WorldWideScience

Sample records for plant building structures

  1. Models test on dynamic structure-structure interaction of nuclear power plant buildings

    International Nuclear Information System (INIS)

    Kitada, Y.; Hirotani, T.

    1999-01-01

    A reactor building of an NPP (nuclear power plant) is generally constructed closely adjacent to a turbine building and other buildings such as the auxiliary building, and in increasing numbers of NPPs, multiple plants are being planned and constructed closely on a single site. In these situations, adjacent buildings are considered to influence each other through the soil during earthquakes and to exhibit dynamic behaviour different from that of separate buildings, because those buildings in NPP are generally heavy and massive. The dynamic interaction between buildings during earthquake through the soil is termed here as 'dynamic cross interaction (DCI)'. In order to comprehend DCI appropriately, forced vibration tests and earthquake observation are needed using closely constructed building models. Standing on this background, Nuclear Power Engineering Corporation (NUPEC) had planned the project to investigate the DCI effect in 1993 after the preceding SSI (soil-structure interaction) investigation project, 'model tests on embedment effect of reactor building'. The project consists of field and laboratory tests. The field test is being carried out using three different building construction conditions, e.g. a single reactor building to be used for the comparison purposes as for a reference, two same reactor buildings used to evaluate pure DCI effects, and two different buildings, reactor and turbine building models to evaluate DCI effects under the actual plant conditions. Forced vibration tests and earthquake observations are planned in the field test. The laboratory test is planned to evaluate basic characteristics of the DCI effects using simple soil model made of silicon rubber and structure models made of aluminum. In this test, forced vibration tests and shaking table tests are planned. The project was started in April 1994 and will be completed in March 2002. This paper describes an outline and the summary of the current status of this project. (orig.)

  2. Seismic resistance design of nuclear power plant building structures in Japan

    International Nuclear Information System (INIS)

    Kitano, Takehito

    1997-01-01

    Japan is one of the countries where earthquakes occur most frequently in the world and has incurred a lot of disasters in the past. Therefore, the seismic resistance design of a nuclear power plant plays a very important role in Japan. This report describes the general method of seismic resistance design of a nuclear power plant giving examples of PWR and BWR type reactor buildings in Japan. Nuclear facilities are classified into three seismic classes and is designed according to the corresponding seismic class in Japan. Concerning reactor buildings, the short-term allowable stress design is applied for the S1 seismic load and it is confirmed that the structures have a safety margin against the S2 seismic load. (J.P.N.)

  3. Seismic resistance design of nuclear power plant building structures in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kitano, Takehito [Kansai Electric Power Co., Inc., Osaka (Japan)

    1997-03-01

    Japan is one of the countries where earthquakes occur most frequently in the world and has incurred a lot of disasters in the past. Therefore, the seismic resistance design of a nuclear power plant plays a very important role in Japan. This report describes the general method of seismic resistance design of a nuclear power plant giving examples of PWR and BWR type reactor buildings in Japan. Nuclear facilities are classified into three seismic classes and is designed according to the corresponding seismic class in Japan. Concerning reactor buildings, the short-term allowable stress design is applied for the S1 seismic load and it is confirmed that the structures have a safety margin against the S2 seismic load. (J.P.N.)

  4. Structural integrity analysis of an Ignalina nuclear power plant building subjected to an airplane crash

    International Nuclear Information System (INIS)

    Dundulis, Gintautas; Kulak, Ronald F.; Marchertas, Algirdas; Uspuras, Eugenijus

    2007-01-01

    Recent terrorist attacks using commandeered commercial airliners on civil structures have raised the issue of the ability of nuclear power plants to survive the consequences of an airliner crash. The structural integrity analysis due to the effects of an aircraft crash on an Ignalina nuclear power plant (INPP) accident localization system (ALS) building is the subject of this paper. A combination of the finite element method and empirical relationships were used for the analysis. A global structural integrity analysis was performed for a portion of the ALS building using the dynamic loading from an aircraft crash impact model. The local effects caused by impact of the aircraft's engine on the building wall were evaluated independently by using an empirical formula. The results from the crash analysis of a twin engine commercial aircraft show that the impacted reinforced concrete wall of the ALS building will not have through-the-wall concrete failure, and the reinforcement will not fail. Strain-rate effects were found to delay the onset of cracking. Therefore, the structural integrity of the impacted wall of the INPP ALS building will be maintained during the crash event studied

  5. Structural integrity analysis of an Ignalina nuclear power plant building subjected to an airplane crash

    Energy Technology Data Exchange (ETDEWEB)

    Dundulis, Gintautas [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, 3 Breslaujos, 44403 Kaunas-35 (Lithuania)]. E-mail: gintas@isag.lei.lt; Kulak, Ronald F. [RFK Engineering Mechanics Consultants (United States); Marchertas, Algirdas [Northern Illinois University (United States); Uspuras, Eugenijus [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, 3 Breslaujos, 44403 Kaunas-35 (Lithuania)

    2007-08-15

    Recent terrorist attacks using commandeered commercial airliners on civil structures have raised the issue of the ability of nuclear power plants to survive the consequences of an airliner crash. The structural integrity analysis due to the effects of an aircraft crash on an Ignalina nuclear power plant (INPP) accident localization system (ALS) building is the subject of this paper. A combination of the finite element method and empirical relationships were used for the analysis. A global structural integrity analysis was performed for a portion of the ALS building using the dynamic loading from an aircraft crash impact model. The local effects caused by impact of the aircraft's engine on the building wall were evaluated independently by using an empirical formula. The results from the crash analysis of a twin engine commercial aircraft show that the impacted reinforced concrete wall of the ALS building will not have through-the-wall concrete failure, and the reinforcement will not fail. Strain-rate effects were found to delay the onset of cracking. Therefore, the structural integrity of the impacted wall of the INPP ALS building will be maintained during the crash event studied.

  6. ANALYSIS OF SUFFICIENCY OF THE BEARING CAPACITY OF BUILDING STRUCTURES OF OPERATING SITES OF MAIN BUILDINGS OF THERMAL POWER PLANTS

    Directory of Open Access Journals (Sweden)

    Alekseeva Ekaterina Leonidovna

    2012-10-01

    Full Text Available Upon examination of eleven main buildings of power plants, analysis of defects and damages of building structures was performed. Thereafter, the damageability of principal bearing structures of main buildings of thermal plants was analyzed. It was identified that the fastest growing defects and damages were concentrated in the structures of operating sites. The research of the rate of development of the most frequent damages and defects made it possible to conclude that internal corrosion of the reinforcing steel was the most dangerous defect, as far as the reinforced concrete elements of operating sites were concerned. Methods of mathematical statistics were applied to identify the reinforcing steel development pattern inside reinforced concrete elements of floors of operating sites. It was identified that the probability of corrosion of reinforced concrete elements of operating sites was distributed in accordance with the demonstrative law. Based on these data, calculation of strength of reinforced concrete slabs and metal beams was performed in terms of their regular sections, given the natural loads and the realistic condition of structures. As a result, dependence between the bearing capacity reserve ratio and the corrosion development pattern was identified for reinforced concrete slabs and metal beams of operating sites. In order to analyze the sufficiency of the bearing capacity of building structures of operating sites in relation to their time in commission, equations were derived to identify the nature of dependence between the sufficiency of the bearing capacity of reinforced concrete slabs and metal beams of the operating sites and their time in commission.

  7. 7 CFR 51.56 - Buildings and structures.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Buildings and structures. 51.56 Section 51.56... § 51.56 Buildings and structures. The packing plant buildings shall be properly constructed and... be sufficient light consistent with the use to which the particular portion of the building is...

  8. Survey the of building and dietary structure of local residents around Yangjiang and Hongyanhe nuclear power plants

    International Nuclear Information System (INIS)

    Qian Yekan; Lei Cuiping; Sun Quanfu; Fan Yaohua; Huang Zhibiao; Cui Yong

    2011-01-01

    Objective: To provide a guide in the course of the daily operation and accident emergency response. Methods: The survey was conducted with questionnaires among heads of households collected by stratified radom sampling. The head of a household was asked about residential type and structure, the sources of drinking water, milk, type and frequency of main vegetables. Results: Two-storied and more than two-storied houses were dominant around Yangjiang nuclear power plant, single-storey houses and tile-roofed houses were dominant around Hongyanhe nuclear power plant. The top three of wall construction materials around the two nuclear power plants were orderly brick, stone and beton. Glass window shelters were in the majority. Drinking water of residents was mainly from wells and waterworks. Milk comes from nonlocal packaged products. The top five high frequency vegetables the residents around Yangjiang nuclear power plants eat were orderly cabbage, zucchini, string beans, tong dish, cucumber, and those around Yangjiang nuclear power plant were orderly chinese cabbage, leek, celery, cabbage, spinach. Conclusion: Building and dietary structure around Yangjiang and Hongyanhe nuclear power plants are incongruence. Government can make decisions to collect foods for nuclides monitoring according to building and dietary structure baseline data, and take emergency measures to direct nuclear safety radiation protection for residents when nuclear accident takes place. (authors)

  9. Dynamic analysis of auxiliary buildings in nuclear power plants

    International Nuclear Information System (INIS)

    Subramanian, K.V.; Madhava Rao, A.S.; Warudkar, A.S.

    1989-01-01

    All nuclear power plants have a large number of auxiliary buildings housing various services and control systems required for the operation of the plant. Illustrative examples are turbine building, control building, service building etc. These buildings are seismically qualified as Class I or Class II structures. Usually, these auxiliary buildings are of low rise type with two or three floors and floor heights varying from five to eight meters and of framed construction in steel or concrete or a combination of both the materials. The floors are usually staggered with large cutouts and may not extend over the full area in plan. Some of the bays are often of double story height with the columns continuous over a story in order to accommodate cranes and other equipment. The structural elements supporting the roof may consist of steel roof trusses instead of beams. The seismic analysis of these structures involves the formulation of the analytical model that can simulate the physical behavior of the structure as close as possible taking into consideration the practical aspects. The criteria adopted to formulate the mathematical model has an important bearing on the evaluated dynamic characteristics and seismic response

  10. Considerations on safety against seismic excitations in the project of reactor auxiliary building and control building in nuclear power plants

    International Nuclear Information System (INIS)

    Santos, S.H.C.; Castro Monteiro, I. de

    1986-01-01

    The seismic requests to be considered in the project of main buildings of a nuclear power plant are discussed. The models for global seismic analysis of nuclear power plant structures, as well as models for global strength distribution are presented. The models for analysing reactor auxiliary building and control building, which together with the reactor building and turbine building form the main energy generation complex in a nuclear power plant, are described. (M.C.K.) [pt

  11. Building method for nuclear power plant

    International Nuclear Information System (INIS)

    Iba, Tsutomu.

    1993-01-01

    Outer shielding buildings and inner concretes are dismantled and removed. In this case, foundations are left as they are. Then, new outer shielding buildings and inner concretes are constructed on the old foundations by way of rubber a laminates. The outer shielding buildings and the inner concretes supported by the rubber laminates have an earthquake-proof structure and vibrations upon occurrence of earthquakes can be moderated by the rubber laminates. Therefore, it is not required to make the outer shielding buildings so strong, and the weight of them can be reduced. Accordingly, the weight of the buildings is reduced compared with the buildings before dismantling, so that they can be sufficiently supported by the old foundations. This enables to build a nuclear power plant without ensuring new construction sites. (I.N.)

  12. Main building of the Paks nuclear power plant, Hungary

    International Nuclear Information System (INIS)

    Fejes, A.

    1983-01-01

    The general layout of the main service building of the power plant, the applied building materials as well as the prefabricated structures are described. The conditions of planning and construction are discussed. Novel construction methods under the given conditions were utilized. (author)

  13. Life management for a non replaceable structure: the reactor building

    International Nuclear Information System (INIS)

    Torres, V.; Francia, L.

    1998-01-01

    Phase 1 of UNESA N.P.P. Lifetime Management Project identified and ranked important components, relative to plant life management. The list showed the Reactor Containment Structure in the third position, and thirteen concrete structures were among the list top twenty. Since the Reactor Containment Building, together with the Reactor Vessel, is the only non-replaceable plant component, and has a big impact on the plant technical life, there is an increasing interest on understanding its behavior to maintain structural integrity. This paper presents: a) IAEA (International Atomic Energy Agency) Coordinated Research Program experiences and studies. Under this Program, international experts address the most frequent degradation mechanisms affecting the containment building. b) IAEA Aging Management Program adapted to our plants. The paper addresses the aging mechanisms affecting the concrete structures, reinforcing steel and prestress systems as well as the aging management programs and the mitigation and control methods. Finally, this paper presents a new module called STRUCTURES, included in phase 2 of the above mentioned project, which will monitor and document the different aging mechanisms and management programs described in item b) regarding the Reactor Containment Building (concrete liner, post stressing system, anchor elements). This module will also support the Maintenance Rule related practices. (Author)

  14. Vulnerability analysis in a pwr nuclear power plant containment building

    OpenAIRE

    Musolas Otaño, Antoni Maria

    2013-01-01

    When supervising a nuclear power plant, the containment building is crucial. Its functions are guaranteeing structural integrity and avoiding leaks in case of accident. Both events are considered of high risk. Once a given overpressure is registered inside the containment building, three possible outputs are considered: serviceability, breakdown, and collapse. The aim is the study of vulnerability. The vulnerability of the containment building under an overpressure is described by the conditi...

  15. Structural design of the turbine building of Angra Nuclear Power Station, Unit 1

    International Nuclear Information System (INIS)

    Varella, L.N.; Reis, F.J.C.; Jurkiewicz, W.J.

    1978-01-01

    The Turbine Building of the Angra Nuclear Power Plant, Unit 1, and particularly its structure and structural design are described. The Turbine Building, as far as its structure is concerned, deviates from the standard structure of any turbine building due to the fact that huge ducts are provided in the foundation mat as to accomodate the circulating water system. This aspect and the fact that the building is founded upon a very deep strata of compacted and controlled fill, makes out of the building structure 'a concrete ship floating in the sea of sand', and by the same reason presents by itself an interesting structure, worth to be known to all engineers involved in design of power plants. This pape, suplemented by a few slides shown during presentation of the paper at the conference, covers the subject mainly from the designers' point of view. (Author)

  16. Seismic design criteria for special isotope separation plant structures

    International Nuclear Information System (INIS)

    Wrona, M.W.; Wuthrich, S.J.; Rose, D.L.; Starkey, J.

    1989-01-01

    This paper describes the seismic criteria for the design of the Special Isotope Separation (SIS) production plant. These criteria are derived from the applicable Department of Energy (DOE) orders, references and proposed standards. The SIS processing plant consistent of Load Center Building (LCB), Dye Pump Building (DPB), Laser Support Building (LSB) and Plutonium Processing Building (PPB). The facility-use category for each of the SIS building structures is identified and the applicable seismic design criteria and parameters are selected

  17. Integrated structural design of nuclear power plants for high seismic areas

    International Nuclear Information System (INIS)

    Rieck, P.J.

    1979-01-01

    A design approach which structurally interconnects NPP buildings to be located in high seismic areas is described. The design evolution of a typical 600 MWe steel cylindrical containment PWR is described as the plant is structurally upgraded for higher seismic requirements, while maintaining the original plant layout. The plant design is presented as having separate reactor building and auxiliary structures for a low seismic area (0.20 g) and is structurally combined at the foundation for location in a higher seismic area (0.30 g). The evolution is completed by a fully integrated design which structurally connects the reactor building and auxiliary structures at superstructure elevations as well as foundation levels for location in very severe seismic risk areas (0.50 g). (orig.)

  18. Characteristics of Soil Structure Interaction for Reactor Building of Kashiwazaki-Kariwa Nuclear Power Plant

    International Nuclear Information System (INIS)

    Gil, Moon Joo; Jung, Rae Young; Hyun, Chang Hun; Kim, Moon Soo; Lim, Nam Hyoung

    2010-01-01

    On 16 July 2007, the Nigataken-chuetsu-oki earthquake registering a moment magnitude of 6.8 occurred at a depth of about 15 km. As a result of this earthquake, noticeable shaking exceeding the design ground motion was measured at the Tokyo Electric Power Company (TEPCO) Kashiwazaki-Kariwa Nuclear Power Station (KKN), the biggest nuclear power plant in the world, located at about 16 km away from the epicenter. This earthquake triggered a fire at an electrical transformer and insignificant damage on some parts of facilities. This event gave an impulse to study on the damage and safety margin of nuclear power plant due to the strong earthquake exceeding design basis. As a part of those efforts, KARISMA (KAshiwazaki-Kariwa Research Initiative for Seismic Margin Assessment) benchmark study was launched by the IAEA in terms of an international collaborative research. The main objectives of this research are to estimate the structural behavior and to evaluate the seismic margin of reactor building considering the effects of Soil-Structure Interaction (SSI). This paper presents verification of structural model developed here and validation of soil foundation characteristics through soil-column analysis. It has also been demonstrated that the spring constants and damping coefficient obtained from impedance analysis represent well the soil foundation characteristics

  19. Crushed stone production plant for NPP building

    International Nuclear Information System (INIS)

    Obolenskij, V.Ya.

    1982-01-01

    The project of the granite-crushed stone quarry - the large modern plant producing building materials, is presented. The quarry is designated for providing NPP and other power objects building with high-strength crushed stone. The plant consists of: quarry; crushing-sorting plant with maintenance objects arranged on its ground; basis and service stores of explosive materials; tail facility and purifying systems; water supply purifying stations; water storage basin. The plant is reserved for 2335 thousand m 3 yearly utoput of crushed stone; the staff consists of 535 persons, the budgeted cost of building is 26.6 million rubles. Physicochemical characteristics of granosyenites of the ''Granitnoye'' deposit - the raw material resource base of the plant and technological scheme of the crushing-sorting plant are given. Planned measures on building organization and recultivation of disturbed grounds are presented

  20. Structural integrity analysis of an INPP building under external loading

    International Nuclear Information System (INIS)

    Dundulis, G.; Karalevicius, R.; Uspuras, E.; Kulak, R.F.; Marchertas, A.

    2005-01-01

    After the terrorist attacks in New York and Washington D. C. using civil airplanes, the evaluation of civil airplane crashes into civil and NPP structures has become very important. The interceptions of many terrorists' communications reveal that the use of commandeered commercial aircraft is still a major part of their plans for destruction. Aircraft crash or other flying objects in the territory of the Ignalina Nuclear Power Plant (INPP) represents a concern to the plant. Aircraft traveling at high velocity have a destructive potential. The aircraft crash may damage the roof and walls of buildings, pipelines, electric motors, cases of power supplies, power cables of electricity transmission and other elements and systems, which are important for safety. Therefore, the evaluation of the structural response to an of aircraft crash is important and was selected for analysis. The structural integrity analysis due to the effects of an aircraft crash on an NPP building structure is the subject of this paper. The finite element method was used for the structural analysis of a typical Ignalina NPP building. The structural integrity analysis was performed for a portion of the ALS using the dynamic loading of an aircraft crash impact model. The computer code NEPTUNE was used for this analysis. The local effects caused by impact of the aircraft's engine on the building wall were evaluated independently by using an empirical formula. (authors)

  1. Plant integration of MITICA and SPIDER experiments with auxiliary plants and buildings on PRIMA site

    Energy Technology Data Exchange (ETDEWEB)

    Fellin, Francesco, E-mail: francesco.fellin@igi.cnr.it; Boldrin, Marco; Zaccaria, Pierluigi; Agostinetti, Piero; Battistella, Manuela; Bigi, Marco; Palma, Samuele Dal Bello Mauro Dalla; Fiorentin, Aldo; Luchetta, Adriano; Maistrello, Alberto; Marcuzzi, Diego; Ocello, Edoardo; Pasqualotto, Roberto; Pavei, Mauro; Pomaro, Nicola; Rizzolo, Andrea; Toigo, Vanni; Valente, Matteo; Zanotto, Loris; Calore, Luca; and others

    2015-10-15

    Highlights: • Focus on plant integration work supporting the realization of SPIDER and MITICA fusion experiments hosted in PRIMA buildings complex in Padova, Italy. • Huge effort of coordination and integration among many stakeholders, taking into account several constrains coming from experiments requirements (on-going) and precise time schedule and budget on buildings construction. • The paper also deals of interfaces management, coordination and integration of many competences, problems solving to find best solution also considering other aspects like safety and maintenance. - Abstract: This paper presents a description of the PRIMA (Padova Research on ITER Megavolt Accelerator) Plant Integration work, aimed at the construction of PRIMA Buildings, which will host two nuclear fusion test facilities named SPIDER and MITICA, finalized to test and optimize the neutral beam injectors for ITER experiment. These activities are very complex: inputs coming from the experiments design are changing time to time, while the buildings construction shall fulfill precise time schedule and budget. Moreover the decision process is often very long due to the high number of stakeholders (RFX, IO, third parties, suppliers, domestic agencies from different countries). The huge effort includes: forecasting what will be necessary for the integration of many experimental plants; collecting requirements and translating into inputs; interfaces management; coordination meetings with hundreds of people with various and different competences in construction and operation of fusion facilities, thermomechanics, electrical and control, buildings design and construction (civil plants plus architectural and structural aspects), safety, maintenance and management. The paper describes these activities and also the tools created to check and to validate the building design, to manage the interfaces and the organization put in place to achieve the required targets.

  2. Plant integration of MITICA and SPIDER experiments with auxiliary plants and buildings on PRIMA site

    International Nuclear Information System (INIS)

    Fellin, Francesco; Boldrin, Marco; Zaccaria, Pierluigi; Agostinetti, Piero; Battistella, Manuela; Bigi, Marco; Palma, Samuele Dal Bello Mauro Dalla; Fiorentin, Aldo; Luchetta, Adriano; Maistrello, Alberto; Marcuzzi, Diego; Ocello, Edoardo; Pasqualotto, Roberto; Pavei, Mauro; Pomaro, Nicola; Rizzolo, Andrea; Toigo, Vanni; Valente, Matteo; Zanotto, Loris; Calore, Luca

    2015-01-01

    Highlights: • Focus on plant integration work supporting the realization of SPIDER and MITICA fusion experiments hosted in PRIMA buildings complex in Padova, Italy. • Huge effort of coordination and integration among many stakeholders, taking into account several constrains coming from experiments requirements (on-going) and precise time schedule and budget on buildings construction. • The paper also deals of interfaces management, coordination and integration of many competences, problems solving to find best solution also considering other aspects like safety and maintenance. - Abstract: This paper presents a description of the PRIMA (Padova Research on ITER Megavolt Accelerator) Plant Integration work, aimed at the construction of PRIMA Buildings, which will host two nuclear fusion test facilities named SPIDER and MITICA, finalized to test and optimize the neutral beam injectors for ITER experiment. These activities are very complex: inputs coming from the experiments design are changing time to time, while the buildings construction shall fulfill precise time schedule and budget. Moreover the decision process is often very long due to the high number of stakeholders (RFX, IO, third parties, suppliers, domestic agencies from different countries). The huge effort includes: forecasting what will be necessary for the integration of many experimental plants; collecting requirements and translating into inputs; interfaces management; coordination meetings with hundreds of people with various and different competences in construction and operation of fusion facilities, thermomechanics, electrical and control, buildings design and construction (civil plants plus architectural and structural aspects), safety, maintenance and management. The paper describes these activities and also the tools created to check and to validate the building design, to manage the interfaces and the organization put in place to achieve the required targets.

  3. Seismic soil–structure interaction analysis of a nuclear power plant building founded on soil and in degraded concrete stiffness condition

    International Nuclear Information System (INIS)

    Farahani, Reza V.; Dessalegn, Tewodros M.; Vaidya, Nishikant R.; Bazan-Zurita, Enrique

    2016-01-01

    Highlights: • Three dimensional finite element modeling of a Nuclear Power Plant (NPP) building founded on soil is described. • A simplified technique to consider degraded stiffness of concrete members in seismic analysis of NPP buildings is presented. • The effect of subsurface profiles on the seismic response of a NPP building is investigated. - Abstract: This study describes three-dimensional (3-D) finite element (FE) modeling and seismic Soil-Structure Interaction (SSI) analysis of a Nuclear Power Plant (NPP) Diesel Generator Building (DGB) that is founded on soil in degraded concrete stiffness condition. A new technique is presented that uses two horizontal and vertical FE models to consider the concrete stiffness reduction of NPP buildings subjected to orthogonal ground motion excitations, in which appropriate stiffness reduction factors, based on the input motion orientation, are applied. Seismic SSI analysis is performed for each model separately, and dynamic responses are calculated in the three global directions. The results of the analysis for the two FE models are then combined, using the square-root-of-the-sum-of-squares (SRSS) combination rule. A sensitivity analysis is also performed to investigate the subsurface profile effect on the In-Structure (acceleration) Response Spectra (ISRS) of the building when subjected to site-specific Foundation Input Response Spectra (FIRS) that exhibit high spectral amplifications in the high-frequency range. The sensitivity analysis considers three strain-compatible subsurface profiles that represent Lower-Bound (LB), Best-Estimate (BE), and Upper-Bound (UB) conditions at the DGB site. The sensitivity analysis results indicate that the seismic response of the DGB founded on soil highly depends on the subsurface profile; i.e., each of the LB, BE, and UB subsurface profiles can maximize building seismic response when subjected to FIRS that exhibit high spectral amplifications in the high-frequency range

  4. Dynamic soil-structure interactions on embedded buildings

    International Nuclear Information System (INIS)

    Kobarg, J.; Werkle, H.; Henseleit, O.

    1983-01-01

    The dynamic soil-structure interaction on the horizontal seismic excitation is investigated on two typical embedded auxiliary buildings of a nuclear power plant. The structure and the soil are modelled by various analytical and numerical methods. Under the condition of the linear viscoelastic theory, i.e. soil characteristic constant in time and independent of strain, the interaction influences between a homogenous soil layer and a structure are analysied for the following parameters: 4) mathematical soil modells; 4) mathematical structure modells; 4) shear wave velocities; 3) embedment conditions; 4) earthquake time histories. (orig.) [de

  5. Computer integrated construction at AB building in reprocessing plant

    International Nuclear Information System (INIS)

    Takami, Masahiro; Azuchi, Takehiro; Sekiguchi, Kenji

    1999-01-01

    JNFL (Japan Nuclear Fuel Limited) is now processing with construction of the spent nuclear fuel reprocessing plant at Rokkasho Village in Aomori Prefecture, which is coming near to the busiest period of construction. Now we are trying to complete the civil work of AB Building and KA Building in a very short construction term by applying CIC (Computer Integrated Construction) concept, in spite of its hard construction conditions, such as the massive and complicated building structure, interferences with M and E (Mechanical and Electrical) work, severe winter weather, remote site location, etc. The key technologies of CIC are three-dimensional CAD, information network, and prefabrication and mechanization of site work. (author)

  6. Structural design of nuclear power plant using stiffened steel plate concrete structure

    International Nuclear Information System (INIS)

    Moon, Ilhwan; Kim, Sungmin; Mun, Taeyoup; Kim, Keunkyeong; Sun, Wonsang

    2009-01-01

    Nuclear power is an alternative energy source that is conducive to mitigate the environmental strains. The countries having nuclear power plants are encouraging research and development sector to find ways to construct safer and more economically feasible nuclear power plants. Modularization using Steel Plate Concrete(SC) structure has been proposed as a solution to these efforts. A study of structural modules using SC structure has been performed for shortening of construction period and enhancement of structural safety of NPP structures in Korea. As a result of the research, the design code and design techniques based on limit state design method has been developed. The design code has been developed through various structural tests and theoretical studies, and it has been modified by application design of SC structure for NPP buildings. The code consists of unstiffened SC wall design, stiffened SC wall design, Half-SC slab design, stud design, connection design and so on. The stiffened steel plate concrete(SSC) wall is SC structure whose steel plates with ribs are composed on both sides of the concrete wall, and this structure was developed for improved constructability and safety of SC structure. This paper explains a design application of SC structure for a sample building specially devised to reflect all of major structural properties of main buildings of APR1400. In addition, Stiffening effect of SSC structure is evaluated and structural efficiency of SSC structure is verified in comparison with that of unstiffened SC structure. (author)

  7. LEGO® bricks as building blocks for centimeter-scale biological environments: the case of plants.

    Science.gov (United States)

    Lind, Kara R; Sizmur, Tom; Benomar, Saida; Miller, Anthony; Cademartiri, Ludovico

    2014-01-01

    LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil.

  8. New approaches to building plants

    International Nuclear Information System (INIS)

    Garcia Rodriguez, A.; Keuter, D.; Fici, J.; Hucik, S.; Kim, S. H.; Esteve, B.; Hiwano, M.

    2004-01-01

    We are here today with a group of representatives from a good number of the companies capable of building nuclear power plants to hold a roundtable discussion on a subject of importance, namely New approaches to building plants. I would mention that despite the hard times suffered by our industry, a significant number of Main Suppliers have stayed in business, along with an important associated industry in the fields of equipment goods, engineering and construction. In fact, not only has it been possible to maintain the high level of technology and experience achieved, but also to update and improve it. While navigating this sea of troubles our companies have continued to provide and efficient support to nuclear power plants in operation, develop solutions to upgrade them, build the few new power plants demanded by the market and create advanced designs for new programmes. It has not been easy, but the results are there for everyone to see. Our industry is prepared to tackle new projects based on the lessons learned from the construction and operation of a large number of nuclear power plants worldwide, and the efforts of firms and authorities around the world to prepare for the launching of future generations of power plants. The conclusion is that we can count on an industry that is alive, healthy and has a large potential for growth, and which is convinced that there is a need for nuclear energy and that the conditions for its future revival are swiftly improving

  9. Modern frame structure buildings

    Directory of Open Access Journals (Sweden)

    В. М. Першаков

    2013-07-01

    Full Text Available The article deals with the design, construction and implementation of reinforced concrete frame structures with span 18, 21 m for agricultural production buildings, hall-premises of public buildings and buildings of agricultural aviation. Structures are prefabricated frame buildings and have such advantages as large space inside the structure and lower cost compared with other facilities with same purpose

  10. LEGO® bricks as building blocks for centimeter-scale biological environments: the case of plants.

    Directory of Open Access Journals (Sweden)

    Kara R Lind

    Full Text Available LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil.

  11. Blasting jobs on the building site of the Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Voda, J.; Podel, R.

    1984-01-01

    The problems are discussed of the preparation and implementation on the Temelin nuclear power plant building site of blasting, the volume of drilling and the choice of the drill hammer - all based on experience gained during the construction of the Mochovce nuclear power plant. The amount of explosives used on the Temelin site will be 1400 t. The use of mechanical charging may shorten the preparation of the site by 20 to 30%. Explosive emulsion slurries are being developed from home raw materials whose application will reduce the volume of drilling by 15%. The method of controlled breaking secures adequate quality of peripheral walls and bottom chink but special explosives will have to be used. Seismic effects are discussed of blasting on dwellings, agricultural and industrial buildings in the vicinity of the site, on-site buildings, underground mains and special structures of the nuclear power plant. (E.S.)

  12. Method for building a nuclear power plant and layout thereof

    International Nuclear Information System (INIS)

    Matsuura, Tadashi; Ushiroda, Kouchi; Tajiri, Akinori; Yoshida, Naoto; Takeda, Masakado; Makita, Tasuo; Maezawa, Sumito; Yoshizaki, Masatoshi.

    1997-01-01

    The present invention relates to a technical field of building a nuclear power plant, and its technical issue is to reduce the scale of investment for cranes to be used in building a plurality of nuclear power plant units. In order to resolve the technical issue, in the present invention, a nuclear power plant building method is employed in building a plurality of nuclear plant units in which while an earlier building unit out of the plurality of units which is started to be built earlier is being built, a later building unit that is to be started to be built later than the earlier building unit is started to be built, and in which a common mobile crane is adapted to move between a crane operating area for the earlier building unit and a crane operating area for the later building unit so that the common mobile crane ban be used in building the plurality of units. The present invention is primarily intended for the construction of a nuclear power plant. (author) figs

  13. Assessment of seismic damages in nuclear power plant buildings

    International Nuclear Information System (INIS)

    Corsanego, A.; DelGrosso, A.; Ferro, G.

    1987-01-01

    Performance of nuclear power plant sites, buildings and components is in today's practice continuously evaluated by means of monitoring systems composed by a variety of instruments, allowing records of the most significant behavioral parameters to be gathered by electronic data acquisition equipment. A great emphasis has been devoted in recent years to the development of ''intelligent'' monitoring systems able to perform interpretation of the response of structures and components automatically, only requiring human intervention and sophisticated data processing techniques when degradation of the safety margins is likely to have been produced. Such computerized procedures can be formulated through logic or algorithmic processes and normally are consistently based upon simplified, heuristic behavioral models and probabilistic reasoning schemes. This paper is devoted to discuss the development of an algorithmic procedure intended for automatic, real-time interpretation of the recorded response of nuclear power plant buildings and foundations during seismic events

  14. Periodic Safety Review of Tendon Pre-stress of Concrete Containment Building for a CA U-Type clear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Kwang Ho; Lim, Woo Sang [Korea Hydro and clear Power Co., Daejeon (Korea, Republic of)

    2009-10-15

    Generally, as the tendon pre-stress of concrete containment buildings at nuclear power plants decreases as time passes due to the concrete creep, concrete shrinkage and the relaxation of tendon strands, the tendon pre-stress must secure the structural integrity of these buildings by maintaining its value higher than that of the designed pre-stress during the overall service life of the nuclear power plants. Moreover, if necessary, the degree of tendon pre-stress must also guarantee the structural integrity of concrete containment buildings over their lifetimes. This paper evaluated the changes in the tendon pre-stress of a concrete containment building subject to time-limited aging as an item in a periodic safety review (PSR) of Wolsong unit 1, a CANDU-type nuclear power plant to ensure that the structural integrity can be maintained until the next PSR period after the designed lifetime.

  15. Assessment of Technogenic Accident Risk of Industrial Building Structures

    Science.gov (United States)

    Baiburin, D. A.; Baiburin, A. Kh

    2017-11-01

    A methodology for assessing the risk of an industrial building accident was developed taking into account the damage caused by various localization of collapse. Before the beginning of the survey of a facility technical condition, groups including the same type of building structures are selected. Further, assessment is made for the reduction in their load-carrying capacity from the strength and stability conditions taking into account defects. The characteristics of the influence of defects and structural damage on a building safety is the degree of compliance with the standards expressed by the reliability level. Reliability levels assignment is carried out on the basis of calculations, operating experience and inspection of a particular type of structure according to the formalized rules. The risk of collapse according to a separate scenario is calculated for structures that are capable and incapable of causing a progressive ossification. The results of the technique application are based on the analysis of the accident risk at the welding shop “Vysota (Height) 239” of the Chelyabinsk Pipe Rolling Plant.

  16. Decommissioning of building part of nuclear power plant

    International Nuclear Information System (INIS)

    Sochor, R.

    1988-01-01

    The characteristics are discussed using literature data of building work during decommissioning or reconstruction of nuclear power plants. The scope of jobs associated with power plant decommissioning is mainly given by the size of contaminated parts, intensity of radioactivity, the volume of radioactive wastes and the possible building processes. Attention is devoted to the cost of such jobs and the effect of the plant design on cost reduction. (Z.M.). 6 refs

  17. Seismic analysis procedures for the plutonium processing building of the Special Isotope Separation Plant

    International Nuclear Information System (INIS)

    Chen, C.P.; Tajirian, F.F.; Todeschini, R.A.A.; Dahlke, H.J.

    1989-01-01

    This paper describes the methodology for the seismic soil-structure interaction (SSI) analysis of the Plutonium Processing Building (PPB) which is part of the Special Isotope Separation (SIS) Production Plant. The PPB consists of two structures, the enclosure building and the optics/separator area. These are founded on two independent foundations which are supported on the surface of a soil medium consisting of gravel overlying basalt. The PPB is classified as a safety related structure and is required to withstand the effects of a Design Basis Earthquake (DBE)

  18. The Structure of Affine Buildings

    CERN Document Server

    Weiss, Richard M

    2009-01-01

    In The Structure of Affine Buildings, Richard Weiss gives a detailed presentation of the complete proof of the classification of Bruhat-Tits buildings first completed by Jacques Tits in 1986. The book includes numerous results about automorphisms, completions, and residues of these buildings. It also includes tables correlating the results in the locally finite case with the results of Tits's classification of absolutely simple algebraic groups defined over a local field. A companion to Weiss's The Structure of Spherical Buildings, The Structure of Affine Buildings is organized around the clas

  19. Building of nuclear power plant

    International Nuclear Information System (INIS)

    Saito, Takashi.

    1997-01-01

    A first nuclear plant and a second nuclear power plant are disposed in adjacent with each other in a building for a nuclear reactor. A reactor container is disposed in each of the plants, and each reactor container is surrounded by a second containing facility. A repairing chamber capable of communicating with the secondary containing facilities for both of the secondary containing facilities is disposed being in contact with the second containing facility of each plant for repairing control rod driving mechanisms or reactor incorporated-type recycling pumps. Namely, the repairing chamber is in adjacent with the reactor containers of both plants, and situated between both of the plants as a repairing chamber to be used in common for both plants. Air tight inlet/exit doors are formed to the inlets/exits of both plants of the repairing chamber. Space for the repairing chamber can be reduced to about one half compared with a case where the repairing chamber is formed independently on each plant. (I.N.)

  20. Structural analysis of reactor buildings with help of complete FE models

    International Nuclear Information System (INIS)

    Diaz, B.E.; Vaz, L.E.; Martha, L.F.R.; Costa, E.

    1984-01-01

    The reinforced concrete structures located within the steel containment shell of a Reactor Building are formed by highly complex structures subjected to a large amount of actions due to different causes. The analysis of this complex structure can be performed with help of small models, each one representing a part of the global structure. The interaction effects among the partial models are accounted for in approximate way. This approach has been used previously with entire success in the design of 1300 MW PWR nuclear power plants. However a new and entire different approach can be used in the design of these structures. The entire assembly of structural elements of the building is represented and analyzed with help of a single and very large FE model. This paper will present the main characteristics of this type of analysis as well as all the necessary procedures, which must be implemented for the proper data processing of the forces and the automatic reinforced concrete design of the structural elements of the Reactor Building. (Author) [pt

  1. Condition monitoring and maintenance of nuclear power plant concrete structures

    International Nuclear Information System (INIS)

    Orr, R.; Prasad, N.

    1988-01-01

    Nuclear power plant concrete structures are potentially subject to deterioration due to several environmental conditions, including weather exposure, ground water exposure, and sustained high temperature and radiation levels. The nuclear power plant are generally licensed for a term of 40 years. In order to maximize the return from the existing plants, feasibility studies are in progress for continued operation of many of these plants beyond the original licensed life span. This paper describes a study that was performed with an objective to define appropriate condition monitoring and maintenance procedures. A timely implementation of a condition monitoring and maintenance program would provide a valuable database and would provide justification for extension of the plant's design life. The study included concrete structures such as the containment buildings, interior structures, basemats, intake structures and cooling towers. Age-related deterioration at several operating power plants was surveyed and the potential degradation mechanisms have been identified

  2. Upgrading of seismic design of nuclear power plant building

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Hiroshi [Tokyo Univ. (Japan). Faculty of Engineering; Kitada, Yoshio

    1997-03-01

    In Japan seismic design methodology of nuclear power plant (NPP) structures has been established as introduced in the previous session. And yet efforts have been continued to date to upgrade the methodology, because of conservative nature given to the methodology in regard to unknown phenomena and technically-limited modeling involved in design analyses. The conservative nature tends to produce excessive safety margins, and inevitably send NPP construction cost up. Moreover, excessive seismic design can increase the burden on normal plant operation, though not necessarily contributing to overall plant safety. Therefore, seismic engineering has put to many tests and simulation analyses in hopes to rationalize seismic design and enhance reliability of seismic safety of NPPs. In this paper, we describe some studies on structural seismic design of NPP underway as part of Japan`s effort to upgrade existing seismic design methodology. Most studies described here are carried out by NUPEC (Nuclear Power Engineering Company) funded by MITI (the Ministry of International Trade and Industry Japan), though, similar studies with the same motive are also carrying out by nuclear industries such as utilities, NPP equipment and system manufacturers and building constructors. This paper consists of three sections, each introducing studies relating to NPP structural seismic design, new siting technology, and upgrading of the methodology of structural design analyses. (J.P.N.)

  3. Upgrading of seismic design of nuclear power plant building

    International Nuclear Information System (INIS)

    Akiyama, Hiroshi; Kitada, Yoshio.

    1997-01-01

    In Japan seismic design methodology of nuclear power plant (NPP) structures has been established as introduced in the previous session. And yet efforts have been continued to date to upgrade the methodology, because of conservative nature given to the methodology in regard to unknown phenomena and technically-limited modeling involved in design analyses. The conservative nature tends to produce excessive safety margins, and inevitably send NPP construction cost up. Moreover, excessive seismic design can increase the burden on normal plant operation, though not necessarily contributing to overall plant safety. Therefore, seismic engineering has put to many tests and simulation analyses in hopes to rationalize seismic design and enhance reliability of seismic safety of NPPs. In this paper, we describe some studies on structural seismic design of NPP underway as part of Japan's effort to upgrade existing seismic design methodology. Most studies described here are carried out by NUPEC (Nuclear Power Engineering Company) funded by MITI (the Ministry of International Trade and Industry Japan), though, similar studies with the same motive are also carrying out by nuclear industries such as utilities, NPP equipment and system manufacturers and building constructors. This paper consists of three sections, each introducing studies relating to NPP structural seismic design, new siting technology, and upgrading of the methodology of structural design analyses. (J.P.N.)

  4. Energy optimization methodology of multi-chiller plant in commercial buildings

    International Nuclear Information System (INIS)

    Thangavelu, Sundar Raj; Myat, Aung; Khambadkone, Ashwin

    2017-01-01

    This study investigates the potential energy savings in commercial buildings through optimized operation of a multi-chiller plant. The cooling load contributes 45–60% of total power consumption in commercial and office buildings, especially at tropics. The chiller plant operation is not optimal in most of the existing buildings because the chiller plant is either operated at design condition irrespective of the cooling load or optimized locally due to lack of overall chiller plant behavior. In this study, an overall energy model of chiller plant is developed to capture the thermal behavior of all systems and their interactions including the power consumption. An energy optimization methodology is proposed to derive optimized operation decisions for chiller plant at regular intervals based on building thermal load and weather condition. The benefits of proposed energy optimization methodology are examined using case study problems covering different chiller plant configurations. The case studies result confirmed the energy savings achieved through optimized operations is up to 40% for moderate size chiller plant and around 20% for small chiller plant which consequently reduces the energy cost and greenhouse gas emissions. - Highlights: • Energy optimization methodology improves the performance of multi-chiller plant. • Overall energy model of chiller plant accounts all equipment and the interactions. • Operation decisions are derived at regular interval based on time-varying factors. • Three case studies confirmed 20 to 40% of energy savings than conventional method.

  5. Seismic Safety Margins Research Program (Phase I). Project IV. Structural building response; Structural Building Response Review

    International Nuclear Information System (INIS)

    Healey, J.J.; Wu, S.T.; Murga, M.

    1980-02-01

    As part of the Phase I effort of the Seismic Safety Margins Research Program (SSMRP) being performed by the University of California Lawrence Livermore Laboratory for the US Nuclear Regulatory Commission, the basic objective of Subtask IV.1 (Structural Building Response Review) is to review and summarize current methods and data pertaining to seismic response calculations particularly as they relate to the objectives of the SSMRP. This material forms one component in the development of the overall computational methodology involving state of the art computations including explicit consideration of uncertainty and aimed at ultimately deriving estimates of the probability of radioactive releases due to seismic effects on nuclear power plant facilities

  6. Full scale vibration test on nuclear power plant auxiliary building: Part I

    International Nuclear Information System (INIS)

    Langer, V.; Tinic, S.; Berger, E.; Zwicky, P.; Prater, E.G.

    1987-01-01

    In connection with the construction of the reinforced concrete auxiliary building housing the two boric water tanks (so-called BOTA building) of the Beznau Nuclear Power Plant in Switzerland the opportunity was given to carry out full scale vibration tests in November 1985. The overall aim of the tests was to validate computational models and parameters widely used in the seismic analysis of the structures and critical components of nuclear power plants. The scope of the experimental investigation was the determination of the eigenfrequencies and damping values for the fundamental soil-structure interaction (SSI) modes. The excitation level was aimed to be as high as feasibly possible. A working group was formed of representatives of the owner, NOK, the consulting firm Basler and Hofmann and the ETH to supervise the project. The project's main phases were the planning and execution of the tests, the evaluation of recorded data, numerical simulation of the tests using different computer models and finally the comparison and interpretation of measured and computed results

  7. Introduction of Integrity Evaluation Criteria Developing during and after fire for Nuclear Power Plant Buildings

    International Nuclear Information System (INIS)

    Lee, Jin Woo

    2016-01-01

    The first project for nuclear power plant built in Korea to taking account the engineering based approach was started on October 2015 including the whole process such as fire hazard analysis, standard fire modeling, cable tray fire with multi spurious operation, structural fire integrity evaluation, and large area fire induced air craft crash. This paper covers the brief developing scheme and roadmap focusing on structural fire evaluation criteria. The meaningful first step for developing the structural fire integrity in nuclear power plant building is started with the series of fire related sub sections mentioned in earlier section. The recognition and sufficient effort of fire research leads to set up the safe and reliable design of nuclear power plant

  8. Introduction of Integrity Evaluation Criteria Developing during and after fire for Nuclear Power Plant Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Woo [KEPCo, Gimcheon (Korea, Republic of)

    2016-05-15

    The first project for nuclear power plant built in Korea to taking account the engineering based approach was started on October 2015 including the whole process such as fire hazard analysis, standard fire modeling, cable tray fire with multi spurious operation, structural fire integrity evaluation, and large area fire induced air craft crash. This paper covers the brief developing scheme and roadmap focusing on structural fire evaluation criteria. The meaningful first step for developing the structural fire integrity in nuclear power plant building is started with the series of fire related sub sections mentioned in earlier section. The recognition and sufficient effort of fire research leads to set up the safe and reliable design of nuclear power plant.

  9. Progress in the integration of the ITER plant systems in auxiliary buildings

    International Nuclear Information System (INIS)

    Kotamäki, M.; Cordier, J.-J.; Kuehn, I.; Perrin, J.-L.; Sweeney, S.; Villedary, B.

    2016-01-01

    Highlights: • Usage of 3D CAD model in ITER configuration management presented. • 3D CAD models efficient in configuration and interface management. • Costly and schedule delaying changes avoided with proper interface management. • ITER buildings construction progressing. - Abstract: The ITER Tokamak machine is located in the center of Tokamak complex buildings consisting of Tokamak, Diagnostic, and Tritium buildings. Around the Tokamak complex there are over 30 auxiliary buildings housing various plant systems serving the Tokamak machine either directly or indirectly. The layout and space allocation of each auxiliary building and plant systems housed by the building are represented in the so-called Configuration Management Models (CMM). These are light 3D CAD models that define the required space envelope and the physical interfaces between the systems and the buildings and in-between the systems. The paper describes the CMM and interface management processes of the ITER auxiliary buildings and plant systems, and discusses the preparations for the plant installation phase. In addition, the current baseline configuration of the ITER plant systems in auxiliary buildings is described together with the recent developments in the configuration of different systems, as well as the current status of the construction of the buildings.

  10. Progress in the integration of the ITER plant systems in auxiliary buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kotamäki, M., E-mail: miikka.kotamaki@iter.org; Cordier, J.-J.; Kuehn, I.; Perrin, J.-L.; Sweeney, S.; Villedary, B.

    2016-11-01

    Highlights: • Usage of 3D CAD model in ITER configuration management presented. • 3D CAD models efficient in configuration and interface management. • Costly and schedule delaying changes avoided with proper interface management. • ITER buildings construction progressing. - Abstract: The ITER Tokamak machine is located in the center of Tokamak complex buildings consisting of Tokamak, Diagnostic, and Tritium buildings. Around the Tokamak complex there are over 30 auxiliary buildings housing various plant systems serving the Tokamak machine either directly or indirectly. The layout and space allocation of each auxiliary building and plant systems housed by the building are represented in the so-called Configuration Management Models (CMM). These are light 3D CAD models that define the required space envelope and the physical interfaces between the systems and the buildings and in-between the systems. The paper describes the CMM and interface management processes of the ITER auxiliary buildings and plant systems, and discusses the preparations for the plant installation phase. In addition, the current baseline configuration of the ITER plant systems in auxiliary buildings is described together with the recent developments in the configuration of different systems, as well as the current status of the construction of the buildings.

  11. Study on integrity evaluation of structures associated with nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The 3.11 Tohoku District -off the Pacific Ocean Earthquake and tsunami made us observations of tsunami height in large exceedance of the design, and besides it gave the most damages to several nuclear power plants facing the Pacific Ocean at source area of the earthquake. Particularly, at Fukushima-Daiichi Nuclear Power Plant, the great tsunami caused the simultaneous failure on several plant's equipment and components, which escalated into the core damage. Considering these background, the objective of this research is to enhance fundamental technology relative to integrity evaluation of SSC's (System, Structure, components) targeting external events such as earthquakes and tsunamis. Specifically, it is performed to develop structure evaluation methods against tsunami, to develop seismic isolation system, and to enhance non-liner analysis methods for building and so on. In viewpoint of the other external events except earthquake and tsunami, it was performed to develop impact analysis methods on building and outdoor structure against swept things caused by tornadoes. After that on the basis of these developments, it is performed to draw up guidelines such as the base isolation structure review guide, and the structure design and risk evaluation guide against tsunami, which are to be used in cross-check analysis targeting integrity evaluation of nuclear power plant's structures against external events such as earthquakes and tsunamis. (author)

  12. Study on integrity evaluation of structures associated with nuclear power plants

    International Nuclear Information System (INIS)

    2013-01-01

    The 3.11 Tohoku District -off the Pacific Ocean Earthquake and tsunami made us observations of tsunami height in large exceedance of the design, and besides it gave the most damages to several nuclear power plants facing the Pacific Ocean at source area of the earthquake. Particularly, at Fukushima-Daiichi Nuclear Power Plant, the great tsunami caused the simultaneous failure on several plant's equipment and components, which escalated into the core damage. Considering these background, the objective of this research is to enhance fundamental technology relative to integrity evaluation of SSC's (System, Structure, components) targeting external events such as earthquakes and tsunamis. Specifically, it is performed to develop structure evaluation methods against tsunami, to develop seismic isolation system, and to enhance non-liner analysis methods for building and so on. In viewpoint of the other external events except earthquake and tsunami, it was performed to develop impact analysis methods on building and outdoor structure against swept things caused by tornadoes. After that on the basis of these developments, it is performed to draw up guidelines such as the base isolation structure review guide, and the structure design and risk evaluation guide against tsunami, which are to be used in cross-check analysis targeting integrity evaluation of nuclear power plant's structures against external events such as earthquakes and tsunamis. (author)

  13. Building technology on construction site of nuclear power plant at Zaporozh'e

    Energy Technology Data Exchange (ETDEWEB)

    Dusek, R; Matyas, V [Vodni Stavby, Prague (Czechoslovakia)

    1981-12-01

    Basic data and technical and economic indexes are shown for a WWER 1000 nuclear power plant being built 120 km off Zaporozh'e (USSR). The schedule of construction and the choice of the means of mechanization used for building work are reported. Discussed are building machines used, the location of assembly cranes of the main unit, the design and the building technology of the reactor part, the engine house, deisel generator station, the special operations building, the use of concrete and steel units in the building, and the procurement of materials for the construction. The knowledge gained from the building of the power plant will be applied in the CSSR in the building of 1000 MW unit power plants.

  14. Reactor building design of nuclear power plant ATUCHA II, Argentina

    International Nuclear Information System (INIS)

    Rufino, R.E.; Hermann, E.R.; Richter, E.

    1984-01-01

    It is presented the civil engineering project carried out by the joint venture Hochtief - Techint-Bignoli (HTB) for the reactor building at the Atucha II power plant (PHWR of 745 MWe) in Buenos Aires. All the other civil projects at Atucha II are also being carried out by HTB. This building has the same general characteristics of the PWR plants developed by KWU in Germany, known for the spherical steel containment 56m in diameter. Nevertheless, it differs from those principally in the equipment lay-out and the remarkable foundation depth. From the basic engineering provided by ENACE, the joint venture has had to face the challenge of designing a tridimensional structure of large size. This has necessitated using simplified models which had to be superimposed, since the use of only one spatial mode would be highly inadequate, lacking the flexibility necessary to absorb the numerous modifications that this type of project undergoes during construction. In addition, this procedure has eliminated resorting to numerous and costly computer processings. (Author) [pt

  15. Damping in building structures during earthquakes: test data and modeling

    International Nuclear Information System (INIS)

    Coats, D.W. Jr.

    1982-01-01

    A review and evaluation of the state-of-the-art of damping in building structures during earthquakes is presented. The primary emphasis is in the following areas: 1) the evaluation of commonly used mathematical techniques for incorporating damping effects in both simple and complex systems; 2) a compilation and interpretation of damping test data; and 3) an evaluation of structure testing methods, building instrumentation practices, and an investigation of rigid-body rotation effects on damping values from test data. A literature review provided the basis for evaluating mathematical techiques used to incorporate earthquake induced damping effects in simple and complex systems. A discussion on the effectiveness of damping, as a function of excitation type, is also included. Test data, from a wide range of sources, has been compiled and interpreted for buidings, nuclear power plant structures, piping, equipment, and isolated structural elements. Test methods used to determine damping and frequency parameters are discussed. In particular, the advantages and disadvantages associated with the normal mode and transfer function approaches are evaluated. Additionally, the effect of rigid-body rotations on damping values deduced from strong-motion building response records is investigated. A discussion of identification techniques typically used to determine building parameters (frequency and damping) from strong motion records is included. Finally, an analytical demonstration problem is presented to quantify the potential error in predicting fixed-base structural frequency and damping values from strong motion records, when rigid-body rotations are not properly accounted for

  16. Tornado risk analysis at Savannah River Plant using windspeed damage thresholds and single building strike frequencies

    International Nuclear Information System (INIS)

    Taylor, D.H.; McDonald, J.R.; Twisdale, L.A.

    1985-01-01

    Tornado risk analysis at the Savannah River Plant has taken a two pronged approach: (1) developing a catalogue of damage thresholds as a function of windspeed for processing buildings and other representative site structures; (2) developing a method of estimating, for each building, the probability of a tornado exceeding each damage threshold. Wind resistance of building construction at SRP varies widely depending on the function of the structure. It was recognized that all tornadoes do not necessarily seriously damage buildings, but the damage thresholds were unknown. In order to evaluate the safety of existing structures and properly design new structures, an analysis of tornado resistance was conducted by J.R. McDonald on each process building at SRP and other buildings by type. Damage estimates were catalogued for each Fujita class windspeed interval and windspeeds were catalogued as a function of increased levels of damage. Tornado single point and structure specific strike probabilities for the SRP site were determined by L.A. Twisdale using the TORRISK computer code. To calculate the structure specific strike probability, a correction factor is determined from a set of curves using building area and aspect ratio (length/width relative to north) as parameters. The structure specific probability is then the product of the correction factor and the point probability. The correction factor increases as a function of building size and windspeed. For large buildings (10 5 ft 2 ) and very intense storms (250 mph), the correction factor is equal to or greater than 4. The cumulative probability of a tornado striking any building type (process, personnel, etc.) was also calculated

  17. Seismic evaluation and strengthening of Bohunice nuclear power plant structures

    International Nuclear Information System (INIS)

    Shipp, J.G.; Short, S.A.; Grief, T.; Borov, V.; Kuzma, J.

    2001-01-01

    A seismic assessment and strengthening investigation is being performed for selected structures at the Bohunice V1 Nuclear Power Plant in Slovakia. Structures covered in this paper include the reactor building complex and the emergency generator station. The emergency generator station is emphasized in the paper as work is nearly complete while work on the reactor building complex is ongoing at this time. Seismic evaluation and strengthening work is being performed by a cooperative effort of Siemens and EQE along with local contractors. Seismic input is the interim Review Level Earthquake (horizontal peak ground acceleration of 0.3 g). The Bohunice V1 reactor building complex is a WWER 4401230 nuclear power plant that was originally built in the mid-1970s but had extensive seismic upgrades in 1991. Siemens has performed three dimensional dynamic analyses of the reactor building complex to develop seismic demand in structural elements. EQE is assessing seismic capacities of structural elements and developing strengthening schemes, where needed. Based on recent seismic response analyses for the interim Review Level Earthquake which account for soil-structure interaction in a rigorous manner, the 1991 seismic upgrade has been found to be inadequate in both member/connection strength and in providing complete load paths to the foundation. Additional strengthening is being developed. The emergency generator station was built in the 1970s and is a two-story unreinforced brick masonry (URM) shear wall building above grade with a one story reinforced concrete shear wall basement below grade. Seismic analyses and testing of the URM walls has been performed to assess the need for building strengthening. Required structural strengthening for in-plane forces consists of revised and additional vertical steel framing and connections, stiffening of horizontal roof bracing, and steel connections between the roof and supporting walls and pointing of two interior transverse URM

  18. Rationalization of design and construction of buildings for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Shunsaku; Mitsumatsu, Kazuo

    1987-02-01

    This article presents various rationalization methods introduced in the past few years for design and construction of BWR nuclear power plant buildings. When the site for a nuclear power plant has been decided, investigation is made on various aspects of possible earthquakes, based on which anti-earthquake design for the plant site is established. The next step is to examine the displacements and stresses that may occur to various parts of the bulding from a postulated earthquake. This is normally called the earthquake response analysis and consists of calculating the behaviors of the buildings using large computers. A seismic controlled structure system has recently proposed, aiming to reduce the displacements and stresses of the building itself by controlling the flexibility of the installed seismic apparatus against the input of external loads. Lately, high strength concrete and high strength reinforcing steel bars (rebars) are being considered for practical application. If advanced computers and related accessories are utilized to the maximum, it will lead not only to efficiency in the design work but to the possibility of optimized design. For rational construction, a combined scaffolding and temporary support has been devised to reduce the time and volume of required temporary work. What have been developed for rationalization of construction work also include robots for heavy weight rebar fabrication, horizontal reed blind type rebars, portable concrete distributor, all weather environment facilities, and construction materials conveyance system. (Nogami, K.).

  19. Rationalization of design and construction of buildings for nuclear power plants

    International Nuclear Information System (INIS)

    Satoh, Shunsaku; Mitsumatsu, Kazuo

    1987-01-01

    This article presents various rationalization methods introduced in the past few years for design and construction of BWR nuclear power plant buildings. When the site for a nuclear power plant has been decided, investigation is made on various aspects of possible earthquakes, based on which anti-earthquake design for the plant site is established. The next step is to examine the displacements and stresses that may occur to various parts of the bulding from a postulated earthquake. This is normally called the earthquake response analysis and consists of calculating the behaviors of the buildings using large computers. A seismic controlled structure system has recently proposed, aiming to reduce the displacements and stresses of the building itself by controlling the flexibility of the installed seismic apparatus against the input of external loads. Lately, high strength concrete and high strength reinforcing steel bars (rebars) are being considered for practical application. If advanced computers and related accessories are utilized to the maximum, it will lead not only to efficiency in the design work but to the possibility of optimized design. For rational construction, a combined scaffolding and temporary support has been devised to reduce the time and volume of required temporary work. What have been developed for rationalization of construction work also include robots for heavy weight rebar fabrication, horizontal reed blind type rebars, portable concrete distributor, all weather environment facilities, and construction materials conveyance system. (Nogami, K.)

  20. ORGANIZATIONAL STRUCTURE FOR BUILDINGS RECONSTRUCTION OF HISTORICAL BUILDING OF ODESSA

    Directory of Open Access Journals (Sweden)

    POSTERNAK I. М.

    2016-12-01

    Full Text Available Formulation of the problem. As one of perspective forms of integration various complexes act in town-planning structure. In the course of formation of plans of social and economic development of large cities even more often there is a situation when for increase of efficiency of used resources concentration of efforts is necessary not simply, but also new progressive forms of the organization of building manufacture. Purpose. To offer the organizational structure using in practice the saved up scientific and technical potential for reconstruction of buildings of historical building of Odessa 1820 … 1920 years under standards power efficiency and to execute researches engineering architectonics residential buildings of historical building of a city of Odessa. Conclusion. It is offered to create in the city of Odessa "the Corporate scientific and technical complex town-planning power reconstruction "CSTC T-PPR", as innovative organizational structure which uses in practice the saved up scientific and technical potential for reconstruction of buildings of historical building of Odessa under standards power efficiency. It is considered engineering architectonics residential buildings of historical building of a city of Odessa, in particular, not looking on diverse buildings of inhabited appointment of Odessa, for them there are defining factors on which probably to make their grouping and at the same time to allocate the general lines inherent to a housing estate as a whole. It is resulted a general characteristic and classification of residential buildings of historical building of a city of Odessa ХІХ … beginnings ХХ centuries It is allocated and expanded classification of such buildings of inhabited appointment by duration of residing at them.

  1. ORGANIZATIONAL STRUCTURE FOR RECONSTRUCTION OF BUILDINGS HISTORICAL BUILDING OF ODESSA

    Directory of Open Access Journals (Sweden)

    POSTERNAK I. М.

    2017-05-01

    Full Text Available Summary. Raising of problem. As one of perspective forms of integration various complexes act in town- planning structure. In the course of formation of plans of social and economic development of large cities even more often there is a situation when for increase of efficiency of used resources concentration of efforts is necessary not simply, but also new progressive forms of the organization of building manufacture. Purpose. To offer the organizational structure using in practice the saved up scientific and technical potential for reconstruction of buildings of historical building of Odessa 1820 … 1920 years under standards power efficiency and to execute researches engineering architectonics residential buildings of historical building of a city of Odessa. Conclusion. It is offered to create in the city of Odessa "the Corporate scientific and technical complex town-planning power reconstruction "CSTC T-PPR", as innovative organizational structure which uses in practice the saved up scientific and technical potential for reconstruction of buildings of historical building of Odessa under standards power efficiency. It is considered engineering architectonics residential buildings of historical building of a city of Odessa, in particular, not looking on diverse buildings of inhabited appointment of Odessa, for them there are defining factors on which probably to make their grouping and at the same time to allocate the general lines inherent to a housing estate as a whole. It is resulted a general characteristic and classification of residential buildings of historical building of a city of Odessa ХІХ beginnings ХХ centuries It is allocated and expanded classification of such buildings of inhabited appointment by duration of residing at them.

  2. The development of an expert system for finding fragility curves of building structural systems in the preliminary design stage

    International Nuclear Information System (INIS)

    Yee, L.Y.; Okrent, D.

    1987-01-01

    This research is a starting point for the development of an expert system for determining seismic fragility curves of structural systems in a nuclear power plant or conventional building at the preliminary design stage. The resulting system assists an engineer with moderate engineering background and limited reliability knowledge to analyze the failure functions of building structures. It simulates the performance of an expert in identifying the potential failure modes and their variabilities for a structure of interest. On reviewing the methodology of seismic fragility evaluation for existing building structures in the nuclear power plant industry, one finds that the investigation process starts with the identification of critical components or substructures, whose failures result in the functional failure of safety related equipment or the failure of structural integrity itself, and follows with complicated numerical analyses to estimate the capacity functions associated with the limit states of these components or substructures

  3. Fundamental BOP I and C systems structure in nuclear power plants

    International Nuclear Information System (INIS)

    Ishii, K.; Harada, H.; Yamamori, T.; Igarashi, K.; Arakida, T.

    2008-01-01

    Digital instrumentation and control (I and C) systems using distributed control systems (DCS) are essential elements for nuclear power plants (NPPs) seeking higher reliability, availability and maintainability. Hitachi can boast its broad new build and refurbishment project experience in Japan and other markets since the 1970s. Throughout its continuous involvement in NPP design, fabrication, construction and maintenance over 30 years, Hitachi has increasingly integrated digital I and C system with its own DCS suite. This paper focuses on the fundamental characteristics of Hitachi's Balance of Plant (BOP) I and C systems structure for new build nuclear projects. (author)

  4. Student Misconceptions about Plants - A First Step in Building a Teaching Resource.

    Science.gov (United States)

    Wynn, April N; Pan, Irvin L; Rueschhoff, Elizabeth E; Herman, Maryann A B; Archer, E Kathleen

    2017-01-01

    Plants are ubiquitous and found in virtually every ecosystem on Earth, but their biology is often poorly understood, and inaccurate ideas about how plants grow and function abound. Many articles have been published documenting student misconceptions about photosynthesis and respiration, but there are substantially fewer on such topics as plant cell structure and growth; plant genetics, evolution, and classification; plant physiology (beyond energy relations); and plant ecology. The available studies of misconceptions held on those topics show that many are formed at a very young age and persist throughout all educational levels. Our goal is to begin building a central resource of plant biology misconceptions that addresses these underrepresented topics, and here we provide a table of published misconceptions organized by topic. For greater utility, we report the age group(s) in which the misconceptions were found and then map them to the ASPB - BSA Core Concepts and Learning Objectives in Plant Biology for Undergraduates, developed jointly by the American Society of Plant Biologists and the Botanical Society of America.

  5. Study of Real Time Location System For Worker in Containment Building at Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y.; Kim, G. S. [Samchang Enterprise Company, Ulsan (Korea, Republic of); Kim, H. S. [Ulsan Univ., Ulsan (Korea, Republic of)

    2012-03-15

    Workers are required special management to minimize radiation exposure in nuclear power plant. Especially, there are many limitation in their activities at containment building in nuclear power plant. Test personnel shall administer the workers by tracing the location of them inside containment building in nuclear power plant. They may be exposed to the unnecessary radiation due to a complex and high radiation area in the building. Test personnel needs to manage efficiently for worker's safety and work hours at containment building. Therefore, it is critical for the test personnel to notice the risk to the workers by identifying the location when the workers are facing the dangerous situation on the high area. In this paper, we introduce requirements and design method to develop the one and two dimensional RTLS(Real Time Locating System) by using CSS(Chirp Spread Spectrum) which enables precise location measurement and robust data communication even indoor environment with serious electromagnetic interference caused by complicated structure such as the inside of containment building in the nuclear power plant. In the algorithm to compute the distance, it is suggested to use SDS-TWR(Symmetrical Double-Sided Two-Way Ranging) to solve the issue of indirect routes, and develop the power circuit with 10mW of designing gain for output power to meet the KCC standard in order to increase the raging distance, in addition, communication between Anchor and distance measuring computer shall be designed to increase energy using time of Tags(nodes) by using CAN(Controller Area Network) communication.

  6. Design of earth slide prevention structure and results of analyzing its behavior in excavation work for main building foundation for No.4 plant in Kashiwazaki-Kariwa Nuclear Power Station

    International Nuclear Information System (INIS)

    Kuroda, Teruo; Shimazu, Masaomi; Terada, Kenji

    1990-01-01

    In the construction works for No.4 plant in Kashiwazaki-Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc., the excavation work using ground anchor type earth slide prevention structure of about 30 m height intended for soft rocks was carried out. In this report, the outline of the design of the earth slide prevention structure is described, and based on the results of measurement of the earth slide prevention structure and surrounding ground during the period of the excavation work, the effect that the underground continuous wall normally intersecting with the back of the earth slide prevention wall and structurally separated from it exerted to the deformation behavior of the earth slide prevention wall was examined, and the results are reported. The geological features of the site are explained. The excavation work is to excavate the site of +5 m level down to -26 m for the turbine building and to -38.15 m for the reactor building, and the quantity of earth to be excavated is 1.39 million m 3 . These valuable experiences are utilized for the design and construction of the following plants. (K.I.)

  7. The numerical computation of seismic fragility of base-isolated Nuclear Power Plants buildings

    International Nuclear Information System (INIS)

    Perotti, Federico; Domaneschi, Marco; De Grandis, Silvia

    2013-01-01

    Highlights: • Seismic fragility of structural components in base isolated NPP is computed. • Dynamic integration, Response Surface, FORM and Monte Carlo Simulation are adopted. • Refined approach for modeling the non-linearities behavior of isolators is proposed. • Beyond-design conditions are addressed. • The preliminary design of the isolated IRIS is the application of the procedure. -- Abstract: The research work here described is devoted to the development of a numerical procedure for the computation of seismic fragilities for equipment and structural components in Nuclear Power Plants; in particular, reference is made, in the present paper, to the case of isolated buildings. The proposed procedure for fragility computation makes use of the Response Surface Methodology to model the influence of the random variables on the dynamic response. To account for stochastic loading, the latter is computed by means of a simulation procedure. Given the Response Surface, the Monte Carlo method is used to compute the failure probability. The procedure is here applied to the preliminary design of the Nuclear Power Plant reactor building within the International Reactor Innovative and Secure international project; the building is equipped with a base isolation system based on the introduction of High Damping Rubber Bearing elements showing a markedly non linear mechanical behavior. The fragility analysis is performed assuming that the isolation devices become the critical elements in terms of seismic risk and that, once base-isolation is introduced, the dynamic behavior of the building can be captured by low-dimensional numerical models

  8. Building tomorrow's nuclear power plants with 4+D VR technology

    International Nuclear Information System (INIS)

    Lee, Il S.; Yoon, Sang H.; Shim, Kyu W.; Yu, Yong H.; Suh, Kune Y.

    2002-01-01

    engineered structures but also for the on-line design modification. In this regard it is of utmost importance to master the 4 + D VR technology for the nuclear power plants in their design stage as well as for the operating plants for optimal maintenance schedules and procedures. By using this technology one can perform structural design optimization needed for building the nuclear power plant. The 4 + D VR design and construction optimization may result in savings of $ 200 ∼ 300 million per month, of reduced construction time for the two units. Besides, one can improve the effectiveness of business management by condensing voluminous information on the nuclear power plant into the 4 + D database

  9. Innovative Nuclear Power Plant Building Arrangement in Consideration of Decommissioning

    OpenAIRE

    Won-Jun Choi; Myung-Sub Roh; Chang-Lak Kim

    2017-01-01

    A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA) strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research...

  10. Structural building response review

    International Nuclear Information System (INIS)

    1980-01-01

    The integrity of a nuclear power plant during a postulated seismic event is required to protect the public against radiation. Therefore, a detailed set of seismic analyses of various structures and equipment is performed while designing a nuclear power plant. This report describes the structural response analysis method, including the structural model, soil-structure interaction as it relates to structural models, methods for seismic structural analysis, numerical integration methods, methods for non-seismic response analysis approaches for various response combinations, structural damping values, nonlinear response, uncertainties in structural properties, and structural response analysis using random properties. The report describes the state-of-the-art in these areas for nuclear power plants. It also details the past studies made at Sargent and Lundy to evaluate different alternatives and the conclusions reached for the specific purposes that those studies were intended. These results were incorporated here because they fall into the general scope of this report. The scope of the present task does not include performing new calculations

  11. British Nuclear Fuels plc's effluent plant services building

    International Nuclear Information System (INIS)

    Williams, L.

    1990-01-01

    The new Effluent Plant Services building (EPSB) on the Sellafield Nine Acre Site was built by Costain Engineering Limited for British Nuclear Fuels Limited. The EPSB is dedicated to a new generation of nuclear waste treatment plants, aimed at reducing discharges into the Irish Sea and other environmental impacts by removing actinides from liquid effluents and decontaminating waste solvents. This article describes the design, construction and operation of the plant. (UK)

  12. Seismic and wind upgrade of buildings 707A and 779 at Rocky Flats Plant

    International Nuclear Information System (INIS)

    Siler, S.V.; Hom, S.; McGovern, L.J.; Terkun, V.

    1991-01-01

    The structural upgrade of two existing facilities at the US Department of Energy Rocky Flats Plant site has recently been completed. Two existing critical buildings were strengthened to enable them to withstand the design basis earthquake (DBE) forces and the design basis wind (DBW) forces without breach of containment. These buildings were constructed in the 1960s, with minimal seismic considerations. Building 707A is a two-story structure of precast concrete elements with cast-in-place topping slabs with 27,000 sq. feet of floor space. Building 779 is a two-story original structure and several additions, with floor space of 64,000 sq. feet. The original structure consists of cast-in-place concrete with masonry infill shear walls. The additions are primarily precast concrete with unreinforced masonry infill walls. The DBE was the maximum credible event with a magnitude of 6.0 occurring 16 miles from the site. The evaluation criteria was generated spectra at bedrock with a horizontal zero period acceleration of 0.14g. Bedrock-to-ground soil amplification factors were used to evaluate the buildings. The buildings were also required to withstand the DBW of 161 mph. Because of constraints associated with working inside, the structural upgrades were mostly confined to exterior work. The modifications utilized the existing roof and floor diaphragms, and primarily consisted of large exterior concrete buttresses and associated steel chords and collectors. A system of steel strongbacks was also used in some locations. Connections between precast elements of Building 707A had to be strengthened for ductility and shear transfer. The significance of this work is the successful implementation of a highly complex and comprehensive design retrofit of two very critical and important facilities, allowing for continued operation and minimal impact, and using practical and overall cost-effective strengthening schemes

  13. Preliminary research on time degradation of mechanical characteristics of concretes used in nuclear power plant buildings

    International Nuclear Information System (INIS)

    Ciornei, R.

    1991-01-01

    To provide severe safety rules governing the operation of nuclear power plants, reinforced and concrete elements and structures should preserve the quality and time-constant parameters throughout the life-time of the buildings. Some important design parameters are concrete strength and elasticity modulus. Preliminary research on concrete specimens made in laboratory whose strength and static and dynamic elasticity modulus have been determined after an ageing test, has aimed at nuclear power design and building. (author)

  14. Analysis, Design, and Construction of a Base-Isolated Multiple Building Structure

    Directory of Open Access Journals (Sweden)

    Stefano Sorace

    2014-01-01

    Full Text Available The analysis and design of a multiple residential building, seismically protected by a base isolation system incorporating double friction pendulum sliders as protective devices, are presented in the paper. The building, situated in the suburban area of Florence, is composed of four independent reinforced concrete framed structures, mutually separated by three thermal expansion joints. The plan is L-shaped, with dimensions of about 75 m in the longitudinal direction and about 30 m along the longest side of the transversal direction. These characteristics identify the structure as the largest example of a base-isolated “artificial ground” ever built in Italy. The base isolation solution guarantees lower costs, a much greater performance, and a finer architectural look, as compared to a conventional fixed-base antiseismic design. The characteristics of the building and the isolators, the mechanical properties and the experimental characterization campaign and preliminary sizing carried out on the latter, and the nonlinear time-history design and performance assessment analyses developed on the base isolated building are reported in this paper, along with details about the installation of the isolators and the plants and highlights of the construction works.

  15. Student Misconceptions about Plants – A First Step in Building a Teaching Resource

    Directory of Open Access Journals (Sweden)

    April N. Wynn

    2017-05-01

    Full Text Available Plants are ubiquitous and found in virtually every ecosystem on Earth, but their biology is often poorly understood, and inaccurate ideas about how plants grow and function abound. Many articles have been published documenting student misconceptions about photosynthesis and respiration, but there are substantially fewer on such topics as plant cell structure and growth; plant genetics, evolution, and classification; plant physiology (beyond energy relations; and plant ecology. The available studies of misconceptions held on those topics show that many are formed at a very young age and persist throughout all educational levels. Our goal is to begin building a central resource of plant biology misconceptions that addresses these underrepresented topics, and here we provide a table of published misconceptions organized by topic. For greater utility, we report the age group(s in which the misconceptions were found and then map them to the ASPB – BSA Core Concepts and Learning Objectives in Plant Biology for Undergraduates, developed jointly by the American Society of Plant Biologists and the Botanical Society of America.

  16. Student Misconceptions about Plants – A First Step in Building a Teaching Resource†

    Science.gov (United States)

    Wynn, April N.; Pan, Irvin L.; Rueschhoff, Elizabeth E.; Herman, Maryann A. B.; Archer, E. Kathleen

    2017-01-01

    Plants are ubiquitous and found in virtually every ecosystem on Earth, but their biology is often poorly understood, and inaccurate ideas about how plants grow and function abound. Many articles have been published documenting student misconceptions about photosynthesis and respiration, but there are substantially fewer on such topics as plant cell structure and growth; plant genetics, evolution, and classification; plant physiology (beyond energy relations); and plant ecology. The available studies of misconceptions held on those topics show that many are formed at a very young age and persist throughout all educational levels. Our goal is to begin building a central resource of plant biology misconceptions that addresses these underrepresented topics, and here we provide a table of published misconceptions organized by topic. For greater utility, we report the age group(s) in which the misconceptions were found and then map them to the ASPB – BSA Core Concepts and Learning Objectives in Plant Biology for Undergraduates, developed jointly by the American Society of Plant Biologists and the Botanical Society of America. PMID:28912929

  17. Study on reactor building structure using ultrahigh strength materials - Part 9: Summary of the study

    International Nuclear Information System (INIS)

    Tanaka, H.; Odajima, M.; Irino, K.; Hashiba, T.

    1993-01-01

    Considerations for longevity of nuclear facilities and ease of decommissioning are of great importance for future nuclear power plants. To this end, a concept of an optimal structural concept for nuclear reactor buildings has been studied: the main feature of this concept is to utilize large-sized, light weight prefabricated members with ultrahigh strength materials. The following two items have been selected to study the prospective structure: (1) Applicability of ultrahigh strength materials for reinforced concrete shear walls (2) Construction using large sized prefabricated members As the first step (1), material and structural tests using ultrahigh strength materials, and the subsequent analysis of those tests for reinforced concrete shear walls, has been conducted. The positive results of this study show a bright future for the use of ultrahigh strength materials for the reinforced concrete shear walls of nuclear reactor buildings. As the second step (2), tests on a mixed structure with precasted members have been conducted. Our results positively suggest the use of these materials and methods to improve prospective nuclear power plants. (author)

  18. Effect of construction of Dukovany nuclear power plant on development of organizational structure of Prumyslove Stavby Brno

    International Nuclear Information System (INIS)

    Miks, L.

    1985-01-01

    Prumyslove stavby was set up in 1969 and its structure has undergone considerable changes. No major changes were made during the pre-production stage and in the construction preparation period (1969-77). With increased building work volume the organizational structure expanded: new units, such as building site plants, etc., were opened. The current period is characterized by gradual reduction in production capacity, mainly in units providing special jobs. All production units will be closed down with the termination of the nuclear power plant in 1987. (Pu)

  19. Economical analyses of build-operate-transfer model in establishing alternative power plants

    Energy Technology Data Exchange (ETDEWEB)

    Yumurtaci, Zehra [Yildiz Technical University, Department of Mechanical Engineering, Y.T.U. Mak. Fak. Mak. Muh. Bolumu, Besiktas, 34349 Istanbul (Turkey)]. E-mail: zyumur@yildiz.edu.tr; Erdem, Hasan Hueseyin [Yildiz Technical University, Department of Mechanical Engineering, Y.T.U. Mak. Fak. Mak. Muh. Bolumu, Besiktas, 34349 Istanbul (Turkey)

    2007-01-15

    The most widely employed method to meet the increasing electricity demand is building new power plants. The most important issue in building new power plants is to find financial funds. Various models are employed, especially in developing countries, in order to overcome this problem and to find a financial source. One of these models is the build-operate-transfer (BOT) model. In this model, the investor raises all the funds for mandatory expenses and provides financing, builds the plant and, after a certain plant operation period, transfers the plant to the national power organization. In this model, the object is to decrease the burden of power plants on the state budget. The most important issue in the BOT model is the dependence of the unit electricity cost on the transfer period. In this study, the model giving the unit electricity cost depending on the transfer of the plants established according to the BOT model, has been discussed. Unit electricity investment cost and unit electricity cost in relation to transfer period for plant types have been determined. Furthermore, unit electricity cost change depending on load factor, which is one of the parameters affecting annual electricity production, has been determined, and the results have been analyzed. This method can be employed for comparing the production costs of different plants that are planned to be established according to the BOT model, or it can be employed to determine the appropriateness of the BOT model.

  20. Economical analyses of build-operate-transfer model in establishing alternative power plants

    International Nuclear Information System (INIS)

    Yumurtaci, Zehra; Erdem, Hasan Hueseyin

    2007-01-01

    The most widely employed method to meet the increasing electricity demand is building new power plants. The most important issue in building new power plants is to find financial funds. Various models are employed, especially in developing countries, in order to overcome this problem and to find a financial source. One of these models is the build-operate-transfer (BOT) model. In this model, the investor raises all the funds for mandatory expenses and provides financing, builds the plant and, after a certain plant operation period, transfers the plant to the national power organization. In this model, the object is to decrease the burden of power plants on the state budget. The most important issue in the BOT model is the dependence of the unit electricity cost on the transfer period. In this study, the model giving the unit electricity cost depending on the transfer of the plants established according to the BOT model, has been discussed. Unit electricity investment cost and unit electricity cost in relation to transfer period for plant types have been determined. Furthermore, unit electricity cost change depending on load factor, which is one of the parameters affecting annual electricity production, has been determined, and the results have been analyzed. This method can be employed for comparing the production costs of different plants that are planned to be established according to the BOT model, or it can be employed to determine the appropriateness of the BOT model

  1. Seismic analysis and structure capacity evaluation of the Belene nuclear power plant

    International Nuclear Information System (INIS)

    Johnson, J.J.; Hashimoto, P.S.; Campbell, R.D.; Baltus, R.S.

    1993-01-01

    The seismic analysis and structure capacity evaluation of the Belene Nuclear Power Plant, a two-unit WWER 1000, was performed. The principal objective of the study was to review the major aspects of the seismic design including ground motion specification, foundation concept and materials, and the Unit I main reactor building structure response and capacity. The main reactor building structure /foundation/soil were modeled and analyzed by a substructure approach to soil-structure interaction (SSI) analysis. The elements of the substructure approach, implemented in the family of computer programs CLASSI, are: Specification of the free-field ground motion; Modeling the soil profile; SSI parameters; Modeling the structure; SSI-response analyses. Each of these aspects is discussed. The Belene Unit 1 main reactor building structure was evaluated to verify the seismic design with respect to current western criteria. The structural capacity evaluation included criteria development, element load distribution analysis, structural element selection, and structural element capacity evaluation. Equipment and commodity design criteria were similarly reviewed and evaluated. Methodology results and recommendations are presented. (author)

  2. Simquake 3: Seismic interactions between building structures and rock-socketed foundations: Final report

    International Nuclear Information System (INIS)

    Howard, G.E.; Chitty, D.E.; Oleck, R.F.

    1988-04-01

    It has long been recognized that soil-structure interaction can significantly influence the earthquake response of massive structures such as nuclear power plant reactor buildings. The linear analysis methods that are widely used to model interaction phenomena can result in often unrecognized safety margins in design for earthquake excitation. Use of improved interaction models which capture nonlinear characteristics of interaction---such as energy dissipation and significant changes in stiffness---can provide realistic predictions of the earthquake loads imposed on nuclear power plant structures and equipment, supplying an improved basis for seismic design review. This report documents the results of a research effort investigating the soil-structure (or structure-media) interaction of reinforced concrete structures founded in backfilled rock sockets. The objectives of the research, which included field testing with semi-scale structural models, were: to examine the influence of the backfilled socket on structural dynamic response; and to develop an experimental data base for the benchmarking of computer simulation procedures

  3. Earthquake proof device for nuclear power plant building

    International Nuclear Information System (INIS)

    Okada, Yasuo.

    1991-01-01

    The structure of the present invention enables three dimensional vibration proof, i.e., in horizontal and vertical directions of a reactor container building. That is, each of the reactor container building and a reactor auxiliary building is adapted as an independent structure. The periphery of the reactor container building is surrounded by the reactor auxiliary building. The reactor auxiliary building is supported against the ground by way of a horizontal vibration proof device. The reactor container building is supported against the ground by way of a three-dimensional vibration proof device that prevents vibrations in both of the horizontal directions, and the vertical directions. The reactor container building is connected to the auxiliary building by way of a vertical vibration proof device. With such a constitution, although the reactor container building is vibration proof against both of the horizontal and the vertical vibrations, the vertical vibration proofness is an extension of inherent vertical vibration period. Accordingly, the head of the building undergoes rocking vibrations. However, since the reactor container building is connected to the reactor auxiliary building, the rocking vibrations are prevented by the reactor auxiliary building. As a result, safety upon occurrence of an earthquakes can be ensured. (I.S.)

  4. Super-structure and building performance

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-11-01

    Full Text Available The super-structure consists predominantly of the load- and no-load-bearing walls-including all doors and windows and suspended floor slabs. The building envelope plays a significant role in the performance of a building, especially with regard...

  5. Advanced concrete structures for thermal power plants

    International Nuclear Information System (INIS)

    Zerna, W.

    1982-01-01

    The author begins with an overview on the various types of power plants depending on the fuel used in them and then in particular deals with the reinforced concrete structures. Especially for reactor buildings and prestressed concrete pressure vessels concrete is the appropriate material. The methods of construction are described as a function of load and operation. Safety requirements brought new load types for such structures as e.g. airplane crash, internal pressure caused by pipe rupture. Dimensioning is done by means of nonlinear dynamical methods of calculation accounting for plasticizing. These methods are explained. Further the constructional principles of high natural-draft cooling towers are mentioned. (orig.) [de

  6. Towards aspect-oriented functional–structural plant modelling

    Science.gov (United States)

    Cieslak, Mikolaj; Seleznyova, Alla N.; Prusinkiewicz, Przemyslaw; Hanan, Jim

    2011-01-01

    Background and Aims Functional–structural plant models (FSPMs) are used to integrate knowledge and test hypotheses of plant behaviour, and to aid in the development of decision support systems. A significant amount of effort is being put into providing a sound methodology for building them. Standard techniques, such as procedural or object-oriented programming, are not suited for clearly separating aspects of plant function that criss-cross between different components of plant structure, which makes it difficult to reuse and share their implementations. The aim of this paper is to present an aspect-oriented programming approach that helps to overcome this difficulty. Methods The L-system-based plant modelling language L+C was used to develop an aspect-oriented approach to plant modelling based on multi-modules. Each element of the plant structure was represented by a sequence of L-system modules (rather than a single module), with each module representing an aspect of the element's function. Separate sets of productions were used for modelling each aspect, with context-sensitive rules facilitated by local lists of modules to consider/ignore. Aspect weaving or communication between aspects was made possible through the use of pseudo-L-systems, where the strict-predecessor of a production rule was specified as a multi-module. Key Results The new approach was used to integrate previously modelled aspects of carbon dynamics, apical dominance and biomechanics with a model of a developing kiwifruit shoot. These aspects were specified independently and their implementation was based on source code provided by the original authors without major changes. Conclusions This new aspect-oriented approach to plant modelling is well suited for studying complex phenomena in plant science, because it can be used to integrate separate models of individual aspects of plant development and function, both previously constructed and new, into clearly organized, comprehensive FSPMs. In

  7. Towards aspect-oriented functional--structural plant modelling.

    Science.gov (United States)

    Cieslak, Mikolaj; Seleznyova, Alla N; Prusinkiewicz, Przemyslaw; Hanan, Jim

    2011-10-01

    Functional-structural plant models (FSPMs) are used to integrate knowledge and test hypotheses of plant behaviour, and to aid in the development of decision support systems. A significant amount of effort is being put into providing a sound methodology for building them. Standard techniques, such as procedural or object-oriented programming, are not suited for clearly separating aspects of plant function that criss-cross between different components of plant structure, which makes it difficult to reuse and share their implementations. The aim of this paper is to present an aspect-oriented programming approach that helps to overcome this difficulty. The L-system-based plant modelling language L+C was used to develop an aspect-oriented approach to plant modelling based on multi-modules. Each element of the plant structure was represented by a sequence of L-system modules (rather than a single module), with each module representing an aspect of the element's function. Separate sets of productions were used for modelling each aspect, with context-sensitive rules facilitated by local lists of modules to consider/ignore. Aspect weaving or communication between aspects was made possible through the use of pseudo-L-systems, where the strict-predecessor of a production rule was specified as a multi-module. The new approach was used to integrate previously modelled aspects of carbon dynamics, apical dominance and biomechanics with a model of a developing kiwifruit shoot. These aspects were specified independently and their implementation was based on source code provided by the original authors without major changes. This new aspect-oriented approach to plant modelling is well suited for studying complex phenomena in plant science, because it can be used to integrate separate models of individual aspects of plant development and function, both previously constructed and new, into clearly organized, comprehensive FSPMs. In a future work, this approach could be further

  8. Structural load inventory database for the Kansas City Plant

    International Nuclear Information System (INIS)

    Hashimoto, P.S.; Johnson, M.W.; Nakaki, D.K.; Wilson, J.J.; Lynch, D.T.; Drury, M.A.

    1993-01-01

    A structural load inventory database (LID) has been developed to support configuration management at the DOE Kansas City Plant (KCP). The objective of the LID is to record loads supported by the plant structures and to provide rapid assessments of the impact of future facility modifications on structural adequacy. Development of the LID was initiated for the KCP's Main Manufacturing Building. Field walkdowns were performed to determine all significant loads supported by the structure, including the weight of piping, service equipment, etc. These loads were compiled in the LID. Structural analyses for natural phenomena hazards were performed in accordance with UCRL-15910. Software to calculate demands on the structural members due to gravity loads, total demands including both gravity and seismic loads, and structural member demand-to-capacity ratios were also developed and integrated into the LID. Operation of the LID is menu-driven. The LID user has options to review and print existing loads and corresponding demand-to-capacity ratios, and to update the supported loads and demand-to-capacity ratios for any future facility modifications

  9. Structural design of SBWR reactor building complex using microcomputers

    International Nuclear Information System (INIS)

    Mandagi, K.; Rajagopal, R.S.; Sawhney, P.S.; Gou, P.F.

    1993-01-01

    The design concept of Simplified Boiling Water Reactor (SBWR) plant is based on simplicity and passive features to enhance safety and reliability, improve performance, and increase economic viability. The SBWR utilizes passive systems such as Gravity Driven Core-Cooling System (GDCS) and Passive Containment Cooling System (PCCS). To suit these design features the Reactor Building (RB) complex of the SBWR is configured as an integrated structure consisting of a cylindrical Reinforced Concrete Containment Vessel (RCCV) surrounded by square reinforced concrete safety envelope and outer box structures, all sharing a common reinforced concrete basemat. This paper describes the structural analysis and design aspects of the RB complex. A 3D STARDYNE finite element model has been developed for the structural analysis of the complex using a PC Compaq 486/33L microcomputer. The structural analysis is performed for service and factored load conditions for the applicable loading combinations. The dynamic responses of containment structures due to pool hydrodynamic loads have been calculated by an axisymmetric shell model using COSMOS/M program. The RCCV is designed in accordance with ASME Section 3, Division 2 Code. The rest of the RB which is classified as Seismic Category 1 structure is designed in accordance with the ACI 349 Code. This paper shows that microcomputers can be efficiently used for the analysis and design of large and complex structures such as RCCV and Reactor Building complex. The use of microcomputers can result in significant savings in the computational cost compared with that of mainframe computers

  10. Auxiliary buildings

    International Nuclear Information System (INIS)

    Lakner, I.; Lestyan, E.

    1979-01-01

    The nuclear power station represents a complicated and a particular industrial project. Consequently, the design of the auxiliary buildings serving the power station (offices, kitchen, refreshment room, workshops, depots, water treatment plant building, boiler houses, etc.) requires more attention than usual. This chapter gives a short survey of the auxiliary buildings already completed and discusses the problems of their design, location and structure. (author)

  11. Structural building screening and evaluation

    Science.gov (United States)

    Kurniawandy, Alex; Nakazawa, Shoji; Hendry, Andy; Ridwan, Firdaus, Rahmatul

    2017-10-01

    An earthquake is a disaster that can be harmful to the community, such as financial loss and also dead injuries. Pekanbaru is a city that located in the middle of Sumatera Island. Even though the city of Pekanbaru is a city that rarely occurs earthquake, but Pekanbaru has ever felt the impact of the big earthquake that occurred in West Sumatera on September 2009. As we know, Indonesia located between Eurasia plate, Pacific plate, and Indo-Australian plate. Particularly the Sumatera Island, It has the Semangko fault or the great Sumatra fault along the island from north to south due to the shift of Eurasia and Indo-Australian Plates. An earthquake is not killing people but the building around the people that could be killing them. The failure of the building can be early prevented by doing an evaluation. In this research, the methods of evaluation have used a guideline for the Federal Emergency Management Agency (FEMA) P-154 and Applied Technology Council (ATC) 40. FEMA P-154 is a rapid visual screening of buildings for potential seismic hazards and ATC-40 is seismic evaluation and retrofit of Concrete Buildings. ATC-40 is a more complex evaluation rather than FEMA P-154. The samples to be evaluated are taken in the surroundings of Universitas Riau facility in Pekanbaru. There are four buildings as case study such as the rent student building, the building of mathematics and natural science faculty, the building teacher training and education faculty and the buildings in the faculty of Social political sciences. Vulnerability for every building facing an earthquake is different, this is depending on structural and non-structural components of the building. Among all of the samples, only the building of mathematics and the natural science faculty is in critical condition according to the FEMA P-154 evaluation. Furthermore, the results of evaluation using ATC-40 for the teacher training building are in damage control conditions, despite the other three buildings are

  12. Dynamic Analysis of AP1000 Shield Building Considering Fluid and Structure Interaction Effects

    Directory of Open Access Journals (Sweden)

    Qiang Xu

    2016-02-01

    Full Text Available The shield building of AP1000 was designed to protect the steel containment vessel of the nuclear reactor. Therefore, the safety and integrity must be ensured during the plant life in any conditions such as an earthquake. The aim of this paper is to study the effect of water in the water tank on the response of the AP1000 shield building when subjected to three-dimensional seismic ground acceleration. The smoothed particle hydrodynamics method (SPH and finite element method (FEM coupling method is used to numerically simulate the fluid and structure interaction (FSI between water in the water tank and the AP1000 shield building. Then the grid convergence of FEM and SPH for the AP1000 shield building is analyzed. Next the modal analysis of the AP1000 shield building with various water levels (WLs in the water tank is taken. Meanwhile, the pressure due to sloshing and oscillation of the water in the gravity drain water tank is studied. The influences of the height of water in the water tank on the time history of acceleration of the AP1000 shield building are discussed, as well as the distributions of amplification, acceleration, displacement, and stresses of the AP1000 shield building. Research on the relationship between the WLs in the water tank and the response spectrums of the structure are also taken. The results show that the high WL in the water tank can limit the vibration of the AP1000 shield building and can more efficiently dissipate the kinetic energy of the AP1000 shield building by fluid-structure interaction.

  13. Iterative model-building, structure refinement, and density modification with the PHENIX AutoBuild Wizard

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720, USA; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, England; Terwilliger, Thomas; Terwilliger, T.C.; Grosse-Kunstleve, Ralf Wilhelm; Afonine, P.V.; Moriarty, N.W.; Zwart, P.H.; Hung, L.-W.; Read, R.J.; Adams, P.D.

    2007-04-29

    The PHENIX AutoBuild Wizard is a highly automated tool for iterative model-building, structure refinement and density modification using RESOLVE or TEXTAL model-building, RESOLVE statistical density modification, and phenix.refine structure refinement. Recent advances in the AutoBuild Wizard and phenix.refine include automated detection and application of NCS from models as they are built, extensive model completion algorithms, and automated solvent molecule picking. Model completion algorithms in the AutoBuild Wizard include loop-building, crossovers between chains in different models of a structure, and side-chain optimization. The AutoBuild Wizard has been applied to a set of 48 structures at resolutions ranging from 1.1 {angstrom} to 3.2 {angstrom}, resulting in a mean R-factor of 0.24 and a mean free R factor of 0.29. The R-factor of the final model is dependent on the quality of the starting electron density, and relatively independent of resolution.

  14. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.; Grosse-Kunstleve, Ralf W.; Afonine, Pavel V.; Moriarty, Nigel W.; Zwart, Peter H.; Hung, Li-Wei; Read, Randy J.; Adams, Paul D.

    2008-01-01

    The highly automated PHENIX AutoBuild wizard is described. The procedure can be applied equally well to phases derived from isomorphous/anomalous and molecular-replacement methods. The PHENIX AutoBuild wizard is a highly automated tool for iterative model building, structure refinement and density modification using RESOLVE model building, RESOLVE statistical density modification and phenix.refine structure refinement. Recent advances in the AutoBuild wizard and phenix.refine include automated detection and application of NCS from models as they are built, extensive model-completion algorithms and automated solvent-molecule picking. Model-completion algorithms in the AutoBuild wizard include loop building, crossovers between chains in different models of a structure and side-chain optimization. The AutoBuild wizard has been applied to a set of 48 structures at resolutions ranging from 1.1 to 3.2 Å, resulting in a mean R factor of 0.24 and a mean free R factor of 0.29. The R factor of the final model is dependent on the quality of the starting electron density and is relatively independent of resolution

  15. STRUCTURAL VULNERABILITY ASSESSMENT OF MASONRY BUILDINGS IN TURKEY

    OpenAIRE

    KORKMAZ, Kasım Armagan; CARHOGLU, Asuman Isıl

    2011-01-01

    Turkey is located in an active seismic zone. Mid to high rise R/C building and low rise masonry buildings are very common construction type in Turkey. In recent earthquakes, lots of existing buildings got damage including masonry buildings. Masonry building history in Turkey goes long years back. For sure, it is an important structure type for Turkey. Therefore, earthquake behavior and structural vulnerability of masonry buildings are crucial issues for Turkey as a earthquake prone country. I...

  16. Earthquake risk assessment of building structures

    International Nuclear Information System (INIS)

    Ellingwood, Bruce R.

    2001-01-01

    During the past two decades, probabilistic risk analysis tools have been applied to assess the performance of new and existing building structural systems. Structural design and evaluation of buildings and other facilities with regard to their ability to withstand the effects of earthquakes requires special considerations that are not normally a part of such evaluations for other occupancy, service and environmental loads. This paper reviews some of these special considerations, specifically as they pertain to probability-based codified design and reliability-based condition assessment of existing buildings. Difficulties experienced in implementing probability-based limit states design criteria for earthquake are summarized. Comparisons of predicted and observed building damage highlight the limitations of using current deterministic approaches for post-earthquake building condition assessment. The importance of inherent randomness and modeling uncertainty in forecasting building performance is examined through a building fragility assessment of a steel frame with welded connections that was damaged during the Northridge Earthquake of 1994. The prospects for future improvements in earthquake-resistant design procedures based on a more rational probability-based treatment of uncertainty are examined

  17. Intelligent seismic risk mitigation system on structure building

    Science.gov (United States)

    Suryanita, R.; Maizir, H.; Yuniorto, E.; Jingga, H.

    2018-01-01

    Indonesia located on the Pacific Ring of Fire, is one of the highest-risk seismic zone in the world. The strong ground motion might cause catastrophic collapse of the building which leads to casualties and property damages. Therefore, it is imperative to properly design the structural response of building against seismic hazard. Seismic-resistant building design process requires structural analysis to be performed to obtain the necessary building responses. However, the structural analysis could be very difficult and time consuming. This study aims to predict the structural response includes displacement, velocity, and acceleration of multi-storey building with the fixed floor plan using Artificial Neural Network (ANN) method based on the 2010 Indonesian seismic hazard map. By varying the building height, soil condition, and seismic location in 47 cities in Indonesia, 6345 data sets were obtained and fed into the ANN model for the learning process. The trained ANN can predict the displacement, velocity, and acceleration responses with up to 96% of predicted rate. The trained ANN architecture and weight factors were later used to build a simple tool in Visual Basic program which possesses the features for prediction of structural response as mentioned previously.

  18. Optimized reinforcement of nuclear power plant structures for aircraft impact forces

    International Nuclear Information System (INIS)

    Zerna, W.; Schnellenbach, G.; Stangenberg, F.

    1976-01-01

    Reactor buildings of nuclear power plants and, to some extent also other buildings of the plant, according to the present safety requirements, have to be able to withstand aircraft impact forces. The building has to withstand this loading only once since afterwards it will be out of use. Accordingly, other criteria for design and the necessary safety measures are valid than in the case of service loads. Large deformations and the development of large cracks due to such loadings are insignificant from a construction point of view for reinforced concrete structures i.e. the stresses can build up to the ultimate load carrying capacity. From the nuclear safety point of view, however, some restrictions are possible in this regard e.g. to obstruct the penetration of fuel through the cracks. Basically all mild steels, with large ducility and without brittle fracture under sudden load increase, are suitable for this purpose. High stresses in the structure would, however, require uneconomical concentrations of mild steel. It is for this reason that the use of high strength steels e.g. St 110/135, has been introduced in Germany for this kind of loading. Through the use of wire strands or cables of high strength steel it is possible to reach a condition of cracks and large deformations due to ultimate loads in zone of point loading. The reinforcement takes on a distinctly curved shape and is able to carry the normal loads and shears through a suspension-structure action. The deformability of the structure for the analysed limit load state can be further increased through a bond-free net. This measure allows a more uniform sketching of the cables or strands over a larger zone. (Auth.)

  19. Managing key capabilities: A challenge for nuclear plant building companies

    International Nuclear Information System (INIS)

    Pascal Corbel

    2003-01-01

    The nuclear plant building industry faces a paradoxical situation. The use of nuclear reactors to produce energy for civil purposes is both a promising technology, with potentially huge outlets, and a technology facing declining demand. One of the key problems is then: how to maintain the capabilities necessary to benefit from the potential recovery? The resource-based view of strategic management has shown the importance of different types of resources and capabilities in gaining a sustainable competitive advantage. Successful incumbents in the market of nuclear station building have built those kinds of distinctive capabilities that give them a competitive advantage over potential new entrants. But we show that, without a permanent activity in plant building, preserving those capabilities necessitates specific strategic action. We firstly develop the argument that the nuclear plant building industry is in a paradoxical situation in terms of demand and technical performance trends. Secondly, we try to identify the key capabilities of the incumbents. We show that companies in that field use mainly three types of distinctive capabilities: pure technical and scientific knowledge in direct relation to the use of nuclear as an energy generator, competences in risk management and competences in large project management, including financing. Thirdly, we show that although some of those capabilities are used through other nuclear-related activities such as plant maintenance or fuel supply, some of them necessitate taking strategic actions in order to be preserved. We argue that this should be a priority of nuclear equipment company managers in the next few years. (author)

  20. Aircraft-crash-protected steel reactor building roof structure for the European market

    International Nuclear Information System (INIS)

    Posta, B.A.; Kadar, I.; Rao, A.S.

    1996-01-01

    This paper recommends the use of all steel roof structures for the reactor building of European Boiling Water Reactor (BWR) plants. This change would make the advanced US BWR designs more compatible with European requirements. Replacement of the existing concrete roof slab with a sufficiently thick steel plate would eliminate the concrete spelling resulting from a postulated aircraft crash, potentially damaging the drywell head or the spent fuel pool

  1. A study on the water-proof of structures in electric power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kown, Ki Ju [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1996-12-31

    As some of the currently used waterproofing systems are found to be un properly applied for each building type or environmental condition, adequate methods or systems are required to determine the proper materials effectiveness of waterproofing. Performance tests were conducted in order to examine the applicability and effectiveness of previously studied waterproofing systems and to propose the improvement directions of the waterproofing systems. Waterproofing systems and methods were systematized in order to be applied adequately considering the structure parts, structural and environmental conditions. -Analysis of waterproof methods and materials -Characteristics related with waterproofing of power plants structures -Site investigation of waterproofing of power plant structures -Determination of optimal waterproofing material, system and construction method -Waterproofing performance tests (author). 96 refs., 223 figs.

  2. A study on the water-proof of structures in electric power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kown, Ki Ju [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1995-12-31

    As some of the currently used waterproofing systems are found to be un properly applied for each building type or environmental condition, adequate methods or systems are required to determine the proper materials effectiveness of waterproofing. Performance tests were conducted in order to examine the applicability and effectiveness of previously studied waterproofing systems and to propose the improvement directions of the waterproofing systems. Waterproofing systems and methods were systematized in order to be applied adequately considering the structure parts, structural and environmental conditions. -Analysis of waterproof methods and materials -Characteristics related with waterproofing of power plants structures -Site investigation of waterproofing of power plant structures -Determination of optimal waterproofing material, system and construction method -Waterproofing performance tests (author). 96 refs., 223 figs.

  3. Measurement methods of building structures deflections

    Directory of Open Access Journals (Sweden)

    Wróblewska Magdalena

    2018-01-01

    Full Text Available Underground mining exploitation is leading to the occurrence of deformations manifested by, in particular, sloping terrain. The structures situated on the deforming subsoil are subject to uneven subsidence which is leading in consequence to their deflection. Before a building rectification process takes place by, e.g. uneven raising, the structure's deflection direction and value is determined so that the structure is restored to its vertical position as a result of the undertaken remedial measures. Deflection can be determined by applying classical as well as modern measurement techniques. The article presents examples of measurement methods used considering the measured elements of building structures’ constructions and field measurements. Moreover, for a given example of a mining area, the existing deflections of buildings were compared with mining terrain sloping.

  4. Seismic analysis of a reactor building with eccentric layout

    International Nuclear Information System (INIS)

    Itoh, T.; Deng, D.Z.F.; Lui, K.

    1987-01-01

    Conventional design for a reactor building in a high seismic area has adopted an essentially concentric layout in response to fear of excessive torsional effect due to horizontal seismic load on an eccentric plant. This concentric layout requirement generally results in an inflexible arrangement of the plant facilities and thus increases the plant volume. This study is performed to investigate the effect of eccentricity on the overall seismic structural response and to provide technical information in this regard to substantiate the volume reduction of the overall power plant. The plant layout is evolved from the Bechtel standard plan of a PWR plant by integrating the reactor building and the auxiliary building into a combined building supported on a common basemat. This plant layout is optimized for volume utilization and to reduce the length of piping systems. The mass centers at various elevations of the combined building do not coincide with the rigidity center (RC) of the respective floor and the geometric center of the basemat, thus creating an eccentric response of the building in a seismic environment. Therefore, the torsional effects of the structure have to be taken into account in the seismic analysis

  5. Experimental building with new types of building envelope structures. Part 1: Structures/systems. Building system: Brick walls; Forsoegshus med nye typer klimaskaermskonstruktioner. Del 1: Konstruktioner/systemer - Byggesystem: Fuldmuret

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The house described in this report is one of several experimental houses forming part of the project 'Experimental buildings with new types of building envelope structures'. One purpose of the project is to demonstrate that it is possible to build typical single-family houses with an energy consumption that meets expected increased building regulations. Furthermore, it is important that the houses can be made securely as regards construction technology and within reasonable financial limits. Thus, the purpose is also to contribute to strengthen the development of improved building envelope structures. Another purpose is to carry out detailed measurements of energy consumption in order to validate thermal performance of future building envelope structures. The report describes the constructive design and energy systems of the house plus heat loss calculations and expected energy consumption. (BA)

  6. Verification of the local structural response of building structures in the anchorage areas of heavy components

    International Nuclear Information System (INIS)

    Krutzik, N.J.; Tropp, R.

    1993-01-01

    In both nuclear and non-nuclear areas of power plants, sections of structures, parts of systems and components are attached to walls and floors by means of anchor plates with bolts, anchor sleeves and bolts and through bolts arranged either in groups or individually. In order to simplify the determination of the transfered vibrations induced by external events (e.g. earthquake, aircraft crash), it is normally assumed that the nodal point between component and concrete possesses rigid body characteristics and the building structure (walls, floors) is also inflexible in the anchorage area. In the course of the parametric studies performed, the nonlinear effects on the anchorage area of a component (in this case an anchor plate and concrete slab) were calculated and the effect of these on the actual vibration behavior and the local structural responses of the building structure at the place of installation of heavy components were investigated. The investigations performed reveal that by taking into account the local behaviour in the anchoring point, it is possible to reduce the dynamic response considerably. More detailed examination of the influence of additional parameters (especially of the geometry of the anchor plates and anchor bolts and their material characteristics) will require further investigations aimed at establishing the characteristics of typical anchor plates. (orig.)

  7. Technology development on the assessment of structural integrity of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong Moon; Choun, Y. S.; Choi, I. K. and others

    1999-04-01

    Nuclear power plants in Korea show drop off in their performance and safety margin as the age of plants increase. The reevaluation of Kori-1 Unit on its performance and safety for life extension is expected in the near future. However, technologies and information related are insufficient to quantitatively estimate them. The final goal of this study is to develop the basic testing and evaluation techniques related with structural integrity of important nuclear equipment and structures. A part of the study includes development of equipment qualification technique. To ensure the structural integrity of structures, systems, and equipment in nuclear power plants, the following 5 research tasks were performed in the first year. - Analysis of dynamic characteristics of reactor internals - Analysis of engineering characteristics of instrumental earthquakes recorded in Korea - Analysis of ultimate pressure capacity and failure mode of containments building - Development of advanced NDE techniques using ultrasonic resonance scattering - Development of equipment qualification technique against vibration aging. These technologies developed in this study can be used to ensure the structural safety of operational nuclear power plants, and for the long-term life management. (author)

  8. Construction technique for a chemical plant (II)

    International Nuclear Information System (INIS)

    1978-08-01

    This book deals with design and construction for a chemical plant which includes design and building of steel structure for a chemical plant with types, basic regulation, plan, shop fabrication for steel structure and field construction. It explains design and construction of making building for a chemical construction with measurement, types of building and basic rule of the building, design of the building, constructing plumbing for a chemical plant with plan, management of material, checking for construction, construction of electrical installation on plan, know-how to construction and maintenance.

  9. Environmental effect of structural solutions and building materials to a building

    International Nuclear Information System (INIS)

    Haapio, Appu; Viitaniemi, Pertti

    2008-01-01

    The field of building environmental assessment tools has become a popular research area over the past decade. However, how the service life of a building affects the results of the environmental assessment of a building has not been emphasised previously. The aim of this study is to analyse how different structural solutions and building materials affect the results of the environmental assessment of a whole building over the building's life cycle. Furthermore, how the length of the building's service life affects the results is analysed. The environmental assessments of 78 single-family houses were calculated for this study. The buildings have different wall insulations, claddings, window frames, and roof materials, and the length of the service life varies from 60 years up to 160 years. The current situation and the future of the environmental assessment of buildings are discussed. In addition, topics for further research are suggested; for example, how workmanship affects the service life and the environmental impact of a building should be studied

  10. Structural rehabilitation of old buildings

    CERN Document Server

    Guedes, João; Varum, Humberto

    2014-01-01

    The present book describes the different construction systems and structural materials and solutions within the main old buildings typologies, and it analyses the particularities of each of them, including mechanical properties, structural behaviour, typical damage patterns and collapse mechanisms. Common or pioneering intervention measures to repair and/or strengthen some of these structural elements are also reviewed.

  11. Making Plant-Support Structures From Waste Plant Fiber

    Science.gov (United States)

    Morrow, Robert C.; < oscjmocl. < attjew K/; {ertzbprm. A,amda; Ej (e. Cjad); Hunt, John

    2006-01-01

    Environmentally benign, biodegradable structures for supporting growing plants can be made in a process based on recycling of such waste plant fiber materials as wheat straw or of such derivative materials as paper and cardboard. Examples of structures that can be made in this way include plant plugs, pots, planter-lining mats, plant fences, and root and shoot barriers. No chemical binders are used in the process. First, the plant material is chopped into smaller particles. The particles are leached with water or steam to remove material that can inhibit plant growth, yielding a fibrous slurry. If the desired structures are plugs or sheets, then the slurry is formed into the desired shapes in a pulp molding subprocess. If the desired structures are root and shoot barriers, pots, or fences, then the slurry is compression-molded to the desired shapes in a heated press. The processed materials in these structures have properties similar to those of commercial pressboard, but unlike pressboard, these materials contain no additives. These structures have been found to withstand one growth cycle, even when wet

  12. Multicriteria Analysis of Assembling Buildings from Steel Frame Structures

    Science.gov (United States)

    Miniotaite, Ruta

    2017-10-01

    Steel frame structures are often used in the construction of public and industrial buildings. They are used for: all types of slope roofs; walls of newly-built public and industrial buildings; load bearing structures; roofs of renovated buildings. The process of assembling buildings from steel frame structures should be analysed as an integrated process influenced by such factors as construction materials and machinery used, the qualification level of construction workers, complexity of work, available finance. It is necessary to find a rational technological design solution for assembling buildings from steel frame structures by conducting a multiple criteria analysis. The analysis provides a possibility to evaluate the engineering considerations and find unequivocal solutions. The rational alternative of a complex process of assembling buildings from steel frame structures was found through multiple criteria analysis and multiple criteria evaluation. In multiple criteria evaluation of technological solutions for assembling buildings from steel frame structures by pairwise comparison method the criteria by significance are distributed as follows: durability is the most important criterion in the evaluation of alternatives; the price (EUR/unit of measurement) of a part of assembly process; construction workers’ qualification level (category); mechanization level of a part of assembling process (%), and complexity of assembling work (in points) are less important criteria.

  13. Prediction of hydrogen distribution in the reactor building in CANDU6 plant

    International Nuclear Information System (INIS)

    Jin, Y.; Song, Y.

    2008-01-01

    The CANDU plants have a lot of zircaloy. The fuel cladding, calandria tubes and pressure tubes are made of zircaloy. The zircaloy can be oxidized and hydrogen is generated during severe accident progression. The detonation or deflagration to detonation transition (DDT) due to hydrogen combustion may occur if the local hydrogen concentration or global hydrogen concentration exceeds certain value. The detonation may result in the rupture of the reactor building. The inside of the reactor building of CANDU plants is complex. So prediction of hydrogen distribution in the reactor building is important. This prediction is made using ISAAC code and GOTHIC code. ISAAC code partitioned the reactor building in to 7 compartments. GOTHIC code modeled the CANDU6 reactor building using 12 nodes. The hydrogen concentrations in the various compartments in the reactor building are compared. GOTHIC code slightly underpredicts hydrogen concentration in the F/M rooms than ISAAC code, but trend is same. The hydrogen concentration in the boiler room and the moderator room shows almost same as for both codes. (author)

  14. Development of a building sump database for the Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Sepanski, R.J.; Field, S.M.

    1997-07-01

    Operations at the Oak Ridge Y-12 Plant have resulted in contamination of Upper East Fork Poplar Creek (UEFPC) and shallow groundwater through soil erosion, infiltration, and outfall discharges. The contamination of groundwater has been documented for nearly two decades, largely through well monitoring efforts. This study represents the first effort to formally identify and compile location data on sumps at the Y-12 Plant, several of which are known or are suspected to pump groundwater. Operation of several of these sumps have been documented to affect groundwater hydraulics and contaminant pathways. This report presents preliminary results of an investigation attempting to identify sources of data on building sumps that have not previously been incorporated into existing Y-12 Plant groundwater databases. This investigation involved acquiring information on building sumps, such as location, building number, water source, discharge location, and availability of analytical data. This information was used to construct an ARC/INFO database capable of simultaneously storing spatial data on sump locations and attribute information concerning the operation of individual building sumps. This database will be referred to hereafter as the Y-12 Plant Building Sump Database

  15. A Review of Influence of Various Types of Structural Bracing to the Structural Performance of Buildings

    Science.gov (United States)

    Razak, S. M.; Kong, T. C.; Zainol, N. Z.; Adnan, A.; Azimi, M.

    2018-03-01

    Excessive lateral drift can contribute significantly towards crack formation, leading to structural damage. The structural damage will in turn reduce the capacity of the structure and weaken it from the intended design capacity. Generally, lateral drift is more pronounced in higher and longer structure, such as high rise buildings and bridges. A typical method employed to control lateral drift is structural bracing, which works by increasing stiffness and stability of structure. This paper reviews the influence of various types of structural bracing to structural performance of buildings. The history of structural bracing is visited and the differences between numerous structural bracing in term of suitability to different types of buildings and loading, mechanisms, technical details, advantages and limitations, and the overall effect on the structural behaviour and performance are dissected. Proper and efficient structural bracing is pertinent for each high rise building as this will lead towards safer, sustainable and more economical buildings, which are cheaper to maintain throughout the life of the buildings in the future.

  16. Soil-structure interaction in fuel handling building

    International Nuclear Information System (INIS)

    Elaidi, B.M.; Eissa, M.A.

    1998-01-01

    This paper presents an accurate three-dimensional seismic soil-structure interaction analysis for large structures. The method is applied to the fuel building in nuclear power plants. The analysis is performed numerically in the frequency domain and the responses are obtained by inverse Fourier transformation. The size of the structure matrices is reduced by transforming the equation of motion to the modal coordinate system. The soil is simulated as a layered media on top of viscoelastic half space. Soil impedance matrices are calculated from the principles of continuum mechanics and account for soil stiffness and energy dissipation. Effects of embedment on the field equations is incorporated through the scattering matrices or by simply scaling the soil impedance. Finite element methods are used to discretize the concrete foundation for the generation of the soil interaction matrices. Decoupling of the sloshing water in the spent fuel pools and the free-standing spent fuel racks is simulated. The input seismic motions are defined by three artificial time history accelerations. These input motions are generated to match the ground design basis response spectra and the target power spectral density function. The methods described in this paper can handle arbitrary foundation layouts, allows for large structural models, and accurately represents the soil impedance. Time history acceleration responses were subsequently used to generate floor response spectra at applicable damping values. (orig.)

  17. Innovative nuclear power plant building arragement in consideration of decommissioning

    International Nuclear Information System (INIS)

    Choi, Won Jun; Roh, Myung Sub; Kim, Chang Lak

    2017-01-01

    A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA) strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research paper, the concept and the implementation method of the INBA strategy will be described. Two primary benefits will be further described: (1) early site restoration; and (2) radioactive waste reduction. Several other potential benefits will also be identified. For the estimation of economic benefit, the INBA strategy, with two primary benefits, will be compared with the immediate dismantling strategy. The effect of a short life cycle nuclear power plant in combination with the INBA strategy will be reviewed. Finally, some of the major impediments to the realization of this strategy will be discussed

  18. Innovative nuclear power plant building arragement in consideration of decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won Jun; Roh, Myung Sub; Kim, Chang Lak [Dept. of Nuclear Power Plant Engineering, KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2017-04-15

    A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA) strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research paper, the concept and the implementation method of the INBA strategy will be described. Two primary benefits will be further described: (1) early site restoration; and (2) radioactive waste reduction. Several other potential benefits will also be identified. For the estimation of economic benefit, the INBA strategy, with two primary benefits, will be compared with the immediate dismantling strategy. The effect of a short life cycle nuclear power plant in combination with the INBA strategy will be reviewed. Finally, some of the major impediments to the realization of this strategy will be discussed.

  19. Innovative Nuclear Power Plant Building Arrangement in Consideration of Decommissioning

    Directory of Open Access Journals (Sweden)

    Won-Jun Choi

    2017-04-01

    Full Text Available A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research paper, the concept and the implementation method of the INBA strategy will be described. Two primary benefits will be further described: (1 early site restoration; and (2 radioactive waste reduction. Several other potential benefits will also be identified. For the estimation of economic benefit, the INBA strategy, with two primary benefits, will be compared with the immediate dismantling strategy. The effect of a short life cycle nuclear power plant in combination with the INBA strategy will be reviewed. Finally, some of the major impediments to the realization of this strategy will be discussed.

  20. Automated detection of repeated structures in building facades

    Directory of Open Access Journals (Sweden)

    M. Previtali

    2013-10-01

    Full Text Available Automatic identification of high-level repeated structures in 3D point clouds of building façades is crucial for applications like digitalization and building modelling. Indeed, in many architectural styles building façades are governed by arrangements of objects into repeated patterns. In particular, façades are generally designed as the repetition of some few basic objects organized into interlaced and\\or concatenated grid structures. Starting from this key observation, this paper presents an algorithm for Repeated Structure Detection (RSD in 3D point clouds of building façades. The presented methodology consists of three main phases. First, in the point cloud segmentation stage (i the building façade is decomposed into planar patches which are classified by means of some weak prior knowledge of urban buildings formulated in a classification tree. Secondly (ii, in the element clustering phase detected patches are grouped together by means of a similarity function and pairwise transformations between patches are computed. Eventually (iii, in the structure regularity estimation step the parameters of repeated grid patterns are calculated by using a Least- Squares optimization. Workability of the presented approach is tested using some real data from urban scenes.

  1. 30 CFR 57.4530 - Exits for surface buildings and structures.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Exits for surface buildings and structures. 57... Fire Prevention and Control Installation/construction/maintenance § 57.4530 Exits for surface buildings and structures. Surface buildings or structures in which persons work shall have a sufficient number...

  2. Structure of steel reactor building and construction method therefor

    International Nuclear Information System (INIS)

    Yamakawa, Toshikimi.

    1997-01-01

    The building of the present invention contains a reactor pressure vessel, and has double steel plate walls endurable to elevation of inner pressure and keeping airtightness, and shielding concretes are filled between the double steel plate walls. It also has empty double steel plate walls not filled with concretes and has pipelines, vent ducts, wirings and a support structures for attaching them between the double steel plate walls. It is endurable to a great inner pressure satisfactory and keeps airtightness by the two spaced steel plates. It can be greatly reduced in the weight, and can be manufactured efficiently with high quality in a plant by so called module construction, and the dimension of the entire of the reactor building can be reduced. It is constructed in a dock, transported on the sea while having the space between the two steel plate walls as a ballast tanks, placed in the site, and shielding concretes are filled between the double steel plate walls. The term for the construction can be reduced, and the cost for the construction can be saved. (N.H.)

  3. Problems of building social and production bases for the construction of the Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Suchopar, J.

    1984-01-01

    A survey is given of capital costs of building parts and the concept is presented of the equipment of a building site. The social basis consists of accommodation units, cloakrooms, catering units, utility units, a health care centre and a shopping centre. The production base consists of a central concrete plant, cement plant, central armour unit, forming hall, storage area, buildings for pre-assembly, fleet of trucks and other machines, maintenance and repair shops. The network infrastructure and the mains connections are designed and the procedure of the build up of the site is described. The experience is summed up and recommendations made for future nuclear power plant projects. (E.S.)

  4. Structured building model reduction toward parallel simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, Justin R. [Cornell University; Hencey, Brondon M. [Cornell University

    2013-08-26

    Building energy model reduction exchanges accuracy for improved simulation speed by reducing the number of dynamical equations. Parallel computing aims to improve simulation times without loss of accuracy but is poorly utilized by contemporary simulators and is inherently limited by inter-processor communication. This paper bridges these disparate techniques to implement efficient parallel building thermal simulation. We begin with a survey of three structured reduction approaches that compares their performance to a leading unstructured method. We then use structured model reduction to find thermal clusters in the building energy model and allocate processing resources. Experimental results demonstrate faster simulation and low error without any interprocessor communication.

  5. Stresses on nuclear power plant buildings by extraordinary events

    International Nuclear Information System (INIS)

    Woelfel, E.

    1977-01-01

    Nuclear power plant buildings must be functional to such an extend that even after the occurence of extraordinary events (earthquake, airoplane crash, gas cloud explosion), the reactor can be safety shut off, in order to avoid danger from the nuclear power plant. Evidence for this can only be given by calculations which shall meet the following requirements: The calculation results shall be safe and reliable. The calculation effort shall match the realizable accuracy. The calculation shall lead to an economical determination. An example of ascertainment of nuclear power plants in regard to earthquakes, shows the difficulties standing against a fulfillment of these requirements. (orig.) [de

  6. CERN awards "Gold CMS Award" to Savyolovsk machine-building Plant

    CERN Multimedia

    2007-01-01

    "The contribution pf Savyolovsk machine-building Plant OJSC into the international program to develop an CMS unit was recognized by the European Nuclear Research Center with "Gold Prize"for 2007. (1 small paragraph)

  7. Assessment of structural reliability of precast concrete buildings

    Directory of Open Access Journals (Sweden)

    Koyankin Alexandr

    2018-01-01

    Full Text Available Precast housing construction is currently being under rapid development, however, reliability of building structures made from precast reinforced concrete cannot be assessed rationally due to insufficient research data on that subject. In this regard, experimental and numerical studies were conducted to assess structural reliability of precast buildings as described in the given paper. Experimental studies of full-scale and model samples were conducted; numerical studies were held based on finite element models using “Lira” software. The objects under study included fragment of flooring of a building under construction, full-size fragment of flooring, full-scale models of precast cross-beams-to-columns joints and joints between hollow-core floor slabs and precast and cast-in-place cross-beams. Conducted research enabled to perform an objective assessment of structural reliability of precast buildings.

  8. Overview of the ITER Tokamak complex building and integration of plant systems toward construction

    Energy Technology Data Exchange (ETDEWEB)

    Cordier, Jean-Jacques, E-mail: jean-jacques.cordier@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Bak, Joo-Shik [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Baudry, Alain [Engage Consortium, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Benchikhoune, Magali [Fusion For Energy (F4E), c/ Josep Pla, n.2, Torres Diagonal Litoral, E-08019 Barcelona (Spain); Carafa, Leontin; Chiocchio, Stefano [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Darbour, Romaric [Fusion For Energy (F4E), c/ Josep Pla, n.2, Torres Diagonal Litoral, E-08019 Barcelona (Spain); Elbez, Joelle; Di Giuseppe, Giovanni; Iwata, Yasuhiro; Jeannoutot, Thomas; Kotamaki, Miikka; Kuehn, Ingo; Lee, Andreas; Levesy, Bruno; Orlandi, Sergio [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Packer, Rachel [Engage Consortium, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Patisson, Laurent; Reich, Jens; Rigoni, Giuliano [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); and others

    2015-10-15

    The ITER Tokamak complex consists of Tokamak, diagnostic and tritium buildings. The Tokamak machine is located in the bioshield pit of the Tokamak building. Plant systems are implemented in the three buildings and are strongly interfacing with the Tokamak. The reference baseline (3D) configuration is a set of over 1000 models that today defines in an exhaustive way the overall layout of Tokamak and plant systems, needed for fixing the interfaces and to complete the construction design of the buildings. During the last two years, one of the main ITER challenges was to improve the maturity of the plant systems layout in order to confirm their integration in the building final design and freeze the interface definitions in-between the systems and to the buildings. The propagation of safety requirements in the design of the nuclear building like confinement, fire zoning and radiation shielding is of first priority. A major effort was placed by ITER Organization together with the European Domestic Agency (F4E) and the Architect Engineer as a joint team to fix the interfaces and the loading conditions to buildings. The most demanding systems in terms of interface definition are water cooling, cryogenic, detritiation, vacuum, cable trays and building services. All penetrations through the walls for piping, cables and other equipment have been defined, as well as all temporary openings needed for the installation phase. Project change requests (PCR) impacting the Tokamak complex buildings have been implemented in a tight allocated time schedule. The most demanding change was to implement a new design of the Tokamak basic machine supporting system. The 18 supporting columns of the cryostat (2001 baseline) were replaced at the end of 2012 by a concrete crown and radial concrete ribs linked to the basemat and to the bioshield surrounding the Tokamak. The change was implemented successfully in the building construction design to allow basemat construction phase being performed

  9. A locomotive inspection robot for turbine building interior inspection in nuclear power plants

    International Nuclear Information System (INIS)

    Obama, M.; Ozaki, F.; Asano, K.

    1985-01-01

    A locomotive inspection robot, named Turbine Building Inspection System (TBIS), has been developed for turbine building interior inspections in nuclear power plants. This robot is made up of a vehicle, a telescopic support, turning head and a multijoint arm which has dual TV cameras and a diagnostic rod on its tip. The multijoint arm has 17 degrees of freedom and its length is 243 cm. Minimum and maximum heights for the multijoint arm shoulder are 1.5 meter and 4 meters respectively. The total degree of freedom in the combination of the multijoint arm, turning head and telescopic support is 19 and the area, it is capable of inspecting, is equal to the cylindrical dome whose height and diameter are 6.4 meters and 4.8 meters respectively. The design philosophy, hardware structure and operation method of the TBIS are described. 2 refs.; 10 figs

  10. FEM Updating of the Heritage Court Building Structure

    DEFF Research Database (Denmark)

    Ventura, C. E.; Brincker, Rune; Dascotte, E.

    2001-01-01

    . The starting model of the structure was developed from the information provided in the design documentation of the building. Different parameters of the model were then modified using an automated procedure to improve the correlation between measured and calculated modal parameters. Careful attention......This paper describes results of a model updating study conducted on a 15-storey reinforced concrete shear core building. The output-only modal identification results obtained from ambient vibration measurements of the building were used to update a finite element model of the structure...

  11. FRF-based structural damage detection of controlled buildings with podium structures: Experimental investigation

    Science.gov (United States)

    Xu, Y. L.; Huang, Q.; Zhan, S.; Su, Z. Q.; Liu, H. J.

    2014-06-01

    How to use control devices to enhance system identification and damage detection in relation to a structure that requires both vibration control and structural health monitoring is an interesting yet practical topic. In this study, the possibility of using the added stiffness provided by control devices and frequency response functions (FRFs) to detect damage in a building complex was explored experimentally. Scale models of a 12-storey main building and a 3-storey podium structure were built to represent a building complex. Given that the connection between the main building and the podium structure is most susceptible to damage, damage to the building complex was experimentally simulated by changing the connection stiffness. To simulate the added stiffness provided by a semi-active friction damper, a steel circular ring was designed and used to add the related stiffness to the building complex. By varying the connection stiffness using an eccentric wheel excitation system and by adding or not adding the circular ring, eight cases were investigated and eight sets of FRFs were measured. The experimental results were used to detect damage (changes in connection stiffness) using a recently proposed FRF-based damage detection method. The experimental results showed that the FRF-based damage detection method could satisfactorily locate and quantify damage.

  12. Comparison of test and earthquake response modeling of a nuclear power plant containment building

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, M.G.; Kot, C.A.; Hsieh, B.J.

    1985-01-01

    The reactor building of a BWR plant was subjected to dynamic testing, a minor earthquake, and a strong earthquake at different times. Analytical models simulating each of these events were devised by previous investigators. A comparison of the characteristics of these models is made in this paper. The different modeling assumptions involved in the different simulation analyses restrict the validity of the models for general use and also narrow the comparison down to only a few modes. The dynamic tests successfully identified the first mode of the soil-structure system.

  13. Comparison of test and earthquake response modeling of a nuclear power plant containment building

    International Nuclear Information System (INIS)

    Srinivasan, M.G.; Kot, C.A.; Hsieh, B.J.

    1985-01-01

    The reactor building of a BWR plant was subjected to dynamic testing, a minor earthquake, and a strong earthquake at different times. Analytical models simulating each of these events were devised by previous investigators. A comparison of the characteristics of these models is made in this paper. The different modeling assumptions involved in the different simulation analyses restrict the validity of the models for general use and also narrow the comparison down to only a few modes. The dynamic tests successfully identified the first mode of the soil-structure system

  14. Requirements for the coatings of a nuclear power plant containment building

    International Nuclear Information System (INIS)

    Orantie, K.; Kuosa, H.; Haekkae-Roennholm, E.

    2001-06-01

    The report presents the criteria for the inside coatings of nuclear power plant containment buildings including: radiation resistance, decontamination, chemical resistance in accident situations and fire resistance

  15. Structural acceptance criteria Remote Handling Building Tritium Extraction Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mertz, G.

    1999-12-16

    This structural acceptance criteria contains the requirements for the structural analysis and design of the Remote Handling Building (RHB) in the Tritium Extraction Facility (TEF). The purpose of this acceptance criteria is to identify the specific criteria and methods that will ensure a structurally robust building that will safely perform its intended function and comply with the applicable Department of Energy (DOE) structural requirements.

  16. Structural acceptance criteria Remote Handling Building Tritium Extraction Facility

    International Nuclear Information System (INIS)

    Mertz, G.

    1999-01-01

    This structural acceptance criteria contains the requirements for the structural analysis and design of the Remote Handling Building (RHB) in the Tritium Extraction Facility (TEF). The purpose of this acceptance criteria is to identify the specific criteria and methods that will ensure a structurally robust building that will safely perform its intended function and comply with the applicable Department of Energy (DOE) structural requirements

  17. 32 CFR 644.486 - Disposal of buildings and improvements constructed under emergency plant facilities (EPF) or...

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Disposal of buildings and improvements constructed under emergency plant facilities (EPF) or similar contracts. 644.486 Section 644.486 National... Disposal of buildings and improvements constructed under emergency plant facilities (EPF) or similar...

  18. Seismic fragility analysis of a nuclear building based on probabilistic seismic hazard assessment and soil-structure interaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, R.; Ni, S.; Chen, R.; Han, X.M. [CANDU Energy Inc, Mississauga, Ontario (Canada); Mullin, D. [New Brunswick Power, Point Lepreau, New Brunswick (Canada)

    2016-09-15

    Seismic fragility analyses are conducted as part of seismic probabilistic safety assessment (SPSA) for nuclear facilities. Probabilistic seismic hazard assessment (PSHA) has been undertaken for a nuclear power plant in eastern Canada. Uniform Hazard Spectra (UHS), obtained from the PSHA, is characterized by high frequency content which differs from the original plant design basis earthquake spectral shape. Seismic fragility calculations for the service building of a CANDU 6 nuclear power plant suggests that the high frequency effects of the UHS can be mitigated through site response analysis with site specific geological conditions and state-of-the-art soil-structure interaction analysis. In this paper, it is shown that by performing a detailed seismic analysis using the latest technology, the conservatism embedded in the original seismic design can be quantified and the seismic capacity of the building in terms of High Confidence of Low Probability of Failure (HCLPF) can be improved. (author)

  19. Construction method for plant facility

    International Nuclear Information System (INIS)

    Ito, Arata; Hirono, Hideharu; Kyoda, Shigeru; Hanawa, Minoru; Sato, Hitoshi

    1998-01-01

    A caisson structure is disposed on a construction site for facilities of nuclear power plants. A digging work is performed below the caisson structure and, simultaneous with the digging work, a construction of a base, construction of plant facilities including a building and installation of plant facility are performed on the caisson structure. Then, the caisson structure is sank together with the structures on a base rock in association with the progress of the digging work and secured on the base rock. When securing them on the base rock, a groove is formed to the base rock along tuyere of the caisson structure so that the tuyere and a ceiling portion of the caisson structure are in direct contact with the base rock. Since the construction for the containing building conducted on the caisson structure is performed simultaneous with the digging work conducted below the caisson structure, the term required for the construction of the plant facilities can greatly reduced. (N.H.)

  20. Nuclear reactor buildings

    International Nuclear Information System (INIS)

    Nagashima, Shoji; Kato, Ryoichi.

    1985-01-01

    Purpose: To reduce the cost of reactor buildings and satisfy the severe seismic demands in tank type FBR type reactors. Constitution: In usual nuclear reactor buildings of a flat bottom embedding structure, the flat bottom is entirely embedded into the rock below the soils down to the deck level of the nuclear reactor. As a result, although the weight of the seismic structure can be decreased, the amount of excavating the cavity is significantly increased to inevitably increase the plant construction cost. Cross-like intersecting foundation mats are embedded to the building rock into a thickness capable withstanding to earthquakes while maintaining the arrangement of equipments around the reactor core in the nuclear buildings required by the system design, such as vertical relationship between the equipments, fuel exchange systems and sponteneous drainings. Since the rock is hard and less deformable, the rigidity of the walls and the support structures of the reactor buildings can be increased by the embedding into the rock substrate and floor responsivity can be reduced. This enables to reduce the cost and increasing the seismic proofness. (Kamimura, M.)

  1. Analysis of the structural design process of the adaptive reuse of building structures

    NARCIS (Netherlands)

    Pasterkamp, S.

    2014-01-01

    In the field of structural building engineering there is a market shift taking place as a result of the growing number of buildings that are listed as cultural heritage, secularization, the economic situation and the increasing office vacancy rate in Europe and the US. More and more structural

  2. Lessons learned from full-scale vibration tests on nuclear power plant auxiliary structure in Switzerland

    International Nuclear Information System (INIS)

    Berger, E.; Tinic, S.

    1988-01-01

    The Beznau Nuclear Power Plant is located in northern Switzerland. The plant is owned and operated by the Nordostschweizerische Kraftwerke AG (NOK) in Baden, Switzerland. It is a twin unit plant (2 x 350 MWe) which was designed in the early 1960's and placed into commercial operation between 1969 and 1971. In connection with a major backfit project, which will improve the safety of the plant against external events, the free-standing boric water tanks had to be relocated and were replaced by two boric water tanks in a new building (the so called BOTA-building). It enabled to plan and perform full scale vibration tests.The scope of experimental investigation was to determine the eigenfrequencies and damping values for fundamental soil-structure interaction. The vibration tests allowed identification of the important modes of the soil-structure system in the range 3 to 15 Hz. The excitation was strung enough to generate accelerations in the structure comparable to those of a small earthquake. From the comparisons of computed and measured results it is concluded that the rocking frequency can be reasonably well predicted by either Finite Element or Lumped Parameter models with springs simulating the soil-foundation stiffness, provided in the case of the latter the embedment is taken into account. The prediction of the amplitude of structural response appears to be more difficult, as shown by the differences in the mode shapes. In the frequency range 8 to 10 Hz the agreement between computed and test results was less satisfactory. The actual structural behaviour turned out to be more complex than expected and needs further investigation with the aid of more refined models for the soil-structure system

  3. Lessons learned from full-scale vibration tests on nuclear power plant auxiliary structure in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Berger, E [Basler and Hofmann AG, Consulting Engineers, Zurich (Switzerland); Tinic, S [Nordostschweizerische Kraftwerke AG, Baden (Switzerland)

    1988-07-01

    The Beznau Nuclear Power Plant is located in northern Switzerland. The plant is owned and operated by the Nordostschweizerische Kraftwerke AG (NOK) in Baden, Switzerland. It is a twin unit plant (2 x 350 MWe) which was designed in the early 1960's and placed into commercial operation between 1969 and 1971. In connection with a major backfit project, which will improve the safety of the plant against external events, the free-standing boric water tanks had to be relocated and were replaced by two boric water tanks in a new building (the so called BOTA-building). It enabled to plan and perform full scale vibration tests.The scope of experimental investigation was to determine the eigenfrequencies and damping values for fundamental soil-structure interaction. The vibration tests allowed identification of the important modes of the soil-structure system in the range 3 to 15 Hz. The excitation was strung enough to generate accelerations in the structure comparable to those of a small earthquake. From the comparisons of computed and measured results it is concluded that the rocking frequency can be reasonably well predicted by either Finite Element or Lumped Parameter models with springs simulating the soil-foundation stiffness, provided in the case of the latter the embedment is taken into account. The prediction of the amplitude of structural response appears to be more difficult, as shown by the differences in the mode shapes. In the frequency range 8 to 10 Hz the agreement between computed and test results was less satisfactory. The actual structural behaviour turned out to be more complex than expected and needs further investigation with the aid of more refined models for the soil-structure system.

  4. Performance evaluation of existing building structure with pushover analysis

    Science.gov (United States)

    Handana, MAP; Karolina, R.; Steven

    2018-02-01

    In the management of the infrastructure of the building, during the period of buildings common building damage as a result of several reasons, earthquakes are common. The building is planned to work for a certain service life. But during the certain service life, the building vulnerable to damage due to various things. Any damage to cultivate can be detected as early as possible, because the damage could spread, triggering and exacerbating the latest. The newest concept to earthquake engineering is Performance Based Earthquake Engineering (PBEE). PBEE divided into two, namely Performance Based Seismic Design (PBSD) and Performance Based Seismic Evaluation (PBSE). Evaluation on PBSE one of which is the analysis of nonlinear pushover. Pushover analysis is a static analysis of nonlinear where the influence of the earthquake plan on building structure is considered as burdens static catch at the center of mass of each floor, which it was increased gradually until the loading causing the melting (plastic hinge) first within the building structure, then the load increases further changes the shapes of post-elastic large it reached the condition of elastic. Then followed melting (plastic hinge) in the location of the other structured.

  5. Elementary structural building blocks encountered in silicon surface reconstructions

    International Nuclear Information System (INIS)

    Battaglia, Corsin; Monney, Claude; Didiot, Clement; Schwier, Eike Fabian; Garnier, Michael Gunnar; Aebi, Philipp; Gaal-Nagy, Katalin; Onida, Giovanni

    2009-01-01

    Driven by the reduction of dangling bonds and the minimization of surface stress, reconstruction of silicon surfaces leads to a striking diversity of outcomes. Despite this variety even very elaborate structures are generally comprised of a small number of structural building blocks. We here identify important elementary building blocks and discuss their integration into the structural models as well as their impact on the electronic structure of the surface. (topical review)

  6. Seismic design of a uranium conversion plant building

    International Nuclear Information System (INIS)

    Peixoto, O.J.M.; Botelho, C.L.A.; Braganca, A. Jr.; C. Santos, S.H. de.

    1992-01-01

    The design of facilities with small radioactive inventory has been traditionally performed following the usual criteria for industrial buildings. In the last few years, more stringent criteria have been adopted in new nuclear facilities in order to achieve higher standards for environmental protection. In uranium conversion plants, the UF 6 (uranium hexafluoride) production step is the part of the process with the highest potential for radioactivity release to the environment because of the operations performed in the UF 6 desublimers and cylinder filling areas as well as UF 6 distillation facilities, when they are also required in the process. This paper presents the design guidelines and some details of the seismic resistance design of a UF 6 production building to be constructed in Brazil

  7. Automated determination of fibrillar structures by simultaneous model building and fiber diffraction refinement.

    Science.gov (United States)

    Potrzebowski, Wojciech; André, Ingemar

    2015-07-01

    For highly oriented fibrillar molecules, three-dimensional structures can often be determined from X-ray fiber diffraction data. However, because of limited information content, structure determination and validation can be challenging. We demonstrate that automated structure determination of protein fibers can be achieved by guiding the building of macromolecular models with fiber diffraction data. We illustrate the power of our approach by determining the structures of six bacteriophage viruses de novo using fiber diffraction data alone and together with solid-state NMR data. Furthermore, we demonstrate the feasibility of molecular replacement from monomeric and fibrillar templates by solving the structure of a plant virus using homology modeling and protein-protein docking. The generated models explain the experimental data to the same degree as deposited reference structures but with improved structural quality. We also developed a cross-validation method for model selection. The results highlight the power of fiber diffraction data as structural constraints.

  8. Japanese contributions to containment structure, assembly and maintenance and reactor building for ITER

    International Nuclear Information System (INIS)

    Shibanuma, Kiyoshi; Honda, Tsutomu; Kanamori, Naokazu

    1991-06-01

    Joint design work on Conceptual Design Activity of International Thermonuclear Experimental Reactor (ITER) with four parties, Japan, the United States, the Soviet Union and the European Community began in April 1988 and was successfully completed in December 1990. In Japan, the home team was established in wide range of collaboration between JAERI and national institute, universities and heavy industries. The Fusion Experimental Reactor (FER) Team at JAERI is assigned as a core of the Japanese home team to support the joint Team activity and mainly conducted the design and R and D in the area of containment structure, remote handling and plant system. This report mainly describes the Japanese contribution on the ITER containment structure, remote handling and reactor building design. Main areas of contributions are vacuum vessel, attaching locks, electromagnetic analysis, cryostat, port and service line layout for containment structure, in-vessel handling equipment design and analysis, blanket handling equipment design and related short term R and D for assembly and maintenance, and finally reactor building design and analysis based on the equipment and service line layout and components flow during assembly and maintenance. (author)

  9. Structural review of the Palisades Nuclear Power Plant Unit 1 containment structure under combined loads for the Systematic Evaluation Program

    International Nuclear Information System (INIS)

    Liaw, C.Y.; Debeling, A.; Tsai, N.C.

    1981-12-01

    A structural reassessment of the containment structure of the Palisades Nuclear Power Plant Unit 1 was performed for the Nuclear Regulatory Commission as part of the Systematic Evaluation Program. Conclusions about the ability of the containment structure to withstand the Abnormal/Extreme Environment are presented. The reassessment focused mainly on the overall structural integrity of the containment building for the Abnormal/Extreme Environment. In this case, the Abnormal Environmental condition is caused by the worst case of either a Loss-of-Coolant Accident or a main steam line break. The Extreme Environmental condition is the Safe Shutdown Earthquake

  10. Report of the task group reviewing national and international activities in the area of ageing of nuclear power plant concrete structures

    International Nuclear Information System (INIS)

    1996-01-01

    After a background information on the mandate of the task group and its organisation, the longevity of nuclear power plants is first addressed: the present status of nuclear power plants in the 25 OECD Member Countries is summarised and the importance of ensuring continued safe operation of nuclear power plants described. Safety-related concrete structures (primarily containments) for several reactor concepts are briefly described as well as their materials of construction. Primary mechanisms that can produce adverse ageing of the concrete structures are described (e.g., chemical attack and corrosion of steel reinforcement). The overall performance of nuclear power plant concrete structures is described and age-related degradation incidences that have occurred are noted (e.g., corrosion of steel in water intake structures and corrosion of metal liners). National ageing management programmes of OECD Member Countries are then described with the emphasis placed on nuclear power plant safety-related concrete structures. Although the majority of these programmes are addressing components such as the reactor pressure vessel and steam generator, several national programmes have sophisticated activities that address the concrete structures (e.g., Canada, France, Japan, Switzerland, United Kingdom, and the United States). International ageing management activities are then summarised, primarily addressed under the auspices of the International Atomic Energy Agency (IAEA) (ageing management activities for concrete containment buildings) and the Commission of European Communities (CEC) (assessment of the long-term durability of reinforced and prestressed concrete structures and buildings, and steel containments in nuclear power plants). General conclusions and recommendations are provided at the end of the report

  11. Potential seismic structural failure modes associated with the Zion Nuclear Plant. Seismic safety margins research program (Phase I). Project VI. Fragilities

    International Nuclear Information System (INIS)

    1979-10-01

    The Zion 1 and 2 Nuclear Power Plant consists of a number of structures. The most important of these from the viewpoint of safety are the containment buildings, the auxiliary building, the turbine building, and the crib house (or intake structure). The evaluation of the potential seismic failure modes and determination of the ultimate seismic capacity of the structures is a complex undertaking which will require a large number of detailed calculations. As the first step in this evaluation, a number of potential modes of structural failure have been determined and are discussed. The report is principally directed towards seismically induced failure of structures. To some extent, modes involving soil foundation failures are discussed in so far as they affect the buildings. However, failure modes involving soil liquefaction, surface faulting, tsunamis, etc., are considered outside the scope of this evaluation

  12. Thuringische builds large PET plant in Germany

    International Nuclear Information System (INIS)

    Alperowicz, N.

    1993-01-01

    East Germany fibers producer Thuringische Faser AG Schwarza (TFS; Rudolstadt) is entering the polyethylene terephthalate (PET) business. The company, owned by India's Dalmia Group (New Delhi), is building an 80,000-m.t./year PET granulate plant, one of the largest in Europe, for completion at the end of 1995. The product will be used to make PET bottles and film for food packaging. TFS will need to buy 70,000 m.t./year of purified terephthalic acid and 27,000 m.t./year of ethylene glycol to feed the new plant. When acquiring TFS, Dalmia's chairman, Sanjay Dalmia, pledged to invest DM150 million ($95.4 million) in the Germany firm and keep 1,200 of the 3,000 workers. John Brown Deutsche Engineering (Essen) has been awarded a contract covering engineering, know-how, and turnkey supply of the complete plant, and will share of the complete plant, and will share the work with Austrian associate, Voest John Brown Industrieanlagenbau (Linz). The company, which completed against Zimmer (Frankfurt), will use its own technology. TFS, with 1992 sales of DM120 million, has capacities to produce 20,000 m.t/year of viscose staple fiber, 18,000 m.t./year of nylon-6 filament yarn, and 6,300 m.t./year of textile-grade polyester granulate, which will be converted to produce bottle-grade PET

  13. Dynamic analysis of WWER-1000 nuclear power plants

    International Nuclear Information System (INIS)

    Asfura, A.P.; Jordanov, M.J.

    1995-01-01

    As part of the effort to assess the seismic vulnerability of nuclear power plants in Eastern Europe, a series of dynamic analyses have been carried out for several plants. These analyses were performed using modern analysis techniques, current local seismic parameters, and local soil profiles. This paper presents a compilation of some of the seismic analyses performed for the WWER-1000 reactor buildings at the nuclear power plants of Belene and Kozloduy in Bulgaria, and Temelin in the Czech Republic. The reactor buildings at these three plants are practically identical and correspond to the standard building design for this type of reactors. The series of analyses performed for these buildings encompasses various soil profiles, seismic ground motions, and different soil-structure interaction analysis techniques and modelling. The analysis of a common structure under different conditions gives the opportunity to assess the relative importance that each of the analysis elements has in the structural responses. The use of different SSI computer programs and foundation modeling was studied for Kozloduy, and the effects of different soil conditions and site-specific seismicity were studied by comparing the responses for the three plants. In-structure acceleration response spectra were selected as the structural responses for comparison purposes

  14. Project designing of Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Krychtalek, Z.; Linek, V.

    1989-01-01

    The geological and seismic parameters are listed of the Temelin nuclear power plant. The division of the site in building zones is described. The main zones consist of the power generation unit zone with the related auxiliary buildings of hot plants and of the auxiliary buildings of the nonactive part with industrial buildings. The important buildings are interconnected with communication and technology bridges. Cooling towers and spray pools and the entrance area are part of the urbanistic design. The architectonic design of the buildings uses standard building elements and materials. The design of the buildings is based on the requirements on their function and on structural load and on the demands of maximal utilization of the type of the reinforced concrete prefab structure system. The structure is made of concrete or steel cells. The project design is based on Soviet projects. The layout is shown of the main power generation units and a section is presented of a 1,000 MW unit. (J.B.). 2 figs

  15. Structural wood products in onshore buildings at Naval Station Norfolk, 2000.

    Science.gov (United States)

    David B. McKeever

    2003-01-01

    As of December 31, 2000, there were 603 buildings at Naval Station (NAVSTA) Norfolk with a combined floor area of nearly 17.3 million ft2. In one-third of these buildings, structural wood products were used in one or more major structural building applications, utilizing an estimated 11.6 million board feet of lumber, 0.4 million ft2 (3/8-in. basis) of structural...

  16. Radar Mapping of Building Structures Applying Sparse Reconstruction

    NARCIS (Netherlands)

    Tan, R.G.; Wit, J.J.M. de; Rossum, W.L. van

    2012-01-01

    The ability to map building structures at a certain stand-off distance allows intelligence, reconnaissance, and clearance tasks to be performed in a covert way by driving around a building. This will greatly improve security, response time, and reliability of aforementioned tasks. Therefore,

  17. Constructive systems, load-bearing and enclosing structures of high-rise buildings

    Science.gov (United States)

    Anatol'evna Korol', Elena; Olegovna Kustikova, Yuliya

    2018-03-01

    As the height of the building increases, loads on load-carrying structures increase dramatically, and as a result of the development of high-rise construction, several structural systems of such buildings have been developed: frame, frame-frame, cross-wall, barrel, box-type, box-to-wall ("pipe in pipe", "Trumpet in the farm"), etc. In turn, the barrel systems have their own versions: cantilever support of the ceilings on the trunk, suspension of the outer part of the overlap to the upper carrying console "hanging house" or its support by means of the walls on the lower bearing cantilever, intermediate position of the supporting cantilevers in height to the floor, from a part of floors. The object of the study are the structural solutions of high-rise buildings. The subject of the study is the layout of structural schemes of high-rise buildings, taking into account the main parameters - altitude (height), natural climatic conditions of construction, materials of structural elements and their physical and mechanical characteristics. The purpose of the study is to identify the features and systematization of structural systems of high-rise buildings and the corresponding structural elements. The results of the research make it possible, at the stage of making design decisions, to establish rational parameters for the correspondence between the structural systems of high-rise buildings and their individual elements.

  18. Ethical Guidelines for Structural Interventions to Small-Scale Historic Stone Masonry Buildings.

    Science.gov (United States)

    Hurol, Yonca; Yüceer, Hülya; Başarır, Hacer

    2015-12-01

    Structural interventions to historic stone masonry buildings require that both structural and heritage values be considered simultaneously. The absence of one of these value systems in implementation can be regarded as an unethical professional action. The research objective of this article is to prepare a guideline for ensuring ethical structural interventions to small-scale stone historic masonry buildings in the conservation areas of Northern Cyprus. The methodology covers an analysis of internationally accepted conservation documents and national laws related to the conservation of historic buildings, an analysis of building codes, especially Turkish building codes, which have been used in Northern Cyprus, and an analysis of the structural interventions introduced to a significant historic building in a semi-intact state in the walled city of Famagusta. This guideline covers issues related to whether buildings are intact or ruined, the presence of earthquake risk, the types of structural decisions in an architectural conservation project, and the values to consider during the decision making phase.

  19. Progressive building methods in nuclear power plant construction

    International Nuclear Information System (INIS)

    Sikura, V.

    1980-01-01

    A detailed description is given of the new prospective technologies used in the construction of the Bohunice V-1 nuclear power plant. They include the use of steel and large-area forms, the use of profile sheets as a substitute for forms, assembled raw partitions, wall shells consisting of clamped porous concrete slabs, assembled roof shells, special finish of concrete walls, bearing wall deep foundation, the use of modern building machinery for concreting, reinforcing and welding works. (M.S.)

  20. Soil Structure Interaction Effect on High Rise and Low Rise Buildings

    OpenAIRE

    Divya Pathak; PAresh H. SHAH

    2000-01-01

    Effect of supporting soil on the response of structure has been analyzed in the present study. A low rise (G+ 5 storey) and a high rise (G+12 storey) building has been taken for the analysis. For both type of buildings, the response of building with and without consideration of soil structure interaction effect has been compared.Without interaction case is the case in which ends of the structure are assumed to be fixed while in interaction case, structure is assumed to be...

  1. Design and testing of botanical thermotropic actuator mechanisms in thermally adaptive building coverings

    Science.gov (United States)

    Barrett, Ronald M.; Barrett, Ronald P.; Barrett, Cassandra M.

    2017-09-01

    This paper lays out the inspiration, operational principles, analytical modeling and coupon testing of a new class of thermally adaptive building coverings. The fundamental driving concepts for these coverings are derived from various families of thermotropic plant structures. Certain plant cellular structures like those in Mimosa pudica (Sensitive Plant), Rhododendron leaves or Albizia julibrissin (Mimosa Tree), exhibit actuation physiology which depends on changes in cellular turgor pressures to generate motion. This form of cellular action via turgor pressure manipulation is an inspiration for a new field of thermally adaptive building coverings which use various forms of cellular foam to aid or enable actuation much like plant cells are used to move leaves. When exposed to high solar loading, the structures use the inherent actuation capability of pockets of air trapped in closed cell foam as actuators to curve plates upwards and outwards. When cold, these same structures curve back towards the building forming large convex pockets of dead air to insulate the building. This paper describes basic classical laminated plate theory models comparing theory and experiment of such coupons containing closed-cell foam actuators. The study concludes with a global description of the effectiveness of this class of thermally adaptive building coverings.

  2. Adoption of Smart Structures for Prevention of Health Hazards in Buildings

    Science.gov (United States)

    Oke, Ayodeji; Aigbavboa, Clinton; Ngema, Wiseman

    2017-11-01

    The importance of building quality to the health and well-being of occupants and surrounding neighbors cannot be overemphasized. Smart structures were construed to proffer solution to various issues of sustainable development including social factors that is concerned with health and safety of people. Based on existing literature materials on building quality, smart structures and general aspect of sustainable developments, this study examined the benefits of smart structures in the prevention of various health issues in infrastructural buildings, which has been a concern for stakeholders in the architecture, engineering and construction industry. The criterion for indoor environmental quality was adopted and various health and bodily issues related to building quality were explained. The adoption of smart structure concept will help to manage physical, chemical, biological and psychological factors of building with a view to enhancing better quality of life of occupants.

  3. Deployable bamboo structure project: A building life-cycle report

    Science.gov (United States)

    Firdaus, Adrian; Prastyatama, Budianastas; Sagara, Altho; Wirabuana, Revian N.

    2017-11-01

    Bamboo is considered as a sustainable material in the world of construction, and it is vastly available in Indonesia. The general utilization of the material is increasingly frequent, however, its usage as a deployable structure-a recently-developed use of bamboo, is still untapped. This paper presents a report on a deployable bamboo structure project, covering the entire building life-cycle phase. The cycle encompasses the designing; fabrication; transportation; construction; operation and maintenance; as well as a plan for future re-use. The building is made of a configuration of the structural module, each being a folding set of bars which could be reduced in size to fit into vehicles for easy transportation. Each structural module was made of Gigantochloa apus bamboo. The fabrication, transportation, and construction phase require by a minimum of three workers. The fabrication and construction phase require three hours and fifteen minutes respectively. The building is utilized as cafeteria stands, the operation and maintenance phase started since early March 2017. The maintenance plan is scheduled on a monthly basis, focusing on the inspection of the locking mechanism element and the entire structural integrity. The building is designed to allow disassembly process so that it is reusable in the future.

  4. Tunisia- British gas intends to participate to the building of a combined cycle electric power plant

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Here is described the project to build a combined-cycle power plant in Tunisia, project in which the British Gas is interested. The transport, distribution, import and export of electricity should be controlled by the Tunisian society of electricity and gas. In the context of an agreement with Gec-Alsthom, the british company hopes to offer to build, and exploit the future power plant. (N.C.)

  5. Using thermal power plants waste for building materials

    Science.gov (United States)

    Feduik, R. S.; Smoliakov, A. K.; Timokhin, R. A.; Batarshin, V. O.; Yevdokimova, Yu G.

    2017-10-01

    The recycled use of thermal power plants (TPPs) wastes in the building materials production is formulated. The possibility of using of TPPs fly ash as part of the cement composite binder for concrete is assessed. The results of X-ray diffraction and differential thermal analysis as well as and materials photomicrographs are presented. It was revealed that the fly ash of TPPs of Russian Primorsky Krai is suitable for use as a filler in cement binding based on its chemical composition.

  6. Design experience on seismically isolated buildings

    International Nuclear Information System (INIS)

    Giuliani, G.C.

    1989-01-01

    This paper describes the practical problems associated with the structural design of a group of seismically isolated buildings now under construction in Ancona, Italy. These structures are the first seismically isolated buildings in Italy. Taking into account previous earthquakes, the structural design of these new buildings was performed according to an acceleration spectrum which was different from its Zone 2 seismic code and which provided protection for stronger ground motions. To minimize the cost of the structure, the buildings used ribbed plate decks, thus reducing the amount of material and the mass of the structures to be isolated. The design requirements, dynamic analysis performed, structural design, and practical engineering employed are reported in this paper. A comparison between the costs of a conventionally designed and a base-isolated structure is also reported. The tests undertaken for certifying the mechanical properties of the isolators for both static and dynamic loads are also described, as is the full-scale dynamic test which is scheduled for next year (1990) for one of the completed buildings. Lessons learned in this design effort are potentially applicable to seismic base isolation for nuclear power plants

  7. Contribution to the simulation of the behavior of containment buildings in nuclear power plants

    International Nuclear Information System (INIS)

    Jason, Ludovic

    2016-01-01

    In this document, containment buildings of nuclear power plants in reinforced and prestressed concrete are studied. The mechanical behavior is first investigated. It includes studies at different scales, from the industrial scale at which it is difficult to obtain detailed information about the crack openings, to the structural scale at which it becomes possible to develop more refined approaches (steel-concrete bond, modeling of the different heterogeneities, constitutive models for concrete,...). When it is possible, the developments are based on the combination between modeling, simulation and experiments. A new steel-concrete bond model is especially developed. Its interest, compared to the classical 'perfect bond' hypothesis is particularly discussed. An adaptive condensation technique is finally proposed to bridge the gap between the scale of the containment and the scale of Structural Representative Volumes. As the tightness of the containment buildings is related to the fluid flow through concrete, two approaches are proposed and compared. The first one is based on a chained hydro mechanical simulation and tends to show that the mechanical damage is only influent when it crosses the whole concrete section. In this case, a localized approach is preferred from which a reference crack opening is defined. (author) [fr

  8. Controversy still simmers over plan to build plasma-fractionation plant in Nova Scotia.

    OpenAIRE

    Robb, N

    1995-01-01

    Controversy still simmers over a plan by the Canadian Red Cross Society and a US biopharmaceutical manufacturer to build a plasma-fractionation plant near Halifax. The unilateral decision to go ahead with the plant was taken as the Krever inquiry into Canada's blood-supply system was holding public hearings across the country. A panel created to evaluate the proposal has supported the fractionation plant, but made additional recommendations concerning product pricing, research and development...

  9. Floor response spectra of buildings with uncertain structural properties

    International Nuclear Information System (INIS)

    Chen, P.C.

    1975-01-01

    All Category I equipment, such as reactors, vessels, and major piping systems of nuclear power plants, is required to withstand earthquake loadings in order to minimize risk of seismic damage. The equipment is designed by using response spectra of the floor on which the equipment is mounted. The floor response spectra are constructed usually from the floor response time histories which are obtained through a deterministic dynamic analysis. This analysis assumes that all structural parameters, such as mass, stiffness, and damping have been calculated precisely, and that the earthquakes are known. However, structural parameters are usually difficult to determine precisely if the structures are massive and/or irregular, such as nuclear containments and its internal structures with foundation soil incorporated into the analysis. Faced with these uncertainties, it has been the practice to broaden the floor response spectra peaks by +-10 percent of the peak frequencies on the basis of conservatism. This approach is based on engineering judgement and does not have an analytical basis to provide a sufficient level of confidence in using these spectra for equipment design. To insure reliable design, it is necessary to know structural response variations due to variations in structural properties. This consideration leads to the treatment of structural properties as random variables and the use of probabilistic methods to predict structural response more accurately. New results on floor response spectra of buildings with uncertain structural properties obtained by determining the probabilistic dynamic response from the deterministic dynamic response and its standard deviation are presented. The resulting probabilistic floor response spectra are compared with those obtained deterministically, and are shown to provide a more reliable method for determining seismic forces

  10. Building with electromagnetic shield structure for individual floors

    International Nuclear Information System (INIS)

    Takahashi, T.; Nakamura, M.; Yabana, Y.; Ishikawa, T.; Nagata, K.

    1991-01-01

    This invention relates to a building having a floor-by-floor electromagnetic shield structure well-suited for application to an information network system in which an electromagnetically shielded space is divided by individual floors and electric waves are utilized within the building on a floor-by-floor basis. (author). 8 figs

  11. Building with electromagnetic shield structure for individual floors

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T; Nakamura, M; Yabana, Y; Ishikawa, T; Nagata, K

    1991-09-10

    This invention relates to a building having a floor-by-floor electromagnetic shield structure well-suited for application to an information network system in which an electromagnetically shielded space is divided by individual floors and electric waves are utilized within the building on a floor-by-floor basis. (author). 8 figs.

  12. Probabilistic Assessment of Structural Seismic Damage for Buildings in Mid-America

    International Nuclear Information System (INIS)

    Bai, Jong-Wha; Hueste, Mary Beth D.; Gardoni, Paolo

    2008-01-01

    This paper provides an approach to conduct a probabilistic assessment of structural damage due to seismic events with an application to typical building structures in Mid-America. The developed methodology includes modified damage state classifications based on the ATC-13 and ATC-38 damage states and the ATC-38 database of building damage. Damage factors are assigned to each damage state to quantify structural damage as a percentage of structural replacement cost. To account for the inherent uncertainties, these factors are expressed as random variables with a Beta distribution. A set of fragility curves, quantifying the structural vulnerability of a building, is mapped onto the developed methodology to determine the expected structural damage. The total structural damage factor for a given seismic intensity is then calculated using a probabilistic approach. Prediction and confidence bands are also constructed to account for the prevailing uncertainties. The expected seismic structural damage is assessed for a typical building structure in the Mid-America region using the developed methodology. The developed methodology provides a transparent procedure, where the structural damage factors can be updated as additional seismic damage data becomes available

  13. Effect of structural design on traffic-induced building vibrations

    DEFF Research Database (Denmark)

    Persson, Peter; Andersen, Lars Vabbersgaard; Persson, Kent

    2017-01-01

    Population growth and urbanization results in densified cities, where new buildings are being built closer to existing vibration sources such as road-, tram- and rail traffic. In addition, new transportation systems are constructed closer to existing buildings. Potential disturbing vibrations...... are one issue to consider in planning urban environment and densification of cities. Vibrations can be disturbing for humans but also for sensitive equipment in, for example, hospitals. In determining the risk for disturbing vibrations, the distance between the source and the receiver, the ground...... properties, and type and size of the building are governing factors. In the paper, a study is presented aiming at investigating the influence of various parameters of the building's structural design on vibration levels in the structure caused by ground surface loads, e.g. traffic. Parameters studied...

  14. Examining work structure in nuclear power plants

    International Nuclear Information System (INIS)

    Bauman, M.B.; Boulette, M.D.; Van Cott, H.P.

    1985-01-01

    This paper describes the assessment of the work structure of ten nuclear power plants. Work structure factors are those factors that relate to the way in which work at all levels in a plant is organized, staffed, managed, rewarded, and perceived by plant personnel. Questionnaires given to a cross-section of personnel at the plants were the primary source of data collection. Structured ''critical incident'' interviews were conducted to verify the questionnaire results. The study revealed that a variety of work structure factor problem areas do exist in nuclear power plants. The paper highlights a prioritized set of candidate research themes to be considered in EPRI's Work Structure and Performance Research Program

  15. Soil-structure interaction effects in seismic analysis of turbine generator building on rock-like foundation

    International Nuclear Information System (INIS)

    Park, Chi Seon; Lee, Sang Hoon; Yoo, Kwang Hoon

    2004-01-01

    Soil properties supporting structure may become criteria determining methodologies for seismic response analysis of a structure. Regulatory Guide describes that a fixed-base assumption is acceptable for structures supported on rock or rock-like materials defined by a shear wave velocity of 3,500 ft/sec or greater at a shear strain of 10 -3 percent or smaller when considering preloaded soil conditions due to the structure. Seismic analyses for the Korean nuclear power plant (NPP) structures satisfying the above site soil condition have been completed through the fixed-base analysis. However, dynamic responses for relatively stiff structures such as NPP structures still have soil-structure interaction (SSI) effects. In other words, the fixed-base analysis does not always yield conservative results to be compared with SSI analysis. The SSI effects due to different stiff soil properties for Turbine Generator Building (TGB) structure to be constructed at Kori site of South Korea are investigated in views of floor response spectra (FRS) and member forces

  16. Kozloduy Nuclear Power Plant (Unit 1 and 2). Proposed modifications to increase the seismic capability of equipment and main structures

    International Nuclear Information System (INIS)

    Ordonez Villalobos, A.; Monette, P.R.

    1993-01-01

    Within the framework of the European Community's PHARE Programme of improvement to facilities, their operating systems, equipment and buildings of the Kozloduy NPP in Bulgaria, plant safety during seismic events is considered to be an issue of overriding importance, especially in view of the earthquakes the region suffered during the last decade. Westinghouse Energy Systems International (WESI) and Empresarios Agrupados (EA) have initiated an intensive programme for physical upgrading of equipment with a view to augmenting its seismic capability and, at the same time, to studying design modifications in the diesel-generator buildings, pump house and main building structures (turbines, electrical building). The implementation of these modifications requires an in situ inspection of the real conditions of the various elements, analyses, conceptual design and detail engineering, all of which has to be done in short periods of time using resources available at the plant. This activity is performed by the companies mentioned above, with the collaboration of two engineering companies, Energoproekt of Bulgaria and INITEC of Spain. This paper describes the activities developed and the treatment given to the various aspects of improvement of the seismic capability of equipment and structures. (author)

  17. Dynamic analysis and response spectra for the main process building of a reprocessing plant

    International Nuclear Information System (INIS)

    Hilpert, H.J.; Henkel, F.O.

    1988-01-01

    This paper deals with the determination of the floor response spectra for the main process building of the planned reprocessing plant due to the special loading conditions of earthquake, airplane crash and blast. With these spectra the stress and strain of the components and their bearing forces which react on the building can be calculated. Some special problems depending on the length of the building are not yet answered and will be discussed later. (orig.)

  18. Dynamic analysis of steel-concrete structure of TVO power plant containment building

    International Nuclear Information System (INIS)

    Hakala, M.; Karjunen, T.

    1996-08-01

    The report presents results from a study concerning the ability of the containment to withstand the loads caused by steams explosions which are possible during a severe accident at TVO plant (BWR). In the first phase, the suitability of the engineering mechanics code (FLAC) for modelling the dynamic response of damaging steel-concrete structures was tested by post-calculating a small scale test. As a result, a new dynamic material model taking account the fracture orientation was developed. In containment calculations both the developed and the best generally accepted material model were used. The loads against the containment were obtained from a simple model for steam explosions, which allowed the impulse of the pressure load to be fixed by tuning a few parameters. The ability of the containment to withstand the pressure pulses was analysed with loads of 5, 1 0, 20, 40, 60, and 80 kPa s impulse. As a results, the area and magnitude of permanent damage together with time histories of displacement and stress at critical points are presented. The estimations on the consequences of the observed structural damages as far as the containment leak tightness and stability are concerned and presented as conclusions. (9 refs.)

  19. Calculation of coal power plant cost on agricultural and material building impact of emission

    International Nuclear Information System (INIS)

    Mochamad Nasrullah; Wiku Lulus Widodo

    2016-01-01

    Calculation for externally cost of Coal Power Plant (CPP) is very important. This paper is focus on CPP appear SO 2 impact on agricultural plant and material building. AGRIMAT'S model from International Atomic Energy Agency is model one be used to account environmental damage for air impact because SO 2 emission. Analysis method use Impact Pathways Assessment: Determining characteristic source, Exposure Response Functions (ERF), Impacts and Damage Costs, and Monetary Unit Cost. Result for calculate shows that SO 2 that issued CPP, if value of SO 2 is 19,3 μg/m3, damage cost begins valuably positive. It shows that the land around CPP has decrease prosperity, and it will disadvantage for agricultural plant. On material building, SO 2 resulting damage cost. The increase humidity price therefore damage cost on material building will increase cost. But if concentration SO 2 increase therefore damage cost that is appear on material building decrease. Expected this result can added with external cost on health impact of CPP. External cost was done at developed countries. If it is done at Indonesia, therefore generation cost with fossil as more expensive and will get implication on issue cut back gases greenhouse. On the other side, renewable energy and also alternative energy as nuclear have opportunity at national energy mix system. (author)

  20. Decentralized Networked Control of Building Structures

    Czech Academy of Sciences Publication Activity Database

    Bakule, Lubomír; Rehák, Branislav; Papík, Martin

    2016-01-01

    Roč. 31, č. 11 (2016), s. 871-886 ISSN 1093-9687 R&D Projects: GA ČR GA13-02149S Institutional support: RVO:67985556 Keywords : decentralized control * networked control * building structures Subject RIV: BC - Control Systems Theory Impact factor: 5.786, year: 2016

  1. Integrating fuel cell power systems into building physical plants

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J. [KCI Technologies, Inc., Hunt Valley, MD (United States)

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  2. Soil–structure interaction analyses to locate nuclear power plant free-field seismic instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, James J., E-mail: jasjjoh@aol.com [James J. Johnson and Associates, Alamo, CA (United States); Ake, Jon P. [US Nuclear Regulatory Commission, Washington, DC (United States); Maslenikov, Oleg R. [James J. Johnson and Associates, Alamo, CA (United States); Kenneally, Roger M. [Consultant, Seminole, FL (United States)

    2015-12-15

    Highlights: • Determine the location of seismic instrumentation so that recorded motion will be free-field motion. • Certified Designs of nuclear island for AP1000 and EPR; ABWR Reactor Building were analyzed. • Three site conditions and multiple recorded time histories were considered. • Instrumentation located 1-diameter from the edge of structure/foundation is adequate. • Acceptance criteria were probability of non-exceedance of response spectra values. - Abstract: The recorded earthquake ground motion at the nuclear power plant site is needed for several purposes. US Nuclear Regulatory Commission (NRC) Regulatory Guide 1.12, Nuclear Power Plant Instrumentation for Earthquakes, NRC (1997a), describes acceptable instrumentation to meet the requirements in NRC's regulations pertaining to earthquake engineering criteria for nuclear power plants. The ground motion data recorded by the free-field seismic instrumentation are used to compare the actual earthquake motion at the site with the design input motion. The result of the comparison determines if the Operating Basis Earthquake ground motion (OBE) has been exceeded and plant shutdown is required per the guidance in NRC Regulatory Guide 1.166, Pre-Earthquake Planning and Immediate Nuclear Power Plant Operator Postearthquake Actions, NRC (1979b). The free-field is defined as a location on the ground surface or in the site soil column that is sufficiently distant from the site structures to be essentially unaffected by the vibration of the site structures.

  3. Synthesis of vibration control and health monitoring of building structures under unknown excitation

    International Nuclear Information System (INIS)

    He, Jia; Huang, Qin; Xu, You-Lin

    2014-01-01

    The vibration control and health monitoring of building structures have been actively investigated in recent years but often treated separately according to the primary objective pursued. In this study, a time-domain integrated vibration control and health monitoring approach is proposed based on the extended Kalman filter (EKF) for identifying the physical parameters of the controlled building structures without the knowledge of the external excitation. The physical parameters and state vectors of the building structure are then estimated and used for the determination of the control force for the purpose of the vibration attenuation. The interaction between the health monitoring and vibration control is revealed and assessed. The feasibility and reliability of the proposed approach is numerically demonstrated via a five-story shear building structure equipped with magneto-rheological (MR) dampers. Two types of excitations are considered: (1) the EI-Centro ground excitation underneath of the building and (2) a swept-frequency excitation applied on the top floor of the building. Results show that the structural parameters as well as the unknown dynamic loadings could be identified accurately; and, at the same time, the structural vibration is significantly reduced in the building structure. (paper)

  4. KEY ASPECTS OF ENSURING ENERGY EFFICIENCY OF BUILDINGS AND STRUCTURES

    Directory of Open Access Journals (Sweden)

    S.G. Abramyan

    2017-06-01

    Full Text Available The paper is based on the review of the foreign and national academic literature and intended to emphasize the issues of ensuring energy efficiency of buildings and structures applicable to all the countries as for reconstruction of existing buildings as for erection of new ones . The author highlights the key aspects of the provision of energy efficiency of buildings and structures in some foreign countries. The conclusion is made that the studies are mainly aimed at discovering new heat insulation materials, whereby polystyrene insulation is found to be the most widespread wall insulation material in a number of countries. At the same time, it is observed that the ongoing research is focused on solutions to optimize the structure of walling systems in terms of both insulant thickness and the number and sequence of insulation layers in the walling structure. A conclusion is made that hyper insulation of external walls leads to considerable expenses arising due to cooling during the summer season. The use of prefabricated vacuum panels as a heat insulation layer and off-the-shelf single-layer structures, subject to their heat insulation characteristics, appears a more constructive way to meet the energy efficiency requirements, as the arrangement of ideal air space in multilayered walls proves a significant challenge today. One of the most promising ways to ensure energy efficiency is the use of multifunctional polyvalent walls and provision of polyvalent heat supply from renewable energy sources. Since energy efficiency depends on the spatial arrangement of buildings, construction must ensure a minimum ratio of the area of enclosing structures to the overall building volume (by adding on new facilities in case of reconstruction. It is noted that a systemic approach to ensuring energy efficiency of buildings is impossible without proper regard to the environmental parameters of heat insulation materials.

  5. Nuclear power plants and house-building

    International Nuclear Information System (INIS)

    1982-04-01

    In this report, it is studied where and under what conditions houses can be built in the neighbourhood of nuclear power plants. Building norms and location distances are investigated. First, the Dutch and foreign norms with respect to population densities are listed. Only industrial, densely populated neighbour countries are considered. Next, it is calculated what consequences for housing a nuclear station may have within a radius of 20 km. Using these calculations it is studied whether the existing Dutch requirements are satisfied. Because it is expected that the norms are likely to be tightened up under the pressure of the nuclear controversy, the existing Dutch situation is also compared with the tighter foreign norms. Finally, the results of the study are summarized and some conclusions are drawn. (Auth.)

  6. Multi-layer planting as a strategy of greening the transitional space in high-rise buildings: A review

    Science.gov (United States)

    Prihatmanti, Rani; Taib, Nooriati

    2018-03-01

    The issues regarding the rapid development in the urban have resulted in the increasing number of infrastructure built, including the high-rise buildings to accommodate the urban dwellers. Lack of greeneries due to the land limitation in the urban area has increased the surface radiation as well as the air temperature that leads to the Urban Heat Island (UHI) phenomena. Where urban land is limited, growing plants vertically could be a solution. Plants, which are widely known as one of the sustainability elements in the built environment could be integrated in building as a part of urban faming by growing edible plant species. This is also to address the food security issue in the urban as well as high-density cities. Since space is limited, the function of transitional space could be optimized for the green space. This paper explores the strategy of greening transitional space in the high-rise setting. To give a maximum impact in a limited space, multi-layer planting concept could be introduced. This concept is believed that multiple layers of plants could modify the microclimate, as well as the radiation to the building, compare to single layer plant. In addition to that, the method selected also determines the efficacy of the vertical greeneries. However, there are many other limitations related to the multi-layer planting method if installed in a transitional space that needs to be further studied. Despite its limitations, the application of vertical greeneries with multi-layer planting concept could be a promising solution for greening the limited space as well as improving the thermal comfort in the high-rise building.

  7. The fundamentals of structural building codes

    NARCIS (Netherlands)

    Vrouwenvelder, A.C.W.M.

    2001-01-01

    Partial Factor Design is nowadays a generally accepted design method for building and civil engineering structures. For most engineers the general philosophy that the safety factors depend on the type of the load and on the limit state under consideration makes sense. However, the background, in

  8. Dynamic analysis and response spectra for the main processing building of a reprocessing plant

    International Nuclear Information System (INIS)

    Mischke, J.; Hilpert, H.J.; Henkel, F.O.

    1984-01-01

    The article deals with the determination of the floor response spectra for the main processing building of the planned reprocessing plant due to the special loading conditions of earthquake, airplane crash and blast. With these spectra the stress and strain of the components and their bearing forces which react on the building can be calculated. (orig.) [de

  9. On Directionality of Phrase Structure Building

    Science.gov (United States)

    Chesi, Cristiano

    2015-01-01

    Minimalism in grammatical theorizing (Chomsky in "The minimalist program." MIT Press, Cambridge, 1995) led to simpler linguistic devices and a better focalization of the core properties of the structure building engine: a lexicon and a free (recursive) phrase formation operation, dubbed Merge, are the basic components that serve in…

  10. Seismic safety of building structures of NPP Kozloduy III

    International Nuclear Information System (INIS)

    Varbanov, G.I.; Kostov, M.K.; Stefanov, D.D.; Kaneva, A.D.

    2005-01-01

    In the proposed paper is presented a general summary of the analyses carried out to evaluate the dynamic behavior and to assess the seismic safety of some safety related building structures of NPP Kozloduy. The design seismic loads for the site of Kozloduy NPP has been reevaluated and increased during and after the construction of investigated Units 5 and 6. Deterministic and probabilistic approaches are applied to assess the seismic vulnerability of the investigated structures, taking into account the newly defined seismic excitations. The presented results show sufficient seismic safety for the studied critical structures and good efficiency of the seismic upgrading. The applicability of the investigated structures at sites with some higher seismic activities is discussed. The presented study is dealing mainly with the civil structures of the Reactor building, Turbine hall, Diesel Generator Station and Water Intake Structure. (authors)

  11. Wind Power: Building and Connecting Large Wind Power Plants; Vindkraft: bygga och ansluta stoerre vindkraftverk

    Energy Technology Data Exchange (ETDEWEB)

    2007-09-15

    This brochure is written for those who want to build a large wind power plant (1 MW or more) or wind power parks. It describes the process from idea to completed plant. A review of environmental impacts of wind power is also included

  12. Adaptive building skin structures

    International Nuclear Information System (INIS)

    Del Grosso, A E; Basso, P

    2010-01-01

    The concept of adaptive and morphing structures has gained considerable attention in the recent years in many fields of engineering. In civil engineering very few practical applications are reported to date however. Non-conventional structural concepts like deployable, inflatable and morphing structures may indeed provide innovative solutions to some of the problems that the construction industry is being called to face. To give some examples, searches for low-energy consumption or even energy-harvesting green buildings are amongst such problems. This paper first presents a review of the above problems and technologies, which shows how the solution to these problems requires a multidisciplinary approach, involving the integration of architectural and engineering disciplines. The discussion continues with the presentation of a possible application of two adaptive and dynamically morphing structures which are proposed for the realization of an acoustic envelope. The core of the two applications is the use of a novel optimization process which leads the search for optimal solutions by means of an evolutionary technique while the compatibility of the resulting configurations of the adaptive envelope is ensured by the virtual force density method

  13. Differential pressures on building walls during tornados

    International Nuclear Information System (INIS)

    Yeh, G.C.K.

    1975-01-01

    In the United States, containment structures and some auxiliary structures (control building, auxiliary building, spent fuel building, etc.) in nuclear power plants are required to be designed to withstand the effects of the design basis tornado. In addition to velocity pressures and missile impact a tornado also gives rise to a rapid change in atmospheric pressure, which can, in cases of closed or partially vented structures, produce direct differential pressure loading. In this paper a digital computer program is described which applies a tornado-induced, time-dependent atmospheric pressure change to a building and calculates the differential pressure histories across the interior and exterior walls of the building. Laws for quasi-steady, one-dimensional motion of an ideal compressible gas are used to calculate the pressures due to the flow of air through ports, doors and windows in the building. Numerical examples show that for each assumed atmospheric pressure change history a vent area to compartment volume ratio may be specified as the criterion for a building to be considered fully vented. (orig.) [de

  14. Development of the APR+ Auxiliary Building General Arrangement (GA)

    International Nuclear Information System (INIS)

    Moon, Hyung Keun; Park, Young Sheop; Kang, Yong Chul

    2011-01-01

    The general arrangement (GA) drawing of a nuclear power plant is the most basic drawing which contains all of the plant equipment, systems, and rooms. Therefore, it should be issued at an early design stage to provide the contours of the overall plant structure. This type of drawing is typically used widely throughout the design stages. The development project of APR+ (Advanced Power Reactor+), as a succeeding model of the APR1400 (Advanced Power Reactor 1400) design, has its own GA that encompasses all of its power buildings. This was developed starting in October of 2009. Among several of the buildings in this design, the Auxiliary Building (AB) is one of the most important buildings to produce electricity, and to protect against undesirable radiation emissions. This paper focuses on the design characteristics of the general arrangement of the AB

  15. Calculation methods of Structure-Soil-Structure Interaction (3SI) for embedded buildings: Application to NUPEC tests

    International Nuclear Information System (INIS)

    Clouteau, D.; Broc, D.; Devesa, G.; Guyonvarh, V.; Massin, P.

    2012-01-01

    This work aims at improving and validating methods coupling Finite Element (FE) and Boundary Element (BE) Methods in the context of Soil-Structure Interaction (SSI) and Structure-Soil-Structure Interaction (3SI) tests performed by NUPEC on mock-up structures built on an unmade ground. Several cases have been tested: single and juxtaposed buildings, shallow and embedded foundations, with various loading conditions: forced and natural seismic loadings. The numerical simulations of forced vibration tests are in good agreement with the results of the NUPEC experiments in the case of two embedded buildings either in terms of amplitude and resonance. The numerical simulation of seismic response tests by FEM and BEM allows for a proper choice of the 'reference point' where the computed and the experimental displacements coincide. A parametric analysis of Structure-Soil-Structure Interaction carried out by the FEM has allowed to determine the influence of some parameters on SSI. Most of them like the position of the building in the excavation, the direction of the load, the quality of the contact between the sidewalls of the buildings and the soil for embedded foundations, do not show to have a strong influence on the dynamic system behaviour, which is mainly governed by the stiffness of the first soil layer. As far as 3SI is concerned, this paper shows that when the cross interaction has a small effect on the building response in the case of surface foundations, it has a strong influence in the case of embedded foundations with an important decrease of the response at the top of the buildings. (authors)

  16. Innovative Hybrid CHP systems for high temperature heating plant in existing buildings

    NARCIS (Netherlands)

    de Santoli, Livio; Lo Basso, Gianluigi; Nastasi, B.; d’Ambrosio Alfano, Francesca R.; Mazzarella and Piercarlo, Livio

    2017-01-01

    This paper deals with the potential role of new hybrid CHP systems application providing both electricity and heat which are compatible with the building architectural and landscape limitations. In detail, three different plant layout options for high temperature heat production along with the

  17. Effects of building structures on radiation doses from routine releases of radionuclides to the atmosphere

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1978-01-01

    Realistic assessments of radiation doses to the population from routine releases of radionuclides to the atmosphere require consideration of man's largely indoor environment. The effect of a building structure on radiation doses is described quantitatively by a dose reduction factor, which is the ratio of the dose to a reference individual inside a structure to the corresponding dose with no structure present. We have implemented models to estimate dose reduction factors for internal dose from inhaled radionuclides and for external photon dose from airborne and surface-deposited radionuclides. The models are particularly useful in radiological assessment applications, since dose reduction factors may readily be estimated for arbitrary mixtures and concentrations of radionuclides in the atmosphere and on the ground. The model for inhalation dose reduction factors accounts for radioactive decay, air ventilation into and out of the structure, and deposition of radionuclides on inside surfaces of the structure. External dose reduction factors are estimated using the point-kernel integration method including consideration of buildup in air and the walls of the building. The potential importance of deposition of radionuclides on inside surfaces of a structure on both inhalation and external dose reduction factors has been demonstrated. Model formulation and the assumptions used in the calculations are discussed. Results of model-parameter sensitivity studies and estimates of dose reduction factors for radionuclides occurring in routine releases from an LWR fuel reprocessing plant are presented. (author)

  18. Hydraulic behaviour of a representative structural volume for containment buildings

    International Nuclear Information System (INIS)

    Jason, Ludovic; Pijaudier-Cabot, Gilles; Ghavamian, Shahrokh; Huerta, Antonio

    2007-01-01

    For particular structures like containment buildings of nuclear power plants, the study of the hydraulic behaviour is of great concern. These structures are indeed the third barrier used to protect the environment in case of accidents. The evolution of the leaking rate through the porous medium is closely related to the changes in the permeability during the ageing process of the structure. It is thus essential to know the relation between concrete degradation and the transfer property when the consequences of a mechanical loading on the hydraulic behaviour have to be evaluated. A chained approach is designed for this purpose. The mechanical behaviour is described by an elastic plastic damage formulation, where damage is responsible for the softening evolution while plasticity accounts for the development of irreversible strains. The drying process is evaluated according to a non-linear equation of diffusion. From the knowledge of the damage and the degree of saturation, a relation is proposed to calculate the permeability of concrete. Finally, the non-homogeneous distribution of the hydraulic conductivity is included in the hydraulic problem which is in fact the association of the mass balance equation for gas phase and Darcy law. From this methodology, it is shown how an indicator for the hydraulic flows can be deduced

  19. Extent of moisture and mould damage in structures of public buildings

    Directory of Open Access Journals (Sweden)

    Petri J. Annila

    2017-06-01

    Full Text Available The study concentrated on the extent of moisture and mould damage in different structures in 25 public buildings in Finland. Users of all the buildings had health symptoms suspected to be the result of moisture and mould damage, which is why moisture performance assessments had been performed. The assessment reports on each building were available as research material. The reports indicated that the examined buildings suffered from multiple moisture and mould problems in several different structures. On average, however, a relatively small proportion of the total number of structures had suffered damage. On the basis of the research material, damage was most extensive in walls in soil contact (16.3% and base floor structures (12.5%. The lowest damage rates were found in partition walls (2.4%, external walls (2.6% and intermediate floors (2.5%. The results of the study underline the importance of thorough moisture performance assessments to ensure that all point-sized moisture and mould damage is detected.

  20. Rolls-Royce's decision to build manufacturing plant will impact Virginia Tech

    OpenAIRE

    Nystrom, Lynn A.

    2007-01-01

    Virginia Tech's College of Engineering will receive three endowed chairs, $2 million in support from the state of Virginia for laboratory renovations, some graduate fellowships, and resources for specific international program efforts, as a result of plans by British-based Rolls-Royce to build a new jet engine manufacturing plant in Prince George County.

  1. Structural analysis and design of a nuclear power plant building for aircraft crash effects

    International Nuclear Information System (INIS)

    Degen, P.; Furrer, H.; Jemielewski, J.

    1976-01-01

    The object of this investigation is to assess the effect of a large commercial airplane crashing perpendicularly on to the surface of a spherical reactor building dome. This investigation is related to a project currently in execution. Practical solutions of the postulated case, which vary in the degree of engineering effort used, are shown. Based on safety consideration the various solutions are discussed from the viewpoint of penetration, cracking and collapse modes of failure, where, primarily, the carrying capacity of the structure under an equivalent statical load is considered. The performed investigations include: (a) Calculation of the failure load following the yield line theory; (b) Calculation of the sectional forces using the linear-elastic shell theory and subsequent design by the ultimate strength method; (c) Calculation of the failure load, establishing of the failure mechanism and distribution of sectional forces using the plastic shell theory; (d) Calculation using a three-dimensional FEM program with plastic capabilities; this includes the collapse load, the failure mechanism and the distribution of sectional forces. A discussion of the resultant forces and the configuration of the critical section is given for the various methods used. The evaluation of the carrying capacity of the structure with respect to load is based on energy considerations. It is attempted to compare such results, to evaluate possible simplifications in the used solutions, and to give some recommendations for the practical design and for the development of structural details. (Auth.)

  2. Structural response of steel high rise buildings to fire

    DEFF Research Database (Denmark)

    Gentili, Filippo; Giuliani, Luisa; Bontempi, Franco

    2013-01-01

    Due to the significant vertical elevation and complexity of the structural system, high rise buildings may suffer from the effects of fire more than other structures. For this reason, in addition to evacuation strategies and active fire protection, a careful consideration of structural response t...

  3. Dynamic behavior structural response and capacity evaluation of the standardized WWER-1000 nuclear power plants subjected to severe loading conditions

    International Nuclear Information System (INIS)

    Ambriashvili, Y.K.; Krutzik, N.J.

    1993-01-01

    In order to verify the structural capacity of standardized WWER-1000 MW nuclear power plants, comprehensive static and dynamic analyses were performed in cooperation between Siemens and Atomenergoprojekt. The main goal of these investigations was to perform of a number of seismic analyses of standardized WWER-1000 reactor buildings on the basis of 13 given seismological inputs, taking into account the local soil conditions at 17 different sites defined by in-situ investigations. The analyses were based on appropriate mathematical models (equivalent beam models as well as detailed spatial surface element models) of the coupled vibrating structures (base structure, outer structure, containment, inner structure) and of the layered soil. The analyses were mainly performed using the indirect method (substructure method). Based on the results of the seismic analysis as well as the results of static analysis (pressure and temperature due to LOCA, dead weight, prestressing) an assessment was made of the seismic safety of the containment and the reactor building. Using a complex 3-dimensional model of the structure and the soil, the influence of the flexibility of the basement structure on the structural response was also studied. The structural analyses of the WWER-1000 reactor building led to the conclusion that its design accounts well for the main factors governing the dynamic behavior of the building. The assessment of the forces acting in the structures shows that the bearing capacity of the analyzed building structure corresponds to an earthquake intensity of about 0.2 g to 0.25 g

  4. Multi functional roof structures of the energy efficient buildings

    Directory of Open Access Journals (Sweden)

    Krstić Aleksandra

    2006-01-01

    Full Text Available Modern architectural concepts, which are based on rational energy consumption of buildings and the use of solar energy as a renewable energy source, give the new and significant role to the roofs that become multifunctional structures. Various energy efficient roof structures and elements, beside the role of protection, provide thermal and electric energy supply, natural ventilation and cooling of a building, natural lighting of the indoor space sunbeam protection, water supply for technical use, thus according to the above mentioned functions, classification and analysis of such roof structures and elements are made in this paper. The search for new architectural values and optimization in total energy balance of a building or the likewise for the urban complex, gave to roofs the role of "climatic membranes". Contemporary roof forms and materials clearly exemplify their multifunctional features. There are numerous possibilities to achieve the new and attractive roof design which broadens to the whole construction. With such inducement, this paper principally analyze the configuration characteristics of the energy efficient roof structures and elements, as well as the visual effects that may be achieved by their application.

  5. Uranium deposit removal from the Oak Ridge Gaseous Diffusion Plant K-25 Building

    International Nuclear Information System (INIS)

    Ladd, L.D.; Stinnett, E.C. Jr.; Hale, J.R.; Haire, M.J.

    1993-01-01

    The Oak Ridge Gaseous Diffusion Plant went into operation as the first plant to separate uranium by the gaseous diffusion process. It was built during World War II as part of the U.S. Army Corps of Engineers' Manhattan Project. Its war-time code name was K-25, which was also the name of the first uranium separation building constructed at the installation. The K-25 building was considered an engineering miracle at the time of its construction. Built in a U shape ∼1 mile long and 400 ft wide, it housed complex and unique separation equipment. Despite its size and complexity, it was made fully operational within <2 yr after construction began. The facility operated successfully for more than 20 yr until it was placed in a standby mode in 1964. It is now clear the K-25 gaseous diffusion plant will never again be used to enrich uranium. The U.S. Department of Energy, therefore, has initiated a decontamination and decommission program. This paper discusses various procedures and techniques for addressing critical mass, uranium deposits, and safeguards issues

  6. Plating Plant Waste Utilization in Glasswork, Ceramic and Building Industry

    International Nuclear Information System (INIS)

    Nikolaev, V.P.; Scheglov, M.; Korneva, S.A.

    1999-01-01

    The technology allows using electroplating plant waste for recovery of fine inorganic pigments, which may be used in paintwork and ceramic industry (for coating and enamel preparation, for ceramic painting), in glasswork (colored glass) and in building industry (for producing foundation slabs, sidewalk plates and curbing, for art urban planning, for pavement and aerodrome covering and so on). For fine inorganic pigment recovery so-called sol-gel method was used

  7. New methods of building WWER 1000 nuclear power plants

    International Nuclear Information System (INIS)

    Tadzher, O.

    1983-01-01

    The shortening of construction time needed for building the 5th unit of the Kozloduj nuclear power plant in Bulgaria is discussed. In the 2nd to 4th stages of construction the builders are expected to use the large CC-4000 mobile crane with high lifting power (Demag, FRG) for construction and assembly work. This work may be done by ''open'' assembly, i.e., the assembly of equipment in an unfinished building. By using the said crane it is possible to increase the weight of the individual units and thereby to reduce their number. The advantages of ''open'' assembly is that there is no need for a opecial transport corridor for the lifting and assembly of heavy handling units. A preliminary evaluation of the new technology has shown that assembly of the reactor hall equipment can be started 6 to 8 months ahead of schedule. (E.S.)

  8. The seismic response and floor spectra of OL3 NPP buildings in Finland

    International Nuclear Information System (INIS)

    Pentti Varpasuo

    2005-01-01

    The purpose of the present work is the computation of seismic response and floor spectra of the nuclear power plant OL3 buildings in Olkiluoto. The following OL3 plant buildings were included in the analysis: 1. the Reactor Building UJA/UJB; 2. the Safeguard Buildings UJH/UJK 1-4; 3. and the Fuel Building UFA The in-structure spectra were generated using the ground motion response spectra documented in YVL GUIDE 2.6 'Seismic events at nuclear power plants' issued by Finnish Centre of Radiation Protection. The floor spectra were computed for the following equipment damping values: 2%, 4%, 7%, and 10%. The joint model for the plant buildings was generated. All analyses were linear and the direct time integration method was used with time step of 0.001 sec. All response runs were carried out with MSC/Nastran general purpose structural analysis program. The development of floor spectra has been carried out in accordance with the US NRC -Regulatory Guide 1.122: 'Development of Floor Design Response Spectra for Seismic Design of Floor-Supported Equipment or Components'. The response results show that the dominant frequencies of the reactor building are located around 5 Hz in frequency space and that the typical amplification of spectral peaks for 4% damping is from 8 -10 times when compared to peak ground acceleration. (authors)

  9. Finding the displacement of wood structure in heritage building by 3D laser scanner

    Science.gov (United States)

    Lee, M. C.; Tsai, Y. L.; Wang, R. Z.; Lin, M. L.

    2015-08-01

    Heritage buildings are highly prone to long term damage from the microclimate, scourge and vandalism, which can result in damaged materials, structures, painting and cultural heritage items. This study will focus on finding the displacement of wood structural members through the use of a 3D laser scanner and the 4D concept of time. The results will compare the scans from different periods to find the difference (if any) in the structural member position. Wood structures usually consist of numerous wood members connected to form the structure. However, these members can be damaged in various ways such as physical mechanisms, chemical reactions, and biological corrosion. When damage to the wood structure occurs, the structural displacement can be affected, and if affected severely, can lead to a building collapse. Monitoring of the structural displacement is the best way to discover damage immediately and to preserve the heritage building. However, the Cultural Heritage Preservation Law in Taiwan prohibits the installation of monitoring instruments (e.g strain gauge, accelerometer) in historic structures (heritage buildings). Scanning the wood structure with 3D lasers is the most non-intrusive method and quickly achieves displacement through visualization. The displacement scan results can be compared with different periods and different members to analyze the severity of damage. Once the 3D scanner is installed, the whole building is scanned, and point clouds created to build the visual building model. The structural displacement can be checked via the building model and the differences are measured between each member to find the high risk damaged areas or members with large displacement. Early detection of structural damage is the most effective way means of preservation.

  10. LIFE-CYCLE COST MODEL AND DESIGN OPTIMIZATION OF BASE ISOLATED BUILDING STRUCTURES

    Directory of Open Access Journals (Sweden)

    Chara C. Mitropoulou

    2016-11-01

    Full Text Available Design of economic structures adequately resistant to withstand during their service life, without catastrophic failures, all possible loading conditions and to absorb the induced seismic energy in a controlled fashion, has been the subject of intensive research so far. Modern buildings usually contain extremely sensitive and costly equipment that are vital in business, commerce, education and/or health care. The building contents frequently are more valuable than the buildings them-selves. Furthermore, hospitals, communication and emergency centres, police and fire stations must be operational when needed most: immediately after an earthquake. Conventional con-struction can cause very high floor accelerations in stiff buildings and large interstorey drifts in flexible structures. These two factors cause difficulties in insuring the safety of both building and its contents. For this reason base-isolated structures are considered as an efficient alternative design practice to the conventional fixed-base one. In this study a systematic assessment of op-timized fixed and base-isolated reinforced concrete buildings is presented in terms of their initial and total cost taking into account the life-cycle cost of the structures.

  11. Residential building energy conservation and avoided power plant emissions by urban and community trees in the United States

    Science.gov (United States)

    David J. Nowak; Nathaniel Appleton; Alexis Ellis; Eric Greenfield

    2017-01-01

    Urban trees and forests alter building energy use and associated emissions from power plants by shading buildings, cooling air temperatures and altering wind speeds around buildings. Field data on urban trees were combined with local urban/community tree and land cover maps, modeling of tree effects on building energy use and pollutant emissions, and state energy and...

  12. RANDOM FUNCTIONS AND INTERVAL METHOD FOR PREDICTING THE RESIDUAL RESOURCE OF BUILDING STRUCTURES

    Directory of Open Access Journals (Sweden)

    Shmelev Gennadiy Dmitrievich

    2017-11-01

    Full Text Available Subject: possibility of using random functions and interval prediction method for estimating the residual life of building structures in the currently used buildings. Research objectives: coordination of ranges of values to develop predictions and random functions that characterize the processes being predicted. Materials and methods: when performing this research, the method of random functions and the method of interval prediction were used. Results: in the course of this work, the basic properties of random functions, including the properties of families of random functions, are studied. The coordination of time-varying impacts and loads on building structures is considered from the viewpoint of their influence on structures and representation of the structures’ behavior in the form of random functions. Several models of random functions are proposed for predicting individual parameters of structures. For each of the proposed models, its scope of application is defined. The article notes that the considered approach of forecasting has been used many times at various sites. In addition, the available results allowed the authors to develop a methodology for assessing the technical condition and residual life of building structures for the currently used facilities. Conclusions: we studied the possibility of using random functions and processes for the purposes of forecasting the residual service lives of structures in buildings and engineering constructions. We considered the possibility of using an interval forecasting approach to estimate changes in defining parameters of building structures and their technical condition. A comprehensive technique for forecasting the residual life of building structures using the interval approach is proposed.

  13. Radon entry into buildings: Effects of atmospheric pressure fluctuations and building structural factors

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Allen Lantham [Univ. of California, Berkeley, CA (United States). Dept. of Mechanical Engineering

    1996-05-01

    An improved understanding of the factors that control radon entry into buildings is needed in order to reduce the public health risks caused by exposure to indoor radon. This dissertation examines three issues associated with radon entry into buildings: (1) the influence of a subslab gravel layer and the size of the openings between the soil and the building interior on radon entry; (2) the effect of atmospheric pressure fluctuations on radon entry; and (3) the development and validation of mathematical models which simulate radon and soil-gas entry into houses. Experiments were conducted using two experimental basements to examine the influence of a subslab gravel layer on advective radon entry driven by steady indoor-outdoor pressure differences. These basement structures are identical except that in one the floor slab lies directly on native soil whereas in the other the slab lies on a high-permeability gravel layer. The measurements indicate that a high permeability subslab gravel layer increases the advective radon entry rate into the structure by as much as a factor of 30. The magnitude of the enhancement caused by the subslab gravel layer depends on the area of the openings in the structure floor; the smaller the area of these openings the larger the enhancement in the radon entry rate caused by the subslab gravel layer. A three-dimensional, finite-difference model correctly predicts the effect of a subslab gravel layer and open area configuration on advective radon entry driven by steady indoor-outdoor pressure differences; however, the model underpredicts the absolute entry rate into each structure by a factor of 1.5.

  14. Radon entry into buildings: Effects of atmospheric pressure fluctuations and building structural factors

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1996-05-01

    An improved understanding of the factors that control radon entry into buildings is needed in order to reduce the public health risks caused by exposure to indoor radon. This dissertation examines three issues associated with radon entry into buildings: (1) the influence of a subslab gravel layer and the size of the openings between the soil and the building interior on radon entry; (2) the effect of atmospheric pressure fluctuations on radon entry; and (3) the development and validation of mathematical models which simulate radon and soil-gas entry into houses. Experiments were conducted using two experimental basements to examine the influence of a subslab gravel layer on advective radon entry driven by steady indoor-outdoor pressure differences. These basement structures are identical except that in one the floor slab lies directly on native soil whereas in the other the slab lies on a high-permeability gravel layer. The measurements indicate that a high permeability subslab gravel layer increases the advective radon entry rate into the structure by as much as a factor of 30. The magnitude of the enhancement caused by the subslab gravel layer depends on the area of the openings in the structure floor; the smaller the area of these openings the larger the enhancement in the radon entry rate caused by the subslab gravel layer. A three-dimensional, finite-difference model correctly predicts the effect of a subslab gravel layer and open area configuration on advective radon entry driven by steady indoor-outdoor pressure differences; however, the model underpredicts the absolute entry rate into each structure by a factor of 1.5

  15. Assessment of flood potential for eight buildings at the Y-12 Plant

    International Nuclear Information System (INIS)

    Eiffe, M.A.

    1997-01-01

    In 1995, P-SQUARED Technologies, Inc., (P2T) was tasked with defining the flood potential for seven buildings at the Y-12 Plant (Buildings 9204-2, 9204-2E, 9206, 9212, 9215, 9720-5, and 9995) in the assumed event of a design storm with a recurrence interval of 10,000 years. At the conclusion of the study, P2T prepared and submitted a report summarizing the flood potential for those seven buildings. In November of 1997, P2T was tasked with (1) defining flood potential for the same seven buildings listed above for design storms with recurrence intervals of 500 years and 2000 years, and (2) defining flood potential for Building 9720-38 for design storms with recurrence intervals of 500 years, 2000 years, and 10,000 years. This report presents the results of the analyses conducted to define flood potential at these locations and for these recurrence intervals. None of the buildings investigated are completely safe from flooding during the storms considered. Runoff from rooftops may cause limited flooding in any areas where water is allowed to pond next to doors, vents, windows, or other openings. Flooding depths inside buildings in these areas should be limited to 1 ft or less. Buildings with openings below the grade of adjacent roads are also subject to flooding, with flood levels dependent upon the topography in that location

  16. Typological diversity of tall buildings and complexes in relation to their functional structure

    Science.gov (United States)

    Generalov, Viktor P.; Generalova, Elena M.; Kalinkina, Nadezhda A.; Zhdanova, Irina V.

    2018-03-01

    The paper focuses on peculiarities of tall buildings and complexes, their typology and its formation in relation to their functional structure. The research is based on the analysis of tall buildings and complexes and identifies the following main functional elements of their formation: residential, administrative (office), hotel elements. The paper also considers the following services as «disseminated» in the space-planning structure: shops, medicine, entertainment, kids and sports facilities, etc., their location in the structure of the total bulk of the building and their impact on typological diversity. Research results include suggestions to add such concepts as «single-function tall buildings» and «mixed-use tall buildings and complexes» into the classification of tall buildings. In addition, if a single-function building or complex performs serving functions, it is proposed to add such concepts as «a residential tall building (complex) with provision of services», «an administrative (public) tall building (complex) with provision of services» into the classification of tall buildings. For mixed-use buildings and complexes the following terms are suggested: «a mixed-use tall building with provision of services», «a mixed-use tall complex with provision of services».

  17. Space-planning and structural solutions of low-rise buildings: Optimal selection methods

    Science.gov (United States)

    Gusakova, Natalya; Minaev, Nikolay; Filushina, Kristina; Dobrynina, Olga; Gusakov, Alexander

    2017-11-01

    The present study is devoted to elaboration of methodology used to select appropriately the space-planning and structural solutions in low-rise buildings. Objective of the study is working out the system of criteria influencing the selection of space-planning and structural solutions which are most suitable for low-rise buildings and structures. Application of the defined criteria in practice aim to enhance the efficiency of capital investments, energy and resource saving, create comfortable conditions for the population considering climatic zoning of the construction site. Developments of the project can be applied while implementing investment-construction projects of low-rise housing at different kinds of territories based on the local building materials. The system of criteria influencing the optimal selection of space-planning and structural solutions of low-rise buildings has been developed. Methodological basis has been also elaborated to assess optimal selection of space-planning and structural solutions of low-rise buildings satisfying the requirements of energy-efficiency, comfort and safety, and economical efficiency. Elaborated methodology enables to intensify the processes of low-rise construction development for different types of territories taking into account climatic zoning of the construction site. Stimulation of low-rise construction processes should be based on the system of approaches which are scientifically justified; thus it allows enhancing energy efficiency, comfort, safety and economical effectiveness of low-rise buildings.

  18. Clearance of building structures for conventional non-nuclear reuse

    International Nuclear Information System (INIS)

    Buss, K.; Boehringer, S.

    1998-01-01

    At the example of a fuel assembly plant the strategy of control measurements on building surfaces, which shall be conventionally reused after their clearance, is regarded. Based on the given clearance levels the used measuring methods, especially with regard of possibly covered or intruded uranium contamination, are shown. The possibility of using the in-situ-γ-spectroscopy is discussed. (orig.) [de

  19. Structural evaluation of the 2736Z Building for seismic loads

    International Nuclear Information System (INIS)

    Giller, R.A.

    1994-01-01

    The 2736Z building structure is evaluated for high-hazard loads. The 2736Z building is analyzed herein for normal and seismic loads and is found to successfully meet the guidelines of UCRL-15910 along with the related codes requirements

  20. Determining building interior structures using compressive sensing

    Science.gov (United States)

    Lagunas, Eva; Amin, Moeness G.; Ahmad, Fauzia; Nájar, Montse

    2013-04-01

    We consider imaging of the building interior structures using compressive sensing (CS) with applications to through-the-wall imaging and urban sensing. We consider a monostatic synthetic aperture radar imaging system employing stepped frequency waveform. The proposed approach exploits prior information of building construction practices to form an appropriate sparse representation of the building interior layout. We devise a dictionary of possible wall locations, which is consistent with the fact that interior walls are typically parallel or perpendicular to the front wall. The dictionary accounts for the dominant normal angle reflections from exterior and interior walls for the monostatic imaging system. CS is applied to a reduced set of observations to recover the true positions of the walls. Additional information about interior walls can be obtained using a dictionary of possible corner reflectors, which is the response of the junction of two walls. Supporting results based on simulation and laboratory experiments are provided. It is shown that the proposed sparsifying basis outperforms the conventional through-the-wall CS model, the wavelet sparsifying basis, and the block sparse model for building interior layout detection.

  1. Object-Based Dense Matching Method for Maintaining Structure Characteristics of Linear Buildings.

    Science.gov (United States)

    Su, Nan; Yan, Yiming; Qiu, Mingjie; Zhao, Chunhui; Wang, Liguo

    2018-03-29

    In this paper, we proposed a novel object-based dense matching method specially for the high-precision disparity map of building objects in urban areas, which can maintain accurate object structure characteristics. The proposed framework mainly includes three stages. Firstly, an improved edge line extraction method is proposed for the edge segments to fit closely to building outlines. Secondly, a fusion method is proposed for the outlines under the constraint of straight lines, which can maintain the building structural attribute with parallel or vertical edges, which is very useful for the dense matching method. Finally, we proposed an edge constraint and outline compensation (ECAOC) dense matching method to maintain building object structural characteristics in the disparity map. In the proposed method, the improved edge lines are used to optimize matching search scope and matching template window, and the high-precision building outlines are used to compensate the shape feature of building objects. Our method can greatly increase the matching accuracy of building objects in urban areas, especially at building edges. For the outline extraction experiments, our fusion method verifies the superiority and robustness on panchromatic images of different satellites and different resolutions. For the dense matching experiments, our ECOAC method shows great advantages for matching accuracy of building objects in urban areas compared with three other methods.

  2. Object-Based Dense Matching Method for Maintaining Structure Characteristics of Linear Buildings

    Directory of Open Access Journals (Sweden)

    Nan Su

    2018-03-01

    Full Text Available In this paper, we proposed a novel object-based dense matching method specially for the high-precision disparity map of building objects in urban areas, which can maintain accurate object structure characteristics. The proposed framework mainly includes three stages. Firstly, an improved edge line extraction method is proposed for the edge segments to fit closely to building outlines. Secondly, a fusion method is proposed for the outlines under the constraint of straight lines, which can maintain the building structural attribute with parallel or vertical edges, which is very useful for the dense matching method. Finally, we proposed an edge constraint and outline compensation (ECAOC dense matching method to maintain building object structural characteristics in the disparity map. In the proposed method, the improved edge lines are used to optimize matching search scope and matching template window, and the high-precision building outlines are used to compensate the shape feature of building objects. Our method can greatly increase the matching accuracy of building objects in urban areas, especially at building edges. For the outline extraction experiments, our fusion method verifies the superiority and robustness on panchromatic images of different satellites and different resolutions. For the dense matching experiments, our ECOAC method shows great advantages for matching accuracy of building objects in urban areas compared with three other methods.

  3. Criteria of choosing building structures for rooftop boiler rooms

    Directory of Open Access Journals (Sweden)

    Plotnikov Artyom

    2018-01-01

    Full Text Available The paper investigates parameters of noise and vibration distribution in the territory of residential area depending on the structural materials and power of independent heat supply systems. Rooftop boiler rooms are decentralized heat supply systems in buildings. Today, residential areas are strongly affected by noise and vibrations. Adverse effects are isolated by buildings materials, protective shields and floating floors. Rooftop boiler rooms located in Tyumen city were investigated within this research. Structures of rooftop boiler rooms were analyzed. Acoustic analysis results and the parameters of equivalent continuous sound level are presented. An option for improvement of rooftop boiler rooms structures is suggested. Comparison of capital investments in construction and installation activities is carried out. Conclusion on capital investments required for noise protection is made.

  4. Automated structure solution, density modification and model building.

    Science.gov (United States)

    Terwilliger, Thomas C

    2002-11-01

    The approaches that form the basis of automated structure solution in SOLVE and RESOLVE are described. The use of a scoring scheme to convert decision making in macromolecular structure solution to an optimization problem has proven very useful and in many cases a single clear heavy-atom solution can be obtained and used for phasing. Statistical density modification is well suited to an automated approach to structure solution because the method is relatively insensitive to choices of numbers of cycles and solvent content. The detection of non-crystallographic symmetry (NCS) in heavy-atom sites and checking of potential NCS operations against the electron-density map has proven to be a reliable method for identification of NCS in most cases. Automated model building beginning with an FFT-based search for helices and sheets has been successful in automated model building for maps with resolutions as low as 3 A. The entire process can be carried out in a fully automatic fashion in many cases.

  5. BIM-Based Timber Structures Refurbishment of the Immovable Heritage Listed Buildings

    Science.gov (United States)

    Henek, Vladan; Venkrbec, Václav

    2017-12-01

    The use of Building information model (BIM) design tools is no longer an exception, but a common issue. When designing new buildings or complex renovations using BIM, the benefits have already been repeatedly published. The essence of BIM is to create a multidimensional geometric model of a planned building electronically on a computer, supplemented with the necessary information in advance of the construction process. Refurbishment is a specific process that combines both - new structures and demolished structures, or structures that need to be dismantled, repaired, and then returned to the original position. Often it can be historically valuable part of the building. BIM-based repairs and refurbishments of the constructions, especially complicated repairs of the structures of roof trusses of immovable heritage listed buildings, have not yet been credibly presented. However, the use of BIM tools may be advantageous in this area, because user can quickly response to the necessary changes that may be needed during refurbishments, but also in connection with the quick assessment and cost estimation of any unexpected additional works. The paper deals with the use of BIM in the field of repairs and refurbishment of the buildings in general. The emphasis on monumentally protected elements was priority. Advantage of the proposal research is demonstrated on case study of the refurbishment of the immovable heritage listed truss roof. According to this study, this construction was realized in the Czech Republic. Case study consists of 3D modelled truss parts and the connected technological workflow base. The project work was carried out in one common model environment.

  6. Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4. Volume 1: Technology evaluation

    International Nuclear Information System (INIS)

    1994-09-01

    During World War 11, the Oak Ridge Y-12 Plant was built as part of the Manhattan Project to supply enriched uranium for weapons production. In 1945, Building 9201-4 (Alpha-4) was originally used to house a uranium isotope separation process based on electromagnetic separation technology. With the startup of the Oak Ridge K-25 Site gaseous diffusion plant In 1947, Alpha-4 was placed on standby. In 1953, the uranium enrichment process was removed, and installation of equipment for the Colex process began. The Colex process--which uses a mercury solvent and lithium hydroxide as the lithium feed material-was shut down in 1962 and drained of process materials. Residual Quantities of mercury and lithium hydroxide have remained in the process equipment. Alpha-4 contains more than one-half million ft 2 of floor area; 15,000 tons of process and electrical equipment; and 23,000 tons of insulation, mortar, brick, flooring, handrails, ducts, utilities, burnables, and sludge. Because much of this equipment and construction material is contaminated with elemental mercury, cleanup is necessary. The goal of the Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 is to provide a planning document that relates decontamination and decommissioning and waste management problems at the Alpha-4 building to the technologies that can be used to remediate these problems. The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 builds on the methodology transferred by the U.S. Air Force to the Environmental Management organization with DOE and draws from previous technology logic diagram-efforts: logic diagrams for Hanford, the K-25 Site, and ORNL

  7. Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4. Volume 1: Technology evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    During World War 11, the Oak Ridge Y-12 Plant was built as part of the Manhattan Project to supply enriched uranium for weapons production. In 1945, Building 9201-4 (Alpha-4) was originally used to house a uranium isotope separation process based on electromagnetic separation technology. With the startup of the Oak Ridge K-25 Site gaseous diffusion plant In 1947, Alpha-4 was placed on standby. In 1953, the uranium enrichment process was removed, and installation of equipment for the Colex process began. The Colex process--which uses a mercury solvent and lithium hydroxide as the lithium feed material-was shut down in 1962 and drained of process materials. Residual Quantities of mercury and lithium hydroxide have remained in the process equipment. Alpha-4 contains more than one-half million ft{sup 2} of floor area; 15,000 tons of process and electrical equipment; and 23,000 tons of insulation, mortar, brick, flooring, handrails, ducts, utilities, burnables, and sludge. Because much of this equipment and construction material is contaminated with elemental mercury, cleanup is necessary. The goal of the Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 is to provide a planning document that relates decontamination and decommissioning and waste management problems at the Alpha-4 building to the technologies that can be used to remediate these problems. The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 builds on the methodology transferred by the U.S. Air Force to the Environmental Management organization with DOE and draws from previous technology logic diagram-efforts: logic diagrams for Hanford, the K-25 Site, and ORNL.

  8. Floor response spectra of the main process building of a reprocessing plant against earthquake, airplane crash and blast

    International Nuclear Information System (INIS)

    Hilpert, H.J.

    1987-01-01

    In the general concept of the planned reprocessing plant for spent fuel elements, the main process building has the central function. This building will be designed to withstand earthquake, airplane crash and blast. This report deals with the stress on components and systems due to vibration of the building, the floor response spectra

  9. Engineerig of structural modifications for operating nuclear plants

    International Nuclear Information System (INIS)

    Duffy, T.J.; Gazda, P.A.

    1983-01-01

    The engineering of structural modifications for operating nuclear plants offers many challenges in the areas of scheduling of work, field adjustments, and engineering staff planning. The scheduling of structural modification work for operating nuclear plants is normally closely tied to planned or unplanned outages of the plant. Coordination between the structural engineering effort, the operating plant staff, and the contractor who will be performing the modifications is essential to ensure that all work can be completed within the allotted time. Due to the inaccessibility of areas in operating plants or the short time available to perform the structural engineering in the case of an unscheduled outage, field verification of a design is not always possible prior to initiating the construction of the modification. This requires the structural engineer to work closely with the contractor to promptly resolve problems due to unanticipated interferences or material procurement that may arise during the course of construction. The engineering staff planning for structural modifications at an operating nuclear plant must be flexible enough to permit rapid response to the common 'fire drills', but controlled enough to assure technically correct designs and minimize the expenditure of man-hours and resulting engineering cost. (orig.)

  10. 2009 Plant Lipids: Structure, Metabolism & Function Gordon Research Conference - February 1- 6 ,2009

    Energy Technology Data Exchange (ETDEWEB)

    Kent D. Chapman

    2009-02-06

    The Gordon Research Conference on 'Plant Lipids: Structure, Metabolism and Function' has been instituted to accelerate research productivity in the field of plant lipids. This conference will facilitate wide dissemination of research breakthroughs, support recruitment of young scientists to the field of plant lipid metabolism and encourage broad participation of the plant lipid community in guiding future directions for research in plant lipids. This conference will build upon the strengths of the successful, previous biannual meetings of the National Plant Lipid Cooperative (www.plantlipids.org) that began in 1993, but will reflect a broader scope of topics to include the biochemistry, cell biology, metabolic regulation, and signaling functions of plant acyl lipids. Most importantly, this conference also will serve as a physical focal point for the interaction of the plant lipid research community. Applications to attend this conference will be open to all researchers interested in plant lipids and will provide a venue for the presentation of the latest research results, networking opportunities for young scientists, and a forum for the development and exchange of useful lipid resources and new ideas. By bringing together senior- and junior-level scientists involved in plant lipid metabolism, a broad range of insights will be shared and the community of plant lipid researchers will function more as a network of vested partners. This is important for the vitality of the research community and for the perceived value that will encourage conference attendance into the future.

  11. Passive low energy cooling of buildings

    CERN Document Server

    Givoni, Baruch

    1994-01-01

    A practical sourcebook for building designers, providing comprehensive discussion of the impact of basic architectural choices on cooling efficiency, including the layout and orientation of the structure, window size and shading, exterior color, and even the use of plantings around the site. All major varieties of passive cooling systems are presented, with extensive analysis of performance in different types of buildings and in different climates: ventilation; radiant cooling; evaporative cooling; soil cooling; and cooling of outdoor spaces.

  12. Plant lessons: exploring ABCB functionality through structural modeling

    Directory of Open Access Journals (Sweden)

    Aurélien eBailly

    2012-01-01

    Full Text Available In contrast to mammalian ABCB1 proteins, narrow substrate specificity has been extensively documented for plant orthologs shown to catalyze the transport of the plant hormone, auxin. Using the crystal structures of the multidrug exporters Sav1866 and MmABCB1 as templates, we have developed structural models of plant ABCB proteins with a common architecture. Comparisons of these structures identified kingdom-specific candidate substrate-binding regions within the translocation chamber formed by the transmembrane domains of ABCBs from the model plant Arabidopsis. These results suggest an early evolutionary divergence of plant and mammalian ABCBs. Validation of these models becomes a priority for efforts to elucidate ABCB function and manipulate this class of transporters to enhance plant productivity and quality.

  13. Reduction of seismic response in breeder plants

    International Nuclear Information System (INIS)

    Tajirian, F.F.; Somes, N.F.; Todeschini, R.A.

    1984-01-01

    Thin-walled vessels to be used in the Nuclear Steam Supply Systems (NSSS) of future LMFBR's will be more sensitive to seismic excitation than their equivalents used in conventional LWR plants. Optimization studies of building arrangement have indicated that embedment of future plants may be one feasible strategy for reducing seismic response. This paper presents the results of a three-dimensional soil-structure interaction analysis using the computer program SASSI. Two types of embedded buildings are considered: full embedment of the nuclear island, and embedment of the reactor cavity alone. A comparison, between the response of the embedded structure with that of a plant supported on the surface, indicates that the seismic response at the reactor vessel support ledge can be lowered by embedment of either the entire nuclear island or the reactor cavity alone. This reduction is larger when the plant is embedded in a softer site due to the increased effect of soil-structure interaction

  14. Dynamic analysis of clustered building structures using substructures methods

    International Nuclear Information System (INIS)

    Leimbach, K.R.; Krutzik, N.J.

    1989-01-01

    The dynamic substructure approach to the building cluster on a common base mat starts with the generation of Ritz-vectors for each building on a rigid foundation. The base mat plus the foundation soil is subjected to kinematic constraint modes, for example constant, linear, quadratic or cubic constraints. These constraint modes are also imposed on the buildings. By enforcing kinematic compatibility of the complete structural system on the basis of the constraint modes a reduced Ritz model of the complete cluster is obtained. This reduced model can now be analyzed by modal time history or response spectrum methods

  15. Toolbox for super-structured and super-structure free multi-disciplinary building spatial design optimisation

    NARCIS (Netherlands)

    Boonstra, S.; van der Blom, K.; Hofmeyer, H.; Emmerich, M.T.M.; van Schijndel, A.W.M.; de Wilde, P.

    2018-01-01

    Multi-disciplinary optimisation of building spatial designs is characterised by large solution spaces. Here two approaches are introduced, one being super-structured and the other super-structure free. Both are different in nature and perform differently for large solution spaces and each requires

  16. Internal structure of reactor building for Madras Atomic Power Project

    International Nuclear Information System (INIS)

    Pandit, D.P.

    1975-01-01

    The structural configuration and analysis of structural elements of the internal structure of reactor building for the Madras Atomic Power Project has been presented. Two methods of analysis of the internal structure, viz. Equivalent Plane Frame and Finite Element Method, are explained and compared with the use of bending moments obtained. (author)

  17. Structural modules in AP1000 plant design

    International Nuclear Information System (INIS)

    Prasad, N.; Tunon-Sanjur, L.

    2007-01-01

    Structural modules are extensively used in AP1000 plant design. The shop manufacturing of modules components improves the quality and reliability of plant structures. The application of modules has a positive impact on construction schedules, and results in substantial savings in the construction cost. This paper describes various types of structural modules used for AP1000 plant structures. CA structural wall modules are steel plate modules with concrete placed, on or within the module, after module installation. The layout and design of the largest CA wall modules, CA01 and CA20, is described in detail. General discussion of structural floor modules, such as the composite and finned floors, is also included. Steel form CB modules (liners) consist of plate reinforced with angle stiffeners and tee sections. The angles and the tee sections are on the concrete side of the plate. Design of CB20 has been included as an example of CB type modules. Design codes and structural concepts related to module designs are discussed. (authors)

  18. Method and means for heating buildings in a district heating system with waste heat from a thermal power plant

    International Nuclear Information System (INIS)

    Margen, P.H.E.

    1975-01-01

    The waste heat from a thermal power plant is transported through a municipal heating network to a plurality of buildings to be heated. The quantity of heat thus supplied to the buildings is higher than that required for the heating of the buildings. The excess heat is released from the buildings to the atmosphere in the form of hot air

  19. Waste treatment plant

    International Nuclear Information System (INIS)

    Adesanmi, C.A

    2009-01-01

    Waste Treatment Plant (WTP) is designed to provide appropriate systems for processing, immobilization and storage of low and medium radioactive waste arising from the operation of the research facilities of the Nuclear Technology Centre (NTC). It will serve as central collection station processing active waste generated through application of radionuclide in science, medicine and industry in the country. WTP building and structures will house the main waste processing systems and supporting facilities. All facilities will be interconnected. The interim storage building for processed waste drums will be located separately nearby. The separate interim storage building is located near the waste treatment building. Considering the low radiation level of the waste, storage building is large with no solid partitioning walls and with no services or extra facilities other than lighting and smoke alarm sensors. The building will be designed such that drums(200-1)are stacked 3 units high using handling by fork lift truck. To prevent radiation exposure to on-site personnel, the interim storage building will be erected apart from waste treatment plant or other buildings. The interim storage building will also be ready for buffer storage of unconditioned waste waiting for processing or decay and for storage material from the WTP

  20. An approach to separating the levels of hierarchical structure building in language and mathematics.

    Science.gov (United States)

    Makuuchi, Michiru; Bahlmann, Jörg; Friederici, Angela D

    2012-07-19

    We aimed to dissociate two levels of hierarchical structure building in language and mathematics, namely 'first-level' (the build-up of hierarchical structure with externally given elements) and 'second-level' (the build-up of hierarchical structure with internally represented elements produced by first-level processes). Using functional magnetic resonance imaging, we investigated these processes in three domains: sentence comprehension, arithmetic calculation (using Reverse Polish notation, which gives two operands followed by an operator) and a working memory control task. All tasks required the build-up of hierarchical structures at the first- and second-level, resulting in a similar computational hierarchy across language and mathematics, as well as in a working memory control task. Using a novel method that estimates the difference in the integration cost for conditions of different trial durations, we found an anterior-to-posterior functional organization in the prefrontal cortex, according to the level of hierarchy. Common to all domains, the ventral premotor cortex (PMv) supports first-level hierarchy building, while the dorsal pars opercularis (POd) subserves second-level hierarchy building, with lower activation for language compared with the other two tasks. These results suggest that the POd and the PMv support domain-general mechanisms for hierarchical structure building, with the POd being uniquely efficient for language.

  1. Structural and compositional features of high-rise buildings: experimental design in Yekaterinburg

    Science.gov (United States)

    Yankovskaya, Yulia; Lobanov, Yuriy; Temnov, Vladimir

    2018-03-01

    The study looks at the specifics of high-rise development in Yekaterinburg. High-rise buildings are considered in the context of their historical development, structural features, compositional and imaginative design techniques. Experience of Yekaterinburg architects in experimental design is considered and analyzed. Main issues and prospects of high-rise development within the Yekaterinburg structure are studied. The most interesting and significant conceptual approaches to the structural and compositional arrangement of high-rise buildings are discussed.

  2. Ageing management of CANDUtm concrete containment buildings

    International Nuclear Information System (INIS)

    Philipose, K.E.; Gregor, F.E.

    2009-01-01

    The containment system in a Nuclear Power Plant (NPP) provides the final physical barrier against release of radioactive materials to the external environment. Even though there are different physical configurations to meet this fundamental safety function in various reactor types, a common feature is the use of a thick-walled concrete structure as part of the containment system commonly referred to as 'Concrete Containment Building'. In order for the concrete containment buildings to continue to provide the required safety function, it has to maintain its structural integrity. As well, its leak rates under test pressures must be maintained below acceptable limits. As some of the containment buildings of the CANDU nuclear power plants are approaching their fourth decade of successful operation, questions regarding the impact of ageing on their ultimate useful service life emerge. Ageing Management has become the tool for addressing those questions. In this paper, the ageing and ageing management of the CANDU concrete containments are discussed, including the specific programs being implemented to monitor and trend the ageing conditions. Specifically, the usefulness of the embedded strain gauges as a tool for the assessment of the condition of the containment concrete structure is discussed. Some of the operational and test data accumulated over the last 30 years have been evaluated and trended to provide some results and conclusions regarding the satisfactory long-term behaviour of the concrete containment buildings. (authors)

  3. CAL--ERDA users manual. [Building Design Language; LOADS, SYSTEMS, PLANT, ECONOMICS, REPORT, EXECUTIVE, CAL-ERDA

    Energy Technology Data Exchange (ETDEWEB)

    Graven, R. M.; Hirsch, P. R.

    1977-10-30

    A new set of computer programs capable of rapid and detailed analysis of energy consumption in buildings is described. The Building Design Language (BDL) has been written to allow simplified manipulation of the many variables used to describe a building and its operation. Programs presented in this manual include: (1) a Building Design Language program to analyze the input instructions, execute computer system control commands, perform data assignments and data retrieval, and control the operation of the LOADS, SYSTEMS, PLANT, ECONOMICS, and REPORT programs; (2) a LOADS analysis program which calculates peak (design) loads and hourly space loads due to ambient weather conditions and the internal occupancy, lighting, and equipment within the building, as well as variations in the size, location, orientation, construction, walls, roofs, floors, fenestrations, attachments (awnings, balconies), and shape of a building; (3) a HEATING, Ventilating, and Air-Conditioning (HVAC) SYSTEMS program capable of modeling the operation of HVAC components, including fans, coils, economizers, and humidifiers; (4) a PLANT equipment program which models the operation of boilers, chillers, electrical-generation equipment (e.g., diesel engines or turbines), heat-storage apparatus (e.g., chilled or heated water) and solar heating and/or cooling systems; (5) an ECONOMICS analysis program which calculates life-cycle costs; (6) a REPORT program which produces tables of user-selected variables and arranges them according to user-selected formats; and (7) an EXECUTIVE processor to create computer-system control commands. Libraries of weather data, typical schedule data, and data on the properties of walls, roofs, and floors are available.

  4. Italian Residential Buildings: Economic Assessments for Biomass Boilers Plants

    Directory of Open Access Journals (Sweden)

    Maurizio Carlini

    2013-01-01

    Full Text Available Biomass is increasingly used for energy generation since it represents a useful alternative to fossil fuel in order to face the pollutions and the global warming problem. It can be exploited for heating purposes and for supplying domestic hot water. The most common applications encompass wood and pellet boilers. The economic aspect is becoming an important issue in order to achieve the ambitious targets set by the European Directives on Renewable Sources. Thus, the present paper deals with the economic feasibility of biomass boiler plants with specific regard to an existing residential building. An Italian case study is further investigated, focusing the attention on European and national regulations on energy efficiency and considering the recent public incentives and supporting measures. The main thermoclimatic parameters—that is, heating degree days (HDDs, building thermal insulation and thermal needs—are taken into account. Moreover, the following economic indicators are calculated: cumulative cash flow, discounted cumulative cash flow, payback period (PP, net present value (NPV, Internal rate of return (IRR, discounted payback period (DPP, and profit index (PI.

  5. Seismic upgrade of building 776/777 at Rocky Flats Plant using latest edition of UCRL-15910

    International Nuclear Information System (INIS)

    Gillengerten, J.D.; Hamburger, R.O.; Keith, S.R.; McGovern, L.J.

    1991-01-01

    Building 776/777 is a large two-story structure used in the processing and decontamination of radioactively contaminated materials, tools, and equipment. Originally constructed in the 1950s, the building has been expanded several times and, following a major fire, was provided with a second structural roof to enclose the building envelope. Overall building dimensions are approximately 300 by 600 feet. It uses steel-frame construction with partially restrained joints for transverse moment resistance and diagonal braces for longitudinal stability. The second floor is a formed slab on steel framing, and the roof is a metal deck system. Exterior enclosures include poorly reinforced concrete-block masonry and cement-asbestos siding. Rigid concrete elements, forming vaults for materials with high radiation hazard, are present in some areas. The building was previously identified as having low resistance to both seismic and high-wind/tornado loads. A structural seismic upgrade was designed for the building, according to the provisions of US Department of Energy criteria document UCRL-15910, for high-hazard facilities. This design is intended to prevent substantial breach of the building envelope. The design supplements the lateral capacity of the existing semirigid steel frames with a series of steel buttress frames and exterior drag elements. This feature minimizes the extent of construction within secure and hazardous areas of the building but induces significant thermal stresses. Unique aspects of the design include provision for thermal relief as well as development of strengthening and anchorage of masonry walls that can accommodate large expected inelastic building drifts. This design illustrates the Department of Energy's newly adopted criteria, as applied to existing structures. It also indicates methods that may be used for strengthening hazardous and sensitive structures without significant work within the building envelope

  6. Structural safety of HDR reactor building during large scale vibration tests

    International Nuclear Information System (INIS)

    Stangenberg, F.; Zinn, R.

    1985-01-01

    In the second phase of the HDR investigations, a high shaker excitation of the building is planned using a large shaker which will be located on the operating floor and will be brought up to speed in a balanced condition and then unbalanced and decoupled from the drive system. With decreasing speed the shaker comes in resonance with the building frequencies and its energy is transferred to the building. In this paper the structural safety of the reactor building during the projected shaker tests is analysed. Dynamic response calculations with coupling between building and shaker by simultaneously integrating the equilibrium equations of both building and shaker are presented. The resulting building stresses, soil pressures etc. are compared with allowable values. (orig.)

  7. Private investment for building a small hydropower plant at Zetea dam base

    International Nuclear Information System (INIS)

    Popa, Florica; Paraschivescu, Adina; Vladescu, Aurelia; Popa, Bogdan

    2007-01-01

    Zetea lake grading project comprises an earthen dam, made out of local materials, having as main purposes water supply, flood control and protection against flooding. The paper analyzes the possibility of building a small hydropower plant at the base of the dam, using private investment resources, in order to put to good use the water flow evacuated from the storage lake. (authors)

  8. Vibration-damping structure for reactor building

    International Nuclear Information System (INIS)

    Kuno, Toshio; Iba, Chikara; Tanaka, Hideki; Kageyama, Mitsuru

    1998-01-01

    In a damping structure of a reactor building, an inner concrete body and a reactor container are connected by way of a vibration absorbing member. As the vibration absorbing member, springs or dampers are used. The inner concrete body and the reactor container each having weight and inherent frequency different from each other are opposed displaceably by way of the vibration absorbing member thereby enabling to reduce seismic input and reduce shearing force at least at leg portions. Accordingly, seismic loads are reduced to increase the grounding rate of the base thereby enabling to satisfy an allowable value. Therefore, it is not necessary to strengthen the inner concrete body and the reactor container excessively, the amount of reinforcing rods can be reduced, and the amount of a portion of the base buried to the ground can be reduced thereby enabling to constitute the reactor building easily. (N.H.)

  9. Technical safety appraisal: Buildings 776/777 Rocky Flats Plant

    Energy Technology Data Exchange (ETDEWEB)

    Field, H C

    1988-03-01

    Buildings 776/777 at the Rocky Flats Plant are major components of the production complex at the plant site. They have been in operation since 1957. The operations taking place in the buildings are nuclear weapons production support, processing of weapons assemblies returned from Pantex, waste processing, research and development in support of production, special projects, and those generated by support groups, such as maintenance. The appraisal team identified nine deficiencies that it believed required prompt attention. DOE management for EH, the program office (Defense Programs), and the field office analyzed the information provided by the appraisal team and instituted compensatory measures for closer monitoring of contractor activities by knowledgeable DOE staff and staff from other sites. Concurrently, the contractor was requested to address both short-term and long-term remedial measures to correct the identified issues as well as the underlying problems. The contractor has provided his action plan, which is included. This plan was under evaluation by EH and the DOE program office at the time this report was prepared. In addressing the major areas of concern identified above, a well as the specific deficiencies identified by the appraisal team, the contractor and the field office are cautioned to search for the root causes for the problems and to direct corrective actions to those root causes rather than solely to the symptoms to assure the sustainability of the improvements being made. The results of prior TSAs led DOE to conclude that previous corrective actions were not sufficient in that a large number of the individual findings are recurrent. Pending completion of remedial actions over the next few months, enhanced DOE oversight of the contractor is warranted.

  10. Technical safety appraisal: Buildings 776/777 Rocky Flats Plant

    International Nuclear Information System (INIS)

    Field, H.C.

    1988-03-01

    Buildings 776/777 at the Rocky Flats Plant are major components of the production complex at the plant site. They have been in operation since 1957. The operations taking place in the buildings are nuclear weapons production support, processing of weapons assemblies returned from Pantex, waste processing, research and development in support of production, special projects, and those generated by support groups, such as maintenance. The appraisal team identified nine deficiencies that it believed required prompt attention. DOE management for EH, the program office (Defense Programs), and the field office analyzed the information provided by the appraisal team and instituted compensatory measures for closer monitoring of contractor activities by knowledgeable DOE staff and staff from other sites. Concurrently, the contractor was requested to address both short-term and long-term remedial measures to correct the identified issues as well as the underlying problems. The contractor has provided his action plan, which is included. This plan was under evaluation by EH and the DOE program office at the time this report was prepared. In addressing the major areas of concern identified above, a well as the specific deficiencies identified by the appraisal team, the contractor and the field office are cautioned to search for the root causes for the problems and to direct corrective actions to those root causes rather than solely to the symptoms to assure the sustainability of the improvements being made. The results of prior TSAs led DOE to conclude that previous corrective actions were not sufficient in that a large number of the individual findings are recurrent. Pending completion of remedial actions over the next few months, enhanced DOE oversight of the contractor is warranted

  11. Preliminary Study on Impact Resistances of Fiber Reinforced Concrete Applied Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jin, Byeong Moo; Kim, Young Jin; Jeon, Se Jin

    2013-01-01

    Studies to improve the impact resistance depending upon design parameters for fiber reinforced concrete, such as type of fibers and application ratio, are in progress. Authors assessed first the impact resistance of concrete walls depending upon fiber types and missile impact velocities. The safety assessment of nuclear power plants against large civil aircraft crashes have been accomplished for normal concrete and fiber reinforced concretes in this study. Studies on the safety assessments on the nuclear power plants against large civil aircraft crashes are ongoing actively. As a step of evaluating the applicability of fiber reinforced concrete in means of ensuring more structural safety of the nuclear power plants against impact, the impact resistance for the 1% steel and 2% polyamide fiber reinforced concretes have been evaluated. For reactor containment building structures, it seem there is no impact resistance enhancement of fiber reinforced concrete applied to reactor containment building in the cases of impact velocity 150 m/sec considered in this study. However this results from the pre-stressing forces which introduce compressive stresses in concrete wall and dome section of reactor containment building. Nonetheless there may be benefits to apply fiber reinforced concrete to nuclear power plants. For double containment type reactor containment building, the outer structure is a reinforced concrete structure. The impact resistances for non pre-stressed cylindrical reactor containment buildings are enhanced by 23 to 47 % for 2 % polyamide fiber reinforced concretes and 1 % steel fiber reinforced concretes respectively. For other buildings such as auxiliary building, compound building and fuel storage building surrounding the reactor containment building, there are so many reinforced concrete walls which are anticipated some enhancements of impact resistance by using fiber reinforced concretes. And heavier or faster large civil aircraft impacts produce higher

  12. Preliminary Study on Impact Resistances of Fiber Reinforced Concrete Applied Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Byeong Moo; Kim, Young Jin; Jeon, Se Jin [Daewoo E and C Co. Ltd., Suwon (Korea, Republic of)

    2013-10-15

    Studies to improve the impact resistance depending upon design parameters for fiber reinforced concrete, such as type of fibers and application ratio, are in progress. Authors assessed first the impact resistance of concrete walls depending upon fiber types and missile impact velocities. The safety assessment of nuclear power plants against large civil aircraft crashes have been accomplished for normal concrete and fiber reinforced concretes in this study. Studies on the safety assessments on the nuclear power plants against large civil aircraft crashes are ongoing actively. As a step of evaluating the applicability of fiber reinforced concrete in means of ensuring more structural safety of the nuclear power plants against impact, the impact resistance for the 1% steel and 2% polyamide fiber reinforced concretes have been evaluated. For reactor containment building structures, it seem there is no impact resistance enhancement of fiber reinforced concrete applied to reactor containment building in the cases of impact velocity 150 m/sec considered in this study. However this results from the pre-stressing forces which introduce compressive stresses in concrete wall and dome section of reactor containment building. Nonetheless there may be benefits to apply fiber reinforced concrete to nuclear power plants. For double containment type reactor containment building, the outer structure is a reinforced concrete structure. The impact resistances for non pre-stressed cylindrical reactor containment buildings are enhanced by 23 to 47 % for 2 % polyamide fiber reinforced concretes and 1 % steel fiber reinforced concretes respectively. For other buildings such as auxiliary building, compound building and fuel storage building surrounding the reactor containment building, there are so many reinforced concrete walls which are anticipated some enhancements of impact resistance by using fiber reinforced concretes. And heavier or faster large civil aircraft impacts produce higher

  13. Optimal and Sustainable Plant Refurbishment in Historical Buildings: A Study of an Ancient Monastery Converted into a Showroom in Florence

    Directory of Open Access Journals (Sweden)

    Carla Balocco

    2013-04-01

    Full Text Available The aim of this research is to study the possibility and sustainability of retrofit and refurbishment design solutions on historical buildings converted to different uses and often clashing with their original purpose and architectural features. The building studied is an ancient monastery located in the historical center of Florence (Italy. Today the original cloister is covered over by a single glazed pitched roof and used as a fashion showroom. Our proposed solution concerns a reversible and sustainable plant design integrated with an active transparent building casing. The existing glazed pitched roof was reconsidered and re-designed as part of the existing heating, ventilation and air conditioning (HVAC plant system, based on the functioning of an active thermal buffer to control the high heat flow rates and external thermal loads due to solar radiation. Hourly whole building energy analysis was carried out to check the effectiveness and energy sustainability of our proposed solution. Results obtained showed, from the historical-architectural, energy and environmental points of view, its sustainability due to the building-plant system integration and interaction with its location, the external climatic conditions and defined expected uses, in particular with reference to indoor thermal comfort.

  14. Automated and fast building of three-dimensional RNA structures.

    Science.gov (United States)

    Zhao, Yunjie; Huang, Yangyu; Gong, Zhou; Wang, Yanjie; Man, Jianfen; Xiao, Yi

    2012-01-01

    Building tertiary structures of non-coding RNA is required to understand their functions and design new molecules. Current algorithms of RNA tertiary structure prediction give satisfactory accuracy only for small size and simple topology and many of them need manual manipulation. Here, we present an automated and fast program, 3dRNA, for RNA tertiary structure prediction with reasonable accuracy for RNAs of larger size and complex topology.

  15. Seismic structural fragility investigation for the Zion Nuclear Power Plant. Seismic safety margins research program (phase 1)

    International Nuclear Information System (INIS)

    Wesley, D.A.; Hashimoto, P.S.

    1981-10-01

    An evaluation of the seismic capacity of the essential structures for the Zion Nuclear Power Plant in Zion, Illinois, was conducted as part of the Seismic Safety Margins Research Program (SSMRP). The structures included the reactor containment building, the turbine/auxiliary building, and the crib house (intake structure). The evaluation was devoted to seismically induced failures rather than those resulting from combined Loss of Coolant Accident (LOCA) or other extreme load combinations. The seismic loads used in the investigation were based on elastic analyses. The loads for the reactor containment and turbine/auxiliary buildings were developed by Lawrence Livermore Laboratory using time history analyses. The loads used for the crib house were the original seismic design loads developed by Sargent and Lundy. No non-linear seismic analyses were conducted. The seismic capacity of the structures accounted for the actual concrete and steel material properties including the aging of the concrete. Median centered properties were used throughout the evaluation including levels of damping considered appropriate for structures close to collapse as compared to the more conservative values used for design. The inelastic effects were accounted for using ductility modified response spectrum techniques based on system ductility ratios expected for structures near collapse. Sources of both inherent randomness and uncertainties resulting from lack of knowledge or approximations in analytical modelling were considered in developing the dispersion of the structural dynamic characteristics. Coefficients of variation were developed assuming lognormal distributions for all variables. The earthquake levels for many of the seismically induced failure modes are so high as to be considered physically incredible. (author)

  16. Student Misconceptions about Plants ? A First Step in Building a Teaching Resource?

    OpenAIRE

    Wynn, April N.; Pan, Irvin L.; Rueschhoff, Elizabeth E.; Herman, Maryann A. B.; Archer, E. Kathleen

    2017-01-01

    Plants are ubiquitous and found in virtually every ecosystem on Earth, but their biology is often poorly understood, and inaccurate ideas about how plants grow and function abound. Many articles have been published documenting student misconceptions about photosynthesis and respiration, but there are substantially fewer on such topics as plant cell structure and growth; plant genetics, evolution, and classification; plant physiology (beyond energy relations); and plant ecology. The available ...

  17. Structural health monitoring and lifecycle-management for civil engineering constructions in power plants and industrial facilities; Zustandsueberwachung und Lebensdauermanagement von baulichen Einrichtungen in Kraftwerken und Industrieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Lehnen, Dieter; Demmer, Martin; Pfister, Tobias [ZERNA Planen und Pruefen GmbH, Bochum (Germany)

    2013-09-01

    In contrast to other fields of engineering, structural health monitoring and lifecycle management for civil engineering constructions in power plants and industrial facilities have to be developed yet. The necessity of this development immediately arises from the building regulations law with its extensive set of regulations as well as from economic constraints. Approaches and methods of structural health monitoring and lifecycle management for civil engineering constructions in power plants and industrial facilities could be improved intensively during recent years. The paper focuses on practical examples that show the necessity of comprehensive and strategic structural health monitoring in conjunction with lifecycle management for civil engineering constructions in power plants and industrial facilities unambiguously und clear. (orig.)

  18. Energy management systems in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lush, D. M.

    1979-07-01

    An investigation is made of the range of possibilities available from three types of systems (automatic control devices, building envelope, and the occupants) in buildings. The following subjects are discussed: general (buildings, design and personnel); new buildings (envelope, designers, energy and load calculations, plant design, general design parameters); existing buildings (conservation measures, general energy management, air conditioned buildings, industrial buildings); man and motivation (general, energy management and documentation, maintenance, motivation); automatic energy management systems (thermostatic controls, optimized plant start up, air conditioned and industrial buildings, building automatic systems). (MCW)

  19. Structural response of nuclear containment shield buildings with unanticipated construction openings

    Science.gov (United States)

    Mac Namara, Sinead Caitriona

    As Nuclear Power Plants age many require steam generator replacement. There is a nickel alloy in the steam generator tubes that is susceptible to stress cracking and although these cracks can be sealed the generator becomes uneconomical without 10%-15% of the tubes. The steam generator in a typical nuclear power plant is housed in the containment structure next to the reactor. The equipment hatch is not big enough to facilitate steam generator replacement, thus construction openings in the dome of the containment structure are required. To date the structural consequences of construction openings in the dome have not been examined. This thesis examines the effects of such openings. The prototype concrete dome is made up of a 2 ft thick dome atop 3 ft thick and 170 ft high cylindrical walls (radius 65.5 ft) with a tension ring 15 ft high and 8 ft thick in between. The dome of the building is cast in two layers; a lower 9 inch layer that serves as the formwork for an upper 15 inch layer. The weight of the dome is carried in axial compression along the hoops and meridians of the dome. The first finite element model uses shell elements and considers two limiting load cases; where the two layers act as one, and where the lower layer carries the weight of both. The openings interrupt the hoops and meridians and the weight of the dome must be redistributed around the openings. Without openings, the stresses due to dead load in the structure are very low when compared to the material strength. The impact of the openings is increased compression stresses near the opening. The maximum stresses are approximately four times larger than in the original structure. These results are confirmed by the second model which is made from layers of solid elements. This model shows a significant difference between the compression on the top surface of the dome, in the affected areas, and that on the bottom surface, leading to shear stresses. These shear stresses are largest around the

  20. Coevolutionary and genetic algorithm based building spatial and structural design

    NARCIS (Netherlands)

    Hofmeyer, H.; Davila Delgado, J.M.

    2015-01-01

    In this article, two methods to develop and optimize accompanying building spatial and structural designs are compared. The first, a coevolutionary method, applies deterministic procedures, inspired by realistic design processes, to cyclically add a suitable structural design to the input of a

  1. A case study on the structural assessment of fire damaged building

    Science.gov (United States)

    Osman, M. H.; Sarbini, N. N.; Ibrahim, I. S.; Ma, C. K.; Ismail, M.; Mohd, M. F.

    2017-11-01

    This paper presents a case study on the structural assessment of building damaged by fire and discussed on the site investigations and test results prior to determine the existing condition of the building. The building was on fire for about one hour before it was extinguished. In order to ascertain the integrity of the building, a visual inspection was conducted for all elements (truss, beam, column and wall), followed by non-destructive, load and material tests. The load test was conducted to determine the ability of truss to resist service load, while the material test to determine the residual strength of the material. At the end of the investigation, a structural analysis was carried out to determine the new factor of safety by considering the residual strength. The highlighted was on the truss element due to steel behaviour that is hardly been predicted. Meanwhile, reinforced concrete elements (beam, column and wall) were found externally affected and caused its strength to be considered as sufficient for further used of building. The new factor of safety is equal to 2, considered as the minimum calculated value for the truss member. Therefore, this fire damaged building was found safe and can be used for further application.

  2. Structural experiences at the Kewaunee Nuclear Power Plant

    International Nuclear Information System (INIS)

    Setlur, A.V.

    1983-01-01

    This paper discusses the original structural and geotechnical design and subsequent structural experience at the Kewaunee Nuclear Power Plant. The original design of the 535 MWe Westinghouse two loop PWR nuclear plant operated by Wisconsin Public Service Corporation, was started in 1967 and was completed in 1974 when the unit was put into commercial operation. Since 1974 a number of changes in the regulations and additional requirements have been imposed on operating reactors. The paper traces the influence of the original plant criteria on the backfit evaluations and the minimal physical changes required in the plant's structures and components to comply with the new requirements. In addition, the unique design features and construction challenges of the original design are discussed. Kewaunee Nuclear Power Plant has had one of the best operating performance records in the world. Also, the exposure to radiation for plant personnel and radioactive waste generation has been significantly lower than the average. This has been achieved by a conscientious team effort of all parties involved. Some of the more significant structural design features contributing to the excellent performance is detailed in this paper. (orig.)

  3. 4'' + D VR technology for structural analysis and integrated maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    Lee, I. S.; Yoon, S. H.; Shim, K. W.; Yu, Y. H.; Suh, K. Y.

    2002-01-01

    engineered structures but also for the on-line design modification. In this regard it is of utmost importance to employ the 4 + D VR technology for the nuclear power plants in their design stage as well as for the operating plants for optimal maintenance schedules and procedures. By using this technology one can perform structural design optimization needed for building the nuclear power plant. The 4 + D VR design and construction optimization may result in savings of 200∼300 million per month of reduced construction time for the two units

  4. Quality assurance programme of Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Eybl, J.; Nowak, O.

    1988-01-01

    The fundamental principle of the system of quality assurance in Czechoslovak nuclear power is quality assurance at all stages of the construction and operation of nuclear power plants and the grading fo measures taken, this in dependence on the impact on nuclear safety of the respective nuclear installation or its part. The system has been made fully operational during the construction of nuclear power plants in Temelin and Mochovce. State surveillance is executed by the Czechoslovak Atomic Energy Commission, and the Czech and Slovak Offices for Work Safety. Briefly discussed are the tasks of the building subcontractor of the Temelin nuclear power plant with regard to the programme of quality assurance as well as the results of the solution of the respective research tasks. The programme of quality assurance classifies the selected sections of the structure of a nuclear power plant into three safety categories. No part of the structure is classified into the first category, the second category includes, e.g., the reactor building, cooling tanks and diesel generator units, the third includes the reactor building and the building of auxiliary workshops. Attention is also paid to the problems of the qualification of personnel and to inspection activity. (Z.M.). 12 refs

  5. Microclimatic effects of planted hydroponic structures in urban environment: measurements and simulations

    Science.gov (United States)

    Katsoulas, N.; Antoniadis, D.; Tsirogiannis, I. L.; Labraki, E.; Bartzanas, T.; Kittas, C.

    2017-05-01

    The objectives of this effort was to study the effect of vertical (green wall) and horizontal (pergola) green structures on the microclimate conditions of the building surroundings and estimate the thermal perception and heat stress conditions near the two structures. The experimental data were used to validate the results simulated by the recent version (V4.0 preview III) of ENVI-met software which was used to simulate the effect of different design parameters of a pergola and a green façade on microclimate and heat stress conditions. Further aim is to use these results for better design of green structures. The microclimate measurements were carried out in real scale structures (hydroponic pergola and hydroponic green wall) at the Kostakii Campus of the Technological Education Institute of Epirus (Arta, Greece). The validation results showed a very good agreement between measured and simulated values of air temperature, with Tair,sim = 0.98 Tair,meas in the Empty atrium and Tair,sim = 0.99 Tair,meas in the Atrium with pergola, with a determination coefficient R 2 of 0.98 and 0.93, respectively. The model was used to predict the effects of green structures on air temperature (Tair), relative humidity (RH), and mean radiant temperature (Tmrt). The output values of these parameters were used as input data in the RayMan pro (V 2.1) model for estimating the physiologically equivalent temperature (PET) of different case scenarios. The average daytime value of simulated air temperature in the atrium for the case without and with pergola during three different days was 29.2 and 28.9 °C while the corresponding measured values were 29.7 and 29.2 °C. The results showed that compared to the case with no pergola in the atrium, covering 100% the atrium area with a planted pergola reduced at the hottest part of the day Tmrt and PET values by 29.4 and 17.9 °C, respectively. Although the values of air temperature (measured and simulated) were not greatly affected by the

  6. Proposed and existing passive and inherent safety-related structures, systems, and components (building blocks) for advanced light-water reactors

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Moses, D.L.; Lewis, E.B.; Gibson, R.; Pearson, R.; Reich, W.J.; Murphy, G.A.; Staunton, R.H.; Kohn, W.E.

    1989-10-01

    A nuclear power plant is composed of many structures, systems, and components (SSCs). Examples include emergency core cooling systems, feedwater systems, and electrical systems. The design of a reactor consists of combining various SSCs (building blocks) into an integrated plant design. A new reactor design is the result of combining old SSCs in new ways or use of new SSCs. This report identifies, describes, and characterizes SSCs with passive and inherent features that can be used to assure safety in light-water reactors. Existing, proposed, and speculative technologies are described. The following approaches were used to identify the technologies: world technical literature searches, world patent searches, and discussions with universities, national laboratories and industrial vendors. 214 refs., 105 figs., 26 tabs

  7. Proposed and existing passive and inherent safety-related structures, systems, and components (building blocks) for advanced light-water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Moses, D.L.; Lewis, E.B.; Gibson, R.; Pearson, R.; Reich, W.J.; Murphy, G.A.; Staunton, R.H.; Kohn, W.E.

    1989-10-01

    A nuclear power plant is composed of many structures, systems, and components (SSCs). Examples include emergency core cooling systems, feedwater systems, and electrical systems. The design of a reactor consists of combining various SSCs (building blocks) into an integrated plant design. A new reactor design is the result of combining old SSCs in new ways or use of new SSCs. This report identifies, describes, and characterizes SSCs with passive and inherent features that can be used to assure safety in light-water reactors. Existing, proposed, and speculative technologies are described. The following approaches were used to identify the technologies: world technical literature searches, world patent searches, and discussions with universities, national laboratories and industrial vendors. 214 refs., 105 figs., 26 tabs.

  8. Seismic isolation retrofitting of the Salt Lake City and County Building

    International Nuclear Information System (INIS)

    Bailey, J.; Allen, E.

    1989-01-01

    The City and County Building, a massive unreinforced masonry structure completed in 1894, has been seismically retrofitted using base isolation. The isolation system consists of 443 lead-rubber isolators installed underneath the building on top of existing spread footings. The building is isolated from the surrounding ground by a perimeter moat wall, permitting lateral movement to take place during an earthquake. It is believed that this is the first historic structure in the world to be retrofitted against possible seismic damage using base isolation. Lessons learned in this design effort are potentially applicable to seismic base isolation for nuclear power plants

  9. Trends in the structures development of the regional machine-building complex

    Directory of Open Access Journals (Sweden)

    Ershova I.V.

    2017-01-01

    Full Text Available In the process of market reforms of the Russian machine-building complex several distinct periods can be revealed. In this article the authors define periods of mass disintegration and spontaneous integration (since the beginning of the reforms until the financial crisis of 1996, post-crisis stabilization, directional specialization (2000-2008 and evolutionary development (since 2010. The economic consequences of the enterprises mergers and divisions are shown on the example of machine-building enterprises of the Middle Urals. The aim of this study is to substantiate the methodical approach to the selection of the optimal organizational structure for the machine-building business. The necessity of taking into account the extent of the personnel diversification and the production volume has been revealed for the optimum organizational structure determination in the machine-building associations. The authors have analyzed sales profitability of the 2745 machine-building enterprises, depending on the production scale and industry sector. The factors affecting the development of cooperative ties and outsourcing have been defined. The authors have made a conclusion that it is necessary to form technological chains as a new kind of business associations.

  10. Vertical responses of nuclear power plant structures subject to seimic ground motions

    International Nuclear Information System (INIS)

    Lee, J.P.; Chen, C.

    1975-01-01

    In the seismic analysis of Nuclear Power Plant Structures, it is generally assumed that the floor slab is 'rigid' in its own plane. However, the slab may be quite flexible in the direction perpendicular to the plane of the slab. There are several methods available to treat the problem related to extra amplification due to floor flexibility. The first method is to use the cascade approach. The second method is to model the flexible floor with plate bending elements and combine them with the rest of the building. The third alternative is to represent the building by a composite lumped model in which the floor is also represented by lumped masses. The stiffness of the interconnecting spring between mass points is computed from the physical properties of the corresponding floor slab. The advantages of the method are that the feedback effect is properly included and the computer cost is significantly reduced. Techniques to model the building and the methods used to obtain the spring constants are presented and discussed. The results obtained using the composite lumped mass model approach and those obtained using the finite element method are compared. Various composite lumped mass models and modeling technique are recommended for future engineering applications

  11. Care of personnel on the building site of the Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Kurial, P.

    1984-01-01

    The accommodation is described of workers on the building site of the Dukovany nuclear power plant. The quality is appraised of accommodation, catering and refreshments. There is a health care unit on site and 15 beds are reserved at the Trebic hospital for emergency cases. Trade union and youth organizations look after sports and cultural activities. (E.S.)

  12. Automatic Generation of Structural Building Descriptions from 3D Point Cloud Scans

    DEFF Research Database (Denmark)

    Ochmann, Sebastian; Vock, Richard; Wessel, Raoul

    2013-01-01

    We present a new method for automatic semantic structuring of 3D point clouds representing buildings. In contrast to existing approaches which either target the outside appearance like the facade structure or rather low-level geometric structures, we focus on the building’s interior using indoor...... scans to derive high-level architectural entities like rooms and doors. Starting with a registered 3D point cloud, we probabilistically model the affiliation of each measured point to a certain room in the building. We solve the resulting clustering problem using an iterative algorithm that relies...

  13. Clearance of buildings for demolition: ways to clearance on the standing structure for covered surfaces and inaccessible areas

    International Nuclear Information System (INIS)

    Thraenert, S.; Riemann, T.

    2014-01-01

    In general terms, the TUV NORD Nuclear services encompass safety assessments, design reviews, documentation re-views and inspections. They reflect the full scope of a technical service provider in the nuclear field. In the domestic market, these services are provided for the regulator, whereas in the international market any party involved in a nuclear project is a potential customer of TUV NORD Nuclear. This implies that TUV NORD Nuclear is offering consultancy, engineering and inspection services. Regarding the clearance of buildings for demolition, there are two different possible ways for the radiological characterization. The first option is a characterization on the standing structure before demolition and the second option is the characterization of the building rubble after demolition. According to the German Radiation Protection Ordinance, buildings of decommissioned nuclear sites have to be preferentially cleared on the standing structure. If compliance with the surface specific clearance levels is achieved on the standing structure, usually the cleared buildings can be demolished and the resulting rubble may be used without any further radiological considerations. In the case of the former nuclear power plant Wuergassen the majority of the building rubble is scheduled to stay on site to serve as backfill for the building pit. As such a scenario was not considered in the radiological considerations of, e.g., the German Radiation Protection Ordinance, an additional dose calculation was carried out for Wuergassen NPP basing on its radiological characteristics to directly prove compliance with the de-minimis-concept. The radiation controlled area (RCA) of Wuergassen NPP comprises an area of about 140.000 m 2 . This area is more or less easily accessible to characterization and decontamination using, if necessary, scaffoldings or lifting platforms. Up to the beginning of 2013, compliance with the surface specific clearance levels was verified on the standing

  14. Earthquake protection of nuclear power plant equipment

    Energy Technology Data Exchange (ETDEWEB)

    Nawrotzki, Peter [GERB Vibration Control Systems, Berlin (Germany)

    2010-05-15

    Power plant machinery can be dynamically decoupled from the substructure by the effective use of helical steel springs and viscous dampers. Turbine foundations, boiler feed pumps and other machine foundations benefit from this type of elastic support systems to mitigate the transmission of operational vibration. The application of these devices may also be used to protect against earthquakes and other catastrophic events, i.e. airplane crash, of particular importance in nuclear facilities. This article illustrates basic principles of elastic support systems and applications on power plant buildings in medium and high seismic areas. Spring-damper combinations with special stiffness properties are used to reduce seismic acceleration levels of turbine components and other safety or non-safety related structures. For turbine buildings, the integration of the turbine substructure into the machine building can further reduce stress levels in all structural members. (orig.)

  15. Earthquake protection of nuclear power plant equipment

    International Nuclear Information System (INIS)

    Nawrotzki, Peter

    2010-01-01

    Power plant machinery can be dynamically decoupled from the substructure by the effective use of helical steel springs and viscous dampers. Turbine foundations, boiler feed pumps and other machine foundations benefit from this type of elastic support systems to mitigate the transmission of operational vibration. The application of these devices may also be used to protect against earthquakes and other catastrophic events, i.e. airplane crash, of particular importance in nuclear facilities. This article illustrates basic principles of elastic support systems and applications on power plant buildings in medium and high seismic areas. Spring-damper combinations with special stiffness properties are used to reduce seismic acceleration levels of turbine components and other safety or non-safety related structures. For turbine buildings, the integration of the turbine substructure into the machine building can further reduce stress levels in all structural members. (orig.)

  16. PS buildings : reinforced concrete structure for shielding "bridge" pillar

    CERN Multimedia

    CERN PhotoLab

    1956-01-01

    The PS ring traverses the region between the experimental halls South and North (buildings Nos 150 and 151) under massive bridge-shaped concrete beams. This pillar stands at the S-W end of the structure.

  17. Phylogenetic composition of host plant communities drives plant-herbivore food web structure.

    Science.gov (United States)

    Volf, Martin; Pyszko, Petr; Abe, Tomokazu; Libra, Martin; Kotásková, Nela; Šigut, Martin; Kumar, Rajesh; Kaman, Ondřej; Butterill, Philip T; Šipoš, Jan; Abe, Haruka; Fukushima, Hiroaki; Drozd, Pavel; Kamata, Naoto; Murakami, Masashi; Novotny, Vojtech

    2017-05-01

    Insects tend to feed on related hosts. The phylogenetic composition of host plant communities thus plays a prominent role in determining insect specialization, food web structure, and diversity. Previous studies showed a high preference of insect herbivores for congeneric and confamilial hosts suggesting that some levels of host plant relationships may play more prominent role that others. We aim to quantify the effects of host phylogeny on the structure of quantitative plant-herbivore food webs. Further, we identify specific patterns in three insect guilds with different life histories and discuss the role of host plant phylogeny in maintaining their diversity. We studied herbivore assemblages in three temperate forests in Japan and the Czech Republic. Sampling from a canopy crane, a cherry picker and felled trees allowed a complete census of plant-herbivore interactions within three 0·1 ha plots for leaf chewing larvae, miners, and gallers. We analyzed the effects of host phylogeny by comparing the observed food webs with randomized models of host selection. Larval leaf chewers exhibited high generality at all three sites, whereas gallers and miners were almost exclusively monophagous. Leaf chewer generality dropped rapidly when older host lineages (5-80 myr) were collated into a single lineage but only decreased slightly when the most closely related congeneric hosts were collated. This shows that leaf chewer generality has been maintained by feeding on confamilial hosts while only a few herbivores were shared between more distant plant lineages and, surprisingly, between some congeneric hosts. In contrast, miner and galler generality was maintained mainly by the terminal nodes of the host phylogeny and dropped immediately after collating congeneric hosts into single lineages. We show that not all levels of host plant phylogeny are equal in their effect on structuring plant-herbivore food webs. In the case of generalist guilds, it is the phylogeny of deeper

  18. Green Building Premium Cost Analysis in Indonesia Using Work Breakdown Structure Method

    Science.gov (United States)

    Basten, V.; Latief, Y.; Berawi, M. A.; Riswanto; Muliarto, H.

    2018-03-01

    The concept of green building in the construction industry is indispensable for mitigating environmental issues such as waste, pollution, and carbon emissions. There are some countries that have Green Building rating tools. Indonesia particularly is the country which has Greenship rating tools but the number of Green Building is relatively low. Development of building construction is depended on building investors or owner initiation, so this research is conducted to get the building aspects that have significant effect on the attractiveness using The Green Building Concept. The method in this research is work breakdown structure method that detailing the green building activities. The particular activities will be processed to get the cost elements for the green building achievement that it was targeted to improve better than conventional building. The final result of the study was a very significant work package on green building construction in the city of Indonesia case study.

  19. The influence of modified water chemistries on metal oxide films, activity build-up and stress corrosion cracking of structural materials in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Maekelae, K.; Laitinen, T.; Bojinov, M. [VTT Manufacturing Technology, Espoo (Finland)

    1999-03-01

    The primary coolant oxidises the surfaces of construction materials in nuclear power plants. The properties of the oxide films influence significantly the extent of incorporation of actuated corrosion products into the primary circuit surfaces, which may cause additional occupational doses for the maintenance personnel. The physical and chemical properties of the oxide films play also an important role in different forms of corrosion observed in power plants. This report gives a short overview of the factors influencing activity build-up and corrosion phenomena in nuclear power plants. Furthermore, the most recent modifications in the water chemistry to decrease these risks are discussed. A special focus is put on zinc water chemistry, and a preliminary discussion on the mechanism via which zinc influences activity build-up is presented. Even though the exact mechanisms by which zinc acts are not yet known, it is assumed that Zn may block the diffusion paths within the oxide film. This reduces ion transport through the oxide films leading to a reduced rate of oxide growth. Simultaneously the number of available adsorption sites for {sup 60}Co is also reduced. The current models for stress corrosion cracking assume that the anodic and the respective cathodic reactions contributing to crack growth occur partly on or in the oxide films. The rates of these reactions may control the crack propagation rate and therefore, the properties of the oxide films play a crucial role in determining the susceptibility of the material to stress corrosion cracking. Finally, attention is paid also on the novel techniques which can be used to mitigate the susceptibility of construction materials to stress corrosion cracking. (orig.) 127 refs.

  20. The influence of modified water chemistries on metal oxide films, activity build-up and stress corrosion cracking of structural materials in nuclear power plants

    International Nuclear Information System (INIS)

    Maekelae, K.; Laitinen, T.; Bojinov, M.

    1999-03-01

    The primary coolant oxidises the surfaces of construction materials in nuclear power plants. The properties of the oxide films influence significantly the extent of incorporation of actuated corrosion products into the primary circuit surfaces, which may cause additional occupational doses for the maintenance personnel. The physical and chemical properties of the oxide films play also an important role in different forms of corrosion observed in power plants. This report gives a short overview of the factors influencing activity build-up and corrosion phenomena in nuclear power plants. Furthermore, the most recent modifications in the water chemistry to decrease these risks are discussed. A special focus is put on zinc water chemistry, and a preliminary discussion on the mechanism via which zinc influences activity build-up is presented. Even though the exact mechanisms by which zinc acts are not yet known, it is assumed that Zn may block the diffusion paths within the oxide film. This reduces ion transport through the oxide films leading to a reduced rate of oxide growth. Simultaneously the number of available adsorption sites for 60 Co is also reduced. The current models for stress corrosion cracking assume that the anodic and the respective cathodic reactions contributing to crack growth occur partly on or in the oxide films. The rates of these reactions may control the crack propagation rate and therefore, the properties of the oxide films play a crucial role in determining the susceptibility of the material to stress corrosion cracking. Finally, attention is paid also on the novel techniques which can be used to mitigate the susceptibility of construction materials to stress corrosion cracking. (orig.)

  1. The Influence Of Modified Water Chemistries On Metal Oxide Films, Activity Build-Up And Stress Corrosion Cracking Of Structural Materials In Nuclear Power Plants

    International Nuclear Information System (INIS)

    Maekelae, K.; Laitinen, T.; Bojinov, M.

    1998-07-01

    The primary coolant oxidises the surfaces of construction materials in nuclear power plants. The properties of the oxide films influence significantly the extent of incorporation of activated corrosion products into the primary circuit surfaces, which may cause additional occupational doses for the maintenance personnel. The physical and chemical properties of the oxide films play also an important role in different forms of corrosion observed in power plants. This report gives a short overview of the factors influencing activity build-up and corrosion phenomena in nuclear power plants. Furthermore, the most recent modifications in the water chemistry to decrease these risks are discussed. A special focus is put on zinc water chemistry, and a preliminary discussion on the mechanism via which zinc influences activity build-up is presented. Even though the exact mechanisms by which zinc acts are not yet known, it is assumed that Zn may block the diffusion paths within the oxide film. This reduces ion transport through the oxide films leading to a reduced rate of oxide growth. Simultaneously the number of available adsorption sites for 60 Co is also reduced. The current models for stress corrosion cracking assume that the anodic and the respective cathodic reactions contributing to crack growth occur partly on or in the oxide films. The rates of these reactions may control the crack propagation rate and therefore, the properties of the oxide films play a crucial role in determining the susceptibility of the material to stress corrosion cracking. Finally, attention is paid also on the novel techniques which can be used to mitigate the susceptibility of construction materials to stress corrosion cracking. (author)

  2. Final report for the Central Mercury Treatment System in Building 9623 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-02-01

    This document discusses the construction of the Central Mercury Treatment System (CMTS) in Building 9623 at the Y-12 Plant, the remediation activities involved, waste generated from the project, and the monitoring schedule of the CMTS. As part of the Reduction of Mercury in Plant Effluent Program, the project treats groundwater contaminated with mercury from Buildings 9201-4, 9201-5, and 9204-4 at the Y-12 Plant to meet National Pollutant Discharge Elimination System (NPDES) Permit limits for discharge to East Fork Poplar Creek. The CMTS, located in Building 9623, will treat water from the sumps of buildings in which mercury was used in operations and which have been shown to be significant contributors to the overall levels of mercury in plant effluents. This project was anticipated when the NPDES Permit was issued, and the contamination limits and frequency of monitoring for the system discharge are detailed in the permit as Outfall 551. This project was performed as an Incentive Task Order and included the advance procurement of the carbon columns, removal of existing equipment in Building 9623, and system installation and checkout. Construction activities for installing the system started in January 1996 after the area in Building 9623 had been cleared of existing, obsolete equipment. The CMTS became operational on November 26, 1996, well ahead of the permit start date of January 1, 1998. The early completion date allows Hg concentrations in EFPC to be evaluated to determine whether further actions are required to meet NPDES permit limits for reduced Hg loading to the creek

  3. Ignalina RBMK-1500 building capability in retaining radioactive releases

    International Nuclear Information System (INIS)

    Nilsson, Lars; Johansson, K.

    1993-01-01

    The Ignalina reactor building structures are capable of retaining substantial fractions of radioactive emissions from the fuel core, in those accident sequences where pressurization failure of structures can be averted by pressure relief arrangements. In stage 1 of the IBBA project it was demonstrated that enhanced retention of radioactive fission products within the plant can be achieved if natural convection is facilitated in the upper building compartments. In this report of stage 2 is discussed for which accident sequences the introduction of natural convection in combination with the existing forced convection ventilation and the accident localization system can improve the total safety of Ignalina 1-2. The purpose of this stage is to provide a basis for further review and more detailed studies of the natural convection concept, its benefits and disadvantages, and of the feasability to introduce the concept in existing plants

  4. CAL--ERDA program manual. [Building Design Language; LOADS, SYSTEMS, PLANT, ECONOMICS, REPORT, EXECUTIVE, CAL-ERDA

    Energy Technology Data Exchange (ETDEWEB)

    Hunn, B. D.; Diamond, S. C.; Bennett, G. A.; Tucker, E. F.; Roschke, M. A.

    1977-10-01

    A set of computer programs, called Cal-ERDA, is described that is capable of rapid and detailed analysis of energy consumption in buildings. A new user-oriented input language, named the Building Design Language (BDL), has been written to allow simplified manipulation of the many variables used to describe a building and its operation. This manual provides the user with information necessary to understand in detail the Cal-ERDA set of computer programs. The new computer programs described include: an EXECUTIVE Processor to create computer system control commands; a BDL Processor to analyze input instructions, execute computer system control commands, perform assignments and data retrieval, and control the operation of the LOADS, SYSTEMS, PLANT, ECONOMICS, and REPORT programs; a LOADS analysis program that calculates peak (design) zone and hourly loads and the effect of the ambient weather conditions, the internal occupancy, lighting, and equipment within the building, as well as variations in the size, location, orientation, construction, walls, roofs, floors, fenestrations, attachments (awnings, balconies), and shape of a building; a Heating, Ventilating, and Air-Conditioning (HVAC) SYSTEMS analysis program capable of modeling the operation of HVAC components including fans, coils, economizers, humidifiers, etc.; 16 standard configurations and operated according to various temperature and humidity control schedules. A plant equipment program models the operation of boilers, chillers, electrical generation equipment (diesel or turbines), heat storage apparatus (chilled or heated water), and solar heating and/or cooling systems. An ECONOMIC analysis program calculates life-cycle costs. A REPORT program produces tables of user-selected variables and arranges them according to user-specified formats. A set of WEATHER ANALYSIS programs manipulates, summarizes and plots weather data. Libraries of weather data, schedule data, and building data were prepared.

  5. DESIGN PROBLEMS OF THE BUILDINGS FOUNDATIONS AND STRUCTURES CONSTRUCTED IN DENSE URBAN AREAS

    OpenAIRE

    O. Yu. Prokopov; M. V. Prokopova

    2007-01-01

    The urgency of methodical provision of planning of foundations for buildings erected next to existing ones is сonsidered. It is based on studying the causes of extension of deformations of structures in conditions of dense city building system. Some recommendations providing safety of buildings are given.

  6. RATU - Nuclear power plant structural safety research programme

    International Nuclear Information System (INIS)

    Rintamaa, R.

    1992-07-01

    Studies on the structural materials in nuclear power plants create the experimental data and background information necessary for the structural integrity assessments of mechanical components. The research is carried out by developing experimental fracture mechanics methods including statistical analysis methods of materials property data, and by studying material ageing and, in particular, mechanisms of material deterioration due to neutron irradiation, corrosion and water chemistry. Besides material studies, new testing methods and sensors for measurement of loading and water chemistry parameters have been developed. The monitoring data obtained in real power plants has been used to simulate more precisely the real environment during laboratory tests. The research on structural analysis has focused on extending and verifying the analysis capabilities for structural assessments of nuclear power plants. A widely applicable system including various computational fracture assessment methods has been created with which different structural problems can be solved reliably and effectively. Research on reliability assessment of maintenance in nuclear power plants is directed to practical case studies on components and structures of safety importance, and to the development of models for maintenance related decision support. A systematic analysis of motor-operated valve has been performed

  7. Critical excitation method for calculating earthquake effects on nuclear plant structures: an assessment study. Technical report

    International Nuclear Information System (INIS)

    Bedrosian, B.; Barbela, M.; Drenick, R.F.; Tsirk, A.

    1980-10-01

    The critical excitation method provides a new, alternative approach to methods presently used for seismic analysis of nuclear power plant structures. The critical excitation method offers the advantages that: (1) it side-steps the assumptions regarding the probability distribution of ground motions, and (2) it does not require an artificial, and to some extent arbitrarily generated, time history of ground motion, both features to which structural integrity analyses are sensitive. Potential utility of the critical excitation method is studied from the user's viewpoint. The method is reviewed and compared with the response spectrum method used in current practice, utilizing the reactor buildings of a PWR and a BWR plant in case studies. Two types of constraints on critical excitation were considered in the study. In one case, only an intensity limit was used. In the other case, imposition of an intensity limit together with limits on the maximum acceleration and/or velocity for the critical excitation is considered

  8. Investigating Effects of Invasive Species on Plant Community Structure

    Science.gov (United States)

    Franklin, Wilfred

    2008-01-01

    In this article, the author presents a field study project that explores factors influencing forest community structure and lifts the veil off of "plant blindness." This ecological study consists of three laboratories: (1) preliminary field trip to the study site; (2) plant survey; and (3) analyzing plant community structure with descriptive…

  9. Building a nuclear power plant from A to Z: Chooz B as an example

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    From the design studies to the tests and reactor divergence, building a nuclear power plant involves strictly planned operations. This issue deals with the operations carried out first in the design offices and then on the site, in order to achieve such a vast and sophisticated industrial project: organizing, designing, engineering, assembling, testing, manufacturing and transporting heavy components. These various phases are shown through the example of Chooz B, a nuclear power plant with two 1.450 MW units, which is being built in the Ardennes, and whose first reactor will diverge in 1995. (author)

  10. School Building Maintenance Procedures. School Plant Management Series. Bulletin, 1964, No. 17. OE-21027

    Science.gov (United States)

    Finchum, R. N.

    1964-01-01

    Adequate maintenance of school buildings representing a public investment of billions of dollars is a problem of grave concern to both taxpayers and school officials. This publication, one of a series dealing with school plant management problems, identifies, describes, shows the function of, and outlines maintenance procedures for many components…

  11. Plant retroviruses: structure, evolution and future applications | Zaki ...

    African Journals Online (AJOL)

    Until recently, retroviruses were thought to be restricted to vertebrates. Plant sequencing projects revealed that plant genomes contain retroviral-like sequences. This review aims to address the structure and evolution of plant retroviruses. In addition, it proposes future applications for these important key components of plant ...

  12. DESIGN PROBLEMS OF THE BUILDINGS FOUNDATIONS AND STRUCTURES CONSTRUCTED IN DENSE URBAN AREAS

    Directory of Open Access Journals (Sweden)

    O. Yu. Prokopov

    2007-10-01

    Full Text Available The urgency of methodical provision of planning of foundations for buildings erected next to existing ones is сonsidered. It is based on studying the causes of extension of deformations of structures in conditions of dense city building system. Some recommendations providing safety of buildings are given.

  13. The development of base-isolated APWR plants

    International Nuclear Information System (INIS)

    Tanaka, T.; Nitta, T.

    2001-01-01

    The full text follows: The seismic design of nuclear power stations plays a critical role in the assurance of plant safety in Japan, and standardization of design is difficult to achieve because every site is subject to different seismic conditions. However, the introduction of seismic -isolation devices is one way to rationally achieve safety assurance and promote design standardization. Base-isolated APWR (advanced pressurized water reactor) plants were developed by applying seismic -isolation devices to APWR plants. The introduction of seismic -isolation devices, which are installed between the ground and buildings, largely decreases the effect of seismic force on buildings. Therefore, the limitation of building shape and eccentricity, which are undertaken in order to prevent the floating of buildings, could be eliminated. This permits the flexibility of building layouts, which result in a reduction of building volume. At the same time, the thickness of the buildings walls that are specific to nuclear power stations, can also be decreased except radiation shield. As for the base-isolated APWR equipment design, the rational design of support structures for equipment and pipings is possible, because the floor response acceleration is greatly reduced. For the cost reduction, it has been confirmed that the base-isolated APWR plants are more economical than traditional APWR plants even after the additionally required expenses for seismic-isolation devices are taken into account. This is primarily because of the rational design of the buildings and equipment which is possible as described above. Another advantage is that building standardization can be promoted because the seismic-isolation devices are able to control the seismic force transmitted to the buildings. This is accomplished by arranging the characteristics of the isolation devices according to the seismic conditions of each site. The introduction of these devices to nuclear power stations is nearly ready

  14. Aggregation Potentials for Buildings - Business Models of Demand Response and Virtual Power Plants

    DEFF Research Database (Denmark)

    Ma, Zheng; Billanes, Joy Dalmacio; Jørgensen, Bo Nørregaard

    2017-01-01

    programs, national regulations and energy market structures strongly influence buildings’ participation in the aggregation market. Under the current Nordic market regulation, business model one is the most feasible one, and business model two faces more challenges due to regulation barriers and limited...... aggregation market with unclear incentives is still a challenge for buildings to participate in the aggregation market. However, few studies have investigated business models for building participation in the aggregation market. Therefore, this paper develops four business models for buildings to participate...

  15. Salt Damage and Rising Damp Treatment in Building Structures

    Directory of Open Access Journals (Sweden)

    J. M. P. Q. Delgado

    2016-01-01

    Full Text Available Salt damage can affect the service life of numerous building structures, both historical and contemporary, in a significant way. In this review, various damage mechanisms to porous building materials induced by salt action are analyzed. The importance of pretreatment investigations is discussed as well; in combination with the knowledge of salt and moisture transport mechanisms they can give useful indications regarding treatment options. The methods of salt damage treatment are assessed then, including both passive techniques based on environmental control, reduction of water transport, or conversion to less soluble salts and active procedures resulting in the removal of salts from deterioration zones. It is concluded that cellulose can still be considered as the favorite material presently used in desalination poultices but hydrophilic mineral wool can serve as its prospective alternative in future applications. Another important cause of building pathologies is the rising damp and, in this phenomenon, it is particularly severe considering the presence of salts in water. The treatment of rising damp in historic building walls is a very complex procedure and at Laboratory of Building Physics (LFC-FEUP a wall base hygroregulated ventilation system was developed and patented.

  16. Toward Accessing Spatial Structure from Building Information Models

    Science.gov (United States)

    Schultz, C.; Bhatt, M.

    2011-08-01

    Data about building designs and layouts is becoming increasingly more readily available. In the near future, service personal (such as maintenance staff or emergency rescue workers) arriving at a building site will have immediate real-time access to enormous amounts of data relating to structural properties, utilities, materials, temperature, and so on. The critical problem for users is the taxing and error prone task of interpreting such a large body of facts in order to extract salient information. This is necessary for comprehending a situation and deciding on a plan of action, and is a particularly serious issue in time-critical and safety-critical activities such as firefighting. Current unifying building models such as the Industry Foundation Classes (IFC), while being comprehensive, do not directly provide data structures that focus on spatial reasoning and spatial modalities that are required for high-level analytical tasks. The aim of the research presented in this paper is to provide computational tools for higher level querying and reasoning that shift the cognitive burden of dealing with enormous amounts of data away from the user. The user can then spend more energy and time in planning and decision making in order to accomplish the tasks at hand. We present an overview of our framework that provides users with an enhanced model of "built-up space". In order to test our approach using realistic design data (in terms of both scale and the nature of the building models) we describe how our system interfaces with IFC, and we conduct timing experiments to determine the practicality of our approach. We discuss general computational approaches for deriving higher-level spatial modalities by focusing on the example of route graphs. Finally, we present a firefighting scenario with alternative route graphs to motivate the application of our framework.

  17. Seismic response analysis of an instrumented building structure

    Science.gov (United States)

    Li, H.-J.; Zhu, S.-Y.; Celebi, M.

    2003-01-01

    The Sheraton - Universal hotel, an instrumented building lying in North Hollywood, USA is selected for case study in this paper. The finite element method is used to produce a linear time - invariant structural model, and the SAP2000 program is employed for the time history analysis of the instrumented structure under the base excitation of strong motions recorded in the basement during the Northridge, California earthquake of 17 January 1994. The calculated structural responses are compared with the recorded data in both time domain and frequency domain, and the effects of structural parameters evaluation and indeterminate factors are discussed. Some features of structural response, such as the reason why the peak responses of acceleration in the ninth floor are larger than those in the sixteenth floor, are also explained.

  18. Experimental and analytical studies on soil-structure interaction behavior of nuclear reactor building

    International Nuclear Information System (INIS)

    Tsushima, Y.

    1978-01-01

    The purpose of this study is to estimate damping effects due to soil-structure interaction by the dissipation of vibrational energy to the ground through the foundation in a building with a short fundamental period such as a nuclear reactor building. The author performed experimental and analytical studies on the vibrational characteristics of model steel structures ranging from one to four stories high erected on the rigid base and located on soil, which are simulated from the vibrational characteristics of a prototype reactor building: the former study is to obtain damping effects due to inner friction of steel frames and the latter to obtain radiation damping effects due to soil-structure interaction. The author also touches upon the results of experiments performed on a BWR-type reactor building in 1974, which showed damping ratios higher than 20% of those in fundamental modes. Then the author attempts to estimate the damping effects of the reactor building by his own method proposed in the report. Through these studies the author finally concludes that the experimental damping effects are remarkable in the lower modes by the energy dissipation and the analytical results show a fairly good fit to the experimental ones

  19. Structural divergence of Plant TCTPs

    Directory of Open Access Journals (Sweden)

    Diego eGutiérrez-Galeano

    2014-07-01

    Full Text Available The Translationally Controlled Tumor Protein (TCTP is a highly conserved protein at the level of sequence, considered to play an essential role in the regulation of growth and development in eukaryotes. However, this function has been inferred from studies in a few model systems, such as mice and mammalian cell lines, Drosophila and Arabidopsis. Thus, the knowledge regarding this protein is far from complete. In the present study bioinformatic analysis showed the presence of one or more TCTP genes per genome in plants with highly conserved signatures and subtle variations at the level of primary structure but with more noticeable differences at the level of predicted three-dimensional structures. These structures show differences in the pocket region close to the center of the protein and in its flexible loop domain. In fact, all predictive TCTP structures can be divided into two groups: 1 AtTCTP1-like and 2 CmTCTP-like, based on the predicted structures of an Arabidopsis TCTP and a Cucurbita maxima TCTP; according to this classification we propose that their probable function in plants may be inferred in principle. Thus different TCTP genes in a single organism may have different functions; additionally, in those species harboring a single TCTP gene this could carry multiple functions. On the other hand, in silico analysis of AtTCTP1-like and CmTCTP-like promoters suggest that these share common motifs but with different abundance, which may underscore differences in their gene expression patterns. Finally, the absence of TCTP genes in most chlorophytes with the exception of Coccomyxa subellipsoidea, indicates that other proteins perform the roles played by TCTP or the pathways regulated by TCTP occur through alternative routes. These findings provide insight into the evolution of this gene family in plants.

  20. A Pilot Study of the Effectiveness of Indoor Plants for Removal of Volatile Organic Compounds in Indoor Air in a Seven-Story Office Building

    Energy Technology Data Exchange (ETDEWEB)

    Apte, Michael G.; Apte, Joshua S.

    2010-04-27

    The Paharpur Business Centre and Software Technology Incubator Park (PBC) is a 7 story, 50,400 ft{sup 2} office building located near Nehru Place in New Delhi India. The occupancy of the building at full normal operations is about 500 people. The building management philosophy embodies innovation in energy efficiency while providing full service and a comfortable, safe, healthy environment to the occupants. Provision of excellent Indoor Air Quality (IAQ) is an expressed goal of the facility, and the management has gone to great lengths to achieve it. This is particularly challenging in New Delhi, where ambient urban pollution levels rank among the worst on the planet. The approach to provide good IAQ in the building includes a range of technical elements: air washing and filtration of ventilation intake air from rooftop air handler, the use of an enclosed rooftop greenhouse with a high density of potted plants as a bio-filtration system, dedicated secondary HVAC/air handling units on each floor with re-circulating high efficiency filtration and UVC treatment of the heat exchanger coils, additional potted plants for bio-filtration on each floor, and a final exhaust via the restrooms located at each floor. The conditioned building exhaust air is passed through an energy recovery wheel and chemisorbent cartridge, transferring some heat to the incoming air to increase the HVAC energy efficiency. The management uses 'green' cleaning products exclusively in the building. Flooring is a combination of stone, tile and 'zero VOC' carpeting. Wood trim and finish appears to be primarily of solid sawn materials, with very little evidence of composite wood products. Furniture is likewise in large proportion constructed from solid wood materials. The overall impression is that of a very clean and well-kept facility. Surfaces are polished to a high sheen, probably with wax products. There was an odor of urinal cake in the restrooms. Smoking is not allowed in

  1. Design automation of load-bearing arched structures of roofs of tall buildings

    Science.gov (United States)

    Kulikov, Vladimir

    2018-03-01

    The article considers aspects of the possible use of arched roofs in the construction of skyscrapers. Tall buildings experience large load from various environmental factors. Skyscrapers are subject to various and complex types of deformation of its structural elements. The paper discusses issues related to the aerodynamics of various structural elements of tall buildings. The technique of solving systems of equations state method of Simpson. The article describes the optimization of geometric parameters of bearing elements of the arched roofs of skyscrapers.

  2. Aging of concrete structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Pland, C.B.; Arndt, E.G.

    1991-01-01

    The Structural Aging (SAG) Program, sponsored by the US Nuclear Regulatory Commission (USNRC) and conducted by the Oak Ridge National Laboratory (ORNL), had the overall objective of providing the USNRC with an improved basis for evaluating nuclear power plant structures for continued service. The program consists of three technical tasks: materials property data base, structural component assessment/repair technology, and quantitative methodology for continued service determinations. Major accomplishments under the SAG Program during the first two years of its planned five-year duration have included: development of a Structural Materials Information Center and formulation of a Structural Aging Assessment Methodology for Concrete Structures in Nuclear Power Plants. 9 refs

  3. The seismic fragility analysis for multi-story steel structure in CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Hwang, K.H.; Lee, B.S.; Kang, S-K.

    1996-01-01

    The Wolsong Unit 2 is a CANDU-6 type plant and is being constructed in the Wolsong site, where Design Basis Earthquake (DBE) was determined to be 0.2g. A seismic PSA for Wolsong Unit 2 is being performed as one of the conditions for the Construction Permit. One of the issues in the seismic PSA is the availability of the seismically non-qualified systems, which are located in the Turbine Building(T/B). Thus, the seismic fragility analysis for the T/B was performed to estimate the operability of the systems. The design seismic loads for the building were based on a ground response spectrum scaled down from the DBE to horizontal peak ground acceleration (pga) of 0.05g. The seismic fragility analysis for the building was performed using a factor of the safety method. It is estimated that the most critical failure is that of masonry walls and its High Confidence and Low Probability of Failure (HCLPF) capacity is 0.13g. The critical failure mode of the structure is identified to be tensile yielding failure of grip angle, and its HCLPF capacity is 0.34g. (author)

  4. SSI response of a typical shear wall structure

    International Nuclear Information System (INIS)

    Johnson, J.J.; Maslenikov, O.R.; Schewe, E.C.

    1985-01-01

    The seismic response of a typical shear structure in a commercial nuclear power plant was investigated for a series of site and foundation conditions using best estimate and design procedures. The structure selected is a part of the Zion AFT complex which is a connected group of reinforced concrete shear wall buildings, typical of nuclear power plant structures. Comparisons between best estimate responses quantified the effects of placing the structure on different sites and founding it in different manners. Calibration factors were developed by comparing simplified SSI design procedure responses to responses calculated by best estimate procedures. Nineteen basic cases were analyzed - each case was analyzed for ten earthquakes targeted to the NRC R.G. 1.60 design response spectra. The structure is a part of the Zion auxiliary-fuel handling turbine building (AFT) complex to the Zion nuclear power plants. (orig./HP)

  5. Direct Georeferencing of Uav Data Based on Simple Building Structures

    Science.gov (United States)

    Tampubolon, W.; Reinhardt, W.

    2016-06-01

    Unmanned Aerial Vehicle (UAV) data acquisition is more flexible compared with the more complex traditional airborne data acquisition. This advantage puts UAV platforms in a position as an alternative acquisition method in many applications including Large Scale Topographical Mapping (LSTM). LSTM, i.e. larger or equal than 1:10.000 map scale, is one of a number of prominent priority tasks to be solved in an accelerated way especially in third world developing countries such as Indonesia. As one component of fundamental geospatial data sets, large scale topographical maps are mandatory in order to enable detailed spatial planning. However, the accuracy of the products derived from the UAV data are normally not sufficient for LSTM as it needs robust georeferencing, which requires additional costly efforts such as the incorporation of sophisticated GPS Inertial Navigation System (INS) or Inertial Measurement Unit (IMU) on the platform and/or Ground Control Point (GCP) data on the ground. To reduce the costs and the weight on the UAV alternative solutions have to be found. This paper outlines a direct georeferencing method of UAV data by providing image orientation parameters derived from simple building structures and presents results of an investigation on the achievable results in a LSTM application. In this case, the image orientation determination has been performed through sequential images without any input from INS/IMU equipment. The simple building structures play a significant role in such a way that geometrical characteristics have been considered. Some instances are the orthogonality of the building's wall/rooftop and the local knowledge of the building orientation in the field. In addition, we want to include the Structure from Motion (SfM) approach in order to reduce the number of required GCPs especially for the absolute orientation purpose. The SfM technique applied to the UAV data and simple building structures additionally presents an effective tool

  6. SEISMIC EVALUATION OF EXISTING MID-RISE REINFORCED CONCRETE BUILDINGS ACCORDING TO SPECIFICATION FOR BUILDING STRUCTURES TO BE BUILT IN DISASTER AREAS

    Directory of Open Access Journals (Sweden)

    Mehmet İNEL

    2007-01-01

    Full Text Available Over the past several decades, Turkey has been hit by devastating earthquakes and remarkable number of reinforced concrete buildings has been damaged in the high seismicity regions of our country. The aim of this study is to evaluate the seismic performance of the mid-rise reinforced concrete buildings that are major part of building stock of our earthquake-prone country, according to recent Turkish Earthquake Code. 4- and 7-story buildings were selected to represent mid-rise building stock. After determining the structural parameters, each building was subjected to pushover analysis and the capacity curves were obtained. Earthquake performance of each building was determined in the light of their capacity curves according to the recent Turkish Earthquake Code.

  7. Building a Laboratory-Scale Biogas Plant and Verifying its Functionality

    Science.gov (United States)

    Boleman, Tomáš; Fiala, Jozef; Blinová, Lenka; Gerulová, Kristína

    2011-01-01

    The paper deals with the process of building a laboratory-scale biogas plant and verifying its functionality. The laboratory-scale prototype was constructed in the Department of Safety and Environmental Engineering at the Faculty of Materials Science and Technology in Trnava, of the Slovak University of Technology. The Department has already built a solar laboratory to promote and utilise solar energy, and designed SETUR hydro engine. The laboratory is the next step in the Department's activities in the field of renewable energy sources and biomass. The Department is also involved in the European Union project, where the goal is to upgrade all existed renewable energy sources used in the Department.

  8. Aging management program of the reactor building concrete at Point Lepreau Generating Station

    Science.gov (United States)

    Aldea, C.-M.; Shenton, B.; Demerchant, M. M.; Gendron, T.

    2011-04-01

    In order for New Brunswick Power Nuclear (NBPN) to control the risks of degradation of the concrete reactor building at the Point Lepreau Generating Station (PLGS) the development of an aging management plan (AMP) was initiated. The intention of this plan was to determine the requirements for specific structural components of concrete of the reactor building that require regular inspection and maintenance to ensure the safe and reliable operation of the plant. The document is currently in draft form and presents an integrated methodology for the application of an AMP for the concrete of the reactor building. The current AMP addresses the reactor building structure and various components, such as joint sealant and liners that are integral to the structure. It does not include internal components housed within the structure. This paper provides background information regarding the document developed and the strategy developed to manage potential degradation of the concrete of the reactor building, as well as specific programs and preventive and corrective maintenance activities initiated.

  9. Advances in Multi-Sensor Scanning and Visualization of Complex Plants: the Utmost Case of a Reactor Building

    Science.gov (United States)

    Hullo, J.-F.; Thibault, G.; Boucheny, C.

    2015-02-01

    In a context of increased maintenance operations and workers generational renewal, a nuclear owner and operator like Electricité de France (EDF) is interested in the scaling up of tools and methods of "as-built virtual reality" for larger buildings and wider audiences. However, acquisition and sharing of as-built data on a large scale (large and complex multi-floored buildings) challenge current scientific and technical capacities. In this paper, we first present a state of the art of scanning tools and methods for industrial plants with very complex architecture. Then, we introduce the inner characteristics of the multi-sensor scanning and visualization of the interior of the most complex building of a power plant: a nuclear reactor building. We introduce several developments that made possible a first complete survey of such a large building, from acquisition, processing and fusion of multiple data sources (3D laser scans, total-station survey, RGB panoramic, 2D floor plans, 3D CAD as-built models). In addition, we present the concepts of a smart application developed for the painless exploration of the whole dataset. The goal of this application is to help professionals, unfamiliar with the manipulation of such datasets, to take into account spatial constraints induced by the building complexity while preparing maintenance operations. Finally, we discuss the main feedbacks of this large experiment, the remaining issues for the generalization of such large scale surveys and the future technical and scientific challenges in the field of industrial "virtual reality".

  10. ITER plant layout and site services

    International Nuclear Information System (INIS)

    Chuyanov, V.A.

    2000-01-01

    The ITER site has not yet been determined. Nevertheless, to develop a construction plan and a cost estimate, it is necessary to have a detailed layout of the buildings, structures and outdoor equipment integrated with the balance of plant service systems prototypical of large fusion power plants. These services include electrical power for magnet feeds and plasma heating systems, cryogenic and conventional cooling systems, compressed air, gas supplies, demineralized water, steam and drainage. Nuclear grade facilities are provided to handle tritium fuel and activated waste, as well as to prevent radiation exposure of workers and the public. To prevent interference between services of different types and for efficient arrangement of buildings, structures and equipment within the site area, a plan was developed which segregated different classes of services to four quadrants surrounding the tokamak building, placed at the approximate geographical centre of the site. The locations of the buildings on the generic site were selected to meet all design requirements at minimum total project cost. A similar approach was used to determine the locations of services above, at and below grade. The generic site plan can be adapted to the site selected for ITER without significant changes to the buildings or equipment. Some rearrangements may be required by site topography, resulting primarily in changes to the length of services that link the buildings and equipment. (author)

  11. Base Isolation for Seismic Retrofitting of a Multiple Building Structure: Design, Construction, and Assessment

    Directory of Open Access Journals (Sweden)

    Massimiliano Ferraioli

    2017-01-01

    Full Text Available The paper deals with the seismic retrofit of a multiple building structure belonging to the Hospital Centre of Avellino (Italy. At first, the paper presents the preliminary investigations, the in situ measurements and laboratory tests, and the seismic assessment of the existing fixed-base structures. Having studied different strategies, base isolation proved to be the more appropriate, also for the possibility offered by the geometry of the building to easily create an isolation interface at the ground level. The paper presents the design project, the construction process, and the details of the isolation intervention. Some specific issues of base isolation for seismic retrofitting of multiple building structures were lightened. Finally, the seismic assessment of the base-isolated building was carried out. The seismic response was evaluated through nonlinear time-history analysis, using the well-known Bouc-Wen model as the constitutive law of the isolation bearings. For reliable dynamic analyses, a suite of natural accelerograms compatible with acceleration spectra of Italian Code was first selected and then applied along both horizontal directions. The results were finally used to address some of the critical issues of the seismic response of the base-isolated multiple building structure: accidental torsional effects and potential poundings during strong earthquakes.

  12. Safety classification of nuclear power plant systems, structures and components

    International Nuclear Information System (INIS)

    1992-01-01

    The Safety Classification principles used for the systems, structures and components of a nuclear power plant are detailed in the guide. For classification, the nuclear power plant is divided into structural and operational units called systems. Every structure and component under control is included into some system. The Safety Classes are 1, 2 and 3 and the Class EYT (non-nuclear). Instructions how to assign each system, structure and component to an appropriate safety class are given in the guide. The guide applies to new nuclear power plants and to the safety classification of systems, structures and components designed for the refitting of old nuclear power plants. The classification principles and procedures applying to the classification document are also given

  13. Direct Linear System Identification Method for Multistory Three-dimensional Building Structure with General Eccentricity

    OpenAIRE

    Shintani, Kenichirou; Yoshitomi, Shinta; Takewaki, Izuru

    2017-01-01

    A method of physical parameter system identification (SI) is proposed here for three-dimensional (3D) building structures with in-plane rigid floors in which the stiffness and damping coefficients of each structural frame in the 3D building structure are identified from the measured floor horizontal accelerations. A batch processing least-squares estimation method for many discrete time domain measured data is proposed for the direct identification of the stiffness and damping coefficients of...

  14. Commissioning of qualification of structures, systems and components for seismic and environmental loads of CIRENE nuclear power plant

    International Nuclear Information System (INIS)

    Bianchi, A.; Gatti, F.; Muzzi, F.; Zola, M.; De Pasquali, F.

    1993-01-01

    On behalf of the Italian National Electricity Board (ENEL) concerning the commissioning of qualification of structures, systems and components of CIRENE NPP, ISMES performed a technical surveillance on the documentation concerning the environmental and seismic qualification of the safety related systems and experimental activities (dynamic and static tests) on plant buildings. The aims of the work were: - the evaluation of the qualification carried out (by test, by analysis, by combination of analysis and test) on the equipment and system, compared with the requirements of the ENEL technical specifications and the most recent international regulations; - the experimental determination of modal quantities (frequencies, damping, mode shapes) of the structures and, in the case of reactor building, the complex impedance of the soil for supporting the analytical work. The present paper deals with the criteria, the system and the results concerning the technical surveillance and with the characteristics and the results of the experimental tests

  15. MODERN BUILDING STRUCTURES USED FOR MILITARY PURPOSES

    Directory of Open Access Journals (Sweden)

    Mariana Domnica STANCIU

    2014-04-01

    Full Text Available This paper investigates the technical aspects of the spherical spatial structures, focusing on the tensegrity building systems used for military purpose. The spherical spatial structures have been studied and used since antiquity. Pythagoras, Plato and Euclid were conducted extensive research on the concept of such type of structures. Regular pentagon has properties related to the value of the golden section, intuitively used by great architects and engineers since ancient times. In the Middle Ages, Leonardo Da Vinci created spatial objects using proportions based on the golden number, and later R. B. Fuller made the famous geodesic domes. The structures proposed by the authors are based on concepts related to the "golden section", on studies made on the regular pentagon, on the spatial volumes able to be inscribed in spheres and on the tensegrity systems. The proposed structures present some advantages related to the ease of mounting, to the volume covered, to the resistance to the environmental factors (snow, wind, earthquake, and so on. The paper presents the conclusions of the investigations on the components of the spatial structures and on the outcomes of their use.

  16. USAGE OF CONSTRUCTION-ORIENTED SOFTWARE SCAD FOR ANALYSIS OF WORK OF MACHINE-BUILDING STRUCTURES

    Directory of Open Access Journals (Sweden)

    D. О. Bannikov

    2018-02-01

    Full Text Available Purpose. In the case of analysis of work of the machine-building structures, the direct usage of construction-oriented software developments is impossible, since ideology and methodology for solving various tasks in construction and machine-building are different. Therefore, in the conducting of practical calculations, there is a need for a certain adjustment of the approaches put in the program complexes and their adaptation to the engineering industry. The presentation of the author's experience of the construction-oriented software SCAD usage for Windows for analyzing the work of various machine-building structures, their components and assemblies is the immediate purpose of the publication. Methodology. During a long period of time the author was engaged in analyzing the work of building, mainly thin-walled, steel structures using the Finite Element Method based on the SCAD for Windows software package. At the same time, a considerable number of machine-building structures were considered, including railroad rolling stock units. Most of these tasks grew into a scientific and research problem that needed to be thoroughly researched and analyzed before giving design recommendations. Findings. The publication presents more than a dozen different tasks, typical for the machine-building industry, which the author had to deal with. Static and quasi-static problems, the problem of motion in time, the contact problem, the problem of the cracks deve-lopment, the physical and geometric non-linearity are among them. Accordingly, for each of these problems the main challenges, features and practical techniques developed during the work are presented, as well as the constructed finite element models are presented as an illustration. Originality. The experience of construction-oriented software product usage on the basis of the Finite Element Method for analyzing of the work of machine-building structures is generalized. A number of practical methods and

  17. Seismic stability analyses of various reactor buildings on quaternary deposit

    International Nuclear Information System (INIS)

    Takeuchi, Y.; Tsutagawa, M.; Asakura, S.; Katoh, T.; Tomura, H.; Uchiyama, S.; Koyama, M.; Oguro, E.; Akino, K.; Iizuka, S.; Hayashi, M.

    1993-01-01

    Many nuclear power plants have been built on Quaternary deposits in Europe and U.S.A., however, Japanese basic policy is to construct the reactor building and other auxiliary buildings on a bed rock which are important to safety, because large earthquakes are postulated to occur. Being limited bed rock sites in Japan, it has become necessary to increase possible place for nuclear power plant in order to cope with the middle and long term siting problems. For the purpose of establishing the draft of guideline on seismic design of reactor building on the Quaternary sand and gravel deposit in Japan, foundation soil stability and seismic resistance of the reactor building and plant equipment have been investigated and studied from 1983 to 1998. The studies have shown the following: 1) The response rotation angles of both common light weight basement (CL) and step basement (ES) plants during the earthquake reduce to 1/2 of the BR plant value, and the bearing pressure between the basement and the soil of improved plant are reduced as well; (2) every structure built on quaternary sand and gravel deposit, having 400m/s shear velocity, maintains enough seismic resistance, because the shear stress caused in the wall is small. The maximum shear strain of soil below the basemat of BR-BWR, which suffers the largest bearing pressure, is 1.1x10 -9 , but it can be said that the soil has enough stability according to the past soil tests for the Quaternary sand and gravel deposit that had been done by authors

  18. How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional-structural plant model

    NARCIS (Netherlands)

    Sarlikioti, V.; Visser, de P.H.B.; Buck-Sorlin, G.H.; Marcelis, L.F.M.

    2011-01-01

    Background and Aims - Manipulation of plant structure can strongly affect light distribution in the canopy and photosynthesis. The aim of this paper is to find a plant ideotype for optimization of light absorption and canopy photosynthesis. Using a static functional structural plant model (FSPM), a

  19. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler.

    Science.gov (United States)

    Bindewald, Eckart; Grunewald, Calvin; Boyle, Brett; O'Connor, Mary; Shapiro, Bruce A

    2008-10-01

    One approach to designing RNA nanoscale structures is to use known RNA structural motifs such as junctions, kissing loops or bulges and to construct a molecular model by connecting these building blocks with helical struts. We previously developed an algorithm for detecting internal loops, junctions and kissing loops in RNA structures. Here we present algorithms for automating or assisting many of the steps that are involved in creating RNA structures from building blocks: (1) assembling building blocks into nanostructures using either a combinatorial search or constraint satisfaction; (2) optimizing RNA 3D ring structures to improve ring closure; (3) sequence optimisation; (4) creating a unique non-degenerate RNA topology descriptor. This effectively creates a computational pipeline for generating molecular models of RNA nanostructures and more specifically RNA ring structures with optimized sequences from RNA building blocks. We show several examples of how the algorithms can be utilized to generate RNA tecto-shapes.

  20. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler☆

    Science.gov (United States)

    Bindewald, Eckart; Grunewald, Calvin; Boyle, Brett; O’Connor, Mary; Shapiro, Bruce A.

    2013-01-01

    One approach to designing RNA nanoscale structures is to use known RNA structural motifs such as junctions, kissing loops or bulges and to construct a molecular model by connecting these building blocks with helical struts. We previously developed an algorithm for detecting internal loops, junctions and kissing loops in RNA structures. Here we present algorithms for automating or assisting many of the steps that are involved in creating RNA structures from building blocks: (1) assembling building blocks into nanostructures using either a combinatorial search or constraint satisfaction; (2) optimizing RNA 3D ring structures to improve ring closure; (3) sequence optimisation; (4) creating a unique non-degenerate RNA topology descriptor. This effectively creates a computational pipeline for generating molecular models of RNA nanostructures and more specifically RNA ring structures with optimized sequences from RNA building blocks. We show several examples of how the algorithms can be utilized to generate RNA tecto-shapes. PMID:18838281

  1. Underwater nuclear power plant structure

    International Nuclear Information System (INIS)

    Severs, S.; Toll, H.V.

    1982-01-01

    A structure for an underwater nuclear power generating plant comprising a triangular platform formed of tubular leg and truss members upon which are attached one or more large spherical pressure vessels and one or more small cylindrical auxiliary pressure vessels. (author)

  2. Power plants 2010. Lectures

    International Nuclear Information System (INIS)

    2010-01-01

    The proceedings include the following lectures: Facing the challenges - new structures for electricity production. Renewable energies in Europe - chances and challenges. Nuclear outlook in the UK. Sustainable energy for Europe. Requirements of the market and the grid operator at the electricity production companies. Perspectives for the future energy production. Pumped storage plants - status and perspectives. Nuclear power/renewable energies -partners or opponents? New fossil fired power stations in Europe - status and perspectives. Nuclear energy: outlook for new build and lifetime extension in Europe. Biomass in the future European energy market - experiences for dong energy. Meeting the EU 20:20 renewable energy targets: the offshore challenges. DESERTEC: sustainable electricity for Europe, Middle East and North Africa. New power plants in Europe - a challenge for project and quality management. Consideration of safely in new build activities of power plants. Challenges to an integrated development in Maasvlakte, Netherlands. Power enhancement in EnBW power plants. Operational experiences of CCS pilot plants worldwide. Two years of operational experiences with Vattenfall's oxyfuel pilot plant. Pre-conditions for CCS. Storage technologies for a volatile generation. Overview: new generation of gas turbines.

  3. Composite structures of steel and concrete beams, slabs, columns, and frames for buildings

    CERN Document Server

    Johnson, R P

    2008-01-01

    This book sets out the basic principles of composite construction with reference to beams, slabs, columns and frames, and their applications to building structures. It deals with the problems likely to arise in the design of composite members in buildings, and relates basic theory to the design approach of Eurocodes 2, 3 and 4.The new edition is based for the first time on the finalised Eurocode for steel/concrete composite structures.

  4. Structural capacity assessment of machine-building enterprises and associations

    Directory of Open Access Journals (Sweden)

    Prilutskay Maria

    2017-01-01

    Full Text Available Multidirectional tendencies of machine-building enterprises integration and disintegration resulted in the emergence of the formal and informal associations. These associations consist of the obviously and/or implicitly affiliated legal entities. Thus, a new element appears in the direct enterprise environment, i.e a management company or a head enterprise. The management company influences the participants even in an informal association. New environment restrictions led to the changes in the management structure. The paper considers the enterprise structures interrelation: organizational, financial, production, resource, and others. The authors draw a conclusion that the structures are hierarchy, and there are the coherence structures assessment criteria. The coordinated structures form the structural capacity of the enterprise. The suggested assessment coherence criteria (for example resource and functional structures allow estimating the structural potential and defining the directions of the enterprise efficiency increase.

  5. Effect of nonlinearity of connecting dampers on vibration control of connected building structures

    Directory of Open Access Journals (Sweden)

    Masatoshi eKasagi

    2016-01-01

    Full Text Available The connection of two building structures with dampers is one of effective vibration control systems. In this vibration control system, both buildings have to possess different vibration properties in order to provide a higher vibration reduction performance. In addition to such condition of different vibration properties of both buildings, the connecting dampers also play an important role in the vibration control mechanism. In this paper, the effect of nonlinearity of connecting dampers on the vibration control of connected building structures is investigated in detail. A high-damping rubber damper and an oil damper with and without relief mechanism are treated. It is shown that, while the high-damping rubber damper is effective in a rather small deformation level, the linear oil damper is effective in a relatively large deformation level. It is further shown that, while the oil dampers reduce the response in the same phase as the case without dampers, the high-damping rubber dampers change the phase. The merit is that the high-damping rubber can reduce the damper deformation and keep the sufficient space between both buildings. This can mitigate the risk of building pounding.

  6. Remote Sensing of plant functional types: Relative importance of biochemical and structural plant traits

    Science.gov (United States)

    Kattenborn, Teja; Schmidtlein, Sebastian

    2017-04-01

    Monitoring ecosystems is a key priority in order to understand vegetation patterns, underlying resource cycles and changes their off. Driven by biotic and abiotic factors, plant species within an ecosystem are likely to share similar structural, physiological or phenological traits and can therefore be grouped into plant functional types (PFT). It can be assumed that plants which share similar traits also share similar optical characteristics. Therefore optical remote sensing was identified as a valuable tool for differentiating PFT. Although several authors list structural and biochemical plant traits which are important for differentiating PFT using hyperspectral remote sensing, there is no quantitative or qualitative information on the relative importance of these traits. Thus, little is known about the explicit role of plant traits for an optical discrimination of PFT. One of the main reasons for this is that various optical traits affect the same wavelength regions and it is therefore difficult to isolate the discriminative power of a single trait. A way to determine the effect of single plant traits on the optical reflectance of plant canopies is given by radiative transfer models. The most established radiative transfer model is PROSAIL, which incorporates biochemical and structural plant traits, such as pigment contents or leaf area index. In the present study 25 grassland species of different PFT were cultivated and traits relevant for PROSAIL were measured for the entire vegetation season of 2016. The information content of each trait for differentiating PFTs was determined by applying a Multi-response Permutation Procedure on the actual traits, as well as on simulated canopy spectra derived from PROSAIL. According to our results some traits, especially biochemical traits, show a weaker separability of PFT on a spectral level than compared to the actual trait measurements. Overall structural traits (leaf angle and leaf area index) are more important for

  7. Impact of structural aging on seismic risk assessment of reinforced concrete structures in nuclear power plants

    International Nuclear Information System (INIS)

    Ellingwood, B.; Song, J.

    1996-03-01

    The Structural Aging Program is addressing the potential for degradation of concrete structural components and systems in nuclear power plants over time due to aging and aggressive environmental stressors. Structures are passive under normal operating conditions but play a key role in mitigating design-basis events, particularly those arising from external challenges such as earthquakes, extreme winds, fires and floods. Structures are plant-specific and unique, often are difficult to inspect, and are virtually impossible to replace. The importance of structural failures in accident mitigation is amplified because such failures may lead to common-cause failures of other components. Structural condition assessment and service life prediction must focus on a few critical components and systems within the plant. Components and systems that are dominant contributors to risk and that require particular attention can be identified through the mathematical formalism of a probabilistic risk assessment, or PRA. To illustrate, the role of structural degradation due to aging on plant risk is examined through the framework of a Level 1 seismic PRA of a nuclear power plant. Plausible mechanisms of structural degradation are found to increase the core damage probability by approximately a factor of two

  8. Clinch River Breeder Reactor Plant: a building block in nuclear technology

    International Nuclear Information System (INIS)

    McCormack, M.

    1979-01-01

    Interest in breeder reactors dates from the Manhatten Project to the present effort to build the Clinch River Liquid Metal Fast Breeder Reactor (LMFBR) demonstration plant. Seven breeder-type reactors which were built during this time are described and their technological progress assessed. The Clinch River Breeder Reactor Project (CRBRP) has been designed to demonstrate that it can be licensed, can operate on a large power grid, and can provide industry with important experience. As the next logical step in LMFBR development, the project has suffered repeated cancellation efforts with only minor modifications to its schedule. Controversies have developed over the timing of a large-scale demonstration plant, the risks of proliferation, economics, and other problems. Among the innovative developments adopted for the CRBRP is a higher thermal efficiency potential, the type of development which Senator McCormack feels justifies continuing the project. He argues that the nuclear power program can and should be revitalized by continuing the CRBRP

  9. Clinch River Breeder Reactor Plant: a building block in nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    McCormack, M.

    1979-01-01

    Interest in breeder reactors dates from the Manhatten Project to the present effort to build the Clinch River Liquid Metal Fast Breeder Reactor (LMFBR) demonstration plant. Seven breeder-type reactors which were built during this time are described and their technological progress assessed. The Clinch River Breeder Reactor Project (CRBRP) has been designed to demonstrate that it can be licensed, can operate on a large power grid, and can provide industry with important experience. As the next logical step in LMFBR development, the project has suffered repeated cancellation efforts with only minor modifications to its schedule. Controversies have developed over the timing of a large-scale demonstration plant, the risks of proliferation, economics, and other problems. Among the innovative developments adopted for the CRBRP is a higher thermal efficiency potential, the type of development which Senator McCormack feels justifies continuing the project. He argues that the nuclear power program can and should be revitalized by continuing the CRBRP.

  10. Analysis of the building system of four mills and their suitability for heat treatment pest disinfestation

    Directory of Open Access Journals (Sweden)

    Loredana Strano

    2013-09-01

    Full Text Available The last century researchers at Kansas State University demonstrated the validity of the heat treatment as a method of pest control in more than 20 mills. However factors such as the high capital investment required to heat large buildings, inadequate control of high temperatures and the risk of damage to parts of the plants or the construction materials have prevented the large-scale adoption of this technique as a viable alternative to fumigants. Today the combination of the industrialization of the food industry, the technological and structural modernization of plants and developments in heat disinfection technologies have resulted in interesting results being obtained for the use of this system in primary and secondary production processing plants, both experimentally and in practice. However, the scientific literature highlights some of the factors that limit the efficiency of the treatment. This is related to aspects of the buildings and the plants and the environment of the buildings. The structure of the buildings appear to have an enormous impact on energy consumption, because this depends on the amount of heating time and the methods that have to be used when establishing a heat treatment regime. These factors are important if the fumigation temperatures are to be reached in the shortest possible time and can affect the choice of the technique used with current fumigants, especially when this is combined with the amount and cost of the energy consumed. The aim of this work is to analyse four Sicilians mills that intend to use the heat system for fumigation and pest control in order to identify those aspects of the buildings, plant and their environment which are “critical elements” and may discourage the use of this technology. Particular attention was paid to the type of construction materials and their thermal conductivity (roof, floors and walls, the number and volume of the buildings and the distance between them, the

  11. A Study on Salt Attack Protection of Structural and Finishing Materials in Power Plant Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, W.B.; Kweon, K.J.; Suh, Y.P.; Nah, H.S.; Lee, K.J.; Park, D.S.; Jo, Y.K. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    This is a final report written by both KEPRI and KICT as a co-operative research titled {sup A} study on Salt Protection of Structural and Finishings in Power Plant Structures{sup .} This study presented the methods to prevent the chloride-induced corrosion of power plant structures through collection and analysis of research datum relating to design, construction and maintenance for the prevention of structural and finishing materials, thru material performance tests for anti-corrosion under many kinds of chloride-induced corrosion environments. As a result, this study proposed the guidelines for design, construction and maintenance of power plant structures due to chloride-induced corrosion. (author). 257 refs., 111 figs., 86 tabs.

  12. A Study on Salt Attack Protection of Structural and Finishing Materials in Power Plant Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, W B; Kweon, K J; Suh, Y P; Nah, H S; Lee, K J; Park, D S; Jo, Y K [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1998-12-31

    This is a final report written by both KEPRI and KICT as a co-operative research titled {sup A} study on Salt Protection of Structural and Finishings in Power Plant Structures{sup .} This study presented the methods to prevent the chloride-induced corrosion of power plant structures through collection and analysis of research datum relating to design, construction and maintenance for the prevention of structural and finishing materials, thru material performance tests for anti-corrosion under many kinds of chloride-induced corrosion environments. As a result, this study proposed the guidelines for design, construction and maintenance of power plant structures due to chloride-induced corrosion. (author). 257 refs., 111 figs., 86 tabs.

  13. Report on aging of nuclear power plant reinforced concrete structures

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.

    1996-03-01

    The Structural Aging Program provides the US Nuclear Regulatory Commission with potential structural safety issues and acceptance criteria for use in continued service assessments of nuclear power plant safety-related concrete structures. The program was organized under four task areas: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technology, and Quantitative Methodology for Continued Service Determinations. Under these tasks, over 90 papers and reports were prepared addressing pertinent aspects associated with aging management of nuclear power plant reinforced concrete structures. Contained in this report is a summary of program results in the form of information related to longevity of nuclear power plant reinforced concrete structures, a Structural Materials Information Center presenting data and information on the time variation of concrete materials under the influence of environmental stressors and aging factors, in-service inspection and condition assessments techniques, repair materials and methods, evaluation of nuclear power plant reinforced concrete structures, and a reliability-based methodology for current and future condition assessments. Recommendations for future activities are also provided. 308 refs., 61 figs., 50 tabs

  14. Report on aging of nuclear power plant reinforced concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Naus, D.J.; Oland, C.B. [Oak Ridge National Lab., TN (United States); Ellingwood, B.R. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering

    1996-03-01

    The Structural Aging Program provides the US Nuclear Regulatory Commission with potential structural safety issues and acceptance criteria for use in continued service assessments of nuclear power plant safety-related concrete structures. The program was organized under four task areas: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technology, and Quantitative Methodology for Continued Service Determinations. Under these tasks, over 90 papers and reports were prepared addressing pertinent aspects associated with aging management of nuclear power plant reinforced concrete structures. Contained in this report is a summary of program results in the form of information related to longevity of nuclear power plant reinforced concrete structures, a Structural Materials Information Center presenting data and information on the time variation of concrete materials under the influence of environmental stressors and aging factors, in-service inspection and condition assessments techniques, repair materials and methods, evaluation of nuclear power plant reinforced concrete structures, and a reliability-based methodology for current and future condition assessments. Recommendations for future activities are also provided. 308 refs., 61 figs., 50 tabs.

  15. Structural health monitoring on medium rise reinforced concrete building using ambient vibration method

    Science.gov (United States)

    Kamarudin, A. F.; Mokhatar, S. N.; Zainal Abidin, M. H.; Daud, M. E.; Rosli, M. S.; Ibrahim, A.; Ibrahim, Z.; Noh, M. S. Md

    2018-04-01

    Monitoring of structural health from initial stage of building construction to its serviceability is an ideal practise to assess for any structural defects or damages. Structural integrity could be intruded by natural destruction or structural deterioration, and worse if without remedy action on monitoring, building re-assessment or maintenance is taken. In this study the application of ambient vibration (AV) testing is utilized to evaluate the health of eighth stories medium rise reinforced concrete building in Universiti Tun Hussein Onn Malaysia (UTHM), based comparison made between the predominant frequency, fo, determined in year 2012 and 2017. For determination of fo, popular method of Fourier Amplitude Spectra (FAS) was used to transform the ambient vibration time series by using 1 Hz tri-axial seismometer sensors and City SharkII data recorder. From the results, it shows the first mode frequencies from FAS curves indicate at 2.04 Hz in 2012 and 1.97 Hz in 2017 with only 3.14% of frequency reduction. However, steady state frequencies shown at the second and third modes frequencies of 2.42 Hz and 3.31 Hz by both years. Two translation mode shapes were found at the first and second mode frequencies in the North-South (NS-parallel to building transverse axis) and East-West (EsW-parallel to building longitudinal axis) components, and the torsional mode shape shows as the third mode frequency in both years. No excessive deformation amplitude was found at any selective floors based on comparison made between three mode shapes produced, that could bring to potential feature of structural deterioration. Low percentages of natural frequency disparity within five years of duration interval shown by the first mode frequencies under ambient vibration technique was considered in good health state, according to previous researchers recommendation at acceptable percentages below 5 to 10% over the years.

  16. Settlement mechanism of the backfilled ground around nuclear power plant buildings. Part 1. A series of 1G shaking table tests

    International Nuclear Information System (INIS)

    Ishimaru, Makoto; Kawai, Tadashi

    2008-01-01

    The large ground settlement locally occurred at the backfilled ground around the Kashiwazaki-Kariwa Nuclear Power Plant buildings during the Niigataken Chuetsu-oki Earthquake in 2007. The purposes of this study are to verify the assumed mechanism of the settlement and to discuss the influence factors on the settlement. For these purposes, we conducted a series of 1G shaking table tests using a rigid structure and sand. In the tests, parameters, which were variously changed, are related to two factors; one is the horizontal ground displacement relative to the structure, the other is the ground strength against the sliding failure. The following results were obtained: (1) All the results showed that the ground settlement sizes near the structure were larger than the ground settlement sizes far from the structure, (2) From the video observed at the ground near the structure, it was found that the settlement locally occurred due to the sliding failure after the ground was separated from the structure, (3) The ground settlement sizes near the structure were large as the horizontal ground displacement sizes were large, and the soil strength arising from fines affected the ground settlement sizes near the structure. (author)

  17. Structure Building Predicts Grades in College Psychology and Biology

    Science.gov (United States)

    Arnold, Kathleen M.; Daniel, David B.; Jensen, Jamie L.; McDaniel, Mark A.; Marsh, Elizabeth J.

    2016-01-01

    Knowing what skills underlie college success can allow students, teachers, and universities to identify and to help at-risk students. One skill that may underlie success across a variety of subject areas is structure building, the ability to create mental representations of narratives (Gernsbacher, Varner, & Faust, 1990). We tested if…

  18. A lignite-geothermal hybrid power and hydrogen production plant for green cities and sustainable buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kilkis, B. [Baskent University, Ankara (Turkey). Dept. of Mechanical Engineering

    2011-02-15

    Turkey is rich in both geothermal energy and lignite reserves, which in many cases, are co-located. This condition makes it feasible to utilize both lignite and geothermal energy in a hybrid form for combined power heat, and cold generation, which may lead to optimally energy and exergy efficient, environmentally benign, and economically sound applications. This paper presents a novel concept of hybrid lignite-geothermal plant for a district energy system and hydrogen production facility in Aydin with special emphasis on high performance, green buildings and green districts. In this concept, lignite is first introduced to a partially fluidized-bed gasifier and then to a fluidized-bed gas cleaning unit, which produces synthetic gas and finally hydrogen. The by-products, namely char and ash are used in a fluidized-bed combustor to produce power. Waste heat from all these steps are utilized in a district heating system along with heat received from geothermal production wells after power is generated there. H{sub 2}S gas obtained from the separator system is coupled with hydrogen production process at the lignite plant. Absorption cooling systems and thermal storage tanks complement the hybrid system for the tri-generation district energy system. On the demand side, the new, green OSTIM OSB administration building in Ankara is exemplified for greener, low-exergy buildings that will compound the environmental benefits.

  19. Design study of plant system for the fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    Iida, Hiromasa; Kuroda, Hideo; Yamada, Masao; Suzuki, Tatsushi; Honda, Tsutomu; Ohmura, Hiroshi; Itoh, Shinichi.

    1986-11-01

    This report describes design study results of the FER plant system. The purpose of this study is to have an image of the FER plant system as a whole by designing major auxiliary systems, reactor building and maintenance and radwaste desposal systems. The major auxiliary systems include tritium, cooling, evacuation and fueling systems. For these each systems, flowdiagrams are studied and designs of devices and pipings are conducted. In the reactor building design, layout of the above auxiliary systems in the building is studied with careful zoning concept by the radiation level. Structural integrity of the reactor building is also studied including seismic analysis. In the design of the maintenance and radwaste system flowdiagram of failed reactor components is developed and transfer vehicles and buildings are designed. Finally assuming JAERI Naka site as the reactor site layout of the whole FER plant system is developed. (author)

  20. CHARACTERIZATION OF FUGITIVE MERCURY EMISSIONS FROM THE CELL BUILDING AT A U.S. CHLOR-ALKALI PLANT

    Science.gov (United States)

    The paper discusses an extensive measurement campaign that was conducted of the fugitive (non-ducted) airborne elemental mercury [Hg(0)] emissions from the cell building of a chlor-alkali plant (CAP) located in the southeastern United States. The objectives of this study were to ...

  1. The impact of team building and leadership development on nuclear plant performance

    International Nuclear Information System (INIS)

    Fiedler, P.B.; Long, R.L.; Childress, J.R.

    1988-01-01

    Within the nuclear utility industry, the pressures of complex technologies, increasing regulations, and critical public scrutiny create a working environment filled with numerous pressures. The difficult nature of the industry puts a premium on effective teamwork, interdepartmental cooperation, and communication skills. A well-conceived and implemented team building and leadership development program can substantially improve the operating performance of a nuclear plant. This paper describes one such implementation effort at GPU Nuclear Corporation and at the Oyster Creek nuclear generating station (OCNGS) over an 18-month period

  2. AVLIS Production Plant work breakdown structure and Dictionary

    International Nuclear Information System (INIS)

    1984-01-01

    The work breakdown structure has been prepared for the AVLIS Production Plant to define, organize, and identify the work efforts and is summarized in Fig. 1-1 for the top three project levels. The work breakdown structure itself is intended to be the primary organizational tool of the AVLIS Production Plant and is consistent with the overall AVLIS Program Work Breakdown Structure. It is designed to provide a framework for definition and accounting of all of the elements that are required for the eventual design, procurement, and construction of the AVLIS Production Plant. During the present phase of the AVLIS Project, the conceptual engineering phase, the work breakdown structure is intended to be the master structure and project organizer of documents, designs, and cost estimates. As the master project organizer, the key role of the work breakdown structure is to provide the mechanism for developing completeness in AVLIS cost estimates and design development of all hardware and systems. The work breakdown structure provides the framework for tracking, on a one-to-one basis, the component design criteria, systems requirements, design concepts, design drawings, performance projections, and conceptual cost estimates. It also serves as a vehicle for contract reporting. 12 figures, 2 tables

  3. Airplane impact on nuclear power plants

    International Nuclear Information System (INIS)

    Eibl, J.

    2003-01-01

    A short report on investigations of nuclear power plants under airplane attack is given. It concerns the modeling of planes with regard to mass and stiffness, the relevant plane velocity and finally the determination of load-time functions. The necessary analysis of the concrete containment structure is shortly addressed. Finally a proposal for a structure to keep planes from such building structures is discussed. (author)

  4. Energy - efficient buildings in pakistan

    International Nuclear Information System (INIS)

    Sohail, M.; Qureshi, M.U.D.

    2011-01-01

    Pakistan is one of the countries with the highest energy consumption for domestic use. Annual energy consumption by the domestic sector is 45.9 % of the total, while the industrial sector, consumes about 27.5%. About half of the total energy consumed is used in buildings and/or heating, ventilation and air-conditioning (HVAC) and lighting appliances. The energy consumed for the same purposes in China and UK is 25 to 30 % and 40 %, respectively, even in extreme weather conditions. Energy deficiency in Pakistan is approximately 5,000 MWe, which results in worst load-shedding in summers and, lately, even in winters. Building new energy sources like dams, coal power plants and renewable energy power projects are some possible solutions, but these are time taking and need at least 2 to 6 years to complete, depending upon the nature of the project. Fast development of energy-efficient buildings is, therefore, necessary to deal with exacerbating energy-crisis and related environmental impact in Pakistan. Innovations in the prevailing building-design will help the country in reducing the energy burden. These innovations may include improved architectural designs, energy-efficient building materials, electrical appliances and implementation of building energy-efficiency codes. In 1987, the National Energy Conservation Centre (ENERCON), was established under Ministry of Environment, Government of Pakistan, with the aim to build awareness among the masses for energy conservation, and to make policies regarding energy-conservation structures in the country. But no policy regarding building energy codes has been introduced by ENERCON till now. In collaboration with Pakistan Engineering Council (PEC), ENERCON has recently finalized the Building Energy Code of Pakistan Energy Provisions 2011 for which statutory notification is under process for necessary amendment in the building by-laws. The implementation of this Energy Code will result in 25 to 30 % of energy savings in the

  5. Effect of elevated temperatures on heavy concrete structural strength in Qinshan phase 3 CANDU 6 reactor buildings

    International Nuclear Information System (INIS)

    Alikhan, S.; Khan, A.F.; Chen, S.

    2005-01-01

    Heavy concrete is commonly used inside the Qinshan Phase 3 CANDU 6 reactor buildings for radiation shielding functions in order to provide access to key areas during reactor operation. In some cases, the heavy concrete elements are also structural elements. Concerns have been raised about the functional performance of the heavy concrete structural elements, specifically the primary heat transport pump (PHTS) supporting slabs, surrounding the feeder cabinets when subjected to elevated temperatures between 42 degree C and 121 degree C and their corresponding temperature gradients on a long-term basis during the normal operation of the plant. This paper presents the results of a test investigation on the strength of heavy concrete under elevated temperature conditions being experienced by the heavy concrete structural elements around the feeder cabinet to confirm that these structural elements meet their functional requirements. The loading conditions consist subjecting the specimens to the elevated temperatures and temperature gradient noted during commissioning, including the effect of epoxy coating. The heavy concrete mix proportion and materials of the test samples (ilmenite aggregate and Portland cement) are identical to those used for heavy concrete structural elements surrounding the feeder cabinet. Subsequent to the confirmation of the functional requirements of the heavy concrete structural elements, alarm limits are recommended for these structural elements. (authors)

  6. Synthetic building materials for transport buildings and structures

    Science.gov (United States)

    Gerasimova, Vera

    2017-10-01

    The most effective building materials account for the highest growth not only in construction of residential and public buildings, but also other capital projects including roadways, bridges, drainage, communications and other engineering projects. Advancement in the technology of more efficient and ecologically responsible insulation materials have been a priority for safety, minimal maintenance and longevity of finished construction projects. The practical use of modern building materials such as insulation, sound reduction and low energy consumption are a benefit in cost and application compared to the use of outdated heavier and labor-intensive materials. The most efficient way for maximizing insolation and sound proofing should be done during the design stages of the project according to existing codes and regulations that are required by Western Government. All methods and materials that are used need to be optimized in order to reach a high durability and low operational and maintenance cost exceeding more than 50 years of the life of the building, whether it is for public, industrial or residential use. Western construction techniques and technologies need to be applied and adapted by the Russian Federation to insure the most productive successful methods are being implemented. The issues of efficient insulation materials are outlined in this article.

  7. Seismic analysis with FEM for fuel transfer system of PWR nuclear power plant

    International Nuclear Information System (INIS)

    Jia Xiaofeng; Liu Pengliang; Bi Xiangjun; Ji Shunying

    2012-01-01

    In the PWR nuclear power plant, the function of the fuel transfer system (FTS) is to transfer the fuel assembly between the reactor building and the fuel building. The seismic analysis of the transfer system structure should be carried out to ensure the safety under OBE and SSE. Therefore, the ANASYS 12.0 software is adopted to construct the finite element analysis model for the fuel transfer system in a million kilowatt nuclear power plant. For the various configurations of FTS in the operating process, the stresses of the main structures, such as the transfer tube, fuel assembly container, fuel conveyor car, lifting frame in the reactor building, lifting frame in the fuel building, support and guide structure of conveyor car and the lifting frame in both buildings, are computed. The stresses are combined with the method of square root of square sum (SRSS) and assessed under various seismic conditions based on RCCM code, the results of the assessment satisfy the code. The results show that the stresses of the fuel transfer system structure meet the strength requirement, meanwhile, it can withstand the earthquake well. (authors)

  8. Measuring structural (un)safety in the Dutch building industry

    NARCIS (Netherlands)

    Terwel, K.C.; Waarts, P; E Rademaeker, de

    2010-01-01

    The last 10 years the Dutch Building Industry was shocked by several major accidents. In 2001 the steel structure of a theatre in Hoorn collapsed during erection. No one was hurt, because it collapsed during the night. In 2002 part of the parking deck of a hotel collapsed just some time after a

  9. Plant design and layout of the different buildings with respect to safety, operational and maintenance requirements

    International Nuclear Information System (INIS)

    Liebich, H.

    1981-01-01

    The descriptions and pictures in this lecture show that the arrangement of the buildings and the location of components and systems are based on proven ideas with the aim to fulfil safety, operational and maintenance requirements also from the point of view of plant layout. (orig.)

  10. Energy and Economic Performance of Plant-Shaded Building Façade in Hot Arid Climate

    Directory of Open Access Journals (Sweden)

    Mahmoud Haggag

    2017-11-01

    Full Text Available The use of vegetated walls and intensive plantation around buildings has increased in popularity in hot and arid climates, such as those in the United Arab Emirates (UAE. This is due to its contribution towards reducing the heat gain and increasing the occupants’ comfort levels in spaces. This paper examines the introduction of plant-shaded walls as passive technique to reduce heat gain in indoor spaces as a strategy to lower cooling demand in hot arid climate of Al-Ain city. Experimental work was carried out to analyze the impact of using plantation for solar control of residential building façades in extreme summer. External and internal wall surface and ambient temperatures were measured for plant-shaded and bare walls. The study concluded that shading effect of the intensive plantation can reduce peak time indoor air temperature by 12 °C and reduce the internal heat gain by 2 kWh daily in the tested space. The economic analysis reveals a payback period of 10 years considering local energy tariff excluding environmental savings.

  11. A Study on the Field Data Communication Structure under Harsh Environment in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Hur, Seop; Hong, S. B.; Lee, J. K.; Kim, D. H.; Chung, K. I.; Kim, C. H.; Koo, I. S.; Cho, J. W.; Lee, J. C.; Choi, Y. S.

    2009-01-01

    As digitizing the I and C systems in nuclear plants, The SMART sensors/ actuators are considered as a alternative of the conventional field devices. Because the digitization of the filed level devises is still primitive, it is necessary to perform the relative R and D. Especially, it is difficult to adopt the digital devices in a containment building of the nuclear plants due to the harsh environment conditions such as high level radiation and high temperature. Considering the tendency of the reliability enhancement, from now on, the digital device will be adopted in the harsh environment. The major technical issues of the field level digitization are a SMART transmitter/actuator technology, a network technology and an equipment qualification in harsh environment. This report describes the study results regarding the field level data network. There are many merits such as an automatic test, a diagnostics and auto-calibration when digitizing of the I and C systems. While, the data capacity will be much increased compare to the conventional systems. The future field data network should have larger data transmission speed compare to the current sensor networks such as HART and deviceNET. The candidate commercial network has been selected considering the nuclear requirements. Based on the this network, a protocol structure and a access control structure are recommended. Instruments in containment building are analyzed and the design bases and requirements have been setup to assure the safety and performance of the field data communication. According to the design bases, requirements and the node allocation criteria, the field network has been divided by functional segmentation and each instrument has been allocated to each individual data network

  12. Ultrasonic imaging of tube/support structure of power plant steam generators

    International Nuclear Information System (INIS)

    Saniie, J.; Nagle, D.T.

    1987-01-01

    The corrosion and erosion of steam generator tubing in nuclear power plants can present problems of both safety and economics. In steam generators, the inconel tubes are fit loosely through holes drilled in carbon steel support plates. Corrosion is of particular concern with such tube/support plate structures. Non-protective magnetite can build up on the inner surface of the support plate holes, and allowed to continue unchecked, will fill the gap, eventually denting and fracturing the tube walls. Therefore, periodic nondestructive inspection can be valuable in characterizing corrosion and can be used in evaluating the effectiveness of chemical treatments used to control or reduce corrosion. Presently, they are investigating the feasibility and practicality of using ultrasound in routing testing for gap measurement, for evaluating the corrosion and assessing the degree of denting. The tube/support structure can be modeled as a multilayer, reverberant target, which when tested with ultrasound results in two sets of reverberating echoes [1]. One set corresponds to the tube wall and the other to the support plate. These echoes must be decomposed and identified in order to evaluate the tube/support structure. This report presents experimental results along with a discussion of various measurements and processing techniques for decomposing and interpreting tube/support echoes at different stages of corrosion

  13. Aging management program of the reactor building concrete at Point Lepreau Generating Station

    Directory of Open Access Journals (Sweden)

    Gendron T.

    2011-04-01

    Full Text Available In order for New Brunswick Power Nuclear (NBPN to control the risks of degradation of the concrete reactor building at the Point Lepreau Generating Station (PLGS the development of an aging management plan (AMP was initiated. The intention of this plan was to determine the requirements for specific structural components of concrete of the reactor building that require regular inspection and maintenance to ensure the safe and reliable operation of the plant. The document is currently in draft form and presents an integrated methodology for the application of an AMP for the concrete of the reactor building. The current AMP addresses the reactor building structure and various components, such as joint sealant and liners that are integral to the structure. It does not include internal components housed within the structure. This paper provides background information regarding the document developed and the strategy developed to manage potential degradation of the concrete of the reactor building, as well as specific programs and preventive and corrective maintenance activities initiated.

  14. DIRECT GEOREFERENCING OF UAV DATA BASED ON SIMPLE BUILDING STRUCTURES

    Directory of Open Access Journals (Sweden)

    W. Tampubolon

    2016-06-01

    Full Text Available Unmanned Aerial Vehicle (UAV data acquisition is more flexible compared with the more complex traditional airborne data acquisition. This advantage puts UAV platforms in a position as an alternative acquisition method in many applications including Large Scale Topographical Mapping (LSTM. LSTM, i.e. larger or equal than 1:10.000 map scale, is one of a number of prominent priority tasks to be solved in an accelerated way especially in third world developing countries such as Indonesia. As one component of fundamental geospatial data sets, large scale topographical maps are mandatory in order to enable detailed spatial planning. However, the accuracy of the products derived from the UAV data are normally not sufficient for LSTM as it needs robust georeferencing, which requires additional costly efforts such as the incorporation of sophisticated GPS Inertial Navigation System (INS or Inertial Measurement Unit (IMU on the platform and/or Ground Control Point (GCP data on the ground. To reduce the costs and the weight on the UAV alternative solutions have to be found. This paper outlines a direct georeferencing method of UAV data by providing image orientation parameters derived from simple building structures and presents results of an investigation on the achievable results in a LSTM application. In this case, the image orientation determination has been performed through sequential images without any input from INS/IMU equipment. The simple building structures play a significant role in such a way that geometrical characteristics have been considered. Some instances are the orthogonality of the building’s wall/rooftop and the local knowledge of the building orientation in the field. In addition, we want to include the Structure from Motion (SfM approach in order to reduce the number of required GCPs especially for the absolute orientation purpose. The SfM technique applied to the UAV data and simple building structures additionally presents an

  15. Attachments for fire modeling for Building 221-T, T Plant canyon deck and railroad tunnel

    International Nuclear Information System (INIS)

    Oar, D.L.

    1995-01-01

    The purpose of this attachment is to provide historical information and documentation for Document No. WHC-SD-CP-ANAL-008 Rev 0, ''Fire Modeling for Building 221-T--T Plant Canyon Deck and Railroad Tunnel'', dated September 29, 1994. This data compilation contains the following: Resumes of the Technical Director, Senior Engineer and Junior Engineer; Review and Comment Record; Software Files; CFAST Input and Output Files; Calculation Control Sheets; and Estimating Sprinkler Actuation Time in the Canyon and Railroad Tunnel. The T Plant was originally a fuel reprocessing facility. It was modified later to decontaminate and repair PuRex process equipment

  16. The Final Demise Of East Tennessee Technology Park Building K-33

    International Nuclear Information System (INIS)

    King, David A.

    2011-01-01

    Building K-33 was constructed in 1954 as the final section of the five-stage uranium enrichment cascade at the Oak Ridge Gaseous Diffusion Plant (ORGDP). The two original building (K-25 and K-27) were used to produce weapons grade highly enriched uranium (HEU). Building K-29, K-31, and K-33 were added to produce low enriched uranium (LEU) for nuclear power plant fuel. During ORGDP operations K-33 produced a peak enrichment of 2.5%. Thousands of tons of reactor tails fed into gaseous diffusion plants in the 1950s and early 1960s introducing some fission products and transuranics. Building K-33 was a two-story, 25-meters (82-feet) tall structure with approximately 30 hectare (64 acres) of floor space. The Operations (first) Floor contained offices, change houses, feed vaporization rooms, and auxiliary equipment to support enrichment operations. The Cell (second) Floor contained the enrichment process equipment and was divided into eight process units (designated K-902-1 through K-902-8). Each unit contained ten cells, and each cell contained eight process stages (diffusers) for a total of 640 enrichment stages. 1985: LEU buildings were taken off-line after the anticipated demand for uranium enrichment failed to materialize. 1987: LEU buildings were placed in permanent shutdown. Process equipment were maintained in a shutdown state. 1997: DOE signed an Action Memorandum for equipment removal and decontamination of Buildings K-29, K-31, K-33; BNFL awarded contract to reindustrialize the buildings under the Three Buildings D and D and Recycle Project. 2002: Equipment removal complete and effort shifts to vacuuming, chemical cleaning, scabbling, etc. 2005: Decontamination efforts in K-33 cease. Building left with significant 99 Tc contamination on metal structures and PCB contamination in concrete. Uranium, transuranics, and fission products also present on building shell. 2009: DOE targets Building K-33 for demolition. 2010: ORAU contracted to characterize Building K-33

  17. Accurate facade feature extraction method for buildings from three-dimensional point cloud data considering structural information

    Science.gov (United States)

    Wang, Yongzhi; Ma, Yuqing; Zhu, A.-xing; Zhao, Hui; Liao, Lixia

    2018-05-01

    Facade features represent segmentations of building surfaces and can serve as a building framework. Extracting facade features from three-dimensional (3D) point cloud data (3D PCD) is an efficient method for 3D building modeling. By combining the advantages of 3D PCD and two-dimensional optical images, this study describes the creation of a highly accurate building facade feature extraction method from 3D PCD with a focus on structural information. The new extraction method involves three major steps: image feature extraction, exploration of the mapping method between the image features and 3D PCD, and optimization of the initial 3D PCD facade features considering structural information. Results show that the new method can extract the 3D PCD facade features of buildings more accurately and continuously. The new method is validated using a case study. In addition, the effectiveness of the new method is demonstrated by comparing it with the range image-extraction method and the optical image-extraction method in the absence of structural information. The 3D PCD facade features extracted by the new method can be applied in many fields, such as 3D building modeling and building information modeling.

  18. Multi-scale approach of the mechanical behaviour of reinforced concrete structures - Application to nuclear plant containment buildings

    International Nuclear Information System (INIS)

    David, M.

    2012-01-01

    This thesis develops a multi-scale strategy to describe the mechanical behaviour of steel reinforcements and prestressing tendons in a reinforced concrete structure. This strategy is declined in several steps, which allow gradual integration of new physical phenomena. The first asymptotic model represents the effective elastic behaviour of heterogeneities periodically distributed on a surface. It combines an elastic interface behaviour and a membrane behaviour. A second asymptotic model then focuses on the behaviour of rigid fibers distributed on a surface, which may slide with respect to the surrounding volume. These models induce less stress concentrations than the usual truss models. They are implemented in the finite element code Code-Aster, and validated with respect to reference three-dimensional simulations. Their interaction with a macroscopic crack is studied. Finally, this strategy allows the modeling of experimental tests carried out on a portion of a containment building in real scale. (author)

  19. 2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Benning

    2011-02-04

    This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. The goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.

  20. Construction technique for a chemical plant (I)

    International Nuclear Information System (INIS)

    1978-08-01

    This book mentions the order of plant construction, building plant and related regulations, basic engineering design data, provide of equipment, plan and management on building plant, quality control, the budget and contract for building plant, public works for building chemical plant like road construction, basic plan and building for a chemical plant, introduction and principle on foundation improvement method, including pile foundation and design for footing, construction and installation for a chemical plant and a rotary machine for a chemical plant.

  1. Plant Life Management of the EC6 Concrete Containment Structure

    Energy Technology Data Exchange (ETDEWEB)

    Abrishami, Homayoun; Ricciuti, Rick; Khan, Azhar [CANDU Energy Inc., Mississauga (Canada)

    2012-03-15

    Aging of reinforced concrete structures due to service conditions, aggressive environments, or accidents may cause their strength, serviceability and durability to decrease over time. Due to the complex nature of safety-related structures in nuclear power plants in comparison to other structures, they possess a number of characteristics that make them comparison to other structures, they possess a number of characteristics that make them unique. These characteristics are: thick concrete cross-sections, heavy reinforcement, often one-side access only, subjected to such ageing stresses as irradiation and elevated temperature, in addition to other typical ageing mechanisms (i. e., exposure to freeze/thaw cycles, aggressive chemicals, etc.) that typically affects other types of non-nuclear structures. For a new plant, the Plant Life Management Program (PLiM) should start in the design process and then continues through construction, plant operation and decommissioning. Hence PLiM must provide not only Ageing Management program (AMP) but also provide requirements on material characteristic and the design criteria as well. The purpose of this paper is to present the Plant Life Management (PLiM) strategy for the concrete containment structure of EC6 (Enhanced CANDU 6) Nuclear Power Plant designed by CANDU Energy Inc. The EC6 is designed for 100-year plant life including a 60-year operating life and an additional 40-year decommissioning period of time. The approach adopted for the PLiM strategy of the concrete containment structure is a preventive one, key areas being: 1) design methodology, 2) material performance and 3) life cycle management and ageing management program. In addition to strength and serviceability, durability is a major consideration during the design phase, service life and up to the completion of decommissioning. Factors affecting durability design include: a) concrete performance, b) structural application, and c) consideration of environmental

  2. Plant Life Management of the EC6 Concrete Containment Structure

    International Nuclear Information System (INIS)

    Abrishami, Homayoun; Ricciuti, Rick; Khan, Azhar

    2012-01-01

    Aging of reinforced concrete structures due to service conditions, aggressive environments, or accidents may cause their strength, serviceability and durability to decrease over time. Due to the complex nature of safety-related structures in nuclear power plants in comparison to other structures, they possess a number of characteristics that make them comparison to other structures, they possess a number of characteristics that make them unique. These characteristics are: thick concrete cross-sections, heavy reinforcement, often one-side access only, subjected to such ageing stresses as irradiation and elevated temperature, in addition to other typical ageing mechanisms (i. e., exposure to freeze/thaw cycles, aggressive chemicals, etc.) that typically affects other types of non-nuclear structures. For a new plant, the Plant Life Management Program (PLiM) should start in the design process and then continues through construction, plant operation and decommissioning. Hence PLiM must provide not only Ageing Management program (AMP) but also provide requirements on material characteristic and the design criteria as well. The purpose of this paper is to present the Plant Life Management (PLiM) strategy for the concrete containment structure of EC6 (Enhanced CANDU 6) Nuclear Power Plant designed by CANDU Energy Inc. The EC6 is designed for 100-year plant life including a 60-year operating life and an additional 40-year decommissioning period of time. The approach adopted for the PLiM strategy of the concrete containment structure is a preventive one, key areas being: 1) design methodology, 2) material performance and 3) life cycle management and ageing management program. In addition to strength and serviceability, durability is a major consideration during the design phase, service life and up to the completion of decommissioning. Factors affecting durability design include: a) concrete performance, b) structural application, and c) consideration of environmental

  3. Decommissioning of the Plutonium Purification and Residues Recovery Plant

    International Nuclear Information System (INIS)

    Hunt, J. G.

    2006-01-01

    British Nuclear Group is continuing to build on BNFL's successful record of decommissioning redundant nuclear facilities. Challenging radiological conditions and complex technical problems have been overcome to reduce the hazard associated with the UK's nuclear legacy. The former Plutonium Purification and Residues Recovery Plant at Sellafield operated from 1954 through to 1987. This is the only plant to have experienced an uncontrolled criticality incident in the UK, in August 1970 during operations. The plant comprised of two mirror image cells approximately 6.5 m x 13.5 m x 16 m, constructed of bare brick. The cell structure provided secondary containment, the process vessels and pipes within the cell providing primary containment. The plant utilized a solvent extraction process to purify the plutonium stream. Surrounding the two process cells to the north, east and south is an annulus area that housed the operational control panels, feed and sample glove-boxes, and ancillary equipment. The building was ventilated by an unfiltered extract on the process cells and a filtered extract from the vessels and glove-boxes. During the long operational lifetime of the plant, the primary containment deteriorated to such an extent that the process cells eventually became the main containment, with levels of radioactive contamination in excess of 14,256 pCi alpha. This led to significant aerial effluent discharges towards the end of the plant's operational life and onerous working conditions during decommissioning. Implementation of a phased decommissioning strategy from 1991 has led to: - A reduction of approximately 60% in the Sellafield site's aerial alpha discharges following installation of a new ventilation system, - Removal of 12 plutonium contaminated glove-boxes and sample cabinets from the building, - Disposal of the approximately 500 m 2 of asbestos building cladding, - Removal of over 90% of the active pipes and vessels from the highly contaminated process cells

  4. Reactor building for a nuclear reactor

    International Nuclear Information System (INIS)

    Haidlen, F.

    1976-01-01

    The invention concerns the improvement of the design of a liner, supported by a latticed steel girder structure and destined for guaranteeing a gastight closure for the plant compartments in the reactor building of a pressurized water reactor. It is intended to provide the steel girder structure on their top side with grates, being suited for walking upon, and to hang on their lower side diaphragms in modular construction as a liner. At the edges they may be sealed with bellows in order to avoid thermal stresses. The steel girder structure may at the same time serve as supports for parts of the steam pipe. (RW) [de

  5. Damage of reactor buildings occurred at the Fukushima Daiichi accident. Focusing on sequence leading to hydrogen explosions

    International Nuclear Information System (INIS)

    Naito, Masanori

    2011-01-01

    Fukushima Daiichi accident discharged enormous radioactive materials confined inside into the environment due to hydrogen explosions occurred at reactor buildings and forced many people to live the refugee life. This article described overview of Great East Japan Earthquake, specifications of Fukushima Daiichi nuclear power plants, sequence of plant status after earthquake occurrence and computerized simulation of plant behavior of Unit 1 leading to core melt and hydrogen explosion. Simulation results with estimated and assumed conditions showed water level decreased to bottom of reactor core after 4 hrs and 15 minutes passed, core melt started after 6 hrs and 49 minutes passed, failure of core support plate after 7 hrs and 18 minutes passed and through failure of penetration at bottom of pressure vessel after 7 hrs and 25 minutes passed. Hydrogen concentration at operating floor of reactor building of Unit 1 would be 15% accumulated and the pressure would amount to about 5 bars after hydrogen explosion if reactor building did not rupture with leak-tight structure. Since reactor building was not pressure-proof structure, walls of operating floor would rupture before 5 bars attained. (T. Tanaka)

  6. The importance of building construction materials relative to other factors affecting structure survival during wildfire

    Science.gov (United States)

    Syphard, Alexandra D.; Brennan, Teresa J.; Keeley, Jon E.

    2017-01-01

    Structure loss to wildfire is a serious problem in wildland-urban interface areas across the world. Laboratory experiments suggest that fire-resistant building construction and design could be important for reducing structure destruction, but these need to be evaluated under real wildfire conditions, especially relative to other factors. Using empirical data from destroyed and surviving structures from large wildfires in southern California, we evaluated the relative importance of building construction and structure age compared to other local and landscape-scale variables associated with structure survival. The local-scale analysis showed that window preparation was especially important but, in general, creating defensible space adjacent to the home was as important as building construction. At the landscape scale, structure density and structure age were the two most important factors affecting structure survival, but there was a significant interaction between them. That is, young structure age was most important in higher-density areas where structure survival overall was more likely. On the other hand, newer-construction structures were less likely to survive wildfires at lower density. Here, appropriate defensible space near the structure and accessibility to major roads were important factors. In conclusion, community safety is a multivariate problem that will require a comprehensive solution involving land use planning, fire-safe construction, and property maintenance.

  7. Assessment of inservice conditions of safety-related nuclear plant structures

    International Nuclear Information System (INIS)

    Ashar, H.; Bagchi, G.

    1995-06-01

    The report is a compilation from a number of sources of information related to the condition Of structures and civil engineering features at operating nuclear power plants in the United States. The most significant information came from the hands-on inspection of the six old plants (licensed prior to 1977) performed by the staff of the Civil Engineering and Geosciences Branch (ECGB) in the Division of Engineering of the Office of Nuclear Reactor Regulation. For the containment structures, most of the information related to the degraded conditions came from the licensees as part of the Licensing Event Report System (10 CFR 50.73), or as part of the requirement under limiting condition of operation of the plant-specific Technical Specifications. Most of the information related to the degradation of other Structures and civil engineering features was extracted from the industry survey, the reported incidents, and the plant visits. The report discusses the condition of the structures and civil engineering features at operating nuclear power plants and provides information that would help detect, alleviate, and correct the degraded conditions of the structures and civil engineering features

  8. On results of measurement and method of behavior analysis for land slide protection wall in excavation works for main building foundation of No.2 plant in Kashiwazaki-Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Otsuki, Hideo; Tsuchi, Hiroyuki; Nishioka, Toshimichi

    1987-01-01

    Tokyo Electric Power Co. has been constructing the nuclear power station having 8 million kW capacity of seven BWR plants in the site of about 4.2 million m 2 in Niigata Prefecture. No.1 BWR plant of 1100 MWe output started the operation in September, 1985. As a rule, the important structures in nuclear power stations such as a reactor building and a turbine building are to be directly supported on bedrocks, and in this case, on the mudstone of Nishiyama strata. As this Nishiyama strata exists in large depth, the excavation works for the foundations of buildings are to be carried out by installing large scale land slide protection walls. In this report, among the excavation works for the main building foundation of No.2 plant, the results of examining the behavior of the land slide protection wall installed in soft rock ground based on the results of measurement of vertical excavation by land slide protection method and the techniques of its analysis are described. The geological features, the design of land slide protection walls, the measurement of the land slide protection walls and surrounding ground and the results, and the examination of the analysis methods by a beam model and FEM are reported. (Kako, I.)

  9. Non-structural carbohydrates in woody plants compared among laboratories

    NARCIS (Netherlands)

    Quentin, Audrey G.; Pinkard, Elizabeth A.; Ryan, Michael G.; Tissue, David T.; Baggett, Scott L.; Adams, Henry D.; Maillard, Pascale; Marchand, Jacqueline; Landhäusser, Simon M.; Lacointe, André; Gibon, Yves; Anderegg, William R.L.; Asao, Shinichi; Atkin, Owen K.; Bonhomme, Marc; Claye, Caroline; Chow, Pak S.; Clément-Vidal, Anne; Davies, Noel W.; Dickman, Turin L.; Dumbur, Rita; Ellsworth, David S.; Falk, Kristen; Galiano, Lucía; Grünzweig, José M.; Hartmann, Henrik; Hoch, Günter; Hood, Sharon; Jones, Joanna E.; Koike, Takayoshi; Kuhlmann, Iris; Lloret, Francisco; Maestro, Melchor; Mansfield, Shawn D.; Martínez-Vilalta, Jordi; Maucourt, Mickael; McDowell, Nathan G.; Moing, Annick; Muller, Bertrand; Nebauer, Sergio G.; Niinemets, Ülo; Palacio, Sara; Piper, Frida; Raveh, Eran; Richter, Andreas; Rolland, Gaëlle; Rosas, Teresa; Joanis, Brigitte Saint; Sala, Anna; Smith, Renee A.; Sterck, Frank; Stinziano, Joseph R.; Tobias, Mari; Unda, Faride; Watanabe, Makoto; Way, Danielle A.; Weerasinghe, Lasantha K.; Wild, Birgit; Wiley, Erin; Woodruff, David R.

    2015-01-01

    Non-structural carbohydrates (NSC) in plant tissue are frequently quantified to make inferences about plant responses to environmental conditions. Laboratories publishing estimates of NSC of woody plants use many different methods to evaluate NSC. We asked whether NSC estimates in the recent

  10. Current situation of the project finishing of the building of 3 and 4 block of the nuclear power plant Mochovce

    International Nuclear Information System (INIS)

    Niznan, S.

    2005-01-01

    In the contribution there is the basic information mentioned about history of building and the current situation at the finishing of the building of 3 and 4 block of the Nuclear Power Plant Mochovce with the use of project digitization. Further on the contribution shows what kinds of supporting material has been elaborated, what kind of decisions have been issued to the finishing of the building, way of financing and also the assumption of investment return under the defined conditions. An orientation time schedule of the finishing of the building and the crucial steps for its security are presented in the conclusion

  11. Aging management of containment structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.; Graves, H.L. III; Norris, W.E.

    1996-01-01

    Research is being conducted by Oak Ridge National Laboratory under US nuclear regulatory commission (USNRC) sponsorship to address aging management of nuclear power plant containment and other safety-related structures. Documentation is being prepared to provide the USNRC with potential structural safety issues and acceptance criteria for use in continued service evaluations of nuclear power plants. Accomplishments include development of a structural materials information center containing data and information on the time variation of 144 material properties under the influence of pertinent environmental stressors or aging factors, evaluation of models for potential concrete containment degradation factors, development of a procedure to identify critical structures and degradation factors important to aging management, evaluations of non-destructive evaluation techniques, assessments of European and North American repair practices for concrete, review of parameters affecting corrosion of metals embedded in concrete, and development of methodologies for making current condition assessments and service life predictions of new or existing reinforced concrete structures in nuclear power plants. (orig.)

  12. Aging management of containment structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.

    1994-01-01

    Research is being conducted by Oak Ridge National Laboratory under U.S. Nuclear Regulatory Commission sponsorship to address aging management of nuclear power plant containment and other safety-related structures. Documentation is being prepared to provide the US-NRC with potential structural safety issues and acceptance criteria for use in continued service evaluations of nuclear power plants. Accomplishments include development of a Structural Materials Information Center containing data and information on the time variation of 144 material properties under the influence of pertinent environmental stressors or aging factors, evaluation of models for potential concrete containment degradation factors, development of a procedure to identify critical structures and degradation factors important to aging management, evaluations of nondestructive evaluation techniques, assessments of European and North American repair practices for concrete, review of parameters affecting corrosion of metals embedded in concrete, and development of methodologies for making current condition assessments and service life predictions of new or existing reinforced concrete structures in nuclear power plants. (author). 29 refs., 2 figs

  13. Aging management of containment structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.; Graves, H.L. III; Norris, W.E.

    1994-01-01

    Research is being conducted by ORNL under US Nuclear Regulatory Commission (USNRC) sponsorship to address aging management of nuclear power plant containment and other safety-related structures. Documentation is being prepared to provide the USNRC with potential structural safety issues and acceptance criteria for use in continued service evaluations of nuclear power plants. Accomplishments include development of a Structural Materials Information Center containing data and information on the time variation of 144 material properties under the influence of pertinent environmental stressors or aging factors, evaluation of models for potential concrete containment degradation factors, development of a procedure to identify critical structures and degradation factors important to aging management, evaluations of nondestructive evaluation techniques. assessments of European and North American repair practices for concrete, review of parameters affecting corrosion of metals embedded in concrete, and development of methodologies for making current condition assessments and service life predictions of new or existing reinforced concrete structures in nuclear power plants

  14. Nuclear emergency buildings of Asco and Vandellos II nuclear power plants; Centros alternativos de emergencias de las centrales nucleares de Asco y Vandellos II

    Energy Technology Data Exchange (ETDEWEB)

    Massuet, J.; Sabater, J.; Mirallas Esteban, S.

    2016-08-01

    The Nuclear Emergency Buildings sited at Asco and Vandellos II Nuclear Power Plants (NPP) are designed to safety manage emergencies in extreme situations, beyond the design basis of the Nuclear Power Plants. Designed in accordance with the requirements of the Spanish Nuclear Regulator (Consejo de Seguridad Nuclear-CSN) these buildings are ready to operate over a period of 72 hours without external assistance and ensure habitability for crews of 120 and 70 people respectively. This article describes the architectural conception, features and major systems of the Nuclear Emergency Buildings sited at Asco and Vandellos II. (Author)

  15. Dynamic testing of nuclear power plant structures: an evaluation

    International Nuclear Information System (INIS)

    Weaver, H.J.

    1980-02-01

    Lawrence Livermore Laboratory (LLL) evaluated the applications of system identification techniques to the dynamic testing of nuclear power plant structures and subsystems. These experimental techniques involve exciting a structure and measuring, digitizing, and processing the time-history motions that result. The data can be compared to parameters calculated using finite element or other models of the test systems to validate the model and to verify the seismic analysis. This report summarizes work in three main areas: (1) analytical qualification of a set of computer programs developed at LLL to extract model parameters from the time histories; (2) examination of the feasibility of safely exciting nuclear power plant structures and accurately recording the resulting time-history motions; (3) study of how the model parameters that are extracted from the data be used best to evaluate structural integrity and analyze nuclear power plants

  16. Balanced Evaluation of Structural and Environmental Performances in Building Design

    Directory of Open Access Journals (Sweden)

    Marco Lamperti Tornaghi

    2018-03-01

    Full Text Available The design of new buildings, and even more the rehabilitation of existing ones, needs to satisfy modern criteria in terms of energy efficiency and environmental performance, within the context of adequate safety requirements. Tackling all these needs at the same time is cumbersome, as demonstrated by several experiences during recent earthquakes, where the improvement of energy performance vanished by seismic-induced damages. The costs of energy retrofitting must be added to the normal losses caused by the earthquake. Even though the minimum safety requirements are met (no collapse, the damage due to earthquake might be enough to waste the investment made to improve energy efficiency. Since these measures are often facilitated by corresponding incentives, the use of public funding is not cost effective. The application of the existing impact assessment methods is typically performed at the end of the architectural and structural design process. Thus, no real optimisation can be achieved, because a good structural solution could correspond to a poor environmental performance and vice versa. The proposed Sustainable Structural Design method (SSD considers both environmental and structural parameters in the life cycle perspective. The integration of environmental data in the structural performance is the focus of the method. Structural performances are considered in a probabilistic approach, through the introduction of a simplified Performance Based Assessment method. Finally, the SSD method is implemented with a case-study of an office-occupancy building, both for precast and cast-in-situ structural systems, with the aim to find the best solution in terms of sustainability and structural performance for the case at hand.

  17. Aging of concrete containment structures in nuclear power plants

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.; Mori, Yasuhiro; Arndt, E.G.

    1992-01-01

    Concrete structures play a vital role in the safe operation of all light-water reactor plants in the US Pertinent concrete structures are described in terms of their importance design, considerations, and materials of construction. Degradation factors which can potentially impact the ability of these structures to meet their functional and performance requirements are identified. Current inservice inspection requirements for concrete containments are summarized. A review of the performance history of the concrete components in nuclear power plants is provided. A summary is presented. A summary is presented of the Structural Aging (SAG) Program being conducted at the Oak Ridge National Laboratory for the US Nuclear Regulatory Commission. The SAG Program is addressing the aging management of safety-related concrete structures in nuclear power plants for the purpose of providing improved bases for their continued service. The program consists of a management task and three technical tasks: materials property data base, structural component assessment/repair technologies, and quantitiative methodology for continued service conditions. Objectives and a summary of accomplishments under each of these tasks are presented

  18. RESRAD-Build: A model to estimate dose from contaminated structures. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    The RESRAD-BUILD model is an exposure pathway and analysis code used to determine whether radiologically contaminated buildings and structures can be free released for a specific land use (e.g., residential or industrial). The model provides estimates of dose to a hypothetical receptor from the structure. The RESRAD-BUILD technology can calculate dose from variety of site-specific hypothetical scenarios, decay-time intervals, and radionuclides. When using the RESRAD-BUILD code, specific project assumptions must be developed with the appropriate regulatory agencies, especially the cleanup criteria and the exposure scenario to be used. The C Reactor demonstration of RESRAD-BUILD modeled hypothetical future use of below grade portions of the reactor building complex. A residential exposure scenario with a cleanup criteria of 15 mrem/yr above background (Environmental Protection Agency [EPA] draft guidance) was used to coordinate decommissioning with adjacent ongoing remedial actions conducted in accordance with an existing Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) Record of Decision. This paper gives a description of the technology and discusses its performance, applications, cost, regulatory and policy issues, and lessons learned

  19. RESRAD-BUILD: A model to estimate dose from contaminated structures. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The RESRAD-BUILD model is an exposure pathway and analysis code used to determine whether radiologically contaminated buildings and structures can be free released for a specific land use (e.g., residential or industrial). The model provides estimates of dose to a hypothetical receptor from the structure. The RESRAD-BUILD technology can calculate dose from variety of site-specific hypothetical scenarios, decay-time intervals, and radionuclides. When using the RESRAD-BUILD code, specific project assumptions must be developed with the appropriate regulatory agencies, especially the cleanup criteria and the exposure scenario to be used. The C Reactor demonstration of RESRAD-BUILD modeled hypothetical future use of below grade portions of the reactor building complex. A residential exposure scenario with a cleanup criteria of 15 mrem/yr above background (Environmental Protection Agency [EPA] draft guidance) was used to coordinate decommissioning with adjacent ongoing remedial actions conducted in accordance with an existing Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) Record of Decision. This paper gives a description of the technology and discusses its performance, applications, cost, regulatory and policy issues, and lessons learned.

  20. Response of the main building, unit 5, Kozloduy NPP (Bulgaria) to an explosion input motion

    International Nuclear Information System (INIS)

    Kostov, M.; Boncheva, H.; Varbanov, G.; Kaneva, A.; Stefanov, D.; Koleva, N.

    1999-01-01

    The main building of Unit 5, NPP Kozloduy is one of the two selected prototypes of WWER-type plants included in the project 'Benchmark study for seismic analysis and testing of WWER-type nuclear power plants', co-ordinated by IAEA. The dynamic in-situ testing of the structure of Unit 5 WWER-1000 MW reactor containment building and the adjacent auxiliary structures is performed by specialists of ISMES (Italy), assisted by Hungarian consultants (GEOPARD) and Bulgarian specialist of NPP Kozloduy. The aim of the experiment is to assess the dynamic characteristics and behaviour of the structures, the soil-structure interaction effects, the equipment-structure interaction, etc. The dynamic excitation is a low level ground motion induced by underground explosions. The measuring of the response is done at different pre-selected structure points. Two experiments are performed. The registrations during the second experiment of 01.07.1996 are used in the present report. One set of free field records are given up to the participant institutions for the benchmarking. The purpose is to perform a dynamic analysis of the main building of Unit 5, to assess the response to the explosion ground motion and to compare the analytical results with the recorded motion. In this report are discussed soil and structure modelling and computation results consisting in acceleration response spectra obtained at foundation level and at different points of the structure

  1. AAEC builds synroc demonstration plant

    International Nuclear Information System (INIS)

    O'Hagan, R.

    1986-01-01

    A demonstration plant to test the feasibility of an Australian-developed method of immobilising radioactive waste is being built at the Australian Atomic Energy Commission's Lucas Heights Research Laboratories. The plant will operate as if radioactive waste was actually being processed, but non-radioactive elements of a similar composition will be used. The process involves the simulated waste being mixed into a slurry with the main SYNROC ingredients and then converted to a powder. The powder is moved about the plant in bellows-type containers by robots

  2. Design of a multipurpose “zero energy consumption” building according to European Directive 2010/31/EU: Architectural and technical plants solutions

    International Nuclear Information System (INIS)

    Desideri, Umberto; Arcioni, Livia; Leonardi, Daniela; Cesaretti, Luca; Perugini, Perla; Agabitini, Elena; Evangelisti, Nicola

    2013-01-01

    Considering the significant impact that the residential sector has on energy consumption, it is particularly important to implement policies aimed at improving energy efficiency in buildings. Highly energy efficient buildings can either save primary energy or disseminate the use of the most suitable technologies to be used in new constructions. Due to those reasons, the Municipality of Città della Pieve promoted the creation of a “Renewable Energy Park” in a deprived area of its territory, where some green technologies could be installed and tested. This site has also been considered as an optimal location for an educational/demonstrative “zero energy consumption” building for multifunctional activities and realized with the most innovative techniques to save energy. The building may be considered as an example to study and optimize the benefits of higher energy efficiency together with the use of renewable energy systems. In this paper the technical solutions adopted both in the building envelope and the technical plants are described and discussed. A simulation of the behaviour of the building in summer and winter was carried out in order to assess the benefits that can be obtained both in energetic and economic terms. - Highlights: • Project focused on the implementation of European Directive 2010/31/EU. • Energy efficiency in buildings for saving primary energy using renewable sources. • Dissemination of the concept of sustainable development for new buildings. • High performance construction layers and high efficiency plants. • Design of a “zero energy consumption” building with zero emissions of CO 2

  3. Horizontal loading test by whole model specimen simulating inner concrete structure of PWR type nuclear power plant

    International Nuclear Information System (INIS)

    Furuya, Noriyuki; Sekine, Masataka; Kimura, Kozo; Yamaguchi, Yoshihiro; Yamaguchi, Tsuneo; Takeda, Toshikazu

    1985-01-01

    The Nuclear Power Engineering Test Center has performed a horizontal loading test by a whole model specimen simulating the inner concrete structure of a PWR type nuclear power plant in order to investigate restoring force characteristics of reactor buildings. This report describes the results of examination of applicability to the test results of analysis methods based on elastic theory. The analysis results of elastic stiffness, concrete cracking load, rebar yielding loads and ultimate strength were compared with the test results. According to this examination, it is recognized that even these analysis methods based on elastic theory are comparatively effective for analysis of an inner concrete structure of fairly complex configuration, although there are limits of the scope of applicability. (author)

  4. Building integrated PV for commercial and institutional structures, a sourcebook for architects

    Energy Technology Data Exchange (ETDEWEB)

    Eiffert, P.; Kiss, G.

    2000-02-14

    This sourcebook on building-integrated photovoltaics (BIPV) is intended for architects and designers interested in learning more about today's sustainable solar buildings. The booklet includes 16 design briefs describing actual structures; they illustrate how electricity-generating BIPV products (such as special roofing systems, vertical-wall systems, skylights, and awnings, all of which contain PV cells, modules, and films) can be integrated successfully into many different kinds of buildings. It also contains basic information about BIPV technologies, an overview of US product development activities and development programs, descriptions of major software design tools, and a bibliography.

  5. Esau's Plant anatomy: meristems, cells, and tissues of the plant body : their structure, function, and development

    National Research Council Canada - National Science Library

    Evert, Ray Franklin; Esau, Katherine; Eichhorn, Susan E

    2006-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix Chapter 1 Structure and Development of the Plant Body- An Overview . . . . . . . . . . . . . . . . . . . . . . . . 1 Internal Organization of the Plant Body...

  6. Failure Mode Estimation of Wolsong Unit 1 Containment Building with respect to Severe Accident Condition

    International Nuclear Information System (INIS)

    Hahm, Dae Gi; Choi, In Kil

    2009-01-01

    The containment buildings in a nuclear power plant (NPP) are final barriers against the exposure of harmful radiation materials at severe accident condition. Since the accident at Three Mile Island nuclear plant in 1979, it has become necessary to evaluate the internal pressure capacity of the containment buildings for the assessment of the safety of nuclear power plants. According to this necessity, many researchers including Yonezawa et al. and Hu and Lin analyzed the ultimate capacity of prestressed concrete containments subjected to internal pressure which can be occurred at sever accident condition. Especially in Wolsong nuclear power plant, the Unit 1 containment structures were constructed in the late 1970 to early 1980, so that the end of its service life will be reached in near future. Since that the complete decommission and reconstruction of the NPP may cause a huge expenses, an extension of the service time can be a cost-effective alternative. To extend the service time of NPP, an overall safety evaluation of the containment building under severe accident condition should be performed. In this study, we assessed the pressure capacity of Wolsong Unit 1 containment building under severe accident, and estimated the responses at all of the probable critical areas. Based on those results, we found the significant failure modes of Wolsong Unit 1 containment building with respect to the severe accident condition. On the other hand, for the aged NPP, the degradation of their structural performance must also be explained in the procedure of the internal pressure capacity evaluation. Therefore, in this study, we performed a parametric study on the degradation effects and evaluated the internal pressure capacity of Wolsong Unit 1 containment building with considering aging and degradation effects

  7. Aseismic design of Hamaoka Nuclear Power Plant

    International Nuclear Information System (INIS)

    Mizuno, Norihiro

    1975-01-01

    The Hamaoka Nuclear Power Plant of Chubu Electric Power Co. is designed so as to maintain structural safety against an earthquake of 300 gal. For the purpose, a compound-type reactor-housing building is employed, which contains a reactor, operation control and waste disposal facilities. The merits accruing from this scheme are as follows. (1) The shielding walls of the waste disposal facility can be utilized effectively in aseismatic design, leading to the increased rigidity of the building and the uniform distribution of resistance. (2) Due to the large area of the foundation, the load in earthquake can be mitigated, and it resulted in the higher structural stability. Moreover, seismic energy can be dissipated into ground. After the description of the compound building structure, it is explained how the structural resistance and the ground dissipation of seismic energy contribute to potential earthquake resistance. (Mori, K.)

  8. Reactor building with internal structure of which the movements are independent of those of the general raft and process for building these internal structures

    International Nuclear Information System (INIS)

    Hista, J.C.

    1982-01-01

    This reactor building includes a containment enclosure for the internal structures composed of a slab wedged on its periphery against the containment enclosure gusset and resting on the general raft by means of a peripheral bearing ring, a compressible layer being provided between the general raft and the slab [fr

  9. Developing Dynamic Digital Image Correlation Technique to Monitor Structural Damage of Old Buildings under External Excitation

    Directory of Open Access Journals (Sweden)

    Ming-Hsiang Shih

    2014-01-01

    Full Text Available The capacity of buildings to resist external excitation is an important factor to consider for the structural design of buildings. When subject to external excitation, a building may suffer a certain degree of damages, and its residual capacity to resist external excitation cannot be evaluated. In this research, dynamic digital image correlation method combined with parameter evaluation available in system identification is used to evaluate the structural capacity to resist external excitation. The results reveal possible building latent safety problems so that timely structural reinforcement or dismantling of the building can be initiated to alleviate further damages. The results of experiments using the proposed method conform to the results obtained using the conventional method, but this method is more convenient and rapid than the latter in the subsequent procedure of data processing. If only the frequency change is used, the damages suffered by the building can be detected, but the damage location is not revealed. The interstory drift mode shape (IDMS based on the characteristic of story drift has higher sensitivity than the approximate story damage index (ADSI method based on modal frequency and vibration type; however, both indices can be used to determine the degree and location of building damages.

  10. Plant life management of the ACR-1000 Concrete containment structure

    International Nuclear Information System (INIS)

    Abrishami, H.H.; Ricciuti, R.; Elgohary, M.

    2009-01-01

    The Ageing of reinforced concrete structures due to service conditions, aggressive environments, or accidents may cause their strength, serviceability and durability to decrease over time. For a new plant, a Plant Life Management (PLiM) program should start in the design process and then continues through the plant operation and decommissioning. Hence, PLiM must provide not only Ageing Management program (AMP) but also provide requirements on material characteristic and design criteria as well. The purpose of this paper is to present the Plant Life Management (PLiM) strategy for the concrete containment structure of the ACR-10001 (Advanced CANDU Reactor) designed by AECL. The ACR-1000 is designed for a 100-year plant life including 60-year operating life and an additional 40-year decommissioning period. The approach adopted for the PLiM strategy of the concrete containment structure is a preventive one, key areas being: 1) design methodology, 2) material performance and 3) ageing management program. During the design phase, in addition to strength and serviceability, durability, throughout the service life and decommissioning phase of the ACR-1000 structure, is a major consideration. Factors affecting durability design include: a) concrete performance, b) structural application, and c) consideration of environmental conditions. In addition to addressing the design methodology and material performance requirements, a systematic approach for the ageing management program for the concrete containment structure is presented. (authors)

  11. Survey and analysis of work structure in nuclear power plants. Final report

    International Nuclear Information System (INIS)

    Bauman, M.B.; Pain, R.F.; Van Cott, H.P.; Davidson, M.K.

    1983-06-01

    Work-structure factors are those factors that relate to the way in which work at all levels in a plant is organized, staffed, managed, rewarded, and perceived by plant personnel. Research over many years has demonstrated that these work-structure factors are closely correlated with organizational effectiveness, safety, and profitability. The work structure of ten nuclear power plants was assessed using questionnaires. Structured critical incident interviews were conducted to verify the questionnaire results. The study revealed that a variety of work-structure factor problem areas do exist in nuclear power plants. The study recommends a prioritized set of candidate research issues to be considered as part of EPRI's Work Structure and Performance Research Program

  12. Post-industrial Objects and Buildings in the Structure of the Contemporary City

    Science.gov (United States)

    Klopotowski, Maciej; Zagroba, Marek

    2017-12-01

    In the second half of the 19th century, provincial Bialystok became the largest industrial city in the eastern territories of the former Republic of Poland. The cause of this economic growth was the development of the railway network and changing customs policy in the Russian Empire. Over a dozen or so years, several dozens of textile factories and numerous craft workshops were established in the city. The industrial prosperity of the city development was interrupted by the First and Second World War. The second half of the twentieth century also brought political and economic changes. They resulted from the nationalization of industry and the introduction of a socialist economy. In the following decades, heavy and light industries developed in the city. Metallurgical plants and factories of houses, furniture, carpets, packaging, electronics, glassworks and food processing were established. On the outskirts of the city appeared industrial districts, which except the factories concentrated also storage facilities. Economic changes that took place in Poland after 1989 caused another change in the area of Białystok industry. Many state-owned factories went bankrupt and the remaining facilities and areas had to change their intended use. The conducted research compares the methods of dealing with the currently unnecessary structure. This has taken into account its location value in the city’s structure and its cultural characteristics. Analyses allowed to indicate new use of post-industrial facilities. There were selected post-industrial buildings that currently serve residential, office, educational and commercial purposes or house cultural institutions. There are also indicated facilities that have not found their new destination and have been demolished or are not currently in use. In conclusion, the research found that the city’s post-industrial legacy is equal to its heritage - it builds the identity of the place and it is also the difficult urban problem of

  13. Automatic Generation of Structural Building Descriptions from 3D Point Cloud Scans

    DEFF Research Database (Denmark)

    Ochmann, Sebastian; Vock, Richard; Wessel, Raoul

    2013-01-01

    We present a new method for automatic semantic structuring of 3D point clouds representing buildings. In contrast to existing approaches which either target the outside appearance like the facade structure or rather low-level geometric structures, we focus on the building’s interior using indoor...... scans to derive high-level architectural entities like rooms and doors. Starting with a registered 3D point cloud, we probabilistically model the affiliation of each measured point to a certain room in the building. We solve the resulting clustering problem using an iterative algorithm that relies...... on the estimated visibilities between any two locations within the point cloud. With the segmentation into rooms at hand, we subsequently determine the locations and extents of doors between adjacent rooms. In our experiments, we demonstrate the feasibility of our method by applying it to synthetic as well...

  14. Seismic Category I Structures Program

    International Nuclear Information System (INIS)

    Endebrock, E.G.; Dove, R.C.; Anderson, C.A.

    1984-01-01

    The Seismic Category I Structures Program currently being carried out at the Los Alamos National Laboratory is sponsored by the Mechanical/Structural Engineering Branch, Division of Engineering Technology of the Nuclear Regulatory Commission (NRC). This project is part of a program designed to increase confidence in the assessment of Category I nuclear power plant structural behavior beyond the design limit. The program involves the design, construction, and testing of heavily reinforced concrete models of auxiliary buildings, fuel-handling buildings, etc., but doe not include the reactor containment building. The overall goal of the program is to supply to the Nuclear Regulatory Commission experimental information and a validated procedure to establish the sensitivity of the dynamic response of these structures to earthquakes of magnitude beyond the design basis earthquake

  15. Developing a method of fabricating microchannels using plant root structure

    Science.gov (United States)

    Nakashima, Shota; Tokumaru, Kazuki; Tsumori, Fujio

    2018-06-01

    Complicated three-dimensional (3D) microchannels are expected to be applied to a lab-on-a-chip, especially an organ-on-a-chip. There are fine microchannel networks such as blood vessels in a living organ. However, it is difficult to recreate the complicated 3D microchannels of real living structures. Plant roots have a similar structure to blood vessels. They spread radially and three-dimensionally, and become thinner as they branch. In this research, we propose a method of fabricating microchannels using a live plant root as a template to mimic a blood vessel structure. We grew a plant in ceramic slurry instead of soil. The slurry consists of ceramic powder, binder and water, so it plays a similar role to soil consisting of fine particles in water. After growing the plant, the roots inside the slurry were burned and a sintered ceramic body with channel structures was obtained by heating. We used two types of slurry with different composition ratios, and compared the internal channel structures before and after sintering.

  16. Deer herbivory reduces web-building spider abundance by simplifying forest vegetation structure

    Directory of Open Access Journals (Sweden)

    Elizabeth J. Roberson

    2016-09-01

    Full Text Available Indirect ecological effects are a common feature of ecological systems, arising when one species affects interactions among two or more other species. We examined how browsing by white-tailed deer (Odocoileus virginianus indirectly affected the abundance and composition of a web-building spider guild through their effects on the structure of the ground and shrub layers of northern hardwood forests. We examined paired plots consisting of deer-free and control plots in the Allegheny Plateau region Pennsylvania and Northern Highlands region of Wisconsin. We recorded the abundance of seven types of webs, each corresponding to a family of web-building spiders. We quantified vegetation structure and habitat suitability for the spiders by computing a web scaffold availability index (WSAI at 0.5 m and 1.0 m above the ground. At Northern Highlands sites, we recorded prey availability. Spider webs were twice as abundant in deer-free plots compared to control plots, while WSAI was 7–12 times greater in deerfree plots. Prey availability was lower in deer-free plots. With the exception of funnel web-builders, all spider web types were significantly more abundant in deer-free plots. Both deer exclusion and the geographic region of plots were significant predictors of spider community structure. In closed canopy forests with high browsing pressure, the low density of tree saplings and shrubs provides few locations for web-building spiders to anchor webs. Recruitment of these spiders may become coupled with forest disturbance events that increase tree and shrub recruitment. By modifying habitat structure, deer appear to indirectly modify arthropod food web interactions. As deer populations have increased in eastern North America over the past several decades, the effects of deer on web-building spiders may be widespread.

  17. Knowledge representation for integrated plant operation and maintenance

    DEFF Research Database (Denmark)

    Lind, Morten

    2010-01-01

    Integrated operation and maintenance of process plants has many advantages. One advantage is the improved economy obtained by reducing the number of plant shutdowns. Another is to increase reliability of operation by monitoring of risk levels during on-line maintenance. Integrated plant operation...... and maintenance require knowledge bases which can capture the interactions between the two plant activities. As an example, taking out a component or a subsystem for maintenance during operation will require a knowledge base representing the interactions between plant structure, functions, operating states...... and goals and incorporate knowledge about redundancy and reliability data. Multilevel Flow Modeling can be used build knowledge bases representing plant goals and functions and has been applied for fault diagnosis and supervisory control but currently it does not take into account structural information...

  18. Principles of structural physics in building construction in the Egyptian desert

    Energy Technology Data Exchange (ETDEWEB)

    Awady El Wakil, Shafak El

    1981-12-01

    Building construction in accordance with the climate in oases of the Egyptian desert is discussed. Climatic conditions and the resulting consequences for structural physics play a major role. With the aid of Olgay's comfort diagram, requirements to be made on buildings in various oases are derived from the climatic data of these oases. To optimize the indoor climate, shading, heat storage and ventilation measures are discussed, and suggestions are made on how to make use of this knowledge in consideration of traditional Egyptian architecture.

  19. The evolution of plant secretory structures and emergence of terpenoid chemical diversity.

    Science.gov (United States)

    Lange, Bernd Markus

    2015-01-01

    Secretory structures in terrestrial plants appear to have first emerged as intracellular oil bodies in liverworts. In vascular plants, internal secretory structures, such as resin ducts and laticifers, are usually found in conjunction with vascular bundles, whereas subepidermal secretory cavities and epidermal glandular trichomes generally have more complex tissue distribution patterns. The primary function of plant secretory structures is related to defense responses, both constitutive and induced, against herbivores and pathogens. The ability to sequester secondary (or specialized) metabolites and defense proteins in secretory structures was a critical adaptation that shaped plant-herbivore and plant-pathogen interactions. Although this review places particular emphasis on describing the evolution of pathways leading to terpenoids, it also assesses the emergence of other metabolite classes to outline the metabolic capabilities of different plant lineages.

  20. Seismic analysis for safety related structures of 900MWe PWR NPP

    International Nuclear Information System (INIS)

    Liu Wei

    2002-01-01

    Nuclear Power Plant aseismic design becomes more and more important in China due to the fact that China is a country where earthquakes occur frequently and most of plants arc unavoidably located in seismic regions. Therefore, Chinese nuclear safety authority and organizations have worked out a series of regulations and codes related to NPP anti-seismic design taking account of local conditions. The author presents here an example of structural anti-seismic design of 90GM We PWR NPP which is comprised of: ground motion input, including the principles for ground motion determination and time history generation; soil and upper-structure modelling, presenting modeling procedures and typical models of safety related buildings such as Reactor Building, Nuclear Auxiliary Building and Fuel Building; soil-structure interaction analysis; and in-structure response analysis and floor response spectrum generation. With this example, the author intends to give an overview of Chinese practice in NPP structure anti-seismic design such as the main procedures to be followed and the codes and regulations to be respected. (author)

  1. Structural impact response for assessing railway vibration induced on buildings

    Science.gov (United States)

    Kouroussis, Georges; Mouzakis, Harris P.; Vogiatzis, Konstantinos E.

    2018-03-01

    Over the syears, the rapid growth in railway infrastructure has led to numerous environmental challenges. One such significant issue, particularly in urban areas, is ground-borne vibration. A common source of ground-borne vibration is caused by local defects (e.g. rail joints, switches, turnouts, etc.) that generate large amplitude excitations at isolated locations. Modelling these excitation sources is particularly challenging and requires the use of complex and extensive computational efforts. For some situations, the use of experiments and measured data offers a rapid way to estimate the effect of such defects and to evaluate the railway vibration levels using a scoping approach. In this paper, the problem of railway-induced ground vibrations is presented along with experimental studies to assess the ground vibration and ground borne noise levels, with a particular focus on the structural response of sensitive buildings. The behaviour of particular building foundations is evaluated through experimental data collected in Brussels Region, by presenting the expected frequency responses for various types of buildings, taking into account both the soil-structure interaction and the tramway track response. A second study is dedicated to the Athens metro, where transmissibility functions are used to analyse the effect of various Athenian building face to metro network trough comprehensive measurement campaigns. This allows the verification of appropriate vibration mitigation measures. These benchmark applications based on experimental results have been proved to be efficient to treat a complex problem encountered in practice in urban areas, where the urban rail network interacts with important local defects and where the rise of railway ground vibration problems has clearly been identified.

  2. Utilization of structural steel in buildings.

    Science.gov (United States)

    Moynihan, Muiris C; Allwood, Julian M

    2014-08-08

    Over one-quarter of steel produced annually is used in the construction of buildings. Making this steel causes carbon dioxide emissions, which climate change experts recommend be reduced by half in the next 37 years. One option to achieve this is to design and build more efficiently, still delivering the same service from buildings but using less steel to do so. To estimate how much steel could be saved from this option, 23 steel-framed building designs are studied, sourced from leading UK engineering firms. The utilization of each beam is found and buildings are analysed to find patterns. The results for over 10 000 beams show that average utilization is below 50% of their capacity. The primary reason for this low value is 'rationalization'-providing extra material to reduce labour costs. By designing for minimum material rather than minimum cost, steel use in buildings could be drastically reduced, leading to an equivalent reduction in 'embodied' carbon emissions.

  3. Quality assurance and control in constructing the Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Lujka, T.

    1986-01-01

    A quality control and assurance department was established on the Dukovany nuclear power plant site as a unit independent of the production divisions of the plant. Its responsibility consists in testing activities including the development of testing techniques and cooperation in the compilation of specifications and binding technological regulations. The department consists of five sections. The concrete laying laboratory has a staff of 7 and concentrates on testing the quality of concrete mixes and their components in the central concrete production plant. The materials testing centre with a staff of 5 provides testing of steel and special structures and oversees the laying of heavy and very heavy concretes. A separate unit for the testing of surface finish of building structures is staffed with 4 people. The section of technological checks of building and assembly work with a staff of 4 is responsible for the quality of work in the main production unit zone but also of the other buildings on the site. Two people staff the unit for checking and filing the quality control documents for selected components. (Z.M.)

  4. Development of building envelope structures; Udvikling af klimaskaermskonstruktioner

    Energy Technology Data Exchange (ETDEWEB)

    Monefeldt Tommerup, H. [Danmarks Tekniske Univ., Lyngby (Denmark); Munch-Andersen, J. [Statens Byggeforskningsinstitut, Hoersholm (Denmark); Kjaer Esbensen, P. [Danmarks Tekniske Univ., Lyngby (Denmark)

    2000-08-01

    The present report concludes the work concerning the development of building envelope constructions, which can form the basis of new buildings with considerably less heat demand than in the present building regulations. It has been made probable that it is technically possible to build exterior walls with less heat loss than those just complying with the requirements of the current building regulations with no considerable added use of material apart from insulation. In their structure many of the shown constructions resemble types that are used today, while others presuppose that one part of the wall is attached to the other part or possibly to the rafters. Calculations concerning the importance of heat capacity for a 100 m{sup 2} single-family house have been made which confirm that by using heavy rather than light envelope constructions the reduction of the heating requirements is relatively small. Therefore optimisation of the insulation level can be carried out separately on the building components. A method has been developed for the evaluation of the optimum insulation level for the individual building components of the building envelope based on life cycle cost analysis. The method is based on making up the changes in the operational energy costs/ heating-costs and the cost of construction due to a change in the insulation thickness over a 30-year period. The life span of the primary parts of the building envelope is estimated at 100 years. It is assumed that the gross energy consumption that covers the heating requirements and the heat loss (determined by a simple calculation of degree days) changes concurrently with the change in the insulation thickness, which has been proved to be a reasonable approximation. The life cycle cost analysis has been carried out for a test-house of about 100 m{sup 2} and with two different energy price scenarios: 0.60 dkk/kWh (including taxes and VAT) which roughly corresponds to the present energy price level, and 1.20 dkk

  5. The macroecology of phylogenetically structured hummingbird-plant networks

    DEFF Research Database (Denmark)

    González, Ana M. Martín; Dalsgaard, Bo; Nogues, David Bravo

    2015-01-01

    Aim To investigate the association between hummingbird–plant network structure and species richness, phylogenetic signal on species' interaction pattern, insularity and historical and current climate. Location Fifty-four communities along a c. 10,000 km latitudinal gradient across the Americas (39...... approach, we examined the influence of species richness, phylogenetic signal, insularity and current and historical climate conditions on network structure (null-model-corrected specialization and modularity). Results Phylogenetically related species, especially plants, showed a tendency to interact...... with a similar array of mutualistic partners. The spatial variation in network structure exhibited a constant association with species phylogeny (R2 = 0.18–0.19); however, network structure showed the strongest association with species richness and environmental factors (R2 = 0.20–0.44 and R2 = 0...

  6. D Visualization of a Timber Frame Historic Building: Partite Usage and its Impact on the Structural System

    Science.gov (United States)

    Günay, S.

    2017-08-01

    Throughout their lifetime, historic buildings might be altered for different kind of usage for different purposes. If this new function or new usage requires utilization of the building in separate units, this separation might affect the historic building's functionality and structure and as a result its overall condition. Yorguc Pasa Mansion conservation project was prepared as a part of the Middle East Technical University (METU) Master's Program in Documentation and Conservation of Historic Monuments and Sites for the historic Yorguc Pasa Mansion. The mansion is a 19th century Ottoman Period timber frame building in Amasya, a Black Sea Region city in Turkey that has traces from different civilizations such as Hittites, Greeks, Romans and Ottomans. This paper aims to discuss the affects of the partite usage on structural conditions of timber frame buildings with the case study of Amasya Yorguc Pasa Mansion through the 3D visualized structural systems.

  7. Shoreline change due to coastal structures of power plants

    International Nuclear Information System (INIS)

    Kang, K. S.; Lee, T. S.; Kim, Y. I.

    2001-01-01

    Characteristics of shoreline change at the coastal area near power plant were analyzed. For a nuclear power plant located in the east coast of Korean peninsula, remote-sensing data, i.e.airborne images and satellite images are acquired and shoreline data were extracted. Recession and davance of shoreline due to coastal structures of powder plant and land reclamation was showed. 1-line numerical shoreline change model was established for simulating the response of shoreline to construction of coastal structures. The model uses curvilinear coordinates that follow the shoreline and is capable of handling the formation of tombolos as well as the growth of salients in the vicinity of coastal structures. The model predicted significant erosion of beach in case breakwaters were extended. Offshore breakwaters were suggested as a countermeasure to shoreline change

  8. Specific issues for seismic performance of power plant equipment

    Energy Technology Data Exchange (ETDEWEB)

    Nawrotzki, Peter [GERB Vibration Control Systems, Berlin (Germany)

    2010-01-15

    Power plant machinery can be dynamically decoupled from the substructure by the effective use of helical steel springs and viscous dampers. Turbine foundations, coal mills, boiler feed pumps and other machine foundations benefit from this type of elastic support systems to mitigate the transmission of operational vibration. The application of these devices may also be used to protect against earthquakes and other catastrophic events, i.e. airplane crash, of particular importance in nuclear facilities. This article illustrates basic principles of elastic support systems and applications on power plant equipment and buildings in medium and high seismic areas. Spring damper combinations with special stiffness properties are used to reduce seismic acceleration levels of turbine components and other safety or non-safety related structures. For turbine buildings, the integration of the turbine sub-structure into the machine building can further reduce stress levels in all structural members. The application of this seismic protection strategy for a spent fuel storage tank in a high seismic area is also discussed. Safety in nuclear facilities is of particular importance and recent seismic events and the resulting damage in these facilities again brings up the discussion. One of the latest events is the 2007 Chuetsu earthquake in Japan. The resulting damage in the Kashiwazaki Kariwa Nuclear Power Plant can be found in several reports, e.g. in Yamashita. (orig.)

  9. Seismic capacities of existing nuclear power plant structures

    International Nuclear Information System (INIS)

    Wesley, D.A.; Hashimoto, P.S.; Narver, R.B.

    1983-01-01

    The paper presents a discussion of the more important conservatisms and some of the results obtained when this methodology has been applied to various nuclear plants. Results are shown for both BWR and PWR plants, on both rock and soil sites, and for plants and soil sites, and for plants that were designed in the late 1960s to plants that have yet to load fuel. Safe shutdown earthquake design levels of 0.1 g to 0.25 g were used for these plants. Overall median structural factors of safety for the lowest significant seismic failure capacity at each plant ranged from 3.5 to 8.5. The lowest containment-related failure capacity at each plant ranged from 4.6 to 31. The types of failure corresponding to each safety factor are also tabulated. (orig./HP)

  10. Structural Studies of Complex Carbohydrates of Plant Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    Darvill, Alan [Univ. of Georgia, Athens, GA (United States); Hahn, Michael G. [Univ. of Georgia, Athens, GA (United States); O' Neill, Malcolm A. [Univ. of Georgia, Athens, GA (United States); York, William S. [Univ. of Georgia, Athens, GA (United States)

    2015-02-17

    Most of the solar energy captured by land plants is converted into the polysaccharides (cellulose, hemicellulose, and pectin) that are the predominant components of the cell wall. These walls, which account for the bulk of plant biomass, have numerous roles in the growth and development of plants. Moreover, these walls have a major impact on human life as they are a renewable source of biomass, a source of diverse commercially useful polymers, a major component of wood, and a source of nutrition for humans and livestock. Thus, understanding the molecular mechanisms that lead to wall assembly and how cell walls and their component polysaccharides contribute to plant growth and development is essential to improve and extend the productivity and value of plant materials. The proposed research will develop and apply advanced analytical and immunological techniques to study specific changes in the structures and interactions of the hemicellulosic and pectic polysaccharides that occur during differentiation and in response to genetic modification and chemical treatments that affect wall biosynthesis. These new techniques will make it possible to accurately characterize minute amounts of cell wall polysaccharides so that subtle changes in structure that occur in individual cell types can be identified and correlated to the physiological or developmental state of the plant. Successful implementation of this research will reveal fundamental relationships between polysaccharide structure, cell wall architecture, and cell wall functions.

  11. Overturning behaviour of nuclear power plant structures during earthquakes

    International Nuclear Information System (INIS)

    Dalal, J.S.; Perumalswami, P.R.

    1977-01-01

    Nuclear power plant structures are designed to withstand severe postulated seismic forces. Structures subjected to such forces may be found to ''overturn'', if the factor of safety is computed in the traditional way, treating these forces as static. This study considers the transient nature of the problem and draws distinction between rocking, tipping and overturning. Responses of typical nuclear power plant structures to earthquake motions are used to assess their overturning potential more realistically. Structures founded on both rock and soil are considered. It is demonstrated that the traditional factor of safety, when smaller than unity, indicates only minimal base rotations and not necessarily overturning. (auth.)

  12. Construction engineering and planning of buildings related to the EPR

    International Nuclear Information System (INIS)

    Kaercher, H.

    1995-01-01

    Among the site-independent unit buildings are the reactor building with annulus; building for safety systems with main control room; new fuel storage pit, emergency power unit, reactor auxiliaries, access building; conventional switchgear building, and the turbine building. All buildings housing safety-related systems are protected against external and internal influences. Among the design-determining external influences are earthquakes, explosion high-pressure wave and aircraft crash. Internal incidents are caused by failure of components and pipes. The most discussed incident in the connection is the failure of the reactor pressure vessel involving core melt release which is safely retained by special devices. Earlier 3D plant models made of plastic have been replaced by 3D CAE computer models. Thus the graphic data of CAD systems have been added to the immense amount of logistic programmes/process data chains. This leads to new planning tools which are able to safely process such amounts of data and at the same time notably reduce planning time and expense. The whole data processing concept is characterized by simple, consistent data structures according to a uniform data model. It enables continual treatment throughout all planning stages and data exchange through simple, uniformly structured interfaces. (orig./HP) [de

  13. Joint Arab project for building of nuclear power plants

    International Nuclear Information System (INIS)

    Mosbah, D.S.

    2010-01-01

    Recently many Arab countries have expressed their interest in adopting nuclear power for electricity generation and seawater desalination in their energy strategies and hence sought assistance from IAEA and Arab Atomic Energy Agency. The Council of the League of Arab States at the summit level encouraged member states to develop peaceful use of atomic energy in different aspects of development, especially in energy generation and to establish a cooperative Arab program in this field. The burden of infrastructure can be reduced significantly if an Arab country forms a sharing partnership with other Arab countries. The sharing can be between two or more Arab states. It can include physical facilities, common programmes and knowledge, which will reflect in economic benefits. The sharing can also contribute in a significant manner to harmonization of codes and standards in general and regulatory framework in particular. This article outlines the major direct benefits of joint nuclear Arab programme to build a Nuclear Power Plants. (author)

  14. Planning and building a complex mine water treatment plant for Vietnam; Planung und Bau einer komplexen Grubenwasserreinigungsanlage fuer Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Schlenstedt, Joerg [LMBV international, Senftenberg (Germany); Bilek, Felix [GFI Grundwasserforschungsinstitut GmbH, Dresden (Germany); Kochan, Hans-Juergen

    2010-05-15

    In an anthracite coal mine in the northeast of Vietnam a mine water treatment plant shall be built. This plant is meant to be a pilot plant for further plants in this region. Apart from the climatic situation and the initially barely existing hydrological and hydrochemical data material, the high solids and manganese content in the mine water are a major challenge. Only by monitoring and capacity building which ran parallel to the planning process as well as the data collection and process optimisation in laboratory and bench scale, the planning process could be realised successfully. For the mine water remediation such a process was developed and well planned. This process is based on neutralisation, oxidation and hydroxide sedimentation as well as on oxidation and sorption processes which are catalysed on solid material surfaces. The project is financed by the BMBF sponsored RAME group and the individual contribution of the German project partners on the on hand. In this framework all scientific and engineering performances are generated. On the other hand the Vietnamese partner VINACOMIN invests by financing the construction of the plant, partly building it and participating on the planning with own engineering performances. Beside the authors, Peter Denke from LMBV international, Stefan Kurtz from GFI Dresden and Marlies Jaschke from eta-AG are involved in the project. (orig.)

  15. Statistical uncertainty of response characteristic of building-appendage system for spectrum-compatible artificial earthquake motion

    International Nuclear Information System (INIS)

    Kurosaki, A.; Kozeki, M.

    1981-01-01

    Spectrum-compatible artificial time histories of ground motions are frequently used for the seismic design of nuclear power plant structures and components. However, statistical uncertainty of the responses of building structures and mechanical components mounted on the building (building-appendage systems) are anticipated, since an artificial time history is no more than one sample from a population of such time histories that match a specified design response spectrum. This uncertainty may spoil the reliability of the seismic design and therefore the extent of the uncertainty of the response characteristic is a matter of great concern. In this paper, above-mentioned uncertainty of the dynamic response characteristics of the building-appendage system to the spectrum-compatible artificial earthquake is investigated. (orig./RW)

  16. Routing Corners of Building Structures - by the Method of Vector Addition - Measured with RTN GNSS Surveying Technology

    Science.gov (United States)

    Krzyżek, Robert

    2015-12-01

    The paper deals with the problem of surveying buildings in the RTN GNSS mode using modernized indirect methods of measurement. As a result of the classical realtime measurements using indirect methods (intersection of straight lines or a point on a straight line), we obtain a building structure (a building) which is largely deformed. This distortion is due to the inconsistency of the actual dimensions of the building (tie distances) relative to the obtained measurement results. In order to eliminate these discrepancies, and thus to ensure full consistency of the building geometric structure, an innovative solution was applied - the method of vector addition - to modify the linear values (tie distances) of the external face of the building walls. A separate research problem tackled in the article, although not yet fully solved, is the issue of coordinates of corners of a building obtained after the application of the method of vector addition.

  17. Revised-Confirmatory Survey Report for Portions of the Auxiliary Building Structural Surfaces and Turbine Building Embedded Piping, Rancho Seco Nuclear Generating Station, Herald, California

    International Nuclear Information System (INIS)

    W. C. Adams

    2007-01-01

    During the period of October 15 and 18, 2007, ORISE performed confirmatory radiological survey activities which included beta and gamma structural surface scans and beta activity direct measurements within the Auxiliary Building, beta or gamma scans within Turbine Building embedded piping, beta activity determinations within Turbine Building Drain 3-1-27, and gamma scans and the collection of a soil sample from the clay soils adjacent to the Lower Mixing Box

  18. Historic Structure Assessment for Building 839, Carlisle Barracks: Carlisle, Pennsylvania

    Science.gov (United States)

    2017-10-01

    Restoration Reconstruction Stabilization Condition Assessment Standard Definitions Qualitative Condition Ratings Maintenance Deficiency Priority...Structure Name Building 839 Other Name(s) Farmhouse Location Patton Road Carlisle Barracks Cumberland County, Pennsylvania Date of Construction ca...that guide the project; 4. Condition Assessment Survey: architectural fabric survey and assessment, summary of condition ratings, and maintenance

  19. Forecasting ofuseful life of the structures of a production building during operation

    Directory of Open Access Journals (Sweden)

    Pshenichkina Valeriya

    2017-01-01

    Full Text Available The article presents a probabilistic concept of practical evaluation of the individual resource of structures of industrial buildings and structures in operation. The results of calculation of a monolithic reinforced concrete overpass for safety and durability are given. The quantitative values of the resource are obtained for a given security of operability.

  20. Neutron radiography for the characterization of porous structure in degraded building stones

    International Nuclear Information System (INIS)

    Barone, G; Mazzoleni, P; Raneri, S; Crupi, V; Longo, F; Majolino, D; Venuti, V; Teixeira, J

    2014-01-01

    As it is well known, the porous structure of stones can change due to different degradation processes that modify the characteristics of freshly quarried blocks. Their knowledge is fundamental for predicting the behavior of stones and the efficacy of conservative treatments. In this context, neutron radiography is a useful tool not only to visualize the structure of porous materials, but also to evaluate the degree of degradation and surface modifications resulting from weathering processes. Furthermore, since thermal neutrons suffer a strong attenuation by hydrogen, this technique is effective in order to investigate the amount of absorbed water in building materials. In the present work, we report a neutron radiography investigation of limestones cropping out in the South-Eastern Sicily and widely used as building stones in Baroque monuments of the Noto Valley. The analyzed samples have been submitted to cyclic salt crystallization that simulate degradation processes acting in exposed stones of buildings. The obtained results demonstrate the interest of neutron radiography to better understand deterioration processes in limestones and to acquire information useful for restoration projects

  1. Surveillance and maintenance report on the Alpha-4 Building at the Oak Ridge Y-12 Plant for fiscal year 1995

    International Nuclear Information System (INIS)

    Sollenberger, M.L.; Sparkman, D.E.; Reynolds, R.M.

    1995-12-01

    Part of the Environmental Restoration Division and funded by the Office of Environmental Management (EM-40) Program, the Oak Ridge Y-l2 Plant Decontamination and Decommissioning Program strives to protect human health and the environment and reduce the number of hazardous-material-contaminated facilities by properly managing and dispositioning facilities when they are no longer required to fulfill a site mission. Building 9201-4, known as Alpha-4, is the only facility at the Y-12 Plant under the D and D Program, and it is the D and D Program that provides surveillance and maintenance (S and M) of the facility. Alpha-4 housed uranium enrichment operations from 1945--47. In 1955 a process known as Colex, for column exchange, that involved electrochemical and solvent extraction processes began. These processes required substantial quantities of mercury as a solvent to separate lithium-6 from lithium-7 (in the form of lithium hydroxide). The Colex process was discontinued in 1962, leaving a legacy of process equipment and lines contaminated with mercury and lithium hydroxide. Now in the inactive-shutdown phase, Alpha-4 requires an S and M program that provides for risk mitigation, hazard abatement, and site preparation for subsequent D and D and/or long-term maintenance of the shutdown status of the building. Daily surveillance activities emphasizes structural integrity, leak detection, safeguards, health of personnel, environmental issues, safety conditions, equipment, hazardous materials, mercury monitoring, and cleanup. This report communicates the status of the program plans and specific surveillance and maintenance requirements for Alpha-4

  2. Structural Analysis and Seismic Design for Cold Neutron Laboratory Building

    International Nuclear Information System (INIS)

    Wu, Sangik; Kim, Y. K.; Kim, H. R.

    2007-05-01

    This report describes all the major results of the dynamic structural analysis and seismic design for the Cold Neutron Laboratory Building which is classified in seismic class II. The results are summarized of the ground response spectrum as seismic input loads, mechanical properties of subsoil, the buoyancy stability due to ground water, the maximum displacement of the main frame under the seismic load and the member design. This report will be used as a basic design report to maintenance its structural integrity in future

  3. Assessment and management of ageing of major nuclear power plant components important to safety: Concrete containment buildings

    International Nuclear Information System (INIS)

    1998-06-01

    The report presents the results of the Co-ordinated Research Programme (CRP) on the Management of Ageing of Concrete Containment Buildings (CCBs) addressing current practices and techniques for assessing fitness-for-service and the inspection, monitoring and mitigation of ageing degradation of selected components of CANDU reactor, BWR reactor, PWR reactor and WWER plants. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs and also to provide a common technical basis for dialogue between plant operators and regulators when dealing with age-related licensing issues

  4. Diverse urban plantings managed with sufficient resource availability can increase plant productivity and arthropod diversity

    Directory of Open Access Journals (Sweden)

    Jonathon eMuller

    2014-10-01

    Full Text Available Buildings structures and surfaces are explicitly being used to grow plants, and these ‘urban plantings’ are typically designed for aesthetic value. Urban plantings also have the potential to contribute significant ‘ecological values’ by increasing urban habitat for animals such as arthropods and by increasing plant productivity. In this study, we evaluated how the provision of these additional ecological values is affected by plant species richness; the availability of essential resources for plants, such as water, light, space; and soil characteristics. We sampled 33 plantings located on the exterior of three buildings in the urban centre of Brisbane, Australia (subtropical climatic region over two, six week sampling periods characterised by different temperature and rainfall conditions. Plant cover was estimated as a surrogate for productivity as destructive sampling of biomass was not possible. We measured weekly light levels (photosynthetically active radiation, plant CO2 assimilation, soil CO2 efflux, and arthropod diversity.Differences in plant cover were best explained by a three-way interaction of plant species richness, management water regime and sampling period. As the richness of plant species increased in a planter, productivity and total arthropod richness also increased significantly - likely due to greater habitat heterogeneity and quality. Overall we found urban plantings can provide additional ecological values if essential resources are maintained within a planter such as water, light and soil temperature. Diverse urban plantings that are managed with these principles in mind can contribute to the attraction of diverse arthropod communities, and lead to increased plant productivity within a dense urban context.

  5. 9 CFR 354.220 - Buildings.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Buildings. 354.220 Section 354.220... CERTIFICATION VOLUNTARY INSPECTION OF RABBITS AND EDIBLE PRODUCTS THEREOF Buildings and Plant Facilities § 354.220 Buildings. The buildings shall be of sound construction and kept in good repair, and shall be of...

  6. Evaluation of Structural Robustness against Column Loss: Methodology and Application to RC Frame Buildings.

    Science.gov (United States)

    Bao, Yihai; Main, Joseph A; Noh, Sam-Young

    2017-08-01

    A computational methodology is presented for evaluating structural robustness against column loss. The methodology is illustrated through application to reinforced concrete (RC) frame buildings, using a reduced-order modeling approach for three-dimensional RC framing systems that includes the floor slabs. Comparisons with high-fidelity finite-element model results are presented to verify the approach. Pushdown analyses of prototype buildings under column loss scenarios are performed using the reduced-order modeling approach, and an energy-based procedure is employed to account for the dynamic effects associated with sudden column loss. Results obtained using the energy-based approach are found to be in good agreement with results from direct dynamic analysis of sudden column loss. A metric for structural robustness is proposed, calculated by normalizing the ultimate capacities of the structural system under sudden column loss by the applicable service-level gravity loading and by evaluating the minimum value of this normalized ultimate capacity over all column removal scenarios. The procedure is applied to two prototype 10-story RC buildings, one employing intermediate moment frames (IMFs) and the other employing special moment frames (SMFs). The SMF building, with its more stringent seismic design and detailing, is found to have greater robustness.

  7. Three-dimensional analysis of AP600 standard plant shield building roof

    International Nuclear Information System (INIS)

    Greimann, L.; Fanous, F.; Safar, S.; Khalil, A.; Bluhm, D.

    1999-01-01

    The AP600 passive containment vessel is surrounded by a concrete cylindrical shell covered with a truncated conical roof. This roof supports the passive containment cooling system (PCS) annular tank, shield plate and other nonstructural attachments. When the shield building is subjected to different loading combinations as defined in the Standard Review Plan (SRP), some of the sections in the shield building could experience forces in excess of their design values. This report summarized the three-dimensional finite element analysis that was conducted to review the adequacy of the proposed Westinghouse shield building design. The ANSYS finite element software was utilized to analyze the Shield Building Roof (SBR) under dead, snow, wind, thermal and seismic loadings. A three-dimensional model that included a portion of the shield building cylindrical shell, the conical roof and its attachments, the eccentricities at the cone-cylinder connection and at the compression ring and the PCS tank was developed. Mesh sensitivity studies were conducted to select appropriate element size in the cylinder, cone, near air intakes and in the vicinity of the eccentricities. Also, a study was carried out to correctly idealize the water-structure interaction in the PCS tank. Response spectrum analysis was used to calculate the internal forces at different sections in the SBR under Safe Shutdown Earthquake (SSE). Forty-nine structural modes and twenty sloshing modes were used. Two horizontal components of the SSE together with a vertical component were used. Modal stress resultants were combined taking into account the effects of closely spaced modes. The three earthquake directions were combined by the Square Root of the Sum Squares method. Two load combinations were studied. The load combination that included dead, snow, fluid, thermal and seismic loads was selected to be the most critical. Interaction diagrams for critical sections were developed and used to check the design

  8. Power systems and electromagnetic safety in of powerful utility buildings and structures

    Directory of Open Access Journals (Sweden)

    О.І. Запорожець

    2008-01-01

    Full Text Available  Researching of origin terms of electromagnetic contaminations from the unbalanced currents and leak currents in the industrial networks of electric supply of structures and buildings saturated energy.

  9. Neutron dosimetry inside the containment building of Spanish nuclear power plants with PADC based dosemeters

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Fuste, M.J. [Grup de Fisica de les Radiacions. Departament de Fisica. Edifici C. Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Domingo, C., E-mail: carles.domingo@uab.ca [Grup de Fisica de les Radiacions. Departament de Fisica. Edifici C. Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Amgarou, K.; Bouassoule, T.; Castelo, J. [Grup de Fisica de les Radiacions. Departament de Fisica. Edifici C. Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain)

    2009-10-15

    The Spanish Nuclear Safety Council (Consejo de Seguridad Nuclear, CSN) recommends performing neutron individual dose assignments at workplaces based on ambient dose equivalent measurements using area monitors and by estimating the amount of time that workers spend in the different monitored environments. In addition, some Spanish nuclear power plants estimate the neutron dose equivalent using albedo thermoluminescence dosemeters (TLD). In the period 2004-2006, our group, together with other research centers, participated in a project, funded by the CSN, with the support of the Spanish Nuclear Power Plants Association (UNESA), to investigate in situ which could be the best practical procedure for individual neutron dose monitoring in nuclear power plants. As part of this survey, several units of the UAB PADC based neutron dosemeter were exposed, on a methacrylate phantom simulating a human body, at four different places inside the containment building of the Asco I nuclear power plant. The influence of different types of calibration neutron fields is analysed and the dose equivalent for each point is estimated.

  10. Progress and experiences from the decommissioning of the Eurochemic reprocessing plant

    International Nuclear Information System (INIS)

    Gills, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2007-01-01

    Belgoprocess started the industrial decommissioning of the main process building of the former EUROCHEMIC reprocessing plant in 1990, after completion of a pilot project in which two buildings were emptied and decontaminated to background levels. The remaining structures were demolished and the concrete debris was disposed of as industrial waste and green field conditions restored. The Eurochemic reprocessing plant operated from 1966 to 1974 to process fuel from power reactors and research reactors. The main building is a large concrete structure, comprising a surface area of 55,000 m 2 , concrete volume 12,500 m 3 , and 1,500 Mg of metal components. The building is divided into multiple cells. About 106 individual cell structures have to be dismantled, involving the removal and decontamination of equipment from each cell, the decontamination of the cell walls, ceilings and floors, the dismantling of the ventilation system. Most of the work involves hands-on operations under protective clothing tailored to each specific task. Tool automation and automatic positioning systems are successfully applied. In view of the final demolition of the main process building, the main process building is divided into three parts - each part is isolated from the others. In the middle of 2008, after the removal of the NDA-IPAN/GEA installation, the eastern part will be demolished. The paper presents a status overview of the decommissioning and decontamination activities at the main process building of the former Eurochemic reprocessing plant on the nuclear site of Dessel in Belgium. The specific BELGOPROCESS approach will be highlighted, in which the decommissioning activities are carried out on an industrial scale with special emphasis on cost minimisation, the use of technology on an industrial representative scale and the specific alpha contamination of equipment and building surfaces, requiring that the decommissioning work is done with adequate protective clothing. Also

  11. Electric Power Plants and Generation Stations, Power Plants - is a seperate layer, however, we have them included in local building layer as well, Published in 2010, 1:2400 (1in=200ft) scale, Effingham County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Electric Power Plants and Generation Stations dataset current as of 2010. Power Plants - is a seperate layer, however, we have them included in local building layer...

  12. Evaluating the Effect of Nuclear Power Plant Buildings on the Atmospheric Dispersion Behavior of Released Radioactive Materials

    International Nuclear Information System (INIS)

    Nassar, N.N.; Tawfik, F.S.; Agamy, S.A.; Nagla, T.F.

    2017-01-01

    One of the most important principles in air pollution is to minimize the release of pollutants to the atmosphere, deposition on the ground and promote sufficient dilution of released pollutants within the atmosphere. Building down wash describes the effect that wind flowing over or around buildings create a cavity of reticulating winds in the are a near the buildings. These cavities cause increased vertical dispersion of plumes emitted from stacks on or near the buildings . Often it leads to elevated concentrations downwind of affected stacks. The aim of this work is to evaluate the effect of the building down wash phenomena on the atmospheric dispersion behavior of released radioactive materials from NPP. In this study, a hypothetical scenario is presented involving a point source with varying stack parameters and rectangular shaped buildings (Mille stone Nuclear Power Plant) using meteorological parameters of a chosen day. The concentrations of assumed released radionuclides, taking into consideration the building down wash effect and without are calculated using the AERMOD Model taking into consideration the effect of the type of atmospheric stability class. Also the analysis includes the model predictions for the highest 1-hour cavity concentration. The results show that the size of the cavity zone is not affected by the type of stability class, but is affected by the stack location and buildings shape. On other hand, the distance at which the plume touches the ground is affected by the type of stability class, the stack location and buildings shape. So, strategies for locating buildings need to be considered to maximize dispersion when planning for constructing several reactors and accessory buildings at a nuclear site

  13. MUNI Ways and Structures Building Integrated Solar Membrane Project

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Randall

    2014-07-03

    The initial goal of the MUNI Ways and Structures Building Integrated Solar Membrane Installation Project was for the City and County of San Francisco (CCSF) to gain experience using the integrated higher efficiency solar photovoltaic (PV) single-ply membrane product, as it differs from the conventional, low efficiency, thin-film PV products, to determine the feasibility of success of larger deployment. As several of CCSF’s municipal rooftops are constrained with respect to weight restrictions, staff of the Energy Generation Group of the San Francisco Public Utilities Commission (SFPUC) proposed to install a solar PV system using single-ply membrane The installation of the 100 kW (DC-STC) lightweight photo voltaic (PV) system at the MUNI Ways and Structures Center (700 Pennsylvania Ave., San Francisco) is a continuation of the commitment of the City and County of San Francisco (CCSF) to increase the pace of municipal solar development, and serve its municipal facilities with clean renewable energy. The fourteen (14) solar photovoltaic systems that have already been installed at CCSF municipal facilities are assisting in the reduction of fossil-fuel use, and reduction of greenhouse gases from fossil combustion. The MUNI Ways & Structures Center roof has a relatively low weight-bearing capacity (3.25 pounds per square foot) and use of traditional crystalline panels was therefore rejected. Consequently it was decided to use the best available highest efficiency Building-Integrated PV (BIPV) technology, with consideration for reliability and experience of the manufacturer which can meet the low weight-bearing capacity criteria. The original goal of the project was to provide an opportunity to monitor the results of the BIPV technology and compare these results to other City and County of San Francisco installed PV systems. The MUNI Ways and Structures Center was acquired from the Cookson Doors Company, which had run the Center for many decades. The building was

  14. Progress and experiences from the decommissioning of the Eurochemic reprocessing plant - 16022

    International Nuclear Information System (INIS)

    Walthery, Robert; Lewandowski, Patrick; Ooms, Bart; Reusen, Nancy; Van Laer, Wim

    2009-01-01

    Belgoprocess started the industrial decommissioning of the main process building of the former EUROCHEMIC reprocessing plant in 1990, after completion of a pilot project in which two buildings were emptied and decontaminated to background levels. The remaining structures were demolished and the concrete debris was disposed of as industrial waste and green field conditions restored. The Eurochemic reprocessing plant operated from 1966 to 1974 to process fuel from power reactors and research reactors. The main building is a large concrete structure, comprising a surface area of 55,000 m 2 , concrete volume 12,500 m 3 , and 1,500 Mg of metal components. The building is divided into multiple cells. About 106 individual cell structures have to be dismantled, involving the removal and decontamination of equipment from each cell, the decontamination of the cell walls, ceilings and floors, the dismantling of the ventilation system. Most of the work involves hands-on operations under protective clothing tailored to each specific task. Tool automation and automatic positioning systems are successfully applied. In view of the final demolition of the main process building, the main process building has been divided into three parts - each part is isolated from the others. In September 2008 the eastern part of the building has been demolished. The paper presents a status overview of the decommissioning and decontamination activities at the main process building of the former Eurochemic reprocessing plant on the nuclear site of Dessel in Belgium. The specific BELGOPROCESS strategy will be highlighted, in which the decommissioning activities are carried out on an industrial scale with special emphasis on cost minimisation, the use of technology on an industrial representative scale and the specific alpha contamination of equipment and building surfaces, requiring that the decommissioning work is done with adequate protective clothing. Also specific breathing and cooling air

  15. Secretory structure and histochemistry test of some Zingiberaceae plants

    Science.gov (United States)

    Indriyani, Serafinah

    2017-11-01

    A secretory structure is a structure that produces a plant's metabolite substances. Secretory structures are grouped into an internal and external. Zingiberaceae plants are known as traditional medicine plants and as spice plants due to secretory structures in their tissues. The objective of the research were to describe the secretory structure of Zingiberaceae plants and to discover the qualitatively primary metabolite substances in plant's tissues via histochemistry test. The research was conducted by observation descriptive design, quantitative data including the density of secretory cells per mm². The quantitative data were analyzed by ANOVA and continued by Duncan at α = 5 %. The results showed that the secretory structures in leaves, rhizome, and the root of 14 species of Zingiberaceae plants are found in the mesophyll of leaves and cortex, and also pith in rhizome and roots. The type of secretory structure is internal. Within the root of Zingiber cassumunar Roxb.(bengle), Curcuma domestica Val. (kunyit), Curcuma zedoaria (Berg.) Roscoe (kunyit putih), Zingiber zerumbet (L.) J.E. Smith (lempuyang), Alpiniapurpurata K. Schum (lengkuas merah), and Curcuma aeruginosa Val. (temu ireng) were found amylum grains, while in Kaemferia galanga L. (kencur), Boesen bergiapandurata L. (temu kunci), and Curcuma xanthorrhiza Roxb. (temulawak) there were no amylum grains in the root as well as in the leaves. The roots of bengle had the greatest density of amylum grain, it had 248.1 ± 9.8 secretory cells of amylum grains per mm². Lipids (oil droplets) were found in the root of bengle, Zingiber officinale Roxb. Var. emprit (jahe emprit), Zingiber officinale Roxb. Var. Gajah (jahe gajah), Zingiber officinale Roxb. Var. Rubrum (jahe merah), Keampferia angustifolia L. (kunci pepet), kunyit, kunyit putih, lempuyang, lengkua smerah, Curcuma aeruginosa Val. (temu ireng), and Curcuma mangga Val. and van Zijp (temu mangga); the root of lempuyang had the greatest density of oil

  16. The effect of management and organizational structure on nuclear power plant safety

    International Nuclear Information System (INIS)

    Thurber, J.A.

    1986-01-01

    Many informed observers have proposed that utility management is a key element underlying the safe operation of nuclear power plants (NPP). One way that management likely influences plant safety performance is through the organizational structures it consciously creates or allows to exist. This paper describes an empirical analysis of the relationships between some important dimensions of plant organizational structure and measures of plant safety performance

  17. The thermal impact of subsurface building structures on urban groundwater resources - A paradigmatic example.

    Science.gov (United States)

    Epting, Jannis; Scheidler, Stefan; Affolter, Annette; Borer, Paul; Mueller, Matthias H; Egli, Lukas; García-Gil, Alejandro; Huggenberger, Peter

    2017-10-15

    Shallow subsurface thermal regimes in urban areas are increasingly impacted by anthropogenic activities, which include infrastructure development like underground traffic lines as well as industrial and residential subsurface buildings. In combination with the progressive use of shallow geothermal energy systems, this results in the so-called subsurface urban heat island effect. This article emphasizes the importance of considering the thermal impact of subsurface structures, which commonly is underestimated due to missing information and of reliable subsurface temperature data. Based on synthetic heat-transport models different settings of the urban environment were investigated, including: (1) hydraulic gradients and conductivities, which result in different groundwater flow velocities; (2) aquifer properties like groundwater thickness to aquitard and depth to water table; and (3) constructional features, such as building depths and thermal properties of building structures. Our results demonstrate that with rising groundwater flow velocities, the heat-load from building structures increase, whereas down-gradient groundwater temperatures decrease. Thermal impacts on subsurface resources therefore have to be related to the permeability of aquifers and hydraulic boundary conditions. In regard to the urban settings of Basel, Switzerland, flow velocities of around 1 md -1 delineate a marker where either down-gradient temperature deviations or heat-loads into the subsurface are more relevant. Furthermore, no direct thermal influence on groundwater resources should be expected for aquifers with groundwater thicknesses larger 10m and when the distance of the building structure to the groundwater table is higher than around 10m. We demonstrate that measuring temperature changes down-gradient of subsurface structures is insufficient overall to assess thermal impacts, particularly in urban areas. Moreover, in areas which are densely urbanized, and where groundwater flow

  18. Towards smart building structures : adaptive structures in earthquake and wind loading control response – a review

    NARCIS (Netherlands)

    Morales-Beltran, M.; Teuffel, P.M.

    2013-01-01

    This article is a review about applications for non-passive control response of buildings (namely active, hybrid and semi-active systems), wherein the degree of integration between control devices and structural system is explored. The purpose is to establish the current state-of-the-art in the

  19. Online Monitoring of Concrete Structures in Nuclear Power Plants: Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The existing fleet of nuclear power plants in the United States have initial operating licenses of 40 years, and many of these plants have applied for and received license extensions. As plant structures, systems, and components age, their useful life—considering both structural integrity and performance—is reduced as a result of deterioration of the materials. Assessment and management of aging concrete structures in nuclear plants require a more systematic approach than simple reliance on existing code-based design margins of safety. Structural health monitoring is required to produce actionable information regarding structural integrity that supports operational and maintenance decisions. The online monitoring of concrete structures project conducted under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability program at Idaho National Laboratory is seeking to develop and demonstrate capabilities for concrete structures health monitoring. Through this research project, several national laboratories and Vanderbilt University propose to develop a framework of research activities for the health monitoring of nuclear power plant concrete structures that includes the integration of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report briefly discusses activities in this project during October-December, 2014. The most significant activity during this period was the organizing of a two-day workshop on research needs in online monitoring of concrete structures, hosted by Vanderbilt University in November 2014. Thirty invitees from academia, industry and government participated in the workshop. The presentations and discussions at the workshop surveyed current activities related to concrete structures deterioration modeling and monitoring, and identified the challenges, knowledge gaps, and opportunities for advancing the state of the art; these

  20. HOW ECOLOGICAL ENGINEERING HELPED TO CONTINUE BUILDING AND UPGRADE OF THE OPOLE POWER PLANT

    Directory of Open Access Journals (Sweden)

    Jan Siuta

    2016-09-01

    Full Text Available Principles of ecological engineering were applied for upgrading the Opole Power Plant under construction, complete with modern installation to protect the environment. The modernized project was a subject of „Integrated environmental impact assessment of the Opole Power Plant” developed by the Institute of Environmental Protection in 1981. The main issues covered by the impact assessment were presented and discussed at the national scientific conference attended, among others, by the representatives of local community from Opole. The conference was organized by the Polish Society of Ecological Engineering on June 5 and 6, 1992. The main aim of the conference was to identify and deliver as broad as possible analysis of environmental conditions for designing, building and operating coal fired power plants. A secondary goal, though of main concern for the Opole agglomeration, was to evaluate many-sided environmental risks resulting from the construction and operation of the Power Plant. The feasibility of continuing the construction of a power generating facility that meets the requirements of the 21st century was demonstrated by the fact that the Opole Power Plant S.A. was awarded the ISO 14001 - Environmental Management System certificate by the British Standards Institution. Advanced construction of the two consecutive blocks of a combined power of 1800 MW in the Opole Power Plant substantiates the validity and effectiveness of the conference organized in 1992.

  1. Potential advantages and disadvantages of sequentially building small nuclear units instead of a large nuclear plant

    International Nuclear Information System (INIS)

    Feretic, D.; Cavlina, N.; Grgic, D.

    2008-01-01

    Renewal of nuclear power programs in countries with modest electricity consumptions and weak electrical grid interconnections has raised the question of optimal nuclear power plants sizes for such countries. The same question would be also valid for isolated or weakly connected regions within a large country. Building large size nuclear power plant could be prevented by technical or financial limits. Research programs have been initiated in the International Atomic Energy Agency and in the USA (within the framework of the Global Nuclear Energy Partnership (GNEP) program) with the aim to inspect under which circumstances small and medium reactors could be the preferred option compared to large nuclear plants. The economy of scale is a clear advantage of large plants. This paper compares, by using probabilistic methods, the net cash flow of large and medium size plants, taking as example a large nuclear plant (around 1200 MW) and four sequentially built smaller plants (300 MW). Potential advantages and disadvantageous of both options have been considered. Main advantages of the sequential construction of several identical small units could be the reduced investor risk and reduced investment costs due to the learning effect. This analysis is a part of studies for the Croatian power generating system development. (orig.)

  2. Structural observability analysis and EKF based parameter estimation of building heating models

    Directory of Open Access Journals (Sweden)

    D.W.U. Perera

    2016-07-01

    Full Text Available Research for enhanced energy-efficient buildings has been given much recognition in the recent years owing to their high energy consumptions. Increasing energy needs can be precisely controlled by practicing advanced controllers for building Heating, Ventilation, and Air-Conditioning (HVAC systems. Advanced controllers require a mathematical building heating model to operate, and these models need to be accurate and computationally efficient. One main concern associated with such models is the accurate estimation of the unknown model parameters. This paper presents the feasibility of implementing a simplified building heating model and the computation of physical parameters using an off-line approach. Structural observability analysis is conducted using graph-theoretic techniques to analyze the observability of the developed system model. Then Extended Kalman Filter (EKF algorithm is utilized for parameter estimates using the real measurements of a single-zone building. The simulation-based results confirm that even with a simple model, the EKF follows the state variables accurately. The predicted parameters vary depending on the inputs and disturbances.

  3. Response characteristics of reactor building on weathered soft rock ground

    International Nuclear Information System (INIS)

    Hirata, Kazuta; Tochigi, Hitoshi

    1991-01-01

    The purpose of this study is to investigate the seismic stability of nuclear power plants on layered soft bedrock grounds, focusing on the seismic response of reactor buildings. In this case, the soft bedrock grounds refer to the weathered soft bedrocks with several tens meter thickness overlaying hard bedrocks. Under this condition, there are two subjects regarding the estimation of the seismic response of reactor buildings. One is the estimation of the seismic response of surface ground, and another is the estimation of soil-structure interaction characteristics for the structures embedded in the layered grounds with low impedandce ratio between the surface ground and the bedrock. Paying attention to these subjects, many cases of seismic response analysis were carried out, and the following facts were clarified. In the soft rock grounds overlaying hard bedrocks, it was proved that the response acceleration was larger than the case of uniform hard bedrocks. A simplified sway and rocking model was proposed to consider soil-structure interaction. It was proved that the response of reactor buildings was small when the effect of embedment was considered. (K.I.)

  4. Effects of reinforcement ratio and arrangement on the structural behavior of a nuclear building under aircraft impact

    International Nuclear Information System (INIS)

    Thai, Duc-Kien; Kim, Seung-Eock; Lee, Hyuk-Kee

    2014-01-01

    Highlights: • Numerical analysis of RC nuclear building model under aircraft impact was conducted. • The analysis result shows similar behavior as compared to the Riera function. • The effects of reinforcement ratio and arrangement were enumerated. • The appropriate number of layer of longitudinal rebar was recommended. - Abstract: This study presents the effectiveness of the rebar ratio and the arrangement of reinforced concrete (RC) structures on the structural behavior of nuclear buildings under aircraft impact using a finite element (FE) approach. A simplified model of a fictitious nuclear building using RC structures was fully modeled. The aircraft model of a Boeing 767-400 was used for impact simulation and was developed and verified with a conventional impact force–time history curve. The IRIS Punching test was used to validate the damage prediction capabilities of the RC wall under impact loading. With regard to the different rebar ratios and rebar arrangements of a nuclear RC building, the structural behavior of a building under aircraft impact was investigated. The structural behavior investigated included plastic deformation, displacement, energy dissipation, perforation/penetration depth and scabbing area. The results showed that the rebar ratio has a significant effect on withstanding aircraft impact and reducing local damage. With four layers of rebar, the RC wall absorbed and dissipated the impact energy more than once with only two layers of rebar for the same rebar ratio

  5. Structured Light-Based 3D Reconstruction System for Plants

    Directory of Open Access Journals (Sweden)

    Thuy Tuong Nguyen

    2015-07-01

    Full Text Available Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces and software algorithms (including the proposed 3D point cloud registration and plant feature measurement. This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance.

  6. Structured Light-Based 3D Reconstruction System for Plants.

    Science.gov (United States)

    Nguyen, Thuy Tuong; Slaughter, David C; Max, Nelson; Maloof, Julin N; Sinha, Neelima

    2015-07-29

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance.

  7. Modeling the building blocks of biodiversity.

    Directory of Open Access Journals (Sweden)

    Lucas N Joppa

    Full Text Available BACKGROUND: Networks of single interaction types, such as plant-pollinator mutualisms, are biodiversity's "building blocks". Yet, the structure of mutualistic and antagonistic networks differs, leaving no unified modeling framework across biodiversity's component pieces. METHODS/PRINCIPAL FINDINGS: We use a one-dimensional "niche model" to predict antagonistic and mutualistic species interactions, finding that accuracy decreases with the size of the network. We show that properties of the modeled network structure closely approximate empirical properties even where individual interactions are poorly predicted. Further, some aspects of the structure of the niche space were consistently different between network classes. CONCLUSIONS/SIGNIFICANCE: These novel results reveal fundamental differences between the ability to predict ecologically important features of the overall structure of a network and the ability to predict pair-wise species interactions.

  8. Analysis of Seismic Soil-Structure Interaction for a Nuclear Power Plant (HTR-10

    Directory of Open Access Journals (Sweden)

    Xiaoxin Wang

    2017-01-01

    Full Text Available The response of nuclear power plants (NPPs to seismic events is affected by soil-structure interactions (SSI. In the present paper, a finite element (FE model with transmitting boundaries is used to analyse the SSI effect on the response of NPP buildings subjected to vertically incident seismic excitation. Analysis parameters that affect the accuracy of the calculations, including the dimension of the domain and artificial boundary types, are investigated through a set of models. A numerical SSI analysis for the 10 MW High Temperature Gas Cooled Test Reactor (HTR-10 under seismic excitation was carried out using the developed model. The floor response spectra (FRS produced by the SSI analysis are compared with a fixed-base model to investigate the SSI effect on the dynamic response of the reactor building. The results show that the FRS at foundation level are reduced and those at higher floor levels are altered significantly when taking SSI into account. The peak frequencies of the FRS are reduced due to the SSI, whereas the acceleration at high floor levels is increased at a certain frequency range. The seismic response of the primary system components, however, is reduced by the analysed SSI for the HTR-10 on the current soil site.

  9. Integrated engineering system for nuclear facilities building

    International Nuclear Information System (INIS)

    Tomura, H.; Miyamoto, A.; Futami, F.; Yasuda, S.; Ohtomo, T.

    1995-01-01

    In the construction of buildings for nuclear facilities in Japan, construction companies are generally in charge of the building engineering work, coordinating with plant engineering. An integrated system for buildings (PROMOTE: PROductive MOdeling system for Total nuclear Engineering) described here is a building engineering system including the entire life cycle of buildings for nuclear facilities. A Three-dimensional (3D) building model (PRO-model) is to be in the core of the system (PROMOTE). Data sharing in the PROMOTE is also done with plant engineering systems. By providing these basic technical foundations, PROMOTE is oriented toward offering rational, highquality engineering for the projects. The aim of the system is to provide a technical foundation in building engineering. This paper discusses the characteristics of buildings for nuclear facilities and the outline of the PROMOTE. (author)

  10. Study on optimum aseismic design of complex structure system focusing on damping effect

    International Nuclear Information System (INIS)

    Takahashi, Yoshitaka; Suzuki, Kohei

    1995-01-01

    Optimum design technique for the purpose of aseismic design of complex plant structures such as piping and boiler structures is proposed. Particular attention is focused on the evaluation of the optimum damping and stiffness of the structures and components. Pseudo least square algorithm is introduced to determine the optimum design parameters. Under the requirement of certain allowable maximum response to a given earthquake excitation, optimum stiffness and damping values of the structure can be simultaneously calculated by this proposed method. The applicability of the method is demonstrated through three structural models; (1) linear multi-storied building model in which stiffness and damping constant of each floor are optimized; (2) nonlinear multi-storied building model having the isolated floor in which hysteretic energy absorber of the isolator is optimized; (3) combined boiler-supporting structure model connected by the inelastic seismic ties with each other is optimized. In this model, optimum values of damping characteristic of the seismic ties are evaluated. This work is particularly important for the aseismic design of complex plant structures like integrated boiler-supporting structure in thermal power plant and piping-containment vessel structure in nuclear power plant

  11. Decontamination and radioactivity measurement on building surfaces related to dismantling of Japan power demonstration reactor (JPDR)

    International Nuclear Information System (INIS)

    Hatakeyama, Mutsuo; Tachibana, Mitsuo; Yanagihara, Satoshi

    1997-12-01

    In the final stage of dismantling activities for decommissioning a nuclear power plant, building structures have to be demolished to release the site for unrestricted use. Since building structures are generally made from massive reinforced concrete materials, it is not a rational way to treat all concrete materials arising from its demolition as radioactive waste. Segregation of radioactive parts from building structures is therefore indispensable. The rational procedures were studied for demolition of building structures by treating arising waste as non-radioactive materials, based on the concept established by Nuclear Safety Commission, then these were implemented in the following way by the JPDR dismantling demonstration project. Areas of the JPDR facilities are categorized into two groups : possibly contaminated areas, and possibly non-contaminated areas, based on the document of the reactor operation. Radioactivity on the building surfaces was then measured to confirm that the qualitative categorization is reasonable. After that, building surfaces were decontaminated in such a way that the contaminated layers were removed with enough margin to separate radioactive parts from non-radioactive building structures. Thought it might be possible to demolish the building structures by treating arising waste as non-radioactive materials, confirmation survey for radioactivity was conducted to show that there is no artificial radioactive nuclides produced by operation in the facility. This report describes the procedures studied on measurement of radioactivity and decontamination, and the results of its implementation in the JPDR dismantling demonstration project. (author)

  12. New power plants in Europe? A challenge for project and quality management

    Energy Technology Data Exchange (ETDEWEB)

    Hartung, M. [RWE Technology GmbH, Essen (Germany)

    2010-07-01

    Against the backdrop of the age structure of the European power plant fleet and the EU's climate protection targets, a significant need for new-build and replacement power plant capacity is becoming apparent. RWE has thus founded RWE Technology in order to achieve its growth targets, but also to implement its ongoing power plant new-build programme in the order of no fewer than 12,000 MW in capacity. This company combines the project management and engineering capacity of the Group in order to meet the challenges posed by the fast-changing energy market. The following article explains the specific steps taken to achieve these objectives. (orig.)

  13. PCB transformer fires: the risk in nuclear power plants

    International Nuclear Information System (INIS)

    Blackmon, K.

    1988-01-01

    It is estimated that 1/2 of the present nuclear power plants operate with PCB-filled transformer equipment. In an attempt to obtain better estimates of clean-up costs in a nuclear power plant under reasonable-loss scenarios, a study was commissioned. This study was a joint venture between Blackmon-Mooring Steamatic Technologies, Inc., (BMS-TECH) and M and M Protection Consultants. This joint study was conducted at a typical pressurized-water reactor plant consisting of two 1000-MW units. Three specific scenarios were selected and analyzed for this typical power plant. These scenarios were: (1) an electrical failure of a transformer in an isolated switch gear room; (2) a transformer exposed to a 55-gallon transient combustion oil fire in the auxiliary building; and (3) a PCB transformer involved in a major turbine lube fire in the turbine building. Based on results of this study, the insurance carriers for this industry implemented an adjustment in their rate structures for nuclear power plants that have PCB equipment

  14. Plant pathogens structure arthropod communities across multiple spatial and temporal scales

    NARCIS (Netherlands)

    Tack, A.J.M.; Dicke, M.

    2013-01-01

    Plant pathogens and herbivores frequently co-occur on the same host plants. Despite this, little is known about the impact of their interactions on the structure of plant-based ecological communities. Here, we synthesize evidence that indicates that plant pathogens may profoundly impact arthropod

  15. Identification of plant configurations maximizing radiation capture in relay strip cotton using a functional-structural plant model

    NARCIS (Netherlands)

    Mao, Lili; Zhang, Lizhen; Evers, J.B.; Henke, M.; Werf, van der W.; Liu, Shaodong; Zhang, Siping; Zhao, Xinhua; Wang, Baomin; Li, Zhaohu

    2016-01-01

    One of the key decisions in crop production is the choice of row distance and plant density. The choice of these planting pattern parameters is especially challenging in heterogeneous systems, such as systems containing alternating strips. Here we use functional-structural plant modelling to

  16. Structural mechanics in nuclear power plant

    International Nuclear Information System (INIS)

    Han Liangbi

    1998-01-01

    The main research works in structural mechanics in reactor technology are emphatically introduced. It is completed by structural mechanics engineers at Shanghai Nuclear Research and Design Institute associated with the design and construction problems for Qinshan NPP Unit 1 and Pakistani CHASNUPP. About structural mechanics problem for the containment, the rock and soft soil two different bases are considered. For the later the interaction between soil and structure is carefully studied. About the structural mechanics problem for the equipment and pipings, the three dimensional stress and fracture analyses are studied. For the structural dynamics problem, including flow induced vibration, the response analyses under earthquake and loss coolant accident loadings are studied. For pipings, the leak before break technique has been emphatically introduced. A lot of mathematical models, the used computer codes, analytical calculations and experimental results are also introduced. This is a comprehensive description about structural mechanics problem in pressurized water reactor nuclear power plant

  17. Estimation of skyshine dose from turbine building of BWR plant using Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Yuji, Nemoto; Toshihisa, Tsukiyama; Shigeki, Nemezawa [Hitachi. Ltd., Saiwai-cho, Hitachi (Japan); Tadashi, Yamasaki; Hidetsugu, Okada [Chubu Electric Power Company, Inc., Odaka-cho, Midori-ku Nagoya (Japan)

    2007-07-01

    The Monte Carlo N-Particle transport code (MCNP) was adopted to calculate the skyshine dose from the turbine building of a BWR plant for obtaining precise estimations at the site boundary. In MCNP calculation, the equipment and piping arranged on the operating floor of the turbine building were considered and modeled in detail. The inner and outer walls of the turbine building, the shielding materials around the high-pressure turbine, and the piping connected from the moisture separator to the low-pressure turbine were all considered. A three-step study was conducted to estimate the applicability of MCNP code. The first step is confirming the propriety of calculation models. The atmospheric relief diaphragms, which are installed on top of the low-pressure turbine exhaust hood, are not considered in the calculation model. There was little difference between the skyshine dose distributions that were considered when using and not using the atmospheric relief diaphragms. The calculated dose rates agreed well with the measurements taken around the turbine. The second step is estimating the dose rates on the outer roof surface of the turbine building. This calculation was made to confirm the dose distribution of gamma-rays on the turbine roof before being scattered into the air. The calculated dose rates agreed well with the measured data. The third step is making a final confirmation by comparing the calculations and measurements of skyshine dose rates around the turbine building. The source terms of the main steam system are based on the measured activity data of N-16 and C-15. As a conclusion, we were able to calculate reasonable skyshine dose rates by using MCNP code. (authors)

  18. Contaminant deposition building shielding factors for US residential structures.

    Science.gov (United States)

    Dickson, Elijah; Hamby, David; Eckerman, Keith

    2017-10-10

    This paper presents validated building shielding factors designed for contemporary US housing-stock under an idealized, yet realistic, exposure scenario from contaminant deposition on the roof and surrounding surfaces. The building shielding factors are intended for use in emergency planning and level three probabilistic risk assessments for a variety of postulated radiological events in which a realistic assessment is necessary to better understand the potential risks for accident mitigation and emergency response planning. Factors are calculated from detailed computational housing-units models using the general-purpose Monte Carlo N-Particle computational code, MCNP5, and are benchmarked from a series of narrow- and broad-beam measurements analyzing the shielding effectiveness of ten common general-purpose construction materials and ten shielding models representing the primary weather barriers (walls and roofs) of likely US housing-stock. Each model was designed to scale based on common residential construction practices and include, to the extent practical, all structurally significant components important for shielding against ionizing radiation. Calculations were performed for floor-specific locations from contaminant deposition on the roof and surrounding ground as well as for computing a weighted-average representative building shielding factor for single- and multi-story detached homes, both with and without basement as well for single-wide manufactured housing-unit. © 2017 IOP Publishing Ltd.

  19. Contaminant deposition building shielding factors for US residential structures

    International Nuclear Information System (INIS)

    Dickson, E D; Hamby, D M; Eckerman, K F

    2015-01-01

    This paper presents validated building shielding factors designed for contemporary US housing-stock under an idealized, yet realistic, exposure scenario from contaminant deposition on the roof and surrounding surfaces. The building shielding factors are intended for use in emergency planning and level three probabilistic risk assessments for a variety of postulated radiological events in which a realistic assessment is necessary to better understand the potential risks for accident mitigation and emergency response planning. Factors are calculated from detailed computational housing-units models using the general-purpose Monte Carlo N-Particle computational code, MCNP5, and are benchmarked from a series of narrow- and broad-beam measurements analyzing the shielding effectiveness of ten common general-purpose construction materials and ten shielding models representing the primary weather barriers (walls and roofs) of likely US housing-stock. Each model was designed to scale based on common residential construction practices and include, to the extent practical, all structurally significant components important for shielding against ionizing radiation. Calculations were performed for floor-specific locations from contaminant deposition on the roof and surrounding ground as well as for computing a weighted-average representative building shielding factor for single- and multi-story detached homes, both with and without basement as well for single-wide manufactured housing-unit. (paper)

  20. Cloud immersion building shielding factors for US residential structures

    International Nuclear Information System (INIS)

    Dickson, E D; Hamby, D M

    2014-01-01

    This paper presents validated building shielding factors designed for contemporary US housing-stock under an idealized, yet realistic, exposure scenario within a semi-infinite cloud of radioactive material. The building shielding factors are intended for use in emergency planning and level three probabilistic risk assessments for a variety of postulated radiological events in which a realistic assessment is necessary to better understand the potential risks for accident mitigation and emergency response planning. Factors are calculated from detailed computational housing-units models using the general-purpose Monte Carlo N-Particle computational code, MCNP5, and are benchmarked from a series of narrow- and broad-beam measurements analyzing the shielding effectiveness of ten common general-purpose construction materials and ten shielding models representing the primary weather barriers (walls and roofs) of likely US housing-stock. Each model was designed to scale based on common residential construction practices and include, to the extent practical, all structurally significant components important for shielding against ionizing radiation. Calculations were performed for floor-specific locations as well as for computing a weighted-average representative building shielding factor for single- and multi-story detached homes, both with and without basement, as well for single-wide manufactured housing-units. (paper)

  1. Non-destructive evaluation of timber structures in a historical building of Tiradentes , MG

    Directory of Open Access Journals (Sweden)

    Luciana Barbosa de Abreu

    2013-09-01

    Full Text Available Problems related to the durability of wood are commonly found in historical buildings structures. Preservation and conservation resolutions must be adopted, in order to avoid losses and substitutions, which mischaracterize buildings. Non-destructive methods for detecting deterioration should be used in order to substantiate decisions and increase the longevity of historical heritage. This work was carried out in order to perform non-destructive essays to infer about the integrity of a beam and a pillar of the original construction of the Sobrado Ramalho, a historical building of the city of Tiradentes, MG. The equipments utilized were the Stress Wave Timer and resistograph. Samples of the elements were taken for analysis of density. The results showed that, in both structures, to calculate the dynamic modulus of elasticity, there was no significant difference for the application of stress wave timer on the alignments studied. There was no significant difference between the directions of application of the resistograph on the pillar, due to its apparent entirety and regular sessions, practically square, and to not being loaded eccentrically. In the case of the beam, there was significant difference, presumably because it has cracks in its traction line. The equipments, unknown by professionals of heritage conservation allow promising methodologies for inspection of timber structures in service.

  2. A Model-Based Approach to Recovering the Structure of a Plant from Images

    KAUST Repository

    Ward, Ben

    2015-03-19

    We present a method for recovering the structure of a plant directly from a small set of widely-spaced images for automated analysis of phenotype. Structure recovery is more complex than shape estimation, but the resulting structure estimate is more closely related to phenotype than is a 3D geometric model. The method we propose is applicable to a wide variety of plants, but is demonstrated on wheat. Wheat is composed of thin elements with few identifiable features, making it difficult to analyse using standard feature matching techniques. Our method instead analyses the structure of plants using only their silhouettes. We employ a generate-and-test method, using a database of manually modelled leaves and a model for their composition to synthesise plausible plant structures which are evaluated against the images. The method is capable of efficiently recovering accurate estimates of plant structure in a wide variety of imaging scenarios, without manual intervention.

  3. A Model-Based Approach to Recovering the Structure of a Plant from Images

    KAUST Repository

    Ward, Ben; Bastian, John; van den Hengel, Anton; Pooley, Daniel; Bari, Rajendra; Berger, Bettina; Tester, Mark A.

    2015-01-01

    We present a method for recovering the structure of a plant directly from a small set of widely-spaced images for automated analysis of phenotype. Structure recovery is more complex than shape estimation, but the resulting structure estimate is more closely related to phenotype than is a 3D geometric model. The method we propose is applicable to a wide variety of plants, but is demonstrated on wheat. Wheat is composed of thin elements with few identifiable features, making it difficult to analyse using standard feature matching techniques. Our method instead analyses the structure of plants using only their silhouettes. We employ a generate-and-test method, using a database of manually modelled leaves and a model for their composition to synthesise plausible plant structures which are evaluated against the images. The method is capable of efficiently recovering accurate estimates of plant structure in a wide variety of imaging scenarios, without manual intervention.

  4. Condition Assessment of the Timber Structures of a Century-Old Industrial Building Using a Nondestructive Inspection Procedure

    Science.gov (United States)

    Xiping Wang; Marko Teder; James Wacker

    2013-01-01

    This paper reports an in situ inspection project conducted on heavy timber structures of a century-old industrial building at a paper manufacturing facility. A nondestructive inspection procedure was employed to evaluate the true condition of the heavy timbers that serve as the main framing structure of the building. The on-site investigation involved monitoring of the...

  5. Wetland plant influence on sediment ecosystem structure and trophic function

    OpenAIRE

    Whitcraft, Christine René

    2007-01-01

    Vascular plants structure wetland ecosystems. To examine mechanisms behind their influence, plants were studied under different scenarios of change: experimental manipulation of cover, invasion, and response to flushing regimes. I tested the hypothesis that wetland plants alter benthic communities through modification of abiotic factors, with cascading effects on microalgae and invertebrate communities. Major plant effects were observed in all systems studied, but the magnitude of, mechanisms...

  6. High-strength concrete and the design of power plant structures

    International Nuclear Information System (INIS)

    Puttonen, J.

    1991-01-01

    Based on the literature, the design of high-strength concrete structures and the suitability of high-strength concrete for the power plant structures have been studied. Concerning the behavior of structures, a basic difference between the high-strength concrete and the traditional one is that the ductility of the high-strength concrete is smaller. In the design, the non-linear stress-strain relationship of the high-strength concrete has to be taken into account. The use of the high-strength concrete is economical if the strength of the material can be utilized. In the long term, the good durability and wear resistance of the high-strength concrete increases the economy of the material. Because of the low permeability of the high-strength concrete, it is a potential material in the safety-related structures of nuclear power plants. The study discovered no particular power plant structure which would always be economical to design of high-strength concrete. However, the high-strength concrete was found to be a competitive material in general

  7. Time versus frequency domain calculation of the main building complex of the VVER 440/213 NPP PAKS

    International Nuclear Information System (INIS)

    Katona, T.; Ratkai, S.; Halbritter, A.; Krutzik, N.J.; Schuetz, W.

    1995-01-01

    Various dynamic analyses were conducted for the main building complex of the VVER 440/213 PAKS in order to determine the dynamic response and assess the aseismic capacity of this nuclear power plant. Different types of mathematical models for idealizing the soil and the building structures were used. The main goal of the study presented here was to demonstrate the effects of different procedures for consideration of soil-structure interaction on the dynamic response of the structures mentioned above. The analyses were based on appropriate mathematical models of the coupled vibration structures (reactor building, turbine hall, intermediate building structures) and the layered soil. On the basis of this study, it can be concluded that substructure models using frequency-independent impedances and cut-off of modal damping usually provide conservative results. Complex models which allow the soil-soil and the structure or by frequency-dependent impedances) provide more accurate results. The latter approach results in more efficient designs which are not only safe but also economical. (author). 7 refs., 15 figs

  8. Structure design of water discharge surge tank of nuclear power plant

    International Nuclear Information System (INIS)

    Wang Fang; Hou Shuqiang

    2015-01-01

    Drainage is an important function of water discharge surge tank in nuclear power plant. There is little wall and beam inside the water discharge surge tank due to the requirement of major work, which is different from the general structure. Taking water discharge surge tank of nuclear power plant for example, concerned problems are expatiated in the structure scheme of water discharge surge tank, and important structural components are analyzed. Structural analysis model is established by ANSYS finite element analysis. A comprehensive and numerical analysis is performed for different combinations of structural model, and the internal force of structure is extracted. Finally, suggestions for design of similar structure are proposed. (authors)

  9. Influence of Steel Fibers on the Structural Performance of a Prestressed Concrete Containment Building

    International Nuclear Information System (INIS)

    Choun, Youngsun; Hahm, Daegi; Park, Junhee

    2013-01-01

    A large number of previous experimental investigations indicate that the use of steel fibers in conventional reinforced concrete (RC) can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity, and a high shear resistance under cyclic loadings will increase the seismic resisting capacity. In this study, the effects of steel fiber reinforced concrete (SFRC) on the ultimate pressure and seismic capacities of a PCCB are investigated. The effects of steel fibers on the ultimate pressure and shear resisting capacities of a PCCB are investigated. It is revealed that both of the ultimate pressure capacity and the shear resisting capacity of a PCCB can be greatly enhanced by introducing steel fibers in a conventional RC. Estimation results indicate that the ultimate pressure capacity and maximum lateral displacement of a PCCB can be improved by 16% and 64%, respectively, if a conventional RC contains hooked steel fibers in a volume fraction of 1.0%

  10. Influence of Steel Fibers on the Structural Performance of a Prestressed Concrete Containment Building

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Youngsun; Hahm, Daegi; Park, Junhee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    A large number of previous experimental investigations indicate that the use of steel fibers in conventional reinforced concrete (RC) can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity, and a high shear resistance under cyclic loadings will increase the seismic resisting capacity. In this study, the effects of steel fiber reinforced concrete (SFRC) on the ultimate pressure and seismic capacities of a PCCB are investigated. The effects of steel fibers on the ultimate pressure and shear resisting capacities of a PCCB are investigated. It is revealed that both of the ultimate pressure capacity and the shear resisting capacity of a PCCB can be greatly enhanced by introducing steel fibers in a conventional RC. Estimation results indicate that the ultimate pressure capacity and maximum lateral displacement of a PCCB can be improved by 16% and 64%, respectively, if a conventional RC contains hooked steel fibers in a volume fraction of 1.0%.

  11. Feasibility study of the IE-SASW method for nondestructive evaluation of containment building structures in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.S. E-mail: dskim@kaist.ac.kr; Kim, H.W. E-mail: hwk@kaist.ac.kr; Seo, W.S.; Choi, K.C.; Woo, S.K

    2003-02-01

    The IE-SASW method, a combination of impact-echo (IE) acoustics with spectral analysis of surface waves (SASW), is proposed as a newly developed nondestructive testing method in concrete structures. This feasibility study examines the IE technique and uses elastic P-wave velocity data as measured from the SASW method on concrete members in nuclear power plant containment structures. It was shown that both the thickness of the concrete specimens used in this study and the depth of the introduced defects (i.e. voids) could be identified by the IE-SASW method. In contrast, the reinforced steel bar itself could not be identified by the IE-SASW method. Additionally, GPR (ground penetrating radar) techniques were used to examine the same specimens in order to establish some level of performance and reliability to compare with the performance of the IE-SASW method. The GPR method provides an objective and reliable image corresponding to the reinforced steel bars. The experimental studies show that it is more feasible to use the IE-SASW method rather than GPR to detect voids that were positioned beneath the steel reinforcing bars in the concrete specimens.

  12. The computer program system for structural design of nuclear power plants

    International Nuclear Information System (INIS)

    Aihara, S.; Atsumi, K.; Sasagawa, K.; Satoh, S.

    1979-01-01

    In recent days, the design method of the Nuclear Power Plant has become more complex than in the past. The Finite Element Method (FEM) applied for analysis of Nuclear Power Plants, especially requires more computer use. The recent computers have made remarkable progress, so that in design work manpower and time necessary for analysis have been reduced considerably. However, instead the arrangement of outputs have increased tremendously. Therefore, a computer program system was developed for performing all of the processes, from data making to output arrangement, and rebar evaluations. This report introduces the computer program system pertaining to the design flow of the Reactor Building. (orig.)

  13. Age-Related Degradation of Nuclear Power Plant Structures and Components

    International Nuclear Information System (INIS)

    Braverman, J.; Chang, T.-Y.; Chokshi, N.; Hofmayer, C.; Morante, R.; Shteyngart, S.

    1999-01-01

    This paper summarizes and highlights the results of the initial phase of a research project on the assessment of aged and degraded structures and components important to the safe operation of nuclear power plants (NPPs). A review of age-related degradation of structures and passive components at NPPs was performed. Instances of age-related degradation have been collected and reviewed. Data were collected from plant generated documents such as Licensing Event Reports, NRC generic communications, NUREGs and industry reports. Applicable cases of degradation occurrences were reviewed and then entered into a computerized database. The results obtained from the review of degradation occurrences are summarized and discussed. Various trending analyses were performed to identify which structures and components are most affected, whether degradation occurrences are worsening, and what was the most common aging mechanisms. The paper also discusses potential aging issues and degradation-susceptible structures and passive components which would have the greatest impact on plant risk

  14. Genetic diversity within a dominant plant outweighs plant species diversity in structuring an arthropod community.

    Science.gov (United States)

    Crawford, Kerri M; Rudgers, Jennifer A

    2013-05-01

    Plant biodiversity is being lost at a rapid rate. This has spurred much interest in elucidating the consequences of this loss for higher trophic levels. Experimental tests have shown that both plant species diversity and genetic diversity within a plant species can influence arthropod community structure. However, the majority of these studies have been conducted in separate systems, so their relative importance is currently unresolved. Furthermore, potential interactions between the two levels of diversity, which likely occur in natural systems, have not been investigated. To clarify these issues, we conducted three experiments in a freshwater sand dune ecosystem. We (1) independently manipulated plant species diversity, (2) independently manipulated genetic diversity within the dominant plant species, Ammophila breviligulata, and (3) jointly manipulated genetic diversity within the dominant plant and species diversity. We found that genetic diversity within the dominant plant species, Ammophila breviligulata, more strongly influenced arthropod communities than plant species diversity, but this effect was dependent on the presence of other species. In species mixtures, A. breviligulata genetic diversity altered overall arthropod community composition, and arthropod richness and abundance peaked at the highest level of genetic diversity. Positive nonadditive effects of diversity were detected, suggesting that arthropods respond to emergent properties of diverse plant communities. However, in the independent manipulations where A. breviligulata was alone, effects of genetic diversity were weaker, with only arthropod richness responding. In contrast, plant species diversity only influenced arthropods when A. breviligulata was absent, and then only influenced herbivore abundance. In addition to showing that genetic diversity within a dominant plant species can have large effects on arthropod community composition, these results suggest that understanding how species

  15. Seismic assessment of selected buildings and equipment contents of a DOE facility in UBC zone 2A

    International Nuclear Information System (INIS)

    Tong, W.H.; Deneff, C.; Griffin, M.J.

    1991-01-01

    A preliminary seismic risk assessment for selected buildings and representative equipment contents in Allied-Signal Kansas City Division was performed to identify potential seismic hazard and weakness. The site is located in the Uniform Building Code Zone 2A. The selected building structures were constructed between 1940s to 1980s. The performance goal was to qualitatively assess the potential for loss of toxic or hazardous materials and injury to plant personnel due to an earthquake event

  16. Availability analysis of nuclear power plant system with the consideration of logical loop structures

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi

    2013-01-01

    Nuclear power plants have logical loop structures in their system configuration. The typical example is a power source system, that is, a nuclear plant generates electricity and it is used for the operation of pumps in the plant. For the reliability or availability analysis of nuclear power plants, it is necessary to treat accurately logical loop structures. Authors have proposed an exact method for solving logical loop structure in reliability analysis, and generalized method has recently been presented. A nuclear power plant system is taken up and essential parts of logical loop structures are modeled into relatively simple form. The procedure to solve a loop structure is shown in which the proposed generalized method is applied, and availability of the system with loop structure is accurately solved. The analysis results indicate that reconsideration of present plant operating procedure should be made for the increase of safety of nuclear power plant in case of 'Loss of offsite power' incident. The analysis results also show an important role of loop structures for maintaining the overall system availability. The analysis procedure is also useful in effectively designing high reliable systems. (author)

  17. Life-Cycle Assessment of Seismic Retrofit Strategies Applied to Existing Building Structures

    Directory of Open Access Journals (Sweden)

    Umberto Vitiello

    2016-12-01

    Full Text Available In the last few years, the renovation and refurbishment of existing buildings have become the main activities of the construction industry. In particular, many studies have recently focused on the mechanical and energy performances of existing retrofitted/refurbished facilities, while some research has addressed the environmental effects of such operations. The present study aims to assess the environmental impact of some retrofit interventions on an existing reinforced concrete (RC building. Once the structural requirements have been satisfied and the environmental effects of these retrofit solutions defined, the final purpose of this study is to identify the most environmentally sustainable retrofit strategy. The environmental impact of the structural retrofit options is assessed using a life-cycle assessment (LCA. This paper sets out a systematic approach that can be adopted when choosing the best structural retrofit option in terms of sustainability performance. The final aim of the study is to also provide a tool for researchers and practitioners that reflects a deep understanding of the sustainability aspects of retrofit operations and can be used for future researches or practical activities.

  18. Presence of microplastics in the tube structure of the reef-building ...

    African Journals Online (AJOL)

    The prevalence of microplastics in the marine environment has resulted in a need to understand their association with various fauna. The aim of this study was to assess whether microplastic particles are present in the tube structure of the indigenous reef-building polychaete Gunnarea gaimardi, which occurs along the ...

  19. Bellefonte primary containment structure

    International Nuclear Information System (INIS)

    Olyniec, J.H.

    1981-01-01

    Construction of the reactor building primary containment structure at the Bellefonte Nuclear Plant involved several specialized construction techniques. This two unit plant is one of the nine nuclear units at six different sites now under construction by the Tennessee Valley Authority (TVA). The post-Tensioned, cast-in-place interior steel lined containment structure is unique within TVA. Problems during construction were identified at weekly planning meetings, and options were discussed. Close coordination between craft supervisors and on-site engineering personnel drew together ''hands-on''experience and technical background. Details of the construction techniques, problems, and solutions are presented

  20. Relations between constructive peculiarities and structural behavior in Venice buildings

    Directory of Open Access Journals (Sweden)

    Doglioni, F.

    2012-12-01

    Full Text Available Here we are synthetically describing some constructive peculiarities of Venice civil buildings, analyzing the relation with the features of their structural decay and behavior in the long run. We suppose Venetian buildings, especially those parts which are conceived to suit the lagoon environment, to have undergone an evolution made of some adjustments, which were based on the observation of damages in previous buildings. That is we suppose ancient builders to rely on their awareness of the behavior of structures yet to come, and to be able to forecast it in part. This process brought some building contrivances to perfection, as exclusive and enduring features of Venice, overcoming changes in style and architectural layout, till they grew into essential elements of a whole and adaptable “device”. This writing is meant for a concise interpretation of this device, which is the result of some research works carried out at Venice IUAV University.

    En este texto, se describen sintéticamente algunas peculiaridades de la edificación residencial de Venecia, analizando su relación con el abanico de problemas estructurales que caracterizan el comportamiento estructural del edificio a lo largo del tiempo. Se aventura la hipótesis que las construcciones venecianas y, en particular, algunos de sus detalles, concebidos específicamente para la laguna donde se enclava, han sido objeto de una adaptación evolutiva a través de la observación de los problemas estructurales de los edificios precedentes. Los alarifes venecianos aprendieron a tener en cuenta el comportamiento estructural posterior del edificio, que previeron en cierta medida. Este proceso ha llevado a perfeccionar algunos detalles constructivos exclusivos de Venecia que han perdurado en el tiempo, que han resistido impertérritos a mutaciones de estilo y de configuración arquitectónica, hasta constituir elementos esenciales de un aparato indivisible y adaptable cuya interpretaci

  1. Feasibility study tool for semi-rigid joints design of high-rise buildings steel structures

    Science.gov (United States)

    Bagautdinov, Ruslan; Monastireva, Daria; Bodak, Irina; Potapova, Irina

    2018-03-01

    There are many ways to consider the final cost of the high-rise building structures and to define, which of their different variations are the most effective from different points of view. The research of Jaakko Haapio is conducted in Tampere University of Technology, which aims to develop a method that allows determining the manufacturing and installation costs of steel structures already at the tender phase while taking into account their details. This paper is aimed to make the analysis of the Feature-Based Costing Method for skeletal steel structures proposed by Jaakko Haapio. The most appropriate ways to improve the tool and to implement it in the Russian circumstances for high-rise building design are derived. Presented tool can be useful not only for the designers but, also, for the steel structures manufacturing organizations, which can help to utilize BIM technologies in the organization process and controlling on the factory.

  2. Evaluation of regulations and norms for concrete constructions in Swedish nuclear power plants; Utvaerdering av regler och normer foer betongkonstruktioner i svenska kaernkraftsanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Jovall, Ola (Scanscot Technology AB, Lund (Sweden))

    2010-12-15

    In the SSM's regulations and recommendations, there are at present no specific requirements and adequate guidance on how concrete structures should be designed in case of new buildings or verification analyses of existing buildings. The result of the work presented in this report constitute the basis for SSM's ongoing regulatory project Investigation regarding requirements for construction, design, analysis and review of reactor containments and other safety-related building structures. The project includes the following: 1. Summary of the regulations and requirements that have been applied at the initial design and new construction of concrete structures at the Swedish nuclear power plants. 2. Comparison and evaluation of relevant regulations published by the European and North American authorities. 3. Comparison and evaluation of relevant codes, standards, guidelines etc. for load-bearing concrete structures in different countries. 4. Conclusions and recommendations to the regulatory framework for the design of load-bearing concrete structures at the Swedish nuclear power plants. Based on a comparison and evaluation of regulations from the U.S., Canada, France, the UK, Finland and Sweden, as well as guidelines established by the international organizations IAEA and EUR, the following general recommendations are provided as a regulatory framework for the design of load-bearing concrete structures at the Swedish nuclear power plants: 1. The Eurocodes will replace the BKR design rules of Swedish National Board of Housing, Building and Planning as the conventional building regulations on the construction of nuclear power plants. 2. A general review and updating of the existing industry standard Design rules for buildings at nuclear facilities DRB:2001 is implemented. Reference is made to the Eurocodes with regard to conditions of conventional design rules

  3. SSI response of a typical shear wall structure. Appendix B. In-structure response spectra comparisons. Volume 2

    International Nuclear Information System (INIS)

    Johnson, J.J.; Schewe, E.C.; Maslenikov, O.R.

    1984-04-01

    The objectives of this study were two-fold: (1) develop building response calibration factors, i.e., factors which relate best estimate or median level response to responses calculated by selected design procedures. Soil-structure interaction was the phenomenon of interest because significant simplifications are frequently introduced in its treatment; and (2) the second objective can be viewed in the context of a question: what effect does placing an identical structure on different sites and with different foundation conditions have on structure response. The structure selected for this study is a part of the Zion AFT complex. Only the auxiliary, fuel-handling, and diesel generator buildings were studied. This structure is a connected group of shear-wall buildings constructed of reinforced concrete, typical of nuclear power plant structures. The bases of comparison for this study were structure responses: peak in-structure accelerations (27 components), and peak wall forces and moments (111 components). In-structure response spectra were also considered. This appendix contains in-structure response spectra comparisons in detail

  4. Inspection of Nuclear Power Plant Containment Structures

    Energy Technology Data Exchange (ETDEWEB)

    Graves, H.L.; Naus, D.J.; Norris, W.E.

    1998-12-01

    Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

  5. Evaluation of Seismic Response Trends from Long-Term Monitoring of Two Instrumented RC Buildings Including Soil-Structure Interaction

    Directory of Open Access Journals (Sweden)

    Faheem Butt

    2012-01-01

    Full Text Available This paper presents analyses of the seismic responses of two reinforced concrete buildings monitored for a period of more than two years. One of the structures was a three-storey reinforced concrete (RC frame building with a shear core, while the other was a three-storey RC frame building without a core. Both buildings are part of the same large complex but are seismically separated from the rest of it. Statistical analysis of the relationships between maximum free field accelerations and responses at different points on the buildings was conducted and demonstrated strong correlation between those. System identification studies using recorded accelerations were undertaken and revealed that natural frequencies and damping ratios of the building structures vary during different earthquake excitations. This variation was statistically examined and relationships between identified natural frequencies and damping ratios, and the peak response acceleration at the roof level were developed. A general trend of decreasing modal frequencies and increasing damping ratios was observed with increased level of shaking and response. Moreover, the influence of soil structure interaction (SSI on the modal characteristics was evaluated. SSI effects decreased the modal frequencies and increased some of the damping ratios.

  6. Curvilinear steel elements in load-bearing structures of high-rise building spatial frames

    Directory of Open Access Journals (Sweden)

    Ibragimov Alexander

    2018-01-01

    Full Text Available The application of curvilinear elements in load-bearing metal structures of high-rise buildings supposes ensuring of their bearing capacity and serviceability. There may exist a great variety of shapes and orientations of such structural elements. In particular, it may be various flat curves of an open or closed oval profile such as circular or parabolic arch or ellipse. The considered approach implies creating vast internal volumes without loss in the load-bearing capacity of the frame. The basic concept makes possible a wide variety of layout and design solutions. The presence of free internal spaces of large volume in "skyscraper" type buildings contributes to resolving a great number of problems, including those of communicative nature. The calculation results confirm the basic assumptions.

  7. Curvilinear steel elements in load-bearing structures of high-rise building spatial frames

    Science.gov (United States)

    Ibragimov, Alexander; Danilov, Alexander

    2018-03-01

    The application of curvilinear elements in load-bearing metal structures of high-rise buildings supposes ensuring of their bearing capacity and serviceability. There may exist a great variety of shapes and orientations of such structural elements. In particular, it may be various flat curves of an open or closed oval profile such as circular or parabolic arch or ellipse. The considered approach implies creating vast internal volumes without loss in the load-bearing capacity of the frame. The basic concept makes possible a wide variety of layout and design solutions. The presence of free internal spaces of large volume in "skyscraper" type buildings contributes to resolving a great number of problems, including those of communicative nature. The calculation results confirm the basic assumptions.

  8. Seismic soil structure interaction analysis for asymmetrical buildings supported on piled raft for the 2015 Nepal earthquake

    Science.gov (United States)

    Badry, Pallavi; Satyam, Neelima

    2017-01-01

    Seismic damage surveys and analyses conducted on modes of failure of structures during past earthquakes observed that the asymmetrical buildings show the most vulnerable effect throughout the course of failures (Wegner et al., 2009). Thus, all asymmetrical buildings significantly fails during the shaking events and it is really needed to focus on the accurate analysis of the building, including all possible accuracy in the analysis. Apart from superstructure geometry, the soil behavior during earthquake shaking plays a pivotal role in the building collapse (Chopra, 2012). Fixed base analysis where the soil is considered to be infinitely rigid cannot simulate the actual scenario of wave propagation during earthquakes and wave transfer mechanism in the superstructure (Wolf, 1985). This can be well explained in the soil structure interaction analysis, where the ground movement and structural movement can be considered with the equal rigor. In the present study the object oriented program has been developed in C++ to model the SSI system using the finite element methodology. In this attempt the seismic soil structure interaction analysis has been carried out for T, L and C types piled raft supported buildings in the recent 25th April 2015 Nepal earthquake (M = 7.8). The soil properties have been considered with the appropriate soil data from the Katmandu valley region. The effect of asymmetry of the building on the responses of the superstructure is compared with the author's research work. It has been studied/observed that the shape or geometry of the superstructure governs the response of the superstructure subjected to the same earthquake load.

  9. Inspection of Nuclear Power Plant Structures - Overview of Methods and Related Applications

    International Nuclear Information System (INIS)

    Naus, Dan J.

    2009-01-01

    The objectives of this limited study were to provide an overview of the methods that are available for inspection of nuclear power plant reinforced concrete and metallic structures, and to provide an assessment of the status of methods that address inspection of thick, heavily-reinforced concrete and inaccessible areas of the containment metallic pressure boundary. In meeting these objectives a general description of nuclear power plant safety-related structures was provided as well as identification of potential degradation factors, testing and inspection requirements, and operating experience; methods for inspection of nuclear power plant reinforced concrete structures and containment metallic pressure boundaries were identified and described; and applications of nondestructive evaluation methods specifically related to inspection of thick-section reinforced concrete structures and inaccessible portions of containment metallic pressure boundaries were summarized. Recommendations are provided on utilization of test article(s) to further advance nondestructive evaluation methods related to thick-section, heavily-reinforced concrete and inaccessible portions of the metallic pressure boundary representative of nuclear power plant containments. Conduct of a workshop to provide an update on applications and needed developments for nondestructive evaluation of nuclear power plant structures would also be of benefit.

  10. Inspection of Nuclear Power Plant Structures - Overview of Methods and Related Applications

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL

    2009-05-01

    The objectives of this limited study were to provide an overview of the methods that are available for inspection of nuclear power plant reinforced concrete and metallic structures, and to provide an assessment of the status of methods that address inspection of thick, heavily-reinforced concrete and inaccessible areas of the containment metallic pressure boundary. In meeting these objectives a general description of nuclear power plant safety-related structures was provided as well as identification of potential degradation factors, testing and inspection requirements, and operating experience; methods for inspection of nuclear power plant reinforced concrete structures and containment metallic pressure boundaries were identified and described; and applications of nondestructive evaluation methods specifically related to inspection of thick-section reinforced concrete structures and inaccessible portions of containment metallic pressure boundaries were summarized. Recommendations are provided on utilization of test article(s) to further advance nondestructive evaluation methods related to thick-section, heavily-reinforced concrete and inaccessible portions of the metallic pressure boundary representative of nuclear power plant containments. Conduct of a workshop to provide an update on applications and needed developments for nondestructive evaluation of nuclear power plant structures would also be of benefit.

  11. The first application of antiseismic friction bearings: the Koeberg nuclear plant

    International Nuclear Information System (INIS)

    Renault, Jean; Richli, Marc; Pavot, Bernard.

    1979-01-01

    The siting of a nuclear plant requires a thoroughgoing analysis of the special seismic conditions of the site chosen and, for certain buildings of the plant, the level of seismicity is a determining factor in the dimensioning of the structures and even of the equipment. The standardization of nuclear plants, however, offers considerable advantages from every point of view, and in particular makes it possible to avoid making a study extending over several years. In order to enable this standardization to spread, it was necessary to make possible, even in highly seismic areas, the building of plants identical with those designed for the French market. With this in view, the SPIE-BATIGNOLLES Company, in association with Electricite de France, has developed a system for reducing the dynamic horizontal effects of an earthquake on the structure of a nuclear plant. This system, featuring essentially a double raft with the interposition of antiseismic bearings composed of blocks of helically reinforced elastomer associated with metal friction plates, is presented. The different phases of its development are shown: preliminary mathematical studies, an experimental study of the bearing apparatus, the elaboration of the technology of manufacture of the bearings, the method of placing at the Koeberg nuclear plant site [fr

  12. Maturation processes and structures of small secreted peptides in plants

    Directory of Open Access Journals (Sweden)

    Ryo eTabata

    2014-07-01

    Full Text Available In the past decade, small secreted peptides have proven to be essential for various aspects of plant growth and development, including the maintenance of certain stem cell populations. Most small secreted peptides identified in plants to date are recognised by membrane-localized receptor kinases, the largest family of receptor proteins in the plant genome. This peptide-receptor interaction is essential for initiating intracellular signalling cascades. Small secreted peptides often undergo post-translational modifications and proteolytic processing to generate the mature peptides. Recent studies suggest that, in contrast to the situation in mammals, the proteolytic processing of plant peptides involves a number of complex steps. Furthermore, NMR-based structural analysis demonstrated that post-translational modifications induce the conformational changes needed for full activity. In this mini review, we summarise recent advances in our understanding of how small secreted peptides are modified and processed into biologically active peptides and describe the mature structures of small secreted peptides in plants.

  13. Uncertain and multi-objective programming models for crop planting structure optimization

    Directory of Open Access Journals (Sweden)

    Mo LI,Ping GUO,Liudong ZHANG,Chenglong ZHANG

    2016-03-01

    Full Text Available Crop planting structure optimization is a significant way to increase agricultural economic benefits and improve agricultural water management. The complexities of fluctuating stream conditions, varying economic profits, and uncertainties and errors in estimated modeling parameters, as well as the complexities among economic, social, natural resources and environmental aspects, have led to the necessity of developing optimization models for crop planting structure which consider uncertainty and multi-objectives elements. In this study, three single-objective programming models under uncertainty for crop planting structure optimization were developed, including an interval linear programming model, an inexact fuzzy chance-constrained programming (IFCCP model and an inexact fuzzy linear programming (IFLP model. Each of the three models takes grayness into account. Moreover, the IFCCP model considers fuzzy uncertainty of parameters/variables and stochastic characteristics of constraints, while the IFLP model takes into account the fuzzy uncertainty of both constraints and objective functions. To satisfy the sustainable development of crop planting structure planning, a fuzzy-optimization-theory-based fuzzy linear multi-objective programming model was developed, which is capable of reflecting both uncertainties and multi-objective. In addition, a multi-objective fractional programming model for crop structure optimization was also developed to quantitatively express the multi-objective in one optimization model with the numerator representing maximum economic benefits and the denominator representing minimum crop planting area allocation. These models better reflect actual situations, considering the uncertainties and multi-objectives of crop planting structure optimization systems. The five models developed were then applied to a real case study in Minqin County, north-west China. The advantages, the applicable conditions and the solution methods

  14. Transmission of low-magnitude seismic excitation into Hanford Site structures

    International Nuclear Information System (INIS)

    Weiner, E.O.

    1989-01-01

    Several Hanford Site buildings were analyzed using simplified models to gain insight as to what extent the free field motion of a small-magnitude earthquake is transmitted into building structures as a result of soil-structure interaction effects. Building selection included the Plutonium Processing Plant, B-Plant and the Fast Flux Test Facility containment which represented a variety of stiffnesses, weights, and embedments. An artificial time history for the free field has a peak response at 13 Hz. This motion represents a median for magnitude 4 and 4.5 earthquakes, respectively. Floor response spectra were compared with results from analyses to design basis ground motions using the same structural models. Considerable attenuation of the small-magnitude free-field motion was found in the case of stiff, deeply embedded structures. This attenuation is attributed to kinematic interaction in addition to attenuation with depth in the free field. Even with such attenuation, there are exceptions where small magnitude responses exceed design basis responses. They are generally associated with 10 to 20 Hz modes with vertical motion

  15. The industrial problems raised by the building of the new nuclear power plant system

    International Nuclear Information System (INIS)

    Gangloff, P.; Hillairet, J.

    1975-01-01

    The decision made by France to build within 10 years a number of nuclear power plants of an importance unequalled in Europe and in the world has created for the industry involved in this gigantic enterprise problems of growth and adaptation of considerable magnitude. In a first part, the general analysis of needs reveals the breadth of the phenomenon the industry is facing with respect to its capacity of production. This original study, the first synthesis of this kind, could be the starting point of overall industrial planning at the national level. The second part, dealing more particularly with turbogenerator units, shows in its true perspective the magnitude of the material and how the equipment has developed. It recalls how the industrial problem has been approached in order to meet the need for expansion of one of the most important French electromechanical manufacturing plants [fr

  16. Hierarchical structure for risk criteria applicable to nuclear power plants

    International Nuclear Information System (INIS)

    Hall, R.E.; Mitra, S.P.

    1985-01-01

    This paper discusses the development of a hierarchical structure for risk criteria applicable to nuclear power plants. The structure provides a unified framework to systematically analyze the implications of different types of criteria, each focusing on a particular aspect of nuclear power plant risks. The framework allows investigation of the specific coverage of a particular criterion and comparison of different criteria with regard to areas to which they apply. 5 refs., 2 figs

  17. Elfin: An algorithm for the computational design of custom three-dimensional structures from modular repeat protein building blocks.

    Science.gov (United States)

    Yeh, Chun-Ting; Brunette, T J; Baker, David; McIntosh-Smith, Simon; Parmeggiani, Fabio

    2018-02-01

    Computational protein design methods have enabled the design of novel protein structures, but they are often still limited to small proteins and symmetric systems. To expand the size of designable proteins while controlling the overall structure, we developed Elfin, a genetic algorithm for the design of novel proteins with custom shapes using structural building blocks derived from experimentally verified repeat proteins. By combining building blocks with compatible interfaces, it is possible to rapidly build non-symmetric large structures (>1000 amino acids) that match three-dimensional geometric descriptions provided by the user. A run time of about 20min on a laptop computer for a 3000 amino acid structure makes Elfin accessible to users with limited computational resources. Protein structures with controlled geometry will allow the systematic study of the effect of spatial arrangement of enzymes and signaling molecules, and provide new scaffolds for functional nanomaterials. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Building 12-42F modification, Pantex Plant, Amarillo, Texas

    International Nuclear Information System (INIS)

    1991-02-01

    The Environment Assessment (EA) has been prepared pursuant to the implementing regulations to the National Environmental Policy Act (NEPA), which require federal agencies to assess the environmental impacts of a proposed action to determine whether that action requires the preparation of an Environmental Impact Statement (EIS) or if a Finding of No Significant Impact (FONSI) can be issued. NEPA requires that an EA provide an interdisciplinary review of the proposed action in order to identify possible preferable alternatives and to identify mitigative measures that will prevent environmental impacts. If it is determined that the proposed action will have unavoidable significant environmental impact, then as EIS shall be prepared. The proposed project is to modify Building 12-42F and entry into the Sandia Pantex Weapons Evaluation Test Laboratory. The modification's primary function is to provide additional space for testing and monitoring equipment to support the activities in the existing Building 12-42F. The modification will also facilitate the reconfiguration of the personnel offices, break room and conference area. The proposed Building 12-42F modification relates to the interiors of Buildings 12-42F and 12-42A. These buildings contain a centrifuge and associated testing and monitoring equipment. The proposed addition will encompass the existing entry into Building 12-42A. Building 12-42A will be accessed through the proposed Building 12-42F modification

  19. Pressure test behaviour of embalse nuclear power plant containment structure

    International Nuclear Information System (INIS)

    Bruschi, S.; Marinelli, C.

    1984-01-01

    It's described the structural behaviour of the containment structure during the pressure test of the Embalse plant (CANDU type, 600MW), made of prestressed concrete with an epoxi liner. Displacement, strain, temperature, and pressure measurements of the containment structure of the Embalse Nuclear Power Plant are presented. The instrumentation set up and measurement specifications are described for all variables of interest before, during and after the pressure test. The analytical models to simulate the heat transfer due to sun heating and air convenction and to predict the associated thermal strains and displacements are presented. (E.G.) [pt

  20. Pile foundation of nuclear power plant structures

    International Nuclear Information System (INIS)

    Jurkiewicz, W.J.; Thomaz, E.; Rideg, P.; Girao, M.

    1978-01-01

    The subject of pile foundation used for nuclear power plant structures, considering the experience gained by the designers of the Angra Nuclear Power Plant, Units 2 and 3 in Brazil is dealt with. The general concept of the pile foundations, including types and execution of the piles, is described briefly. Then the two basic models, i.e. the static model and the dynamic one, used in the design are shown, and the pertinent design assumptions as related to the Angra project are mentioned. The criteria which established the loading capacity of the piles are discussed and the geological conditions of the Angra site are also explained briefly, justifying the reasons why pile foundations are necessary in this project. After that, the design procedures and particularly the tools - i.e. the computer programs - are described. It is noted that the relatively simple but always time consuming job of loading determination calculations can be computerized too, as it was done on this project through the computer program SEASA. The interesting aspects of soil/structure interaction, applicable to static models, are covered in detail, showing the theoretical base wich was used in the program PILMAT. Then the advantage resulting from computerizing of the job of pile reinforcement design are mentioned, describing briefly the jobs done by the two special programs PILDES and PILTAB. The point is stressed that the effort computerizing the structural design of this project was not so much due to the required accuracy of the calculations, but mainly due to the need to save on the design time, as to allow to perform the design task within the relatively tight time schedule. A conclusion can be drawn that design of pile foundations for nuclear power plant structures is a more complex task than the design of bearing type of foundation for the same structures, but that the task can be always made easier when the design process can be computerized. (Author)