both groups. β-carotene accumulated, but zeaxanthin and lycopene were undetectable in any brain region. Supplemented infants had higher lutein concentrations in peripheral retina but not in macular retina. Among adipose sites, abdominal subcutaneous adipose tissue exhibited the highest lutein level and was 3-fold higher in the supplemented infants. The supplemented formula enhanced carotenoid deposition in several other tissues. In rhesus infants, increased intake of carotenoids from formula enhanced their deposition in serum and numerous tissues and selectively increased lutein in multiple brain regions.

  10. Estimation of carotenoid content at the canopy scale using the carotenoid triangle ratio index from in situ and simulated hyperspectral data

    Science.gov (United States)

    Kong, Weiping; Huang, Wenjiang; Zhou, Xianfeng; Song, Xiaoyu; Casa, Raffaele

    2016-04-01

    Precise estimation of carotenoids (Car) content in plants, from remotely sensed data, is challenging due to their small proportion in the overall total pigment content and to the overlapping of spectral absorption features with chlorophyll (Chl) in the blue region of the spectrum. The use of narrow band vegetation indices (VIs) obtained from hyperspectral data has been considered an effective way to estimate Car content. However, VIs have proved to lack sensitivity to low or high Car content in a number of studies. In this study, the carotenoid triangle ratio index (CTRI), derived from the existing modified triangular vegetation index and a single band reflectance at 531 nm, was proposed and employed to estimate Car canopy content. We tested the potential of three categories of hyperspectral indices earlier proposed for Car, Chl, Car/Chl ratio estimation, and the new CTRI index, for Car canopy content assessment in winter wheat and corn. Spectral reflectance representing plant canopies were simulated using the PROSPECT and SAIL radiative transfer model, with the aim of analyzing saturation effects of these indices, as well as Chl effects on the relationship between spectral indices and Car content. The result showed that the majority of the spectral indices tested, saturated with the increase of Car canopy content above 28 to 64 μg/cm2. Conversely, the CTRI index was more robust and was linearly and highly sensitive to Car content in winter wheat and corn datasets, with coefficients of determination of 0.92 and 0.75, respectively. The corresponding root mean square error of prediction were 6.01 and 9.70 μg/cm2, respectively. Furthermore, the CTRI index did not show a saturation effect and was not greatly influenced by changes of Chl values, outperforming all the other indices tested. Estimation of Car canopy content using the CTRI index provides an insight into diagnosing plant physiological status and environmental stress.

  11. Effect of carotenoid structure on excited-state dynamics of carbonyl carotenoids

    Czech Academy of Sciences Publication Activity Database

    Chábera, P.; Fuciman, M.; Hříbek, P.; Polívka, Tomáš

    2009-01-01

    Roč. 11, - (2009), s. 8795-8703 ISSN 1463-9076 R&D Projects: GA AV ČR IAA608170604 Institutional research plan: CEZ:AV0Z50510513 Keywords : excited-state dynamics * carbonyl carotenoids * femtosecond spectroscopy Subject RIV: BO - Biophysics Impact factor: 4.116, year: 2009

  12. Temporal expression of genes involved in the biosynthesis of ...

    African Journals Online (AJOL)

    Gibberellins (GAs) are a large family of endogenous plant growth regulators. Bioactive GAs influence nearly all processes during plant growth and development. In the present study, we cloned and identified 10 unique genes that are potentially involved in the biosynthesis of GAs, including one BpGGDP gene, two BpCPS ...

  13. Certain aspects of the reactivity of carotenoids. Redox processes and complexation

    International Nuclear Information System (INIS)

    Polyakov, Nikolay E; Leshina, Tatyana V

    2006-01-01

    The published data on the redox reactions of carotenoids, their supramolecular inclusion complexes and the composition, properties and practical application of these complexes are generalised. Special attention is given to the effect of complexation on radical processes involving carotenoids and on the antioxidant activity of carotenoids.

  14. Determination of carotenoids in yellow maize, the effects of saponification and food preparations.

    Science.gov (United States)

    Muzhingi, Tawanda; Yeum, Kyung-Jin; Russell, Robert M; Johnson, Elizabeth J; Qin, Jian; Tang, Guangwen

    2008-05-01

    Maize is an important staple food consumed by millions of people in many countries. Yellow maize naturally contains carotenoids which not only provide provitamin A carotenoids but also xanthophylls, which are known to be important for eye health. This study was aimed at 1) evaluating the effect of saponification during extraction of yellow maize carotenoids, 2) determining the major carotenoids in 36 genotypes of yellow maize by high-performance liquid chromatography with a C30 column, and 3) determining the effect of cooking on the carotenoid content of yellow maize. The major carotenoids in yellow maize were identified as all-trans lutein, cis-isomers of lutein, all-trans zeaxanthin, alpha- and beta-cryptoxanthin, all-trans beta-carotene, 9-cis beta-carotene, and 13-cis beta-carotene. Our results indicated that carotenoid extraction without saponification showed a significantly higher yield than that obtained using saponification. Results of the current study indicate that yellow maize is a good source of provitamin A carotenoids and xanthophylls. Cooking by boiling yellow maize at 100 degrees C for 30 minutes increased the carotenoid concentration, while baking at 450 degrees F for 25 minutes decreased the carotenoid concentrations by almost 70% as compared to the uncooked yellow maize flour.

  15. Non-pro-vitamin A and pro-vitamin A carotenoids in atopy development.

    Science.gov (United States)

    Rühl, R

    2013-01-01

    Carotenoids are important derivatives of the human diet and occur in high concentrations in the human organism. Various carotenoids are also present in human breast milk and are transferred to breast-fed children. The alternative to breastfeeding is supplementation with an infant milk formula, but these formulas contain only a limited variety of carotenoids. Our question is: 'What is the function of various carotenoids in human nutrition with a special emphasis on child development and the development of atopy?' In this review, the mechanisms of action of the most important non-pro-vitamin A and pro-vitamin A carotenoids: α-carotene, β-carotene, β-cryptoxanthin, lutein, zeaxanthin, lycopene and retinoids are discussed. In summary, the combination of carotenoids, especially lycopene, seems to be of great importance, and exclusive usage of β-carotene in infant formula may yield in an increased atopy prevalence mediated in various target organs like the skin, lungs and immune competent cells. We conclude that the determination of novel bioactive metabolites of various carotenoids, at various stages in different organs during atopy development, might be the key to understanding the potential importance of carotenoids on atopy development. Copyright © 2013 S. Karger AG, Basel.

  16. Identification of Protein-Protein Interactions Involved in Pectin Biosynthesis in the golgi Apparatus

    DEFF Research Database (Denmark)

    Lund, Christian Have

    for instance as food additives, nutraceutical, for paper and energy production. Pectin is a cell wall glycan that crucial for every plant growing on land. Pectin is said to be one of the most complex glycans on earth and it is hypothesized that at least 67 enzymatic reactions are involved in its biosynthesis......The plant cell wall surrounds every plant cell and is an essential component that is involved in diverse functions including plant development, morphology, resistance towards plant pathogens etc. The plant cell wall is not only important for the plant. The cell wall has many industrial applications...... the diverse pectin structures for industrial, agronomic and biomedical uses. Increasing evidence suggests that complex formation is important in governing functional coordination of proteins involved in cell wall biosynthesis. In Arabidopsis thaliana, a homogalacturonan (HG) synthase core complex between...

  17. Metabolic Fingerprinting to Assess the Impact of Salinity on Carotenoid Content in Developing Tomato Fruits

    Directory of Open Access Journals (Sweden)

    Lieven Van Meulebroek

    2016-05-01

    Full Text Available As the presence of health-promoting substances has become a significant aspect of tomato fruit appreciation, this study investigated nutrient solution salinity as a tool to enhance carotenoid accumulation in cherry tomato fruit (Solanum lycopersicum L. cv. Juanita. Hereby, a key objective was to uncover the underlying mechanisms of carotenoid metabolism, moving away from typical black box research strategies. To this end, a greenhouse experiment with five salinity treatments (ranging from 2.0 to 5.0 decisiemens (dS m−1 was carried out and a metabolomic fingerprinting approach was applied to obtain valuable insights on the complicated interactions between salinity treatments, environmental conditions, and the plant’s genetic background. Hereby, several hundreds of metabolites were attributed a role in the plant’s salinity response (at the fruit level, whereby the overall impact turned out to be highly depending on the developmental stage. In addition, 46 of these metabolites embraced a dual significance as they were ascribed a prominent role in carotenoid metabolism as well. Based on the specific mediating actions of the retained metabolites, it could be determined that altered salinity had only marginal potential to enhance carotenoid accumulation in the concerned tomato fruit cultivar. This study invigorates the usefulness of metabolomics in modern agriculture, for instance in modeling tomato fruit quality. Moreover, the metabolome changes that were caused by the different salinity levels may enclose valuable information towards other salinity-related plant processes as well.

  18. Influence of sample processing on the analysis of carotenoids in maize.

    Science.gov (United States)

    Rivera, Sol; Canela, Ramon

    2012-09-21

    We performed a number of tests with the aim to develop an effective extraction method for the analysis of carotenoid content in maize seed. Mixtures of methanol-ethyl acetate (6:4, v/v) and methanol-tetrahydrofuran (1:1, v/v) were the most effective solvent systems for carotenoid extraction from maize endosperm under the conditions assayed. In addition, we also addressed sample preparation prior to the analysis of carotenoids by liquid chromatography (LC). The LC response of extracted carotenoids and standards in several solvents was evaluated and results were related to the degree of solubility of these pigments. Three key factors were found to be important when selecting a suitable injection solvent: compatibility between the mobile phase and injection solvent, carotenoid polarity and content in the matrix.

  19. Genome-wide QTL and bulked transcriptomic analysis reveals new candidate genes for the control of tuber carotenoid content in potato (Solanum tuberosum L.).

    Science.gov (United States)

    Campbell, Raymond; Pont, Simon D A; Morris, Jenny A; McKenzie, Gaynor; Sharma, Sanjeev Kumar; Hedley, Pete E; Ramsay, Gavin; Bryan, Glenn J; Taylor, Mark A

    2014-09-01

    Genome-wide QTL analysis of potato tuber carotenoid content was investigated in populations of Solanum tuberosum Group Phureja that segregate for flesh colour, revealing a novel major QTL on chromosome 9. The carotenoid content of edible plant storage organs is a key nutritional and quality trait. Although the structural genes that encode the biosynthetic enzymes are well characterised, much less is known about the factors that determine overall storage organ content. In this study, genome-wide QTL mapping, in concert with an efficient 'genetical genomics' analysis using bulked samples, has been employed to investigate the genetic architecture of potato tuber carotenoid content. Two diploid populations of Solanum tuberosum Group Phureja were genotyped (AFLP, SSR and DArT markers) and analysed for their tuber carotenoid content over two growing seasons. Common to both populations were QTL that explained relatively small proportions of the variation in constituent carotenoids and a major QTL on chromosome 3 explaining up to 71 % of the variation in carotenoid content. In one of the populations (01H15), a second major carotenoid QTL was identified on chromosome 9, explaining up to 20 % of the phenotypic variation. Whereas the major chromosome 3 QTL was likely to be due to an allele of a gene encoding β-carotene hydroxylase, no known carotenoid biosynthetic genes are located in the vicinity of the chromosome 9 QTL. A unique expression profiling strategy using phenotypically distinct bulks comprised individuals with similar carotenoid content provided further support for the QTL mapping to chromosome 9. This study shows the potential of using the potato genome sequence to link genetic maps to data arising from eQTL approaches to enhance the discovery of candidate genes underlying QTLs.

  20. Excitation wavelength selection for quantitative analysis of carotenoids in tomatoes using Raman spectroscopy.

    Science.gov (United States)

    Hara, Risa; Ishigaki, Mika; Kitahama, Yasutaka; Ozaki, Yukihiro; Genkawa, Takuma

    2018-08-30

    The difference in Raman spectra for different excitation wavelengths (532 nm, 785 nm, and 1064 nm) was investigated to identify an appropriate wavelength for the quantitative analysis of carotenoids in tomatoes. For the 532 nm-excited Raman spectra, the intensity of the peak assigned to the carotenoid has no correlation with carotenoid concentration, and the peak shift reflects carotenoid composition changing from lycopene to β-carotene and lutein. Thus, 532 nm-excited Raman spectra are useful for the qualitative analysis of carotenoids. For the 785 nm- and 1064 nm-excited Raman spectra, the peak intensity of the carotenoid showed good correlation with carotenoid concentration; thus, regression models for carotenoid concentration were developed using these Raman spectra and partial least squares regression. A regression model designed using the 785 nm-excited Raman spectra showed a better result than the 532 nm- and 1064 nm-excited Raman spectra. Therefore, it can be concluded that 785 nm is the most suitable excitation wavelength for the quantitative analysis of carotenoid concentration in tomatoes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Carotenoid composition of strawberry tree (Arbutus unedo L.) fruits.

    Science.gov (United States)

    Delgado-Pelayo, Raúl; Gallardo-Guerrero, Lourdes; Hornero-Méndez, Dámaso

    2016-05-15

    The carotenoid composition of strawberry tree (Arbutus unedo) fruits has been characterised in detail and quantified for the first time. According to the total carotenoid content (over 340 μg/g dw), mature strawberry tree berries can be classified as fruits with very high carotenoid content (>20 μg/g dw). (all-E)-Violaxanthin and 9Z-violaxanthin were found to be the major carotenoid pigments, accounting for more than 60%, responsible for the bright colour of the flesh of ripe fruits. In addition other 5,6-epoxide carotenoids, such as (all-E)-neoxanthin, (9'Z)-neoxanthin (all-E)-antheraxanthin and lutein 5,6-epoxide, together with (all-E)-lutein, (all-E)-zeaxanthin and (all-E)-β-carotene were found at high levels (>5-20 μg/g dw). The LC-MS (APCI+) analysis of the xanthophyll fraction in their native state (direct extract) revealed that most of them (>90%) were totally esterified with saturated fatty acids (capric, lauric, myristic, palmitic and stearic). Monoesters, homodiesters and heterodiesters of (all-E)-violaxanthin and 9Z-violaxanthin were the major pigments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Biosynthesis and Metabolic Fate of Phenylalanine in Conifers

    OpenAIRE

    Pascual, María B.; El-Azaz, Jorge; de la Torre, Fernando N.; Cañas, Rafael A.; Avila, Concepción; Cánovas, Francisco M.

    2016-01-01

    The amino acid phenylalanine (Phe) is a critical metabolic node that plays an essential role in the interconnection between primary and secondary metabolism in plants. Phe is used as a protein building block but it is also as a precursor for numerous plant compounds that are crucial for plant reproduction, growth, development, and defense against different types of stresses. The metabolism of Phe plays a central role in the channeling of carbon from photosynthesis to the biosynthesis of pheny...

  3. Carotenoid composition of jackfruit (Artocarpus heterophyllus), determined by HPLC-PDA-MS/MS.

    Science.gov (United States)

    de Faria, A F; de Rosso, V V; Mercadante, A Z

    2009-06-01

    Carotenoids are pigments responsible for the yellow-reddish color of many foods and are related to important functions and physiological actions, preventing several chronic-degenerative diseases. The objective of this study was to confirm the carotenoid composition of jackfruit by high-performance liquid chromatography connected to photodiode array and mass spectrometry detectors (HPLC-PDA-MS/MS). The main carotenoids were all-trans-lutein (24-44%), all-trans-beta-carotene (24-30%), all-trans-neoxanthin (4-19%), 9-cis-neoxanthin (4-9%) and 9-cis-violaxanthin (4-10%). Either qualitative or quantitative differences, mainly related to the lutein proportion, were found among three batches of jackfruit. Since the fruits from batch A showed significantly lower contents for almost all carotenoids, it also had the lowest total carotenoid content (34.1 microg/100 g) and provitamin A value, whereas the total carotenoid ranged from 129.0 to 150.3 microg/100 g in the other batches. The provitamin A values from batches B and C were 3.3 and 4.3 microg RAE/100 g, respectively. The carotenoid composition of jackfruit was successfully determined, where 14 of the 18 identified carotenoids were reported for first time. Differences among batches may be due to genetic and/or agricultural factors.

  4. Identification of Carotenoids and Isoprenoid Quinones from Asaia lannensis and Asaia bogorensis

    Directory of Open Access Journals (Sweden)

    Hubert Antolak

    2017-09-01

    Full Text Available The aim of the study was to identify and quantitatively assess of carotenoids and isoprenoid quinones biosynthesized by six different strains of acetic acid bacteria, belonging to genus Asaia, that are common beverage-spoiling bacteria in Europe. Bacterial cultures were conducted in a laboratory liquid culture minimal medium with 2% sucrose. Carotenoids and isoprenoid quinones were investigated using UHPLC-DAD-ESI-MS analysis. In general, tested strains of Asaia spp. were able to produce 10 carotenoids and 3 isoprenoid quinones: menaquinone-7, menaquinone-8, and ubiquinone-10. The main identified carotenoids in Asaia lannensis strains were phytofluene, neurosporene, α-carotene, while for Asaia bogorensis, neurosporene, canthaxanthin, and zeaxanthin were noted. What is more, tested Asaia spp. were able to produce myxoxanthophyll, which has so far been identified primarily in cyanobacteria. The results show that A. lannensis are characterized by statistically higher concentrations of produced carotenoids, as well as a greater variety of these compounds. We have noted that carotenoids were not only accumulated by bacterial cells, but also some strains of A. lannensis produced extracellular carotenoids.

  5. CAROTENOID RETENTION IN MINIMALLY PROCESSED BIOFORTIFIED GREEN CORN STORED UNDER RETAIL MARKETING CONDITIONS

    Directory of Open Access Journals (Sweden)

    Natália Alves Barbosa

    2015-08-01

    Full Text Available Storing processed food products can cause alterations in their chemical compositions. Thus, the objective of this study was to evaluate carotenoid retention in the kernels of minimally processed normal and vitamin A precursor (proVA-biofortified green corn ears that were packaged in polystyrene trays covered with commercial film or in multilayered polynylon packaging material and were stored. Throughout the storage period, the carotenoids were extracted from the corn kernels using organic solvents and were quantified using HPLC. A completely factorial design including three factors (cultivar, packaging and storage period was applied for analysis. The green kernels of maize cultivars BRS1030 and BRS4104 exhibited similar carotenoid profiles, with zeaxanthin being the main carotenoid. Higher concentrations of the carotenoids lutein, β-cryptoxanthin, and β-carotene, the total carotenoids and the total vitamin A precursor carotenoids were detected in the green kernels of the biofortified BRS4104 maize. The packaging method did not affect carotenoid retention in the kernels of minimally processed green corn ears during the storage period.

  6. Carotenoids profile and total polyphenols in fruits of Pereskia aculeata Miller

    Directory of Open Access Journals (Sweden)

    Tânia da Silveira Agostini-Costa

    2012-03-01

    Full Text Available Pereskia aculeata Mill. (Ora-pro-nóbis is a native cactaceae from tropical America, whose leaves have high protein content. In Brazil it is found in all territorial extension between the states of Bahia and Rio Grande do Sul. Most studies have focused on chemical characterization of the leaves of this specie. The objective was to assess the carotenoids profile and the total polyphenols present in the fruits of P. aculeate. Carotenoids were determined by HPLC-PAD (high performance liquid chromatography - photodiode array detector, total polyphenols were determined by Folin-Ciocalteu and vanillin methods. Trans-β-carotene was the main carotenoid, followed by α-carotene, lutein and other minor carotenoids. It was found 64.9 ± 1.1 mg.100g-1 of gallic acid equivalent, 14.8 ± 0.2 mg.100g-1 of catechin equivalent. Carotenoid identification of P. aculeate fruits are presented here by the first time and indicate that these fruits can be researched as source of bioactive substances, especially antioxidant and provitamin A carotenoids.

  7. Overexpression of the IbMYB1 gene in an orange-fleshed sweet potato cultivar produces a dual-pigmented transgenic sweet potato with improved antioxidant activity.

    Science.gov (United States)

    Park, Sung-Chul; Kim, Yun-Hee; Kim, Sun Ha; Jeong, Yu Jeong; Kim, Cha Young; Lee, Joon Seol; Bae, Ji-Yeong; Ahn, Mi-Jeong; Jeong, Jae Cheol; Lee, Haeng-Soon; Kwak, Sang-Soo

    2015-04-01

    The R2R3-type protein IbMYB1 is a key regulator of anthocyanin biosynthesis in the storage roots of sweet potato [Ipomoea batatas (L.) Lam]. Previously, we demonstrated that IbMYB1 expression stimulated anthocyanin pigmentation in tobacco leaves and Arabidopsis. Here, we generated dual-pigmented transgenic sweet potato plants that accumulated high levels of both anthocyanins and carotenoids in a single sweet potato storage root. An orange-fleshed cultivar with high carotenoid levels was transformed with the IbMYB1 gene under the control of either the storage root-specific sporamin 1 (SPO1) promoter or the oxidative stress-inducible peroxidase anionic 2 (SWPA2) promoter. The SPO1-MYB transgenic lines exhibited higher anthocyanin levels in storage roots than empty vector control (EV) or SWPA2-MYB plants, but carotenoid content was unchanged. SWPA2-MYB transgenic lines exhibited higher levels of both anthocyanin and carotenoids than EV plants. Analysis of hydrolyzed anthocyanin extracts indicated that cyanidin and peonidin predominated in both overexpression lines. Quantitative reverse transcription-polymerase chain reaction analysis demonstrated that IbMYB1 expression in both IbMYB1 transgenic lines strongly induced the upregulation of several genes in the anthocyanin biosynthetic pathway, whereas the expression of carotenoid biosynthetic pathway genes varied between transgenic lines. Increased anthocyanin levels in transgenic plants also promoted the elevation of proanthocyanidin and total phenolic levels in fresh storage roots. Consequently, all IbMYB1 transgenic plants displayed much higher antioxidant activities than EV plants. In field cultivations, storage root yields varied between the transgenic lines. Taken together, our results indicate that overexpression of IbMYB1 is a highly promising strategy for the generation of transgenic plants with enhanced antioxidant capacity. © 2014 Scandinavian Plant Physiology Society.

  8. Improving carotenoid extraction from tomato waste by pulsed electric fields.

    Directory of Open Access Journals (Sweden)

    Elisa eLuengo

    2014-08-01

    Full Text Available In this investigation, the influence of the application of Pulsed Electric Fields (PEF of different intensities (3-7 kV/cm and 0-300 μs on the carotenoid extraction from tomato peel and pulp in a mixture of hexane:acetone:ethanol was studied with the aim of increasing extraction yield or reducing the percentage of the less green solvents in the extraction medium. According to the cellular disintegration index, the optimum treatment time for the permeabilization of tomato peel and pulp at different electric field strengths was 90 µs. The PEF permeabilization of tomato pulp did not significantly increase the carotenoid extraction. However, a PEF-treatment at 5 kV/cm improved the carotenoid extraction from tomato peel by 39 % as compared with the control in a mixture of hexane:ethanol:acetone (50:25:25. Further increments of electric field from 5 to 7 kV/cm did not increase significantly the extraction of carotenoids. . The presence of acetone in the solvent mixture did not positively affect the carotenoid extraction when the tomato peels were PEF-treated. Response surface methodology was used to determine the potential of PEF for reducing the percentage of hexane in a hexane:ethanol mixture. The application of a PEF-treatment allowed reducing the hexane percentage from 45 to 30 % without affecting the carotenoid extraction yield. The antioxidant capacity of the extracts obtained from tomato peel was correlated with the carotenoid concentration and it was not affected by the PEF-treatment.

  9. Biosynthesis and Application of Silver and Gold Nanoparticles

    OpenAIRE

    Sadowski, Zygmunt

    2010-01-01

    A green chemistry synthetic route has been used for both silver and gold nanoparticles synthesis. The reaction occurred at ambient temperature. Among the nanoparticles biological organism, some microorganisms such as bacteria, fungi, and yeast have been exploited for nanoparticles synthesis. Several plant biomass or plant extracts have been successfully used for extracellular biosynthesis of silver and gold nanoparticles. Analytical techniques, such as ultraviolet-visible spectroscopy (UV-vis...

  10. Effects of egg consumption on carotenoid absorption from co-consumed, raw vegetables.

    Science.gov (United States)

    Kim, Jung Eun; Gordon, Susannah L; Ferruzzi, Mario G; Campbell, Wayne W

    2015-07-01

    Dietary lipids are one of the most effective stimulators of carotenoid absorption, but very limited data exist on the impact of endogenous food sources of lipids to enhance carotenoid absorption. The co-consumption of whole egg with carotenoid-rich foods may increase overall carotenoid absorption via lipid-rich egg yolk. We designed this study to assess the effects of egg consumption on carotenoid absorption from a carotenoid-rich, raw mixed-vegetable salad. Healthy young men (n = 16) consumed the same salad (all served with 3 g canola oil) with no egg (control), 75 g scrambled whole eggs (1.5 eggs) [low egg (LE)], and 150 g scrambled whole eggs (3 eggs) [high egg (HE)] (a randomized crossover design). Control, LE, and HE meals contained 23 mg, 23.4 mg (0.4 mg from eggs), and 23.8 mg (0.8 mg from eggs) total carotenoids and 3 g, 10.5 g (7.5 g from eggs), and 18 g (15 g from eggs) total lipids, respectively. Blood was collected hourly for 10 h, and the triacylglycerol-rich lipoprotein (TRL) fraction was isolated. Total and individual carotenoid contents, including lutein, zeaxanthin , α-carotene, β-carotene, and lycopene in TRL were analyzed, and composite areas under the curve (AUCs) were calculated. The total mean (±SE) carotenoid AUC0-10h in TRL was higher for the HE meal than for LE and control meals [125.7 ± 19.4(a) compared with 44.8 ± 9.2(b) compared with 14.9 ± 5.2(b) nmol/L · 10 h, respectively (values without a common superscript letter differ); P eggs, including α-carotene, β-carotene, and lycopene, increased 3-8-fold (P cooked whole eggs is an effective way to enhance carotenoid absorption from other carotenoid-rich foods such as a raw mixed-vegetable salad. This trial was registered at clinicaltrials.gov as NCT01951313. © 2015 American Society for Nutrition.

  11. Carotenoid supplementation positively affects the expression of a non-visual sexual signal.

    Directory of Open Access Journals (Sweden)

    Alain J-M Van Hout

    Full Text Available Carotenoids are a class of pigments which are widely used by animals for the expression of yellow-to-red colour signals, such as bill or plumage colour. Since they also have been shown to promote immunocompetence and to function as antioxidants, many studies have investigated a potential allocation trade-off with respect to carotenoid-based signals within the context of sexual selection. Although an effect of carotenoids on non-visual (e.g. acoustic signals involved in sexual selection has been hypothesized, this has to date not been investigated. First, we examined a potential effect of dietary carotenoid supplementation on overall song rate during the non-breeding season in captive male European starlings (Sturnus vulgaris. After only 3-7 days, we found a significant (body-mass independent positive effect of carotenoid availability on overall song rate. Secondly, as a number of studies suggest that carotenoids could affect the modulation of sexual signals by plasma levels of the steroid hormone testosterone (T, we used the same birds to subsequently investigate whether carotenoid availability affects the increase in (nestbox-oriented song rate induced by experimentally elevated plasma T levels. Our results suggest that carotenoids may enhance the positive effect of elevated plasma T levels on nestbox-oriented song rate. Moreover, while non-supplemented starlings responded to T-implantation with an increase in both overall song rate and nestbox-oriented song, carotenoid-supplemented starlings instead shifted song production towards (reproductively relevant nestbox-oriented song, without increasing overall song rate. Given that song rate is an acoustic signal rather than a visual signal, our findings therefore indicate that the role of carotenoids in (sexual signalling need not be dependent on their function as pigments.

  12. Metabolism and Potential Health Effects of Carotenoids Following Digestion of Green Leafy Vegetables

    DEFF Research Database (Denmark)

    Eriksen, Jane Nygaard

    effects on carotenoid liberation from different cultivars of Asia salads and negative or no effects on liberation and in vitro accessibility of carotenoids from spinach. In vitro-in vivo study: Mincing resulted in a factor two difference in in vitro accessibility of carotenoids when comparing whole leaf...... variable positive effects on carotenoid liberation from different cultivars of Asia salads and negative or no effects on liberation and in vitro accessibility of carotenoids from spinach. Similarly, fat addition influenced β-car liberation positively; however, the effect was eliminated on the level...

  13. FUNCTIONAL SPECIALIZATION OF DUPLICATED FLAVONOID BIOSYNTHESIS GENES IN WHEAT

    Directory of Open Access Journals (Sweden)

    Khlestkina E.

    2012-08-01

    Full Text Available Gene duplication followed by subfunctionalization and neofunctionalization is of a great evolutionary importance. In plant genomes, duplicated genes may result from either polyploidization (homoeologous genes or segmental chromosome duplications (paralogous genes. In allohexaploid wheat Triticum aestivum L. (2n=6x=42, genome BBAADD, both homoeologous and paralogous copies were found for the regulatory gene Myc encoding MYC-like transcriptional factor in the biosynthesis of flavonoid pigments, anthocyanins, and for the structural gene F3h encoding one of the key enzymes of flavonoid biosynthesis, flavanone 3-hydroxylase. From the 5 copies (3 homoeologous and 2 paralogous of the Myc gene found in T. aestivum, only one plays a regulatory role in anthocyanin biosynthesis, interacting complementary with another transcriptional factor (MYB-like to confer purple pigmentation of grain pericarp in wheat. The role and functionality of the other 4 copies of the Myc gene remain unknown. From the 4 functional copies of the F3h gene in T. aestivum, three homoeologues have similar function. They are expressed in wheat organs colored with anthocyanins or in the endosperm, participating there in biosynthesis of uncolored flavonoid substances. The fourth copy (the B-genomic paralogue is transcribed neither in wheat organs colored with anthocyanins nor in seeds, however, it’s expression has been noticed in roots of aluminium-stressed plants, where the three homoeologous copies are not active. Functional diversification of the duplicated flavonoid biosynthesis genes in wheat may be a reason for maintenance of the duplicated copies and preventing them from pseudogenization.The study was supported by RFBR (11-04-92707. We also thank Ms. Galina Generalova for technical assistance.

  14. Candidate genes involved in the biosynthesis of triterpenoid saponins in Platycodon grandiflorum identified by transcriptome analysis

    Directory of Open Access Journals (Sweden)

    Chunhua eMa

    2016-05-01

    Full Text Available Background: Platycodon grandiflorum is the only species in the genus Platycodon of the family Campanulaceae, which has been traditionally used as a medicinal plant for its lung-heat-clearing, antitussive, and expectorant properties in China, Japanese and Korean. Oleanane-type triterpenoid saponins were the main chemical components of P. grandiflorum and platycodin D was the abundant and main bioactive component, but little is known about their biosynthesis in plants. Hence, P. grandiflorum is an ideal medicinal plant for studying the biosynthesis of Oleanane-type saponins. In addition, the genomic information of this important herbal plant is unavailable.Principal Findings:A total of 58,580,566 clean reads were obtained, which were assembled into 34,053 unigenes, with an average length of 936 bp and N50 of 1,661 bp by analyzing the transcriptome data of P. grandiflorum. Among these 34,053 unigenes, 22,409 unigenes (65.80% were annotated based on the information available from public databases, including Nr, NCBI, Swiss-Prot, KOG and KEGG. Furthermore, 21 candidate cytochrome P450 genes and 17 candidate UDP-glycosyltransferase genes most likely involved in triterpenoid saponins biosynthesis pathway were discovered from the transcriptome sequencing of P. grandiflorum. In addition, 10,626 SSRs were identified based on the transcriptome data, which would provide abundant candidates of molecular markers for genetic diversity and genetic map for this medicinal plant.Conclusion:The genomic data obtained from P. grandiflorum, especially the identification of putative genes involved in triterpenoid saponins biosynthesis pathway, will facilitate our understanding of the biosynthesis of triterpenoid saponins at molecular level.

  15. Oxidative stress and the effect of parasites on a carotenoid-based ornament.

    Science.gov (United States)

    Mougeot, F; Martínez-Padilla, J; Blount, J D; Pérez-Rodríguez, L; Webster, L M I; Piertney, S B

    2010-02-01

    Oxidative stress, the physiological condition whereby the production of reactive oxygen and nitrogen species overwhelms the capacity of antioxidant defences, causes damage to key bio-molecules. It has been implicated in many diseases, and is proposed as a reliable currency in the trade-off between individual health and ornamentation. Whether oxidative stress mediates the expression of carotenoid-based signals, which are among the commonest signals of many birds, fish and reptiles, remains controversial. In the present study, we explored interactions between parasites, oxidative stress and the carotenoid-based ornamentation of red grouse Lagopus lagopus scoticus. We tested whether removing nematode parasites influenced both oxidative balance (levels of oxidative damage and circulating antioxidant defences) and carotenoid-based ornamentation. At the treatment group level, parasite purging enhanced the size and colouration of ornaments but did not significantly affect circulating carotenoids, antioxidant defences or oxidative damage. However, relative changes in these traits among individuals indicated that males with a greater number of parasites prior to treatment (parasite purging) showed a greater increase in the levels of circulating carotenoids and antioxidants, and a greater decrease in oxidative damage, than those with initially fewer parasites. At the individual level, a greater increase in carotenoid pigmentation was associated with a greater reduction in oxidative damage. Therefore, an individual's ability to express a carotenoid-based ornament appeared to be linked to its current oxidative balance and susceptibility to oxidative stress. Our experimental results suggest that oxidative stress can mediate the impact of parasites on carotenoid-based signals, and we discuss possible mechanisms linking carotenoid-based ornaments to oxidative stress.

  16. Carotenoids Functionality, Sources, and Processing by Supercritical Technology: A Review

    Directory of Open Access Journals (Sweden)

    Natália Mezzomo

    2016-01-01

    Full Text Available Carotenoid is a group of pigments naturally present in vegetal raw materials that have biological properties. These pigments have been used mainly in food, pharmaceutical, and cosmetic industries. Currently, the industrial production is executed through chemical synthesis, but natural alternatives of carotenoid production/attainment are in development. The carotenoid extraction occurs generally with vegetal oil and organic solvents, but supercritical technology is an alternative technique to the recovery of these compounds, presenting many advantages when compared to conventional process. Brazil has an ample diversity of vegetal sources inadequately investigated and, then, a major development of optimization and validation of carotenoid production/attainment methods is necessary, so that the benefits of these pigments can be delivered to the consumer.

  17. Structure versus time in the evolutionary diversification of avian carotenoid metabolic networks.

    Science.gov (United States)

    Morrison, Erin S; Badyaev, Alexander V

    2018-05-01

    Historical associations of genes and proteins are thought to delineate pathways available to subsequent evolution; however, the effects of past functional involvements on contemporary evolution are rarely quantified. Here, we examined the extent to which the structure of a carotenoid enzymatic network persists in avian evolution. Specifically, we tested whether the evolution of carotenoid networks was most concordant with phylogenetically structured expansion from core reactions of common ancestors or with subsampling of biochemical pathway modules from an ancestral network. We compared structural and historical associations in 467 carotenoid networks of extant and ancestral species and uncovered the overwhelming effect of pre-existing metabolic network structure on carotenoid diversification over the last 50 million years of avian evolution. Over evolutionary time, birds repeatedly subsampled and recombined conserved biochemical modules, which likely maintained the overall structure of the carotenoid metabolic network during avian evolution. These findings explain the recurrent convergence of evolutionary distant species in carotenoid metabolism and weak phylogenetic signal in avian carotenoid evolution. Remarkable retention of an ancient metabolic structure throughout extensive and prolonged ecological diversification in avian carotenoid metabolism illustrates a fundamental requirement of organismal evolution - historical continuity of a deterministic network that links past and present functional associations of its components. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  18. Inter-population variation of carotenoids in Galápagos land iguanas (Conolophus subcristatus).

    Science.gov (United States)

    Costantini, David; Dell'omo, Giacomo; Casagrande, Stefania; Fabiani, Anna; Carosi, Monica; Bertacche, Vittorio; Marquez, Cruz; Snell, Howard; Snell, Heidi; Tapia, Washington; Gentile, Gabriele

    2005-10-01

    Carotenoids have received much attention from biologists because of their ecological and evolutionary implications in vertebrate biology. We sampled Galápagos land iguanas (Conolophus subcristatus) to investigate the types and levels of blood carotenoids and the possible factors affecting inter-population variation. Blood samples were collected from populations from three islands within the species natural range (Santa Cruz, Isabela, and Fernandina) and one translocated population (Venecia). Lutein and zeaxanthin were the predominant carotenoids found in the serum. In addition, two metabolically modified carotenoids (anhydrolutein and 3'-dehydrolutein) were also identified. Differences in the carotenoid types were not related to sex or locality. Instead, carotenoid concentration varied across the localities, it was higher in females, and it was positively correlated to an index of body condition. Our results suggest a possible sex-related physiological role of xanthophylls in land iguanas. The variation in the overall carotenoid concentration between populations seems to be related to the differences in local abundance and type of food within and between islands.

  19. In Vitro Antioxidant, Antihemolytic, and Anticancer Activity of the Carotenoids from Halophilic Archaea.

    Science.gov (United States)

    Hou, Jing; Cui, Heng-Lin

    2018-03-01

    Halophilic archaea represent a promising natural source of carotenoids. However, little information is available about the biological effects of carotenoids from halophilic archaea. In this study, the carotenoids produced by seven halophilic archaeal strains Halogeometricum rufum, Halogeometricum limi, Haladaptatus litoreus, Haloplanus vescus, Halopelagius inordinatus, Halogranum rubrum, and Haloferax volcanii were identified by ultraviolet/visible spectroscopy, thin-layer chromatography, and high-performance liquid chromatography-tandem mass spectrometry. The C 50 carotenoids bacterioruberin and its derivatives monoanhydrobacterioruberin and bisanhydrobacterioruberin were found to be the predominant carotenoids. The antioxidant capacities of the carotenoids from these strains were significantly higher than β-carotene as determined by 1,1-diphenyl-2-picrylhydrazyl radical scavenging assay. The antihemolytic activities of these carotenoid extracts against H 2 O 2 -induced hemolysis in mouse erythrocytes were 3.9-6.3 times higher than β-carotene. A dose-dependent in vitro antiproliferative activity against HepG2 cells was observed for the extract from Hgm. limi, while that from Hpn. vescus exhibited a relatively high activity in a dose-independent manner. These results suggested that halophilic archaea could be considered as an alternative source of natural carotenoids with high antioxidant, antihemolytic, and anticancer activity.

  20. Effects of Different Systemic Insecticides in Carotenoid Content, Antibacterial Activity and Morphological Characteristics of Tomato (Solanum lycopersicum var Diamante)

    OpenAIRE

    LEXTER R. NATIVIDAD; Maria Fatima T. Astrero; Lenard T. Basinga; Maria Karysa G. Calang

    2014-01-01

    This study aimed to determine the effects of different systemic insecticides in tomato (Lycopersicon esculentum var. Diamante). The study also assessed different systemic insecticides used in other plants in their effectiveness and suitability to tomato by evaluating the carotenoid content and antibacterial activity of each insecticide. Morphological characteristics such as the weight, the number and the circumference of tomato fruits and the height of the plant were also observed. Moreover, ...

  1. Concurrent production of carotenoids and lipid by a filamentous microalga Trentepohlia arborum.

    Science.gov (United States)

    Chen, Lin; Zhang, Lanlan; Liu, Tianzhong

    2016-08-01

    During the study of Trentepohlia arborum it became clear that its cells are rich in lipids and carotenoids. Thus, lipid content, composition and fatty acids profiles in individual lipid classes, as well as pigment profiles, responding to different culture conditions, were further investigated. The results showed that the predominant carotenoids and lipid fraction in total lipid in this study was β-carotene and TAG, respectively. The lipid content increased significantly under high light while nitrogen-replete conditions induced the highest carotenoids content. However, only with a double stress of high light and nitrogen-deficiency it was possible to maximize the productivities of both carotenoids and lipids. Carotenoids (mainly β-carotene) accounted for ca. 5% of the microalgal lipid under the double stress. Data herein show the potential of T. arborum for the production of both lipids and carotenoids, and hence provide an appropriate way to produce different products from T. arborum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effect of genotype and environment on citrus juice carotenoid content.

    Science.gov (United States)

    Dhuique-Mayer, Claudie; Fanciullino, Anne-Laure; Dubois, Cecile; Ollitrault, Patrick

    2009-10-14

    A selection of orange and mandarin varieties belonging to the same Citrus accession and cultivated in Mediterranean (Corsica), subtropical (New Caledonia), and tropical areas (principally Tahiti) were studied to assess the effect of genotype and environmental conditions on citrus juice carotenoid content. Juices from three sweet orange cultivars, that is, Pera, Sanguinelli, and Valencia ( Citrus sinensis (L.) Osbeck), and two mandarin species ( Citrus deliciosa Ten and Citrus clementina Hort. ex Tan), were analyzed by HPLC using a C(30) column. Annual carotenoid content variations in Corsican fruits were evaluated. They were found to be very limited compared to variations due to varietal influences. The statistical analysis (PCA, dissimilarity tree) results based on the different carotenoid compounds showed that citrus juice from Corsica had a higher carotenoid content than citrus juices from tropical origins. The tropical citrus juices were clearly differentiated from citrus juices from Corsica, and close correlations were obtained between beta-cryptoxanthin and phytoene (r = 0.931) and beta-carotene and phytoene (r = 0.918). More broadly, Mediterranean conditions amplified interspecific differentiation, especially by increasing the beta-cryptoxanthin and cis-violaxanthin content in oranges and beta-carotene and phytoene-phytofluene content in mandarins. Thus, at a quantitative level, environmental conditions also had a major role in determining the levels of carotenoids of nutritional interest, such as the main provitamin A carotenoids in citrus juice (beta-cryptoxanthin and beta-carotene).

  3. Carotenoids and risk of fracture: a meta-analysis of observational studies.

    Science.gov (United States)

    Xu, Jiuhong; Song, Chunli; Song, Xiaochao; Zhang, Xi; Li, Xinli

    2017-01-10

    To quantify the association between dietary and circulating carotenoids and fracture risk, a meta-analysis was conducted by searching MEDLINE and EMBASE databases for eligible articles published before May 2016. Five prospective and 2 case-control studies with 140,265 participants and 4,324 cases were identified in our meta-analysis. Among which 5 studies assessed the association between dietary carotenoids levels and hip fracture risk, 2 studies focused on the association between circulating carotenoids levels and any fracture risk. A random-effects model was employed to summarize the risk estimations and their 95% confidence intervals (CIs). Hip fracture risk among participants with high dietary total carotenoids intake was 28% lower than that in participants with low dietary total carotenoids (OR: 0.72; 95% CI: 0.51, 1.01). A similar risk of hip fracture was found for β-carotene based on 5 studies, the summarized OR for high vs. low dietary β-carotene was 0.72 (95% CI: 0.54, 0.95). However, a significant between-study heterogeneity was found (total carotene: I2 = 59.4%, P = 0.06; β-carotene: I2 = 74.4%, P = 0.04). Other individual carotenoids did not show significant associations with hip fracture risk. Circulating carotene levels had no significant association with any fracture risk, the pooled OR (95% CI) was 0.83 (0.59, 1.17). Based on the evidence from observational studies, our meta-analysis supported the hypothesis that higher dietary total carotenoids or β-carotene intake might be potentially associated with a low risk of hip fracture, however, future well-designed prospective cohort studies and randomized controlled trials are warranted to specify the associations between carotenoids and fracture.

  4. Metabolomic engineering for the microbial production of cartenoids and related products with a focus on the rare C50 carotenoids

    NARCIS (Netherlands)

    Heider, S.A.E.; Peters-Wendisch, P.; Wendisch, V.F.; Beekwilder, M.J.

    2014-01-01

    Carotenoids, a subfamily of terpenoids, are yellowtored-colored pigments synthesized by plants, fungi, algae, and bacteria. They are ubiquitous in nature and take over crucial roles in many biological processes as for example photosynthesis, vision, and the quenching of free radicals and singlet

  5. Potential Role of Carotenoids as Antioxidants in Human Health and Disease

    Directory of Open Access Journals (Sweden)

    Joanna Fiedor

    2014-01-01

    Full Text Available Carotenoids constitute a ubiquitous group of isoprenoid pigments. They are very efficient physical quenchers of singlet oxygen and scavengers of other reactive oxygen species. Carotenoids can also act as chemical quenchers undergoing irreversible oxygenation. The molecular mechanisms underlying these reactions are still not fully understood, especially in the context of the anti- and pro-oxidant activity of carotenoids, which, although not synthesized by humans and animals, are also present in their blood and tissues, contributing to a number of biochemical processes. The antioxidant potential of carotenoids is of particular significance to human health, due to the fact that losing antioxidant-reactive oxygen species balance results in “oxidative stress”, a critical factor of the pathogenic processes of various chronic disorders. Data coming from epidemiological studies and clinical trials strongly support the observation that adequate carotenoid supplementation may significantly reduce the risk of several disorders mediated by reactive oxygen species. Here, we would like to highlight the beneficial (protective effects of dietary carotenoid intake in exemplary widespread modern civilization diseases, i.e., cancer, cardiovascular or photosensitivity disorders, in the context of carotenoids’ unique antioxidative properties.

  6. Potential Role of Carotenoids as Antioxidants in Human Health and Disease

    Science.gov (United States)

    Fiedor, Joanna; Burda, Květoslava

    2014-01-01

    Carotenoids constitute a ubiquitous group of isoprenoid pigments. They are very efficient physical quenchers of singlet oxygen and scavengers of other reactive oxygen species. Carotenoids can also act as chemical quenchers undergoing irreversible oxygenation. The molecular mechanisms underlying these reactions are still not fully understood, especially in the context of the anti- and pro-oxidant activity of carotenoids, which, although not synthesized by humans and animals, are also present in their blood and tissues, contributing to a number of biochemical processes. The antioxidant potential of carotenoids is of particular significance to human health, due to the fact that losing antioxidant-reactive oxygen species balance results in “oxidative stress”, a critical factor of the pathogenic processes of various chronic disorders. Data coming from epidemiological studies and clinical trials strongly support the observation that adequate carotenoid supplementation may significantly reduce the risk of several disorders mediated by reactive oxygen species. Here, we would like to highlight the beneficial (protective) effects of dietary carotenoid intake in exemplary widespread modern civilization diseases, i.e., cancer, cardiovascular or photosensitivity disorders, in the context of carotenoids’ unique antioxidative properties. PMID:24473231

  7. Isotopic tracer techniques for studying the bioavailabitity and bioefficacy of dietary carotenoids, particularly ß-carotene, in humans: a review

    NARCIS (Netherlands)

    Lieshout, van M.; West, C.E.; Breemen, van R.B.

    2003-01-01

    Vitamin A deficiency is a serious health problem in many developing countries. Provitamin A carotenoids in fruit and vegetables are the major source of vitamin A for a large proportion of the world's population. However, the contribution of plant foods is substantial only when both the consumption

  8. Associations between reported intakes of carotenoid-rich foods and concentrations of carotenoids in plasma: a validation study of a web-based food recall for children and adolescents.

    Science.gov (United States)

    Medin, Anine Christine; Carlsen, Monica Hauger; Andersen, Lene Frost

    2016-12-01

    To validate estimated intakes of carotenoid-rich foods from a web-based food recall (WebFR) using carotenoids in blood as an objective reference method. Cross-sectional validation study using carotenoids in plasma to evaluate estimated intakes of selected carotenoid-rich foods. Participants recorded their food intake in the WebFR and plasma concentrations of β-carotene, α-carotene, β-cryptoxanthin, lycopene, lutein and zeaxanthin were measured. Schools and homes of families in a suburb of the capital of Norway. A total of 261 participants in the age groups 8-9 and 12-14 years. Spearman's rank correlation coefficients ranged from 0·30 to 0·44, and cross-classification showed that 71·6-76·6 % of the participants were correctly classified, when comparing the reported intakes of carotenoid-rich foods and concentrations of the corresponding carotenoids in plasma, not including lutein and zeaxanthin. Correlations were acceptable and cross-classification analyses demonstrated that the WebFR was able to rank participants according to their reported intake of foods rich in α-carotene, β-carotene, β-cryptoxanthin and lycopene. The WebFR is a promising tool for dietary assessment among children and adolescents.

  9. Comparative Analysis of Culture Conditions for the Optimization of Carotenoid Production in Several Strains of the Picoeukaryote Ostreococcus

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Guyon

    2018-02-01

    Full Text Available Microalgae are promising sources for the sustainable production of compounds of interest for biotechnologies. Compared to higher plants, microalgae have a faster growth rate and can be grown in industrial photobioreactors. The microalgae biomass contains specific metabolites of high added value for biotechnology such as lipids, polysaccharides or carotenoid pigments. Studying carotenogenesis is important for deciphering the mechanisms of adaptation to stress tolerance as well as for biotechnological production. In recent years, the picoeukaryote Ostreococcus tauri has emerged as a model organism thanks to the development of powerful genetic tools. Several strains of Ostreococcus isolated from different environments have been characterized with respect to light response or iron requirement. We have compared the carotenoid contents and growth rates of strains of Ostreococcus (OTTH595, RCC802 and RCC809 under a wide range of light, salinity and temperature conditions. Carotenoid profiles and productivities varied in a strain-specific and stress-dependent manner. Our results also illustrate that phylogenetically related microalgal strains originating from different ecological niches present specific interests for the production of specific molecules under controlled culture conditions.

  10. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives.

    Science.gov (United States)

    Del Campo, José A; García-González, Mercedes; Guerrero, Miguel G

    2007-04-01

    Microalgae are a major natural source for a vast array of valuable compounds, including a diversity of pigments, for which these photosynthetic microorganisms represent an almost exclusive biological resource. Yellow, orange, and red carotenoids have an industrial use in food products and cosmetics as vitamin supplements and health food products and as feed additives for poultry, livestock, fish, and crustaceans. The growing worldwide market value of carotenoids is projected to reach over US$1,000 million by the end of the decade. The nutraceutical boom has also integrated carotenoids mainly on the claim of their proven antioxidant properties. Recently established benefits in human health open new uses for some carotenoids, especially lutein, an effective agent for the prevention and treatment of a variety of degenerative diseases. Consumers' demand for natural products favors development of pigments from biological sources, thus increasing opportunities for microalgae. The biotechnology of microalgae has gained considerable progress and relevance in recent decades, with carotenoid production representing one of its most successful domains. In this paper, we review the most relevant features of microalgal biotechnology related to the production of different carotenoids outdoors, with a main focus on beta-carotene from Dunaliella, astaxanthin from Haematococcus, and lutein from chlorophycean strains. We compare the current state of the corresponding production technologies, based on either open-pond systems or closed photobioreactors. The potential of scientific and technological advances for improvements in yield and reduction in production costs for carotenoids from microalgae is also discussed.

  11. Expanding the landscape of diterpene structural diversity by stereochemically controlled combinatorial biosynthesis

    DEFF Research Database (Denmark)

    Andersen-Ranberg, Johan; Kongstad, Kenneth Thermann; Nielsen, Morten Thrane

    2016-01-01

    Plant derived diterpenoids are relevant as pharmaceuticals, food additives and fragrances, yet a broader industrial utilization of these bioproducts is limited due to their low natural abundance and high structural complexity. Mimicking the modularity of diterpene biosynthesis in plants, we const...

  12. Plant ecdysteroids: plant sterols with intriguing distributions, biological effects and relations to plant hormones.

    Science.gov (United States)

    Tarkowská, Danuše; Strnad, Miroslav

    2016-09-01

    The present review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones. Plant ecdysteroids (phytoecdysteroids) are natural polyhydroxylated compounds that have a four-ringed skeleton, usually composed of either 27 carbon atoms or 28-29 carbon atoms (biosynthetically derived from cholesterol or other plant sterols, respectively). Their physiological roles in plants have not yet been confirmed and their occurrence is not universal. Nevertheless, they are present at high concentrations in various plant species, including commonly consumed vegetables, and have a broad spectrum of pharmacological and medicinal properties in mammals, including hepatoprotective and hypoglycaemic effects, and anabolic effects on skeletal muscle, without androgenic side-effects. Furthermore, phytoecdysteroids can enhance stress resistance by promoting vitality and enhancing physical performance; thus, they are considered adaptogens. This review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones.

  13. The Effects of Plant Growth Regulators on Cell Growth, Protein, Carotenoid, PUFAs and Lipid Production of Chlorella pyrenoidosa ZF Strain

    Directory of Open Access Journals (Sweden)

    Huanmin Du

    2017-10-01

    Full Text Available In the present study, eight kinds plant growth regulators—salicylic acid (SA, 1-naphthaleneacetic acid (NAA, gibberellic acid (GA3, 6-benzylaminopurine (6-BA, 2, 4-epi-brassinolide (EBR, abscisic acid (ABA, ethephon (ETH, and spermidine (SPD—were used to investigate the impact on microalgal biomass, lipid, total soluble protein, carotenoids, and polyunsaturated fatty acids (PUFAS production of Chlorella pyrenoidosa ZF strain. The results showed the quickest biomass enhancement was induced by 50 mg·L−1 NAA, with a 6.3-fold increase over the control; the highest protein content was increased by 0.005 mg·L−1 ETH, which produced 3.5-fold over the control; total carotenoids content was induced most effectively by 1 mg·L−1 NAA with 3.6-fold higher production than the control; the most efficient elicitor for lipid production was 5 mg·L−1 GA3 at 1.9-fold of the control; 0.2 mg·L−1 ETH induced the abundant production of 1.82 ± 0.23% linoleic acid; 0.65 ± 0.01% linolenic acid was induced by 1 mg·L−1 NAA; 2.53 ± 0.15% arachidonic acid and 0.44 ± 0.05% docosahexaenoic acid were induced by 5 mg·L−1 GA3. Transcriptional expression levels of seven lipid-related genes, including ACP, BC, FAD, FATA, KAS, MCTK, and SAD, were studied by real-time RT-q-PCR. 5 mg·L−1 GA3 was the most effective regulator for transcriptional expressions of these seven genes, producing 23-fold ACP, 31-fold BC, 25-fold FAD, 6-fold KAS, 12-fold MCTK compared with the controls, respectively.

  14. Genetic dissection in a mouse model reveals interactions between carotenoids and lipid metabolism.

    Science.gov (United States)

    Palczewski, Grzegorz; Widjaja-Adhi, M Airanthi K; Amengual, Jaume; Golczak, Marcin; von Lintig, Johannes

    2016-09-01

    Carotenoids affect a rich variety of physiological functions in nature and are beneficial for human health. However, knowledge about their biological action and the consequences of their dietary accumulation in mammals is limited. Progress in this research field is limited by the expeditious metabolism of carotenoids in rodents and the confounding production of apocarotenoid signaling molecules. Herein, we established a mouse model lacking the enzymes responsible for carotenoid catabolism and apocarotenoid production, fed on either a β-carotene- or a zeaxanthin-enriched diet. Applying a genome wide microarray analysis, we assessed the effects of the parent carotenoids on the liver transcriptome. Our analysis documented changes in pathways for liver lipid metabolism and mitochondrial respiration. We biochemically defined these effects, and observed that β-carotene accumulation resulted in an elevation of liver triglycerides and liver cholesterol, while zeaxanthin accumulation increased serum cholesterol levels. We further show that carotenoids were predominantly transported within HDL particles in the serum of mice. Finally, we provide evidence that carotenoid accumulation influenced whole-body respiration and energy expenditure. Thus, we observed that accumulation of parent carotenoids interacts with lipid metabolism and that structurally related carotenoids display distinct biological functions in mammals. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  15. Role of structural barriers for carotenoid bioaccessibility upon high pressure homogenization.

    Science.gov (United States)

    Palmero, Paola; Panozzo, Agnese; Colle, Ines; Chigwedere, Claire; Hendrickx, Marc; Van Loey, Ann

    2016-05-15

    A specific approach to investigate the effect of high pressure homogenization on the carotenoid bioaccessibility in tomato-based products was developed. Six different tomato-based model systems were reconstituted in order to target the specific role of the natural structural barriers (chromoplast substructure/cell wall) and of the phases (soluble/insoluble) in determining the carotenoid bioaccessibility and viscosity changes upon high pressure homogenization. Results indicated that in the absence of natural structural barriers (carotenoid enriched oil), the soluble and insoluble phases determined the carotenoid bioaccessibility upon processing whereas, in their presence, these barriers governed the bioaccessibility. Furthermore, it was shown that the increment of the viscosity upon high pressure homogenization is determined by the presence of insoluble phase, however, this result was related to the initial ratio of the soluble:insoluble phases in the system. In addition, no relationship between the changes in viscosity and carotenoid bioaccessibility upon high pressure homogenization was found. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Nutritional Aspects of Phytoene and Phytofluene, Carotenoid Precursors to Lycopene12

    OpenAIRE

    Engelmann, Nancy J.; Clinton, Steven K.; Erdman, John W.

    2011-01-01

    Epidemiological studies suggest an inverse relationship between tomato consumption and serum and tissue lycopene (LYC) levels with risk of some chronic diseases, including several cancers and cardiovascular disease. LYC, the red carotenoid found in tomatoes, is often considered to be the primary bioactive carotenoid in tomatoes that mediates health benefits, but other colorless precursor carotenoids, phytoene (PE) and phytofluene (PF), are also present in substantial quantities. PE and PF are...

  17. Aromatic Glucosinolate Biosynthesis Pathway in Barbarea vulgaris and its Response to Plutella xylostella Infestation

    Science.gov (United States)

    Liu, Tongjin; Zhang, Xiaohui; Yang, Haohui; Agerbirk, Niels; Qiu, Yang; Wang, Haiping; Shen, Di; Song, Jiangping; Li, Xixiang

    2016-01-01

    The inducibility of the glucosinolate resistance mechanism is an energy-saving strategy for plants, but whether induction would still be triggered by glucosinolate-tolerant Plutella xylostella (diamondback moth, DBM) after a plant had evolved a new resistance mechanism (e.g., saponins in Barbara vulgaris) was unknown. In B. vulgaris, aromatic glucosinolates derived from homo-phenylalanine are the dominant glucosinolates, but their biosynthesis pathway was unclear. In this study, we used G-type (pest-resistant) and P-type (pest-susceptible) B. vulgaris to compare glucosinolate levels and the expression profiles of their biosynthesis genes before and after infestation by DBM larvae. Two different stereoisomers of hydroxylated aromatic glucosinolates are dominant in G- and P-type B. vulgaris, respectively, and are induced by DBM. The transcripts of genes in the glucosinolate biosynthesis pathway and their corresponding transcription factors were identified from an Illumina dataset of G- and P-type B. vulgaris. Many genes involved or potentially involved in glucosinolate biosynthesis were induced in both plant types. The expression patterns of six DBM induced genes were validated by quantitative PCR (qPCR), while six long-fragment genes were validated by molecular cloning. The core structure biosynthetic genes showed high sequence similarities between the two genotypes. In contrast, the sequence identity of two apparent side chain modification genes, the SHO gene in the G-type and the RHO in P-type plants, showed only 77.50% identity in coding DNA sequences and 65.48% identity in deduced amino acid sequences. The homology to GS-OH in Arabidopsis, DBM induction of the transcript and a series of qPCR and glucosinolate analyses of G-type, P-type and F1 plants indicated that these genes control the production of S and R isomers of 2-hydroxy-2-phenylethyl glucosinolate. These glucosinolates were significantly induced by P. xylostella larvae in both the susceptiple P

  18. Carotenoids are essential for the assembly of cyanobacterial photosynthetic complexes

    NARCIS (Netherlands)

    Tóth, T.N.; Chukhutsina, Volha; Domonkos, Ildikó; Knoppová, Jana; Komenda, Josef; Kis, Mihály; Lénárt, Zsófia; Garab, Gyozo; Kovács, László; Gombos, Zoltán; Amerongen, Van Herbert

    2015-01-01

    In photosynthetic organisms, carotenoids (carotenes and xanthophylls) are important for light harvesting, photoprotection and structural stability of a variety of pigment-protein complexes. Here, we investigated the consequences of altered carotenoid composition for the functional organization of

  19. A comprehensive review on the colorless carotenoids phytoene and phytofluene.

    Science.gov (United States)

    Meléndez-Martínez, Antonio J; Mapelli-Brahm, Paula; Benítez-González, Ana; Stinco, Carla M

    2015-04-15

    Carotenoids and their derivatives are versatile isoprenoids involved in many varied actions, hence their importance in the agri-food industry, nutrition, health and other fields. All carotenoids are derived from the colorless carotenes phytoene and phytofluene, which are oddities among carotenoids due to their distinct chemical structure. They occur together with lycopene in tomato and other lycopene-containing foods. Furthermore, they are also present in frequently consumed products like oranges and carrots, among others. The intake of phytoene plus phytofluene has been shown to be higher than that of lycopene and other carotenoids in Luxembourg. This is likely to be common in other countries. However, they are not included in food carotenoid databases, hence they have not been linked to health benefits in epidemiological studies. Interestingly, there are evidences in vitro, animal models and humans indicating that they may provide health benefits. In this sense, the study of these colorless carotenes in the context of food science, nutrition and health should be further encouraged. In this work, we review much of the existing knowledge concerning their chemical characteristics, physico-chemical properties, analysis, distribution in foods, bioavailability and likely biological activities. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Relationships of body mass index with serum carotenoids, tocopherols and retinol at steady-state and in response to a carotenoid-rich vegetable diet intervention in Filipino schoolchildren.

    Science.gov (United States)

    Ribaya-Mercado, Judy D; Maramag, Cherry C; Tengco, Lorena W; Blumberg, Jeffrey B; Solon, Florentino S

    2008-04-01

    In marginally nourished children, information is scarce regarding the circulating concentrations of carotenoids and tocopherols, and physiological factors influencing their circulating levels. We determined the serum concentrations of carotenoids, tocopherols and retinol at steady state and in response to a 9-week vegetable diet intervention in 9-12-year-old girls (n=54) and boys (n=65) in rural Philippines. We determined cross-sectional relationships of BMI (body mass index) with serum micronutrient levels, and whether BMI is a determinant of serum carotenoid responses to the ingestion of carotenoid-rich vegetables. We measured dietary nutrient intakes and assessed inflammation by measurement of serum C-reactive protein levels. The children had low serum concentrations of carotenoids, tocopherols and retinol as compared with published values for similar-aged children in the U.S.A. The low serum retinol levels can be ascribed to inadequate diets and were not the result of confounding due to inflammation. Significant inverse correlations of BMI and serum all-trans-beta-carotene, 13-cis-beta-carotene, alpha-carotene, lutein, zeaxanthin and alpha-tocopherol (but not beta-cryptoxanthin, lycopene and retinol) were observed among girls at baseline. The dietary intervention markedly enhanced the serum concentrations of all carotenoids. Changes in serum all-trans-beta-carotene and alpha-carotene (but not changes in lutein, zeaxanthin and beta-cryptoxanthin) in response to the dietary intervention were inversely associated with BMI in girls and boys. Thus, in Filipino school-aged children, BMI is inversely related to the steady-state serum concentrations of certain carotenoids and vitamin E, but not vitamin A, and is a determinant of serum beta- and alpha-carotene responses, but not xanthophyll responses, to the ingestion of carotenoid-rich vegetable meals.

  1. Age-Related Relationships between Innate Immunity and Plasma Carotenoids in an Obligate Avian Scavenger.

    Science.gov (United States)

    López-Rull, Isabel; Hornero-Méndez, Dámaso; Frías, Óscar; Blanco, Guillermo

    2015-01-01

    Variation in immunity is influenced by allocation trade-offs that are expected to change between age-classes as a result of the different environmental and physiological conditions that individuals encounter over their lifetime. One such trade-off occurs with carotenoids, which must be acquired with food and are involved in a variety of physiological functions. Nonetheless, relationships between immunity and carotenoids in species where these micronutrients are scarce due to diet are poorly studied. Among birds, vultures show the lowest concentrations of plasma carotenoids due to a diet based on carrion. Here, we investigated variations in the relationships between innate immunity (hemagglutination by natural antibodies and hemolysis by complement proteins), pathogen infection and plasma carotenoids in nestling and adult griffon vultures (Gyps fulvus) in the wild. Nestlings showed lower hemolysis, higher total carotenoid concentration and higher pathogen infection than adults. Hemolysis was negatively related to carotenoid concentration only in nestlings. A differential carotenoid allocation to immunity due to the incomplete development of the immune system of nestlings compared with adults is suggested linked to, or regardless of, potential differences in parasite infection, which requires experimental testing. We also found that individuals with more severe pathogen infections showed lower hemagglutination than those with a lower intensity infection irrespective of their age and carotenoid level. These results are consistent with the idea that intraspecific relationships between innate immunity and