WorldWideScience

Sample records for plant breeding

  1. Organic breeding: New trend in plant breeding

    Directory of Open Access Journals (Sweden)

    Berenji Janoš

    2009-01-01

    Full Text Available Organic breeding is a new trend in plant breeding aimed at breeding of organic cultivars adapted to conditions and expectations of organic plant production. The best proof for the need of organic cultivars is the existence of interaction between the performances of genotypes with the kind of production (conventional or organic (graph. 1. The adaptation to low-input conditions of organic production by more eddicient uptake and utilization of plant nutrients is especially important for organic cultivars. One of the basic mechanism of weed control in organic production is the competition of organic cultivars and weeds i.e. the enhanced ability of organic cultivars to suppress the weeds. Resistance/tolerance to diseases and pests is among the most important expectations toward the organic cultivars. In comparison with the methods of conventional plant breeding, in case of organic plant breeding limitations exist in choice of methods for creation of variability and selection classified as permitted, conditionally permitted and banned. The use of genetically modified organisms and their derivated along with induced mutations is not permitted in organic production. The use of molecular markers in organic plant breeding is the only permitted modern method of biotechnology. It is not permitted to patent the breeding material of organic plant breeding or the organic cultivars. .

  2. Ornamental Plant Breeding

    Directory of Open Access Journals (Sweden)

    Flávia Barbosa Silva Botelho

    2015-04-01

    Full Text Available World’s ornamental plant market, including domestic market of several countries and its exports, is currently evaluated in 107 billion dollars yearly. Such estimate highlights the importance of the sector in the economy of the countries, as well as its important social role, as it represents one of the main activities, which contributes to income and employment. Therefore a well-structured plant breeding program, which is connected with consumers’ demands, is required in order to fulfill these market needs globally. Activities related to pre-breeding, conventional breeding, and breeding by biotechnological techniques constitute the basis for the successful development of new ornamental plant cultivars. Techniques that involve tissue culture, protoplast fusion and genetic engineering greatly aid conventional breeding (germplasm introduction, plant selection and hybridization, aiming the obtention of superior genotypes. Therefore it makes evident, in the literature, the successful employment of genetic breeding, since it aims to develop plants with commercial value that are also competitive with the ones available in the market.

  3. Evolution, plant breeding and biodiversity

    Directory of Open Access Journals (Sweden)

    Salvatore Ceccarelli

    2011-11-01

    Full Text Available This paper deals with changes in biodiversity during the course of evolution, plant domestication and plant breeding. It shows than man has had a strong influence on the progressive decrease of biodiversity, unconscious at first and deliberate in modern times. The decrease in biodiversity in the agricultures of the North causes a severe threat to food security and is in contrasts with the conservation of biodiversity which is part of the culture of several populations in the South. The concluding section of the paper shows that man could have guided evolution in a different way and shows an example of participatory plant breeding, a type of breeding which is done in collaboration with farmers and is based on selection for specific adaptation. Even though participatory plant breeding has been practiced for only about 20 years and by relatively few groups, the effects on both biodiversity and crop production are impressive. Eventually the paper shows how participatory plant breeding can be developed into ‘evolutionary plant breeding’ to cope in a dynamic way with climate changes.

  4. Plant breeding and genetics newsletter. No. 2

    International Nuclear Information System (INIS)

    1998-12-01

    This is the second issue of the Plant Breeding and Genetics Newsletter. The Newsletter will inform you about current activities of the FAO/IAEA sub-programme on plant breeding and genetics which is implemented by the Plant Breeding and Genetics Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture (Vienna) in close collaboration with the Plant Breeding Unit of the FAO/IAEA Agriculture and Biotechnology Laboratory (Seibersdorf)

  5. Plant breeding and genetics newsletter. No. 1

    International Nuclear Information System (INIS)

    1998-05-01

    This is the first issue of the Plant Breeding and Genetics Newsletter. The Newsletter will inform you about current activities of the FAO/IAEA sub-programme on plant breeding and genetics which is implemented by the Plant Breeding and Genetics Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture (Vienna) in close collaboration with the Plant Breeding Unit of the FAO/IAEA Agriculture and Biotechnology Laboratory (Seibersdorf)

  6. Plant Breeding Goes Microbial

    NARCIS (Netherlands)

    Wei, Zhong; Jousset, Alexandre

    Plant breeding has traditionally improved traits encoded in the plant genome. Here we propose an alternative framework reaching novel phenotypes by modifying together genomic information and plant-associated microbiota. This concept is made possible by a novel technology that enables the

  7. Managing meiotic recombination in plant breeding

    NARCIS (Netherlands)

    Wijnker, T.G.; Jong, de J.H.S.G.M.

    2008-01-01

    Crossover recombination is a crucial process in plant breeding because it allows plant breeders to create novel allele combnations on chromosomes that can be used for breeding superior F1 hybrids. Gaining control over this process, in terms of increasing crossover incidence, altering crossover

  8. Mutations induced in plant breeding

    International Nuclear Information System (INIS)

    Barriga B, P.

    1984-01-01

    The most significant aspects of the use of ionizing radiations in plant breeding are reviewed. Aspects such as basic principles of mutation, expression and selection in obtention of mutants, methods for using induced mutations and sucess achieved with this methodology in plant breeding are reviewed. Results obtained in a program of induced mutation on wheat for high content of protein and lysine at the Universidad Austral de Chile are presented. (Author)

  9. Mutations induced in plant breeding

    Energy Technology Data Exchange (ETDEWEB)

    Barriga B, P. (Universidad Austral de Chile, Valdivia. Inst. de Produccion y Sanidad Vegetal)

    1984-10-01

    The most significant aspects of the use of ionizing radiations in plant breeding are reviewed. Aspects such as basic principles of mutation, expression and selection in obtention of mutants, methods for using induced mutations and sucess achieved with this methodology in plant breeding are reviewed. Results obtained in a program of induced mutation on wheat for high content of protein and lysine at the Universidad Austral de Chile are presented.

  10. Breeding business : the future of plant breeding in the light of developments in patent rights and plant breeder's rights

    NARCIS (Netherlands)

    Louwaars, N.P.; Dons, J.J.M.; Overwalle, van G.; Raven, H.; Arundel, A.; Eaton, D.; Nelis, A.

    2009-01-01

    Plant breeding serves an important public interest. Two intellectual property (IP) systems are relevant for the protection of innovations in this sector: plant breeder's rights and patent rights. Some exemptions play an important role in plant breeding, such as the 'breeder's exemption', which is

  11. Ethical distinctions between different kinds of plant breeding

    DEFF Research Database (Denmark)

    Myskja, B.K.; Schouten, H.J.; Gjerris, Mickey

    2015-01-01

    The article discusses whether there are ethically significant distinctions between different forms of plant breeding. We distinguish different forms of plant breeding according to the kind of technology and degree of human intervention compared to plant reproduction occurring in nature. According...... differences between plant breeding methods. The framework can contribute to an improved dialogue between the scientific community and the wider public by making the scepticism towards GM-technology more intelligible....

  12. Organic plant breeding and propagation : concepts and strategies

    NARCIS (Netherlands)

    Lammerts van Bueren, E.T.

    2002-01-01

    Key-words : crop ideotype, genetic diversity, integrity of plants, intrinsic value, isophenic line mixture varieties, organic plant breeding, organic farming, organic propagation, participatory plant breeding, variety characteristics,

  13. Plant Breeding by Using Radiation Mutation

    International Nuclear Information System (INIS)

    Kang, Si Yong; Kim, Dong Sub; Lee, Geung Joo

    2007-06-01

    A mutation breeding is to use physical or chemical mutagens to induce mutagenesis, followed by individual selections with favorable traits. The mutation breeding has many advantages over other breeding methods, which include the usefulness for improving one or two inferior characteristics, applications to broad species with different reproductive systems or to diverse plant materials, native or plant introduction with narrow genetic background, time and cost-effectiveness, and valuable mutant resources for genomic researches. Recent applications of the radiation breeding techniques to developments of flowering plants or food crops with improved functional constituents heightened the public's interests in agriculture and in our genetic resources and seed industries. The goals of this project, therefore, include achieving advances in domestic seed industries and agricultural productivities by developing and using new radiation mutants with favored traits, protecting an intellectual property right of domestic seeds or germplasm, and sharing the valuable mutants and mutated gene information for the genomic and biotech researches that eventually leads to economic benefits

  14. Plant Breeding by Using Radiation Mutation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Si Yong; Kim, Dong Sub; Lee, Geung Joo (and others)

    2007-06-15

    A mutation breeding is to use physical or chemical mutagens to induce mutagenesis, followed by individual selections with favorable traits. The mutation breeding has many advantages over other breeding methods, which include the usefulness for improving one or two inferior characteristics, applications to broad species with different reproductive systems or to diverse plant materials, native or plant introduction with narrow genetic background, time and cost-effectiveness, and valuable mutant resources for genomic researches. Recent applications of the radiation breeding techniques to developments of flowering plants or food crops with improved functional constituents heightened the public's interests in agriculture and in our genetic resources and seed industries. The goals of this project, therefore, include achieving advances in domestic seed industries and agricultural productivities by developing and using new radiation mutants with favored traits, protecting an intellectual property right of domestic seeds or germplasm, and sharing the valuable mutants and mutated gene information for the genomic and biotech researches that eventually leads to economic benefits.

  15. Plant breeding: Induced mutation technology for crop improvement

    International Nuclear Information System (INIS)

    Novak, F.J.; Brunner, H.

    1992-01-01

    Plant breeding requires genetic variation of useful traits for crop improvement, but the desired variation is often lacking. Mutagenic agents, such as radiation and certain chemicals, can be used to induce mutations and generate genetic variations from which desirable mutants may be selected. After a brief summary of the methods currently employed in plant breeding, especially those inducing genetic engineering, this article describes the activities of the Plant Breeding Unit of the IAEA Laboratories at Seibersdorf, summarizing the research and development areas currently being pursued. The banana plant is chosen to exemplify the Laboratories' research

  16. Plant mutation breeding for crop improvement. V.2

    International Nuclear Information System (INIS)

    1991-01-01

    This volume contains the proceedings of the final two sessions of the FAO/IAEA Symposium on Plant Mutation Breeding for Crop Improvement, focussing on mutation breeding with particular objectives and the methodology of mutation breeding. The individual contributions are indexed separately. Although a wide variety of topics is included, the emphasis is on the use of (mainly gamma) radiation to induce economically useful mutants in cereals and legumes. The results of many conventional plant breeding programs are also presented. Refs, figs and tabs

  17. Plant mutation breeding for crop improvement. V.1

    International Nuclear Information System (INIS)

    1991-01-01

    This volume contains the proceedings of the first two sessions of the FAO/IAEA Symposium on Plant Mutation Breeding for Crop Improvement, focussing on mutation breeding in particular countries and crop-specific mutation breeding. The individual contributions are indexed separately. Although a wide variety of topics is included, the emphasis is on the use of (mainly gamma) radiation to induce economically useful mutants in cereals and legumes. The results of many conventional plant breeding programs are also presented. Refs, figs and tabs

  18. PUBLIC SECTOR PLANT BREEDING IN A PRIVATIZING WORLD

    OpenAIRE

    Thirtle, Colin G.; Srinivasan, Chittur S.; Heisey, Paul W.

    2001-01-01

    Intellectual property protection, globalization, and pressure on public budgets in many industrialized countries have shifted the balance of plant breeding activity from the public to the private sector. Several economic factors influence the relative shares of public versus private sector plant breeding activity, with varying results over time, over country, and over crop. The private sector, for example, dominates corn breeding throughout the industrialized world, but public and private act...

  19. Future perspectives of in vitro culture and plant breeding

    DEFF Research Database (Denmark)

    Kuligowska, Katarzyna; Lütken, Henrik Vlk; Hegelund, Josefine Nymark

    2015-01-01

    Conventional breeding and plant improvement increasingly become inadequate to keep up with progression and high quality demands. Thus biotechnological techniques are more and more adopted. Initially, biotechnological tools have supported conventional breeding by in vitro culture techniques......, comprising micropropagation, speeding up multiplication and improving uniformity. Also, crossing barriers of incompatible plants have been overcome using in vitro methods and embryo rescue techniques in wide hybridization approaches. Marker-assisted breeding is employed for targeted selection of DNA...... fragments from parental plants in respect to identification of desired characteristics in offspring or among hybrid plants. Phylogeny-assisted breeding and knowledge about genetic relationships support the ability to develop new hybrids. Finally, chemical and radiation induced mutagenesis are established...

  20. Current status and research of plant space mutation breeding

    International Nuclear Information System (INIS)

    Qiu Xinmian

    2011-01-01

    Plant space mutation breeding and discussed themechanism of plant space mutagenesis. The variations of organisms were induced by the comprehensive effects of high vacuum, microgravity,incense radiat ion and so on. The application of space mutation breeding and inheritance in specially good grmplasm material in China were well summarized. The prospects of space mutat ion breeding was described. The space mutagenesis will provided a new way for the future breeding. (author)

  1. The application of biotechnology in medicinal plants breeding research in China.

    Science.gov (United States)

    Huang, He-Ping; Li, Jin-Cai; Huang, Lu-Qi; Wang, Dian-Lei; Huang, Peng; Nie, Jiu-Sheng

    2015-07-01

    Breeding is not only an important area of medicinal plants research but also the foundation for the superior varieties acquirement of medicinal plants. The rise of modern biotechnology provides good opportunities and new means for medicinal plants breeding research in China. Biotechnology shows its technical advantages and new development prospects in breeding of new medicinal plants varieties with high and stable yield, good quality, as well as stress-resistance. In this paper, we describe recent advances, problems, and development prospects about the application of modern biotechnology in medicinal plants breeding research in China.

  2. Application of Genomic Tools in Plant Breeding

    OpenAIRE

    Pérez-de-Castro, A.M.; Vilanova, S.; Cañizares, J.; Pascual, L.; Blanca, J.M.; Díez, M.J.; Prohens, J.; Picó, B.

    2012-01-01

    Plant breeding has been very successful in developing improved varieties using conventional tools and methodologies. Nowadays, the availability of genomic tools and resources is leading to a new revolution of plant breeding, as they facilitate the study of the genotype and its relationship with the phenotype, in particular for complex traits. Next Generation Sequencing (NGS) technologies are allowing the mass sequencing of genomes and transcriptomes, which is producing a vast array of genomic...

  3. Cisgenesis strongly improves introgression breeding and induced translocation breeding of plants

    NARCIS (Netherlands)

    Jacobsen, E.; Schouten, H.J.

    2007-01-01

    There are two ways for genetic improvement in classical plant breeding: crossing and mutation. Plant varieties can also be improved through genetic modification; however, the present GMO regulations are based on risk assessments with the transgenes coming from non-crossable species. Nowadays, DNA

  4. Plant breeding and genetics

    Science.gov (United States)

    The ultimate goal of plant breeding is to develop improved crops. Improvements can be made in crop productivity, crop processing and marketing, and/or consumer quality. The process of developing an improved cultivar begins with intercrossing lines with high performance for the traits of interest, th...

  5. Current trends in plant breeding

    International Nuclear Information System (INIS)

    Jalani, B.S.; Rajanaidu, N.

    2000-01-01

    The current world population is 6 billion and it is likely to reach 7 billion in 2010 and 8 billion 2025. Sufficient food must be produced for the ever increasing human population. The available suitable land for intensive agriculture is limited. We have to produce more food from less land, pesticide, labour and water resources. Hence, increase in crop productivity are essential to feed the world in the next century. Plant breeding provides the avenue to increase the food production to feed the growing world population. Development of a cultivar involves (I) Construction of a genetic model (II) creating a gene pool (III) selection among plants and (IV) testing the selected genotypes for adaptation to the biotic and abiotic environments (Frey, 1999). This paper discusses the trends in plant breeding using the oil palm as a model. It covers (i) genetic resources (ii) physiological traits (III) exploitation of genotype x environment interaction (IV) oil palm clones, and (v) biotechnology application. (Author)

  6. New biotechnology enhances the application of cisgenesis in plant breeding

    Directory of Open Access Journals (Sweden)

    Hongwei eHou

    2014-08-01

    Full Text Available Cisgenesis is genetic modification to transfer beneficial alleles from crossable species into a recipient plant. The donor genes transferred by cisgenesis are the same as those used in traditional breeding. It can avoid linkage drag, enhance the use of existing gene alleles. This approach combines traditional breeding techniques with modern biotechnology and dramatically speeds up the breeding process. This allows plant genomes to be modified while remaining plants within the gene pool. Therefore, cisgenic plants should not be assessed as transgenics for environmental impacts.

  7. Does genomic selection have a future in plant breeding?

    Science.gov (United States)

    Jonas, Elisabeth; de Koning, Dirk-Jan

    2013-09-01

    Plant breeding largely depends on phenotypic selection in plots and only for some, often disease-resistance-related traits, uses genetic markers. The more recently developed concept of genomic selection, using a black box approach with no need of prior knowledge about the effect or function of individual markers, has also been proposed as a great opportunity for plant breeding. Several empirical and theoretical studies have focused on the possibility to implement this as a novel molecular method across various species. Although we do not question the potential of genomic selection in general, in this Opinion, we emphasize that genomic selection approaches from dairy cattle breeding cannot be easily applied to complex plant breeding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Will genomic selection be a practical method for plant breeding?

    Science.gov (United States)

    Nakaya, Akihiro; Isobe, Sachiko N

    2012-11-01

    Genomic selection or genome-wide selection (GS) has been highlighted as a new approach for marker-assisted selection (MAS) in recent years. GS is a form of MAS that selects favourable individuals based on genomic estimated breeding values. Previous studies have suggested the utility of GS, especially for capturing small-effect quantitative trait loci, but GS has not become a popular methodology in the field of plant breeding, possibly because there is insufficient information available on GS for practical use. In this review, GS is discussed from a practical breeding viewpoint. Statistical approaches employed in GS are briefly described, before the recent progress in GS studies is surveyed. GS practices in plant breeding are then reviewed before future prospects are discussed. Statistical concepts used in GS are discussed with genetic models and variance decomposition, heritability, breeding value and linear model. Recent progress in GS studies is reviewed with a focus on empirical studies. For the practice of GS in plant breeding, several specific points are discussed including linkage disequilibrium, feature of populations and genotyped markers and breeding scheme. Currently, GS is not perfect, but it is a potent, attractive and valuable approach for plant breeding. This method will be integrated into many practical breeding programmes in the near future with further advances and the maturing of its theory.

  9. Microbiome Selection Could Spur Next-Generation Plant Breeding Strategies.

    Science.gov (United States)

    Gopal, Murali; Gupta, Alka

    2016-01-01

    " No plant is an island too …" Plants, though sessile, have developed a unique strategy to counter biotic and abiotic stresses by symbiotically co-evolving with microorganisms and tapping into their genome for this purpose. Soil is the bank of microbial diversity from which a plant selectively sources its microbiome to suit its needs. Besides soil, seeds, which carry the genetic blueprint of plants during trans-generational propagation, are home to diverse microbiota that acts as the principal source of microbial inoculum in crop cultivation. Overall, a plant is ensconced both on the outside and inside with a diverse assemblage of microbiota. Together, the plant genome and the genes of the microbiota that the plant harbors in different plant tissues, i.e., the 'plant microbiome,' form the holobiome which is now considered as unit of selection: 'the holobiont.' The 'plant microbiome' not only helps plants to remain fit but also offers critical genetic variability, hitherto, not employed in the breeding strategy by plant breeders, who traditionally have exploited the genetic variability of the host for developing high yielding or disease tolerant or drought resistant varieties. This fresh knowledge of the microbiome, particularly of the rhizosphere, offering genetic variability to plants, opens up new horizons for breeding that could usher in cultivation of next-generation crops depending less on inorganic inputs, resistant to insect pest and diseases and resilient to climatic perturbations. We surmise, from ever increasing evidences, that plants and their microbial symbionts need to be co-propagated as life-long partners in future strategies for plant breeding. In this perspective, we propose bottom-up approach to co-propagate the co-evolved, the plant along with the target microbiome, through - (i) reciprocal soil transplantation method, or (ii) artificial ecosystem selection method of synthetic microbiome inocula, or (iii) by exploration of microRNA transfer

  10. Analysis of Plant Breeding on Hadoop and Spark

    Directory of Open Access Journals (Sweden)

    Shuangxi Chen

    2016-01-01

    Full Text Available Analysis of crop breeding technology is one of the important means of computer-assisted breeding techniques which have huge data, high dimensions, and a lot of unstructured data. We propose a crop breeding data analysis platform on Spark. The platform consists of Hadoop distributed file system (HDFS and cluster based on memory iterative components. With this cluster, we achieve crop breeding large data analysis tasks in parallel through API provided by Spark. By experiments and tests of Indica and Japonica rice traits, plant breeding analysis platform can significantly improve the breeding of big data analysis speed, reducing the workload of concurrent programming.

  11. The progress of mutation breeding for ornamental plants in China

    International Nuclear Information System (INIS)

    Jin Shouming

    1994-02-01

    In China, research on mutation breeding of ornamental plants was begun in the late 70's. In the past decade, about 40 plant species were tested, and hundreds of useful mutants were obtained. At least 63 mutant varieties have been produced, approved and released for cultivation in rose, chrysanthemum, canna, dahlia, bougainvillea and lotus. A rapid progress in methodology and technology of induced mutation breeding has been achieved, particularly in the selection of starting material, determination of suitable exposure and irradiation dose, expression and isolation of somatic mutation etc. In the future it is necessary to develop more plant species and mutation varieties to improve the mutation breeding method and to raise the economic benefit. Along with the development of China's economy and improvement of people's living standard more and more new varieties of ornamental plants will be required. In view of the good beginning, rich germplasm resource and favorable conditions, the prospect of mutation breeding for ornamental plants in China is very encouraging

  12. Plant breeding and genetics newsletter. No. 7

    International Nuclear Information System (INIS)

    2001-07-01

    This year seems to be very promising for the Plant Breeding and Genetic sub-Programme. At the demand of geneticists, plant breeders, and more recently molecular geneticists for information on released mutant varieties of specific crops, the FAO/IAEA Mutant Varieties Database (MVD) was transferred to the web site and is now available through Internet under the following URL: http://www-mvd.iaea.org. The idea to collect and transfer information on crop varieties developed with the use of mutation techniques to plant breeders ws conceived at almost the same time as the establishment of the Plant Breeding and Genetics Section (PBG), Joint FAO/IAEA Division. The first classified list of induced mutant varieties was presented by Sigurbjoernsson at the Pullman Symposium, and published in 1969. Since the first issue of the MBNL (May, 1972) information on newly released mutant varieties was published at the end of each issue under the title 'List of Mutant Varieties'. The full list of 2252 mutant varieties has been published in the Mutation Breeding Review No. 12 (December 2000) to close this period of collecting data on mutant varieties. Such condensed but full information on mutant varieties should help geneticists, molecular biologists and plant breeders to asses the value of mutation techniques in germplasm enhancement, and stimulate the use of induced variation

  13. Cisgenesis: an important sub-invention for traditional plant breeding companies

    NARCIS (Netherlands)

    Jacobsen, E.; Schouten, H.J.

    2009-01-01

    Modern plant breeding is highly dependent on new technologies to master future problems. More traits have to be combined, frequently originating from wild species. Traditional breeding is connected with linkage drag problems. The crop plant itself and its crossable species represent the traditional

  14. Application of genomic tools in plant breeding.

    Science.gov (United States)

    Pérez-de-Castro, A M; Vilanova, S; Cañizares, J; Pascual, L; Blanca, J M; Díez, M J; Prohens, J; Picó, B

    2012-05-01

    Plant breeding has been very successful in developing improved varieties using conventional tools and methodologies. Nowadays, the availability of genomic tools and resources is leading to a new revolution of plant breeding, as they facilitate the study of the genotype and its relationship with the phenotype, in particular for complex traits. Next Generation Sequencing (NGS) technologies are allowing the mass sequencing of genomes and transcriptomes, which is producing a vast array of genomic information. The analysis of NGS data by means of bioinformatics developments allows discovering new genes and regulatory sequences and their positions, and makes available large collections of molecular markers. Genome-wide expression studies provide breeders with an understanding of the molecular basis of complex traits. Genomic approaches include TILLING and EcoTILLING, which make possible to screen mutant and germplasm collections for allelic variants in target genes. Re-sequencing of genomes is very useful for the genome-wide discovery of markers amenable for high-throughput genotyping platforms, like SSRs and SNPs, or the construction of high density genetic maps. All these tools and resources facilitate studying the genetic diversity, which is important for germplasm management, enhancement and use. Also, they allow the identification of markers linked to genes and QTLs, using a diversity of techniques like bulked segregant analysis (BSA), fine genetic mapping, or association mapping. These new markers are used for marker assisted selection, including marker assisted backcross selection, 'breeding by design', or new strategies, like genomic selection. In conclusion, advances in genomics are providing breeders with new tools and methodologies that allow a great leap forward in plant breeding, including the 'superdomestication' of crops and the genetic dissection and breeding for complex traits.

  15. Sustainable organic plant breeding. Final report: a vision, choices, consequences and steps

    NARCIS (Netherlands)

    Lammerts van Bueren, E.T.; Hulscher, M.; Haring, M.; Jongerden, J.; Mansvelt, van J.D.; Nijs, den A.P.M.; Ruivenkamp, G.T.P.

    1999-01-01

    In general, the characteristics of organic varieties - and by extension of organic plant breeding - differ from that of conventional breeding systems and conventional varieties. Realising an organic plant breeding system and subsequently steering it to meet changing demands is no less than a mammoth

  16. Ethnobotanic importance of plants used in pigeon-breeding in Eastern Spain.

    Science.gov (United States)

    Belda, Antonio; Cortés, Carolina; Peiró, Victoriano

    2013-05-20

    The importance that birds of the Columbidae family have had throughout history is visible on the Mediterranean coast. Pigeon fancying is the art of breeding and training carrier pigeons and currently, several breeds exist. The sport of racing pigeons consists in covering a distance at maximum possible speed. However, pigeon breeding has another modality called "sport pigeon", where several males follow a female. This study focusses on ethnobotanical knowledge of native and exotic plant species that are used for diet, breeding, stimulation, healing illnesses and staining the plumage of pigeons bred in captivity. Using semi-structured interviews, we gathered information about the different plant species traditionally used for pigeon-breeding in the region of Valencia. Background material on remedies for bird illnesses was gathered from folk botanical references, local books and journals.The plant species were collected in the study area, then identified in the laboratory using dichotomous keys and vouchered in the ABH (Herbarium of Alicante University). We used Excel (®) 2003 to perform a simple statistical analysis of the data collected. We collected 56 species of plants (and one variety) that included 29 botanical families. The total number of species was made up of 35 cultivated and 21 wild plants. The most common were Gramineae (14 species), Leguminosae (6 species), and Compositae (4 species). Pigeon breeding is an immensely popular activity in Eastern Spain, and ethnobiological knowledge about breeding pigeons and caring for them is considerable. The names and traditional uses of plants depend on their geographical location, vernacular names serve as an intangible heritage. Feeding, environmental features, and genetic makeup of individuals are relevant aspects in the maintenance of avian health.

  17. Report from the FAO/IAEA Plant Breeding and Genetics Section

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-01-01

    In 1989 we cared for 44 IAEA Technical Co-operation projects involving 35 developing countries and 64 different research institutions. Under the IAEA Research Contract Programme we had 70 active research contracts and 32 research agreements grouped into the following co-ordinated research programmes: use of induced mutations in connection with haploids and heterosis in cereals (1986-1991); improvement of rice and other cereals through mutation breeding in Latin America (1986-1991); use of induced mutation and in vitro culture techniques for improving crop plant resistance to diseases (1987-1992); mutation breeding of oil seed crops (1988-1993); improvement of root and tuber crops in tropical countries of Asia (1988-1993); in vitro mutation breeding of bananas and plantains (1988-1993); improvement of basic food crops in Africa through plant breeding, including the use of induced mutations (1989-1994). New research programmes cannot be started before 1991 when present ones are phasing out. The new research programmes could eventually deal with: domestication of new crop plants, improvement of industrial crops, the use of induced mutations to establish RFLP systems for genetic mapping and for mutant selection, the use of RFLP techniques for identification of induced genetic variation in vegetatively propagated plants and in vitro cultures, the control of plant virus diseases with the help of nuclear techniques. Project proposals on these topics are welcome, although their approval will depend upon the availability of funds. Six research co-ordination meetings were held in 1989 in Thailand (2), India, Austria, Chile and Italy. The Section was also actively involved in the 12th EUCARPIA Congress 'Science for Plant Breeding' (Goettingen, FRG, 27 February - 3 March) and in the 6th Congress of SABRAO 'Breeding Research: The Key to the Survival of the Earth' (Tsukuba, Japan, 21-25 August)

  18. Microbiome selection could spur next-generation plant breeding strategies

    Directory of Open Access Journals (Sweden)

    Murali Gopal

    2016-12-01

    Full Text Available Plants, though sessile, have developed a unique strategy to counter biotic and abiotic stresses by symbiotically co-evolving with microorganisms and tapping into their genome for this purpose. Soil is the bank of microbial diversity from which a plant selectively sources its microbiome to suit its needs. Besides soil, seeds, which carry the genetic blueprint of plants during trans-generational propagation, are home to diverse microbiota that acts as the principal source of microbial inoculum in crop cultivation. Overall, a plant is ensconced both on the outside and inside with a diverse assemblage of microbiota. Together, the plant genome and the genes of the microbiota that the plant harbours in different plant tissues i.e the ‘plant microbiome’, form the holobiome which is now considered as unit of selection: ‘the holobiont’. The ‘plant microbiome’ not only helps plants to remain fit but also offers critical genetic variability, hitherto, not employed in the breeding strategy by plant breeders, who traditionally have exploited the genetic variability of the host for developing high yielding or disease tolerant or drought resistant varieties. This fresh knowledge of the microbiome, particularly of the rhizosphere, offering genetic variability to plants, opens up new horizons for breeding that could usher in cultivation of next-generation crops depending less on inorganic inputs, resistant to insect pest and diseases and resilient to climatic perturbations. We surmise, from ever increasing evidences, that plants and their microbial symbionts need to be co-propagated as life-long partners in future strategies for plant breeding.

  19. Plant breeding and genetics newsletter. No. 9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    There have been a number of important events related to the activity of the Plant Breeding and Genetics sub-programme in the past six months. The joint FAO/IAEA RCMs on 'Molecular characterization of mutated genes controlling important traits for seed crop improvement' and 'Mutational analysis of root characters in annual food plants related to plant performance' were held in June, in Krakow, Poland. It was the third RCM of the CRP on crop plant genomics and the second in the CRP on root systems. More than 40 scientists from twenty countries participated in the meeting. Significant progress was achieved in presented projects of diverse areas of both CRPs. Although genomics and root genetics are methodologically among the most rapidly developing disciplines, the participants successfully tried to follow the latest developments. The Consultants Meeting on 'Physical mapping technologies for the identification and characterization of mutated genes contributing to crop quality' was also held in June, in Vienna. Physical mapping technologies provide new tools for the rapid advancement of breeding programs and are highly applicable to neglected crops in developing countries. Furthermore, they open new opportunities for developing modern approaches to plant improvement research. Consultants recommended the organization of a Co-ordinated Research Project dealing with application of these new technologies to breeding programmes with the use of induced mutations for crop improvement. It is expected that the new CRP will be initiated this year. In close collaboration with EU COST 851 'Gametic cells and molecular breeding for crop improvement' project we started with preparation and editing of a book on 'Doubled haploid production in crop plants. A manual'. More than 40 manuscripts were collected, reviewed by a team of EU COST 851 experts and are now in the final editing phase. Similarly, we finished editorial work on publishing the training material from the FAO/IAEA Training

  20. Plant breeding and genetics newsletter. No. 9

    International Nuclear Information System (INIS)

    2002-07-01

    There have been a number of important events related to the activity of the Plant Breeding and Genetics sub-programme in the past six months. The joint FAO/IAEA RCMs on 'Molecular characterization of mutated genes controlling important traits for seed crop improvement' and 'Mutational analysis of root characters in annual food plants related to plant performance' were held in June, in Krakow, Poland. It was the third RCM of the CRP on crop plant genomics and the second in the CRP on root systems. More than 40 scientists from twenty countries participated in the meeting. Significant progress was achieved in presented projects of diverse areas of both CRPs. Although genomics and root genetics are methodologically among the most rapidly developing disciplines, the participants successfully tried to follow the latest developments. The Consultants Meeting on 'Physical mapping technologies for the identification and characterization of mutated genes contributing to crop quality' was also held in June, in Vienna. Physical mapping technologies provide new tools for the rapid advancement of breeding programs and are highly applicable to neglected crops in developing countries. Furthermore, they open new opportunities for developing modern approaches to plant improvement research. Consultants recommended the organization of a Co-ordinated Research Project dealing with application of these new technologies to breeding programmes with the use of induced mutations for crop improvement. It is expected that the new CRP will be initiated this year. In close collaboration with EU COST 851 'Gametic cells and molecular breeding for crop improvement' project we started with preparation and editing of a book on 'Doubled haploid production in crop plants. A manual'. More than 40 manuscripts were collected, reviewed by a team of EU COST 851 experts and are now in the final editing phase. Similarly, we finished editorial work on publishing the training material from the FAO/IAEA Training

  1. Plant breeding and genetics newsletter. No. 13

    International Nuclear Information System (INIS)

    2004-06-01

    This issue reports on the creation of the Agency's Subprogramme of Sustainable Intensification of Crop Production Systems (E1) through the merger of the Soils and Plant Breeding and Genetics Subprogrammes together with part of the Entomology Subprogramme activities. Implementation of a new Coordinated Research Project (CRP) on the Effects of Mutagenic Agents on the DNA Sequence in Plants, and the successful submission of a new CRP proposal on Pyramiding of Mutated Genes Contributing to Crop Quality and Resistance to Stress Affecting Quality were among the major activities of our Subprogramme during the last six months. We actively participated in the International Year of Rice (IYR 2004) events such as the Meeting of the Informal International Working Group on the International Year of Rice (IIWG) and the FAO Rice Conference on Rice in Global Markets and Sustainable Production Systems (Rome, Italy), both in February this year. A lot of work has been concentrated this last semester on the preparation of Programme and Budget for the biennium 2006-2007 and the appraisal of TC proposals for the biennium 2005-2006. The Mutation Breeding Newsletter and the Mutation Breeding Review will merge to become the Mutation Breeding Newsletter and Reviews (MBN and R). Starting at the end of July, the MBN and R will appear on a regular basis

  2. On statistical selection in plant breeding

    NARCIS (Netherlands)

    Dourleijn, C.J.

    1993-01-01

    The ultimate goal of plant breeding is the development of new varieties. An important phase in the development process is testing and selecting potential new varieties. The varieties are tested by means of experiments at various sites, (sometimes) in several years. The observations from the

  3. Utilization of γ-irradiation technique on plant mutation breeding and plant growth regulation in Tokyo Metropolitan Isotope Research Center

    International Nuclear Information System (INIS)

    Suda, Hirokatsu

    1997-01-01

    During about 30-years, we have developed γ-irradiation technique and breeding back pruning method for the study of mutation breeding of ornamental plants. As a result, we have made a wide variety of new mutant lines in chrysanthemum, narcissus, begonia rex, begonia iron cross, winter daphne, zelkova, sweet-scented oleander, abelia, kobus, and have obtained 7 plant patents. By the use of γ-irradiation to plant mutation breeding, we often observed that plants irradiated by low dose of γ-rays showed superior or inferior growth than the of non-irradiated plants. Now, we established the irradiation conditions of γ-rays for mutation breeding and growth of regulation in narcissus, tulip, Enkianthus perulatus Schneid., komatsuna, moyashi, african violet. In most cases, irradiation dose rate is suggested to be a more important factor to induce plant growth regulators than irradiation dose. (author)

  4. Plant breeding and genetics newsletter. No. 3

    International Nuclear Information System (INIS)

    1999-06-01

    This third issue of the Plant Breeding and Genetics Newsletter highlights forthcoming events including regional (Afra) training course on 'molecular characterization of genetic biodiversity in traditional and neglected crops selected for improvement through mutation techniques' and seminar on 'mutation techniques and biotechnology for tropical and subtropical plant improvement in Asia and Pacific regions'. Status of existing co-ordinated and technical co-operation research projects is also summarized

  5. Report from the FAO/IAEA Plant Breeding and Genetics Section

    International Nuclear Information System (INIS)

    1989-01-01

    Technology development is a pre-requisite for further success in practical applications of nuclear techniques in plant genetics and crop improvement. The Research Contract Programme of the IAEA is a good means to stimulate the needed technology development. Present FAO/IAEA Co-ordinated Research Programmes concentrate upon the incorporation of in-vitro culture techniques into mutation breeding projects: In cereals by doubled-haploids for accelerating mutation selection, in root and tuber crops by eliminating chimerism through somatic embryogenesis, in mutation breeding for disease resistance by attempting in-vitro selection using pathotoxins where applicable. The Plant Breeding Unit of the Agency's Seibersdorf Laboratory contributes particularly to the methodology of mutation induction by irradiation of plant material before or during in-vitro culture. Whether the FAO/IAEA Plant Breeding and Genetics Section should include already molecular genetics in its research and training programmes was the main question addressed to a Consultants' Meeting in November. The answer was definitely positive regarding the use of Restriction Fragment Length Polymorphism, but deferred other more sophisticated work recognizing the limited resources. Another new subject matter seriously considered now is the development of tracer techniques for the diagnosis of viruses, viroids and similar causal agents of plant diseases, which eventually could lead to better ways of distinguishing between resistance and susceptibility, particularly in vegetatively propagated and perennial crops. The resources for such work still have to be found. If resources become available, we would also like to start a co-ordinated research programme on domestication of plants for industrial purposes. Project proposals are welcome. As far as assistance to Member States is concerned, in 1988 we began to pay more attention to plant breeding problems in Africa. There was interaction with oil seed breeders during an

  6. Modern Breeding Methods for Improving Protein Quality and Quantity in Plants

    Energy Technology Data Exchange (ETDEWEB)

    Dumanovic, J.; Ehrenberg, L. [Institute for the Application of Nuclear Energy in Agriculture, Veterinary Medicine and Forestry, Belgrade, Yugoslavia (Serbia)

    1968-07-01

    Against the background of the world's urgent need for increased protein production and for an improved quality of vegetable proteins, the ability of plant breeding to contribute to this need is discussed. With examples especially from maize and wheat, existing variations in protein content and protein composition are surveyed, together with the interdependence of these characteristics and their co-variation with the yield. It is shown that plant breeding has a great potential for improving the world's food situation. It is also shown that more rapid achievements are possible than is generally considered to be characteristic of plant-breeding techniques. Special emphasis is stressed on: (a) The capacity of mutation breeding, alone and in conjunction with other methods, to contribute to an increased production of high quality protein; (b) The necessity for the success of programmes whereby fast, cheap, and if possible non-destructive analytical procedures are developed to determine protein and amino acids; (c) The importance of the close collaboration of plant breeders with specialists in related subjects such as soil fertilization, physiology and nutrition, food technology, and biochemistry; (d) The importance of international co-operation and co-ordination. (author)

  7. Ethics of Plant Breeding: The IFOAM Basic Principles as a Guide for the Evolution of Organic Plant Breeding

    NARCIS (Netherlands)

    Lammerts Van Bueren, E.

    2010-01-01

    The basic values of organic agriculture is laid down in the IFOAM four basic principles: the principle of health, the principle of ecology, the principle of fairness and the principle of care. These principles and the consequences and challenges for the further development of organic plant breeding

  8. Plant breeding and genetics newsletter. No. 11

    International Nuclear Information System (INIS)

    2003-07-01

    Implementation of a new CRP on Physical mapping technologies for the identification and characterization of mutated genes contributing to crop quality, organization of mutant germplasm database and repository, implementation of new TC projects and activation of work on molecular characterization of Musa putative germplasm as well as sequencing of BAC clones were the major activities of our sub-Programme on Plant Breeding and Genetics during the last six months. A lot of work has been concentrated on organizing a mutant germplasm repository. The first collections of rice and linseed mutants have already arrived and their descriptions have been introduced into the mutated germplasm database. We found this activity especially important to stimulate exchange of crop germplasm among plant breeders. Similarly there is an urgent need to collect mutants of various crops as necessary material for functional genomics and germplasm enhancement. Nevertheless, many crop research institutes are initiating large-scale mutation programmes with the use of their own plant material. To help them in selecting the mutagen, doses and mutation treatment procedure, we published the third issue of Mutation Breeding Newsletter Index of No. 21-44. The Index is also available through our website http://www.iaea.org/programmes/nafa/d2/index.html. The numerous requests for issues of the Mutation Breeding Newsletter already received from various countries indicate the value of this 80-page index for plant breeders and research institutes. We were invited to present the activities, achievements and trends of our sub-Programme at two very important, international meetings: The International Conference on the Status of Plant and Animal Genome Research, known as the Plant and Animal Genome (PAG XI), and The International Congress on 'In the Wake of the Double Helix - From the Green Revolution to the Gene Revolution'. At this last meeting, an initiative was taken to organize the Crop Root Research

  9. Use of radiation for plant breeding in Japan: results and future

    International Nuclear Information System (INIS)

    Yamaguchi, I.

    1998-01-01

    In 1966, as the first breeds by radiation mutation in Japan, 'Reimei', a rice variety with increased lodging resistance by short culm mutation and Raiden', an early variety by mutation of soybean obtained by extreme late variety with nematoda resistance were bred and registered in the Ministry of Agriculture and Forestry. Since these characteristics of 'short culm' and early maturing' have a comparatively high mutation rate and ease of selection, among seed propagation crops many kinds of those varieties improved to have either of these characteristics or both of them at the same time by mutation breeding are bred. In Japan, varieties bred by use of mutation breeding count 107 (as of April 1998). Among crops, that with the most varieties is chrysanthemum, which has 20 varieties and the next is rice with 15 varieties. The other 38 varieties of crops such as grains, beans, industrial crops, vegetables, flowering plants, flowering trees and fruit trees, mutation breeding varieties are widely bred. Among mutagens used, gamma ray holds 80%. The recent development in the research of DNA recombination is amazing and plant bodies which have introduced useful genes which other plants have are being obtained. Radiation mutation breeding, however, has the advantages of breeding new varieties by improving only one or two characteristics of excellent races. Radiation mutation breeding and DNA recombination technologies, therefore, may need to be utilized separately according to respective purposes. In the future, for radiation mutation breeding, mutants with quality characteristics which others do not have, corresponding to the diverse demand on agricultural products must come to be required. On the other hand, by the crops like banana for which ordinary breeding is almost impossible, the expectation for radiation mutation breeding will be more and more heightened. In addition, the accumulation of studies on controlling the direction of mutation which has been regarded

  10. Participatory plant breeding and organic agriculture: A synergistic model for organic variety development in the United States

    Directory of Open Access Journals (Sweden)

    Adrienne C. Shelton

    2016-12-01

    Full Text Available Abstract Organic farmers require improved varieties that have been adapted to their unique soils, nutrient inputs, management practices, and pest pressures. One way to develop adapted varieties is to situate breeding programs in the environment of intended use, such as directly on organic farms, and in collaboration with organic farmers. This model is a form of participatory plant breeding, and was originally created in order to meet the needs of under-served, small-scale farmers in developing countries. A robust body of literature supports the quantitative genetic selection theory of participatory plant breeding, and helps to explain its increasing prevalence among organic breeding projects in the United States. The history of the organic farming movement in the United States highlights the cultural relevance of engaging organic farmers in the breeding process, complementing the biological rationale for participatory plant breeding. In addition, limited private investment in organic plant breeding encourages the involvement of plant breeders at public institutions. This paper synthesizes the biological, cultural, and economic justifications for utilizing participatory plant breeding as an appropriate methodology for organic cultivar development.

  11. Plant breeding and genetics newsletter. No. 26, January 2011

    International Nuclear Information System (INIS)

    2011-01-01

    The Plant Breeding and Genetics Section (PBGS) in IAEA Headquarters, Vienna and the Plant Breeding and Genetics Laboratory (PBGL) in Seibersdorf are very grateful for the input and support of experts, consultants and lecturers from all the Member States that helped us implement our programmatic activities. We had the honour and the privilege to host 46 trainees, fellows, interns and scientific visitors for a total of 51 training months. Every single one has enriched this programme and we fondly remember our fruitful discussions. The Plant Breeding and Genetics Subprogramme provides technical support to Member States through the development and the promotion of technology packages based on mutation induction and efficiency enhancing molecular and biotechnologies applied to crop improvement through adaptive R and D in our Laboratory and four CRPs. This year, we worked on transferring these technology packages to 96 Member States by providing technical and scientific support through 63 national, regional and interregional Technical Cooperation Projects (TCPs) that are managed by IAEA's Department of Technical Cooperation. This transfer of technologies assists Member States in the implementation of national crop improvement programmes with specific breeding objectives or regional programmes addressing abiotic and/or biotic stresses, which represent serious threats impeding crop productivity in wide areas mostly in the developing world. In this issue, you will find more about services in support of activities in Member States, training and human capacity development and technology development/adaptation in the PBGL, including work on impact of NaCl stress on the biomass and mineral nutrient assimilation in different rice varieties, comparative studies of different mutagens on seed propagated crops, protocols and guidelines for mutation breeding lower cost molecular assays, and targeting deleterious mutations (including positive control kits)

  12. Plant breeding with marker-assisted selection in Brazil

    Directory of Open Access Journals (Sweden)

    Ney Sussumu Sakiyama

    2014-03-01

    Full Text Available Over the past three decades, molecular marker studies reached extraordinary advances, especially for sequencing and bioinformatics techniques. Marker-assisted selection became part of the breeding program routines of important seed companies, in order to accelerate and optimize the cultivar developing processes. Private seed companies increasingly use marker-assisted selection, especially for the species of great importance to the seed market, e.g. corn, soybean, cotton, and sunflower. In the Brazilian public institutions few breeding programs use it efficiently. The possible reasons are: lack of know-how, lack of appropriate laboratories, few validated markers, high cost, and lack of urgency in obtaining cultivars. In this article we analyze the use and the constraints of marker-assisted selection in plant breeding programs of Brazilian public institutes

  13. Plant breeding and genetics newsletter. No. 10

    International Nuclear Information System (INIS)

    2003-01-01

    The most important event related to the activity of the Plant Breeding and Genetics sub-programme in the past six months was the 2nd FAO/IAEA Interregional Training Course on 'Mutant Germplasm Characterization using Molecular Markers' which was held at Seibersdorf, 4-29 November 2002. In addition to basic molecular and marker techniques, which were also a subject of the first training course last year, fluorescence in situ hybridisation methods were included in the teaching and demonstration programme. As we informed you in the last edition of this Newsletter, a laboratory manual was published with detailed protocols on molecular markers techniques entitled 'Mutant germplasm characterization using molecular markers. A Manual'. (IAEA Training Course Series No. 19). (available for free distribution under conditions provided on page 11 of this Newsletter). We have also finished editing a book on 'Doubled haploid production in crop plants. A Manual.' This book was prepared in close collaboration with EU COST 851 activities. Ken Kasha (Canada), Brian Forster (UK) and lwona Szarejko (Poland) helped to edit more than 40 protocols for doubled haploid production in at least 23 crop species. The preparation of this manual reflects our our interest in the development and application of this technology for crop improvement. Two CRPs and numerous Technical Co-operation projects greatly contributed to the development of doubled haploid methods and also to implementation of this technology in crop improvement programmes of many countries. Numerous other important activities have been undertaken by the Plant Breeding and Genetics sub-programme during the last 6 months. A consultants meeting on 'Low cost technology in plant tissue culture' was held in Vienna and its results will be summarized in the form of an IAEA-TECDOC which is now in the final stage of preparation. In addition to the implementation of five Co-ordinated Research Projects, nine workshops and national or regional

  14. Report from the FAO/IAEA Plant Breeding and Genetics Section

    International Nuclear Information System (INIS)

    1988-01-01

    In spite of a financial crisis of the UN-system, we were able to keep up essential activities. The co-ordinated research programme on cereal improvement using doubled-haploids but also heterosis from induced mutations started in 1986 and continued during the past year. A new regional co-ordinated research programme for Latin America, primarily for rice improvement had its first co-ordination meeting 30 March - 3 April 1987 in Quito, Ecuador. The co-ordinated research programme for identification and use of induced semi-dwarf mutants as alternative genetic sources for rice breeding completed its work with the final co-ordination meeting at Hangzhou, China, July 1987. In-vitro culture technology for mutation breeding is given high priority, e.g. for improving crop plant resistance to diseases. At the first co-ordination meeting of a new programme in September 1987, it was decided to concentrate efforts first on studying the use of toxins for in-vitro screening of resistant mutants and comparing toxin resistance with the reaction to pathogen attack under greenhouse and field conditions. Oil seeds and industrial crops have unfortunately so far received lower priority in FAO/IAEA projects, but we now look forward with some optimism to establish a global network on sesame improvement, in co-operation with the FAO Plant Production and Protection Division. A consultants meeting for this purpose was hosted by IAEA in Vienna in September 1987. The use of mutagenesis to accelerate the domestication of new crop plants - relevant for developing as well as for developed countries - had been subject of an expert discussion already in November 1986 (see MBNL No. 29). FAO and IAEA were advised to pay attention to this important task, but we still have to see whether funds become available. Vegetatively propagated plants like root and tuber crops, bananas and plantains, or woody perennials are looked upon frequently as a particular domaine of mutation breeding, which is not yet

  15. IAEA and FAO Honour Achievements in Radiation-Supported Plant Breeding

    International Nuclear Information System (INIS)

    2014-01-01

    Awards honouring teams of scientists who have helped increase food security by using radiation to breed better crop varieties were presented today by IAEA Director General Yukiya Amano. Mutation breeding, which uses radiation to mimic natural plant mutation events, is a well-established method that enables plant breeders to work with farmers to develop variations of rice, barley, sesame and other crops that are higher-yielding and more resistant to disease. The awards were initiated by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture to celebrate successes achieved so far and promote the development of further sustainable crop varieties. The Joint Division - a strategic partnership between the IAEA and the UN's Food and Agriculture Organization that is celebrating its 50th anniversary this year - supports countries in their use of the method. ''Through the use of plant mutation breeding, nuclear techniques help to create new strains of plants with characteristics that allow them to resist disease and thrive under harsh conditions, such as high altitudes and saline soils,'' Director General Amano said at an award ceremony at the IAEA headquarters, where he handed certificates to representatives of the countries of award recipients. ''The development of new varieties of food crops will be increasingly important in the future as the world tries to adapt to the potential impacts of climate change.''

  16. Willet M. Hays, great benefactor to plant breeding and the founder of our association.

    Science.gov (United States)

    Troyer, A F; Stoehr, H

    2003-01-01

    Willet M. Hays was a great benefactor to plant breeding and the founder of the American Genetic Association (AGA). We commemorate the AGA's centennial. We mined university archives, U.S. Department of Agriculture (USDA) yearbooks, plant breeding textbooks, scientific periodicals, and descendants for information. Willet Hays first recognized the individual plant as the unit of selection and started systematic pure-line selection and progeny tests in 1888. He developed useful plant breeding methods. He selected superior flax (Linum usitatissimum L.), wheat (Triticum vulgare L.), corn (Zea mays L.), barley (Hordeum vulgare L.), and oat (Avena sativa L.) varieties, and discovered Grimm alfalfa (Medicago sativa L.); all became commercially important. He initiated branch stations for better performance testing. Willet Hays befriended colleagues in other universities, in federal stations, in a London conference, and in Europe. He gathered and spread the scientific plant breeding gospel. He also improved rural roads and initiated animal breeding records and agricultural economics records. He started the AGA in 1903, serving as secretary for 10 years. He became assistant secretary of agriculture in 1904. He introduced the project system for agricultural research. He authored or coauthored the Nelson Amendment, the Smith-Lever Act, the Smith-Hughes Act, and the protocol leading to the United Nations Food and Agriculture Organization-all involved teaching agricultural practices that improved the world.

  17. Plant Breeding and Genetics Newsletter, No. 31, July 2013

    International Nuclear Information System (INIS)

    2013-07-01

    We have reached three quarters of the biennium 2012-2013. The negative effects of climate variability and change on biodiversity are becoming increasingly evident and feature more and more in our activities. The deleterious effects of climate variability and change cause devastating yield losses and threaten global food security and commodity prices. There is an urgency to develop and to produce new resilient mutant lines, to get these to farmers and to grow them on a large scale as fast as possible. We at the Plant Breeding and Genetics Section and Laboratory are adjusting our activities accordingly. We have initiated new activities for inducing and screening mutations more quickly, safely and efficiently. In this newsletter, you will find interesting news on alternatives to gamma irradiation using X rays, seed mass phenotyping using an X ray platform that we are developing and the first tests of our next generation sequencing (NGS) platform. A milestone has been reached in meeting the challenge of wheat black stem rust disease (race Ug99). In the TC section of this newsletter, you find more information on an unfolding success story involving 18 countries and four international organisations. Inducing mutations significantly speeds up the process of plant breeding and is more cost effective and environmentally friendly than using fungicides to prevent stem rust caused by race Ug99. While spontaneous mutations occurring in nature happen over a long period of time, mutation induction is used to achieve the same results much more quickly and efficiently, providing sustainable solutions to crop production constraints and responding to food security threats. In fact, this success story is a good example of the pipeline from the laboratory to the farm that we implement. This pipeline is demand driven, results based and outcome oriented: technology packages are adapted and/or developed in the Plant Breeding and Genetics Laboratory; services are provided (mutation

  18. Plant hygiene and resistance breeding as plant protection and cultivation methods in areas where emission levels are high

    Energy Technology Data Exchange (ETDEWEB)

    Berge, H

    1967-01-01

    If plants are to be used for human or animal consumption, phyto-hygiene is of great importance wherever there are significant amounts of emissions. Breeding resistant plants for technical use is important in regions where atmospheric influences such as gas, steam and dust are encountered. Besides the climatic, orographic, edaphic and chronologic conditions, biologic, chemic and physico-mechanic factors influence the incompatible conceptions of phyto-hygiene and resistance breeding. Several examples are quoted.

  19. Plant breeding for resistance to insect pests: Considerations about the use of induced mutations

    International Nuclear Information System (INIS)

    1978-01-01

    The Panel was intended to stimulate proposals on specific plant breeding objectives, for immediate and long term solution. Nine papers considered the host plant resistance to particular insect pests in a variety of cases. The desirability of achieving some measure of pest control via the development of disease-resistant mutants was discussed. In its conclusions, the Panel stressed the need to consider host plant resistance as one of the primary lines of defense in all pest management programmes. Consequently, resistance to insects was recommended to become an integral part of plant breeding programmes. Preference might need to be given to developing insect resistance in those crop plants for which practical control is lacking or where current methods of pest control present critical environmental hazards. The roles of the IAEA and FAO in such projects is outlined. Guidelines and recommendations on mutation breeding for resistance to insects are given in an appendix

  20. Natural transformation in plant breeding - a biotechnological platform for quality improvement of ornamental, agricultural and medicinal plants

    DEFF Research Database (Denmark)

    Lütken, Henrik Vlk; Hegelund, Josefine Nymark; Himmelboe, Martin

    2015-01-01

    Compactness is a desirable trait in ornamental plant breeding because it is preferred by producers, distributors and consumers. Presently, in ornamental plant production growth of many potted plants is regulated by application of chemical growth retardants, several of which are harmful to both...... (rol)-genes rolA, rolB, rolC and rolD among 18 ORFs, into the plant genome. Infection of plants by A. rhizogenes induces hairy roots, from which shoots containing rol-genes can be regenerated. Natural transformation with A. rhizogenes reveals very promising results in several plant species and can...... be useful in a broader range of application than ornamental breeding. One important aspect of this technology is that the hairy roots can be used directly in the selection proceß as a primary indicator of a succeßful transformation. Thus the technology avoids use of undesired antibiotic resistance marker...

  1. Radiation-induced mutations and plant breeding

    International Nuclear Information System (INIS)

    Naqvi, S.H.M.

    1985-01-01

    Ionizing radiation could cause genetic changes in an organism and could modify gene linkages. The induction of mutation through radiation is random and the probability of getting the desired genetic change is low but can be increased by manipulating different parameters such as dose rate, physical conditions under which the material has been irradiated, etc. Induced mutations have been used as a supplement to conventional plant breeding, particularly for creating genetic variability for specific characters such as improved plant structure, pest and disease resistance, and desired changes in maturity period; more than 200 varieties of crop plants have been developed by this technique. The Pakistan Atomic Energy Commission has used this technique fruitfully to evolve better germplasm in cotton, rice, chickpea, wheat and mungbean; some of the mutants have become popular commercial varieties. This paper describes some uses of radiation induced mutations and the results achieved in Pakistan so far

  2. Alternatives to Chromatography in Plant Breeding

    Directory of Open Access Journals (Sweden)

    Keusgen, Michael

    2016-07-01

    Full Text Available Wild plants were taken into cultivation because of special features. Usually, medicinal plants or spices show distinct secondary metabolites combined with a specific pattern of these compounds. Typically, chromatographic methods like gas chromatography (GC or high performance liquid chromatography (HPLC were applied as standard methods for a meaningful analysis of secondary metabolites. However, these methods are labor and time intensive. In the breeding process, usually numerous single plants have to be analyzed and therefore, high throughput methods are required. In this article, some examples for alternative strategies are given. Besides spectroscopic methods like near infrared (NIR, also biosensoric approaches should be considered. For instance, several enzymes can oxidize or hydrolyze secondary metabolites in dependence of their functional groups. Polyphenols can be determined by laccases. Polyphenols like catechins and flavonoids contribute to the bioactivity of many medicinal plants. Also cysteine sulfoxides, which are typical for Allium species like garlic and onions, can be enzymatically determined with high specificity. Finally, toxic cyanogenic glycosides can be quantified by the enzyme cyanidase.

  3. Will genomic selection be a practical method for plant breeding?

    OpenAIRE

    Nakaya, Akihiro; Isobe, Sachiko N.

    2012-01-01

    Background Genomic selection or genome-wide selection (GS) has been highlighted as a new approach for marker-assisted selection (MAS) in recent years. GS is a form of MAS that selects favourable individuals based on genomic estimated breeding values. Previous studies have suggested the utility of GS, especially for capturing small-effect quantitative trait loci, but GS has not become a popular methodology in the field of plant breeding, possibly because there is insufficient information avail...

  4. Periclinal chimera technique: new plant breeding approach.

    Science.gov (United States)

    Gakpetor, P M; Mohammed, H; Moreti, D; Nassar, N M A

    2017-09-21

    Plant interspecific periclinal chimeras are a mosaic formed by tissues from two species. They are manipulated here as an efficient plant breeding tool for cassava root yields. In this study, plants synthesized from two chimeras, designated as chimera 2 and chimera 4, were characterized morphologically and cytologically to unravel the origin of their tissue layers (L2 and L3). Root yield of the two chimeras was also evaluated. Chimera 2 that was developed from graft union between Manihot fortalezensis (F) as scion and M. esculenta (E) as rootstock and the same in chimera 4 was developed from grafting triploid cassava cultivar (2n = 54) (C) as scion and M. pohlii (P) (2n = 36) as rootstock. A new method of inducing interspecific chimeras without using hormones was also tested in this study. Five combinations between four cassava cultivars on one side and M. fortalezensis and an interspecific hybrid (M. glaziovii x M. esculenta) on the other side were experimented to determine compatibility between the parents. Wild species always gave L2 and L3, independent of being used as rootstock or scion. L3 is responsible for producing pericycle. Thus, its performance was different in each chimera due to specific epigenetic interaction. Of 48 grafts, it was obtained one chimera giving a percentage of 2.1% that is little lower than using hormones but much efficient to use. Chimera induction efficiency in this investigation was the same when using hormones. Thus, our new, less labor, and more cost-effective technique is as much efficient as hormones and is much potential to employ as an effective plant breeding method boosting cassava root yield.

  5. State of the science and challenges of breeding landscape plants with ecological function

    Science.gov (United States)

    Wilde, H Dayton; Gandhi, Kamal J K; Colson, Gregory

    2015-01-01

    Exotic plants dominate esthetically-managed landscapes, which cover 30–40 million hectares in the United States alone. Recent ecological studies have found that landscaping with exotic plant species can reduce biodiversity on multiple trophic levels. To support biodiversity in urbanized areas, the increased use of native landscaping plants has been advocated by conservation groups and US federal and state agencies. A major challenge to scaling up the use of native species in landscaping is providing ornamental plants that are both ecologically functional and economically viable. Depending on ecological and economic constraints, accelerated breeding approaches could be applied to ornamental trait development in native plants. This review examines the impact of landscaping choices on biodiversity, the current status of breeding and selection of native ornamental plants, and the interdisciplinary research needed to scale up landscaping plants that can support native biodiversity. PMID:26504560

  6. Use of mutagenous factors in the breeding of vegetatively propagated plants

    International Nuclear Information System (INIS)

    Dryagina, I.V.; Fomenko, N.N.

    1978-01-01

    Given is a review of the literature and authors data on using mutagenous factors with different nature to breed some new and useful forms of plants reproduced vegetatively. The problem history and prospects of the practical application of the method are stated. In particular the data on ionizing radiation use in fruit crop selection to breed mutation forms (effect on buds, pollen, seeds etc.) are presented

  7. Collaborative Plant Breeding for Organic Agricultural Systems in Developed Countries

    Directory of Open Access Journals (Sweden)

    Isabelle Goldringer

    2011-08-01

    Full Text Available Because organic systems present complex environmental stress, plant breeders may either target very focused regions for different varieties, or create heterogeneous populations which can then evolve specific adaptation through on-farm cultivation and selection. This often leads to participatory plant breeding (PPB strategies which take advantage of the specific knowledge of farmers. Participatory selection requires increased commitment and engagement on the part of the farmers and researchers. Projects may begin as researcher initiatives with farmer participation or farmer initiatives with researcher participation and over time evolve into true collaborations. These projects are difficult to plan in advance because by nature they change to respond to the priorities and interests of the collaborators. Projects need to provide relevant information and analysis in a time-frame that is meaningful for farmers, while remaining scientifically rigorous and innovative. This paper presents two specific studies: the first was a researcher-designed experiment that assessed the potential adaptation of landraces to organic systems through on-farm cultivation and farmer selection. The second is a farmer-led plant breeding project to select bread wheat for organic systems in France. Over the course of these two projects, many discussions among farmers, researchers and farmers associations led to the development of methods that fit the objectives of those involved. This type of project is no longer researcher-led or farmer-led but instead an equal collaboration. Results from the two research projects and the strategy developed for an ongoing collaborative plant breeding project are discussed.

  8. A microcosm for the breeding of plants under controlled conditions

    International Nuclear Information System (INIS)

    D'Aquino, Luigi; Maglione, Maria Grazia; Minarini, Carla; Pandolfi Giuseppe; Lanza, Bruno; Atrigna, Mauro; De Filippo, Giovanni; Giannotta, Giovanni; Pedicini Antonio; Aprano Salvatore

    2015-01-01

    In order to enhance studies of the effects of multiple stress on plant physiology laboratory scale, in collaboration with FOS Srl and Sesmat Srl and the project application for organic PON02 0 0556 3 420580 «SMARTAGS-SMARt TAGS 'was conceived, designed and built a 'microcosm for the breeding of plants under biotic and abiotic stress conditioning '. [it

  9. Plant breeding and genetics newsletter. No. 5

    International Nuclear Information System (INIS)

    2000-06-01

    The fifth issue of the Plant Breeding and Genetics Newsletter brings information on our activities in the first half of 2000. A new Co-ordinated Research Project (CRP) on 'Mutational analysis of root characters in annual food plants related to plant performance' was initiated with the first Research Co-ordination Meeting (RCM) held in February 2000 in Vienna. Scientists participating in the RCM presented papers and discussed work plans on the use of mutants for genetic analysis of root system morphology, tolerance to soil stresses and mycorrhizal relationships. Mutated genes responsible for defined root characters will be incorporated to molecular markers based genetic maps by building their root systems to make them more adaptive to particular soil conditions. Preparation for initiation of another CRP on 'Improvement of tropical and subtropical fruit trees through induced mutations and biotechnology' has been completed. We are expecting 14 participants at the first RCM, which will be held in Vienna in September 2000. It is expected that this CRP will make a real breakthrough in application of induced mutations for improvement of fruit trees. In vitro, especially somatic embryogenesis as well as conventional breeding methods will be used in combination with mutation techniques. Significant progress was noted, at the second RCM, on the application of biotechnology and mutation techniques for the improvement of local food crops in LIFCs held in San Jose, Costa Rica, June 2000. The RCM was combined with a workshop on 'In vitro culture techniques for the improvement of vegetatively propagated tropical fruit crops'. The Regional training course on 'New frontiers of developing and handling mutants' was organized under the Technical Cooperation Project on 'Mutational enhancement of genetic diversity in rice' and hosted by the Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China in June 2000. The course focus on current induced mutation

  10. Consumers & plant genomics : the positioning and acceptance of a new plant breeding practice

    NARCIS (Netherlands)

    Heuvel, van den T.

    2008-01-01

    Innovative developments in technology, such as the emergence of genomics as a plant breeding practice, hold the potential to change the supply side of the market. The success of these practices not only depends on the improved efficiency and effectiveness it brings, but also on how well they are

  11. Plant Breeding and Genetics Newsletter, No. 38, January 2017

    International Nuclear Information System (INIS)

    2017-01-01

    This year significant progress was made on the discovery of mutations using next generation sequencing for different crops, including rice and banana. Also, a program for the development of molecular markers for important traits has been initiated to translate the molecular knowledge on mutant traits into applications for plant breeding and to enable wider utilization of available useful mutant germplasm by Member States. A semi-dwarf mutant trait in sorghum was chosen in the pilot phase. In October 2016, a film crew visited the Agency’s Laboratories in Seibersdorf, including PBGL, in the context of a National Geographics project on the application of nuclear technologies to help address global challenges such as food, agriculture and climate change. In December 2016 a 22-minute documentary was aired on the National Geographics Channel in Belgium, the Netherlands and France highlighting the work at PBGL and the contribution of plant mutation breeding to food security and climate-smart agriculture.

  12. Mitigation of inbreeding while preserving genetic gain in genomic breeding programs for outbred plants.

    Science.gov (United States)

    Lin, Zibei; Shi, Fan; Hayes, Ben J; Daetwyler, Hans D

    2017-05-01

    Heuristic genomic inbreeding controls reduce inbreeding in genomic breeding schemes without reducing genetic gain. Genomic selection is increasingly being implemented in plant breeding programs to accelerate genetic gain of economically important traits. However, it may cause significant loss of genetic diversity when compared with traditional schemes using phenotypic selection. We propose heuristic strategies to control the rate of inbreeding in outbred plants, which can be categorised into three types: controls during mate allocation, during selection, and simultaneous selection and mate allocation. The proposed mate allocation measure GminF allocates two or more parents for mating in mating groups that minimise coancestry using a genomic relationship matrix. Two types of relationship-adjusted genomic breeding values for parent selection candidates ([Formula: see text]) and potential offspring ([Formula: see text]) are devised to control inbreeding during selection and even enabling simultaneous selection and mate allocation. These strategies were tested in a case study using a simulated perennial ryegrass breeding scheme. As compared to the genomic selection scheme without controls, all proposed strategies could significantly decrease inbreeding while achieving comparable genetic gain. In particular, the scenario using [Formula: see text] in simultaneous selection and mate allocation reduced inbreeding to one-third of the original genomic selection scheme. The proposed strategies are readily applicable in any outbred plant breeding program.

  13. Plant Breeding and Genetics Newsletter, No. 32, January 2014

    International Nuclear Information System (INIS)

    2014-01-01

    One major event this last half of 2013 was the success story of the IAEA interregional TC project INT/5/150 'Responding to the Transboundary Threat of Wheat Black Stem Rust (Ug99)'. Results have been achieved in record time; the project was started in 2009, and by mid 2013, two advanced mutant lines, resistant to the most virulent strains of wheat black stem rust (Ug99), successfully passed the national performance trials in Kenya and are ready for commercial release. A Regional Training Course was organized at IRRI (The Philippines) in the framework of regional TC project RAS/5/065 'Supporting Climate-Proofing Rice Production Systems (CRiPS) Based on Nuclear Applications'. By joining efforts, the IAEA, FAO and IRRI aim to ensure that rice scientists are acquainted with the most recent plant breeding and phenotyping approaches, allowing them to address future threats to food security stemming from climate change and other stress factors. The project also aims to act as a platform for future collaboration in rice production. This second half of the year was also the period of 'first timers'. For the first time, Lesotho is using mutation breeding techniques in potato, sweet potato and amaranth. A fellow is being introduced to these techniques at the Plant Breeding and Genetics Laboratory (PBGL) in Seibersdorf, Austria. Similarly we are supporting and nurturing the first steps of national mutation breeding programmes in Oman, Palestine, Qatar and Saudi Arabia. Another cause for excitement is the ReNuAL project: the Seibersdorf Laboratories will be upgraded and renovated, including the FAO/IAEA Agriculture and Biotechnology Laboratories. This is a huge project with many logistical challenges, which are being met with vigour and personal investment in time and energy by our staff. Our guidance in this endeavour is 'fit-forpurpose to the Member States' in the future. IAEA Member States adopted a resolution to support this initiative, and we are now seeking financial and

  14. Plant breeding and genetics newsletter. No. 19, July 2007

    International Nuclear Information System (INIS)

    2007-07-01

    This issue of the newsletter announces the International Symposium on Induced Mutation in Plants (SIMP) which is being planned to take place at International Atomic Energy Agency , Vienna, Austria, 11-15 August 2008, to celebrate 80 years of mutation induction enhanced breeding and the renaissance of mutation induction

  15. Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery

    DEFF Research Database (Denmark)

    Hickey, John M.; Chiurugwi, Tinashe; Mackay, Ian

    2017-01-01

    The rate of annual yield increases for major staple crops must more than double relative to current levels in order to feed a predicted global population of 9 billion by 2050. Controlled hybridization and selective breeding have been used for centuries to adapt plant and animal species for human...... that unifies breeding approaches, biological discovery, and tools and methods. Here we compare and contrast some animal and plant breeding approaches to make a case for bringing the two together through the application of genomic selection. We propose a strategy for the use of genomic selection as a unifying...... use. However, achieving higher, sustainable rates of improvement in yields in various species will require renewed genetic interventions and dramatic improvement of agricultural practices. Genomic prediction of breeding values has the potential to improve selection, reduce costs and provide a platform...

  16. Plant breeding and genetics newsletter. No. 14

    International Nuclear Information System (INIS)

    2004-12-01

    These last six months, the Plant Breeding and Genetics (PBG) Section of the Joint FAO/IAEA Division (NAFA/AGE) implemented five Research Coordination Meetings (RCMs) and one Consultants Meeting for a new Coordinated Research Project (CRP) on 'Molecular tools for quality improvement in vegetatively propagated crops including banana and cassava' (8-11 November 2004, Vienna). Other salient points were the training courses we implemented this semester in the framework of different Technical Cooperation (TC) projects.Details about these activities inside this Newsletter

  17. Searching for an Accurate Marker-Based Prediction of an Individual Quantitative Trait in Molecular Plant Breeding.

    Science.gov (United States)

    Fu, Yong-Bi; Yang, Mo-Hua; Zeng, Fangqin; Biligetu, Bill

    2017-01-01

    Molecular plant breeding with the aid of molecular markers has played an important role in modern plant breeding over the last two decades. Many marker-based predictions for quantitative traits have been made to enhance parental selection, but the trait prediction accuracy remains generally low, even with the aid of dense, genome-wide SNP markers. To search for more accurate trait-specific prediction with informative SNP markers, we conducted a literature review on the prediction issues in molecular plant breeding and on the applicability of an RNA-Seq technique for developing function-associated specific trait (FAST) SNP markers. To understand whether and how FAST SNP markers could enhance trait prediction, we also performed a theoretical reasoning on the effectiveness of these markers in a trait-specific prediction, and verified the reasoning through computer simulation. To the end, the search yielded an alternative to regular genomic selection with FAST SNP markers that could be explored to achieve more accurate trait-specific prediction. Continuous search for better alternatives is encouraged to enhance marker-based predictions for an individual quantitative trait in molecular plant breeding.

  18. The ion-beam breeding makes great success in plant business

    Energy Technology Data Exchange (ETDEWEB)

    Abe, T; Yoshida, S [Institute of Physical and Chemical Research, Wako, Saitama (Japan). Plant Functions Lab.; Fukunishi, N; Ryuto, H [Institute of Physical and Chemical Research, Wako, Saitama (Japan). Cyclotron Center; Suzuki, K [Suntory Flowers Ltd., Yokaichi, Shiga (Japan)

    2005-07-01

    The ion-beam breeding developed by the Ring cyclotron of RARF is highly effective to create new flower cultivars within a short duration. A new type of garden plants 'Temari' series (verbena hybrida) keeps many flower clusters from spring until autumn, however 'Coral Pink' of this series shows poor flower clusters. To improve 'Coral Pink' using the ion-beam irradiation. sixty four single nodes were cultured in one plastic dish which was treated with 1-10 Gy of the N-ion beam at 135 MeV/u. Finally, four mutant lines with rich blooming were successfully selected. These mutants grew well compared to host plant, and kept many flower clusters even in autumn. The best mutant had larger number of flower clusters than the host plant in the pot-planting test so that it was released to the market in 2002 with a level of several hundred thousand pots. The development period of the new 'Coral Pink' was only three years. The similar successful cases were demonstrated by the new Dahlia World' (2002), the new Verbena 'Sakura' (2003) and the new Petunia 'Rose' (2003). Thus, we conclude that the ion beam irradiation is an excellent tool for mutation breeding to improve horticultural and agricultural crops with high efficiency. (author)

  19. The ion-beam breeding makes great success in plant business

    International Nuclear Information System (INIS)

    Abe, T.; Yoshida, S.

    2005-01-01

    The ion-beam breeding developed by the Ring cyclotron of RARF is highly effective to create new flower cultivars within a short duration. A new type of garden plants 'Temari' series (verbena hybrida) keeps many flower clusters from spring until autumn, however 'Coral Pink' of this series shows poor flower clusters. To improve 'Coral Pink' using the ion-beam irradiation. sixty four single nodes were cultured in one plastic dish which was treated with 1-10 Gy of the N-ion beam at 135 MeV/u. Finally, four mutant lines with rich blooming were successfully selected. These mutants grew well compared to host plant, and kept many flower clusters even in autumn. The best mutant had larger number of flower clusters than the host plant in the pot-planting test so that it was released to the market in 2002 with a level of several hundred thousand pots. The development period of the new 'Coral Pink' was only three years. The similar successful cases were demonstrated by the new Dahlia World' (2002), the new Verbena 'Sakura' (2003) and the new Petunia 'Rose' (2003). Thus, we conclude that the ion beam irradiation is an excellent tool for mutation breeding to improve horticultural and agricultural crops with high efficiency. (author)

  20. Responsible decision-making for plant research and breeding innovations in the European Union.

    Science.gov (United States)

    Eriksson, Dennis; Chatzopoulou, Sevasti

    2018-01-02

    Plant research and breeding has made substantial technical progress over the past few decades, indicating a potential for tremendous societal impact. Due to this potential, the development of policies and legislation on plant breeding and the technical progress should preferably involve all relevant stakeholders. However, we argue here that there is a substantial imbalance in the European Union (EU) regarding the influence of the various stakeholder groups on policy makers. We use evidence from three examples in order to show that the role of science is overlooked: 1) important delays in the decision process concerning the authorization of genetically modified (GM) maize events, 2) the significance attributed to non-scientific reasons in new legislation concerning the prohibition of GM events in EU member states, and 3) failure of the European Commission to deliver legal guidance to new plant breeding techniques despite sufficient scientific evidence and advisory reports. We attribute this imbalance to misinformation and misinterpretation of public perceptions and a disproportionate attention to single outlier reports, and we present ideas on how to establish a better stakeholder balance within this field.

  1. The plant breeding industry after pure line theory: Lessons from the National Institute of Agricultural Botany.

    Science.gov (United States)

    Berry, Dominic

    2014-06-01

    In the early twentieth century, Wilhelm Johannsen proposed his pure line theory and the genotype/phenotype distinction, work that is prized as one of the most important founding contributions to genetics and Mendelian plant breeding. Most historians have already concluded that pure line theory did not change breeding practices directly. Instead, breeding became more orderly as a consequence of pure line theory, which structured breeding programmes and eliminated external heritable influences. This incremental change then explains how and why the large multi-national seed companies that we know today were created; pure lines invited standardisation and economies of scale that the latter were designed to exploit. Rather than focus on breeding practice, this paper examines the plant varietal market itself. It focusses upon work conducted by the National Institute of Agricultural Botany (NIAB) during the interwar years, and in doing so demonstrates that, on the contrary, the pure line was actually only partially accepted by the industry. Moreover, claims that contradicted the logic of the pure line were not merely tolerated by the agricultural geneticists affiliated with NIAB, but were acknowledged and legitimised by them. The history of how and why the plant breeding industry was transformed remains to be written. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding

    OpenAIRE

    He, Jiangfeng; Zhao, Xiaoqing; Laroche, André; Lu, Zhen-Xiang; Liu, HongKui; Li, Ziqin

    2014-01-01

    Marker-assisted selection (MAS) refers to the use of molecular markers to assist phenotypic selections in crop improvement. Several types of molecular markers, such as single nucleotide polymorphism (SNP), have been identified and effectively used in plant breeding. The application of next-generation sequencing (NGS) technologies has led to remarkable advances in whole genome sequencing, which provides ultra-throughput sequences to revolutionize plant genotyping and breeding. To further broad...

  3. Mutation breedings in ornamental plants

    International Nuclear Information System (INIS)

    Matsubara, Hisao

    1984-01-01

    Several methods of obtaining somatic mutant plants by γ-ray irradiation on pieces of tissues as in vitro adventitious bud technique or small cutting methods with repeated pruning are described. 1) The irradiation to the adventitious buds in the small pieces of organ cultured in vitro and to the small cuttings are employed. Culture beds of agar or of Japanese Kanuma soil were used in vitro culture. In these experiments, Japanese Kanuma soil bed in in vitro culture worked well for root development and transplant of the induced mutants. 2) Combination with in vitro culture and repeated pruning technique were used for isolation and fixation of solid somatic mutant from small sectorial mutation induced by irradiation. This method was successful for begonia, chrysanthemum, aberia and winter daphne. 3) These data indicates that most of the induced mutant plants were non-chimeric, while a few others were chimeric. Among the new varieties, ''Gin-Sei'', ''Ryoku-Ha'', ''Big-Cross'', ''Kaede-Iron'', ''Mei-Fu-Hana-Tsukubane-Utsugi'' and ''Daphne-γ-3'' are non-chimeric, and ''Mini-Mini-Iron'' and ''Orange-Iron'' are chimeric. Moreover, these new varieties have remarkably differed in size and in color pattern from original variety. From the experimental results of somatic mutation, it is indicated that plant tissue culture have enormous potential in radiation breeding and in rapid propagation of the somatic mutant. (author)

  4. Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery.

    Science.gov (United States)

    Hickey, John M; Chiurugwi, Tinashe; Mackay, Ian; Powell, Wayne

    2017-08-30

    The rate of annual yield increases for major staple crops must more than double relative to current levels in order to feed a predicted global population of 9 billion by 2050. Controlled hybridization and selective breeding have been used for centuries to adapt plant and animal species for human use. However, achieving higher, sustainable rates of improvement in yields in various species will require renewed genetic interventions and dramatic improvement of agricultural practices. Genomic prediction of breeding values has the potential to improve selection, reduce costs and provide a platform that unifies breeding approaches, biological discovery, and tools and methods. Here we compare and contrast some animal and plant breeding approaches to make a case for bringing the two together through the application of genomic selection. We propose a strategy for the use of genomic selection as a unifying approach to deliver innovative 'step changes' in the rate of genetic gain at scale.

  5. Searching for an Accurate Marker-Based Prediction of an Individual Quantitative Trait in Molecular Plant Breeding

    Directory of Open Access Journals (Sweden)

    Yong-Bi Fu

    2017-07-01

    Full Text Available Molecular plant breeding with the aid of molecular markers has played an important role in modern plant breeding over the last two decades. Many marker-based predictions for quantitative traits have been made to enhance parental selection, but the trait prediction accuracy remains generally low, even with the aid of dense, genome-wide SNP markers. To search for more accurate trait-specific prediction with informative SNP markers, we conducted a literature review on the prediction issues in molecular plant breeding and on the applicability of an RNA-Seq technique for developing function-associated specific trait (FAST SNP markers. To understand whether and how FAST SNP markers could enhance trait prediction, we also performed a theoretical reasoning on the effectiveness of these markers in a trait-specific prediction, and verified the reasoning through computer simulation. To the end, the search yielded an alternative to regular genomic selection with FAST SNP markers that could be explored to achieve more accurate trait-specific prediction. Continuous search for better alternatives is encouraged to enhance marker-based predictions for an individual quantitative trait in molecular plant breeding.

  6. Searching for an Accurate Marker-Based Prediction of an Individual Quantitative Trait in Molecular Plant Breeding

    Science.gov (United States)

    Fu, Yong-Bi; Yang, Mo-Hua; Zeng, Fangqin; Biligetu, Bill

    2017-01-01

    Molecular plant breeding with the aid of molecular markers has played an important role in modern plant breeding over the last two decades. Many marker-based predictions for quantitative traits have been made to enhance parental selection, but the trait prediction accuracy remains generally low, even with the aid of dense, genome-wide SNP markers. To search for more accurate trait-specific prediction with informative SNP markers, we conducted a literature review on the prediction issues in molecular plant breeding and on the applicability of an RNA-Seq technique for developing function-associated specific trait (FAST) SNP markers. To understand whether and how FAST SNP markers could enhance trait prediction, we also performed a theoretical reasoning on the effectiveness of these markers in a trait-specific prediction, and verified the reasoning through computer simulation. To the end, the search yielded an alternative to regular genomic selection with FAST SNP markers that could be explored to achieve more accurate trait-specific prediction. Continuous search for better alternatives is encouraged to enhance marker-based predictions for an individual quantitative trait in molecular plant breeding. PMID:28729875

  7. Plant breeding in the turn of the millennium

    Directory of Open Access Journals (Sweden)

    Aluízio Borém

    1998-01-01

    Full Text Available The transition from hunting and gathering to farming happened about 10,000 years ago, independently and diffusely in several places in the world. Plant breeders were responsible for genetic progress in a number of crop species. It included hybrids, the introgression of wild species genes and also the Green Revolution, which started in the 1960's with the cereals. The varieties developed by breeding, along with the use of new crop technology (fertilization, soil tillage, etc. changed the status of some countries from importers to exporters of food. In the turn of the millennium,, plant breeding, faces new challenges in a globalized world, but it has new tools to deal with them. Notwithstanding the present contributions of plant breeding and crop management, its future contributions may be even greater. The partnership being developed between plant breeding and biotechnology will assure a more consistent and predictable genetic progress. Current contributions of biotechnology have arrived for many crops in different places of the world. Varieties developed by transformation are grown in large acreage in some countries. Some concerns have also arisen from the use of GMOs. For example, the introgression of a gene for insect resistance 4 into many different species could result in an undesirable endemic risk, here called interespecific biotechnological vulnerability. Another concern is that biotechnology race may create yield plateaus in programs using genes pyramiding for all new traits made available by biotechnology, resulting in what is called genetic gridlock. Nevertheless, the benefits of using biotechnology will substantially enhance the contributions of plant breeding to human lifeA transição da fase de coleta e caça para a agricultura ocorreu há cerca de dez mil anos independentemente e em vários locais no mundo. Naquela época iniciou-se a domesticação da maioria das espécies cultivadas, dando início às atividades agrícolas. Os

  8. Be-Breeder – an application for analysis of genomic data in plant breeding

    Directory of Open Access Journals (Sweden)

    Filipe Inácio Matias

    2016-12-01

    Full Text Available Be-Breeder is an application directed toward genetic breeding of plants, developed through the Shiny package of the R software, which allows different phenotype and molecular (marker analysis to be undertaken. The section for analysis of molecular data of the Be-Breeder application makes it possible to achieve quality control of genotyping data, to obtain genomic kinship matrices, and to analyze genomic selection, genome association, and genetic diversity in a simple manner on line. This application is available for use in a network through the site of the Allogamous Plant Breeding Laboratory of ESALQ-USP (http://www.genetica.esalq.usp.br/alogamas/R.html.

  9. Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration

    Science.gov (United States)

    Kell, Douglas B.

    2011-01-01

    Background The soil represents a reservoir that contains at least twice as much carbon as does the atmosphere, yet (apart from ‘root crops’) mainly just the above-ground plant biomass is harvested in agriculture, and plant photosynthesis represents the effective origin of the overwhelming bulk of soil carbon. However, present estimates of the carbon sequestration potential of soils are based more on what is happening now than what might be changed by active agricultural intervention, and tend to concentrate only on the first metre of soil depth. Scope Breeding crop plants with deeper and bushy root ecosystems could simultaneously improve both the soil structure and its steady-state carbon, water and nutrient retention, as well as sustainable plant yields. The carbon that can be sequestered in the steady state by increasing the rooting depths of crop plants and grasses from, say, 1 m to 2 m depends significantly on its lifetime(s) in different molecular forms in the soil, but calculations (http://dbkgroup.org/carbonsequestration/rootsystem.html) suggest that this breeding strategy could have a hugely beneficial effect in stabilizing atmospheric CO2. This sets an important research agenda, and the breeding of plants with improved and deep rooting habits and architectures is a goal well worth pursuing. PMID:21813565

  10. Investment, regulation, and uncertainty: managing new plant breeding techniques.

    Science.gov (United States)

    Smyth, Stuart J; McDonald, Jillian; Falck-Zepeda, Jose

    2014-01-01

    As with any technological innovation, time refines the technology, improving upon the original version of the innovative product. The initial GM crops had single traits for either herbicide tolerance or insect resistance. Current varieties have both of these traits stacked together and in many cases other abiotic and biotic traits have also been stacked. This innovation requires investment. While this is relatively straight forward, certain conditions need to exist such that investments can be facilitated. The principle requirement for investment is that regulatory frameworks render consistent and timely decisions. If the certainty of regulatory outcomes weakens, the potential for changes in investment patterns increases.   This article provides a summary background to the leading plant breeding technologies that are either currently being used to develop new crop varieties or are in the pipeline to be applied to plant breeding within the next few years. Challenges for existing regulatory systems are highlighted. Utilizing an option value approach from investment literature, an assessment of uncertainty regarding the regulatory approval for these varying techniques is undertaken. This research highlights which technology development options have the greatest degree of uncertainty and hence, which ones might be expected to see an investment decline.

  11. Current status of molecular biological techniques for plant breeding in the Republic of Korea

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Seong-Han; Lee, Si-Myung; Park, Bum-Seok; Yun, In-Sun; Goo, Doe-Hoe; Kim, Seok-Dong [Rural Development Administration, National Institute of Agricultural Science and Technology, Suwon (Korea)

    2002-02-01

    Classical plant breeding has played an important role in developing new varieties in current agriculture. For decades, the technique of cross-pollination has been popular for breeding in cereal and horticultural crops to introduce special traits. However, recently the molecular techniques get widely accepted as an alternative tool in both introducing a useful trait for developing the new cultivars and investigating the characteristics of a trait in plant, like the identification of a gene. Using the advanced molecular technique, several genetically modified (GM) crops (e.g., Roundup Ready Soybean, YieldGard, LibertyLink etc.) became commercially cultivated and appeared in the global market since 1996. The GM crops, commercially available at the moment, could be regarded as successful achievements in history of crop breeding conferring the specific gene into economically valuable crops to make them better. Along with such achievements, on the other hand these new crops have also caused the controversial debate on the safety of GM crops as human consumption and environmental release as well. Nevertheless, molecular techniques are widespread and popular in both investigating the basic science of plant biology and breeding new varieties compared to their conventional counterparts. Thus, the Department of Bioresources at the National Institute of Agricultural Science and Technology (NIAST) has been using the molecular biological techniques as a complimentary tool for the improvement of crop varieties for almost two decades. (author)

  12. Responsible decision-making for plant research and breeding innovations in the European Union

    DEFF Research Database (Denmark)

    Eriksson, Ulf Dennis; Chatzopoulou, Sevasti

    2017-01-01

    Plant research and breeding has made substantial technical progress over the past few decades, indicating a potential for tremendous societal impact. Due to this potential, the development of policies and legislation on plant breeding and the technical progress should preferably involve all...... relevant stakeholders. However, we argue here that there is a substantial imbalance in the European Union (EU) regarding the influence of the various stakeholder groups on policy makers. We use evidence from three examples in order to show that the role of science is overlooked: 1) important delays...... in the decision process concerning the authorization of genetically modified (GM) maize events, 2) the significance attributed to non-scientific reasons in new legislation concerning the prohibition of GM events in EU member states, and 3) failure of the European Commission to deliver legal guidance to new plant...

  13. Whole-Genome Regression and Prediction Methods Applied to Plant and Animal Breeding

    Science.gov (United States)

    de los Campos, Gustavo; Hickey, John M.; Pong-Wong, Ricardo; Daetwyler, Hans D.; Calus, Mario P. L.

    2013-01-01

    Genomic-enabled prediction is becoming increasingly important in animal and plant breeding and is also receiving attention in human genetics. Deriving accurate predictions of complex traits requires implementing whole-genome regression (WGR) models where phenotypes are regressed on thousands of markers concurrently. Methods exist that allow implementing these large-p with small-n regressions, and genome-enabled selection (GS) is being implemented in several plant and animal breeding programs. The list of available methods is long, and the relationships between them have not been fully addressed. In this article we provide an overview of available methods for implementing parametric WGR models, discuss selected topics that emerge in applications, and present a general discussion of lessons learned from simulation and empirical data analysis in the last decade. PMID:22745228

  14. Proceedings of the 8th workshop on plant mutation breeding. Effective use of physical/chemical mutagens

    Energy Technology Data Exchange (ETDEWEB)

    Kume, Tamikazu; Watanabe, Kazuo; Tano, Shigemitsu (eds.) [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    The Workshop on Plant Mutation Breeding of FNCA (Forum for Nuclear Cooperation in Asia), was held on 9-13 October 2000 in Hanoi, Vietnam. The Workshop was co-sponsored by the Science and Technology Agency (STA), the Ministry of Science, Technology and Environment (MOSTE of Vietnam) and the Ministry of Agriculture and Rural Development (MARD of Vietnam) in cooperation with the Ministry of Agriculture, Forestry and Fisheries (MAFF), National Institute of Agrobiological Resources (NIAR of Vietnam), the Japan Atomic Industrial Forum (JAIF) and Japan Atomic Energy Research Institute (JAERI). Two Scientists, a Project Leader and an expert on methodology for plant/crop mutation breeding, participated from each of the member countries, i.e. China, Indonesia, Malaysia, the Philippines, Thailand, Vietnam and Japan. Also attending the Workshop were, one participant from Korea, seven participants from both Japan and Vietnam. The number of the participants in the Workshop totalled about sixty people including guests and observers. Sixteen papers including eight invited papers on the current status of methodology for plant/crop mutation breeding in the participating countries were presented. Discussions were focused on the subject concerning 'Effective Use of Physical/Chemical Mutagens', as well as a detailed report on the current status of research in each participating country. In addition, the topics of developing a mutant breeding database, an information exchange for plant/crop mutation breeding, and more tightly bound international co-operative research in the near future were also high on the agenda. This proceeding compiles the invited and contributed papers that were submitted from the speakers. (author)

  15. Proceedings of the 8th workshop on plant mutation breeding. Effective use of physical/chemical mutagens

    Energy Technology Data Exchange (ETDEWEB)

    Kume, Tamikazu; Watanabe, Kazuo; Tano, Shigemitsu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    The Workshop on Plant Mutation Breeding of FNCA (Forum for Nuclear Cooperation in Asia), was held on 9-13 October 2000 in Hanoi, Vietnam. The Workshop was co-sponsored by the Science and Technology Agency (STA), the Ministry of Science, Technology and Environment (MOSTE of Vietnam) and the Ministry of Agriculture and Rural Development (MARD of Vietnam) in cooperation with the Ministry of Agriculture, Forestry and Fisheries (MAFF), National Institute of Agrobiological Resources (NIAR of Vietnam), the Japan Atomic Industrial Forum (JAIF) and Japan Atomic Energy Research Institute (JAERI). Two Scientists, a Project Leader and an expert on methodology for plant/crop mutation breeding, participated from each of the member countries, i.e. China, Indonesia, Malaysia, the Philippines, Thailand, Vietnam and Japan. Also attending the Workshop were, one participant from Korea, seven participants from both Japan and Vietnam. The number of the participants in the Workshop totalled about sixty people including guests and observers. Sixteen papers including eight invited papers on the current status of methodology for plant/crop mutation breeding in the participating countries were presented. Discussions were focused on the subject concerning 'Effective Use of Physical/Chemical Mutagens', as well as a detailed report on the current status of research in each participating country. In addition, the topics of developing a mutant breeding database, an information exchange for plant/crop mutation breeding, and more tightly bound international co-operative research in the near future were also high on the agenda. This proceeding compiles the invited and contributed papers that were submitted from the speakers. (author)

  16. Plant mutation breeding and application of isotopic tracer in Chinese agriculture

    International Nuclear Information System (INIS)

    Liang Qu

    1993-03-01

    The progress and achievements made in plant mutation breeding and application of isotopic tracer in Chinese agriculture are outlined. Plant mutation breeding is well developed not only in improvement of crops but also in methodology of mutation induction. More than 325 mutant varieties and hundreds of various valuable mutants of 29 different species have been obtained. The mutant cultivars released have covered more than 10 million hectares in total area. The systematic studies on methodology such as techniques for mutagenic treatment, development of various mutagens, screening and selecting techniques of mutation etc. have been carried out in China. The techniques of radioisotopic tracer used in many research fields are described. Application of isotopic tracer in studies of fertilization and plant nutrition, environment protection, nitrogen-fixation, animal production and diagnosis of diseases, and so on, have made great achievements and benefits in China. Many kinds of labelled compounds, especially of labelled agro-chemicals have been synthesized in the Institute for Application of Atomic Energy (IAAE). Chinese Academy of Agricultural Sciences (CAAS). The proposals for the region cooperation in Asia on application of atomic energy in agriculture are included

  17. Studies on plant breeding and genetics by radiation application

    International Nuclear Information System (INIS)

    Kwon, S.H.; Chung, K.H.; Woon, J.L.; Oh, J.H.; Kim, J.R.; Chae, J.C.; Shin, I.C.

    1981-01-01

    This study was conducted to obtain appropriate breeding materials for mutation breeding by evaluation of the soybean germ plasm and to select promising mutants from the progenies of various irradiated populations. Some fundamental studies were carried out to cope with the problems of diseases, insect pests and physiological stresses relevant to local adaptability in soybean. Establishment of a useful technique for induced mutation in barley and some vegetatively propagated plants was also carried out. As results, promising 5 soybean lines were selected from 21 entries tested for productivity and local adaptability at the four different locations. They showed superior yield potential (over 3,000 kg/ha) to the present leading varieties. It is to be hoped that they will be released as new varieties, if they keep the same yield potential in advance tests next year

  18. Plant breeding and genetics newsletter. No. 12

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-01-01

    The activities of the Plant Breeding and Genetics sub-Programme concentrated, during the last six months, on organization of a new Coordinated Research Programmes and numerous training courses. To establish and implement the CRP on Effect of Mutagenic Agents on DNA Sequence in Plants a consultants meeting was held in Vienna, July 2003. As a result is was possible to implement this CRP with the participation of 12 institutes from nine.countries. Similarly, another consultant meeting was held in November to initiate a new CRP on Identification and pyramiding of genes responsible for crop quality characters and resistance to quality affecting stresses. It is expected that the CRP will be implemented in the beginning of 2004. Rapid development of molecular markers technology generated strong interest in identification and characterization of mutated genes. To meet this expectation numerous training courses and workshops were organized in the second half of the year, mainly related to regional Technical Cooperation projects implemented in Asia and Africa. Among them were training courses on: Application of induced mutations and biotechnology for crop improvement, organized by Horticultural Crop Research and Development Institute in Peradeniya, Sri Lanka; Selection methods for low phytic acid mutants in rice, Hangzhou, China; Methodology for multi-location trials and selection of mutants tolerant to abiotic stresses, ICRISAT, India standardization of crop breeding methods for the improvement of drought tolerance, Lusaka, Zambia; First workshop on Improvement of plant salt tolerance for sustainable food and feed production in saline lands, Bangkok, Thailand. It was also possible to organize the 3rd Interregional Training Course on Mutant Germplasm Characterization using Molecular Markers. Twenty participants from all regions of the world participated in this event organized as usually in Seibersdorf, Austria. The last two years we have been very much involved in

  19. Plant breeding and genetics newsletter. No. 12

    International Nuclear Information System (INIS)

    2004-01-01

    The activities of the Plant Breeding and Genetics sub-Programme concentrated, during the last six months, on organization of a new Coordinated Research Programmes and numerous training courses. To establish and implement the CRP on Effect of Mutagenic Agents on DNA Sequence in Plants a consultants meeting was held in Vienna, July 2003. As a result is was possible to implement this CRP with the participation of 12 institutes from nine.countries. Similarly, another consultant meeting was held in November to initiate a new CRP on Identification and pyramiding of genes responsible for crop quality characters and resistance to quality affecting stresses. It is expected that the CRP will be implemented in the beginning of 2004. Rapid development of molecular markers technology generated strong interest in identification and characterization of mutated genes. To meet this expectation numerous training courses and workshops were organized in the second half of the year, mainly related to regional Technical Cooperation projects implemented in Asia and Africa. Among them were training courses on: Application of induced mutations and biotechnology for crop improvement, organized by Horticultural Crop Research and Development Institute in Peradeniya, Sri Lanka; Selection methods for low phytic acid mutants in rice, Hangzhou, China; Methodology for multi-location trials and selection of mutants tolerant to abiotic stresses, ICRISAT, India standardization of crop breeding methods for the improvement of drought tolerance, Lusaka, Zambia; First workshop on Improvement of plant salt tolerance for sustainable food and feed production in saline lands, Bangkok, Thailand. It was also possible to organize the 3rd Interregional Training Course on Mutant Germplasm Characterization using Molecular Markers. Twenty participants from all regions of the world participated in this event organized as usually in Seibersdorf, Austria. The last two years we have been very much involved in

  20. Future breeding for organic and low-input agriculture: integrating values and modern breeding tools for improving robustness

    NARCIS (Netherlands)

    Lammerts Van Bueren, E.

    2010-01-01

    Organic production and also the attention for plant breeding for organic agriculture is still increasing in Europe. The question often raised is how much does plant breeding for the organic sector differ from modern plant breeding and does a ban on GMO also include refraining from molecular marker

  1. Molecular breeding for drought tolerance in plants: wheat perspective

    International Nuclear Information System (INIS)

    Hussain, S.S.; Rivandi, A.; Rivandi, A.

    2007-01-01

    Wheat (Triticum aestivum L.em Thell.) is the first important and strategic cereal crop for the majority of world,s populations. It is the most important staple food of about two billion people (36% of the world population). Due to industrialization, erosion, urbanization, compaction, and the increase in acidity as a result of fertilization, there is a decrease in the available space for agriculture. Environmental conditions such as increased salinity, drought, and freezing cause adverse effects on the growth and productivity of cereal crops such as wheat (Triticum aestivum L.). Though grown under a wide range of climates and soils, wheat is best adapted to temperate regions. Whether the cropping occurs in the temperate areas or the tropics, both types of environments are affected by global warming and the destabilizing effects that it causes, none more serious than the attendant increased variability in rainfall and temperature. Due to the limited insight into the physiological basis of drought tolerance in wheat, a better understanding of some of the mechanisms that enable the plants to adapt to stress and maintain growth during stress periods would help in breeding for drought tolerance. On the other hand, understanding the genetic and genome organization using molecular markers is of great value for plant breeding purposes. (author)

  2. Seminar of the irradiation uses in plant breeding

    International Nuclear Information System (INIS)

    1986-01-01

    At the present time it is accepted the dependence of mankind to get its feeding starting from products proceeding of animals and plants. Such a dependence is affected by factors which overthrow production: in the case of vegetables this situation is evident in a diminution per surface unit, and in several cases in a reduction on the quality of the product. Since the beginning of agriculture, men has performed a selection of progenitors, generation by generation, in order to perpetuate the best of a cultivation for its exploitation. While an understanding of natural mechanisms capable of producing genetic variability is attained, men has to imitate the mechanisms in order to get what is known as artificial selection. This artificial selection reach a fortunate consecution via multiplication and exploitation of populations which fulfill the requisitions imposed by environment. Genetic variability has its origin in a natural process known as mutation which involve any change in the hereditary material, which besides to be capable to be heritable, be not product of genetic recombination. This genetic variability could be considered as few effective if no selection methodology was involved which have allowed its accurate canalization in the obtention of new varieties. The recognizance of agents capable to produce changes in hereditary material, it is to say, capable to induce mutations, brings with his self to contemplate the possibility of inducing changes in order to take advantage of the new varieties. In the global context, such a possibility began to be considered as feasible starting from the third decade of our century, while in the national context, starting from the sixties. The profits reached in our country are not enough impaction to give a reason for plant breeding and to use mutagens in research programs to institutions of the branch. Starting from 1974, the Instituto Nacional de Investigaciones Nucleares (ININ) began a series of activities with the

  3. Invasion Success by Plant Breeding Evolutionary Changes as a Critical Factor for the Invasion of the Ornamental Plant Mahonia aquifolium

    CERN Document Server

    Ross, Christel Anne

    2009-01-01

    Invasive species are a major threat to global biodiversity and cause significant economic costs. Studying biological invasions is both essential for preventing future invasions and is also useful in order to understand basic ecological processes. Christel Ross investigates whether evolutionary changes by plant breeding are a relevant factor for the invasion success of Mahonia aquifolium in Germany. Her findings show that invasive populations differ from native populations in quantitative-genetic traits and molecular markers, whereas their genetic diversity is similar. She postulates that these evolutionary changes are rather a result of plant breeding, which includes interspecific hybridisation, than the result of a genetic bottleneck or the releases from specialist herbivores.

  4. Plant breeding and genetics newsletter, No. 24, January 2010

    International Nuclear Information System (INIS)

    2010-01-01

    In the past biennium Plant Breeding and Genetics (PBG) subprogramme served 105 Member States through sixty-four national (30 Africa, 24 Asia and the Pacific, seven Latin America and the Caribbean, three Europe), seven regional (one Africa, four Asia and the Pacific, one Latin America and the Caribbean, one Europe) and one interregional Technical Cooperation Projects (TCPs), and six Coordinated Research Projects (CRPs) . Chosen highlights of these activities, you will find inside this issue

  5. Plant breeding and genetics newsletter. No. 18, January 2007

    International Nuclear Information System (INIS)

    2007-01-01

    The Plant Breeding and Genetics (PBG) Section of the Joint FAO/IAEA Programme (NAFA/AGE) currently implement six Research Coordination Meetings (RCMs) ranging from fundamental aspects of effects of mutagens on DNA sequence to the assessment of nutrient uptake from biofortified crops. Particular attention was given the CRP: 'Identification and pyramiding of mutated genes: Novel approaches for improving crop tolerance to salinity and drought'. Highlight of training and other activities were also included

  6. Genomics-assisted breeding in fruit trees

    OpenAIRE

    Iwata, Hiroyoshi; Minamikawa, Mai F.; Kajiya-Kanegae, Hiromi; Ishimori, Motoyuki; Hayashi, Takeshi

    2016-01-01

    Recent advancements in genomic analysis technologies have opened up new avenues to promote the efficiency of plant breeding. Novel genomics-based approaches for plant breeding and genetics research, such as genome-wide association studies (GWAS) and genomic selection (GS), are useful, especially in fruit tree breeding. The breeding of fruit trees is hindered by their long generation time, large plant size, long juvenile phase, and the necessity to wait for the physiological maturity of the pl...

  7. Whole-genome regression and prediction methods applied to plant and animal breeding

    NARCIS (Netherlands)

    Los Campos, De G.; Hickey, J.M.; Pong-Wong, R.; Daetwyler, H.D.; Calus, M.P.L.

    2013-01-01

    Genomic-enabled prediction is becoming increasingly important in animal and plant breeding, and is also receiving attention in human genetics. Deriving accurate predictions of complex traits requires implementing whole-genome regression (WGR) models where phenotypes are regressed on thousands of

  8. Mutation breeding in mangosteen

    International Nuclear Information System (INIS)

    Mohd Khalid Mohd Zain

    2002-01-01

    Mangosteen the queen of the tropical fruits is apomitic and only a cultivar is reported and it reproduces asexually. Conventional breeding is not possible and the other methods to create variabilities are through genetic engineering and mutation breeding. The former technique is still in the infantry stage in mangosteen research while the latter has been an established tool in breeding to improve cultivars. In this mutation breeding seeds of mangosteen were irradiated using gamma rays and the LD 50 for mangosteen was determined and noted to be very low at 10 Gy. After sowing in the seedbed, the seedlings were transplanted in polybags and observed in the nursery bed for about one year before planted in the field under old oil palm trees in Station MARDI, Kluang. After evaluation and screening, about 120 mutant mangosteen plants were selected and planted in Kluang. The plants were observed and some growth data taken. There were some mutant plants that have good growth vigour and more vigorous that the control plants. The trial are now in the fourth year and the plants are still in the juvenile stage. (Author)

  9. Genomics-assisted breeding in fruit trees.

    Science.gov (United States)

    Iwata, Hiroyoshi; Minamikawa, Mai F; Kajiya-Kanegae, Hiromi; Ishimori, Motoyuki; Hayashi, Takeshi

    2016-01-01

    Recent advancements in genomic analysis technologies have opened up new avenues to promote the efficiency of plant breeding. Novel genomics-based approaches for plant breeding and genetics research, such as genome-wide association studies (GWAS) and genomic selection (GS), are useful, especially in fruit tree breeding. The breeding of fruit trees is hindered by their long generation time, large plant size, long juvenile phase, and the necessity to wait for the physiological maturity of the plant to assess the marketable product (fruit). In this article, we describe the potential of genomics-assisted breeding, which uses these novel genomics-based approaches, to break through these barriers in conventional fruit tree breeding. We first introduce the molecular marker systems and whole-genome sequence data that are available for fruit tree breeding. Next we introduce the statistical methods for biparental linkage and quantitative trait locus (QTL) mapping as well as GWAS and GS. We then review QTL mapping, GWAS, and GS studies conducted on fruit trees. We also review novel technologies for rapid generation advancement. Finally, we note the future prospects of genomics-assisted fruit tree breeding and problems that need to be overcome in the breeding.

  10. Proceedings of the FNCA workshop on plant mutation breeding 2001. Molecular biological techniques

    International Nuclear Information System (INIS)

    Kume, Tamikazu; Watanabe, Kazuo; Tano, Shigemitsu

    2002-02-01

    The FNCA (Forum for Nuclear Cooperation in Asia) Workshop on Plant Mutation Breeding was held on 20-24 August 2001 in Bangkok, Thailand. The Workshop was sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT). The Kasetsart University (KU), the Office of Atomic Energy for Peace (OAEP) and Department of Agriculture (DOA) acted as local host and the organizer with the cooperation of the Ministry of Agriculture, Forestry and Fisheries (MAFF) of Japan, the Japan Atomic Industrial Forum (JAIF) and Japan Atomic Energy Research Institute (JAERI). The Workshop was attended by two participants, a Project Leader and an expert on molecular biological techniques for plant mutation breeding, from each of the participating countries, i.e. China, Indonesia, Malaysia, the Philippines and Vietnam. One participant from the Republic of Korea, nine participants from Japan and thirteen participants from Thailand including three invited speakers attended the Workshop. Eleven papers including three invited papers on the current status of molecular biological techniques for plant mutation breeding were presented. Discussions were focused to further regional cooperation, to review and discuss results of past activities. The Medium-Term Plan of the project on the application of radiation and radioisotopes for agriculture in participating countries of Regional Nuclear Cooperation Activities (RNCA) was formulated and agreed. This proceeding compiles the invited and contributed papers that were submitted from the speakers. (author)

  11. A simple language to script and simulate breeding schemes: the breeding scheme language

    Science.gov (United States)

    It is difficult for plant breeders to determine an optimal breeding strategy given that the problem involves many factors, such as target trait genetic architecture and breeding resource availability. There are many possible breeding schemes for each breeding program. Although simulation study may b...

  12. Contributions of plant breeding in Brazil: progress and perspectives

    OpenAIRE

    Ramalho, Magno Antonio Patto; Dias, Luiz Antônio dos Santos; Carvalho, Bruna Line

    2012-01-01

    Agribusiness is fundamental for the Brazilian economy. This has become possible due to the use of science and technology in agriculture in the last 35 years. Among the technologies, the use of improved cultivars stands out. This article presents the situation of the species grown in the country in recent years and the contribution of genetic plant breeding to the performance of these species. Challenges multiplied because of populational growth associated with the ever-growing concern of soci...

  13. Designing Graduate-Level Plant Breeding Curriculum: A Delphi Study of Private Sector Stakeholder Opinions

    Science.gov (United States)

    Miller, Jane K.; Repinski, Shelby L.; Hayes, Kathryn N.; Bliss, Frederick A.; Trexler, Cary J.

    2011-01-01

    A broad-based survey using the Delphi method was conducted to garner current information from private sector stakeholders and build consensus opinions supporting key ideas for enhancing plant breeder education and training. This study asked respondents to suggest and rate topics and content they deemed most important to plant breeding graduate…

  14. Genoproteomics-assisted improvement of Andrographis paniculata: toward a promising molecular and conventional breeding platform for autogamous plants affecting the pharmaceutical industry.

    Science.gov (United States)

    Valdiani, Alireza; Talei, Daryush; Lattoo, Surrinder K; Ortiz, Rodomiro; Rasmussen, Søren Kjærsgaard; Batley, Jacqueline; Rafii, Mohd Yusop; Maziah, Mahmood; Sabu, Kallevettankuzhy K; Abiri, Rambod; Sakuanrungsirikul, Suchirat; Tan, Soon Guan

    2017-09-01

    Andrographis paniculata (Burm. f.) Wall. ex Nees. (AP) is a hermaphroditic, self-compatible, and habitual inbreeding plant. Its main bioactive component is andrographolide, which is capable of inducing autophagic cell death in some human cancer cells and helps fight HIV/AIDS. Increasing the andrographolide content by investigating the genetic mechanisms controlling its biosynthesis in order to improve and develop high-yielding cultivars are the main breeding targets for AP. However, there might exist some limitations or barriers for crossability within AP accessions. Recently, this problem was addressed in AP by using a combination of crossbreeding and biotechnology-aided genetic methods. This review emphasizes that development of a breeding platform in a hard-to-breed plant, such as AP, requires the involvement of a broad range of methods from classical genetics to molecular breeding. To this end, a phenological stage (for example, flowering and stigma development) can be simplified to a quantitative morphological trait (for example, bud or stigma length) to be used as an index to express the highest level of receptivity in order to manage outcrossing. The outcomes of the basic crossability research can be then employed in diallel mating and crossbreeding. This review explains how genomic data could produce useful information regarding genetic distance and its influence on the crossability of AP accessions. Our review indicates that co-dominant DNA markers, such as microsatellites, are also capable of resolving the evolutionary pathway and cryptic features of plant populations and such information can be used to select the best breeding strategy. This review also highlights the importance of proteomic analysis as a breeding tool. In this regard, protein diversification, as well as the impact of normal and stress-responsive proteins on morphometric and physiological behaviors, could be used in breeding programs. These findings have immense potential for improving

  15. Use of molecular markers in plant breeding = [Het gebruik van moleculaire merkers in de plantenveredeling

    NARCIS (Netherlands)

    Berloo, van R.

    2000-01-01

    Molecular markers provide plant breeding with an important and valuable new source of information. Linkage between molecular markers can be translated to genetic linkage maps, which have become an important tool in plant and animal genetics. Linkage between (quantitative) trait-data and

  16. Potential of in vitro mutation breeding for the improvement of vegetatively propagated crop plants

    International Nuclear Information System (INIS)

    Constantin, M.J.

    1984-01-01

    Significant progress has been realized in a number of technologies (e.g., protoplast cultures), collectively referred to as plant cell and tissue culture, within the last decade. In vitro culture technologies offer great potentials for the improvement of crop plants, both sexually and asexually propagated; however, to realize these potentials plant regeneration from selected cells must be achieved for the species of interest. Where whole plants have been regenerated from selected cells, the mutant trait was expressed in some but not in all cases, and the inheritance patterns included maternal, recessive, semi-dominant and dominant (epigenetic events have also been reported). Improved cultivars of sugarcane have been developed from in vitro culture selections. In vitro mutation breeding can be done using an array of physical and chemical mutagens that has been found to be effective in the treatment of seeds, pollen, vegetative plant parts and growing plants. Selection at the cell level for a range of mutant traits has been demonstrated; however, innovative selection schemes will have to be developed to select for agriculturally important traits such as date of maturity, resistance to lodging, height etc. An interdisciplinary team approach involving the combined use of in vitro culture technology, mutagenesis, and plant breeding/genetics offers the greatest probability for success in crop improvement. (author)

  17. Climate Change Effects to Plant Ecosystems - Genetic Resources for Future Barley Breeding

    DEFF Research Database (Denmark)

    Ingvordsen, Cathrine Heinz

    were identified for possible use in breeding of climate resilient cultivars and SNP-markers that link to traits favourable in changed environments. Basic knowledge of plant response to multifactor climate treatments has been added as well as data on numerous genotypes modeling the impact of climate...

  18. Contributions of plant breeding in Brazil – progress and perspectives

    Directory of Open Access Journals (Sweden)

    Magno Antonio Patto Ramalho

    2012-12-01

    Full Text Available Agribusiness is fundamental for the Brazilian economy. This has become possible due to the use of science and technology in agriculture in the last 35 years. Among the technologies, the use of improved cultivars stands out. This article presents the situation of the species grown in the country in recent years and the contribution of genetic plant breeding to the performance of these species. Challenges multiplied because of populational growth associated with the ever-growing concern of society with the environment. Breeders of the present and future must base plant selection in the field on new technologies so that it is possible to meet demand.

  19. Prediction of genetic values of quantitative traits with epistatic effects in plant breeding populations.

    Science.gov (United States)

    Wang, D; Salah El-Basyoni, I; Stephen Baenziger, P; Crossa, J; Eskridge, K M; Dweikat, I

    2012-11-01

    Though epistasis has long been postulated to have a critical role in genetic regulation of important pathways as well as provide a major source of variation in the process of speciation, the importance of epistasis for genomic selection in the context of plant breeding is still being debated. In this paper, we report the results on the prediction of genetic values with epistatic effects for 280 accessions in the Nebraska Wheat Breeding Program using adaptive mixed least absolute shrinkage and selection operator (LASSO). The development of adaptive mixed LASSO, originally designed for association mapping, for the context of genomic selection is reported. The results show that adaptive mixed LASSO can be successfully applied to the prediction of genetic values while incorporating both marker main effects and epistatic effects. Especially, the prediction accuracy is substantially improved by the inclusion of two-locus epistatic effects (more than onefold in some cases as measured by cross-validation correlation coefficient), which is observed for multiple traits and planting locations. This points to significant potential in using non-additive genetic effects for genomic selection in crop breeding practices.

  20. Breeding for genetic improvement of forage plants in relation to increasing animal production with reduced environmental footprint.

    Science.gov (United States)

    Kingston-Smith, A H; Marshall, A H; Moorby, J M

    2013-03-01

    Animal production is a fundamental component of the food supply chain, and with an increasing global population production levels are set to increase. Ruminant animals in particular are valuable in their ability to convert a fibre-rich forage diet into a high-quality protein product for human consumption, although this benefit is offset by inefficiencies in rumen fermentation that contribute to emission of significant quantities of methane and nitrogenous waste. Through co-operation between plant and animal sciences, we can identify how the nutritional requirements of ruminants can be satisfied by high-quality forages for the future. Selective forage plant breeding has supported crop improvement for nearly a century. Early plant breeding programmes were successful in terms of yield gains (4% to 5% per decade), with quality traits becoming increasingly important breeding targets (e.g. enhanced disease resistance and digestibility). Recently, demands for more sustainable production systems have required high yielding, high-quality forages that enable efficient animal production with minimal environmental impact. Achieving this involves considering the entire farm system and identifying opportunities for maximising nutrient use efficiency in both forage and animal components. Forage crops of the future must be able to utilise limited resources (water and nutrients) to maximise production on a limited land area and this may require us to consider alternative plant species to those currently in use. Furthermore, new breeding targets will be identified as the interactions between plants and the animals that consume them become better understood. This will ensure that available resources are targeted at delivering maximum benefits to the animal through enhanced transformation efficiency.

  1. The consequences of the concept of naturalness for organic plant breeding and propagation

    NARCIS (Netherlands)

    Lammerts Van Bueren, E.; Struik, P.C.

    2004-01-01

    Organic agriculture is enhancing specific plant breeding activities to meet its requirements for varieties better adapted to the specific organic environment. In the past five years, therefore, attempts have been made to translate the principles of organic farming into rules, regulations and

  2. Genotyping by sequencing (GBS, an ultimate marker-assisted selection (MAS tool to accelerate plant breeding

    Directory of Open Access Journals (Sweden)

    Jiangfeng eHe

    2014-09-01

    Full Text Available Marker-assisted selection (MAS refers to the use of molecular markers to assist phenotypic selections in crop improvement. Several types of molecular markers, such as single nucleotide polymorphism (SNP, have been identified and effectively used in plant breeding. The application of next-generation sequencing (NGS technologies has led to remarkable advances in whole genome sequencing, which provides ultra-throughput sequences to revolutionize plant genotyping and breeding. To further broaden NGS usages to large crop genomes such as maize and wheat, genotyping by sequencing (GBS has been developed and applied in sequencing multiplexed samples that combine molecular marker discovery and genotyping. GBS is a novel application of NGS protocols for discovering and genotyping SNPs in crop genomes and populations. The GBS approach includes the digestion of genomic DNA with restriction enzymes followed by the ligation of barcode adapter, PCR amplification and sequencing of the amplified DNA pool on a single lane of flow cells. Bioinformatic pipelines are needed to analyze and interpret GBS datasets. As an ultimate MAS tool and a cost-effective technique, GBS has been successfully used in implementing genome-wide association study (GWAS, genomic diversity study, genetic linkage analysis, molecular marker discovery and genomic selection (GS under a large scale of plant breeding programs.

  3. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding.

    Science.gov (United States)

    He, Jiangfeng; Zhao, Xiaoqing; Laroche, André; Lu, Zhen-Xiang; Liu, HongKui; Li, Ziqin

    2014-01-01

    Marker-assisted selection (MAS) refers to the use of molecular markers to assist phenotypic selections in crop improvement. Several types of molecular markers, such as single nucleotide polymorphism (SNP), have been identified and effectively used in plant breeding. The application of next-generation sequencing (NGS) technologies has led to remarkable advances in whole genome sequencing, which provides ultra-throughput sequences to revolutionize plant genotyping and breeding. To further broaden NGS usages to large crop genomes such as maize and wheat, genotyping-by-sequencing (GBS) has been developed and applied in sequencing multiplexed samples that combine molecular marker discovery and genotyping. GBS is a novel application of NGS protocols for discovering and genotyping SNPs in crop genomes and populations. The GBS approach includes the digestion of genomic DNA with restriction enzymes followed by the ligation of barcode adapter, PCR amplification and sequencing of the amplified DNA pool on a single lane of flow cells. Bioinformatic pipelines are needed to analyze and interpret GBS datasets. As an ultimate MAS tool and a cost-effective technique, GBS has been successfully used in implementing genome-wide association study (GWAS), genomic diversity study, genetic linkage analysis, molecular marker discovery and genomic selection under a large scale of plant breeding programs.

  4. Mutations in plant breeding: a glance back and a look forward

    International Nuclear Information System (INIS)

    Gustafsson, A.

    1975-01-01

    This brief retrospect of previous shortcomings and procedures really indicates the need for a better co-ordination and co-operation in plant breeding. We now know which mutagens are essential in practical mutation work, and we include radiations as well as chemicals. We now know that there is no principal difference between natural and induced variation. We can easily induce mutational events covering the gap between gross chromosomal rearrangements and DNA-base substitutions. We also know that induced variation may in the future fill and replace the loss of natural variability, or may even extend the limits of variation. We know that mutation and recombination--as evidenced, for instance, by the successful work in barley--will be united into routine procedures, also leading to new breakthroughs in plant improvement. Moreover, ingenious techniques of mass testing are under way, combining traditional and prospective ideas. The mutation method has come to stay, not alone but with gene recombination, with heterosis and with polyploidy. We say that the present is the past's future. To glance back is then to look forward; failures give rise to progress. A synthesis of breeding methods is around the corner

  5. Following the genes that make resistant plants: shared tools for breeding and pathology

    Science.gov (United States)

    Although plant pathology and breeding are distinct disciplines with unique perspectives, they frequently share a common goal: that of identifying and understanding durable resistance, the kind of resistance that will not be overcome quickly and will remain effective against a wide array of isolates....

  6. Global impact of induced mutation in plant breeding

    International Nuclear Information System (INIS)

    Bhatia, R.

    2001-01-01

    Sudden, heritable changes in the genetic material, DNA, are known as mutations. Selection of naturally occurring mutations in wild, ancestral species helped humans in the domestication and further improvement of today's crop plants. Although Charles Darwin was unaware in 1859 of variation and mutations in living organisms, his theory of evolution by natural selection assumed variability. Much later, it was established that mutations are the source of biodiversity, and the driving force for evolution. Gregor Mendel in 1865 also used several mutants in his experiments with garden pea to formulate the laws of inheritance. The term mutation itself was used for the first time by Hugo de Vries in 1901 in his mutation theory. Plant breeding based on the science of genetics, as practiced over the past 100 years, exploited the available genetic variability in the primary gene pool of crop plants, and sometimes in related species. This approach enlarged the yield potential of crops several fold. It also a) improved the stability of yield by incorporating resistance to various biotic and abiotic stresses; b) improved quality of the produce; and c) altered the adaptability of crop species, providing opportunities to grow new crops for food security outside their traditional range. Genetically improved seed (or other planting material) is the most significant input for developing sustainable cropping systems for food security and economic growth. Half of the increased productivity of today's crop plants comes from genetic improvements. The other half is contributed by inputs and management practices

  7. The Effect of Plants with Novel Traits (PNT) Regulation on Mutation Breeding in Canada

    International Nuclear Information System (INIS)

    Rowland, G.G.

    2009-01-01

    The Canadian Environmental Protection Act (1988) has within it a definition for biotechnology. This definition would have allowed the government department, Environment Canada, to regulate all genetically modified organisms (GMOs) in Canada. In response to this, the Canadian Food Inspection Agency (CFIA), which reports to the Minister of Agriculture and Agri-Food Canada, developed the concept of a Plant with Novel Trait (PNT). Not only does this definition capture GMOs, it also includes induced mutations, natural mutations and exotic germplasm that have not previously been grown in Canada. It is a system that is product, not process based. However, apart from questions regarding the novelty of traits in new plant varieties, breeders are asked by CFIA to identify the process used to develop the trait or traits in question. Field trials involving breeding lines with a PNT may be subject to confined testing. This conference celebrated 80 years of unconfined development and testing of induced plant mutations. This regulation is time consuming, expensive and an innovation barrier for Canadian plant breeding. It can only be hoped that other nations, and particularly those that have successfully used induced mutations, will not emulate Canada's approach. (author)

  8. Advancement of mutation breeding on ornamental plants in Indonesia

    International Nuclear Information System (INIS)

    Handayati, W.

    2013-01-01

    Along with the increasing demand of ornamental plants in Indonesia and the change of consumers preference, Indonesian breeders have released 102 varieties in the last 5 year. However, the resulted varieties were not enough to substitute the imported varieties. A breeding method for a new variety was carried out through induced mutation. Many researches have been conducted in Indonesia, but these activities have not been comprehensively designed to create the potential genotypes that ready to be released as new superior varieties. Commonly, these activities were still in the stage of basic researches about the type and the most effective dose or lethal dose (LD 50 ), the sensitivity of both the plants cultured in-vitro and in-vivo to mutagen; and genetic or phenotypic diversity due to the mutagen treatments. Chrysanthemum and rose were the most of the ornamental plants that had been conducted. Some mutants have been released as new national superior varieties namely Julikara, Rosanda and Rosmarun (mini rose); Rosma (cut rose) and Mustika Kania (chrysanthemum). (author)

  9. Pollination patterns and plant breeding systems in the Galapagos: a review.

    Science.gov (United States)

    Chamorro, Susana; Heleno, Ruben; Olesen, Jens M; McMullen, Conley K; Traveset, Anna

    2012-11-01

    Despite the importance of the Galápagos Islands for the development of central concepts in ecology and evolution, the understanding of many ecological processes in this archipelago is still very basic. One such process is pollination, which provides an important service to both plants and their pollinators. The rather modest level of knowledge on this subject has so far limited our predictive power on the consequences of the increasing threat of introduced plants and pollinators to this unique archipelago. As a first step toward building a unified view of the state of pollination in the Galápagos, a thorough literature search was conducted on the breeding systems of the archipelago's flora and compiled all documented flower-visitor interactions. Based on 38 studies from the last 100 years, we retrieved 329 unique interactions between 123 flowering plant species (50 endemics, 39 non-endemic natives, 26 introduced and eight of unknown origin) from 41 families and 120 animal species from 13 orders. We discuss the emergent patterns and identify promising research avenues in the field. Although breeding systems are known for pollinator fauna does not represent a constraint to the integration of new plant species into the native communities. Most interactions detected (approx. 90 %) come from a single island (most of them from Santa Cruz). Hymenopterans (mainly the endemic carpenter bee Xylocopa darwinii and ants), followed by lepidopterans, were the most important flower visitors. Dipterans were much more important flower visitors in the humid zone than in the dry zone. Bird and lizard pollination has been occasionally reported in the dry zone. Strong biases were detected in the sampling effort dedicated to different islands, time of day, focal plants and functional groups of visitors. Thus, the existing patterns need to be confronted with new and less biased data. The implementation of a community-level approach could greatly increase our understanding of pollination

  10. Plant breeding and genetics newsletter. No. 20, January 2008

    International Nuclear Information System (INIS)

    2008-01-01

    The highlight of this issue is the Second Coordinators Meeting under RAS/5/048 (ARASIA): 'Mutation Induction and Supportive Breeding and Biotechnologies for Improving Crop Productivity', on 11-15 November 2007, in Damascus, Syrian Arab Republic. A major achievement of this regional project was the adoption of the Standard Material Transfer Agreement (SMTA) for germplasm exchanges. It puts the ARASIA States Parties participating in this project into a leadership position for the regional application of the SMTA under the Multilateral System on Access and Benefit Sharing in the framework of the International Treaty on Plant Genetic Resources for Food and Agriculture

  11. Plant breeding and genetics newsletter. No. 20, January 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-01-15

    The highlight of this issue is the Second Coordinators Meeting under RAS/5/048 (ARASIA): 'Mutation Induction and Supportive Breeding and Biotechnologies for Improving Crop Productivity', on 11-15 November 2007, in Damascus, Syrian Arab Republic. A major achievement of this regional project was the adoption of the Standard Material Transfer Agreement (SMTA) for germplasm exchanges. It puts the ARASIA States Parties participating in this project into a leadership position for the regional application of the SMTA under the Multilateral System on Access and Benefit Sharing in the framework of the International Treaty on Plant Genetic Resources for Food and Agriculture.

  12. Participatory Plant Breeding with Traders and Farmers for White Pea Bean in Ethiopia

    Science.gov (United States)

    Assefa, T.; Sperling, L.; Dagne, B.; Argaw, W.; Tessema, D.; Beebe, S.

    2014-01-01

    Purpose: This research, conducted in Ethiopia, involved select stakeholders in the variety evaluation process early: to identify a greater number of acceptable varieties and to shorten a lengthy research and release process. Design/methodology/approach: A Participatory Plant Breeding (PPB) approach was used in both on-station and community-based…

  13. Manual on mutation breeding. 2. ed.

    International Nuclear Information System (INIS)

    1977-01-01

    The manual is a compilation of work done on the use of induced mutations in plant breeding, and presents general methods and techniques in this field. The use of chemical mutagens and ionizing radiations (X-rays, gamma rays, α- and β-particles, protons, neutrons) are described as well as the effects of these mutagens. The different types of mutations achieved can be divided into genome mutations, chromosome mutations and extra nuclear mutations. Separate chapters deal with mutation techniques in breeding seed-propagated species and asexually propagated plants (examples of development of cultivars given). Plant characters which can be improved by mutation breeding include yield, ripening time, growth habit, disease resistance and tolerance to environmental factors (temperature, salinity etc.). The use of mutagens for some specific plant breeding problems is discussed and attention is also paid to somatic cell genetics in connection with induced mutations. The manual contains a comprehensive bibliography (60 p. references) and a subject index

  14. The utility of covariance of combining ability in plant breeding.

    Science.gov (United States)

    Arunachalam, V

    1976-11-01

    The definition of covariances of half- and full sibs, and hence that of variances of general and specific combining ability with regard to a quantitative character, is extended to take into account the respective covariances between a pair of characters. The interpretation of the dispersion and correlation matrices of general and specific combining ability is discussed by considering a set of single, three- and four-way crosses, made using diallel and line × tester mating systems in Pennisetum typhoides. The general implications of the concept of covariance of combining ability in plant breeding are discussed.

  15. Effectors as Tools in Disease Resistance Breeding Against Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens

    NARCIS (Netherlands)

    Vleeshouwers, V.G.A.A.; Oliver, R.P.

    2014-01-01

    One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of

  16. Plant cultivars derived from mutation induction or the use of induced mutants in cross breeding

    International Nuclear Information System (INIS)

    Micke, A.; Maluszynski, M.; Donini, B.

    1985-01-01

    Since 1969 we have collected information on cultivated varieties of plants, developed by using induced mutations. Whenever we learn about a cultivar presumably derived from an induced mutant or from use of mutants in crosses. we mail a questionnaire to the breeder. The information gathered in this way is stored in our file on ''Mutant Varieties''. Excerpts are published regularly in the form of a list in the FAO/IAEA Mutation Breeding Newsletter. Our mutant variety list has repeatedly provided a basis for analyses on the value and prospects of mutation breeding

  17. Plant cultivars derived from mutation induction or the use of induced mutants in cross breeding

    Energy Technology Data Exchange (ETDEWEB)

    Micke, A; Maluszynski, M; Donini, B [Joint FAO/IAEA Division, Plant Breeding and Genetics Section, Vienna (Austria)

    1985-05-01

    Since 1969 we have collected information on cultivated varieties of plants, developed by using induced mutations. Whenever we learn about a cultivar presumably derived from an induced mutant or from use of mutants in crosses. we mail a questionnaire to the breeder. The information gathered in this way is stored in our file on ''Mutant Varieties''. Excerpts are published regularly in the form of a list in the FAO/IAEA Mutation Breeding Newsletter. Our mutant variety list has repeatedly provided a basis for analyses on the value and prospects of mutation breeding.

  18. Selection and breeding of plant cultivars to minimize cadmium accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Grant, C.A. [AAFC Brandon Research Centre, Box 1000A, R.R. 3, Brandon, MB, R7A 5Y3 (Canada)], E-mail: cgrant@agr.gc.ca; Clarke, J.M. [AAFC Semiarid Prairie Agricultural Research Centre, Swift Current, SK, S9H 3X2 (Canada); Duguid, S. [AAFC Morden Research Station, Morden, MB, R6M 1Y5 (Canada); Chaney, R.L. [USDA, ARS, Animal Manure and Byproducts Laboratory, Room 013, Building 007, BARC-West, 10300 Baltimore Avenue, Beltsville, MD 20705-2350 (United States)

    2008-02-15

    Natural variation occurs in the uptake and distribution of essential and nonessential trace elements among crop species and among cultivars within species. Such variation can be responsible for trace element deficiencies and toxicities, which in turn can affect the quality of food. Plant breeding can be an important tool to both increase the concentration of desirable trace elements and reduce that of potentially harmful trace elements such as cadmium (Cd). Selection programs for a low-Cd content of various crops, including durum wheat, sunflower, rice and soybean have been established and low-Cd durum wheat cultivars and sunflower hybrids have been developed. In durum wheat (Triticum turgidum L. var durum), low-Cd concentration is controlled by a single dominant gene. The trait is highly heritable, and incorporation of the low-Cd allele can help to reduce the average grain Cd to levels below proposed international limits. The allele for low-Cd concentration does not appear to affect major economic traits and should not cause problems when incorporated into durum cultivars. The cost of Cd selection in a breeding program is initially large both in terms of Cd determination and reduced progress towards development of other economic traits, but declines as more breeding lines in the program carry the low-Cd trait and are utilized in new crosses. Production of low-Cd crop cultivars can be used as a tool to reduce the risk of movement of Cd into the human diet.

  19. Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers.

    Science.gov (United States)

    Crossa, José; Campos, Gustavo de Los; Pérez, Paulino; Gianola, Daniel; Burgueño, Juan; Araus, José Luis; Makumbi, Dan; Singh, Ravi P; Dreisigacker, Susanne; Yan, Jianbing; Arief, Vivi; Banziger, Marianne; Braun, Hans-Joachim

    2010-10-01

    The availability of dense molecular markers has made possible the use of genomic selection (GS) for plant breeding. However, the evaluation of models for GS in real plant populations is very limited. This article evaluates the performance of parametric and semiparametric models for GS using wheat (Triticum aestivum L.) and maize (Zea mays) data in which different traits were measured in several environmental conditions. The findings, based on extensive cross-validations, indicate that models including marker information had higher predictive ability than pedigree-based models. In the wheat data set, and relative to a pedigree model, gains in predictive ability due to inclusion of markers ranged from 7.7 to 35.7%. Correlation between observed and predictive values in the maize data set achieved values up to 0.79. Estimates of marker effects were different across environmental conditions, indicating that genotype × environment interaction is an important component of genetic variability. These results indicate that GS in plant breeding can be an effective strategy for selecting among lines whose phenotypes have yet to be observed.

  20. Accelerated Generation of Selfed Pure Line Plants for Gene Identification and Crop Breeding

    Directory of Open Access Journals (Sweden)

    Guijun Yan

    2017-10-01

    Full Text Available Production of pure lines is an important step in biological studies and breeding of many crop plants. The major types of pure lines for biological studies and breeding include doubled haploid (DH lines, recombinant inbred lines (RILs, and near isogenic lines (NILs. DH lines can be produced through microspore and megaspore culture followed by chromosome doubling while RILs and NILs can be produced through introgressions or repeated selfing of hybrids. DH approach was developed as a quicker method than conventional method to produce pure lines. However, its drawbacks of genotype-dependency and only a single chance of recombination limited its wider application. A recently developed fast generation cycling system (FGCS achieved similar times to those of DH for the production of selfed pure lines but is more versatile as it is much less genotype-dependent than DH technology and does not restrict recombination to a single event. The advantages and disadvantages of the technologies and their produced pure line populations for different purposes of biological research and breeding are discussed. The development of a concept of complete in vitro meiosis and mitosis system is also proposed. This could integrate with the recently developed technologies of single cell genomic sequencing and genome wide selection, leading to a complete laboratory based pre-breeding scheme.

  1. Use of induced mutations in soybean breeding

    International Nuclear Information System (INIS)

    Zakri, A.H.; Jalani, B.S.; Ng, K.F.

    1981-01-01

    Artificial induction of mutation in plants is carried out using #betta#-irradiation and ethyl metanesulphonate (EMS) to expand the genetic variability of locally-grown soybean. This aspect of mutation breeding complements of conventional breeding approach undertaken by the Joint Malaysia Soybean Breeding Project group. Recovery of agronomically-important mutants such as earliness, lateness, bigger seed size and improved plant architecture were recorded. The significance of these findings is discussed. (author)

  2. Food science meets plant science: A case study on improved nutritional quality by breeding for glucosinolate retention during food processing

    NARCIS (Netherlands)

    Hennig, K.; Verkerk, R.; Boekel, van M.A.J.S.; Dekker, M.; Bonnema, A.B.

    2014-01-01

    Nutritional quality of vegetables is affected by several steps in the food chain. Up to now the effects of these different steps are mostly studied separately. We propose the cooperation between plant breeding and food technology by using food technological parameters as breeding traits to identify

  3. Managing phenol contents in crop plants by phytochemical farming and breeding-visions and constraints.

    Science.gov (United States)

    Treutter, Dieter

    2010-03-02

    Two main fields of interest form the background of actual demand for optimized levels of phenolic compounds in crop plants. These are human health and plant resistance to pathogens and to biotic and abiotic stress factors. A survey of agricultural technologies influencing the biosynthesis and accumulation of phenolic compounds in crop plants is presented, including observations on the effects of light, temperature, mineral nutrition, water management, grafting, elevated atmospheric CO(2), growth and differentiation of the plant and application of elicitors, stimulating agents and plant activators. The underlying mechanisms are discussed with respect to carbohydrate availability, trade-offs to competing demands as well as to regulatory elements. Outlines are given for genetic engineering and plant breeding. Constraints and possible physiological feedbacks are considered for successful and sustainable application of agricultural techniques with respect to management of plant phenol profiles and concentrations.

  4. BreedVision — A Multi-Sensor Platform for Non-Destructive Field-Based Phenotyping in Plant Breeding

    Science.gov (United States)

    Busemeyer, Lucas; Mentrup, Daniel; Möller, Kim; Wunder, Erik; Alheit, Katharina; Hahn, Volker; Maurer, Hans Peter; Reif, Jochen C.; Würschum, Tobias; Müller, Joachim; Rahe, Florian; Ruckelshausen, Arno

    2013-01-01

    To achieve the food and energy security of an increasing World population likely to exceed nine billion by 2050 represents a major challenge for plant breeding. Our ability to measure traits under field conditions has improved little over the last decades and currently constitutes a major bottleneck in crop improvement. This work describes the development of a tractor-pulled multi-sensor phenotyping platform for small grain cereals with a focus on the technological development of the system. Various optical sensors like light curtain imaging, 3D Time-of-Flight cameras, laser distance sensors, hyperspectral imaging as well as color imaging are integrated into the system to collect spectral and morphological information of the plants. The study specifies: the mechanical design, the system architecture for data collection and data processing, the phenotyping procedure of the integrated system, results from field trials for data quality evaluation, as well as calibration results for plant height determination as a quantified example for a platform application. Repeated measurements were taken at three developmental stages of the plants in the years 2011 and 2012 employing triticale (×Triticosecale Wittmack L.) as a model species. The technical repeatability of measurement results was high for nearly all different types of sensors which confirmed the high suitability of the platform under field conditions. The developed platform constitutes a robust basis for the development and calibration of further sensor and multi-sensor fusion models to measure various agronomic traits like plant moisture content, lodging, tiller density or biomass yield, and thus, represents a major step towards widening the bottleneck of non-destructive phenotyping for crop improvement and plant genetic studies. PMID:23447014

  5. Be-Breeder - an application for analysis of genomic data in plant breeding

    OpenAIRE

    Matias,Filipe Inácio; Granato,Italo Stefanine Correa; Dequigiovanni,Gabriel; Fritsche-Neto,Roberto

    2017-01-01

    Abstract Be-Breeder is an application directed toward genetic breeding of plants, developed through the Shiny package of the R software, which allows different phenotype and molecular (marker) analysis to be undertaken. The section for analysis of molecular data of the Be-Breeder application makes it possible to achieve quality control of genotyping data, to obtain genomic kinship matrices, and to analyze genome selection, genome association, and genetic diversity in a simple manner on line. ...

  6. Use of physical/chemical mutagens in plant breeding program in Vietnam

    International Nuclear Information System (INIS)

    Tran Duy Quy; Nguyen Huu Dong; Bui Huy Thuy; Le Van Nha; Nguyen Van Bich

    2001-01-01

    Among more than 1870 new plant varieties formed by mutation breeding in the world, 44 varieties of different plants were formed by Vietnamese scientists. Research on induced mutation in Vietnam started in 1966, was promoted in Agricultural Institute, Cuu Long Delta Rice Research Institute, Institute of Food Crop Research, and Agriculture Universities, and has produced varieties of rice, maize, soybean, peanut, tomato, jujuba, green bean etc using physical and chemical mutagens: Irradiation with gamma rays or neutrons, and use of such chemicals as dimethylsulfate (DMS), diethylsulfate (DES), ethyleneimine (EI), N-nitrosomethylurea (NUM), N-nitrosoethylurea (NEU), and sodium azide (NaN 3 ). In the present report, the results of cytological and genetic effects in M1 plants, the frequency and spectrum of chlorophyll and morphological mutants, the mutants obtained and the genetic nature of the next generation are described, particularly for the case of rice. Radiation dose and dose rate used as mutagens are also reported. (S. Ohno)

  7. Use of physical/chemical mutagens in plant breeding program in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Tran Duy Quy; Nguyen Huu Dong; Bui Huy Thuy; Le Van Nha; Nguyen Van Bich [Agricultural Genetics Institute, Hanoi (Viet Nam)

    2001-03-01

    Among more than 1870 new plant varieties formed by mutation breeding in the world, 44 varieties of different plants were formed by Vietnamese scientists. Research on induced mutation in Vietnam started in 1966, was promoted in Agricultural Institute, Cuu Long Delta Rice Research Institute, Institute of Food Crop Research, and Agriculture Universities, and has produced varieties of rice, maize, soybean, peanut, tomato, jujuba, green bean etc using physical and chemical mutagens: Irradiation with gamma rays or neutrons, and use of such chemicals as dimethylsulfate (DMS), diethylsulfate (DES), ethyleneimine (EI), N-nitrosomethylurea (NUM), N-nitrosoethylurea (NEU), and sodium azide (NaN{sub 3}). In the present report, the results of cytological and genetic effects in M1 plants, the frequency and spectrum of chlorophyll and morphological mutants, the mutants obtained and the genetic nature of the next generation are described, particularly for the case of rice. Radiation dose and dose rate used as mutagens are also reported. (S. Ohno)

  8. Arbitrarily amplified DNA: New molecular approaches to plant breeding, ecology and evolution

    Energy Technology Data Exchange (ETDEWEB)

    Caetano-Anolles, G [Department of Biology, University of Oslo, Oslo (Norway)

    2001-11-01

    Several DNA fingerprinting techniques that use arbitrary primers to characterize, scan and tag genomic DNA were optimized and used to study plants and microbial pathogens. The generated arbitrarily amplified DNA (AAD) profiles could be tailored in their complexity and polymorphic content, allowing analysis of closely related organisms, such as vegetatively-propagated horticultural crops or clonal fungal populations. AAD markers were used in cultivar and strain identification, map-based cloning, and marker-assisted breeding, sometimes as sequence-tagged sites. Phenetic analysis using parsimony, cluster, and numerical methods was applied successfully to the identification of genetic relationships in turfgrass species such as bermudagrass, woody plants such as dogwoods, and floricultural species such as petunia and chrysanthemum. AAD profiles were used to measure for the first time a genome-wide mutation rate, directly in a plant. Mutation rates in vegetatively propagated bermudagrass were comparable to those in human, mice, fruit flies, and worms. In combination with established tools used in molecular systematics (e.g. rDNA sequence analysis), AAD markers tracked the introduction of exotic dogwood anthracnose-causing fungi in North America. As part of a breeding effort to combat dogwood diseases, AAD was used in pseudo-testcross mapping of the tree at the intra-specific level. Markers were efficiently generated despite the close relatedness of parental dogwood material. Finally, DNA markers and tags were also generated in soybean, and were used to construct high density maps and walk towards defined genomic regions in the positional cloning of the supernodulation nts-1 symbiotic gene. (author)

  9. Arbitrarily amplified DNA: New molecular approaches to plant breeding, ecology and evolution

    International Nuclear Information System (INIS)

    Caetano-Anolles, G.

    2001-01-01

    Several DNA fingerprinting techniques that use arbitrary primers to characterize, scan and tag genomic DNA were optimized and used to study plants and microbial pathogens. The generated arbitrarily amplified DNA (AAD) profiles could be tailored in their complexity and polymorphic content, allowing analysis of closely related organisms, such as vegetatively-propagated horticultural crops or clonal fungal populations. AAD markers were used in cultivar and strain identification, map-based cloning, and marker-assisted breeding, sometimes as sequence-tagged sites. Phenetic analysis using parsimony, cluster, and numerical methods was applied successfully to the identification of genetic relationships in turfgrass species such as bermudagrass, woody plants such as dogwoods, and floricultural species such as petunia and chrysanthemum. AAD profiles were used to measure for the first time a genome-wide mutation rate, directly in a plant. Mutation rates in vegetatively propagated bermudagrass were comparable to those in human, mice, fruit flies, and worms. In combination with established tools used in molecular systematics (e.g. rDNA sequence analysis), AAD markers tracked the introduction of exotic dogwood anthracnose-causing fungi in North America. As part of a breeding effort to combat dogwood diseases, AAD was used in pseudo-testcross mapping of the tree at the intra-specific level. Markers were efficiently generated despite the close relatedness of parental dogwood material. Finally, DNA markers and tags were also generated in soybean, and were used to construct high density maps and walk towards defined genomic regions in the positional cloning of the supernodulation nts-1 symbiotic gene. (author)

  10. Genetic variation in degradability of wheat straw and potential for improvement through plant breeding

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner; Magid, Jakob; Hansen-Møller, Jens

    2011-01-01

    contemporary gene pool. The cultivars were grown at two different locations to assess the potential for breeding for improved degradability. The straws exhibited much variation in degradability ranging from 258 g kg1 to 407 g kg1 of dry matter. The heritability for degradability was estimated to 29% indicating...... a reasonable potential for response to selection. Inclusion of height as a regression-term, indicated that only a minor part of genetic differences are directly related to plant height and that improvements in degradability may be achieved without unacceptable changes in straw length. Finally, a lack...... of correlation between degradability and grain yield indicated that straw degradability may be improved through breeding without serious negative effect on grain yield....

  11. Mutation breeding newsletter. No. 45

    International Nuclear Information System (INIS)

    2001-07-01

    This issue of the Mutation Breeding newsletter contains 39 articles dealing with radiation induced mutations and chemical mutagenesis techniques in plant breeding programs with the aims of improving crop productivity and disease resistance as well as exploring genetic variabilities

  12. In vitro technology for mutation breeding

    International Nuclear Information System (INIS)

    1986-10-01

    The ultimate aim of the Co-ordinated Research Programme on In Vitro Technology for Mutation Breeding is to provide new effective tools for plant breeders to construct new cultivars, thus increasing agricultural production of food, feed and industrial raw material, particularly in developing countries. The participants of the research co-ordination meetings considered the potential of new advances of agricultural biotechnology, especially the use of in vitro techniques for mutation breeding. They discussed and co-ordinated plans in conjunction with the impact on plant breeding of novel technologies, such as use of somaclonal variation, cell hybridization and molecular genetics

  13. Comparative regulatory approaches for groups of new plant breeding techniques.

    Science.gov (United States)

    Lusser, Maria; Davies, Howard V

    2013-06-25

    This manuscript provides insights into ongoing debates on the regulatory issues surrounding groups of biotechnology-driven 'New Plant Breeding Techniques' (NPBTs). It presents the outcomes of preliminary discussions and in some cases the initial decisions taken by regulators in the following countries: Argentina, Australia, Canada, EU, Japan, South Africa and USA. In the light of these discussions we suggest in this manuscript a structured approach to make the evaluation more consistent and efficient. The issue appears to be complex as these groups of new technologies vary widely in both the technologies deployed and their impact on heritable changes in the plant genome. An added complication is that the legislation, definitions and regulatory approaches for biotechnology-derived crops differ significantly between these countries. There are therefore concerns that this situation will lead to non-harmonised regulatory approaches and asynchronous development and marketing of such crops resulting in trade disruptions. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Radiation techniques in crop and plant breeding. Multiplying the benefits

    International Nuclear Information System (INIS)

    Ahloowalia, B.S.

    1998-01-01

    World food production is based on growing a wide variety of fruits, vegetables, and crops developed through advances in science. Plant breeders have produced multiple varieties that grow well in various types of soils and under diverse climates in different regions of the world. Conventionally, this is done by sexual hybridization. This involves transferring pollen from one parent plant to another to obtain hybrids. The subsequent generations of these hybrids are grown to select plants which combine the desired characters of the parents. However, another method exists by which the genetic make-up of a given plant variety can be changed without crossing with another variety. With this method, a variety retains all its original attributes but is upgraded in one or two changed characteristics. This method is based on radiation-induced genetic changes, and its referred to as ''induced mutations''. During the past thirty years, more than 1800 mutant varieties of plants have been released, many, of which were induced with radiation. Plant tissue and cell culture (also called in vitro culture) in combination with radiation is a powerful technique to induce mutations, particularly for the improvement of vegetatively propagated crops. These crops include cassava, garlic, potato, sweet potato, yams, sugarcane, ornamentals such as chrysanthemum, carnation, roses, tulips, daffodil, and many fruits (e.g. apple, banana, plantain, citrus, date palm, grape, papaya, passion fruit, and kiwi fruit). In some of these plants, either there is no seed set (e.g. banana) or the seed progeny produces plants which do not have the right combination of the desired characteristics. These techniques are also useful in the improvement of forest trees having a long lifespan before they produce fruit and seed. This article briefly reviews advances in plant breeding techniques, with a view towards improving the transfer of technologies to more countries

  15. Pollination patterns and plant breeding systems in the Galápagos: a review

    Science.gov (United States)

    Chamorro, Susana; Heleno, Ruben; Olesen, Jens M.; McMullen, Conley K.; Traveset, Anna

    2012-01-01

    Background Despite the importance of the Galápagos Islands for the development of central concepts in ecology and evolution, the understanding of many ecological processes in this archipelago is still very basic. One such process is pollination, which provides an important service to both plants and their pollinators. The rather modest level of knowledge on this subject has so far limited our predictive power on the consequences of the increasing threat of introduced plants and pollinators to this unique archipelago. Scope As a first step toward building a unified view of the state of pollination in the Galápagos, a thorough literature search was conducted on the breeding systems of the archipelago's flora and compiled all documented flower–visitor interactions. Based on 38 studies from the last 100 years, we retrieved 329 unique interactions between 123 flowering plant species (50 endemics, 39 non-endemic natives, 26 introduced and eight of unknown origin) from 41 families and 120 animal species from 13 orders. We discuss the emergent patterns and identify promising research avenues in the field. Conclusions Although breeding systems are known for pollinator fauna does not represent a constraint to the integration of new plant species into the native communities. Most interactions detected (approx. 90 %) come from a single island (most of them from Santa Cruz). Hymenopterans (mainly the endemic carpenter bee Xylocopa darwinii and ants), followed by lepidopterans, were the most important flower visitors. Dipterans were much more important flower visitors in the humid zone than in the dry zone. Bird and lizard pollination has been occasionally reported in the dry zone. Strong biases were detected in the sampling effort dedicated to different islands, time of day, focal plants and functional groups of visitors. Thus, the existing patterns need to be confronted with new and less biased data. The implementation of a community-level approach could greatly increase

  16. Genetic engineering, a potential aid to conventional plant breeding

    International Nuclear Information System (INIS)

    Baloch, M.J.; Soomro, B.A.

    1993-01-01

    To develop improve crop varieties, the most basic elements are crossing of desirable parents to provide genetic variation for evaluation and selection of desirable plants among the progenies. In conventional plant breeding, gene transfer is achieved by back crossing or less frequently by recurrent selection. Both processes take several generations to reach to a point where genetic milieu of the parents remains. Plant breeders also face the most difficult situation when the desired gene is present in the entirely diverse species where wide crosses become inevitable. In addition, genomic disharmony, unfavourable genic interaction and chromosomal instability also account for limited success of wide hybridization in the field crops. Under such circumstances, tissue culture techniques, such as somaclonal variation, Embryo Rescue Technique and Somatic hybridization are the ultimate options. There may be other cases where desired genes are present in entirely different genera or organisms and crossings of donor with recipient is no more a concern. Plant breeders also spend much of their time manipulating quantitatively inherited traits such as yield, that have low heritability. These characters are assumed to be determined by a large number of genes each with minor and additive effects. Direct selection for such traits is less effective. Genetic Engineering approaches like isozymes and Restriction Fragment Length Polymorphism (RFLP) with heritability of 1.0 make the selection very efficient and accurate as indirect selection criteria for quantitatively inherited traits. Hence isozymes and RFLPs techniques can easily be exercised at cellular or seedling stages thus reducing the time and labour oriented screening of plants at maturity. Rather new approach such as polymerase chain reaction (PCR) will also be discussed in this article. (Orig./A.B.)

  17. Research progress on the space-flight mutation breeding of woodyplant

    International Nuclear Information System (INIS)

    Cui Binbin; Sun Yuhan; Li Yun

    2013-01-01

    The space-flight mutation breeding conception, characteristics, mutagenic effects, research progress at home and abroad in woody plant were reviewed in this paper. Compared with crops, although the research of the woody plants space-flight mutation breeding in China started later, but it has developed rapidly and has gotten certain achievement. Now the satellite and high-altitude balloon experiment were conducted with over 20 tree species such as Populus ussuriensis and 50 flower species such as Paeonia suffruticosa. The above work will has profound significance for space-flight breeding technology application on woody plants. In the end, this thesis analyzes the prospect in the future from four aspects such as using woody plants asexual reproduction characteristic, strengthening the space mutation mechanism study, enhancing new space mutation varieties screen and strengthening ornamental specific types selection. This thesis also thinks that the space mutation breeding is expected to become an effective way in woody plant genetic breeding. (authors)

  18. Plant Breeding and Genetics Newsletter, No. 34, January 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The year 2014 has passed, and we prepare for 2015. Many things have happened this year; please allow me to highlight some salient facts about the Plant Breeding and Genetic sub-programme. 2014 saw the achievement of a very successful regional IAEA/RCA Technical Cooperation project RAS/5/056 on ‘Supporting Mutation Breeding Approaches to Develop New Crop Varieties Adaptable to Climate Change’. In the mid-term project review meeting, it was highlighted that since inception, 17 mutant varieties have been officially released and that there are currently more than 100 advanced mutant lines in trials and more mutant populations in the pipeline for further selection and development. This project also demonstrated that mutation induction coupled with selection remains the cleanest and most inexpensive way to create varieties by changing single characters without affecting the overall phenotype. Our counterparts from RAS/5/056 also report on the beneficial products from mutant sorghum for human nutrition. The same is true for our colleagues participating in the CRP on food and feed, who report lignin modified sorghum mutant lines for animal nutrition. In addition, the final meeting of another successful interregional TC project ‘Responding to the Transboundary Threat of Wheat Black Stem Rust (Ug99)’, was held in Uganda, where it all began. The team of NAFA and TC got the IAEA Superior Achievement Team Award for the successful implementation of this project. This year, the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture is celebrating its 50th Anniversary. On the occasion of this milestone of the Joint FAO/IAEA Division, Achievement and Outstanding Achievement Awards were initiated to honor and appreciate the successes of Member States in plant mutation breeding and to further promote the use of nuclear techniques for sustainable food security. Five Outstanding Achievement Awards and 18 Achievement Awards were handed out to the representatives

  19. Nuclear science for food security. IAEA says plant breeding technique can help beat world hunger

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-02

    The International Atomic Energy Agency (IAEA) today called for increased investment in a plant breeding technique that could bolster efforts aimed at pulling millions of people out of the hunger trap. IAEA scientists use radiation to produce improved high-yielding plants that adapt to harsh climate conditions such as drought or flood, or that are resistant to certain diseases and insect pests. Called mutation induction, the technique is safe, proven and cost-effective. It has been in use since the 1920s. 'The global nature of the food crisis is unprecedented. Families all around the world are struggling to feed themselves,' says Mohamed ElBaradei, Director General of the IAEA. 'To provide sustainable, long-term solutions, we must make use of all available resources. Selecting the crops that are better able to feed us is one of humankind's oldest sciences. But we've neglected to give it the support and investment it requires for universal application. The IAEA is urging a revival of nuclear crop breeding technologies to help tackle world hunger.' For decades the IAEA, in partnership with the Food and Agriculture Organization of the United Nations (FAO), has assisted its Member States to produce more, better and safer food. In plant breeding and genetics, its expertise is helping countries around the world to achieve enhanced agricultural output using nuclear technology. Already more than 3000 crop varieties of some 170 different plant species have been released through the direct intervention of the IAEA: they include barley that grows at 5000 meters (16,400 ft) and rice that thrives in saline soil. These varieties provide much needed food as well as millions of dollars in economic benefits for farmers and consumers, especially in developing countries. But with increased investment and broader application, the technology could positively impact the health and livelihood of even greater numbers of people. And as world hunger grows, the need has never been more urgent.

  20. Nuclear science for food security. IAEA says plant breeding technique can help beat world hunger

    International Nuclear Information System (INIS)

    2008-01-01

    The International Atomic Energy Agency (IAEA) today called for increased investment in a plant breeding technique that could bolster efforts aimed at pulling millions of people out of the hunger trap. IAEA scientists use radiation to produce improved high-yielding plants that adapt to harsh climate conditions such as drought or flood, or that are resistant to certain diseases and insect pests. Called mutation induction, the technique is safe, proven and cost-effective. It has been in use since the 1920s. 'The global nature of the food crisis is unprecedented. Families all around the world are struggling to feed themselves,' says Mohamed ElBaradei, Director General of the IAEA. 'To provide sustainable, long-term solutions, we must make use of all available resources. Selecting the crops that are better able to feed us is one of humankind's oldest sciences. But we've neglected to give it the support and investment it requires for universal application. The IAEA is urging a revival of nuclear crop breeding technologies to help tackle world hunger.' For decades the IAEA, in partnership with the Food and Agriculture Organization of the United Nations (FAO), has assisted its Member States to produce more, better and safer food. In plant breeding and genetics, its expertise is helping countries around the world to achieve enhanced agricultural output using nuclear technology. Already more than 3000 crop varieties of some 170 different plant species have been released through the direct intervention of the IAEA: they include barley that grows at 5000 meters (16,400 ft) and rice that thrives in saline soil. These varieties provide much needed food as well as millions of dollars in economic benefits for farmers and consumers, especially in developing countries. But with increased investment and broader application, the technology could positively impact the health and livelihood of even greater numbers of people. And as world hunger grows, the need has never been more urgent

  1. Genomic Selection in the Era of Next Generation Sequencing for Complex Traits in Plant Breeding.

    Science.gov (United States)

    Bhat, Javaid A; Ali, Sajad; Salgotra, Romesh K; Mir, Zahoor A; Dutta, Sutapa; Jadon, Vasudha; Tyagi, Anshika; Mushtaq, Muntazir; Jain, Neelu; Singh, Pradeep K; Singh, Gyanendra P; Prabhu, K V

    2016-01-01

    Genomic selection (GS) is a promising approach exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. In plant breeding, it provides opportunities to increase genetic gain of complex traits per unit time and cost. The cost-benefit balance was an important consideration for GS to work in crop plants. Availability of genome-wide high-throughput, cost-effective and flexible markers, having low ascertainment bias, suitable for large population size as well for both model and non-model crop species with or without the reference genome sequence was the most important factor for its successful and effective implementation in crop species. These factors were the major limitations to earlier marker systems viz., SSR and array-based, and was unimaginable before the availability of next-generation sequencing (NGS) technologies which have provided novel SNP genotyping platforms especially the genotyping by sequencing. These marker technologies have changed the entire scenario of marker applications and made the use of GS a routine work for crop improvement in both model and non-model crop species. The NGS-based genotyping have increased genomic-estimated breeding value prediction accuracies over other established marker platform in cereals and other crop species, and made the dream of GS true in crop breeding. But to harness the true benefits from GS, these marker technologies will be combined with high-throughput phenotyping for achieving the valuable genetic gain from complex traits. Moreover, the continuous decline in sequencing cost will make the WGS feasible and cost effective for GS in near future. Till that time matures the targeted sequencing seems to be more cost-effective option for large scale marker discovery and GS, particularly in case of large and un-decoded genomes.

  2. Mutation breeding for disease resistance using in-vitro culture techniques

    International Nuclear Information System (INIS)

    1985-07-01

    Breeding for disease resistance is a major aspect of plant breeding, which may take at least 20% of a plant breeder's time, effort and budget. Nevertheless, numerous resistance problems remain unsolved and present major constraints to the production of food, feed, fiber and industrial commodities. The application of novel biotechnology and genetic engineering will extend the possibilities of conventional plant breeding. Therefore a meeting of experts in plant protection, plant breeding and in-vitro culture technology was convened by the Joint FAO/IAEA Division in Vienna. The experts were asked to discuss and give advice on prospects of biotechnology, especially plant in-vitro cultures, to contribute towards improved chances of success in mutation breeding for disease resistance. The plant breeder, in searching for resistance to a particular pathogen, like for any other desirable character, needs genetic variation to begin with. In addition he needs an appropriate screening method to detect the desired character. Science has developed so fast that it is now time to apply the existing knowledge of biotechnology to practical problems in agriculture, also in developing countries. In the near future this may be true also for novel techniques of genetic engineering. The usefulness and feasibility of the application of in-vitro techniques for these purposes varies with crops and pathogens, but also depends on the strength of plant breeding and plant pathology and the facilities available in a particular country. The members of the Advisory Group attempted to discuss the various aspects and to reach sound conclusions

  3. Plant Breeding and Genetics Newsletter, No. 33, July 2014

    International Nuclear Information System (INIS)

    2014-07-01

    The Member States of IAEA have called for an initiative to renovate and modernize the Nuclear Sciences and Applications Laboratories in Seibersdorf, called the ReNuAL project. In the 52 years since the IAEA's Nuclear Applications Laboratories in Seibersdorf were established (five of which are in the field of agriculture under the Joint FAO/IAEA Division), there has been no comprehensive renovation or significant upgrading of equipment to ensure the continuing ability of the laboratories to respond to Member States' growing and evolving needs. The objective of the ReNuAL Project is to ensure that the laboratories are fit-for-purpose and appropriately positioned to meet the evolving needs of member countries with adequate infrastructure in place for the next 20 years. The goals are to: • Redesign and expand the current infrastructure to ensure the efficiency and effectiveness of laboratory operations and services to better meet the current and future requirements of member countries; • Ensure that the laboratories remain a vibrant research and training institution that continues to attract highly qualified scientists and other staff committed to advancing applied nuclear sciences to serve the needs and interests of member countries. The ReNuAL project includes in its first phase those elements to be achieved from 2014-2017 within a Euro 31 million target budget established by the Director General. Ground-breaking is planned for 29 September 2014, with completion by December 2017. We are dependent upon additional financial support and donations of the countries we serve, in order to be able to realize all the necessary renovation works. This year we also celebrate the 50th anniversary of the Joint FAO/IAEA Division. This provides an opportunity to honour the endeavours of individuals, teams and institutions in Member States in increasing sustainable food security through plant mutation breeding: Outstanding and Superior Achievement Awards to celebrate successes in

  4. Recurring off-types in lettuce: Their significance in plant breeding and seed production.

    Science.gov (United States)

    Maxon Smith, J W

    1977-03-01

    The lettuce cv. Valentine regularly produces non-heading off-type plants at the relatively high frequency of 4 × 10(-3). They result from mutation to the dominant condition. A similar propensity has been reported twice before in lettuce; it is highly heritable.The propensity to produce off-types was not present in the parents of Valentine so it must have arisen during the pedigree breeding programme. Closely related cultivars do not carry the character but it was subsequently transmitted to Dandie a new cultivar of which Valentine was one of the parents. Allelism tests to relate Valentine off-types to those in crisphead cultivars were not successful.The elimination of off-types in breeding programmes is discussed. Contrary to the findings in day-neutral crisphead cultivars, mutant phenotypes in long-day butterhead cultivars have no selective advantage for seed production. Consequently, strict roguing ensures adequate varietal stability.

  5. The improvement of cotton plant in mutation breeding dry climate areas at NTB

    International Nuclear Information System (INIS)

    Lilik Harsanti

    2015-01-01

    The opportunity of cotton plant to become a major crop in Indonesia is widely opened due to its extensive adaptability, productivity, efficiency of nutrient intake, and relatively resistant against pests and plant diseases. Generally, cotton plant is an important industrial crop in textile manufacture. Cotton plant has been known and planted for a long time ago by the local farmer, especially at Java, NTB and NTT. Plant mutation breeding have the mutant lines genetic for plant. The mutant lines of cotton plant, which originally come from embryogenic tissue culture (embryo axis, NIAB-999), were irradiated with dose of 20 Gy. Gamma Chamber 4000-A with source of 60 Cobalt was used for the irradiation treatment. The experiments were done at Citayam by designed by randomized Block design with five replications. Both of mutant lines were planted in the plot with size of 8 × 7 m 2 and 10 × 100 cm of spacing. Kanesia 15 variety was used as a control. The parameters observed were the days of maturity, plant height, number of generative branches, number of fruit/plant, weight of 100 cotton boll per plot. As the results, CN 2A has the biggest productivity, shown by the weight of the cotton fiber per plot, which is 447.510 kg compared to Kanesia 15 and NIAB 999 is control national and control mother. (author)

  6. Utilization of ionizing radiations and radioisotopes in plant breeding and crop improvement in Arab countries

    International Nuclear Information System (INIS)

    Abo-Hegazi, A.M.T.

    1983-01-01

    A review for research work in the field of utilizing ionizing radiations and radioisotopes in plant breeding and crop improvement conducted in Arab countries has been summerized and discussed in the light of some economic features of the crop or the plant on national or regional (arab) level. Among the 241 articles in the above mentioned fields reviewed, around 230 articles were conducted in Egypt, 6 in Iraq, 2 in Algeria and 2 in Sudan. Some of the articles dealing with more than one crop and/or more than one type of radiation or radioisotope

  7. Plant Breeding and Genetics Newsletter, No. 29, July 2012

    International Nuclear Information System (INIS)

    2012-07-01

    Human population growth is projected to reach a staggering nine billion people by 2050. Who will feed the growing billions; how can more food be produced on less land; how can we protect crop yields from climate variability, pests and diseases? These are major issues of our generation. Thus, the theme of this year's Scientific Forum at the IAEA General Conference in September will be devoted to Food Security in all its aspects. Mutation breeding has played a major role in improving crops and stabilizing food security concerns worldwide. Classic examples are improved yields brought about by semi-dwarf mutant varieties of wheat and rice in the mid-twentieth century, which created the 'Green Revolution'. Mutation induction via irradiation is an established method in providing useful variation for crop improvement, despite this the sought after mutant is a rare event. Today these mutants can be detected efficiently using high-throughput phenotyping and genotyping methods. Read more about the direct involvement of the Plant Breeding and Genetics Laboratory in Seibersdorf pertaining to developing technology packages, and providing training and service to tackle the above mentioned topics in this issue. Also, we are proud to announce the 50th Anniversary of the Agency's laboratories in Seibersdorf, you will find more about this event in the News section inside this issue. In the section on Technical Cooperation Projects (TC) I want to highlight the first Coordination Meeting for the IAEA/RCA regional TC project RAS/5/056 on Supporting Mutation Breeding Approaches to Develop New Crop Varieties Adaptable to Climate Change. This regional TC project is a fully integrated endeavour between the Plant Breeding and Genetics Section and the Soil, Water Management and Crop Nutrition Section. This new TC project RAS/5/056 is a follow-up of the recently closed project RAS/5/045. Within this previous project, well characterized mutant lines improved for important agronomic traits such

  8. Biotechnological approach in crop improvement by mutation breeding in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Soeranto, H.; Sobrizal; Sutarto, Ismiyati; Manurung, Simon; Mastrizal [National Nuclear Energy Agency, Center for Research and Development of Isotope and Radiation Technology, Jakarta (Indonesia)

    2002-02-01

    Mutation breeding has become a proven method of improving crop varieties. Most research on plant mutation breeding in Indonesia is carried out at the Center for Research and Development of Isotope and Radiation Technology, National Nuclear Energy Agency (BATAN). Nowadays, a biotechnological approach has been incorporated in some mutation breeding researches in order to improve crop cultivars. This approach is simply based on cellular totipotency, or the ability to regenerate whole, flowering plants from isolated organs, pieces of tissue, individual cells, and protoplasts. Tissue culture technique has bee extensively used for micro propagation of disease-free plants. Other usage of this technique involves in various steps of the breeding process such as germplasm preservation, clonal propagation, and distant hybridization. Mutation breeding combined with tissue culture technique has made a significant contribution in inducing plant genetic variation, by improving selection technology, and by accelerating breeding time as for that by using anther or pollen culture. In Indonesia, research on mutation breeding combined with tissue culture techniques has been practiced in different crop species including rice, ginger, banana, sorghum etc. Specially in rice, a research on identification of DNA markers linked to blast disease resistance is now still progressing. A compiled report from some research activities is presented in this paper. (author)

  9. Forage plants of an Arctic-nesting herbivore show larger warming response in breeding than wintering grounds, potentially disrupting migration phenology

    NARCIS (Netherlands)

    Lameris, T.K.; Jochems, Femke; van der Graaf, A.J.; Andersson, M.; Limpens, J.; Nolet, B.A.

    2017-01-01

    During spring migration, herbivorous waterfowl breeding in the Arctic depend on peaks in the supply of nitrogen-rich forage plants, following a “green wave” of grass growth along their flyway to fuel migration and reproduction. The effects of climate warming on forage plant growth are expected to be

  10. Breeding system and parental effect on fruit characters of Idesia polycarpa (Flacourtiaceae), a promising plant for biodiesel, in northwest China

    International Nuclear Information System (INIS)

    Wang, S.H.; Li, Z.Q.; Xie, Q.

    2017-01-01

    Idesia polycarpa Maxim. is a promising plant for biodiesel in China. We have reported the flowering phenology, breeding system and parental effect on fruit characters of this species distributed in Qinling-Bashan Mountain (Shaanxi Province) nature reserve. As a dioecious plant, the male and female flowered almost synchronously. The anthesis was from around 10th of May and proceeded until the end of May or the beginning of June at population level. To determine the breeding system of I. polycarpa, three pollination treatments were carried out on every three female plants: natural pollination (NP), apomixy (AP) and cross pollination (CP). Reproductive success of apoximy treatment indicated that, as a dioecious plant, I. polycarpa could also reproduce by apomixis. However, the mean fruit set under apomixy treatment was markerly lower (3.6–13.33%) than that of two pollination treatments (>65.69%). Fruit quality (fruit length, fruit width, 100 fruit weight, seed production and seed germination) of the cross pollination treatment was greater than the other two treatments, suggested that pollen competition in cross pollination treatment was the most intense in three treatments. To study parental effect on fruit characters, cross pollination was carried out with three female plants and three male plants. The result showed that maternal parents (P<0.001) and parental interaction significantly affected all the fruit characters (including 100 fruit weight, pulp/fruit ratio, oil content and seed germination) while paternal parents showed significant effects on 100 fruit weight, pulp/fruit ratio and seed germination. Fruit set was only significantly affected by maternal parents (P=0.001). Our findings will facilitate future breeding programs of I. polycarpa in parental selection. (author)

  11. Breeding for plant adaptations and agricultural measures in response to climatic changes in Serbia

    Directory of Open Access Journals (Sweden)

    Popović Aleksandar

    2014-01-01

    Full Text Available Improving the production of different cultivated plant species is of great importance for both human and animals, as well as for industrial processing. In the light of global climate changing and searching for renewable sources of energy, this task becomes even more important. Scientists from different areas of research, are actively involved in solving this complex task. Climate changes represent a big challenge not only for agricultural practices, but also for the process of shaping agricultural strategies. Recent studies indicate that climate changes can not be stopped. Constantly growing problems brought by global climate changes could be, to a larger extent, overcome by breeding programs, along with application of adequate agrotechnical measures. Thus, development of new varieties and hybrids with improved performances in response to more frequent and unfavorable environmental conditions, is of prime importance in breeding centers.

  12. Unused natural variation can lift yield barriers in plant breeding.

    Directory of Open Access Journals (Sweden)

    Amit Gur

    2004-10-01

    Full Text Available Natural biodiversity is an underexploited sustainable resource that can enrich the genetic basis of cultivated plants with novel alleles that improve productivity and adaptation. We evaluated the progress in breeding for increased tomato (Solanum lycopersicum yield using genotypes carrying a pyramid of three independent yield-promoting genomic regions introduced from the drought-tolerant green-fruited wild species Solanum pennellii. Yield of hybrids parented by the pyramided genotypes was more than 50% higher than that of a control market leader variety under both wet and dry field conditions that received 10% of the irrigation water. This demonstration of the breaking of agricultural yield barriers provides the rationale for implementing similar strategies for other agricultural organisms that are important for global food security.

  13. Elevating optimal human nutrition to a central goal of plant breeding and production of plant-based foods.

    Science.gov (United States)

    Sands, David C; Morris, Cindy E; Dratz, Edward A; Pilgeram, Alice

    2009-11-01

    High-yielding cereals and other staples have produced adequate calories to ward off starvation for much of the world over several decades. However, deficiencies in certain amino acids, minerals, vitamins and fatty acids in staple crops, and animal diets derived from them, have aggravated the problem of malnutrition and the increasing incidence of certain chronic diseases in nominally well-nourished people (the so-called diseases of civilization). Enhanced global nutrition has great potential to reduce acute and chronic disease, the need for health care, the cost of health care, and to increase educational attainment, economic productivity and the quality of life. However, nutrition is currently not an important driver of most plant breeding efforts, and there are only a few well-known efforts to breed crops that are adapted to the needs of optimal human nutrition. Technological tools are available to greatly enhance the nutritional value of our staple crops. However, enhanced nutrition in major crops might only be achieved if nutritional traits are introduced in tandem with important agronomic yield drivers, such as resistance to emerging pests or diseases, to drought and salinity, to herbicides, parasitic plants, frost or heat. In this way we might circumvent a natural tendency for high yield and low production cost to effectively select against the best human nutrition. Here we discuss the need and means for agriculture, food processing, food transport, sociology, nutrition and medicine to be integrated into new approaches to food production with optimal human nutrition as a principle goal.

  14. Mutation Breeding Newsletter. No. 37

    International Nuclear Information System (INIS)

    1991-01-01

    This newsletter contains a brief account of FAO/IAEA meetings held in 1990 on plant breeding involving the use of induced mutations. It also features a list of commercially available plant cultivars produced by such techniques. Refs and tabs

  15. Domestication and Breeding of Jatropha curcas L.

    Science.gov (United States)

    Montes, Juan M; Melchinger, Albrecht E

    2016-12-01

    Jatropha curcas L. (jatropha) has a high, untapped potential to contribute towards sustainable production of food and bioenergy, rehabilitation of degraded land, and reduction of atmospheric carbon dioxide. Tremendous progress in jatropha domestication and breeding has been achieved during the past decade. This review: (i) summarizes current knowledge about the domestication and breeding of jatropha; (ii) identifies and prioritizes areas for further research; and (iii) proposes strategies to exploit the full genetic potential of this plant species. Altogether, the outlook is promising for accelerating the domestication of jatropha by applying modern scientific methods and novel technologies developed in plant breeding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Plant Breeding and Genetics Newsletter, No. 35, July 2015

    International Nuclear Information System (INIS)

    2015-07-01

    The mission of the Joint FAO/IAEA Division is continually evolving to address novel challenges in MSs and nuclear applications continue to provide added value to conventional approaches in addressing a range of agricultural problems and issues. Member States are increasingly concerned with climate change and have expressed support to respond to emerging challenges related to transboundary plant diseases. The FAO/IAEA’s Plant Breeding and Genetics Section is working with Member States in developing and introducing mutant crop varieties that respond to climate change and food security and has successfully supported the development of disease resistant mutant varieties, such as Ug99 wheat resistant varieties in Kenya. Future support is expected on developing resistant mutant varieties to TR4 (Fusarium wilt, known as Panama disease) in banana and to leaf rust in coffee. International collaboration is one of the priorities of the Joint FAO/IAEA Division. We are pleased to announce our collaboration with Hernan Ceballos and his group at the International Center for Tropical Agriculture (CIAT) for the genotyping of cassava accessions held at CIAT in the context of which we will be developing Ecotilling and next generation sequencing approaches to characterize cassava germplasm for nucleotide variation in genes involved in traits such as starch quality and herbicide tolerance

  17. Plant breeding and genetics newsletter. No. 21, July 2008

    International Nuclear Information System (INIS)

    2008-07-01

    A major milestone for our subprogramme will be the upcoming International Symposium on Induced Mutations in Plants, which will be held 12-15 August 2008 in Vienna, Austria. This will be the eighth in the Joint FAO/IAEA Programme?s Symposium series dedicated exclusively to harnessing and disseminating information on current trends in induced mutagenesis in plants, the first of which was held in 1969 and the most recent in 1995. These previous symposia dealt with themes relating to the development of efficient protocols for induced mutagenesis and their role in the enhancement of quality traits, as well as resistance to biotic and abiotic stresses in crops and the integration of in vitro and molecular genetic techniques in mutation induction. Topics which to be addressed at this symposium will be: Molecular genetics and biology of physical, chemical and transposon-induced mutagenesis; New mutation techniques, e.g. ion beam implantation, and their integration with other molecular and biotechnological techniques; Induced mutations in crop breeding programmes; Mutation induction for gene discovery and functional genomics, including targeting induced local lesions in genomes (TILLING) and other reverse genetic strategies; Mutational analysis of important crop characters (tolerance to abiotic stresses, resistance to diseases and insects, quality and nutritional characters, etc.); Socio-economic impact of widespread mutant varieties

  18. Plant breeding and genetics newsletter. No. 21, July 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-15

    A major milestone for our subprogramme will be the upcoming International Symposium on Induced Mutations in Plants, which will be held 12-15 August 2008 in Vienna, Austria. This will be the eighth in the Joint FAO/IAEA Programme?s Symposium series dedicated exclusively to harnessing and disseminating information on current trends in induced mutagenesis in plants, the first of which was held in 1969 and the most recent in 1995. These previous symposia dealt with themes relating to the development of efficient protocols for induced mutagenesis and their role in the enhancement of quality traits, as well as resistance to biotic and abiotic stresses in crops and the integration of in vitro and molecular genetic techniques in mutation induction. Topics which to be addressed at this symposium will be: Molecular genetics and biology of physical, chemical and transposon-induced mutagenesis; New mutation techniques, e.g. ion beam implantation, and their integration with other molecular and biotechnological techniques; Induced mutations in crop breeding programmes; Mutation induction for gene discovery and functional genomics, including targeting induced local lesions in genomes (TILLING) and other reverse genetic strategies; Mutational analysis of important crop characters (tolerance to abiotic stresses, resistance to diseases and insects, quality and nutritional characters, etc.); Socio-economic impact of widespread mutant varieties.

  19. Genomic selection in plant breeding.

    Science.gov (United States)

    Newell, Mark A; Jannink, Jean-Luc

    2014-01-01

    Genomic selection (GS) is a method to predict the genetic value of selection candidates based on the genomic estimated breeding value (GEBV) predicted from high-density markers positioned throughout the genome. Unlike marker-assisted selection, the GEBV is based on all markers including both minor and major marker effects. Thus, the GEBV may capture more of the genetic variation for the particular trait under selection.

  20. Between and beyond additivity and non-additivity : the statistical modelling of genotype by environment interaction in plant breeding

    NARCIS (Netherlands)

    Eeuwijk, van F.A.

    1996-01-01

    In plant breeding it is a common observation to see genotypes react differently to environmental changes. This phenomenon is called genotype by environment interaction. Many statistical approaches for analysing genotype by environment interaction rely heavily on the analysis of variance model.

  1. Mutation breeding in sorghum (sorghum bicolor L.) for improving plant as ruminant feed

    International Nuclear Information System (INIS)

    H, Soeranto

    1998-01-01

    Mutation breeding using gamma irradiation in sorghum was aimed at improving the quality and production of sorghum plant as ruminant feed. Seeds of local sorghum variety Keris with moisture of about 14% were irradiated with gamma rays from Cobalt-60 source using the dose levels up to 0.5 kgy. The MI plant were grown in Pasar Jumat, the M2 and M3 were grown in Citayam experimental station. The M2 plants were harvested 40 days after sowing by cutting plants 20 cm above ground surface. Two weeks later observations for the ability of plants to produce new buds (buds variable). The plants green products in green products in from of their dry weight (product variable) were collected 40 days after harvesting and drying process in oven at 105 0 C for 24 hours. Plant selections with intensity of 20% were done for the bud variable among samples of M2 plants. Selection responses in the M3 were found to vary from the lowest at 0.5 kgy population (R s = 0.8507). The share of genetic factors to selection responses in bud variable varied from 7.25% at 0,5 kgy population to 22.35% at 0.3 kgy population. Selection for bud variable gave directly impact in increasing product variable in the M3. (author)

  2. Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery

    OpenAIRE

    Hickey, John M; Chiurugwi, Tinashe; Mackay, Ian; Powell, Wayne; Implementing Genomic Selection in CGIAR Breeding Programs Workshop Participants

    2017-01-01

    The rate of annual yield increases for major staple crops must more than double relative to current levels in order to feed a predicted global population of 9 billion by 2050. Controlled hybridization and selective breeding have been used for centuries to adapt plant and animal species for human use. However, achieving higher, sustainable rates of improvement in yields in various species will require renewed genetic interventions and dramatic improvement of agricultural practices. Genomic pre...

  3. Clonal forestry, heterosis and advanced-generation breeding

    Energy Technology Data Exchange (ETDEWEB)

    Tuskan, G.A.

    1997-08-01

    This report discusses the clonal planting stock offers many advantages to the forest products industry. Advanced-generation breeding strategies should be designed to maximize within-family variance and at the same time allow the capture of heterosis. Certainly there may be a conflict in the choice of breeding strategy based on the trait of interest. It may be that the majority of the traits express heterosis due to overdominance. Alternatively, disease resistance is expressed as the lack of a specific metabolite or infection court then the homozygous recessive genotype may be the most desirable. Nonetheless, as the forest products industry begins to utilize the economic advantages of clonal forestry, breeding strategies will have to be optimized for these commercial plant materials. Here, molecular markers can be used to characterize the nature of heterosis and therefore define the appropriate breeding strategy.

  4. Using modern plant breeding to improve the nutritional and technological qualities of oil crops

    Directory of Open Access Journals (Sweden)

    Murphy Denis J.

    2014-11-01

    Full Text Available The last few decades have seen huge advances in our understanding of plant biology and in the development of new technologies for the manipulation of crop plants. The application of relatively straightforward breeding and selection methods made possible the “Green Revolution” of the 1960s and 1970s that effectively doubled or trebled cereal production in much of the world and averted mass famine in Asia. During the 2000s, much attention has been focused on genomic approaches to plant breeding with the deployment of a new generation of technologies, such as marker-assisted selection, next-generation sequencing, transgenesis (genetic engineering or GM and automatic mutagenesis/selection (TILLING, TargetIng Local Lesions IN Genomes. These methods are now being applied to a wide range of crops and have particularly good potential for oil crop improvement in terms of both overall food and non-food yield and nutritional and technical quality of the oils. Key targets include increasing overall oil yield and stability on a per seed or per fruit basis and very high oleic acid content in seed and fruit oils for both premium edible and oleochemical applications. Other more specialised targets include oils enriched in nutritionally desirable “fish oil”-like fatty acids, especially very long chain !-3 acids such as eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, or increased levels of lipidic vitamins such as carotenoids, tocopherols and tocotrienes. Progress in producing such oils in commercial crops has been good in recent years with several varieties being released or at advanced stages of development.

  5. SOYBEAN - MOLECULAR ASPECTS OF BREEDING

    Directory of Open Access Journals (Sweden)

    Aleksandra Sudarić

    2012-12-01

    Full Text Available The book Soybean: Molecular Aspects of Breeding focuses recent progress in our understanding of the genetics and molecular biology of soybean. This book is divided into four parts and contains 22 chapters. Part I, Molecular Biology and Biotechnology focuses advances in molecular biology and laboratory procedures that have been developed recently to manipulate DNA. Part II, Breeding for abiotic stress covers proteomics approaches form as a powerful tool for investigating the molecular mechanisms of the plant responses to various types of abiotic stresses. Part III, Breeding for biotic stress addresses issues related to application of molecular based strategies in order to increase soybean resistance to various biotic factors. Part IV, Recent Technology reviews recent technologies into the realm of soybean monitoring, processing and product use. While the information accumulated in this book is of primary interest for plant breeders, valuable insights are also offered to agronomists, molecular biologists, physiologists, plant pathologists, food scientists and students. The book is a result of efforts made by many experts from different countries (USA, Japan, Croatia, Serbia, China, Canada, Malawi, Iran, Hong Kong, Brasil, Mexico.

  6. Mutation Breeding for Crop Improvement

    International Nuclear Information System (INIS)

    Rajbir, S. Sangwan

    2017-01-01

    Chromosomes contain genes responsible of different traits of any organism. Induced mutation using chemical mutagens and radiation to modify molecular structure of plants played a major role in the development of high genetic variability and help develop new superior crop varieties. The Mutation Breeding is applicable to all plants and has generated lot of agronomically interesting mutants, both in vegetatively and seed propagated plants. The technique is easy but long and challenging to detect, isolate and characterize the mutant and gene. A specific dose of irradiation has to be used to obtain desired mutants. However, with modern molecular technique, the gene responsible for mutation can be identified. The CRISPR-Cas9 allows the removal of a specific gene which is responsible of unwanted trait and replacing it with a gene which induces a desired trait. There have been more than 2700 officially released mutant varieties from 170 different plant species in more than 60 countries throughout the world and A more participatory approach, involving all stakeholders in plant breeding, is needed to ensure that it is demand/farmers driven.

  7. Induced mutation research in plant breeding; Recherche sur les mutations radioinduites en phytogenetique

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, R. W. [Biology Department, Brookhaven National Laboratory, Upton, NY (United States)

    1970-01-15

    The improvement of plants is of great importance to the developing countries. The author briefly describes, with references, recent work on mutation breeding by means of ionizing radiations. The aim of this work is to increase the quantity and quality of plants, e.g. by increasing yield, by developing disease- or insect-resistant varieties, by increasing nutritive value, by improving taste, storage life and appearance. (author) [French] L'amélioration des plantes présente une grande importance pour les pays en voie de développement. L’auteur décrit succinctement, en s'appuyant sur des exemples, certaines recherches récentes en phytogénétique faisant intervenir des mutations radioinduites. L'objet du travail exposé dans le mémoire est d'améliorer quantitativement et qualitativement les plantes, par exemple en augmentant les rendements, en créant des variétés résistant aux maladies et aux insectes, en augmentant la valeur nutritive des produits, ou en améliorant leur goût, leur durée de conservation et leur aspect. (author)

  8. Plant Breeding and Genetics Newsletter, No. 30, January 2013

    International Nuclear Information System (INIS)

    2013-01-01

    The Scientific Forum focused on sustainable food security in all its aspects. Plant Breeding and Genetics's (PBG) activities, which are demand driven, results based and outcome oriented, are already targeted towards broadening crop adaptation and change. In the future we will use the paradigm of 'climate smart agriculture' to even better meet the needs of the Member States. A central aspect of resilience to climate change, or adaptation to erratic weather variations, is broad biodiversity. According to the Convention on Biological Diversity (CBD) biodiversity 'includes all The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture is actively supporting Member States in adaptation strategies for climate change based on mutation induction and efficiency enhancing biotechnologies through various coordinated research projects (CRPs) and technical cooperation project (TCPs). Major thematic areas of the Plant Breeding and Genetics subprogramme are 'Crop improvement for high yield and enhanced adaptability to climate change' with major activities targeted towards fostering crop improvement (e.g. yield, quality, nutritional factors, market-preferred traits) as well as biodiversity protection, through applying mutation induction and efficiency enhancing bio-/molecular technologies, and 'Integrated soil-water-plant approaches to enhance food production and biomass productivity' with special emphasis on enhancing Member State capacities to advance food security through climate change mitigation and adaptation using integrated soil-plant approaches. The details of the coordinated research projects (CRPs) related to the issue of crop adaptability and supporting biodiversity implemented as part of the sub-programme are as follows: (1) The activities under the CRP 'Approaches to improvement of crop genotypes with high water and nutrient use efficiency for water scarce environments' focusses on assessing resources, in order to define and adapt best fit soil and

  9. Filling the toolbox of precision breeding methods

    NARCIS (Netherlands)

    Schaart, J.G.; Wiel, van de C.C.M.; Lotz, L.A.P.; Smulders, M.J.M.

    2016-01-01

    Plant breeding has
    resulted in numerous
    high-quality crop
    varieties being
    cultivated nowadays.
    Breeding based on
    crossing and selection
    remains an important
    and ongoing activity for
    crop improvement, but
    needs innovation to be
    able to address

  10. Eggplant variety breeding aerospace Hangqie No.4

    International Nuclear Information System (INIS)

    Wang Fuquan; Song Jianrong; Guo Zhenfang; Ding Yaohong; Kong Xiaojuan

    2012-01-01

    Hangqie No.4 is on the Shenzhou spacecraft carrying no. 3 local variety reported by four generations enterprise round tomato breeding 03-4-15-2-3-1 has breeding for female to the 18th retuning-type science technology and experimental satellite launch of the optimal tomato after 0448-1-3-1 has breeding for male parent, mixture of the generation of hybrid. Medium-early maturity, 667 m 2 production 5000 kg around. Plant growth potential of half erect, with strong sex is strong, leaves thicker, purple-brown, heart-shaped, flower violet, pulp green white, The weight of per fruit 0.15 ∼ 0.35 kg. It's can be planted in open land and protected area, and grow well. (authors)

  11. Eggplant variety breeding aerospace Hangqie No.4

    International Nuclear Information System (INIS)

    Wang Fuquan; Song Jianrong; Guo Zhenfang; Ding Yaohong; Kong Xiaojuan

    2011-01-01

    Hangqie No.4 is on the shenzhou spacecraft carrying no.3 local variety reported by four generations enterprise round tomato breeding 03-4-15-2-3-1 has breeding for female to the 18th retuning-type science technology and experimental satellite launch of the optimal tomato after 04-4-8-1-3-1 has breeding for male parent, mixture of the generation of hybrid. Medium-early maturity, 667 m 2 production 5000 kg around. Plant growth potential of half erect, with strong sex is strong, leaves thicker, purple-brown, heart-shaped, flower violet, pulp green white, The weight of per fruit 0.15∼0.35 kg. It's can be planted in open land and protected area, and grow well. (authors)

  12. Improvement of basic food crops in Africa through plant breeding, including the use of induced mutations. Proceedings of a final research co-ordination meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The Co-ordinated Research Programme (CRP) on Improvement of Basic Food Crops in Africa Through Plant Breeding, Including the Use of Induced Mutations, funded by the Italian Government, was initiated in 1989 in the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. The primary objective of this CRP was to breed improved varieties of stable food crops of Africa with the main emphasis on the indigenous species and their local cultivars. The fourth and final Research Co-ordination meeting under the CRP was held in Naples, Italy from 30 October - 3 November 1995. This publication includes the reports, conclusions and recommendations made by the participants. We hope that it will be of value to researchers, students and policy makers alike in their endeavour to promote plant breeding and increase food productions in Africa. Refs, figs, tabs.

  13. Improvement of basic food crops in Africa through plant breeding, including the use of induced mutations. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    1997-07-01

    The Co-ordinated Research Programme (CRP) on Improvement of Basic Food Crops in Africa Through Plant Breeding, Including the Use of Induced Mutations, funded by the Italian Government, was initiated in 1989 in the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. The primary objective of this CRP was to breed improved varieties of stable food crops of Africa with the main emphasis on the indigenous species and their local cultivars. The fourth and final Research Co-ordination meeting under the CRP was held in Naples, Italy from 30 October - 3 November 1995. This publication includes the reports, conclusions and recommendations made by the participants. We hope that it will be of value to researchers, students and policy makers alike in their endeavour to promote plant breeding and increase food productions in Africa. Refs, figs, tabs

  14. Kazusa Marker DataBase: a database for genomics, genetics, and molecular breeding in plants

    Science.gov (United States)

    Shirasawa, Kenta; Isobe, Sachiko; Tabata, Satoshi; Hirakawa, Hideki

    2014-01-01

    In order to provide useful genomic information for agronomical plants, we have established a database, the Kazusa Marker DataBase (http://marker.kazusa.or.jp). This database includes information on DNA markers, e.g., SSR and SNP markers, genetic linkage maps, and physical maps, that were developed at the Kazusa DNA Research Institute. Keyword searches for the markers, sequence data used for marker development, and experimental conditions are also available through this database. Currently, 10 plant species have been targeted: tomato (Solanum lycopersicum), pepper (Capsicum annuum), strawberry (Fragaria × ananassa), radish (Raphanus sativus), Lotus japonicus, soybean (Glycine max), peanut (Arachis hypogaea), red clover (Trifolium pratense), white clover (Trifolium repens), and eucalyptus (Eucalyptus camaldulensis). In addition, the number of plant species registered in this database will be increased as our research progresses. The Kazusa Marker DataBase will be a useful tool for both basic and applied sciences, such as genomics, genetics, and molecular breeding in crops. PMID:25320561

  15. Progress in a Crambe cross breeding programme

    NARCIS (Netherlands)

    Mastebroek, H.D.; Lange, W.

    1997-01-01

    Crambe (Crambe abyssinica Hochst. ex Fries) is an annual cruciferous oilseed crop with a high content of erucic acid (55-60%) in the seed oil. Since 1990, a breeding programme in crambe has been carried out at the DLO-Centre for Plant Breeding and Reproduction Research. Three accessions, two early

  16. Mutation breeding newsletter. No. 43

    International Nuclear Information System (INIS)

    1997-10-01

    This issue of the Newsletter includes articles dealing with radiation induced mutation based plant breeding research findings aimed at improving productivity, disease resistance and tolerance of stress conditions

  17. Genomic Selection in Plant Breeding: Methods, Models, and Perspectives.

    Science.gov (United States)

    Crossa, José; Pérez-Rodríguez, Paulino; Cuevas, Jaime; Montesinos-López, Osval; Jarquín, Diego; de Los Campos, Gustavo; Burgueño, Juan; González-Camacho, Juan M; Pérez-Elizalde, Sergio; Beyene, Yoseph; Dreisigacker, Susanne; Singh, Ravi; Zhang, Xuecai; Gowda, Manje; Roorkiwal, Manish; Rutkoski, Jessica; Varshney, Rajeev K

    2017-11-01

    Genomic selection (GS) facilitates the rapid selection of superior genotypes and accelerates the breeding cycle. In this review, we discuss the history, principles, and basis of GS and genomic-enabled prediction (GP) as well as the genetics and statistical complexities of GP models, including genomic genotype×environment (G×E) interactions. We also examine the accuracy of GP models and methods for two cereal crops and two legume crops based on random cross-validation. GS applied to maize breeding has shown tangible genetic gains. Based on GP results, we speculate how GS in germplasm enhancement (i.e., prebreeding) programs could accelerate the flow of genes from gene bank accessions to elite lines. Recent advances in hyperspectral image technology could be combined with GS and pedigree-assisted breeding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. USE OF GROWTH CHAMBERS FOR CABBAGE BREEDING

    Directory of Open Access Journals (Sweden)

    L. L. Bondareva

    2014-01-01

    Full Text Available Use of the growth chambers for cabbage breeding allows the reducing of certain stages of the breeding process and the growing biennial varieties of cabbage in a one-year cycle. In these growth chambers, the nutritional conditions, temperature, and lighting of plants are under control; the open pollination is eliminated.

  19. Mutation breeding newsletter. No. 20

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  20. Mutation breeding newsletter. No. 17

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  1. Mutation breeding newsletter. No. 16

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  2. Mutation breeding newsletter. No. 8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-09-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  3. Mutation breeding newsletter. No. 12

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  4. Mutation breeding newsletter. No. 10

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  5. Mutation breeding newsletter. No. 32

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  6. Mutation breeding newsletter. No. 18

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  7. Mutation breeding newsletter. No. 9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-01-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  8. Mutation breeding newsletter. No. 22

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  9. Mutation breeding newsletter. No. 15

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-02-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  10. Mutation breeding newsletter. No. 9

    International Nuclear Information System (INIS)

    1977-01-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  11. Mutation breeding newsletter. No. 32

    International Nuclear Information System (INIS)

    1988-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  12. Mutation breeding newsletter. No. 15

    International Nuclear Information System (INIS)

    1980-02-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  13. Mutation breeding newsletter. No. 14

    International Nuclear Information System (INIS)

    1979-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  14. Mutation breeding newsletter. No. 16

    International Nuclear Information System (INIS)

    1980-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  15. Mutation breeding newsletter. No. 12

    International Nuclear Information System (INIS)

    1978-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  16. Mutation breeding newsletter. No. 17

    International Nuclear Information System (INIS)

    1981-03-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  17. Mutation breeding newsletter. No. 30

    International Nuclear Information System (INIS)

    1987-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  18. Mutation breeding newsletter. No. 18

    International Nuclear Information System (INIS)

    1981-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  19. Mutation breeding newsletter. No. 10

    International Nuclear Information System (INIS)

    1977-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  20. Mutation breeding newsletter. No. 8

    International Nuclear Information System (INIS)

    1976-09-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  1. Mutation breeding newsletter. No. 11

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-02-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  2. Mutation breeding newsletter. No. 31

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-03-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  3. Mutation breeding newsletter. No. 31

    International Nuclear Information System (INIS)

    1988-03-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  4. Mutation breeding newsletter. No. 11

    International Nuclear Information System (INIS)

    1978-02-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  5. Mutation breeding newsletter. No. 20

    International Nuclear Information System (INIS)

    1982-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  6. Mutation breeding newsletter. No. 19

    International Nuclear Information System (INIS)

    1982-01-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  7. Mutation breeding newsletter. No. 13

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-02-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  8. Mutation breeding newsletter. No. 30

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  9. Mutation breeding newsletter. No. 19

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-01-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  10. Mutation breeding newsletter. No. 23

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-01-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  11. Mutation breeding newsletter. No. 14

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  12. Mutation breeding newsletter. No. 23

    International Nuclear Information System (INIS)

    1983-01-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  13. Mutation breeding newsletter. No. 13

    International Nuclear Information System (INIS)

    1979-02-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  14. Mutation breeding newsletter. No. 22

    International Nuclear Information System (INIS)

    1983-07-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  15. Mutation breeding newsletter. No. 33

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-01-01

    This issue of the newsletter reports a number of research news and research abstracts on application of radiation induced mutation techniques to increase mutagenesis and mutation frequency in plant breeding projects.

  16. Mutation breeding newsletter. No. 33

    International Nuclear Information System (INIS)

    1989-01-01

    This issue of the newsletter reports a number of research news and research abstracts on application of radiation induced mutation techniques to increase mutagenesis and mutation frequency in plant breeding projects

  17. Plant mutation breeding of pineapple (Ananas comosus (L.) Merr.) using gamma irradiation for improvement of smooth cayenne variety

    International Nuclear Information System (INIS)

    Soeranto Human; S Loekito; M Trilaksono; A Syaifudin

    2016-01-01

    Currently, the most famous pineapple cultivar cultivated for the world trade is Smooth Cayenne. Many clones derived from this cultivar such as GP1, GP2, GP3, GP4, GP5, and F180 are grown by GGPC for fresh and processed fruits. GGPC started pineapple breeding and varietal improvement programs in 1986 with the objectives to increase quality, tonage and yield. Mutation breeding in pineapple was started in 2006 i.e. in collaboration with the Center for Isotopes and Radiation Application (CIRA), the National Nuclear Energy Agency (BATAN). A number of 10 pineapple crowns originated from GP2, GP3 (A10) and F180 clones were treated with gamma irradiation from Cobalt-60 source installed in gamma chamber 4000 A, using the doses of 200 and 300 Gy. The irradiated crowns were then planted in the experimental field (as V1) and maintained following the GGPC commercial standard cultivation for pineapple. The results showed there was no significant differences between the two gamma irradiation doses (200 and 300 Gy) on pineapple phenotypic performances. However, high phenotypic variability was found in clones at the second vegetative propagation (V2). Some plant variations were recorded as follows: 47 % of normal vigour, 15 % of rosset, 11 % of spiny, 5 % of crowns with double tips, 4 % of plant having plenty of leaves and 18 % of fruits with abnormal shape. Significant mutant variation was also observed in clones the third vegetative propagation (V3) but some mutants seemed to be more stable in the V3 generation. This pineapple mutation breeding program will be continued for mutant evaluation that is related to improvement of productivity, quality and resistance to major insect and diseases. (author)

  18. 100-year history of the development of bread winter wheat breeding programs

    Directory of Open Access Journals (Sweden)

    М. А. Литвиненко

    2016-05-01

    Full Text Available Purpose. Review of the main achievements of the Wheat Breeding and Seed ProductionDepartment in the Plant Breeding and Genetic Institute – National Centre of Seed and Cultivar Investigation in the developing theoretical principles of breeding and creation of winter wheat varieties of different types during 100-year (1916–2016 period of breeding programs realization. Results. The main theoretical, methodical developments and breeding achievements of Wheat Breeding and Seed Production Department during 100-year (1916–2016 history have been considered. In the course of the Department activity, the research and metho­dology grounds of bread winter wheat breeding and seed production have been laid, 9 stages of breeding programs development have been accomplished. As a result, more than 130 varieties of different types have been created, 87 of them have been released in some periods or registered in the State registers of plants varieties of Ukraine and other countries and grown in the total sowing area about 220 million hectares.

  19. Plant breeding and genetics newsletter. No. 17, July 2006

    International Nuclear Information System (INIS)

    2006-07-01

    The Plant Breeding and Genetics (PBG) Section of the Joint FAO/IAEA Programme (NAFA/AGE) recently implemented two Research Coordination Meetings (RCMs). Particular attention was given to the first RCM of the Coordinated Research Project (CRP) on Assessment of Nutrients Uptake from Bio-fortified Crops in Populations from Developing Countries, Vienna, Austria, 17-19 May 2006, which was co-organized with our nutritionist colleagues from the Division of Human Health, Nuclear Applications Department (NAHU), and sponsored by Harvest Plus. Hidden hunger and enhancing crop quality for nutrition will be given increased attention in the new biennium 2008-2009. We encourage you to share your input with us on this subject. Several training courses were implemented in the framework of different Technical Cooperation (TC) projects. Details about these activities are covered in this issue of the Newsletter. A highlight of these activities, as in every year since 2001, was the Inter-regional Training Course on Mutant Germplasm Characterization using Molecular Markers at the Seibersdorf Laboratories, Seibersdorf, Austria, 14 May to 16 June 2006

  20. Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.

    Directory of Open Access Journals (Sweden)

    Michael Benjamin Kantar

    2015-10-01

    Full Text Available Crop wild relatives (CWR are a rich source of genetic diversity for crop improvement. Combining ecogeographic and phylogenetic techniques can inform both conservation and breeding. Geographic occurrence, bioclimatic, and biophysical data were used to predict species distributions, range overlap and niche occupancy in 36 taxa closely related to sunflower (Helianthus annuus L.. Taxa lacking comprehensive ex situ conservation were identified. The predicted distributions for 36 Helianthus taxa identified substantial range overlap and asymmetry and niche conservatism. Specific taxa (e.g., Helianthus deblis Nutt., Helianthus anomalus Blake, and Helianthus divaricatus L. were identified as targets for traits of interest, particularly for abiotic stress tolerance and adaptation to extreme soil properties. The combination of techniques demonstrates the potential for publicly available ecogeographic and phylogenetic data to facilitate the identification of possible sources of abiotic stress traits for plant breeding programs. Much of the primary genepool (wild H. annuus occurs in extreme environments indicating that introgression of targeted traits may be relatively straightforward. Sister taxa in Helianthus have greater range overlap than more distantly related taxa within the genus. This adds to a growing body of literature suggesting that in plants (unlike some animal groups, geographic isolation may not be necessary for speciation.

  1. Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.)

    Science.gov (United States)

    Kantar, Michael B.; Sosa, Chrystian C.; Khoury, Colin K.; Castañeda-Álvarez, Nora P.; Achicanoy, Harold A.; Bernau, Vivian; Kane, Nolan C.; Marek, Laura; Seiler, Gerald; Rieseberg, Loren H.

    2015-01-01

    Crop wild relatives (CWR) are a rich source of genetic diversity for crop improvement. Combining ecogeographic and phylogenetic techniques can inform both conservation and breeding. Geographic occurrence, bioclimatic, and biophysical data were used to predict species distributions, range overlap and niche occupancy in 36 taxa closely related to sunflower (Helianthus annuus L.). Taxa lacking comprehensive ex situ conservation were identified. The predicted distributions for 36 Helianthus taxa identified substantial range overlap, range asymmetry and niche conservatism. Specific taxa (e.g., Helianthus deblis Nutt., Helianthus anomalus Blake, and Helianthus divaricatus L.) were identified as targets for traits of interest, particularly for abiotic stress tolerance, and adaptation to extreme soil properties. The combination of techniques demonstrates the potential for publicly available ecogeographic and phylogenetic data to facilitate the identification of possible sources of abiotic stress traits for plant breeding programs. Much of the primary genepool (wild H. annuus) occurs in extreme environments indicating that introgression of targeted traits may be relatively straightforward. Sister taxa in Helianthus have greater range overlap than more distantly related taxa within the genus. This adds to a growing body of literature suggesting that in plants (unlike some animal groups), geographic isolation may not be necessary for speciation. PMID:26500675

  2. Mutation breeding newsletter. No. 28

    International Nuclear Information System (INIS)

    1986-09-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  3. Mutation breeding newsletter. No. 24

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-07-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  4. Mutation breeding newsletter. No. 25

    International Nuclear Information System (INIS)

    1985-01-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  5. Mutation breeding newsletter. No. 28

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-09-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  6. Mutation breeding newsletter. No. 26

    International Nuclear Information System (INIS)

    1985-10-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  7. Mutation breeding newsletter. No. 27

    International Nuclear Information System (INIS)

    1986-02-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  8. Mutation breeding newsletter. No. 24

    International Nuclear Information System (INIS)

    1984-07-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  9. Mutation breeding newsletter. No. 26

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-10-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  10. Mutation breeding newsletter. No. 25

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-01-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  11. Mutation breeding newsletter. No. 27

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-02-01

    This issue of the Newsletter presents reports and research abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  12. Application of molecular markers in wheat breeding: Reality or delusion?

    Directory of Open Access Journals (Sweden)

    Kobiljski Borislav

    2004-01-01

    Full Text Available Conventional plant breeding use morphological and phenotypic markers for the identification of important agronomic traits. Plant breeders and scientists continuously seek to develop new techniques, which can be used for faster and more accurate introgression of desirable traits into plants. Over the last several years there has been significant increase in the application of molecular markers in the breeding programmes of different species. So far, detected level of polymorphism and informatitivnes of different molecular marker methods applied in MAS (Marker Assisted Selection studies (RFLP, AFLP, etc. were insufficient either to validate their further use or there were very expensive and of huge healthy risk. Fortunately for wheat (and other crops breeders, the new class of molecular markers - microsatellites have prove recently to be most powerful for MAS. But, due to lack of the knowledge, experience, valid informations and even tradition and habits, many breeders have either negative or repulsive attitude towards implementation of MAS in breeding programes. In this paper the relevant facts regarding implementation of MAS in breeding are discussed in general, and for wheat breeding in particular, in order to summarize merits and limitations in application of microsatellites in MAS selection. .

  13. Ethnobotanic importance of plants used in pigeon-breeding in Eastern Spain

    OpenAIRE

    Belda, Antonio; Cort?s, Carolina; Peir?, Victoriano

    2013-01-01

    Background: The importance that birds of the Columbidae family have had throughout history is visible on the Mediterranean coast. Pigeon fancying is the art of breeding and training carrier pigeons and currently, several breeds exist. The sport of racing pigeons consists in covering a distance at maximum possible speed. However, pigeon breeding has another modality called “sport pigeon”, where several males follow a female. This study focusses on ethnobotanical knowledge of native and exotic ...

  14. Mutation breeding newsletter. No. 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1974-08-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  15. Mutation breeding newsletter. No. 6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-08-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  16. Mutation breeding newsletter. No. 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-02-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  17. Mutation breeding newsletter. No. 3

    International Nuclear Information System (INIS)

    1974-01-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  18. Mutation breeding newsletter. No. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1974-01-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  19. Mutation breeding newsletter. No. 29

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-02-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  20. Mutation breeding newsletter. No. 4

    International Nuclear Information System (INIS)

    1974-08-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  1. Mutation breeding newsletter. No. 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-01-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  2. Mutation breeding newsletter. No. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1972-05-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  3. Mutation breeding newsletter. No. 29

    International Nuclear Information System (INIS)

    1987-02-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  4. Mutation breeding newsletter. No. 5

    International Nuclear Information System (INIS)

    1975-02-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  5. Mutation breeding newsletter. No. 2

    International Nuclear Information System (INIS)

    1973-02-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  6. Mutation breeding newsletter. No. 1

    International Nuclear Information System (INIS)

    1972-05-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  7. Mutation breeding newsletter. No. 6

    International Nuclear Information System (INIS)

    1975-08-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  8. Mutation breeding newsletter. No. 7

    International Nuclear Information System (INIS)

    1976-01-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  9. Mutation breeding newsletter. No. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1973-02-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  10. 9 CFR 151.10 - Recognition of additional breeds and books of record.

    Science.gov (United States)

    2010-01-01

    ... books of record. 151.10 Section 151.10 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL BREEDS RECOGNITION OF BREEDS AND BOOKS OF RECORD OF PUREBRED ANIMALS Recognition of Breeds and Books of Record § 151.10 Recognition of additional breeds and books of...

  11. Neutronic performance issues of the breeding blanket options for the European DEMO fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, U., E-mail: ulrich.fischer@kit.edu [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bachmann, C. [EUROfusion—Programme Management Unit, Boltzmannstr. 2, 85748 Garching (Germany); Jaboulay, J.-C. [CEA-Saclay, DEN, DM2S, SERMA, LPEC, 91191 Gif-sur-Yvette (France); Moro, F. [ENEA, Dipartimento Fusione e tecnologie per la Sicurezza Nucleare, Via E. Fermi 45, 00044 Frascati, Rome (Italy); Palermo, I. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Pereslavtsev, P. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Villari, R. [ENEA, Dipartimento Fusione e tecnologie per la Sicurezza Nucleare, Via E. Fermi 45, 00044 Frascati, Rome (Italy)

    2016-11-01

    Highlights: • Breeder blanket concepts for DEMO—design features. • Neutronic characteristics of breeder blankets. • Evaluation of Tritium breeding potential. • Evaluation of shielding performance. - Abstract: This paper presents nuclear performance issues of the HCPB, HCLL, DCLL and WCLL breeder blankets, which are under development within the PPPT (Power Plant Physics and Technology) programme of EUROfusion, with the objective to assess the potential and suitability of the blankets for the application to DEMO. The assessment is based on the initial design versions of the blankets developed in 2014. The Tritium breeding potential is considered sufficient for all breeder blankets although the initial design versions of the HCPB, HCLL and DCLL blankets were shown to require further design improvements. Suitable measures have been proposed and proven to be sufficient to achieve the required Tritium Breeding Ratio (TBR) ≥ 1.10. The shielding performance was shown to be sufficient to protect the super-conducting toroidal field coil provided that efficient shielding material mixtures including WC or borated water are utilized. The WCLL blanket does not require the use of such shielding materials due to a very compact blanket support structure/manifold configuration which yet requires design verification. The vacuum vessel can be safely operated over the full anticipated DEMO lifetime of 6 full power years for all blanket concepts considered.

  12. Plant breeding by using radiation mutation - Development of radiation indicator plants by molecular breeding

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jang Ryol; Kwak, Sang Soo; Kwon, Seok Yoon [Korea Research Institute of Bioscience and Biotechnology, Taejon (Korea)

    2000-04-01

    - tSOD1, cytosolic CuZnSOD cDNA was cloned from tobacco cDNA library by PCR. To develop the under-producing the transgenic plants, the vectors were constructed using by antisense and co-supressing technology. The transgenic tobacco plants were confirmed that over 60% of kanamycin-resistant plants were introduced the foreign gene by PCR and transformed one copy through Southern blot analysis. - In an attempt to identify marker genes for gamma irradiation of plants, expression patterns of diverse genes upon gamma irradiation of young tobacco plants were investigated. With the knowledge of distinctive expression patterns of diverse genes, irradiation-indicating marker plants could be developed by engineering and monitoring multiple radiation-responsive genes. Additionally, a gamma irradiation-responsive NtTMK1 receptor-like kinase gene was molecular biologically characterized. -Uranium reductase gene (Cytochrome C3) and radiation resistance gene (recA) have been cloned from Desulfovibrio and Deinococcus radiodurans. -Two plant transformation vectors (pCYC3 and pDrecA) have been constructed. - Tobacco transgenic plants of have been obtained. 52 refs., 5 figs. (Author)

  13. Potentials of molecular based breeding to enhance drought ...

    African Journals Online (AJOL)

    The ability of plant to sustain itself in limited water conditions is crucial in the world of agriculture. To breed for drought tolerance in wheat, it is essential to clearly understand drought tolerant mechanisms. Conventional breeding is time consuming and labor intensive being inefficient with low heritability traits like drought ...

  14. Breeding new improved clones for strawberry production in Brazil

    Directory of Open Access Journals (Sweden)

    Alexandre Gonçalves Galvão

    2017-04-01

    Full Text Available Breeding different strawberry genotypes and plant selection in Brazil could result in new cultivars with better environmental adaptations. The aim was to develop and select new F1 strawberry plants with higher potential yields. Twelve hybrid populations were obtained from breeding the cultivars Aromas, Camarosa, Dover, Festival, Oso Grande, Sweet Charlie and Tudla, and 42 F1 hybrids were obtained from each population. An augmented randomized block design was used. Productive traits were measured and heterosis was calculated for all traits. The breedings Dover x Aromas and Camarosa x Aromas both showed 28.6% of their hybrids with a total fruit mass that was higher than that of cv. Aromas, and 9.5 and 14.3% were higher than that of cv. Camarosa, respectively. The breeding of Camarosa x Aromas produced hybrids with high potential yields and a large average fruit mass that reached the commercial standard. Hybrids MCA12-93, MFA12-443 and MCA12-89 showed high potential yields and can be used as parents in strawberry breeding programs.

  15. Better plants through mutations

    International Nuclear Information System (INIS)

    1988-01-01

    This is a public relations film describing problems associated with the genetic improvement of crop plants through induced mutations. Mutations are the ultimate source of genetic variation in plants. Mutation induction is now established as a practical tool in plant breeding. The Joint FAO/IAEA Division and the IAEA's laboratory at Seibersdorf have supported research and practical implementation of mutation breeding of both seed propagated and vegetatively propagated plants. Plant biotechnology based on in vitro culture and recombinant DNA technology will make a further significant contribution to plant breeding

  16. Virtual Plants Need Water Too: Functional-Structural Root System Models in the Context of Drought Tolerance Breeding.

    Science.gov (United States)

    Ndour, Adama; Vadez, Vincent; Pradal, Christophe; Lucas, Mikaël

    2017-01-01

    Developing a sustainable agricultural model is one of the great challenges of the coming years. The agricultural practices inherited from the Green Revolution of the 1960s show their limits today, and new paradigms need to be explored to counter rising issues such as the multiplication of climate-change related drought episodes. Two such new paradigms are the use of functional-structural plant models to complement and rationalize breeding approaches and a renewed focus on root systems as untapped sources of plant amelioration. Since the late 1980s, numerous functional and structural models of root systems were developed and used to investigate the properties of root systems in soil or lab-conditions. In this review, we focus on the conception and use of such root models in the broader context of research on root-driven drought tolerance, on the basis of root system architecture (RSA) phenotyping. Such models result from the integration of architectural, physiological and environmental data. Here, we consider the different phenotyping techniques allowing for root architectural and physiological study and their limits. We discuss how QTL and breeding studies support the manipulation of RSA as a way to improve drought resistance. We then go over the integration of the generated data within architectural models, how those architectural models can be coupled with functional hydraulic models, and how functional parameters can be measured to feed those models. We then consider the assessment and validation of those hydraulic models through confrontation of simulations to experimentations. Finally, we discuss the up and coming challenges facing root systems functional-structural modeling approaches in the context of breeding.

  17. Virtual Plants Need Water Too: Functional-Structural Root System Models in the Context of Drought Tolerance Breeding

    Directory of Open Access Journals (Sweden)

    Adama Ndour

    2017-09-01

    Full Text Available Developing a sustainable agricultural model is one of the great challenges of the coming years. The agricultural practices inherited from the Green Revolution of the 1960s show their limits today, and new paradigms need to be explored to counter rising issues such as the multiplication of climate-change related drought episodes. Two such new paradigms are the use of functional-structural plant models to complement and rationalize breeding approaches and a renewed focus on root systems as untapped sources of plant amelioration. Since the late 1980s, numerous functional and structural models of root systems were developed and used to investigate the properties of root systems in soil or lab-conditions. In this review, we focus on the conception and use of such root models in the broader context of research on root-driven drought tolerance, on the basis of root system architecture (RSA phenotyping. Such models result from the integration of architectural, physiological and environmental data. Here, we consider the different phenotyping techniques allowing for root architectural and physiological study and their limits. We discuss how QTL and breeding studies support the manipulation of RSA as a way to improve drought resistance. We then go over the integration of the generated data within architectural models, how those architectural models can be coupled with functional hydraulic models, and how functional parameters can be measured to feed those models. We then consider the assessment and validation of those hydraulic models through confrontation of simulations to experimentations. Finally, we discuss the up and coming challenges facing root systems functional-structural modeling approaches in the context of breeding.

  18. Domestication Origin and Breeding History of the Tea Plant (Camellia sinensis in China and India Based on Nuclear Microsatellites and cpDNA Sequence Data

    Directory of Open Access Journals (Sweden)

    Muditha K. Meegahakumbura

    2018-01-01

    Full Text Available Although China and India are the two largest tea-producing countries, the domestication origin and breeding history of the tea plant in these two countries remain unclear. Our previous study suggested that the tea plant includes three distinct lineages (China type tea, Chinese Assam type tea and Indian Assam type tea, which were independently domesticated in China and India, respectively. To determine the origin and historical timeline of tea domestication in these two countries we used a combination of 23 nSSRs (402 samples and three cpDNA regions (101 samples to genotype domesticated tea plants and its wild relative. Based on a combination of demographic modeling, NewHybrids and Neighbour joining tree analyses, three independent domestication centers were found. In addition, two origins of Chinese Assam type tea were detected: Southern and Western Yunnan of China. Results from demographic modeling suggested that China type tea and Assam type tea first diverged 22,000 year ago during the last glacial maximum and subsequently split into the Chinese Assam type tea and Indian Assam type tea lineages 2770 year ago, corresponding well with the early record of tea usage in Yunnan, China. Furthermore, we found that the three tea types underwent different breeding histories where hybridization appears to have been the most important approach for tea cultivar breeding and improvements: a high proportion of the hybrid lineages were found to be F2 and BCs. Collectively, our results underscore the necessity for the conservation of Chinese Assam type tea germplasm and landraces as a valuable resource for future tea breeding.

  19. Studies on mutant breeding of Hibiscus syriacus

    International Nuclear Information System (INIS)

    Song, Hi Sup; Kim, Jin Kyu; Lee, Ki Un; Kim, Young Taik.

    1997-01-01

    Hibiscus has been known as a national flower of Korea. Hibiscus has such a characteristic of self-incompatibility that all the plant exist as natural hybrids and have heterogeneous genes. Many domestic 91 varieties of Hibiscus syriacus were collected. Radiosensitivity of H. Syriacus irradiated with γ-ray was investigated in plant cuttings. The plant height was reduced by 45% in 5KR irradiated group, compared to control group. The radiation dose of 5KR could be recommended for mutation breeding of Hibiscus cuttings. Radiosensitivity of γ-ray irradiated Hibiscus seed were investigated. The germination rate, survival rate and plant height was better in the 4KR irradiation plot than control. The radiation dose of 10∼12KR are recommended for mutation breeding of Hibiscus. Promising mutant lines were selected form the varieties of Hwarang, Wolsan no. 176, Ilpyondansim, Emille, Hanol, Yongkwang, Saeyongkwang, Chungmu, Imjinhong, Arang, Hungdansim-1 and Hongdansim-2. (author). 66 refs., 16 tabs., 13 figs

  20. Studies on mutant breeding of Hibiscus syriacus

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hi Sup; Kim, Jin Kyu; Lee, Ki Un; Kim, Young Taik

    1997-01-01

    Hibiscus has been known as a national flower of Korea. Hibiscus has such a characteristic of self-incompatibility that all the plant exist as natural hybrids and have heterogeneous genes. Many domestic 91 varieties of Hibiscus syriacus were collected. Radiosensitivity of H. Syriacus irradiated with {gamma}-ray was investigated in plant cuttings. The plant height was reduced by 45% in 5KR irradiated group, compared to control group. The radiation dose of 5KR could be recommended for mutation breeding of Hibiscus cuttings. Radiosensitivity of {gamma}-ray irradiated Hibiscus seed were investigated. The germination rate, survival rate and plant height was better in the 4KR irradiation plot than control. The radiation dose of 10{approx}12KR are recommended for mutation breeding of Hibiscus. Promising mutant lines were selected form the varieties of Hwarang, Wolsan no. 176, Ilpyondansim, Emille, Hanol, Yongkwang, Saeyongkwang, Chungmu, Imjinhong, Arang, Hungdansim-1 and Hongdansim-2. (author). 66 refs., 16 tabs., 13 figs.

  1. New Insights on plant salt tolerance mechanisms and their potential use for breeding

    Directory of Open Access Journals (Sweden)

    Moez HANIN

    2016-11-01

    Full Text Available Soil salinization is a major threat to agriculture in arid and semi-arid regions, where water scarcity and inadequate drainage of irrigated lands severely reduce crop yield. Salt accumulation inhibits plant growth and reduces the ability to uptake water and nutrients, leading to osmotic or water-deficit stress. Salt is also causing injury of the young photosynthetic leaves and acceleration of their senescence, as the Na+ cation is toxic when accumulating in cell cytosol resulting in ionic imbalance and toxicity of transpiring leaves. To cope with salt stress, plants have evolved mainly two types of tolerance mechanisms based on either limiting the entry of salt by the roots, or controlling its concentration and distribution. Understanding the overall control of Na+ accumulation and functional studies of genes involved in transport processes, will provide a new opportunity to improve the salinity tolerance of plants relevant to food security in arid regions. A better understanding of these tolerance mechanisms can be used to breed crops with improved yield performance under salinity stress. Moreover, associations of cultures with nitrogen-fixing bactéria and arbuscular mycorrhizal fungi could serve as an alternative and sustainable strategy to increase crop yields in salt affected fields.

  2. Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L.

    Directory of Open Access Journals (Sweden)

    Yang Huaan

    2012-07-01

    Full Text Available Abstract Background In the last 30 years, a number of DNA fingerprinting methods such as RFLP, RAPD, AFLP, SSR, DArT, have been extensively used in marker development for molecular plant breeding. However, it remains a daunting task to identify highly polymorphic and closely linked molecular markers for a target trait for molecular marker-assisted selection. The next-generation sequencing (NGS technology is far more powerful than any existing generic DNA fingerprinting methods in generating DNA markers. In this study, we employed a grain legume crop Lupinus angustifolius (lupin as a test case, and examined the utility of an NGS-based method of RAD (restriction-site associated DNA sequencing as DNA fingerprinting for rapid, cost-effective marker development tagging a disease resistance gene for molecular breeding. Results Twenty informative plants from a cross of RxS (disease resistant x susceptible in lupin were subjected to RAD single-end sequencing by multiplex identifiers. The entire RAD sequencing products were resolved in two lanes of the 16-lanes per run sequencing platform Solexa HiSeq2000. A total of 185 million raw reads, approximately 17 Gb of sequencing data, were collected. Sequence comparison among the 20 test plants discovered 8207 SNP markers. Filtration of DNA sequencing data with marker identification parameters resulted in the discovery of 38 molecular markers linked to the disease resistance gene Lanr1. Five randomly selected markers were converted into cost-effective, simple PCR-based markers. Linkage analysis using marker genotyping data and disease resistance phenotyping data on a F8 population consisting of 186 individual plants confirmed that all these five markers were linked to the R gene. Two of these newly developed sequence-specific PCR markers, AnSeq3 and AnSeq4, flanked the target R gene at a genetic distance of 0.9 centiMorgan (cM, and are now replacing the markers previously developed by a traditional DNA

  3. Mutation breeding in peas

    Energy Technology Data Exchange (ETDEWEB)

    Jaranowski, J [Institute of Genetics and Plant Breeding, Academy of Agriculture, Poznan (Poland); Micke, A [Joint FAO/IAEA Division of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development, International Atomic Energy Agency, Vienna (Austria)

    1985-02-01

    The pea as an ancient crop plant still today has wide uses and is an import source of food protein. It is also an important object for genetic studies and as such has been widely used in mutation induction experiments. However, in comparison with cereals this ancient crop plant (like several other grain legumes) has gained relatively little from advances in breeding. The review focuses on the prospects of genetic improvement of pea by induced mutations, discusses principles and gives methodological information. (author)

  4. Mutation breeding in peas

    International Nuclear Information System (INIS)

    Jaranowski, J.; Micke, A.

    1985-01-01

    The pea as an ancient crop plant still today has wide uses and is an import source of food protein. It is also an important object for genetic studies and as such has been widely used in mutation induction experiments. However, in comparison with cereals this ancient crop plant (like several other grain legumes) has gained relatively little from advances in breeding. The review focuses on the prospects of genetic improvement of pea by induced mutations, discusses principles and gives methodological information. (author)

  5. Progress of mutation breeding in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Purivirojkul, Watchara; Vithayatherarat, Pradab [Pathumthani Rice Research Center (Thailand)

    2001-03-01

    The objectives in rice improvement in Thailand are to improve not only for high yielding and good grain quality but also for resistance to diseases and insects and tolerance to biotic stresses. Brief history of research and progress in rice mutation breeding in Thailand is presented. It includes the varieties of method such as using gamma rays, fast neutron and chemical mutagens, for example EMS (ethylmethane sulfonate) and EI (ethylene imine) for mutation works. Among all, improvements of Pathumthani 60 for short-statured plant type, RD23 for blast resistance, Basmati 370 for short-statured plant type, and Pra Doo Daeng for short-statured plant type and awnless grain are reported. To conclude, it is important to find the adequate doses of mutagen treatments that give maximum mutation frequencies, to know the optimal treatments or proper selection methods and to have well-defined objectives to create the success of mutation breeding. (S. Ohno)

  6. Progress of mutation breeding in Thailand

    International Nuclear Information System (INIS)

    Purivirojkul, Watchara; Vithayatherarat, Pradab

    2001-01-01

    The objectives in rice improvement in Thailand are to improve not only for high yielding and good grain quality but also for resistance to diseases and insects and tolerance to biotic stresses. Brief history of research and progress in rice mutation breeding in Thailand is presented. It includes the varieties of method such as using gamma rays, fast neutron and chemical mutagens, for example EMS (ethylmethane sulfonate) and EI (ethylene imine) for mutation works. Among all, improvements of Pathumthani 60 for short-statured plant type, RD23 for blast resistance, Basmati 370 for short-statured plant type, and Pra Doo Daeng for short-statured plant type and awnless grain are reported. To conclude, it is important to find the adequate doses of mutagen treatments that give maximum mutation frequencies, to know the optimal treatments or proper selection methods and to have well-defined objectives to create the success of mutation breeding. (S. Ohno)

  7. Mutation breeding for crop improvement: a review

    International Nuclear Information System (INIS)

    Awan, M.A.

    1999-01-01

    More than 70 years have passed since radiation was used successfully to generate genetic variation in plants. Since the research on theoretical basis of mutagenesis was performed with a peak in the mid sixties. The result of these investigations led to the formulation of methodological principles in the use of various mutagens for the creation and selection of desired variability. The induced genetic variability has been extensively used for evolution of crop varieties as well as in breeding programmes. More than 1800 varieties of 154 plants species have so far been released for commercial cultivation, of which cereals are at the top, demonstrating the economics of the mutation breeding technique. The most frequently occurring mutations have been the short stature and really maturity. In Pakistan, the use of mutation breeding technique for the improvement of crops has also led to the development of 34 cultivars of cotton, rice, wheat, chickpea, mungbean and rapeseed which have played a significant role in increasing crop production in the country. In addition, a wealth of genetic variability has been developed for use in the cross breeding programmes, and the breeders in Pakistan have released six varieties of cotton by using an induced mutant as one of the parents. (author)

  8. Between and beyond additivity and non-additivity : the statistical modelling of genotype by environment interaction in plant breeding

    OpenAIRE

    Eeuwijk, van, F.A.

    1996-01-01

    In plant breeding it is a common observation to see genotypes react differently to environmental changes. This phenomenon is called genotype by environment interaction. Many statistical approaches for analysing genotype by environment interaction rely heavily on the analysis of variance model. Genotype by environment interaction is then taken to be equivalent to non-additivity. This thesis criticizes the analysis of variance approach. Modelling genotype by environment interaction by non-addit...

  9. Mutation breeding newsletter. No. 41

    International Nuclear Information System (INIS)

    1994-07-01

    This newsletter contains short descriptions of research methods for the use of radiation to induce mutations and facilitate plant breeding. This method is used to develop species of plants that can survive in harsh climates and thus provide a food supply for humans and animals. Some of the mutants discussed include a salt tolerant barley, a disease resistant shrub, a cold tolerant chickpea, a highly productive Canavalia virosa and productive tomato. Refs, figs and tabs

  10. The current breeding programme on industrial crops in Indonesia

    International Nuclear Information System (INIS)

    Hamid, Auzay; Abdullah, N.

    1982-01-01

    There are two main constraints why breeding programme of most industrial crops can not be carried out smoothly. Firstly, most of the industrial crops belong to a perennial group with a relatively long life circle. Secondly, a greater part of them have a very limited genetic diversities in the nature. The low yield capacity per hectare of some crops are mainly due to certain diseases caused by fungi, bacteria, viruses and nematodes, besides several kinds of pests. Efforts have been done to overcome these problems, particularly through improvements of cultural practices, as well as plant breeding, however, major parts of those problems are not solved yet. This paper reviews several problems of industrial crops of economic importance in connection with several aspects of breeding works done in the past and recently faced by ICRI and farmers. It seems that nuclear techniques as a new means in breeding programmes is badly needed, especially to certain crops with a narrow spectrum of genetic diversities with special reference to seek for plants which are expected to be resistant to major diseases and pests. (author)

  11. CLASSICAL AND MOLECULAR CYTOGENETIC STUDIES FOR BREEDING AND SELECTION OF TULIPS

    Directory of Open Access Journals (Sweden)

    Aurel Popescu

    2012-12-01

    Full Text Available Due to their extreme popularity as fresh cut flowers and garden plants, and being used extensively for landscaping, tulips undergone a continuous process of selective breeding. For almost nine decades, classical cytogenetic studies, mainly the chromosome counts, have been an important part in the breeding programme for polyploid tulips. The efficiency of breeding is greatly aided by a thorough knowledge of the occurrence of polyploidy in the plant material. While the traditional cytogenetic approaches are still highly useful in selecting polyploids and aneuploids arising from crosses involving (most often parents of different ploidy or from the material subjected to ploidy manipulation, the new strategies for inducing polyploidy in tulips, either in vivo or in vitro, and advances in molecular cytogenetics are expected to allow a significant increase in breeding efficiency. Together with the shortening of breeding cycle, major genetic improvements could be made for specific traits. In this we review the development of cytogenetic studies in tulips, and the most relevant achievements so far, providing an overview of what we consider to be valuable tools for the processes of selective breeding .

  12. The use of optical markers for mutation breeding

    International Nuclear Information System (INIS)

    Makino, Takahiro

    2003-01-01

    The use of radiation for mutation breeding has produced many kinds of practical varieties in crops and ornamental plants over the last several decades. Cold-tolerant rice and disease-resistant apple and pears are well-known varieties resulting from radiation breeding in Japan, and X-ray mutations were used routinely for the expansion of petal color in the chrysanthemum. Recently, the use of ion-beams for mutation induction was investigated as an effective source for producing varieties in cereal crops and flowers in Japan and China (Harten, 1998). Although we have not produced many varieties through radiation breeding, the success rate could increase with the addition of more resources. The success of mutation breeding greatly depends on the rate of mutation, the number of screened plants, and the mutation efficiency. The mutation rate is mainly a function of the total dose of the mutagen employed, although it can be modified by physical and biological factors. A large number of reports have been produced and effective methods of mutation treatments, such as gamma rays, established. Using higher doses inevitably brings about mortality, high pollen and seed sterility, and deleterious mutations. A practical useful dosage is usually found in the range much less than the maximum dose that can be applied. To increase the efficiency of mutation breeding, improvement of screening methods is more important than trials used for raising mutation probabilities. For this reason, we began studies to develop non-destructive and non-invasive optical high-throughput screening systems to increase the efficiency of mutation breeding. (author)

  13. Plant breeding and genetics newsletter. No. 8

    International Nuclear Information System (INIS)

    2002-01-01

    The FAO/IAEA Interregional Training Course on Mutant Germplasm Characterisation Using Molecular Markers was definitely the most important event of the Plant Breeding and Genetics sub- Programmes activity in 2001. The course was held at the FAO/IAEA Agriculture and Biotechnology Laboratory, Seibersdorf, Austria, 1-25 October. The programme covered various DNA marker techniques such as genomic DNA isolation, restriction analysis of genomic and plasmid DNA, gel electrophoresis, southern transfer of genomic DNA, DNA hybridization, autoradiography, RFLP, AFLP, SSR, ISSR and RAPD analysis, and inverse PCR. The course was very successful mainly due to three major components: outstanding lecturers, very enthusiastic and motivated trainees, and last but not least, very efficient organization and excellent preparation of the course. We decided to prepare a laboratory manual on the basis of the reading materials and laboratory protocols, that were provided to the participants by the lecturers. Perry Gustafson (USA) and Brian Forster (UK), with the help of the lecturers, compiled and edited all protocols. It is expected that the manual will be printed before March 2002 and freely distributed to requesting scientists. The manual will also be available on CD-Rom and through our Homepage. 2001 was the last year of the Co-ordinated Research Project on 'Cellular biology and biotechnology including mutation techniques for creation of new useful banana genotypes'. The fourth and final Research Co-ordination Meeting was held in Leuven, Belgium, 24-28 September. This location was selected as the Belgium Government co-sponsored the CRP over the last five years. The CRP yielded many interesting results, which stimulated participants to apply to the Common Funds for Commodities for continuation of the work on banana improvement

  14. Mutation breeding newsletter. No. 38

    International Nuclear Information System (INIS)

    1991-12-01

    This issue contains a number of contributions from readers describing experiments in plant breeding (the individual items are indexed separately) and a report on the 30th Gamma-Field Symposium held in Tsukuba, Japan in July 1991. Also included is a list of officially released mutant varieties of seed-propagated crops taken from the FAO/IAEA database of mutant varieties. It is planned to organize a database on available crop plant mutant variety germplasm collections. Refs, figs and tabs

  15. Radiation breeding researches in gamma field. Results of researches

    International Nuclear Information System (INIS)

    Morishita, Toshikazu

    2006-01-01

    Abstract of radiation breeding researches and outline of gamma field in IRB (Institute of Radiation Breeding) are described. The gamma field is a circular field of 100 m radius with 88.8TBqCo-60 source at the center. The field is surrounded by a shielding dike of 8 m in height. The effects of gamma irradiation on the growing plants, mutant by gamma radiation and plant molecular biological researches using mutant varieties obtained by the gamma field are explained. For examples, Japanese pear, chrysanthemum, Cytisus, Eustoma grandiflorum, Manila grass, tea and rose are reported. The mutant varieties in the gamma field, nine mutant varieties of flower colors in chrysanthemum, evergreen mutant lines in Manila grass, selection of self-compatible mutants in tea plant, and the plants of the gamma field recently are shown. (S.Y.)

  16. Forty years of mutation breeding in Japan. Research and fruits

    International Nuclear Information System (INIS)

    Yamaguchi, Isao

    2003-01-01

    The radiation source used for breeding in the early years was mainly X rays. After the 2nd World War, gamma ray sources such as 60 Co and 137 Cs came to take a leading role in radiation breeding. The institute of Radiation Breeding (IRB) of the Ministry of Agriculture, Forestry and Fisheries (MAFF) was established on April 16, 1960. A gamma field with 2000Ci of a 60 Co source, the main irradiation facility of the IRB, was installed to study the genetically responses of crop plants to chronic exposures of ionizing radiation and their practical application to plant breeding. This paper consisted of 'forty years of research on radiobiology and mutation breeding in Japan', 'topics of mutation breeding research in IRB', 'outline of released varieties by mutation breeding' and 'future of mutation breeding'. The number of varieties released by the direct use of induced mutation in Japan amounts to 163 as of November 2001. Crops in which mutant varieties have been released range widely: rice and other cereals, industrial crops, forage crops, vegetables, ornamentals, mushrooms and fruit trees, the number of which reaches 48. The number of mutant varieties is highest (31) in chrysanthemum, followed by 22 in rice and 13 in soybean. By the indirect use of mutants, a total of 15 varieties of wheat, barley, soybean, mat rush and tomato have been registered by MAFF. Recent advances in biotechnological techniques have made it possible to determine DNA sequences of mutant genes. Accumulating information of DNA sequences and other molecular aspects of many mutant genes will throw light on the mechanisms of mutation induction and develop a new field of mutation breeding. (S.Y.)

  17. Bibliography. Examples of literature related to the use of induced mutations in cross-breeding

    International Nuclear Information System (INIS)

    Micke, A.

    1976-01-01

    The bibliography contains about 400 references arranged alphabetically under the following 20 headings: Genetic analysis of mutants; Mutant gene combination and interaction; Pleiotropy versus linkage; Genetic background; Heterosis and overdominance; Mutations in heterozygous plants such as vegetatively propagated plants; Mutations in hybrids of self-pollinators; Distant hybridization; Increasing recombination; Alteration in the reproductive system; Alteration of photoperiodic response; Self and cross-incompatibility; Male or female sterility; Adaptability of mutants and mutant hybrids; Mutation induction in cross pollinators; Dwarfing mutant genes in cross-breeding; Protein mutants in cross-breeding; Disease resistant mutants in cross-breeding; Practical cross-breeding programmes using mutants; Spontaneous versus induced genetic diversity

  18. Genetic data analysis for plant and animal breeding

    Science.gov (United States)

    This book is an advanced textbook covering the application of quantitative genetics theory to analysis of actual data (both trait and DNA marker information) for breeding populations of crops, trees, and animals. Chapter 1 is an introduction to basic software used for trait data analysis. Chapter 2 ...

  19. Tritium breeding potential of the Princeton reference fusion power plant

    International Nuclear Information System (INIS)

    Greenspan, E.; Price, W.G. Jr.

    1974-04-01

    A variational method is used to investigate the tritium breeding potential of the blanket of a fusion reactor. Effectiveness functions indicating the changes in the breeding ratio (BR) due to material density perturbations are calculated with the code SWAN. Results are presented analyzing the sensitivity of the BR both to cross section variations and to material density perturbations. For example, SWAN indicates a 0.176 increase in BR for the replacement of 10% of the flibe by beryllium. Implications of the sensitivity figures for design modification and optimization are discussed. 15 refs., 7 figs

  20. Progress and tendency in heavy ion irradiation mutation breeding

    International Nuclear Information System (INIS)

    Zhou Libin; Li Wenjian; Qu Ying; Li Ping

    2008-01-01

    In recent years, the intermediate energy heavy ion biology has been concerned rarely comparing to that of the low-energy ions. In this paper, we summarized the advantage of a new mutation breeding method mediated by intermediate energy heavy ion irradiations. Meanwhile, the present state of this mutation technique in applications of the breeding in grain crops, cash crops and model plants were introduced. And the preview of the heavy ion irradiations in gene-transfer, molecular marker assisted selection and spaceflight mutation breeding operations were also presented. (authors)

  1. Induced mutations in sesame breeding

    International Nuclear Information System (INIS)

    Ashri, A.

    2001-01-01

    The scope of induced mutations in sesame (Sesamum indicum L.) breeding is reviewed. So far in Egypt, India, Iraq, Rep. of Korea, and Sri Lanka, 14 officially released varieties have been developed through induced mutations: 12 directly and 2 through cross breeding (one using the 'dt45' induced mutant from Israel). For another variety released in China there are no details. The induced mutations approach was adopted primarily in order to obtain genetic variability that was not available in the germplasm collection. The mutagens commonly applied have been gamma rays, EMS and sodium azide. Sesame seeds can withstand high mutagen doses, and there are genotypic differences in sensitivity between varieties. The mutants induced in the above named countries and others include better yield, improved seed retention, determinate habit, modified plant architecture and size, more uniform and shorter maturation period, earliness, resistance to diseases, genic male sterility, seed coat color, higher oil content and modified fatty acids composition. Some of the induced mutants have already given rise to improved varieties, the breeding value of other mutants is now being assessed and still others can serve as useful markers in genetic studies and breeding programmes. (author)

  2. Contributions of classical and molecular cytogenetic in meiotic analysis and pollen viability for plant breeding.

    Science.gov (United States)

    Lavinscky, M P; Souza, M M; Silva, G S; Melo, C A F

    2017-09-27

    The analysis of meiotic behavior has been widely used in the study of plants as they provide relevant information about the viability of a species. Meiosis boasts a host of highly conserved events and changes in genes that control these events will give rise to irregularities that can alter the normal course of meiosis and may lead to complete sterility of the plant. The recombination of genes that occur in meiosis is an important event to generate variability and has been important in studies for genetic improvement and to create viable hybrids. The use of fluorescence in situ hybridization and genomic in situ hybridization (GISH) in meiosis allows the localization of specific regions, enables to differentiate genomes in a hybrid, permits to observe the pairing of homoeologous chromosomes, and if there was a recombination between the genomes of progenitor species. Furthermore, the GISH allows us to observe the close relationship between the species involved. This article aims to report over meiosis studies on plants and hybrids, the use and importance of molecular cytogenetic in meiotic analysis and contributions of meiotic analysis in breeding programs.

  3. Economic and agricultural impact of mutation breeding in fruit trees

    International Nuclear Information System (INIS)

    Spiegel Roy, P.

    1990-01-01

    Constraints of conventional cross breeding in fruit trees, wide market acceptance of definite cultivars, especially in apple, pear, citrus and wine grape, and the increased impact of natural mutants provide incentives for mutation breeding. Only few induced mutants in fruit trees have been commercialized and are being planted on a large scale. The main method followed in mutation breeding of tree fruit has been acute irradiation of meristematic multicellular buds but, Chimera formation and reversion present a serious problem. 87 refs, 4 tabs

  4. The breeding of Japonica Yanjing 10 rice mutant induced by space mutation

    International Nuclear Information System (INIS)

    Wang Jianhua; Chen Xiulan; Zhang Rong; Wang Jinrong; Liu Jian; Jiao Juan; He Zhentian; Wang Lin

    2011-01-01

    The dry seed of mid-maturing Japonica rice Yanjing 10 was used for space mutation breeding which was carried by a satellite for 15 days in 2006. Through three generations of breeding, a group of mutants were obtained. In the article, we reported in detail the breeding procedures, proposed the breeding technical method for space mutation for rice improvement. Planting multiple seedlings per hill to prohibit tillering at SP 1 generation, and bulked selection in combination with directional selection at the SP 2 ∼ SP 3 generation were the two key points of the breeding methods. (authors)

  5. Trained to adapt: Researchers from Pakistan, Mauritius and Afghanistan breed mutant plants to take on a changing climate

    International Nuclear Information System (INIS)

    Jawerth, Nicole

    2015-01-01

    From cotton in Pakistan to tomatoes in Mauritius and wheat in Afghanistan, many crops around the world are being devastated by erratic rains, droughts, diseases and relentless heat, which are being exacerbated by climate change. As the global search for solutions to climate challenges continues, three researchers are using their training with the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture to develop new plant breeds that can withstand these adverse conditions and help keep their countries’ crops growing strong.

  6. Achievements of element technology development for breeding blanket

    International Nuclear Information System (INIS)

    Enoeda, Mikio

    2005-03-01

    Japan Atomic Energy Research Institute (JAERI) has been performing the development of breeding blanket for fusion power plant, as a leading institute of the development of solid breeder blankets, according to the long-term R and D program of the blanket development established by the Fusion Council of Japan in 1999. This report is an overview of development plan, achievements of element technology development and future prospect and plan of the development of the solid breeding blanket in JAERI. In this report, the mission of the blanket development activity in JAERI, key issues and roadmap of the blanket development have been clarified. Then, achievements of the element technology development were summarized and showed that the development has progressed to enter the engineering testing phase. The specific development target and plan were clarified with bright prospect. Realization of the engineering test phase R and D and completion of ITER test blanket module testing program, with universities/NIFS cooperation, are most important steps in the development of breeding blanket of fusion power demonstration plant. (author)

  7. Mutation breeding newsletter. Index issue no. 11-20

    International Nuclear Information System (INIS)

    1984-01-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  8. Mutation breeding newsletter. Index issue no. 11-20

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-01-01

    This issue of the Newsletter presents new reports on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  9. A desk evaluation review of project POL/5/006 plant breeding using induced mutations. Project desk evaluation

    International Nuclear Information System (INIS)

    1993-01-01

    Projects POL/5/006 was initiated in 1985 to assist the Government of Poland in improving the mutation breeding efforts in the country to promote the development of new and higher yielding crop varieties. The difficult economic situation in the country at this time restricted the procurement of special equipment, spare parts and supplies from abroad and, therefore, impeded research and development work in this field. The project was implemented using a distinctive approach and design characterized by having six recipient institutions and the establishment of one central gamma-irradiation facility to be made available to all participating institutions for mutation induction. The project was formally closed in 1989. The review of project POL/5/006 was undertaken in accord with the expressed wishes of the Board of Governors for selected ex-post evaluations of completed projects. The main purpose of the review was to ascertain if the project objectives were achieved, and to determine what impact the technical assistance provided may have had on continued post-project and current plant breeding programmes in Poland

  10. A desk evaluation review of project POL/5/006 plant breeding using induced mutations. Project desk evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-09-14

    Projects POL/5/006 was initiated in 1985 to assist the Government of Poland in improving the mutation breeding efforts in the country to promote the development of new and higher yielding crop varieties. The difficult economic situation in the country at this time restricted the procurement of special equipment, spare parts and supplies from abroad and, therefore, impeded research and development work in this field. The project was implemented using a distinctive approach and design characterized by having six recipient institutions and the establishment of one central gamma-irradiation facility to be made available to all participating institutions for mutation induction. The project was formally closed in 1989. The review of project POL/5/006 was undertaken in accord with the expressed wishes of the Board of Governors for selected ex-post evaluations of completed projects. The main purpose of the review was to ascertain if the project objectives were achieved, and to determine what impact the technical assistance provided may have had on continued post-project and current plant breeding programmes in Poland.

  11. Feasibility study of fusion breeding blanket concept employing graphite reflector

    International Nuclear Information System (INIS)

    Cho, Seungyon; Ahn, Mu-Young; Lee, Cheol Woo; Kim, Eung Seon; Park, Yi-Hyun; Lee, Youngmin; Lee, Dong Won

    2015-01-01

    Highlights: • A Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept adopts graphite as a reflector material by reducing the amount of beryllium multiplier. • Its feasibility was investigated in view point of the nuclear performance as well as material-related issues. • A nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket. • Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions. • In conclusion, the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition. - Abstract: To obtain high tritium breeding performance with limited blanket thickness, most of solid breeder blanket concepts employ a combination of lithium ceramic as a breeder and beryllium as a multiplier. In this case, considering that huge amount of beryllium are needed in fusion power plants, its handling difficulty and cost can be a major factor to be accounted for commercial use. Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. Its feasibility has been investigated in view point of the nuclear performance as well as material-related issues. In this paper, a nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket, considering tritium breeding capability and neutron shielding and activation aspects. Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions, resulting in that the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition.

  12. Feasibility study of fusion breeding blanket concept employing graphite reflector

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seungyon, E-mail: sycho@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Ahn, Mu-Young [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Cheol Woo; Kim, Eung Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yi-Hyun; Lee, Youngmin [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Highlights: • A Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept adopts graphite as a reflector material by reducing the amount of beryllium multiplier. • Its feasibility was investigated in view point of the nuclear performance as well as material-related issues. • A nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket. • Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions. • In conclusion, the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition. - Abstract: To obtain high tritium breeding performance with limited blanket thickness, most of solid breeder blanket concepts employ a combination of lithium ceramic as a breeder and beryllium as a multiplier. In this case, considering that huge amount of beryllium are needed in fusion power plants, its handling difficulty and cost can be a major factor to be accounted for commercial use. Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. Its feasibility has been investigated in view point of the nuclear performance as well as material-related issues. In this paper, a nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket, considering tritium breeding capability and neutron shielding and activation aspects. Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions, resulting in that the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition.

  13. Camelina as a sustainable oilseed crop: contributions of plant breeding and genetic engineering.

    Science.gov (United States)

    Vollmann, Johann; Eynck, Christina

    2015-04-01

    Camelina is an underutilized Brassicaceae oilseed plant with a considerable agronomic potential for biofuel and vegetable oil production in temperate regions. In contrast to most Brassicaceae, camelina is resistant to alternaria black spot and other diseases and pests. Sequencing of the camelina genome revealed an undifferentiated allohexaploid genome with a comparatively large number of genes and low percentage of repetitive DNA. As there is a close relationship between camelina and the genetic model plant Arabidopsis, this review aims at exploring the potential of translating basic Arabidopsis results into a camelina oilseed crop for food and non-food applications. Recently, Arabidopsis genes for drought resistance or increased photosynthesis and overall productivity have successfully been expressed in camelina. In addition, gene constructs affecting lipid metabolism pathways have been engineered into camelina for synthesizing either long-chain polyunsaturated fatty acids, hydroxy fatty acids or high-oleic oils in particular camelina strains, which is of great interest in human food, industrial or biofuel applications, respectively. These results confirm the potential of camelina to serve as a biotechnology platform in biorefinery applications thus justifying further investment in breeding and genetic research for combining agronomic potential, unique oil quality features and biosafety into an agricultural production system. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Towards development of new ornamental plants

    DEFF Research Database (Denmark)

    Kuligowska, Katarzyna; Lütken, Henrik Vlk; Müller, Renate

    2016-01-01

    is one of the oldest breeding techniques that contributed enormously to the development of modern plant cultivars. Within ornamental breeding, it represents the main source of genetic variation. During the long history of wide hybridization, a number of methods were implemented allowing the evolution...... from a conventional breeding tool into a modern methodology. Nowadays, the research on model plants and crop species increases our understanding of reproductive isolation among distant species and partly explains the background of the traditional approaches previously used for overcoming hybridization...... barriers. Characterization of parental plants and hybrids is performed using molecular and cytological techniques that strongly facilitate breeding processes. Molecular markers and sequencing technologies are used for the assessment of genetic relationships among plants, as the genetic distance...

  15. Developments in breeding cereals for organic agriculture

    DEFF Research Database (Denmark)

    Wolfe, M.S.; Baresel, J.P.; Desclaux, D.

    2008-01-01

    into the crop can be helped by diversification within the crop, allowing complementation and compensation among plants. Although the problems of breeding cereals for organic farming systems are large, there is encouraging progress. This lies in applications of ecology to organic crop production, innovations......The need for increased sustainability of performance in cereal varieties, particularly in organic agriculture (OA), is limited by the lack of varieties adapted to organic conditions. Here, the needs for breeding are reviewed in the context of three major marketing types, global, regional, local......, in European OA. Currently, the effort is determined, partly, by the outcomes from trials that compare varieties under OA and CA (conventional agriculture) conditions. The differences are sufficiently large and important to warrant an increase in appropriate breeding. The wide range of environments within OA...

  16. Network Candidate Genes in Breeding for Drought Tolerant Crops

    Directory of Open Access Journals (Sweden)

    Christoph Tim Krannich

    2015-07-01

    Full Text Available Climate change leading to increased periods of low water availability as well as increasing demands for food in the coming years makes breeding for drought tolerant crops a high priority. Plants have developed diverse strategies and mechanisms to survive drought stress. However, most of these represent drought escape or avoidance strategies like early flowering or low stomatal conductance that are not applicable in breeding for crops with high yields under drought conditions. Even though a great deal of research is ongoing, especially in cereals, in this regard, not all mechanisms involved in drought tolerance are yet understood. The identification of candidate genes for drought tolerance that have a high potential to be used for breeding drought tolerant crops represents a challenge. Breeding for drought tolerant crops has to focus on acceptable yields under water-limited conditions and not on survival. However, as more and more knowledge about the complex networks and the cross talk during drought is available, more options are revealed. In addition, it has to be considered that conditioning a crop for drought tolerance might require the production of metabolites and might cost the plants energy and resources that cannot be used in terms of yield. Recent research indicates that yield penalty exists and efficient breeding for drought tolerant crops with acceptable yields under well-watered and drought conditions might require uncoupling yield penalty from drought tolerance.

  17. Advanced phenotyping offers opportunities for improved breeding of forage and turf species

    DEFF Research Database (Denmark)

    Walter, Achim; Studer, Bruno; Kölliker, Roland

    2012-01-01

    Background and Aims Advanced phenotyping, i.e. the application of automated, high-throughput methods to characterize plant architecture and performance, has the potential to accelerate breeding progress but is far from being routinely used in current breeding approaches. In forage and turf...... improvement programmes, in particular, where breeding populations and cultivars are characterized by high genetic diversity and substantial genotype × environment interactions, precise and efficient phenotyping is essential to meet future challenges imposed by climate change, growing demand and declining...... resources. Scope This review highlights recent achievements in the establishment of phenotyping tools and platforms. Some of these tools have originally been established in remote sensing, some in precision agriculture, while others are laboratory-based imaging procedures. They quantify plant colour...

  18. Hybrid recreation by reverse breeding in Arabidopsis thaliana.

    Science.gov (United States)

    Wijnker, Erik; Deurhof, Laurens; van de Belt, Jose; de Snoo, C Bastiaan; Blankestijn, Hetty; Becker, Frank; Ravi, Maruthachalam; Chan, Simon W L; van Dun, Kees; Lelivelt, Cilia L C; de Jong, Hans; Dirks, Rob; Keurentjes, Joost J B

    2014-04-01

    Hybrid crop varieties are traditionally produced by selecting and crossing parental lines to evaluate hybrid performance. Reverse breeding allows doing the opposite: selecting uncharacterized heterozygotes and generating parental lines from them. With these, the selected heterozygotes can be recreated as F1 hybrids, greatly increasing the number of hybrids that can be screened in breeding programs. Key to reverse breeding is the suppression of meiotic crossovers in a hybrid plant to ensure the transmission of nonrecombinant chromosomes to haploid gametes. These gametes are subsequently regenerated as doubled-haploid (DH) offspring. Each DH carries combinations of its parental chromosomes, and complementing pairs can be crossed to reconstitute the initial hybrid. Achiasmatic meiosis and haploid generation result in uncommon phenotypes among offspring owing to chromosome number variation. We describe how these features can be dealt with during a reverse-breeding experiment, which can be completed in six generations (∼1 year).

  19. DNA Microarray as Part of a Genomic-Assisted Breeding Approach

    DEFF Research Database (Denmark)

    Vincze, Éva; Bowra, Steve

    2010-01-01

    ) is the ‘umbrella' term used to describe a suite of tools now being applied to plant breeding. In the context of genomic-assisted breeding, we will briefly discuss in the second section of this chapter the molecular genetic-based tools underpinning GAB (understanding gene expression, candidate gene selection......In the struggle to achieve global food security, crop breeding retains an important role in crop production. A current trend is the diversification of the aims of crop production, to include an increased awareness of aspects and consequences of food quality. The added emphasis on food and feed...... quality made crop breeding more challenging and required a combination of new tools. We illustrate these concepts by taking examples from barley, one of the most ancient of domesticated grains with a diverse profile of utilisation (feed, brewing, new nutritional uses). Genomic-assisted breeding (GAB...

  20. Genome-editing technologies and their potential application in horticultural crop breeding

    Science.gov (United States)

    Xiong, Jin-Song; Ding, Jing; Li, Yi

    2015-01-01

    Plant breeding, one of the oldest agricultural activities, parallels human civilization. Many crops have been domesticated to satisfy human's food and aesthetical needs, including numerous specialty horticultural crops such as fruits, vegetables, ornamental flowers, shrubs, and trees. Crop varieties originated through selection during early human civilization. Other technologies, such as various forms of hybridization, mutation, and transgenics, have also been invented and applied to crop breeding over the past centuries. The progress made in these breeding technologies, especially the modern biotechnology-based breeding technologies, has had a great impact on crop breeding as well as on our lives. Here, we first review the developmental process and applications of these technologies in horticultural crop breeding. Then, we mainly describe the principles of the latest genome-editing technologies and discuss their potential applications in the genetic improvement of horticultural crops. The advantages and challenges of genome-editing technologies in horticultural crop breeding are also discussed. PMID:26504570

  1. Root phenotyping: from component trait in the lab to breeding.

    Science.gov (United States)

    Kuijken, René C P; van Eeuwijk, Fred A; Marcelis, Leo F M; Bouwmeester, Harro J

    2015-09-01

    In the last decade cheaper and faster sequencing methods have resulted in an enormous increase in genomic data. High throughput genotyping, genotyping by sequencing and genomic breeding are becoming a standard in plant breeding. As a result, the collection of phenotypic data is increasingly becoming a limiting factor in plant breeding. Genetic studies on root traits are being hampered by the complexity of these traits and the inaccessibility of the rhizosphere. With an increasing interest in phenotyping, breeders and scientists try to overcome these limitations, resulting in impressive developments in automated phenotyping platforms. Recently, many such platforms have been thoroughly described, yet their efficiency to increase genetic gain often remains undiscussed. This efficiency depends on the heritability of the phenotyped traits as well as the correlation of these traits with agronomically relevant breeding targets. This review provides an overview of the latest developments in root phenotyping and describes the environmental and genetic factors influencing root phenotype and heritability. It also intends to give direction to future phenotyping and breeding strategies for optimizing root system functioning. A quantitative framework to determine the efficiency of phenotyping platforms for genetic gain is described. By increasing heritability, managing effects caused by interactions between genotype and environment and by quantifying the genetic relation between traits phenotyped in platforms and ultimate breeding targets, phenotyping platforms can be utilized to their maximum potential. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Biotechnology Assisted Wheat Breeding for Organic Agriculture

    DEFF Research Database (Denmark)

    Steffan, Philipp Matthias

    model identified two novel QTL for common bunt resistance located on wheat chromosomes 2B and 7 A. The identification of new resistance loci may help to broaden our understanding of common bunt resistance in wheat, and QTL may potentially be exploited by marker assisted selection in plant breeding. QTL...... markers for common bunt resistance may potentially help to speed up resistance breeding by shortening the long time required for phenotypic disease screening. Here, we report the results of 1. an association mapping study for common bunt resistance, 2. a QTL mapping study for the localization of common...

  3. Solute accumulation and elastic modulus changes in six radiata pine breeds exposed to drought.

    Science.gov (United States)

    De Diego, N; Sampedro, M C; Barrio, R J; Saiz-Fernández, I; Moncaleán, P; Lacuesta, M

    2013-01-01

    Drought is one of the main abiotic factors that determine forest species growth, survival and productivity. For this reason, knowledge of plant drought response and the identification of physiological traits involved in stress tolerance will be of interest to breeding programs. In this work, several Pinus radiata D. Don breeds from different geographical origins were evaluated along a water stress period (4 weeks) and subsequent rewatering (1 week), showing different responses among them. Leaf water potential (Ψ(leaf)) and osmotic potential decreases were accompanied by a variation in the total relative water content (RWC, %). The most tolerant breeds presented the lowest leaf water potential and RWC at turgor loss point, and showed the lowest elastic modulus (ε) values. A high ε value was a characteristic of a less-drought-tolerant plant and was related to membrane alterations (high electrolyte leakage percentages) that could favor cell water loss. Of the group of solutes that contributed to osmotic adjustment, soluble carbohydrates were the most abundant, although stressed plants also increased their content of free amino acids [mainly proline (Pro) and glutamic acid (Glu), and γ-aminobutyric acid (GABA)] and free polyamines. In addition, the most sensitive breeds had a higher GABA/Glu ratio. After rewatering, Pro and GABA were higher in rehydrated plants than in controls.

  4. Mutation breeding on dueruem wheat (Triticum durum Desf.) by nuclear techniques

    International Nuclear Information System (INIS)

    2011-01-01

    Cereals provide 50 % of protein and calorie essential for nutrition. Cereals contribution to total daily food consumption can go up to 3/4, if their role in animal feeding has also been considered. Of the 41 % of crop plants are cereals and their share in food production is as high as 98 %. Combination of high yielding cultivars and adequate management techniques is primary to increase yield in unit area. Crossing is the most common breeding method to develop new cultivars. Mutation has been important as a direct or complemental technique to crossing in plant breeding. Mutation is an effective method to expand existent gene pools for breeding purposes. It has been proved as a successful and effectual method by widely grown mutant cereal varieties. Considering these successful examples, Saraykoey Nuclear Research and Training Center started a durum wheat mutation breeding program in 2002. Main goal of the program is to develop durum wheat lines/varieties with high adaptation to drought and cold, high yield and quality, and short length. Kunduru 1149 has been used as parent cultivar. Kunduru 1149 had 11 % seed moisture content and 98 % germination rate. Seeds were irradiated with 50, 150, 250 Gy of gamma rays from a 6 0Co source and 0,002-0,004 EMS doses of individual and bulk applications for growth rooms and field experiments, respectfully. M1 plants of field experiment had been transplanted to the several field days after the treatment. M2 generation seeds were harvested from fertile spikes of M1 plants and planted to field in the next growing season in 2003. Selections based on the program goals were made throughout M3-M6 generations in 2004-2008. Preliminary field yield trials have been in progress with selected mutant lines of M6 generation based on their quality analysis.

  5. Contribution and perspectives of quantitative genetics to plant breeding in Brazil

    Directory of Open Access Journals (Sweden)

    Fernando Henrique Ribeiro Barrozo Toledo

    2012-12-01

    Full Text Available The purpose of this article is to show how quantitative genetics has contributed to the huge genetic progress obtained inplant breeding in Brazil in the last forty years. The information obtained through quantitative genetics has given Brazilian breedersthe possibility of responding to innumerable questions in their work in a much more informative way, such as the use or not of hybridcultivars, which segregating population to use, which breeding method to employ, alternatives for improving the efficiency of selectionprograms, and how to handle the data of progeny and/or cultivars evaluations to identify the most stable ones and thus improverecommendations.

  6. The expectation from radiation breeding in the Southeast Asia - 2000

    International Nuclear Information System (INIS)

    Medina, F.I.S. III

    1996-01-01

    The induction of mutation by radiation and chemical mutagens is now will established. At times, it is the only way to increase genetic variation in the primary gene pool, as in asexually propagated plants or where the desired market type genotype is very heterozygous and selfing or out-crossing will lead to its breakdown. It was demonstrated that mutation breeding coupled with molecular and biotechnology is a very effective means to modify various traits such as protein and oil content and composition, plant architecture and habits and physiological processes especially resistance/tolerance to various stresses of biotic and abiotic nature and higher stabler yields with lower inputs of labour. It was also seen that mutation breeding is a practical method to produce the desired genetic variability, together with a wide range of additional favourable and unfavourable variation. The mutant alleles in the adapted variety may then be used directly by releasing an improved cultivar, or in cross breeding as the source of a desired gene. Some researchers in the Southeast Asian countries felt the need and the importance of specialized training because standard methodologies are often still lacking and must be developed by the researchers themselves for special crops. Exchange of informations, materials and techniques among involved Institutes should be encouraged. The Southeast Asian country's researcher should be able to utilize the research network and linkages to the maximum and thus benefit more from newly developed molecular and biotechnologies of mutation breeding and thus develop a more realistic and efficient mutation breeding technology and programmes. The present programmes on mutation breeding of most Southeast Asian countries and the aspiration for the contribution of mutation breeding for the coming century are discussed in the paper. (J.P.N.)

  7. Mutagenesis of Jatropha curcas - Exploring new traits in the breeding of a biofuel plant

    International Nuclear Information System (INIS)

    Azhar Mohamad; Sobri Hussein; Abdul Rahim Harun

    2010-01-01

    Mutagenesis in plant species is considered effective in recovering and producing useful mutants as it leads to a high degree of chimerism and produces high degree of somaclonal variations for further selection in breeding programmes. Jatropha curcas is a species with many attributes and considerable potential, especially as bio diesel. Narrow genetic background of Jatropha spp. gives less selection to growers for better quality plant materials. In this study, a new method through nuclear technology was used to increase the genetic variability of Jatropha towards novel superior potential mutant lines. The objective of the study is to generate new mutant varieties of Jatropha curcas through the mutagenesis approach in getting new sustainable mutants for high oil yield and improved plant characteristics. Seeds of a Jatropha cultivar were from selected materials from Lembaga Kenaf and Tembakau Negara, Kelantan. Radiosensitivity test was done by irradiating a total of each 60 seeds at multiple doses (0 Gy, 20 Gy, 40 Gy, 60 Gy, 80 Gy, 100 Gy, 200 Gy, 300 Gy, 400 Gy, 600 Gy and 700 Gy). After getting the LD 50 , three doses i.e. 250 Gy, 300 Gy and 350 Gy were selected for mutagenesis, where a total of 1000 seeds were exposed to gamma radiation. The seeds were hardened and field planted at close distance of 1 m x 1 m. Pruning was conducted three times at two months interval prior to screening for early flowering, short stature and high branching mutant lines. Radiosensitivity of seeds to acute gamma irradiation revealed that the LD 50 was at 320 Gy. At nursery stage, somatic mutations related to chlorophyll changes were observed on leaves with certain shapes. Screening of Jatropha via seed mutagenesis bore 6 early flowering mutants, 7 dwarf mutants and, 17 high branching plants. In narrowing the mutant lines, cuttings from each selected trait were collected and re-planted for further evaluation. (author)

  8. An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding.

    Science.gov (United States)

    He, Jianbo; Meng, Shan; Zhao, Tuanjie; Xing, Guangnan; Yang, Shouping; Li, Yan; Guan, Rongzhan; Lu, Jiangjie; Wang, Yufeng; Xia, Qiuju; Yang, Bing; Gai, Junyi

    2017-11-01

    The innovative RTM-GWAS procedure provides a relatively thorough detection of QTL and their multiple alleles for germplasm population characterization, gene network identification, and genomic selection strategy innovation in plant breeding. The previous genome-wide association studies (GWAS) have been concentrated on finding a handful of major quantitative trait loci (QTL), but plant breeders are interested in revealing the whole-genome QTL-allele constitution in breeding materials/germplasm (in which tremendous historical allelic variation has been accumulated) for genome-wide improvement. To match this requirement, two innovations were suggested for GWAS: first grouping tightly linked sequential SNPs into linkage disequilibrium blocks (SNPLDBs) to form markers with multi-allelic haplotypes, and second utilizing two-stage association analysis for QTL identification, where the markers were preselected by single-locus model followed by multi-locus multi-allele model stepwise regression. Our proposed GWAS procedure is characterized as a novel restricted two-stage multi-locus multi-allele GWAS (RTM-GWAS, https://github.com/njau-sri/rtm-gwas ). The Chinese soybean germplasm population (CSGP) composed of 1024 accessions with 36,952 SNPLDBs (generated from 145,558 SNPs, with reduced linkage disequilibrium decay distance) was used to demonstrate the power and efficiency of RTM-GWAS. Using the CSGP marker information, simulation studies demonstrated that RTM-GWAS achieved the highest QTL detection power and efficiency compared with the previous procedures, especially under large sample size and high trait heritability conditions. A relatively thorough detection of QTL with their multiple alleles was achieved by RTM-GWAS compared with the linear mixed model method on 100-seed weight in CSGP. A QTL-allele matrix (402 alleles of 139 QTL × 1024 accessions) was established as a compact form of the population genetic constitution. The 100-seed weight QTL-allele matrix was

  9. Genomic selection accuracy using multi-family prediction models in a wheat breeding program

    Science.gov (United States)

    Genomic selection (GS) uses genome-wide molecular marker data to predict the genetic value of selection candidates in breeding programs. In plant breeding, the ability to produce large numbers of progeny per cross allows GS to be conducted within each family. However, this approach requires phenotyp...

  10. Plant breeding and genetics newsletter. No. 6

    International Nuclear Information System (INIS)

    2000-12-01

    We are approaching the end of yet another year and it is logical to take stock of the activities undertaken by the sub Programme during 2000. Our primary focus has continued to help Member States in improving crops by using radiation-induced mutations. Many allied technologies, particularly tissue culture and molecular biology have been added to enhance the efficiency of mutant induction, isolation, multiplication and their release as new varieties. We have continued to bring the latest developments and innovations in these rapidly advancing technologies for integration into the conventional breeding of mutation-derived varieties. This is reflected in the on-going Coordinated Research Projects (CRPs) on new and traditional industrial crops, creation of new useful banana genotypes, molecular characterization of mutated genes controlling important traits in seed crops, radioactively labeled DNA probes in crop improvement and the improvement of local food crops in Low Income Food Deficit Countries, and in the two newly initiated (CRPs), one on the analysis of root characters in annual food plants related to plant performance and the other on the improvement of tropical fruits. The necessity to have an inter-disciplinary approach to solve problems is also reflected in the implementation of Technical Co-operation Projects (TCPs). For example, in North Africa, date palm has a unique role in food security and the eco-system. However, 'Bayoud' disease has killed over 15 million trees and is posing a serious threat to date palm production in Tunisia. Under a regional TCP to control the disease, irradiation of embryogenic cultures was investigated and low dose gamma radiation was found to increase the formation of somatic embryos. Date palm trees can also be multiplied in vitro through either shoot formation or somatic embryos, which allows irradiation of large populations. Another example is fruit crops, many of which have not benefited from the use of radiation

  11. Plant prebiotics and human health: Biotechnology to breed prebiotic-rich nutritious food crops

    Directory of Open Access Journals (Sweden)

    Sangam Dwivedi

    2014-09-01

    Full Text Available Microbiota in the gut play essential roles in human health. Prebiotics are non-digestible complex carbohydrates that are fermented in the colon, yielding energy and short chain fatty acids, and selectively promote the growth of Bifidobacteria and Lactobacillae in the gastro-intestinal tract. Fructans and inulin are the best-characterized plant prebiotics. Many vegetable, root and tuber crops as well as some fruit crops are the best-known sources of prebiotic carbohydrates, while the prebiotic-rich grain crops include barley, chickpea, lentil, lupin, and wheat. Some prebiotic-rich crop germplasm have been reported in barley, chickpea, lentil, wheat, yacon, and Jerusalem artichoke. A few major quantitative trait loci and gene-based markers associated with high fructan are known in wheat. More targeted search in genebanks using reduced subsets (representing diversity in germplasm is needed to identify accessions with prebiotic carbohydrates. Transgenic maize, potato and sugarcane with high fructan, with no adverse effects on plant development, have been bred, which suggests that it is feasible to introduce fructan biosynthesis pathways in crops to produce health-imparting prebiotics. Developing prebiotic-rich and super nutritious crops will alleviate the widespread malnutrition and promote human health. A paradigm shift in breeding program is needed to achieve this goal and to ensure that newly-bred crop cultivars are nutritious, safe and health promoting.

  12. Determination of optimal doses of radiation for the plant breeding of pseudo cereals

    International Nuclear Information System (INIS)

    Gonzalez J, J.; Gomez P, L.

    2005-01-01

    With the purpose of promoting the use of the radiations for the plant breeding of pseudo cereals, it was determined a simple and economic method that allows the quick selection of radiation dose that induce in the vegetable organisms the changes wanted. For it it was work with quinua seeds (Chenopodium quinoa Willd.) an Andean pseudo cereal that, due to their nutritious and physiologic characteristics it is considered by the FAO like one of the foods of the future and for the NASA like an organism that is good to remove the carbon dioxide from the atmosphere and at the same time, to generate food, oxygen and water for the crew during the space missions of long duration and that it has already improved by means of the radiation application. The proposed method consists on the evaluation, of the embryonic structures (radicule, hypocotyl and cotyledons) in the irradiated seeds as well as of the development of root, primary shaft and true leaves in the plants. The changes in the growth, form, number and color of the structures as well as the time of appearance of each one, allow to predict the morphological changes and inclusive some physiologic ones that will have the mature organisms, so that in only three weeks it is possible to select the doses more appropriate. (Author)

  13. Experimental evidence for the ancestry of allotetraploid Trifolium repens and creation of synthetic forms with value for plant breeding.

    Science.gov (United States)

    Williams, Warren M; Ellison, Nicholas W; Ansari, Helal A; Verry, Isabelle M; Hussain, S Wajid

    2012-04-24

    White clover (Trifolium repens) is a ubiquitous weed of the temperate world that through use of improved cultivars has also become the most important legume of grazed pastures world-wide. It has long been suspected to be allotetraploid, but the diploid ancestral species have remained elusive. Putative diploid ancestors were indicated by DNA sequence phylogeny to be T. pallescens and T. occidentale. Here, we use further DNA evidence as well as a combination of molecular cytogenetics (FISH and GISH) and experimental hybridization to test the hypothesis that white clover originated as a hybrid between T. pallescens and T. occidentale. T. pallescens plants were identified with chloroplast trnL intron DNA sequences identical to those of white clover. Similarly, T. occidentale plants with nuclear ITS sequences identical to white clover were also identified. Reciprocal GISH experiments, alternately using labeled genomic DNA probes from each of the putative ancestral species on the same white clover cells, showed that half of the chromosomes hybridized with each probe. F1 hybrids were generated by embryo rescue and these showed strong interspecific chromosome pairing and produced a significant frequency of unreduced gametes, indicating the likely mode of polyploidization. The F1 hybrids are inter-fertile with white clover and function as synthetic white clovers, a valuable new resource for the re-incorporation of ancestral genomes into modern white clover for future plant breeding. Evidence from DNA sequence analyses, molecular cytogenetics, interspecific hybridization and breeding experiments supports the hypothesis that a diploid alpine species (T. pallescens) hybridized with a diploid coastal species (T. occidentale) to generate tetraploid T. repens. The coming together of these two narrowly adapted species (one alpine and the other maritime), along with allotetraploidy, has led to a transgressive hybrid with a broad adaptive range.

  14. Experimental evidence for the ancestry of allotetraploid Trifolium repens and creation of synthetic forms with value for plant breeding

    Directory of Open Access Journals (Sweden)

    Williams Warren M

    2012-04-01

    Full Text Available Abstract Background White clover (Trifolium repens is a ubiquitous weed of the temperate world that through use of improved cultivars has also become the most important legume of grazed pastures world-wide. It has long been suspected to be allotetraploid, but the diploid ancestral species have remained elusive. Putative diploid ancestors were indicated by DNA sequence phylogeny to be T. pallescens and T. occidentale. Here, we use further DNA evidence as well as a combination of molecular cytogenetics (FISH and GISH and experimental hybridization to test the hypothesis that white clover originated as a hybrid between T. pallescens and T. occidentale. Results T. pallescens plants were identified with chloroplast trnL intron DNA sequences identical to those of white clover. Similarly, T. occidentale plants with nuclear ITS sequences identical to white clover were also identified. Reciprocal GISH experiments, alternately using labeled genomic DNA probes from each of the putative ancestral species on the same white clover cells, showed that half of the chromosomes hybridized with each probe. F1 hybrids were generated by embryo rescue and these showed strong interspecific chromosome pairing and produced a significant frequency of unreduced gametes, indicating the likely mode of polyploidization. The F1 hybrids are inter-fertile with white clover and function as synthetic white clovers, a valuable new resource for the re-incorporation of ancestral genomes into modern white clover for future plant breeding. Conclusions Evidence from DNA sequence analyses, molecular cytogenetics, interspecific hybridization and breeding experiments supports the hypothesis that a diploid alpine species (T. pallescens hybridized with a diploid coastal species (T. occidentale to generate tetraploid T. repens. The coming together of these two narrowly adapted species (one alpine and the other maritime, along with allotetraploidy, has led to a transgressive hybrid with a

  15. Semi-dwarf cereal mutants and their use in cross-breeding III

    International Nuclear Information System (INIS)

    1988-03-01

    A Co-ordinated Research Programme on the ''Evaluation of semi-dwarf mutants as cross-breeding material in cereals'' was initiated in 1980, with the main objective to provide cereal breeders with new, alternative sources of genes for semi-dwarf, lodging resistant plant types. The present publication includes papers presented at the final Research Co-ordination Meeting. Papers presented by participants in the Co-ordinated Research Programme demonstrate that these objectives were successfully achieved. As an additional result of this programme more improved genotypes of cereals with other desirable characters as earliness, better harvest index and improved plant architecture have become available for practical breeding. Refs, figs, tabs

  16. Molecular breeding to create optimized crops: from genetic manipulation to potential applications in plant factories

    Directory of Open Access Journals (Sweden)

    Kyoko eHiwasa-Tanase

    2016-04-01

    Full Text Available Crop cultivation in controlled environment plant factories offers great potential to stabilize the yield and quality of agricultural products. However, many crops are currently unsuited to these environments, particularly closed cultivation systems, due to space limitations, low light intensity, high implementation costs, and high energy requirements. A major barrier to closed system cultivation is the high running cost, which necessitates the use of high-margin crops for economic viability. High-value crops include those with enhanced nutritional value or containing additional functional components for pharmaceutical production or with the aim of providing health benefits. In addition, it is important to develop cultivars equipped with growth parameters that are suitable for closed cultivation. Small plant size is of particular importance due to the limited cultivation space. Other advantageous traits are short production cycle, the ability to grow under low light, and high nutriculture availability. Cost-effectiveness is improved from the use of cultivars that are specifically optimized for closed system cultivation. This review describes the features of closed cultivation systems and the potential application of molecular breeding to create crops that are optimized for cost-effectiveness and productivity in closed cultivation systems.

  17. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B. William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chiu, Ing L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  18. From Mendel's discovery on pea to today's plant genetics and breeding : Commemorating the 150th anniversary of the reading of Mendel's discovery.

    Science.gov (United States)

    Smýkal, Petr; K Varshney, Rajeev; K Singh, Vikas; Coyne, Clarice J; Domoney, Claire; Kejnovský, Eduard; Warkentin, Thomas

    2016-12-01

    This work discusses several selected topics of plant genetics and breeding in relation to the 150th anniversary of the seminal work of Gregor Johann Mendel. In 2015, we celebrated the 150th anniversary of the presentation of the seminal work of Gregor Johann Mendel. While Darwin's theory of evolution was based on differential survival and differential reproductive success, Mendel's theory of heredity relies on equality and stability throughout all stages of the life cycle. Darwin's concepts were continuous variation and "soft" heredity; Mendel espoused discontinuous variation and "hard" heredity. Thus, the combination of Mendelian genetics with Darwin's theory of natural selection was the process that resulted in the modern synthesis of evolutionary biology. Although biology, genetics, and genomics have been revolutionized in recent years, modern genetics will forever rely on simple principles founded on pea breeding using seven single gene characters. Purposeful use of mutants to study gene function is one of the essential tools of modern genetics. Today, over 100 plant species genomes have been sequenced. Mapping populations and their use in segregation of molecular markers and marker-trait association to map and isolate genes, were developed on the basis of Mendel's work. Genome-wide or genomic selection is a recent approach for the development of improved breeding lines. The analysis of complex traits has been enhanced by high-throughput phenotyping and developments in statistical and modeling methods for the analysis of phenotypic data. Introgression of novel alleles from landraces and wild relatives widens genetic diversity and improves traits; transgenic methodologies allow for the introduction of novel genes from diverse sources, and gene editing approaches offer possibilities to manipulate gene in a precise manner.

  19. Applied Genetics and Genomics in Alfalfa Breeding

    Directory of Open Access Journals (Sweden)

    E. Charles Brummer

    2012-03-01

    Full Text Available Alfalfa (Medicago sativa L., a perennial and outcrossing species, is a widely planted forage legume for hay, pasture and silage throughout the world. Currently, alfalfa breeding relies on recurrent phenotypic selection, but alternatives incorporating molecular marker assisted breeding could enhance genetic gain per unit time and per unit cost, and accelerate alfalfa improvement. Many major quantitative trait loci (QTL related to agronomic traits have been identified by family-based QTL mapping, but in relatively large genomic regions. Candidate genes elucidated from model species have helped to identify some potential causal loci in alfalfa mapping and breeding population for specific traits. Recently, high throughput sequencing technologies, coupled with advanced bioinformatics tools, have been used to identify large numbers of single nucleotide polymorphisms (SNP in alfalfa, which are being developed into markers. These markers will facilitate fine mapping of quantitative traits and genome wide association mapping of agronomic traits and further advanced breeding strategies for alfalfa, such as marker-assisted selection and genomic selection. Based on ideas from the literature, we suggest several ways to improve selection in alfalfa including (1 diversity selection and paternity testing, (2 introgression of QTL and (3 genomic selection.

  20. Mutation breeding in crop improvement - achievements and prospects

    International Nuclear Information System (INIS)

    Kharkwal, M.C.

    2004-01-01

    Crop improvement programmes through induced mutations were initiated about seven decades ago. Majority of the mutant varieties have been released during the last two decades. In terms of the development and release of mutant varieties, China (605), India (309), Russia (204), the Netherlands (176), USA (125) and Japan (120) are the leading countries. Radiation, especially gamma radiation was the most frequently used mutagen for inducing mutations in crop plants. Out of 1072 mutant varieties of cereals, rice alone accounts for 434 varieties followed by barley (269). Mutation breeding has made significant contribution in increasing the production of rice, ground nut, castor, chickpea, mungbean and urd bean in the Indian subcontinent. The future mutation breeding programmes should be aimed at improving the root characters, nodulation in legumes, alteration of fatty acid composition in oil seeds, host pathogen interactions, photo- insensitivity and apomixix in crop plants

  1. Application of genomics-assisted breeding for generation of climate resilient crops: Progress and prospects

    Directory of Open Access Journals (Sweden)

    Chittaranjan eKole

    2015-08-01

    Full Text Available Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to surge further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood and submergence, and pests along with increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives towards identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have been proven helpful in enhancing the stress adaptation of crop plants, and recent advancement in next-generation sequencing along with high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB. In view of this, the present review elaborates the progress and prospects of GAB in improving climate change resilience in crop plants towards circumventing global food insecurity.

  2. Breeding to Optimize Agriculture in a Changing World

    Directory of Open Access Journals (Sweden)

    Jiankang Wang

    2015-06-01

    Full Text Available Breeding to Optimize Chinese Agriculture (OPTICHINA was a three-year EU–China project launched in June of 2011. As designed, the project acted as a new strategic model to reinforce systematic cooperation on agricultural research between Europe and China. The OPTICHINA International Conference “Breeding to Optimize Agriculture in a Changing World” was held in Beijing, May 26–29, 2014. The conference included six thematic areas: (1 defining and protecting the yield potential of traits and genes; (2 high-throughput precision phenotyping in the field; (3 molecular technologies in modern breeding; (4 plant ideotype; (5 data analysis, data management, and bioinformatics; and (6 national challenges and opportunities for China. The 10 articles collected in this special issue represent key contributions and topics of this conference. This editorial provides a brief introduction to the OPTICHINA project, followed by the main scientific points of articles published in this special issue. Finally, outcomes from a brainstorming discussion at the end of the conference are summarized, representing the authors' opinions on trends in breeding for a changing world.

  3. Techniques of radiation induced haploid breeding of wheat

    International Nuclear Information System (INIS)

    Xuan Pu; Xu Liyuan; Qu Shihong; Yu Guirong; Yin Chunrong; Yue Chunfang

    2000-01-01

    With the treatment of different doses of 60 Co γ-ray irradiation to F 1 hybrid seeds and donor plants from M 1 F 1 or M 2 F 2 , wheat anther culture was made based on the media of MW 14 and modified MS. A series of studies on the applied doses of radiation induction, low temperature treatment on donor spikes and calli, variable temperature induced incubation and yield of pollen callus and calli giving green plant lets, pollen plant lets control over summertime and pollen plant let transplantation were carried out in order to increase the efficiency of obtaining double haploid-pure diploid plant lets of wheat with stable heredity and propagation. Theses plant lets could be used directly in rapid breeding

  4. Selection problems and objectives in mutation breeding

    International Nuclear Information System (INIS)

    Mac Key, J.

    1984-01-01

    In plant breeding, major genes are preferably handled by inbreeding, back-crosses and selection through the family/pedigree method. Polygenic systems need gene accumulation, i.e. handling in bulk allowing natural/recurrent selection to operate. The two types of genetic control normally occur together irrespective of whether the variation is created by crossing or by mutagenesis. Cross-breeding can conveniently work with both types of variation and offers a range of genetic backgrounds. Problems are the often enormous recombination potential risking the break-down of already accomplished genic constellations or undesirable linkages. Mutation induction implies a scattered mono- to oligo-factorial variation mostly functioning as a negative load. As a result, it will be difficult and unrealistic to try to explore micromutations, as defined by Gaul, in vegetatively propagated and autogamous crop plants. Quantitative analyses have not been able to give guidance since the induced variation includes disturbed vitality and main or side-effects of events that are possible to define as macro-mutations. The possibility of better exhausting the variation induced will mainly depend on the precision in selection techniques, i.e. by dividing complex traits into their components, by improving environmental conditions for selection, and/or by sharpening the screening technique. Contrary to recombination breeding, mutation-induced variation does not fit a plan encompassing overall agronomic traits simultaneously. The progress has to go step by step. Thus, even more than in cross-breeding, it is important that accurately outlined objectives be set. Some characters, such as flower colour, can easily be defined while others, such as yield, may be more interdependent, calling for compromises difficult to foresee. The complexity of the latter category of traits is illustrated by the interaction pattern in relation to grain yield in cereals where both shoot and root are considered

  5. Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries.

    Science.gov (United States)

    Haghighattalab, Atena; González Pérez, Lorena; Mondal, Suchismita; Singh, Daljit; Schinstock, Dale; Rutkoski, Jessica; Ortiz-Monasterio, Ivan; Singh, Ravi Prakash; Goodin, Douglas; Poland, Jesse

    2016-01-01

    Low cost unmanned aerial systems (UAS) have great potential for rapid proximal measurements of plants in agriculture. In the context of plant breeding and genetics, current approaches for phenotyping a large number of breeding lines under field conditions require substantial investments in time, cost, and labor. For field-based high-throughput phenotyping (HTP), UAS platforms can provide high-resolution measurements for small plot research, while enabling the rapid assessment of tens-of-thousands of field plots. The objective of this study was to complete a baseline assessment of the utility of UAS in assessment field trials as commonly implemented in wheat breeding programs. We developed a semi-automated image-processing pipeline to extract plot level data from UAS imagery. The image dataset was processed using a photogrammetric pipeline based on image orientation and radiometric calibration to produce orthomosaic images. We also examined the relationships between vegetation indices (VIs) extracted from high spatial resolution multispectral imagery collected with two different UAS systems (eBee Ag carrying MultiSpec 4C camera, and IRIS+ quadcopter carrying modified NIR Canon S100) and ground truth spectral data from hand-held spectroradiometer. We found good correlation between the VIs obtained from UAS platforms and ground-truth measurements and observed high broad-sense heritability for VIs. We determined radiometric calibration methods developed for satellite imagery significantly improved the precision of VIs from the UAS. We observed VIs extracted from calibrated images of Canon S100 had a significantly higher correlation to the spectroradiometer (r = 0.76) than VIs from the MultiSpec 4C camera (r = 0.64). Their correlation to spectroradiometer readings was as high as or higher than repeated measurements with the spectroradiometer per se. The approaches described here for UAS imaging and extraction of proximal sensing data enable collection of HTP

  6. Studies on mutation breeding of hibiscus syriacuse

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hee Sub; Kim, Jin Kyu; Lee, Ki Un; Lim, Yong Taek [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-12-01

    Hibiscus has been known as a national flower of Korea. Hibiscus has ahch a characteristic of self-incompatibility that all the plants exist as natural hybrids and have heterogeneous genes. Thirth two domestic varieties were propagated. Radiosensitivity of H. syriacus irradiated with gamma ray was investigated in plant cuttings. The plant height was reduced by 45 percent in 5 kR irradiated group compared to control group. The radiation dose of 5 kR could be rrecommended for mutation breeding of Hibiscus cuttings. Promising mutant lines were selected form the varieties of Hwarang Wolsan 176, I1pyondansim and Emille. 6 tabs., 2 figs., 13 refs., 4 ills. (Author).

  7. Studies on mutation breeding of hibiscus syriacuse

    International Nuclear Information System (INIS)

    Song, Hee Sub; Kim, Jin Kyu; Lee, Ki Un; Lim, Yong Taek

    1995-12-01

    Hibiscus has been known as a national flower of Korea. Hibiscus has ahch a characteristic of self-incompatibility that all the plants exist as natural hybrids and have heterogeneous genes. Thirth two domestic varieties were propagated. Radiosensitivity of H. syriacus irradiated with gamma ray was investigated in plant cuttings. The plant height was reduced by 45 percent in 5 kR irradiated group compared to control group. The radiation dose of 5 kR could be rrecommended for mutation breeding of Hibiscus cuttings. Promising mutant lines were selected form the varieties of Hwarang Wolsan 176, I1pyondansim and Emille. 6 tabs., 2 figs., 13 refs., 4 ills. (Author)

  8. Breeding of proanthocyanidin free malting barley

    International Nuclear Information System (INIS)

    Andersen, Anna Maria

    1990-01-01

    Full text: Haze formation in stored beer is due to colloidal precipitation of proteins with polyphenols of which proanthocyanidins are the most important group. 70-80% of proanthocyanidin in beer are from barley malt. Today breweries attain haze stability by using enzymes, additives or adsorbents. A better solution would be to remove proanthocyanidins. Carlsberg Plant Breeding uses induced mutations to breed proanthocyanidin-free malting barley. After mutagen treatment with sodium azide M1 seeds are planted in the field and M2 seeds are harvested in bulk. A single seed, non-destructive method has been developed to identify mutant kernels lacking proanthocyanidins in the testa. The method involves the inclusion of M2 seeds - 50 at a time - in semisolid clay blocks, whereafter a small part of the endosperm, testa and pericarp are exposed by sanding the seeds. The clay block is then placed in a vanillin-HCI solution so that the uncovered tissues can react with the solution. A red colour will develop in the testa of normal seeds, whereas the testa layers of proanthocyanid-free seeds remain colourless. So far, more than 600 mutants have been induced in over 100 barley varieties, spring as well as winter-types, from barley producing areas around the world. The mutants can be assigned to at least 7 loci, all of which can block the biosynthetic pathway for the proanthocyanidins. Mutants in the ant-18 and ant-19 loci show poor kernel development. Only a few mutants are known in the ant-12, ant-22 and ant-25 loci. Breeding work is focussed on mutants belonging to the ant-13 and ant-17 loci. Whereas the malting quality of ant-17 lines suffer from apparent abnormal enzyme development in the aleurone layer, this defect does not exist in ant-13 lines. Brewing trials with proanthocyanidin-free malt have shown excellent haze stability without changes in beer flavour. Breeding work based on the ant-13 lines led to disease resistant lines with good malting quality, while grain yield

  9. Mutation breeding techniques and behaviour of irradiated shoot apices of potato

    International Nuclear Information System (INIS)

    Harten, A.M. van.

    1978-01-01

    The author describes part of the investigations being carried out at the Institute of Plant Breeding, Wageningen into mutation breeding in potato; in particular, efforts to produce a di(ha)ploid tester clone for reliable mutation frequency data are described, the formation of adventitious roots and shoots from potato leaves, leaflets and stem parts in vivo is studied, and damage and recovery of irradiated potato tuber eyes is investigated. (G.T.H.)

  10. THE VIR COLLECTION – A SOURCE OF INITIAL BREEDING MATERIAL FOR THE PERSPECTIVE DIRECTIONS OF BREEDING OF A VEGETABLE MARROW AND PUMPKIN

    Directory of Open Access Journals (Sweden)

    T. M. Piskunova

    2016-01-01

    Full Text Available The vegetable marrow and pumpkin are valuable vegetable crops thanks to high food and dietary qualities of fruits. Russia is on the third place in the world on gross yield of these crops, but on productivity takes the 11th place among the European countries. The state register of breeding achievements permitted for utilization in the territory of the Russian Federation for 2016, contains 152 varieties and a hybrids of vegetable marrows and the 138 pumpkins. But there are not enough varieties of a wide area, there are practically no ultra early varieties, there are not enough pumpkin varieties with a bush habitus of plants. The collection of pumpkins and vegetable marrows which is a source of valuable genotypes for the solution of actual tasks of breeding contains 2641 accessions from 99 countries of the world and wins the first place in the number of accessions among world genebanks. The greatest part of a collection (more than 1500 accessions is constituted by advanced varieties, the second part of a collection (more than one thousand accessions – local forms of pumpkins. Not large collection, about 50 accessions, but quite significant for its scientific and breeding values consists of hybrids, self-pollinated lines and donors of valuable traits. As a result of long-term evaluation of breeding accessions the germplasm collection that includes sources of valuable traits has been created. Genetic collection of pumpkin includes accessions with such traits as resistance to a virus mosaic, a naked seeds, bush habitus plants, spaghetti like fruit, parthenocarpy.

  11. The Role of Biodiversity, Traditional Knowledge and Participatory Plant Breeding in Climate Change Adaptation in Karst Mountain Areas in SW China

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yiching; Li, Jingsong [Center for Chinese Agricultural Policy (China)

    2011-07-15

    This is a report of a country case study on the impacts of climate change and local people's adaptation. The research sites are located in the karst mountainous region in 3 SW China provinces - Guangxi, Guizhou and Yunnan – an area inhabited by 33 ethnic groups of small farmers and the poor, with rich Plant Genetic Resources (PGR) and culture. Climate change is exacerbating already harsh natural conditions and impacting on biodiversity of remote farmers living in extreme poverty, with very limited arable land. Genetic diversity has also suffered from the adoption of high yielding hybrids. Yet traditional varieties, related TK and Participatory Plant Breeding (PPB) for maize and rice are showing real potential for resilience and adaptation.

  12. Genetic divergence and its implication in breeding of desired plant type in coriander -Coriandrum sativum L.-

    Directory of Open Access Journals (Sweden)

    Singh S.P.

    2005-01-01

    Full Text Available Seventy germplasm lines of coriander (Coriandrum sativum L. of diverse eco-geographical origin were undertaken in present investigation to determine the genetic divergence following multivariate and canonical analysis for seed yield and its 9 component traits. The 70 genotypes were grouped into 9 clusters depending upon the genetic architecture of genotypes and characters uniformity and confirmed by canonical analysis. Seventy percent of total genotypes (49/70 were grouped in 4 clusters (V, VI, VIII and IX, while apparent diversity was noticed for 30 percent genotypes (21/70 that diverged into 5 clusters (I, II, III, FV, and VII. The maximum inter cluster distance was between I and IV (96.20 followed by III and IV (91.13 and I and VII (87.15. The cluster VI was very unique having genotypes of high mean values for most of the component traits. The cluster VII had highest seeds/umbel (35.3 ± 2.24, and leaves/plant (12.93 ± 0.55, earliest flowering (65.05 ± 1.30 and moderately high mean values for other characters. Considering high mean and inter cluster distance breeding plan has been discussed to select desirable plant types.

  13. Modelling spatial trends in sorghum breeding field trials using a two-dimensional P-spline mixed model

    NARCIS (Netherlands)

    J.G. Velazco (Julio G.); M.X. Rodríguez-Álvarez (María Xosé); M.P. Boer (Martin); D.R. Jordan (David R.); P.H.C. Eilers (Paul); M. Malosetti (Marcos); F. van Eeuwijk (Fred)

    2017-01-01

    markdownabstract_Key message: A flexible and user-friendly spatial method called SpATS performed comparably to more elaborate and trial-specific spatial models in a series of sorghum breeding trials._ __Abstract:__ Adjustment for spatial trends in plant breeding field trials is essential for

  14. Breeds of cattle

    NARCIS (Netherlands)

    Buchanan, David S.; Lenstra, Johannes A.

    2015-01-01

    This chapter gives an overview on the different breeds of cattle (Bos taurus and B. indicus). Cattle breeds are presented and categorized according to utility and mode of origin. Classification and phylogeny of breeds are also discussed. Furthermore, a description of cattle breeds is provided.

  15. Development of breeding materials in rice by use of induced mutation

    International Nuclear Information System (INIS)

    Amano, Etsuo

    1988-01-01

    On this 25th Gamma Field Symposium, it may be worth while to review the world situation of mutation breeding, the possibility expected to mutation methods suggested by the ever progressing genetics in rice plant, and some of the activities in the Institute of Radiation Breeding. By the help of a small computer, the key word search analysis of 'Mutation Breeding Newsletter and Mutation Breeding Review' was tried, and the results are included in this review to see the present status. The studies on artificially induced mutation suggested that the possibility of dominant mutation is less. It might be probable that the inactivation of genes is the mechanism of mutation. Still the possibility of using mutation breeding techniques for many genetic characters was suggested. After the experience for 25 years, detailed genetical and fine structure analyses became important. The studies on the expression of mutant phenotypes including molecular genetics will help to develop radiation breeding into an effective means to enrich the genetic resources for breeding. The situation in the world, the genes reported in rice, the possibility to induce useful mutants against environmental stress, the mutation in the protein content in grains, the mutants of storage carbohydrate, the possibility to widen gene resources and so on are reported. (Kako, I.)

  16. Accuracy of genomic selection in European maize elite breeding populations.

    Science.gov (United States)

    Zhao, Yusheng; Gowda, Manje; Liu, Wenxin; Würschum, Tobias; Maurer, Hans P; Longin, Friedrich H; Ranc, Nicolas; Reif, Jochen C

    2012-03-01

    Genomic selection is a promising breeding strategy for rapid improvement of complex traits. The objective of our study was to investigate the prediction accuracy of genomic breeding values through cross validation. The study was based on experimental data of six segregating populations from a half-diallel mating design with 788 testcross progenies from an elite maize breeding program. The plants were intensively phenotyped in multi-location field trials and fingerprinted with 960 SNP markers. We used random regression best linear unbiased prediction in combination with fivefold cross validation. The prediction accuracy across populations was higher for grain moisture (0.90) than for grain yield (0.58). The accuracy of genomic selection realized for grain yield corresponds to the precision of phenotyping at unreplicated field trials in 3-4 locations. As for maize up to three generations are feasible per year, selection gain per unit time is high and, consequently, genomic selection holds great promise for maize breeding programs.

  17. Modelling spatial trends in sorghum breeding field trials using a two-dimensional P-spline mixed model

    NARCIS (Netherlands)

    Velazco, Julio G.; Rodríguez-Álvarez, María Xosé; Boer, Martin P.; Jordan, David R.; Eilers, Paul H.C.; Malosetti, Marcos; Eeuwijk, van Fred A.

    2017-01-01

    Key message: A flexible and user-friendly spatial method called SpATS performed comparably to more elaborate and trial-specific spatial models in a series of sorghum breeding trials. Abstract: Adjustment for spatial trends in plant breeding field trials is essential for efficient evaluation and

  18. Impact of mutation breeding in rice

    International Nuclear Information System (INIS)

    Rutger, J.N.

    1992-01-01

    More cultivars have been developed in rice through the use of mutation breeding than in any other crop. Direct releases of mutants as cultivars began some 30 years ago, and now total 198 cultivars. During the last 20 years, increasing use has been made of induced mutants in cross-breeding programs, leading to 80 additional cultivars. Principal improvements through mutation breeding have been earlier maturity, short stature, and grain character modifications. Rice has been a popular subject of mutagenesis because it is the world's leading food crop, has diploid inheritance, and is highly self-pollinated. In recent years induced mutation has been exploited to develop breeding tool mutants, which are defined as mutants that in themselves may not have direct agronomic application but may be useful genetic tools for crop improvement. Examples include the eui gene, hull colour mutants, normal genetic male steriles, and environmentally sensitive genetic male steriles. The environmentally sensitive genetic male steriles, especially those in which male sterility can be turned on or off by different photoperiod lengths, show promise for simplifying hybrid rice seed production both in China and the USA. Future applications of mutation in rice include induction of unusual endosperm starch types, plant types with fewer but more productive tillers, dominant dwarfs, dominant genetic male steriles, extremely early maturing mutants, nutritional mutants, and in vitro-derived mutants for tolerance to herbicides or other growth stresses. Refs, 4 figs, 2 tabs

  19. "Boldness" in the domestic dog differs among breeds and breed groups.

    Science.gov (United States)

    Starling, Melissa J; Branson, Nicholas; Thomson, Peter C; McGreevy, Paul D

    2013-07-01

    "Boldness" in dogs is believed to be one end of the shy-bold axis, representing a super-trait. Several personality traits fall under the influence of this super-trait. Previous studies on boldness in dogs have found differences among breeds, but grouping breeds on the basis of behavioural similarities has been elusive. This study investigated differences in the expression of boldness among dog breeds, kennel club breed groups, and sub-groups of kennel club breed groups by way of a survey on dog personality circulated among Australian dog-training clubs and internet forums and lists. Breed had a significant effect on boldness (F=1.63, numDF=111, denDF=272, ppurpose. Retrievers were significantly bolder than flushing and pointing breeds (Reg. Coef.=2.148; S.E.=0.593; pdogs. Differences in boldness among groups and sub-groups suggest that behavioural tendencies may be influenced by historical purpose regardless of whether that purpose still factors in selective breeding. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Not only emerging technologies are at risk: The case of mutation breeding

    DEFF Research Database (Denmark)

    Hagemann, Kit S.; Scholderer, Joachim

    2007-01-01

    plants. Unlike crop cultivars developed by newer techniques such as genetic engineering, mutation-bred cultivars are not subject to special types of horizontal regulation in any UN country. Based on representative survey data (N = 1000), public attitudes towards mutation breeding were compared....... One technology where such a latent crisis potential has often been suspected is mutation breeding. Mutation breeding is a standard technique in the development of new crop cultivars, known since the 1930s, typically involving the use of ionizing radiation to induce alterations in the genomes of crop...... with attitudes towards several other agricultural and food biotechnologies in terms of evaluative extremity, strength, and structure. Among the technologies included in the survey, mutation breeding was by far the most negatively evaluated one (substantially more so than genetic engineering). At the same time...

  1. The Metabolic Basis of Pollen Thermo-Tolerance: Perspectives for Breeding

    Directory of Open Access Journals (Sweden)

    Marine J. Paupière

    2014-09-01

    Full Text Available Crop production is highly sensitive to elevated temperatures. A rise of a few degrees above the optimum growing temperature can lead to a dramatic yield loss. A predicted increase of 1–3 degrees in the twenty first century urges breeders to develop thermo-tolerant crops which are tolerant to high temperatures. Breeding for thermo-tolerance is a challenge due to the low heritability of this trait. A better understanding of heat stress tolerance and the development of reliable methods to phenotype thermo-tolerance are key factors for a successful breeding approach. Plant reproduction is the most temperature-sensitive process in the plant life cycle. More precisely, pollen quality is strongly affected by heat stress conditions. High temperature leads to a decrease of pollen viability which is directly correlated with a loss of fruit production. The reduction in pollen viability is associated with changes in the level and composition of several (groups of metabolites, which play an important role in pollen development, for example by contributing to pollen nutrition or by providing protection to environmental stresses. This review aims to underline the importance of maintaining metabolite homeostasis during pollen development, in order to produce mature and fertile pollen under high temperature. The review will give an overview of the current state of the art on the role of various pollen metabolites in pollen homeostasis and thermo-tolerance. Their possible use as metabolic markers to assist breeding programs for plant thermo-tolerance will be discussed.

  2. The metabolic basis of pollen thermo-tolerance: perspectives for breeding.

    Science.gov (United States)

    Paupière, Marine J; van Heusden, Adriaan W; Bovy, Arnaud G

    2014-09-30

    Crop production is highly sensitive to elevated temperatures. A rise of a few degrees above the optimum growing temperature can lead to a dramatic yield loss. A predicted increase of 1-3 degrees in the twenty first century urges breeders to develop thermo-tolerant crops which are tolerant to high temperatures. Breeding for thermo-tolerance is a challenge due to the low heritability of this trait. A better understanding of heat stress tolerance and the development of reliable methods to phenotype thermo-tolerance are key factors for a successful breeding approach. Plant reproduction is the most temperature-sensitive process in the plant life cycle. More precisely, pollen quality is strongly affected by heat stress conditions. High temperature leads to a decrease of pollen viability which is directly correlated with a loss of fruit production. The reduction in pollen viability is associated with changes in the level and composition of several (groups of) metabolites, which play an important role in pollen development, for example by contributing to pollen nutrition or by providing protection to environmental stresses. This review aims to underline the importance of maintaining metabolite homeostasis during pollen development, in order to produce mature and fertile pollen under high temperature. The review will give an overview of the current state of the art on the role of various pollen metabolites in pollen homeostasis and thermo-tolerance. Their possible use as metabolic markers to assist breeding programs for plant thermo-tolerance will be discussed.

  3. Development of radiation indicator plants by molecular breeding

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jang-Ryol; Min, Sung-Ran; Jeong, Won-Joong; Kwak, Sang-Soo; Lee, Haeng-Soon; Kwon, Seok-Yoon; Pai, Hyun-Sook; Cho, Hye-Sun; In, Dong-Su; Oh, Seung-Chol; Park, Sang- Gyu; Woo, Je-Wook; Kin, Tae-Hwan; Park, Ju-Hyun; Kim, Chang-Sook [Korea Research Institute of Bioscience and Biotechnology, Taejeon (Korea)

    2001-04-01

    To develop the transgenic plants with low level of antioxidant enzyme, transgenic tobacco plants (157 plants) using 8 different plant expression vectors which have APX genes in sense or antisense orientation under the control of CaMV 35S promoter or stress-inducible SWPA2 promoter were developed. The insertion of transgene in transgenic plants was confirmed by PCR analysis. The total APX activities of transgenic plants were enhanced or reduced by introduction of APX gene in plants. To clone the radiation-responsive genes and their promoter from plants, the NeIF2Bb, one of radiation-responsive genes from tobacco plant was characterized using molecular and cell biological tools. Promoter of GST6, a radiation-responsive gene, was cloned using RT-PCR. The GST6 promoter sequence was analyzed, and known sequence motif was searched. To develop the remediation technology of radioactively contaminated soil using transgenic plants uranium reductase and radiation resistance genes have been introduced in tobacco and indian mustard plans. The uranium reductase and radiation resistance (RecA) genes were confirmed in transgenic tobacco and indian mustard plants by PCR analysis. Also, Gene expression of uranium reductase and radiation resistance were confirmed in transgenic indian mustard plants by northern blot analysis. 42 refs., 12 figs. (Author)

  4. Genomic Selection Accuracy using Multifamily Prediction Models in a Wheat Breeding Program

    Directory of Open Access Journals (Sweden)

    Elliot L. Heffner

    2011-03-01

    Full Text Available Genomic selection (GS uses genome-wide molecular marker data to predict the genetic value of selection candidates in breeding programs. In plant breeding, the ability to produce large numbers of progeny per cross allows GS to be conducted within each family. However, this approach requires phenotypes of lines from each cross before conducting GS. This will prolong the selection cycle and may result in lower gains per year than approaches that estimate marker-effects with multiple families from previous selection cycles. In this study, phenotypic selection (PS, conventional marker-assisted selection (MAS, and GS prediction accuracy were compared for 13 agronomic traits in a population of 374 winter wheat ( L. advanced-cycle breeding lines. A cross-validation approach that trained and validated prediction accuracy across years was used to evaluate effects of model selection, training population size, and marker density in the presence of genotype × environment interactions (G×E. The average prediction accuracies using GS were 28% greater than with MAS and were 95% as accurate as PS. For net merit, the average accuracy across six selection indices for GS was 14% greater than for PS. These results provide empirical evidence that multifamily GS could increase genetic gain per unit time and cost in plant breeding.

  5. Breeding biology of Tyrannus melancholicus (Aves: Tyrannidae in a restinga reserve of southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Hermes Daros

    2018-04-01

    Full Text Available ABSTRACT Existing knowledge of the breeding success and life history characteristics of most Neotropical bird species is scarce. Here, we help fill this gap by analyzing aspects of the breeding biology of the Tropical Kingbird Tyrannus melancholicus (Vieillot, 1819, which is a good model for this kind of study as it is a common species occurring in various environments, including urban areas, but little is known about its life history. We provide results concerning the breeding period, clutch size, incubation and nestling periods, description of nests, eggs and nestlings, and the plants used for nest sites by this species. Fifty-four nests were monitored over two seasons (2012-2014 in a protected area in southeastern Brazil. Nesting began at the end of the dry season and the beginning of the rainy season. The frequency of active nests varied according to variations in rainfall for each breeding season analyzed. The means and standard deviations of the incubation period (14.2 ± 1.9 days, nestling period (15.1 ± 0.8 days and clutch size (2.5 ± 0.7 eggs were similar to values reported for other Neotropical passerines. Twenty-one plant species used as nest trees and for the construction of the nests were identified. The results show that T. melancholicus is not highly selective when choosing plant species used for nest construction.

  6. Application of genomics to forage crop breeding for quality traits

    DEFF Research Database (Denmark)

    Lübberstedt, Thomas

    2007-01-01

    Forage quality depends on the digestibility of fodder, and can be directly measured by the intake and metabolic conversion in animal trials. However, animal trials are time-consuming, laborious, and thus expensive. It is not possible to study thousands of plant genotypes, as required in breeding...... studied in detail and sequence motifs with likely effect on forage quality have been identified by association studies. Moreover, transgenic approaches substantiated the effect of several of these genes on forage quality. Perspectives and limitations of these findings for forage crop breeding...

  7. Breeding of Hibiscus rosa-sinensis for garden use in Denmark

    DEFF Research Database (Denmark)

    Kuligowska, Katarzyna; Simonsen, Maria Boye; Lütken, Henrik Vlk

    2013-01-01

    -sinensis for increased chilling tolerance by conventional breeding is unlikely because there is a lack of genetic information in relation to this trait within this species. In the Hibiscus genus, cold hardiness is available, but only in a few species. Attempts to create cold tolerant Hibiscus plants resembling H. rosa......Hibiscus rosa-sinensis is an ornamental shrub in tropical and subtropical regions. Limitation of its use as an outdoor ornamental plant in a temperate climate is due to chilling sensitivity. Cold hardiness is a highly complex trait, involving multiple genes. Improvement of H. rosa......-sinensis suitable for Nordic climate have not been successful so far. In ornamental breeding wide hybridization is a major source of genetic variation, and can also be a promising approach to introgress cold hardiness in H. rosa-sinensis. The objective of the present study is to evaluate the possibilities...

  8. DNA-informed breeding of rosaceous crops: promises, progress and prospects

    Science.gov (United States)

    Peace, Cameron P

    2017-01-01

    Crops of the Rosaceae family provide valuable contributions to rural economies and human health and enjoyment. Sustained solutions to production challenges and market demands can be met with genetically improved new cultivars. Traditional rosaceous crop breeding is expensive and time-consuming and would benefit from improvements in efficiency and accuracy. Use of DNA information is becoming conventional in rosaceous crop breeding, contributing to many decisions and operations, but only after past decades of solved challenges and generation of sufficient resources. Successes in deployment of DNA-based knowledge and tools have arisen when the ‘chasm’ between genomics discoveries and practical application is bridged systematically. Key steps are establishing breeder desire for use of DNA information, adapting tools to local breeding utility, identifying efficient application schemes, accessing effective services in DNA-based diagnostics and gaining experience in integrating DNA information into breeding operations and decisions. DNA-informed germplasm characterization for revealing identity and relatedness has benefitted many programs and provides a compelling entry point to reaping benefits of genomics research. DNA-informed germplasm evaluation for predicting trait performance has enabled effective reallocation of breeding resources when applied in pioneering programs. DNA-based diagnostics is now expanding from specific loci to genome-wide considerations. Realizing the full potential of this expansion will require improved accuracy of predictions, multi-trait DNA profiling capabilities, streamlined breeding information management systems, strategies that overcome plant-based features that limit breeding progress and widespread training of current and future breeding personnel and allied scientists. PMID:28326185

  9. Breeding of marine birds on Farwa Island, western Libya | Etayeb ...

    African Journals Online (AJOL)

    Breeding of marine birds on Farwa Island, western Libya. ... They provide food, shelter and nesting grounds for many avifauna during their migration ... northern part of the island and at Ras-Attalgha, beside the plant cover of the island itself.

  10. Studies on mutation breeding of hibiscus Syriacus

    International Nuclear Information System (INIS)

    Song, Heui Sub; Lee, Ki Woon; Im, Yong Taek

    1994-12-01

    Hibiscus(Hibiscus syracuse L.) has been know as a national flower of Korea science old times. Although there are some ancient records that the Hibiscus had been planted in large quantities in Korea, Japanese had dug out all the good plants of Hibiscus in this country during their colonial period. But Hibiscus has such a characteristics of self-incompatibility that all the plants exist as a hybrid naturally and have heterogeneous genes. Therefore many good characters can be taken out from the surviving plants. Many domestic 78 varieties of Hibiscus syracuse were collected and propagated 26 varieties cuttings. Radiosensitivity of gamma-ray irradiated Hibiscus syracuse were investigated the germination rate, survival rate, plant height was with the increase of 4 kR better than control. The radiation doses of 10-12 kR are recommended for mutation breeding of Hibiscus. 6 figs, 11 tabs, 41 refs. (Author)

  11. Studies on mutation breeding of hibiscus Syriacus

    Energy Technology Data Exchange (ETDEWEB)

    Song, Heui Sub; Lee, Ki Woon; Im, Yong Taek [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    Hibiscus(Hibiscus syracuse L.) has been know as a national flower of Korea science old times. Although there are some ancient records that the Hibiscus had been planted in large quantities in Korea, Japanese had dug out all the good plants of Hibiscus in this country during their colonial period. But Hibiscus has such a characteristics of self-incompatibility that all the plants exist as a hybrid naturally and have heterogeneous genes. Therefore many good characters can be taken out from the surviving plants. Many domestic 78 varieties of Hibiscus syracuse were collected and propagated 26 varieties cuttings. Radiosensitivity of gamma-ray irradiated Hibiscus syracuse were investigated the germination rate, survival rate, plant height was with the increase of 4 kR better than control. The radiation doses of 10-12 kR are recommended for mutation breeding of Hibiscus. 6 figs, 11 tabs, 41 refs. (Author).

  12. Achievements of nuclear applications in chick-pea breeding

    International Nuclear Information System (INIS)

    Kharwal, M.C.

    1994-01-01

    Due to narrow and limited genetic variability available in chick-pea, this crop is ideally suited for genetic improvement through mutation breeding. Thus, the use of nuclear tools for regenerating some of the lost useful variability in this crop particularly for an improved plant type of increased yield and disease resistance appears to offer greater scope and promise. Practical results already achieved through the use of nuclear tools which fulfill these expectations to a large extent are confirmed by the extensive studies on mutation breeding in chick-pea crop carried out at the Indian Agricultural Research Institute, New Delhi; at the Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan and at the Bangladesh Institute of Nuclear Agriculture, Mymensingh, Bangladesh

  13. Mutation breeding in chickpea

    International Nuclear Information System (INIS)

    2009-01-01

    Chickpea is an important food legume in Turkey. Turkey is one of the most important gene centers in the world for legumes. The most widely known characteristic of chickpea is that it is an important vegetable protein source used in human and animal nutrition. However, the dry grains of chickpea, has 2-3 times more protein than our traditional food of wheat. In addition, cheakpea is also energy source because of its high carbohydrate content. It is very rich in some vitamin and mineral basis. In the plant breeding, mutation induction has become an effective way of supplementing existing germplasm and improving cultivars. Many successful examples of mutation induction have proved that mutation breeding is an effective and important approach to food legume improvement. The induced mutation technique in chickpea has proved successful and good results have been attained. Realizing the potential of induced mutations, a mutation breeding programme was initiated at the Nuclear Agriculture Section of the Saraykoey Nuclear Research and Training Center in 1994. The purpose of the study was to obtain high yielding chickpea mutants with large seeds, good cooking quality and high protein content. Beside this some characters such as higher adaptation ability, tolerant to cold and drought, increased machinery harvest type, higher yield, resistant to diseases especially to antracnose and pest were investigated too. Parents varieties were ILC-482, AK-7114 and AKCIN-91 (9 % seed moisture content and germination percentage 98 %) in these experiments. The irradiation doses were 0 (control), 50, 100, 150, 200, 250, 300, 350, 400, 500 ve 600 Gy for greenhouse experiments and 0 (control), 50, 100, 150, 200, 250, 300, 350 ve 400 Gy for field experiments, respectively. One thousand seeds for per treatment were sown in the field for the M 1 . At maturity, 3500 single plants were harvested and 20 seeds were taken from each M 1 plant and planted in the following season. During plant growth

  14. Breeding of a Tomato Genotype Readily Accessible to Genetic Manipulation

    NARCIS (Netherlands)

    Koornneef, Maarten; Hanhart, Corrie; Jongsma, Maarten; Toma, Ingrid; Weide, Rob; Zabel, Pim; Hille, Jacques

    1986-01-01

    A tomato genotype, superior in regenerating plants from cell cultures, was obtained by transferring regeneration capacity from Lycopersicon peruvianum into L. esculentum by classical breeding. This genotype, MsK93, greatly facilitates genetic manipulation of tomato, as was demonstrated by successful

  15. CASE STUDY: North Africa and Middle East — Breeding better ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The research was funded by Canada's International Development Centre .... for minor crops neglected by both private and public plant-breeding programs. ... La réforme du droit de la famille changera la réalité des femmes dans onze pays.

  16. The role of molecular markers and marker assisted selection in breeding for organic agriculture

    DEFF Research Database (Denmark)

    Lammerts van Bueren, E.T.; Backes, G.; de Vriend, H.

    2010-01-01

    markers is not self-evident and is often debated. Organic and low-input farming conditions require breeding for robust and flexible varieties, which may be hampered by too much focus on the molecular level. Pros and contras for application of molecular markers in breeding for organic agriculture...... was the topic of a recent European plant breeding workshop. The participants evaluated strengths, weaknesses, opportunities, and threats of the use of molecular markers and we formalized their inputs into breeder’s perspectives and perspectives seen from the organic sector’s standpoint. Clear strengths were...

  17. Development of breeding objectives for beef cattle breeding ...

    African Journals Online (AJOL)

    Mnr J F Kluyts

    However, to solve the simultaneous equations the ... The aggregate breeding value represents a fundamental concept, the breeding objective, which is ..... Two properties characterise a linear programming problem. The first is additivity, ...

  18. TO 135TH ANNIVERSARY FROM THE DATE OF BIRTH OF ZHEGALOV S.I. – AN ESTABLISHER OF NATIONAL SCHOOL FOR BREEDING AND SEED INDUSTRY OF VEGETABLE CROPS

    Directory of Open Access Journals (Sweden)

    V. F. Pivovarov

    2016-01-01

    Full Text Available On the second of October, in 1881, Sergey Ivanovich Zhegalov, an establisher of national breeding and seed production of vegetable crops was born in a little village Vasilkovo of Vyazemskogo uezda. He was a founder and a first director of Gribovskaya Vegetable Breeding Station. This year marked by 135th anniversary from the date of birth of the outstanding scientist. All the time at All-Russian Research Institute of Vegetable Breeding and Seed Production (VNIISSOK, its scientific leader and mastermind is honored and remembered for his heritage that is still preserved andaugmented. This scientist was at the beginning of plant breeding science and became the first who brought scientifically proved methods into agricultural plant science. The process of newplant- form-producing and development of new more qualified breeding forms through distant crossing, hybridization, heterosis effect, are the problems which interested the mind of Zhegalov and always were the sense of his life. These problems still remain in these days, where his ideas are embodied in scientific program of the institute covering theoretical researches for development of innovation method needed for creation of new highly qualified breeding plant material regarded as a source for nearest breeding practice and seed production. At VNIISSOK the richest plant collection with important genes and donor genotypes of productivity, fast ripening, high quality, resistance to biotic and abiotic stresses is created in Cucurbitaceae, Solanaceae,Alliaceae, Fabaceae, root vegetables, Brassicas, leafy crops, aromatic and medicinal crops and ornamental crops. Core plant collection is substantially extending by means of introduction of new crops and non-traditional ones as well. The specialist-breeders of VNIISSOK have developed over 800 cultivars and hybrids F1 of vegetables, melons and gourds, aromatic plants, ornamental plants, non-traditional. 546 accessions out of 118 crops have been included

  19. Root Traits and Phenotyping Strategies for Plant Improvement

    OpenAIRE

    Ana Paez-Garcia; Christy M. Motes; Wolf-Rüdiger Scheible; Rujin Chen; Elison B. Blancaflor; Maria J. Monteros

    2015-01-01

    Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, wa...

  20. Mutation breeding for quality improvement a case study for oilseed crops

    International Nuclear Information System (INIS)

    Roebbelen, G.

    1990-01-01

    The effectiveness of mutation breeding depends on the nature of the genetic system in question, on the availability of efficient screening techniques and on an intelligent integration of the novel genetic variation into an appropriate breeding programme. Oil storage in seeds offer an outstanding example of a biosynthetic process, the end products of which are diverse and sufficiently flexible in their genetic control to allow for improvements of product quality such as economically desired. Sophisticated analytical methods have been developed during the recent decades to quantify relevant steps in seedoil storage even in early generations and in large numbers of small samples. Genetic selection for oilseed quality has been of low intensity in nature; but it has also been one-sided only durign the earlier decades of plant breeding because of the predominantly nutritional consumption of vegetable oils. Today an expanding array of new breeding goals for oleochemical and technical uses is developing. In addition, biotechnical innovations offer promising support to mutation breeding for the domestication or even construction of virtually new oilseed crops for application in both food and non-food uses. The purpose of this paper is to exemplify recent advances and to outline future prospects of mutation breeding for the improvement of oilseed quality. (author). 136 refs, 8 figs, 12 tabs

  1. New report on the bionomics of Coquillettidia venezuelensis in temporary breeding sites (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Jeronimo Alencar

    2011-04-01

    Full Text Available INTRODUCTION: Findings of immature forms of Coquillettidia venezuelensis in temporary breeding sites, without the presence of aquatic plants or other submerged plant tissue are reported. METHODS: A systematic scooping technique to collect specimens was used at the breeding site. RESULTS: Immature forms of Coquillettidia venezuelensis, Anopheles rangeli, An. evansae and Culex sp. were collected from areas of the hydroelectric power station of São Salvador, State of Goiás. CONCLUSIONS This is a novel finding relating to the bioecology of Cq. venezuelensis, a species of medical interest that has been found naturally infected with arboviruses, including Oropouche and West Nile virus.

  2. An integrated approach for increasing breeding efficiency in apple and peach in Europe.

    Science.gov (United States)

    Laurens, Francois; Aranzana, Maria José; Arus, Pere; Bassi, Daniele; Bink, Marco; Bonany, Joan; Caprera, Andrea; Corelli-Grappadelli, Luca; Costes, Evelyne; Durel, Charles-Eric; Mauroux, Jehan-Baptiste; Muranty, Hélène; Nazzicari, Nelson; Pascal, Thierry; Patocchi, Andrea; Peil, Andreas; Quilot-Turion, Bénédicte; Rossini, Laura; Stella, Alessandra; Troggio, Michela; Velasco, Riccardo; van de Weg, Eric

    2018-01-01

    Despite the availability of whole genome sequences of apple and peach, there has been a considerable gap between genomics and breeding. To bridge the gap, the European Union funded the FruitBreedomics project (March 2011 to August 2015) involving 28 research institutes and private companies. Three complementary approaches were pursued: (i) tool and software development, (ii) deciphering genetic control of main horticultural traits taking into account allelic diversity and (iii) developing plant materials, tools and methodologies for breeders. Decisive breakthroughs were made including the making available of ready-to-go DNA diagnostic tests for Marker Assisted Breeding, development of new, dense SNP arrays in apple and peach, new phenotypic methods for some complex traits, software for gene/QTL discovery on breeding germplasm via Pedigree Based Analysis (PBA). This resulted in the discovery of highly predictive molecular markers for traits of horticultural interest via PBA and via Genome Wide Association Studies (GWAS) on several European genebank collections. FruitBreedomics also developed pre-breeding plant materials in which multiple sources of resistance were pyramided and software that can support breeders in their selection activities. Through FruitBreedomics, significant progresses were made in the field of apple and peach breeding, genetics, genomics and bioinformatics of which advantage will be made by breeders, germplasm curators and scientists. A major part of the data collected during the project has been stored in the FruitBreedomics database and has been made available to the public. This review covers the scientific discoveries made in this major endeavour, and perspective in the apple and peach breeding and genomics in Europe and beyond.

  3. Comparative analysis of traditional and modern apricot breeding programs: A case of study with Spanish and Tunisian apricot breeding germplasm

    Energy Technology Data Exchange (ETDEWEB)

    Batnini, M.A.; Krichen, L.; Bourguiba, H.; Trifi-Farah, N.; Ruiz, D.; Martínez-Gómez, P.; Rubio, M.

    2016-11-01

    Traditional plant breeding is based on the observation of variation and the selection of the best phenotypes, whereas modern breeding is characterised by the use of controlled mating and the selection of descendants using molecular markers. In this work, a comparative analysis of genetic diversity in a traditional (Tunisian) and a modern (Spanish) apricot breeding programme was performed at the phenotypic and molecular level using simple sequence repeat (SSR) markers. Seven phenotypic traits were evaluated in 42 Tunisian apricot accessions and 30 genotypes from the Spanish apricot programme. In addition, 20 SSR markers previously described as linked to specific phenotypic traits were assayed. Results showed that modern breeding using controlled crosses increases the size of the fruit. The fruit weight average observed in the Tunisian cultivars was of 20.15 g. In the case of traditional Spanish cultivars the average weight was 47.12 g, whereas the average weight of the other progenitors from France, USA and South Africa was 72.85 g. Finally, in the new releases from the CEBAS-CSIC breeding programme, the average weight was 72.82 g. In addition, modern bred cultivars incorporate desirable traits such as self-compatibility and firmness. Cluster and structural analysis based on SSR data clearly differentiates the genotypes according to their geographic origin and pedigree. Finally, results showed an association between some alleles of PaCITA7 and UDP96003 SSR markers with apricot fruit weight, one allele of UDAp407 marker with fruit firmness and one allele of UDP98406 marker with fruit ripening. (Author)

  4. Comparative analysis of traditional and modern apricot breeding programs: A case of study with Spanish and Tunisian apricot breeding germplasm

    Directory of Open Access Journals (Sweden)

    Mohamed A. Batnini

    2016-08-01

    Full Text Available Traditional plant breeding is based on the observation of variation and the selection of the best phenotypes, whereas modern breeding is characterised by the use of controlled mating and the selection of descendants using molecular markers. In this work, a comparative analysis of genetic diversity in a traditional (Tunisian and a modern (Spanish apricot breeding programme was performed at the phenotypic and molecular level using simple sequence repeat (SSR markers. Seven phenotypic traits were evaluated in 42 Tunisian apricot accessions and 30 genotypes from the Spanish apricot programme. In addition, 20 SSR markers previously described as linked to specific phenotypic traits were assayed. Results showed that modern breeding using controlled crosses increases the size of the fruit. The fruit weight average observed in the Tunisian cultivars was of 20.15 g. In the case of traditional Spanish cultivars the average weight was 47.12 g, whereas the average weight of the other progenitors from France, USA and South Africa was 72.85 g. Finally, in the new releases from the CEBAS-CSIC breeding programme, the average weight was 72.82 g. In addition, modern bred cultivars incorporate desirable traits such as self-compatibility and firmness. Cluster and structural analysis based on SSR data clearly differentiates the genotypes according to their geographic origin and pedigree. Finally, results showed an association between some alleles of PaCITA7 and UDP96003 SSR markers with apricot fruit weight, one allele of UDAp407 marker with fruit firmness and one allele of UDP98406 marker with fruit ripening.

  5. Slave Breeding

    OpenAIRE

    Sutch, Richard

    1986-01-01

    This paper reviews the historical work on slave breeding in the ante-bellum United States. Slave breeding consisted of interference in the sexual life of slaves by their owners with the intent and result of increasing the number of slave children born. The weight of evidence suggests that slave breeding occurred in sufficient force to raise the rate of growth of the American slave population despite evidence that only a minority of slave-owners engaged in such practices.

  6. NOTE - Program R: applications in plant breeding

    Directory of Open Access Journals (Sweden)

    Luiz Alexandre Peternelli

    2011-01-01

    Full Text Available Nowadays the demand for so-called free, or open source software for data analysis as well as the appeal to use it isgreat. An public domain software that has become extremely well-known, with ever-increasing numbers of fans and even coworkers, is Environment R, or simply R. R is extremely useful for data analysis and manipulation in view of a range of tools alreadyimplemented. Also, R is not simply a statistical program, because, by its easy on using internal functions and also creating new ones,statistical procedures applied to data can also be created, manipulated, evaluated and interpreted. R contains numerous libraries(or packages, some already included in the default setting. This course will focus on the application of R in statistical analyses inplant breeding. Explanations on the use of various commands and functions will be illustrated with examples, to facilitate theinterpretation and adaptation to other similar problems.

  7. [Floral syndrome and breeding system of Corydalis edulis].

    Science.gov (United States)

    Xia, Qing; Zhou, Shoubiao; Zhang, Dong; Chao, Tiancai

    2012-05-01

    A field investigation was conducted on the floral syndrome and breeding system of Corydalis edulis located in natural populations in campus of Anhui Normal University by out-crossing index, pollen-ovule ratio, artificial pollination and bagging experiment. The results showed that the plant was in bloom from March to May and flowering span among populations was 72 days. The flowering span for a raceme was 14-24 days. The life span of one single flower was approximately 5-10 days. Spatial positioning of stigma and anthers were spatially desperation on the day of anthesis. The filaments were shorter than the styles through pollen vitality and stigma receptivity experiments. A self-pollination breeding system was reflected by OCI 3, pollinators were required sometimes; A complex cross bred was indicated by P/O = 857.14, combined with the results of the bagging and artificial pollination experiment, the breeding system of C. edulis was mixed with self-pollination and outcrossing. The special floral structure and pests destroying may have a certain impact on seed-set rate.

  8. Behavior of grape breeding lines with distinct resistance alleles to downy mildew (Plasmopara viticola

    Directory of Open Access Journals (Sweden)

    Fernando D. Sánchez-Mora

    2017-04-01

    Full Text Available Downy mildew (Plasmopara viticola is the main grapevine disease in humid regions. In the present investigation, marker-assisted selection (MAS was used to develop grapevine lines homozygous in loci Rpv1 and Rpv3 for resistance against P. viticola. The experimental populations UFSC-2013-1 (n = 420 and UFSC-2013-2 (n = 237 were obtained by self-pollination of two F1 full-sib plants, originated from a cross between two distinct breeding lines containing the downy mildew resistance loci Rpv1 and Rpv3 in heterozygosity. The two experimental populations were genotyped with four microsatellite markers flanking the two downy mildew resistance loci. Among 637 genotyped plants, 300 (48.2% were homozygous for at least one resistance locus and 10 (1.57% were homozygous for both Rpv1 and Rpv3 loci. These 10 plants challenged with P. viticola inoculum showed a clearly enhanced level of resistance. These plants have a great potential as resistance donors in grapevine breeding.

  9. CASSAVA BREEDING I: THE VALUE OF BREEDING VALUE

    Directory of Open Access Journals (Sweden)

    Hernán Ceballos

    2016-08-01

    Full Text Available Breeding cassava relies on several selection stages (single row trial-SRT; preliminary; advanced; and uniform yield trials - UYT. This study uses data from 14 years of evaluations. From more than 20,000 genotypes initially evaluated only 114 reached the last stage. The objective was to assess how the data at SRT could be used to predict the probabilities of genotypes reaching the UYT. Phenotypic data from each genotype at SRT was integrated into the selection index (SIN used by the cassava breeding program. Average SIN from all the progenies derived from each progenitor was then obtained. Average SIN is an approximation of the breeding value of each progenitor. Data clearly suggested that some genotypes were better progenitors than others (e.g. high number of their progenies reaching the UYT, suggesting important variation in breeding values of progenitors. However, regression of average SIN of each parental genotype on the number of their respective progenies reaching UYT resulted in a negligible coefficient of determination (r2 = 0.05. Breeding value (e.g. average SIN at SRT was not efficient predicting which genotypes were more likely to reach the UYT stage. Number of families and progenies derived from a given progenitor were more efficient predicting the probabilities of the progeny from a given parent reaching the UYT stage. Large within-family genetic variation tends to mask the true breeding value of each progenitor. The use of partially inbred progenitors (e.g. S1 or S2 genotypes would reduce the within-family genetic variation thus making the assessment of breeding value more accurate. Moreover, partial inbreeding of progenitors can improve the breeding value of the original (S0 parental material and sharply accelerate genetic gains. For instance, homozygous S1 genotypes for the dominant resistance to cassava mosaic disease could be generated and selected. All gametes from these selected S1 genotypes would carry the desirable allele

  10. Biotechnology in maize breeding

    Directory of Open Access Journals (Sweden)

    Mladenović-Drinić Snežana

    2004-01-01

    Full Text Available Maize is one of the most important economic crops and the best studied and most tractable genetic system among monocots. The development of biotechnology has led to a great increase in our knowledge of maize genetics and understanding of the structure and behaviour of maize genomes. Conventional breeding practices can now be complemented by a number of new and powerful techniques. Some of these often referred to as molecular methods, enable scientists to see the layout of the entire genome of any organism and to select plants with preferred characteristics by "reading" at the molecular level, saving precious time and resources. DNA markers have provided valuable tools in various analyses ranging from phylogenetic analysis to the positional cloning of genes. Application of molecular markers for genetic studies of maize include: assessment of genetic variability and characterization of germ plasm, identification and fingerprinting of genotypes, estimation of genetic distance, detection of monogamic and quantitative trait loci, marker assisted selection, identification of sequence of useful candidate genes, etc. The development of high-density molecular maps which has been facilitated by PCR-based markers, have made the mapping and tagging of almost any trait possible and serve as bases for marker assisted selection. Sequencing of maize genomes would help to elucidate gene function, gene regulation and their expression. Modern biotechnology also includes an array of tools for introducing or deieting a particular gene or genes to produce plants with novel traits. Development of informatics and biotechnology are resulted in bioinformatic as well as in expansion of microarrey technique. Modern biotechnologies could complement and improve the efficiency of traditional selection and breeding techniques to enhance agricultural productivity.

  11. Transformation of Kalanchoe blossfeldiana with rol-genes is useful in molecular breeding towards compact growth.

    Science.gov (United States)

    Christensen, Brian; Sriskandarajah, Sridevy; Serek, Margrethe; Müller, Renate

    2008-09-01

    Dwarf genotypes of the economically important flowering potted plant Kalanchoe blossfeldiana were developed by molecular breeding. Root inducing (Ri)-lines were regenerated by applying CPPU to the hairy roots, which were produced by inoculating leaf explants with a wild-type Agrobacterium rhizogenes strain ATCC15834. Amplification by polymerase chain reaction (PCR) and Southern blot analysis confirmed the presence of T-DNA in the Ri-lines. Six Ri-lines were characterised in a greenhouse trial revealing that several morphological traits changed with respect to ornamental value such as plant height, number of lateral shoots, leaf size, leaf number, flower size and number of flowers. The Ri-lines differed in their degree of Ri-phenotype, and the internodes of the Ri-lines were clearly shorter, giving a compact growth habit compared to control plants. Time to anthesis was the same in Ri-line 331 as in control plants and delayed by only 3 days in Ri-line 306 as compared to control plants. A compact plant without delayed flowering can be assumed to be valuable for further breeding.

  12. Application of Genomic Technologies to the Breeding of Trees.

    Science.gov (United States)

    Badenes, Maria L; Fernández I Martí, Angel; Ríos, Gabino; Rubio-Cabetas, María J

    2016-01-01

    The recent introduction of next generation sequencing (NGS) technologies represents a major revolution in providing new tools for identifying the genes and/or genomic intervals controlling important traits for selection in breeding programs. In perennial fruit trees with long generation times and large sizes of adult plants, the impact of these techniques is even more important. High-throughput DNA sequencing technologies have provided complete annotated sequences in many important tree species. Most of the high-throughput genotyping platforms described are being used for studies of genetic diversity and population structure. Dissection of complex traits became possible through the availability of genome sequences along with phenotypic variation data, which allow to elucidate the causative genetic differences that give rise to observed phenotypic variation. Association mapping facilitates the association between genetic markers and phenotype in unstructured and complex populations, identifying molecular markers for assisted selection and breeding. Also, genomic data provide in silico identification and characterization of genes and gene families related to important traits, enabling new tools for molecular marker assisted selection in tree breeding. Deep sequencing of transcriptomes is also a powerful tool for the analysis of precise expression levels of each gene in a sample. It consists in quantifying short cDNA reads, obtained by NGS technologies, in order to compare the entire transcriptomes between genotypes and environmental conditions. The miRNAs are non-coding short RNAs involved in the regulation of different physiological processes, which can be identified by high-throughput sequencing of RNA libraries obtained by reverse transcription of purified short RNAs, and by in silico comparison with known miRNAs from other species. All together, NGS techniques and their applications have increased the resources for plant breeding in tree species, closing the

  13. Plant Protein Inhibitors of Enzymes: Their Role in Animal Nutrition and Plant Defence.

    Science.gov (United States)

    Richardson, Michael

    1981-01-01

    Current information and research related to plant protein inhibitors of enzymes are reviewed, including potential uses of the inhibitors for medical treatment and for breeding plant varieties with greater resistance to insects. (DC)

  14. Genomic Tools in Cowpea Breeding Programs: Status and Perspectives

    Science.gov (United States)

    Boukar, Ousmane; Fatokun, Christian A.; Huynh, Bao-Lam; Roberts, Philip A.; Close, Timothy J.

    2016-01-01

    Cowpea is one of the most important grain legumes in sub-Saharan Africa (SSA). It provides strong support to the livelihood of small-scale farmers through its contributions to their nutritional security, income generation and soil fertility enhancement. Worldwide about 6.5 million metric tons of cowpea are produced annually on about 14.5 million hectares. The low productivity of cowpea is attributable to numerous abiotic and biotic constraints. The abiotic stress factors comprise drought, low soil fertility, and heat while biotic constraints include insects, diseases, parasitic weeds, and nematodes. Cowpea farmers also have limited access to quality seeds of improved varieties for planting. Some progress has been made through conventional breeding at international and national research institutions in the last three decades. Cowpea improvement could also benefit from modern breeding methods based on molecular genetic tools. A number of advances in cowpea genetic linkage maps, and quantitative trait loci associated with some desirable traits such as resistance to Striga, Macrophomina, Fusarium wilt, bacterial blight, root-knot nematodes, aphids, and foliar thrips have been reported. An improved consensus genetic linkage map has been developed and used to identify QTLs of additional traits. In order to take advantage of these developments single nucleotide polymorphism (SNP) genotyping is being streamlined to establish an efficient workflow supported by genotyping support service (GSS)-client interactions. About 1100 SNPs mapped on the cowpea genome were converted by LGC Genomics to KASP assays. Several cowpea breeding programs have been exploiting these resources to implement molecular breeding, especially for MARS and MABC, to accelerate cowpea variety improvement. The combination of conventional breeding and molecular breeding strategies, with workflow managed through the CGIAR breeding management system (BMS), promises an increase in the number of improved

  15. Genomic tools in cowpea breeding programs: status and perspectives

    Directory of Open Access Journals (Sweden)

    Ousmane eBoukar

    2016-06-01

    Full Text Available Cowpea is one of the most important grain legumes in sub-Saharan Africa (SSA. It provides strong support to the livelihood of small-scale farmers through its contributions to their nutritional security, income generation and soil fertility enhancement. Worldwide about 6.5 million metric tons of cowpea are produced annually on about 14.5 million hectares. The low productivity of cowpea is attributable to numerous abiotic and biotic constraints. The abiotic stress factors comprise drought, low soil fertility, and heat while biotic constraints include insects, diseases, parasitic weeds and nematodes. Cowpea farmers also have limited access to quality seeds of improved varieties for planting. Some progress has been made through conventional breeding at international and national research institutions in the last three decades. Cowpea improvement could also benefit from modern breeding methods based on molecular genetic tools. A number of advances in cowpea genetic linkage maps, and quantitative trait loci associated with some desirable traits such as resistance to Striga, Macrophomina, Fusarium wilt, bacterial blight, root-knot nematodes, aphids and foliar thrips have been reported. An improved consensus genetic linkage map has been developed and used to identify QTLs of additional traits. In order to take advantage of these developments single nucleotide polymorphism (SNP genotyping is being streamlined to establish an efficient workflow supported by genotyping support service (GSS-client interactions. About 1100 SNPs mapped on the cowpea genome were converted by LGC Genomics to KASP assays. Several cowpea breeding programs have been exploiting these resources to implement molecular breeding, especially for MARS and MABC, to accelerate cowpea variety improvement. The combination of conventional breeding and molecular breeding strategies, with workflow managed through the CGIAR breeding management system (BMS, promises an increase in the number of

  16. Achievements in NS rapeseed hybrids breeding

    Directory of Open Access Journals (Sweden)

    Marjanović-Jeromela Ana

    2016-01-01

    Full Text Available The increased production of oilseed rape (Brassica napus L. is evident on a global scale, but also in Serbia in the last decade. Rapeseed is used primarily for vegetable oil and processing industry, but also as a source of protein for animal feed and green manure. Following the cultivation of varieties, breeding and cultivation of hybrid rapeseed started in the 1990's, to take advantage of heterosis in F1 generation, while protecting the breeder's rights during seed commercialization. The breeding of hybrid oilseed rape requires high quality starting material (lines with good combining abilities for introduction of male sterility. Ogura sterility system is primarily used at the Institute of Field and Vegetable Crops, Novi Sad, Serbia. To use this system, separate lines are modified with genes for cytoplasmic male sterility (cms female line - mother line and restoration of fertility (Rf male lines - father line. In order to maintain the sterility of the mother line it is necessary to produce a maintainer line of cytoplasmic male sterility. Creation of these lines and hybrids at the Institute of Field and Vegetable Crops was successfully monitored with intense use of cytogenetic laboratory methods. The structure and vitality of pollen, including different phases during meiosis were checked so that cms stability was confirmed during the introduction of these genes into different lines. Rapeseed breeding program in Serbia resulted in numerous varieties through collaboration of researchers engaged in breeding and genetics of this plant species. So far, in addition to 12 varieties of winter rapeseed and two varieties of spring rapeseed, a new hybrid of winter rapeseed NS Ras was registered in Serbia. NS Ras is an early-maturing hybrid characterized by high seed yield and oil content. Average yield of NS Ras for two seasons and three sites was 4256 kg ha-1 of seed and 1704 kg ha-1 of oil. Three promising winter rapeseed hybrids are in the process of

  17. Variation in the Breeding System of Prunella vulgaris L.

    Science.gov (United States)

    Qu, Luping; Widrlechner, Mark P

    2011-05-01

    Prunella vulgaris (Lamiaceae), commonly known as selfheal, is a perennial herb with a long history of use in traditional medicine. Recent studies have found that P. vulgaris possesses anti-inflammatory, antiviral, and antibacterial properties, and it is likely that this will lead to increased commercial demand for this species. To date, research publications on P. vulgaris cultivation and genetics are scarce. Using accessions originally collected from different geographical regions, we investigated the breeding system of this species by observing variation in floral morphology, time of pollen release, and selfed-seed set in bagged flowers and isolated plants. Two types of floral morphology, one with exerted styles, extending past open corollas when viewed from above, and the other with shorter, inserted styles, were found among 30 accessions. Two accessions originally collected from Asia uniformly displayed exerted styles, and 27 accessions had inserted styles. One accession from Oregon displayed variation in this trait among individual plants. Microscopic observation of seven accessions, including ones with both exerted and inserted styles, revealed that they all release pollen to some degree before the flowers open. Using bagged flowers, we found that selfed-seed set varied widely among eight accessions, ranging from 6% to 94%. However, bagging may underestimate seed set for some accessions. The two accessions with the lowest rates when using bagged flowers increased in seed set by 350% and 158%, respectively, when we evaluated single, unbagged plants in isolation cages. The accession with 6% selfed-seed set when bagged also had exerted styles. These findings suggest that mating systems in P. vulgaris may be in the process of evolutionary change and that understanding breeding-system variation should be useful in developing efficient seed-regeneration protocols and breeding and selection strategies for this species.

  18. To breed or not to breed: a seabird's response to extreme climatic events

    OpenAIRE

    Cubaynes, Sarah; Doherty, Paul F.; Schreiber, E. A.; Gimenez, Olivier

    2010-01-01

    Intermittent breeding is an important life-history strategy that has rarely been quantified in the wild and for which drivers remain unclear. It may be the result of a trade-off between survival and reproduction, with individuals skipping breeding when breeding conditions are below a certain threshold. Heterogeneity in individual quality can also lead to heterogeneity in intermittent breeding. We modelled survival, recruitment and breeding probability of the red-footed booby (Sula sula), usin...

  19. Breeding for drought tolerance in crops | Adu-Dapaah | Journal of ...

    African Journals Online (AJOL)

    Tolerance to drought is under complex genetic control and selection for it often presents difficult challenges to plant breeders. With classical breeding methods, combining or pyramiding many different desirable genes in one background is nearly impossible because the tests required to reveal the presence of those genes ...

  20. Resistance to Aspergillus flavus in maize and peanut: Molecular biology, breeding, environmental stress, and future perspectives

    Directory of Open Access Journals (Sweden)

    Jake C. Fountain

    2015-06-01

    Full Text Available The colonization of maize (Zea mays L. and peanut (Arachis hypogaea L. by the fungal pathogen Aspergillus flavus results in the contamination of kernels with carcinogenic mycotoxins known as aflatoxins leading to economic losses and potential health threats to humans. The regulation of aflatoxin biosynthesis in various Aspergillus spp. has been extensively studied, and has been shown to be related to oxidative stress responses. Given that environmental stresses such as drought and heat stress result in the accumulation of reactive oxygen species (ROS within host plant tissues, host-derived ROS may play an important role in cross-kingdom communication between host plants and A. flavus. Recent technological advances in plant breeding have provided the tools necessary to study and apply knowledge derived from metabolomic, proteomic, and transcriptomic studies in the context of productive breeding populations. Here, we review the current understanding of the potential roles of environmental stress, ROS, and aflatoxin in the interaction between A. flavus and its host plants, and the current status in molecular breeding and marker discovery for resistance to A. flavus colonization and aflatoxin contamination in maize and peanut. We will also propose future directions and a working model for continuing research efforts linking environmental stress tolerance and aflatoxin contamination resistance in maize and peanut.

  1. Induced mutagenesis as a breeding strategy for improvement of Solanaceous vegetables

    International Nuclear Information System (INIS)

    Masuda, Masaharu; Ojiewo, Christopher O.

    2008-01-01

    The Solanaceae are a cosmopolitan family containing many essential vegetables and fruits such as potato (Solanum tuberosum L.), tomato (Lycopersicon esculentum L.), eggplant (Solanum melongena L.), paprika, chillies, green and red peppers (Capsicum annuum L.), jasmine nightshade (Solanum jasminoides Paxt.), winter cherry (Solanum pseudocapsicum L.), and Cape gooseberry, ornamentals such as Petunia, Schizanthus, and Lycium species, and medicinal plants such as bittersweet (Solanum dulcamara L.) and Solanum viarum Dun., both used as sources of corticosteroids. It also contains tobacco (Nicotiana spp.) - one of the most harmful yet economically important plants in the world - together with many other plants of both poisonous and medicinal value such as belladonna (Atropa belladona L.), stramonium (Datura stramonium L.), black henbane (Hyoscyamus niger L.), and African nightshade (Solanum villosum). Composed of approximately 90 genera and between 2000 and 3000 species, the family is widely distributed throughout the tropical and temperate regions of the world, with centers of diversity occurring in Central and South America, Australia, and Africa (EDMONDS 1978; SYMON 1981; D'ARCY 1991). Work to develop new varieties of improved solanaceous crops started more than 2 centuries ago. This paper reviews some of the recent developments in various aspects of varietal improvement of solanaceous vegetables through mutation breeding. Mutational work reported here includes the alteration of plant reproductive or vegetative growth and the development of locally adapted cultivars and popular breeding lines, or the induction of novel alleles. The potential for direct application of the mutants as new improved cultivars, their use in cross-breeding schemes, and their application in, for example, marker technology in genetic research are discussed. Specific examples of novel mutants developed in our laboratory that have the potential for application in improving solanaceous fruits

  2. Participatory plant breeding: a way to arrive at better adapted onions varieties

    NARCIS (Netherlands)

    Tiemens-Hulscher, M.; Lammerts Van Bueren, E.; Osman, A.M.; Jeuken, J.; Groenen, R.; Heer, de R.

    2006-01-01

    The search for varieties that are better adapted to organic farming is a current topic in the organic sector. Breeding programmes specific for organic agriculture should solve this problem. Collaborating with organic farmers in such programmes, particularly in the selection process, can potentially

  3. Plant breeding by using radiation mutation

    International Nuclear Information System (INIS)

    Song, Hi Sup; Kim, Jin Kyu; Shin, In Chul and others; Yang, Seung Gyun; Choi, Soon Ho; Lee, Jang Ha; Lee, Hyo Yeon; Seo, Yong Won; Lim, Yong Pyo

    2003-04-01

    To improve the crop varieties by using radiation mutation, various mutant lines were selected from the materials irradiated with gamma ray by both in vivo and in vitro mutagenesis. As in vitro selection breeding, various cell lines each with salt, 5-MT and Systeine tolerance were selected from the irradiated calli of rice, and then DNA and molecular markers related with their tolerances were identified. And the rice mutant lines selected from cell lines were evaluated and then some of promising lines were selected by the field trial. Four mutant rice cultivars(Wonmibyeo, Wonpyongbyeo, Heugseonchalbyeo, Wongwangbyeo) were released and their seeds were distributed to farmers. A high quality mutant rice cultivar, Woncheongbyeo, was newly registered. And developed five new cultivars, Wonkangbyeo, Wonpumbyeo, Wonchubyeo, Heugkwangchalbyeo, Nogwonchalbyeo and three mutant cultivars of the rose of Sharon (Mugunghwa) such as Ggoma, Seonnyo, Daegwang were applied to register the national new cultivar list. About promising 30 mutant lines of rice and Mugunghwa were done the field trials and proliferation. Promising soybean mutant lines were selected for improvement of soybean disease resistant, ecological traits and soybean seed quality. Other related two researches not only on development of disease tolerant lines of hot pepper, but also on development of herbicide-resistant cell lines using radiation irradiation, were carried out as a joint projects

  4. Tritium breeding blanket

    International Nuclear Information System (INIS)

    Smith, D.; Billone, M.; Gohar, Y.; Baker, C.; Mori, S.; Kuroda, T.; Maki, K.; Takatsu, H.; Yoshida, H.; Raffray, A.; Sviatoslavsky, I.; Simbolotti, G.; Shatalov, G.

    1991-01-01

    The terms of reference for ITER provide for incorporation of a tritium breeding blanket with a breeding ratio as close to unity as practical. A breeding blanket is required to assure an adequate supply of tritium to meet the program objectives. Based on specified design criteria, a ceramic breeder concept with water coolant and an austenitic steel structure has been selected as the first option and lithium-lead blanket concept has been chosen as an alternate option. The first wall, blanket, and shield are integrated into a single unit with separate cooling systems. The design makes extensive use of beryllium to enhance the tritium breeding ratio. The design goals with a tritium breeding ratio of 0.8--0.9 have been achieved and the R ampersand D requirements to qualify the design have been identified. 4 refs., 8 figs., 2 tabs

  5. Adapting spring wheat breeding to the needs of the organic sector

    NARCIS (Netherlands)

    Osman, A.M.; Almekinders, C.J.M.; Struik, P.C.; Lammerts van Bueren, E.T.

    2016-01-01

    Organic farmers and food processors need plant varieties that are adapted to their crop husbandry and processing practices. Such varieties are scarce as the mainstream breeding sector focuses on developing varieties for the conventional product chain that has different goals and practices. In

  6. Breeding food and forge legumes for enhancement of nitrogen fixation: a review

    International Nuclear Information System (INIS)

    Ali, A.; Hussain, S.; Qamar, I.A.; Khan, B.R.

    2000-01-01

    Nitrogen fixation in legume - root nodules requires the functioning of genes present in the Rhizobia that induce nodule-formation. The plant produces the nodules and the energy required for respiration. Genes in both Rhizobium and the plant are responsible for the efficient use of photosynthesis for N/sub 2/ fixation and assimilation of nitrogen. Genes from Rhizobium and legume hosts that are involved in the symbiosis are being identified, isolated and cloned, to facilitate the manipulation of either partner. The amounts of nitrogen fixed by grain-legumes vary appreciably, between and within, species and are also influenced by environment. With few exceptions, most legumes fix insufficient N/sub 2/ to support substantial seed-yields. Deficits between required N and the combined amounts provide by soil and fertilizer help in estimating the improvements in N/sub 2/ fixation which is possible through breeding. Since the symbiosis is a complex process, heritability of traits is weak, and most methods which estimate fixation are destructive, a breeding method that allows selection of replicated families rather than single plants is preferred. (author)

  7. Plant breeding and genetics newsletter. No. 4

    International Nuclear Information System (INIS)

    1999-12-01

    The Newsletter reports development of new Coordinated Research Projects (CRPs) and on efficient implementation of Technical Coperaton Projects related to regional activities. Following the organization of the CRP on 'Molecular characterization of mutated genes controlling important traits for seed crop improvement' the CRP on 'Mutational analysis of root characters in annual food plants related to plant performance' was also established with the participation of 21 institutes. It also presents recent training activities and meetings undertaken

  8. Exotic plant species receive adequate pollinator service despite variable integration into plant-pollinator networks.

    Science.gov (United States)

    Thompson, Amibeth H; Knight, Tiffany M

    2018-05-01

    Both exotic and native plant species rely on insect pollinators for reproductive success, and yet few studies have evaluated whether and how exotic plant species receive services from native pollinators for successful reproduction in their introduced range. Plant species are expected to successfully reproduce in their exotic range if they have low reliance on animal pollinators or if they successfully integrate themselves into resident plant-pollinator networks. Here, we quantify the breeding system, network integration, and pollen limitation for ten focal exotic plant species in North America. Most exotic plant species relied on animal pollinators for reproduction, and these species varied in their network integration. However, plant reproduction was limited by pollen receipt for only one plant species. Our results demonstrate that even poorly integrated exotic plant species can still have high pollination service and high reproductive success. The comprehensive framework considered here provides a method to consider the contribution of plant breeding systems and the pollinator community to pollen limitation, and can be applied to future studies to provide a more synthetic understanding of the factors that determine reproductive success of exotic plant species.

  9. Breeding Potential in Danish Apple Cultivar

    DEFF Research Database (Denmark)

    Larsen, Bjarne

    The diversity in plant genetic resources is a prerequisite for genetic improvement of cultivated crop species. Lack of in-depth characterization and evaluation of gene bank accessions is a major obstacle for their potential utilization. The Danish apple (Malus domestica L.) gene bank collection...... understanding of the link between phenotypes and the underlying gene-tic background which is crucial in plant breeding. We found a considerable genetic diversity in the collection and no genetic structure. We exposed a high number of accessions in admix and revealed several putative cultivar parentages, never......, including several rare alleles. Using historical gene bank records, including aroma volatile analysis, sugar and acid data and other fruit- and tree character records, we established genotype-phenotype relationships, performing a genome-wide association study. A number of SNP markers are presented that can...

  10. Textbook animal breeding : animal breeding andgenetics for BSc students

    NARCIS (Netherlands)

    Oldenbroek, Kor; Waaij, van der Liesbeth

    2014-01-01

    This textbook contains teaching material on animal breeding and genetics for BSc students. The text book started as an initiative of the Dutch Universities for Applied (Agricultural) Sciences. The textbook is made available by the Animal Breeding and Genomics Centre (ABGC) of Wageningen UR

  11. Mutation breeding for disease resistance in wheat and field beans

    International Nuclear Information System (INIS)

    Abdel-Hak, T.M.; Kamel, A.H.

    1977-01-01

    Wheat and broad-bean diseases cause considerable losses under Egyptian conditions; therefore, an attempt was made to induce useful mutations in both crops resistant to diseases which may be of direct or indirect use in breeding programmes. The methodology of artificial inoculation, evaluation, selection, radiation levels used are reported, in addition to the economic importance of the varieties used. This work passed through two phases, the first started in the 1972/73 crop season with a small population, while the second in 1974/75 with a larger one to have a better chance of detecting resistant mutants. In the first phase, a total of 3563M 1 wheat plants was grown in addition to approximately 3600-44,000M 2 and 77,646M 3 plants. Twenty-two M 2 plants were selected as showing lower level of leaf rust development, but further tests showed these plants are not true mutants since they rusted at the same level of their parent varieties. Out of the M 3 plants none showed good resistance. In the second phase, 36,000, 277,080 and 289,492 plants of M 1 , M 2 and M 3 , respectively, were grown and 73M 2 plants were selected as showing complete resistance to leaf and stem rusts. In field beans out of the first phase, a total of 5760, 37,200 and 33,240M 1 , M 2 and M 3 plants, respectively, was grown and none showed a good level of disease resistance although some were less diseased. These were further tested and proved not true mutants for reduced disease development. In the second phase, 8747, 203,520 and 90,285 plants of M 1 , M 2 and M 3 , respectively, were grown and 27M 2 plants were selected as showing a lower level of chocolate spot and rust development. The paper also discusses the use of single versus composite cultures in mutation breeding for disease resistance. (author)

  12. Climate change may alter breeding ground distributions of eastern migratory monarchs (Danaus plexippus) via range expansion of Asclepias host plants.

    Science.gov (United States)

    Lemoine, Nathan P

    2015-01-01

    Climate change can profoundly alter species' distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months

  13. Application of genetic markers in seed testing and plant breeding

    Directory of Open Access Journals (Sweden)

    Nikolić Zorica

    2010-01-01

    Full Text Available Genetic markers have been used at Institute of Field and Vegetable Crops in Novi Sad for a number of years, both for seed quality control and for research purposes. The Laboratory for Seed Testing was the first in the former Yugoslavia to use the method of control of hybrid seed genetic purity based on enzymatic polymorphism. This paper presents the application of protein markers, isozymes, seed storage proteins and DNA markers for evaluation of seed and breeding materials of various agricultural crops in Serbia.

  14. Root Traits and Phenotyping Strategies for Plant Improvement.

    Science.gov (United States)

    Paez-Garcia, Ana; Motes, Christy M; Scheible, Wolf-Rüdiger; Chen, Rujin; Blancaflor, Elison B; Monteros, Maria J

    2015-06-15

    Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, water and nutrient acquisition. Available approaches for root phenotyping in laboratory, greenhouse and field encompass simple agar plates to labor-intensive root digging (i.e., shovelomics) and soil boring methods, the construction of underground root observation stations and sophisticated computer-assisted root imaging. Here, we summarize root architectural traits relevant to crop productivity, survey root phenotyping strategies and describe their advantages, limitations and practical value for crop and forage breeding programs.

  15. Root Traits and Phenotyping Strategies for Plant Improvement

    Directory of Open Access Journals (Sweden)

    Ana Paez-Garcia

    2015-06-01

    Full Text Available Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, water and nutrient acquisition. Available approaches for root phenotyping in laboratory, greenhouse and field encompass simple agar plates to labor-intensive root digging (i.e., shovelomics and soil boring methods, the construction of underground root observation stations and sophisticated computer-assisted root imaging. Here, we summarize root architectural traits relevant to crop productivity, survey root phenotyping strategies and describe their advantages, limitations and practical value for crop and forage breeding programs.

  16. Tritium breeding in fusion reactors

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1982-10-01

    Key technological problems that influence tritium breeding in fusion blankets are reviewed. The breeding potential of candidate materials is evaluated and compared to the tritium breeding requirements. The sensitivity of tritium breeding to design and nuclear data parameters is reviewed. A framework for an integrated approach to improve tritium breeding prediction is discussed with emphasis on nuclear data requirements

  17. Evaluation of approaches for estimating the accuracy of genomic prediction in plant breeding.

    Science.gov (United States)

    Ould Estaghvirou, Sidi Boubacar; Ogutu, Joseph O; Schulz-Streeck, Torben; Knaak, Carsten; Ouzunova, Milena; Gordillo, Andres; Piepho, Hans-Peter

    2013-12-06

    In genomic prediction, an important measure of accuracy is the correlation between the predicted and the true breeding values. Direct computation of this quantity for real datasets is not possible, because the true breeding value is unknown. Instead, the correlation between the predicted breeding values and the observed phenotypic values, called predictive ability, is often computed. In order to indirectly estimate predictive accuracy, this latter correlation is usually divided by an estimate of the square root of heritability. In this study we use simulation to evaluate estimates of predictive accuracy for seven methods, four (1 to 4) of which use an estimate of heritability to divide predictive ability computed by cross-validation. Between them the seven methods cover balanced and unbalanced datasets as well as correlated and uncorrelated genotypes. We propose one new indirect method (4) and two direct methods (5 and 6) for estimating predictive accuracy and compare their performances and those of four other existing approaches (three indirect (1 to 3) and one direct (7)) with simulated true predictive accuracy as the benchmark and with each other. The size of the estimated genetic variance and hence heritability exerted the strongest influence on the variation in the estimated predictive accuracy. Increasing the number of genotypes considerably increases the time required to compute predictive accuracy by all the seven methods, most notably for the five methods that require cross-validation (Methods 1, 2, 3, 4 and 6). A new method that we propose (Method 5) and an existing method (Method 7) used in animal breeding programs were the fastest and gave the least biased, most precise and stable estimates of predictive accuracy. Of the methods that use cross-validation Methods 4 and 6 were often the best. The estimated genetic variance and the number of genotypes had the greatest influence on predictive accuracy. Methods 5 and 7 were the fastest and produced the least

  18. Some ecological factors influencing the breeding success of the Brenton Blue butterfly, Orachrysops niobe (Trimen (Lepidoptera: Lycaenidae

    Directory of Open Access Journals (Sweden)

    D.A. Edge

    2002-12-01

    Full Text Available The Brenton Blue butterfly, Orachrysops niobe (Trimen, 1862 (Lepidoptera:Lycaenidae, is endemic to the southern Cape and is currently listed as Endangered. This study looks at some of the key ecological factors influencing the breeding success of the species—host plant abundance and condition, nectar sources, climate/ microclimate, and vegetation management techniques. The adult butterfly population was monitored over an entire breeding season; host plants were identified and individually monitored; and egg counts were done. This enabled the effects of a number of different management techniques to be evaluated (burning, cutting, physical removal of invasive elements, and combinations thereof. A fivefold increase in the population of O. niobe was observed over the breeding season. This increase was positively correlated to a similar increase in host plant abundance in the areas where cutting and physical removal of invasive elements was practiced. Burning, by contrast, appeared to have a negative impact on host plant and butterfly abundance over the same period. Impacts of other factors such as climate, nectar sources and the natural strength of the second brood are discussed. A hypothesis, of megaherbivore activity as the principal historical disturbance mechanism promoting locally favourable conditions for O. niobe to establish and maintain colonies, is proposed. Recommendations for reserve management and future research are made.

  19. Upgrading the data acquisition and control systems of the European Breeding Blanket Test Facility

    International Nuclear Information System (INIS)

    Mannori, Simone; Sermenghi, Valerio; Utili, Marco; Malavasi, Andrea; Gianotti, Daniel

    2013-01-01

    Highlights: • Data Acquisition and Control Systems (DACS) upgrading of experimental plant for full size thermo hydraulic testing of nuclear subsystems. • DACS development using integrated hardware/software platform with graphical programming (LabVIEW). • Development of simplified models for real-time simulation. • Rapid prototyping with real time simulation of the complete plant. • Using the code developed for the real time simulator for the real plant DACS. -- Abstract: The EBBTF (European Breeding Blanket Test Facility) experimental plant is a key component for the development of the breeding blankets (TBMs test blanket modules, HCLL helium cooled lithium lead and HCPB helium cooled pebble bed types) used by ITER. EBBTF is an experimental plant which provides the double breeding/cooling loops (liquid metal and gas) required for HCLL testing. EBBTF is composed of four subsystems (TBM, IELLLO integrated European lead lithium loop, HE-FUS3 helium fusion loop, version 3 and helium compressor build by ATEKO) with dedicated control systems realized with hardware/software combinations covering 15 years (1995–2010) time span. At the end of 2010 we began to upgrade the HE-FUS3 data acquisition control systems (DACS) replacing the obsolete PLC Siemens S5 with National Instruments Compact FieldPoint and LabVIEW. The control room has been completely reorganized using high resolution monitors and workstations linked with standard Ethernet interfaces. The data acquisition, control, safety and SCADA software has been completely developed in ENEA using LabVIEW. In this paper we are going to discuss the technical difficulties and the solutions that we have used to accomplish the upgrade

  20. Genome-wide association mapping for yield and other agronomic traits in an elite breeding population of tropical rice (Oryza sativa).

    Science.gov (United States)

    Begum, Hasina; Spindel, Jennifer E; Lalusin, Antonio; Borromeo, Teresita; Gregorio, Glenn; Hernandez, Jose; Virk, Parminder; Collard, Bertrand; McCouch, Susan R

    2015-01-01

    Genome-wide association mapping studies (GWAS) are frequently used to detect QTL in diverse collections of crop germplasm, based on historic recombination events and linkage disequilibrium across the genome. Generally, diversity panels genotyped with high density SNP panels are utilized in order to assay a wide range of alleles and haplotypes and to monitor recombination breakpoints across the genome. By contrast, GWAS have not generally been performed in breeding populations. In this study we performed association mapping for 19 agronomic traits including yield and yield components in a breeding population of elite irrigated tropical rice breeding lines so that the results would be more directly applicable to breeding than those from a diversity panel. The population was genotyped with 71,710 SNPs using genotyping-by-sequencing (GBS), and GWAS performed with the explicit goal of expediting selection in the breeding program. Using this breeding panel we identified 52 QTL for 11 agronomic traits, including large effect QTLs for flowering time and grain length/grain width/grain-length-breadth ratio. We also identified haplotypes that can be used to select plants in our population for short stature (plant height), early flowering time, and high yield, and thus demonstrate the utility of association mapping in breeding populations for informing breeding decisions. We conclude by exploring how the newly identified significant SNPs and insights into the genetic architecture of these quantitative traits can be leveraged to build genomic-assisted selection models.

  1. Seeds That Give: Participatory Plant Breeding

    International Development Research Centre (IDRC) Digital Library (Canada)

    The full text of the book is available online and leads the reader into a virtual ..... They select plant types (rather than varieties) based on their own .... Farmers and breeders, and other stakeholders — such as traders, processors, distributors, ...

  2. Genetic Gain and Inbreeding from Genomic Selection in a Simulated Commercial Breeding Program for Perennial Ryegrass

    Directory of Open Access Journals (Sweden)

    Zibei Lin

    2016-03-01

    Full Text Available Genomic selection (GS provides an attractive option for accelerating genetic gain in perennial ryegrass ( improvement given the long cycle times of most current breeding programs. The present study used simulation to investigate the level of genetic gain and inbreeding obtained from GS breeding strategies compared with traditional breeding strategies for key traits (persistency, yield, and flowering time. Base population genomes were simulated through random mating for 60,000 generations at an effective population size of 10,000. The degree of linkage disequilibrium (LD in the resulting population was compared with that obtained from empirical studies. Initial parental varieties were simulated to match diversity of current commercial cultivars. Genomic selection was designed to fit into a company breeding program at two selection points in the breeding cycle (spaced plants and miniplot. Genomic estimated breeding values (GEBVs for productivity traits were trained with phenotypes and genotypes from plots. Accuracy of GEBVs was 0.24 for persistency and 0.36 for yield for single plants, while for plots it was lower (0.17 and 0.19, respectively. Higher accuracy of GEBVs was obtained for flowering time (up to 0.7, partially as a result of the larger reference population size that was available from the clonal row stage. The availability of GEBVs permit a 4-yr reduction in cycle time, which led to at least a doubling and trebling genetic gain for persistency and yield, respectively, than the traditional program. However, a higher rate of inbreeding per cycle among varieties was also observed for the GS strategy.

  3. Genetic Gain and Inbreeding from Genomic Selection in a Simulated Commercial Breeding Program for Perennial Ryegrass.

    Science.gov (United States)

    Lin, Zibei; Cogan, Noel O I; Pembleton, Luke W; Spangenberg, German C; Forster, John W; Hayes, Ben J; Daetwyler, Hans D

    2016-03-01

    Genomic selection (GS) provides an attractive option for accelerating genetic gain in perennial ryegrass () improvement given the long cycle times of most current breeding programs. The present study used simulation to investigate the level of genetic gain and inbreeding obtained from GS breeding strategies compared with traditional breeding strategies for key traits (persistency, yield, and flowering time). Base population genomes were simulated through random mating for 60,000 generations at an effective population size of 10,000. The degree of linkage disequilibrium (LD) in the resulting population was compared with that obtained from empirical studies. Initial parental varieties were simulated to match diversity of current commercial cultivars. Genomic selection was designed to fit into a company breeding program at two selection points in the breeding cycle (spaced plants and miniplot). Genomic estimated breeding values (GEBVs) for productivity traits were trained with phenotypes and genotypes from plots. Accuracy of GEBVs was 0.24 for persistency and 0.36 for yield for single plants, while for plots it was lower (0.17 and 0.19, respectively). Higher accuracy of GEBVs was obtained for flowering time (up to 0.7), partially as a result of the larger reference population size that was available from the clonal row stage. The availability of GEBVs permit a 4-yr reduction in cycle time, which led to at least a doubling and trebling genetic gain for persistency and yield, respectively, than the traditional program. However, a higher rate of inbreeding per cycle among varieties was also observed for the GS strategy. Copyright © 2016 Crop Science Society of America.

  4. Mutation induction in plants by ionizing radiation

    International Nuclear Information System (INIS)

    1985-01-01

    This training film deals with the use of x-rays, gamma rays and fast neutrons for mutation induction in plants. Specific features of different types of ionizing radiation and of biological materials are outlined and methods demonstrated which control modifying factors and warrant an efficient physical mutagenesis. The first step of mutation breeding aims at an enhanced level of genetic variation which forms the basis for mutant selection and use in plant breeding

  5. Radiation mutation breeding

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hi Sup; Kim, Jae Sung; Kim, Jin Kyu; Shin, In Chul; Lim, Young Taek

    1998-04-01

    In order to develop an advanced technical knowledge for the selection of better mutants, some of the crops were irradiated and the mutation rate, the survival rate and the method for selction of a mutant were studied. Furthermore, this study aimed to obtain basic data applicable to the development of genetic resources by evaluation and analysis the specific character for selection of the superior mutant and its plant breeding. 1. selection of the mutant with a superior resistance against environment in the principal crops 1) New varieties of mutant rices such as Wonpyeongbyeo, Wongwangbyeo, Winmibyeo, and heogseon chalbeyeo (sticky forma) were registered in the national variety list and made an application to crop variety protection right. They are under review now. 2) We also keep on studying on the number of a grain of 8 lines of excellent mutant rice for the purpose of improvement of breeding . 3) We selected 3 lines which have a resistance to pod and stem blight in large soybean, 31 lines with small grain size and higher yield, 112 lines of soybean of cooking, 7 lines of low lipoxygenase content, and 12 lines with decreased phytic acid content by 20 % compared to the previous level. 2. Selection of advanced Mugunwha (Rose of Sharon) mutant 1) Bagseul, a new variety of mutant, was developed and 30 plantlets of it are being proliferated. 2) Fifty-three lines of a mutant having a various morphologies were selected.

  6. Radiation mutation breeding

    International Nuclear Information System (INIS)

    Song, Hi Sup; Kim, Jae Sung; Kim, Jin Kyu; Shin, In Chul; Lim, Young Taek

    1998-04-01

    In order to develop an advanced technical knowledge for the selection of better mutants, some of the crops were irradiated and the mutation rate, the survival rate and the method for selction of a mutant were studied. Furthermore, this study aimed to obtain basic data applicable to the development of genetic resources by evaluation and analysis the specific character for selection of the superior mutant and its plant breeding. 1. selection of the mutant with a superior resistance against environment in the principal crops 1) New varieties of mutant rices such as Wonpyeongbyeo, Wongwangbyeo, Winmibyeo, and heogseon chalbeyeo (sticky forma) were registered in the national variety list and made an application to crop variety protection right. They are under review now. 2) We also keep on studying on the number of a grain of 8 lines of excellent mutant rice for the purpose of improvement of breeding . 3) We selected 3 lines which have a resistance to pod and stem blight in large soybean, 31 lines with small grain size and higher yield, 112 lines of soybean of cooking, 7 lines of low lipoxygenase content, and 12 lines with decreased phytic acid content by 20 % compared to the previous level. 2. Selection of advanced Mugunwha (Rose of Sharon) mutant 1) Bagseul, a new variety of mutant, was developed and 30 plantlets of it are being proliferated. 2) Fifty-three lines of a mutant having a various morphologies were selected

  7. Impact of mutation breeding in rice. A review

    Energy Technology Data Exchange (ETDEWEB)

    Rutger, J N [Department of Agriculture, Stoneville, MS (United States). Agricultural Research Service

    1992-07-01

    More cultivars have been developed in rice through the use of mutation breeding than in any other crop. Direct releases of mutants as cultivars began some 30 years ago, and now total 198 cultivars. During the last 20 years, increasing use has been made of induced mutants in cross-breeding programs, leading to 80 additional cultivars. Principal improvements through mutation breeding have been earlier maturity, short stature, and grain character modifications. Rice has been a popular subject of mutagenesis because it is the world`s leading food crop, has diploid inheritance, and is highly self-pollinated. In recent years induced mutation has been exploited to develop breeding tool mutants, which are defined as mutants that in themselves may not have direct agronomic application but may be useful genetic tools for crop improvement. Examples include the eui gene, hull colour mutants, normal genetic male steriles, and environmentally sensitive genetic male steriles. The environmentally sensitive genetic male steriles, especially those in which male sterility can be turned on or off by different photoperiod lengths, show promise for simplifying hybrid rice seed production both in China and the USA. Future applications of mutation in rice include induction of unusual endosperm starch types, plant types with fewer but more productive tillers, dominant dwarfs, dominant genetic male steriles, extremely early maturing mutants, nutritional mutants, and in vitro-derived mutants for tolerance to herbicides or other growth stresses. Refs, 4 figs, 2 tabs.

  8. Breeding graft-compatible Douglas-fir rootstocks (Pseudotsuga menziesii (Mirb.) Franco).

    Science.gov (United States)

    D.L. Copes

    1999-01-01

    A study encompassing 24 years was conducted to determine if a breeding program could produce highly graft-compatible rootstocks. Twenty-seven trees of apparent high graft compatibility were selected and crossed to produce 226 control-pollinated families. Seedlings were grown, field planted, and grafted with test scions. Graft unions from field tests were evaluated...

  9. Disentangling hexaploid genetics : towards DNA-informed breeding for postharvest performance in chrysanthemum

    NARCIS (Netherlands)

    Geest, van Geert

    2017-01-01

    DNA-informed selection can strongly improve the process of plant breeding. It requires the detection of DNA polymorphisms, calculation of genetic linkage, access to reliable phenotypes and methods to detect genetic loci associated with phenotypic traits of interest. Cultivated chrysanthemum is an

  10. ANALYSIS OF THE STRATEGY OF BREEDING OF TOMATO WITH DGENES FOR MULTILEVEL NARROWSHELVE HYDROPONIC SYSTEM

    OpenAIRE

    I. T. Balashova; S. M. Sirota; E. G. Kozar

    2015-01-01

    Using the sporophyte selection accelerates in three times the breeding process of new tomato forms with dgenes for the multilevel narrow-shelve hydroponic technology. Analysis two breeding approaches is presented in this paper: the individual selection of recombinant forms from populations and the target hybridization. The target hybridization increases the productivity of the plant and the weight of one fruit in two times.

  11. To breed or not to breed: a seabird's response to extreme climatic events.

    Science.gov (United States)

    Cubaynes, Sarah; Doherty, Paul F; Schreiber, E A; Gimenez, Olivier

    2011-04-23

    Intermittent breeding is an important life-history strategy that has rarely been quantified in the wild and for which drivers remain unclear. It may be the result of a trade-off between survival and reproduction, with individuals skipping breeding when breeding conditions are below a certain threshold. Heterogeneity in individual quality can also lead to heterogeneity in intermittent breeding. We modelled survival, recruitment and breeding probability of the red-footed booby (Sula sula), using a 19 year mark-recapture dataset involving more than 11,000 birds. We showed that skipping breeding was more likely in El-Niño years, correlated with an increase in the local sea surface temperature, supporting the hypothesis that it may be partly an adaptive strategy of birds to face the trade-off between survival and reproduction owing to environmental constraints. We also showed that the age-specific probability of first breeding attempt was synchronized among different age-classes and higher in El-Niño years. This result suggested that pre-breeders may benefit from lowered competition with experienced breeders in years of high skipping probabilities.

  12. Future prospects for ascochyta blight resistance breeding in cool season food legumes

    Directory of Open Access Journals (Sweden)

    Diego eRubiales

    2012-02-01

    Full Text Available Legume cultivation is strongly hampered by the occurrence of ascochyta blights. Strategies of control have been developed but only marginal successes have been achieved. Breeding for disease resistance is regarded the most cost efficient method of control. Significant genetic variation for disease resistance exists in most legume crops with numerous germplasm lines maintained, providing an excellent resource for plant breeders. Fast and reliable screening methods have been adjusted to fulfil breeding programmes needs. However, the complex inheritance controlled quantitatively by multiple genes, have been difficult to manipulate. Successful application of biotechnology to ascochyta blight resistance breeding in legume crops will facilitate both a good biological knowledge of the crops and of the mechanisms underlying resistance. The current focus in applied breeding is leveraging biotechnological tools to develop more and better markers to speed up the delivery of improved cultivars to the farmer. To date, however, progress in marker development and delivery of useful markers has been slow. The limited saturation of the genomic regions bearing putative QTLs in legume crops makes difficult to identify the most tightly-linked markers

  13. Recent Advances in our Understanding of Tocopherol Biosynthesis in Plants: An Overview of Key Genes, Functions, and Breeding of Vitamin E Improved Crops

    Science.gov (United States)

    Fritsche, Steffi; Wang, Xingxing; Jung, Christian

    2017-01-01

    Tocopherols, together with tocotrienols and plastochromanols belong to a group of lipophilic compounds also called tocochromanols or vitamin E. Considered to be one of the most powerful antioxidants, tocochromanols are solely synthesized by photosynthetic organisms including plants, algae, and cyanobacteria and, therefore, are an essential component in the human diet. Tocochromanols potent antioxidative properties are due to their ability to interact with polyunsaturated acyl groups and scavenge lipid peroxyl radicals and quench reactive oxygen species (ROS), thus protecting fatty acids from lipid peroxidation. In the plant model species Arabidopsis thaliana, the required genes for tocopherol biosynthesis and functional roles of tocopherols were elucidated in mutant and transgenic plants. Recent research efforts have led to new outcomes for the vitamin E biosynthetic and related pathways, and new possible alternatives for the biofortification of important crops have been suggested. Here, we review 30 years of research on tocopherols in model and crop species, with emphasis on the improvement of vitamin E content using transgenic approaches and classical breeding. We will discuss future prospects to further improve the nutritional value of our food. PMID:29194404

  14. The influence of reactor core parameters on effective breeding coefficient Keff

    Institute of Scientific and Technical Information of China (English)

    Liu Li-Po; Liu Yi-Bao; Wang Juan; Yang Bo; Zhang Tao

    2008-01-01

    The values of effective breeding coefficient Keff in a reactor core of nuclear power plant are calculated for different values of parameters (core structure, fuel assembly component) by using the Monte Carlo method. The obtained values of Keff are compared and analysed, which can provide theoretical basis for reactor design.

  15. Neural networks for predicting breeding values and genetic gains

    Directory of Open Access Journals (Sweden)

    Gabi Nunes Silva

    2014-12-01

    Full Text Available Analysis using Artificial Neural Networks has been described as an approach in the decision-making process that, although incipient, has been reported as presenting high potential for use in animal and plant breeding. In this study, we introduce the procedure of using the expanded data set for training the network. Wealso proposed using statistical parameters to estimate the breeding value of genotypes in simulated scenarios, in addition to the mean phenotypic value in a feed-forward back propagation multilayer perceptron network. After evaluating artificial neural network configurations, our results showed its superiority to estimates based on linear models, as well as its applicability in the genetic value prediction process. The results further indicated the good generalization performance of the neural network model in several additional validation experiments.

  16. Irradiation service for the vegetatively propagated crop breeding at the institute of radiation breeding

    International Nuclear Information System (INIS)

    Kukimura, Hisashi

    1984-01-01

    The entrusted irradiation for vegetatively propagating crops reached about 200 cases since 1962. As to the results, 109 cases which were able to be tracked by questionnaire and others were examined. When the number of cases for each crop was investigated, arbor crops and herbaceous crops were half and half, and in the arbor crops, fruit trees were overwhelmingly many, while in the herbaceous crops, potatoes were more than half, and the number of cases for rush also was many. As the rare examples, there were butterbur, medicinal plants and sugarcane. As the registered practical varieties, there were one case of rush and one case of Chinese mat grass, but in the arbor crops, there was none. The purpose has been mostly the breeding of new varieties, but there were the inactivation of viruses and the effect of insecticide. The aims of breeding have been early growth, high yield, disease resistance, dwarfness and so on. As the mutation actually obtained, the skin color of fruits, the flower color of rose and chrysanthemum, the short vines of potatoes, the quality of rush and so on. The clients were mostly public experiment stations. The method of irradiation and the problems for the future are reported. (Kako, I.)

  17. Climate Change May Alter Breeding Ground Distributions of Eastern Migratory Monarchs (Danaus plexippus) via Range Expansion of Asclepias Host Plants

    Science.gov (United States)

    Lemoine, Nathan P.

    2015-01-01

    Climate change can profoundly alter species’ distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months

  18. Climate change may alter breeding ground distributions of eastern migratory monarchs (Danaus plexippus via range expansion of Asclepias host plants.

    Directory of Open Access Journals (Sweden)

    Nathan P Lemoine

    Full Text Available Climate change can profoundly alter species' distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp. host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in

  19. Sensisivity and Uncertainty analysis for the Tritium Breeding Ratio of a DEMO Fusion reactor with a Helium cooled pebble bed blanket

    OpenAIRE

    Nunnenmann, Elena; Fischer, Ulrich; Stieglitz, Robert

    2016-01-01

    An uncertainty analysis was performed for the tritium breeding ratio (TBR) of a fusion power plant of the European DEMO type using the MCSEN patch to the MCNP Monte Carlo code. The breeding blanket was of the type Helium Cooled Pebble Bed (HCPB), currently under development in the European Power Plant Physics and Technology (PPPT) programme for a fusion power demonstration reactor (DEMO). A suitable 3D model of the DEMO reactor with HCPB blanket modules, as routinely used for blanket design c...

  20. Intellectual property rights, international trade and plant breeding

    NARCIS (Netherlands)

    Eaton, D.J.F.

    2013-01-01

    Seed is the physical embodiment of the invention of the plant breeder. Plant varieties thus constitute a special form of innovation, and an assessment of intellectual property right (IPR) systems needs to take this into account. This thesis concentrates on IPRs but breeders do have a number of means

  1. Status of biotechnology with emphasis on molecular techniques for mutation breeding in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Lapade, A.G.; Nazarea, T.Y.; Veluz, A.M.S.; Marbella, L.J.; Nato, A.Q.; Coloma, C.B. Jr.; Asencion, A.B. [Philippine Nuclear Research Institute, Commonwealth Avenue, Quezon (Philippines)

    2002-02-01

    This paper summarizes the status of biotechnology with emphasis on molecular techniques for plant breeding in the Philippines. Several molecular and in-vitro culture techniques are integrated in plant breeding for crop improvement at PNRI, UPLB, IRRI and PhilRice. At IRRI, PCR techniques, RFLP and RAPD, PCR techniques, RFLP and RAPD were developed to establish high density molecular maps, determine breadth and diversity of germplasm and characterize alien introgression. The molecular maps have identified DNA sequence of resistance genes of HYVs and NPTs to abiotic and biotic stresses, the major achievement is the development of high density molecular maps in rice with at least 2000 markers. The biotechnology program at PhilRice for varietal improvement includes: (1) utilization of molecular marker technology such gene mapping of desired traits in rice, analysis of genetic relationships of germplasm materials and breeding lines through DNA fingerprinting and genetic diversity studies and development and application of marker aided selection for disease resistance (RTD and BLB); (2) application of in-vitro techniques in the development of lines with tolerance to adverse conditions; (3) molecular cloning of important genes for RTD resistance; (4) genetic transformation for male sterility and resistance to sheath blight and stem borers; and (5) transfer of disease resistance from wild species to cultivated varieties. In IPB, molecular markers:microsatellites or SSR, AFLP and RGA are being used for mapping and diversity studies in coconut, mango, banana, mungbean, corn and tomato. Mutation breeding at PNRI using gamma radiation has resulted in the development of crop varieties with desirable traits. The use of AFLP coupled to PCR is being used to study polymorphism in plant variants of radiation-induced mutants of rice, pineapple and ornamentals. (author)

  2. Present state and problems of mutation breeding

    Energy Technology Data Exchange (ETDEWEB)

    Balint, A. (Agrartudomanyi Egyetem, Goedoelloe (Hungary))

    1983-09-01

    The major achievements and problems of mutation breeding are discussed according to recent international references. Examples for the production of microorganism resistant tobacco, maize, cabbage, disease resistant sugar cane and some freeze resistant plants are listed. Special opportunities offered by mutation to increase photosynthesis and to improve yields are discussed. The significance of the new techniques to produce induced mutants by means of tissue cultures, to fix N/sub 2/ for leguminosae and to affect the activities of N/sub 2/ fixing microorganisms is emphasized.

  3. Mutation breeding in vivo and in vitro in vegetatively propagated crops

    International Nuclear Information System (INIS)

    Tulmann Neto, A.; Latado, R.R.; Tsai, S.M.; Derbyshire, M.T.; Yemma, A.F.; Scarpare Filho, J.A.; Ceravolo, L.; Rossi, A.C.; Namekata, T.; Pompeu, J. Jr.; Figueiredo, J.O.; Pio, R.; Tobias Domingues, E.; Santos, P.C.; Boliani, A.

    2001-01-01

    Mutation breeding in vivo and/or in vitro in vegetatively propagated crops as well as somaclonal variation can be used in Brazil in several crops to increase the genetic variability in characteristics of high importance. This was the objective of this research using ornamentals, citrus and bananas. Somaclonal variants can also be useful in these crops, based on the preliminary results observed in banana (Mycosphaerella musicola); where a short plant variant was selected in Brazil and the mutant resistant to yellow sigatoka, selected in Venezuela, showed resistance also in Brazil. Despite the increase in genetic variability in M 1 V 4 generation obtained after in vitro irradiation of meristems in banana, mutants resistant or tolerant to Fusarium were not selected, perhaps due to the limited number of plants evaluated. In citrus the first results from yield trials showed that following bud irradiation, it was possible to select plants of interest, e.g. mutants with a reduced number of seeds in the fruits. In ornamentals mutants induced by gamma rays in this project were released to the farmers. The results obtained in this research showed that biotechnology is a powerful tool that can be used in several ways in association with mutation breeding. (author)

  4. Summary of current NEACRP views on fast reactor breeding assessment

    International Nuclear Information System (INIS)

    Barre, J.

    1980-01-01

    The global breeding gain (GBC), which may be divided into internal breeding gain (IBG) and external breeding gain (EGB), is dealt with for mixed oxide fuelled LMFBR. Relative contributions of core and blankets to GBG are indicated for three power levels (250, 500 and 1200 MWe). Reactor physics studies are performed to reduce uncertainties on GBC. The studies are of three types, depending on countries. The mock-up approach consists of measuring on one critical assembly, typical of the considered power reactor, the GBG at one time of life of the plant, usually the beginning of life configuration (absorbers in) and trying to obtain bias factors. Parametric analysis of the neutron balance and data adjustment in which global parameters of the neutron balance are measured systematically is the approach followed in the UK and France for all configurations of the reactor, especially for integral parameters related to GBG. Analysis of irradiated fuels involves the measurements of the variation of fuel isotopic compositions versus burn-up with two main goals: accurate measurement of captive ratios and global check of the GBG calculation. (UK)

  5. The ecological production of cleans stock-breeding problems

    International Nuclear Information System (INIS)

    Meldebekov, A.M.

    2002-01-01

    KazSRTIS have made researches on study of maintenance in cows' milk developed in Almaty's region, determination of heavy metal salts and radionuclides. It has been noted that maintenance of mercury, lead, cupper and zinc increased in suburb's housekeeping cows' milk, which was disposed nearly international highway and industry activities. It is known that entering radionuclides human organism happens by food chain 'soil - vegetable cover - animals product stock-breeding -person'. Animals transformer stern's plants energy at the in conclusion it allows to take the compare with initial vegetable exponent more ecological tidy products limits stream toxic elements in food series of person. It lets to study agricultural animals, how 'biological filter' in production ecological clean and healthy product of food. Changing structure and set stern's rationals, method contents the limit of animals stream manufacturing pollution from soil vegetable cover agricultural used in milk and in mead from 2 till 5 times. Utilisation tidy stern's in final period fatten meat cattle give possibility to clean the organs and tissue of animals which representative food's value from admixture to level, corresponding medical - hygienic standards. It is necessary to make analysis on compound investigation on the effect of radionuclides in agricultural animals, namely to utilize them, that really barrier migrate toxic elements in captured chain of person. The ways of solutions in ecological stock-breeding problems are next: to show up ecological tidy and ecological unsuccessful places; to study rules of transition in basic pollutions of food chains; toxic elements limitation rules in stock-breeding production; utilization manufactory-polluted territories from technological elements for stock-breeding

  6. Plant databases and data analysis tools

    Science.gov (United States)

    It is anticipated that the coming years will see the generation of large datasets including diagnostic markers in several plant species with emphasis on crop plants. To use these datasets effectively in any plant breeding program, it is essential to have the information available via public database...

  7. Application of gene targeting to designed mutation breeding of high-tryptophan rice.

    Science.gov (United States)

    Saika, Hiroaki; Oikawa, Akira; Matsuda, Fumio; Onodera, Haruko; Saito, Kazuki; Toki, Seiichi

    2011-07-01

    Site-directed mutagenesis via gene targeting (GT) based on homologous recombination is the ultimate mutation breeding technology because it enables useful information acquired from structural- and computational-based protein engineering to be applied directly to molecular breeding, including metabolic engineering, of crops. Here, we employed this rationale to introduce precise mutations in OASA2--an α-subunit of anthranilate synthase that is a key enzyme of tryptophan (Trp) biosynthesis in rice (Oryza sativa)--via GT, with subsequent selection of GT cells using a Trp analog. The expression level of OASA2 in plants homozygous and heterozygous for modified OASA2 was similar to that of nontransformants, suggesting that OASA2 transcription in GT plants was controlled in the same manner as endogenous OASA2, and that GT could lead to a lower risk of gene silencing than in conventional overexpression approaches. Moreover, we showed that enzymatic properties deduced from protein engineering or in vitro analysis could be reproduced in GT plants as evidenced by Trp accumulation levels. Interestingly, mature seeds of homozygous GT plants accumulated Trp levels 230-fold higher than in nontransformants without any apparent morphological or developmental changes. Thus, we have succeeded in producing a novel rice plant of great potential nutritional benefit for both man and livestock that could not have been selected using conventional mutagenesis approaches. Our results demonstrate the effectiveness of directed crop improvement by combining precision mutagenesis via GT with a knowledge of protein engineering.

  8. ANTIBACTERIAL ACTIVITY OF SOME WILD MEDICAL PLANTS EXTRACT TO ANTIBIOTIC RESISTANT ESCHERICHIA COLI

    Directory of Open Access Journals (Sweden)

    Lukáš Hleba

    2013-02-01

    Full Text Available Antibiotics are probably the most successful family of drugs so far developed for improving human health. Because of increasing resistance to antibiotics of many bacteria, plant extracts and plant compounds are of new interest as antiseptics and antimicrobial agents in medicine. In this study, we researched antimicrobial effects of extracts of some medical plants (Tussilagofarfara, Equisetum arvense, Sambucusnigra, Aesculushippocastanumand Taraxacumofficinale from Slovakia to antibiotic resistant and antibiotic sensitive bacteria isolated from milk of cows and mare, which were breeded in different conditions. Microorganisms which were used in this experiment we isolated from milk from conventional breeding of cows (tenE. coli strains and from ecological breeding of Lipicanmare (tenE. coli strains by sterile cotton swabs. For antibiotic susceptibility testing was used disc diffusion method according by EUCAST. After dried at room temperature we weighed 50 g of crushed medical plants (parts and it were to extract in 400 ml methanol for two weeks at room temperature. For antimicrobial susceptibility testing of medical plants extract blank discs with 6 mm diameter disc diffusion method was used. We determined that all Escherichia coli strains isolated from milk of conventional breeding of cows were resistant to ampicillin and chloramphenicol. We determined that all tested ampicillin and chloramphenicol resistant E. coli strains isolated from conventional breeding of cow showed susceptibility to all used medical plants extracts. In difference, we determined that antibiotic susceptible E. coli strains isolated from ecological breeding of Lipicanmare were susceptible to Tussilagofarfara extract only. From these results we could be conclude some observations, which could be important step in treatment of bacterial infections caused by antibiotic resistant bacteria and it could be important knowledge for treatment of livestock in conventional breeding

  9. Chemical mode control in nuclear power plant decommissioning during operation of technologies in individual radioactive waste processing plants

    International Nuclear Information System (INIS)

    Horvath, J.; Dugovic, L.

    1999-01-01

    Sewage treatment of nuclear power plant decommissioning is performed by system of sewage concentration in evaporator with formation of condensed rest, it means radioactive waste concentrate and breeding steam. During sewage treatment plant operation department of chemical mode performs chemical and radiochemical analysis of sewage set for treatment, chemical and radiochemical analysis of breeding steam condensate which is after final cleaning on ionization filter and fulfilling the limiting conditions released to environment; chemical and radiochemical analysis of heating steam condensate which is also after fulfilling the limiting conditions released to environment. Condensed radioactive concentrate is stored in stainless tanks and later converted into easy transportable and chemically stable matrix from the long term storage point of view in republic storage Mochovce. The article also refer to bituminous plant, vitrification plant, swimming pool decontamination plant of long term storage and operation of waste processing plant Bohunice

  10. Analysis of breed effects on semen traits in light horse, warmblood, and draught horse breeds.

    Science.gov (United States)

    Gottschalk, Maren; Sieme, Harald; Martinsson, Gunilla; Distl, Ottmar

    2016-05-01

    In the present study, systematic effects on semen quality traits were investigated in 381 stallions representing 22 breeds. All stallions were used for AI either at the Lower Saxon National Stud Celle or the North Rhine-Westphalian National Stud Warendorf. A total of 71,078 fresh semen reports of the years 2001 to 2014 were edited for analysis of gel-free volume, sperm concentration, total number of sperm, progressive motility, and total number of progressively motile sperm. Breed differences were studied for warmblood and light horse breeds of both national studs (model I) and for warmblood breeds and the draught horse breed Rhenish German Coldblood from the North Rhine-Westphalian National stud (model II) using mixed model procedures. The fixed effects of age class, year, and month of semen collection had significant influences on all semen traits in both analyses. A significant influence of the horse breed was found for all semen traits but gel-free volume in both statistical models. Comparing warmblood and light horse stallions of both national studs, we observed highest sperm concentrations, total numbers of sperm, and total numbers of progressively motile sperm in Anglo-Arabian stallions. The draught horse breed Rhenish German Coldblood had the highest least squares means for gel-free volume, whereas all other investigated semen traits were significantly lower in this breed compared to the warmblood stallions under study. The variance components among stallions within breeds were significant for all semen traits and accounted for 40% to 59% of the total variance. The between-breed-variance among stallions was not significant underlining the similar size of the random stallion effect in each of the horse breeds analyzed here. In conclusion, breed and stallion are accounting for a significant proportion of the variation in semen quality. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Breeding performance in the Italian chicken breed Mericanel della Brianza

    Directory of Open Access Journals (Sweden)

    Stefano P. Marelli

    2010-11-01

    Full Text Available In Italy, 90 local avian breeds were described, the majority (61% were classified extinct and only 8.9 % still diffused. Therefore, efforts for conservation of Italian avian breeds are urgently required. The aim of this study was to record the breeding performance of the Italian breed Mericanel della Brianza and multiply a small population, in order to develop a conservation program. Fourteen females and 8 males were available at the beginning of the reproductive season in 2009 and organized in 8 families (1 male/1-2 females kept in floor pens. Birds received a photoperiod of 14L:10D and fed ad libitum. Breeding performance was recorded from March to June. Egg production and egg weight were recorded daily; eggs were set every 2 weeks and fertility, embryo mortality and hatchability were recorded. Mean egg production was 37% and mean egg weight was 34±3.49 g. High fertility values were recorded in the first three settings, from 94 to 87%, and the overall mean fertility value was 81.6%. Overall hatchability was only 49.6% due to a high proportion of dead embryos. Embryo mortality occurred mainly between day 2 and 7 of incubation and during hatch. Highest hatchability values were recorded in setting 1 and 2, 69 and 60% respectively, and a great decrease was found in the following settings. Great variations in egg production, fertility, hatchability and embryo mortality were found among families. The present results are the basic knowledge on reproductive parameters necessary to improve the reproductive efficiency of the breed within a conservation plan.

  12. Floral features, pollination biology and breeding system of Chloraea membranacea Lindl. (Orchidaceae: Chloraeinae).

    Science.gov (United States)

    Sanguinetti, Agustin; Buzatto, Cristiano Roberto; Pedron, Marcelo; Davies, Kevin L; Ferreira, Pedro Maria de Abreu; Maldonado, Sara; Singer, Rodrigo B

    2012-12-01

    The pollination biology of very few Chloraeinae orchids has been studied to date, and most of these studies have focused on breeding systems and fruiting success. Chloraea membranacea Lindl. is one of the few non-Andean species in this group, and the aim of the present contribution is to elucidate the pollination biology, functional floral morphology and breeding system in native populations of this species from Argentina (Buenos Aires) and Brazil (Rio Grande do Sul State). Floral features were examined using light microscopy, and scanning and transmission electron microscopy. The breeding system was studied by means of controlled pollinations applied to plants, either bagged in the field or cultivated in a glasshouse. Pollination observations were made on natural populations, and pollinator behaviour was recorded by means of photography and video. Both Argentinean and Brazilian plants were very consistent regarding all studied features. Flowers are nectarless but scented and anatomical analysis indicates that the dark, clavate projections on the adaxial labellar surface are osmophores (scent-producing glands). The plants are self-compatible but pollinator-dependent. The fruit-set obtained through cross-pollination and manual self-pollination was almost identical. The main pollinators are male and female Halictidae bees that withdraw the pollinarium when leaving the flower. Remarkably, the bees tend to visit more than one flower per inflorescence, thus promoting self-pollination (geitonogamy). Fruiting success in Brazilian plants reached 60·78 % in 2010 and 46 % in 2011. Some pollinarium-laden female bees were observed transferring pollen from the carried pollinarium to their hind legs. The use of pollen by pollinators is a rare record for Orchidaceae in general. Chloraea membrancea is pollinated by deceit. Together, self-compatibility, pollinarium texture, pollinator abundance and behaviour may account for the observed high fruiting success. It is suggested that

  13. Mapping quantitative trait loci in plant breeding populations : Use of parental haplotype sharing

    NARCIS (Netherlands)

    Jansen, Ritsert C.; Jannink, Jean-Luc; Beavis, William D.

    2003-01-01

    Applied breeding programs evaluate large numbers of progeny derived from multiple related crosses for a wide range of agronomic traits and for tens to hundreds of molecular markers. This study was conducted to determine how these phenotypic and genetic data could be used for routinely mapping

  14. Strategies for Selecting Crosses Using Genomic Prediction in Two Wheat Breeding Programs.

    Science.gov (United States)

    Lado, Bettina; Battenfield, Sarah; Guzmán, Carlos; Quincke, Martín; Singh, Ravi P; Dreisigacker, Susanne; Peña, R Javier; Fritz, Allan; Silva, Paula; Poland, Jesse; Gutiérrez, Lucía

    2017-07-01

    The single most important decision in plant breeding programs is the selection of appropriate crosses. The ideal cross would provide superior predicted progeny performance and enough diversity to maintain genetic gain. The aim of this study was to compare the best crosses predicted using combinations of mid-parent value and variance prediction accounting for linkage disequilibrium (V) or assuming linkage equilibrium (V). After predicting the mean and the variance of each cross, we selected crosses based on mid-parent value, the top 10% of the progeny, and weighted mean and variance within progenies for grain yield, grain protein content, mixing time, and loaf volume in two applied wheat ( L.) breeding programs: Instituto Nacional de Investigación Agropecuaria (INIA) Uruguay and CIMMYT Mexico. Although the variance of the progeny is important to increase the chances of finding superior individuals from transgressive segregation, we observed that the mid-parent values of the crosses drove the genetic gain but the variance of the progeny had a small impact on genetic gain for grain yield. However, the relative importance of the variance of the progeny was larger for quality traits. Overall, the genomic resources and the statistical models are now available to plant breeders to predict both the performance of breeding lines per se as well as the value of progeny from any potential crosses. Copyright © 2017 Crop Science Society of America.

  15. Improvement of large quantity breeding method for making radiation breeding efficient and development of cell culture techniques, (3)

    International Nuclear Information System (INIS)

    Hogetsu, Daisuke; Koyama, Motoko; Minami, Harufumi

    1990-01-01

    In the creation of useful mutant plants using cell culture techniques, the examination on the effectiveness of selecting useful mutation at cell level and the possibility of raising the selection efficiency by irradiation was aimed at. The experimental method is described. The young plants which accumulate proline were obtained. The cells which showed the resistance to hydroxyproline also showed the resistance to salt. In the improvement of redifferentiation ability by irradiation, the method of fixing IAA in the tissues of azuki plants was examined. The possibility of examining the change of IAA due to irradiation by microautoradiography was obtained. It is intended to examine the distribution of IAA in the formation of adventitious roots from the epicotyl of azuki plants. In the introduction of cell engineering techniques in radiation breeding, it is the objective to introduce the genes which resist sour rot that Brassica campestris, Brassica napus, Brassica oleracea and so on have by utilizing cell fusion process. The fusion of the reproduction cells of Brassica napus pollens and the cell protoplasts of Brassica campestris was successfully carried out. The possibility of new asymmetric fusion in Brassica napus was shown. (K.I.)

  16. The development of (new) in vivo and in vitro techniques of significance for mutation breeding of vegetatively propagated crops

    International Nuclear Information System (INIS)

    Broertjes, C.

    1975-01-01

    Mutation breeding in vegetatively propagated plants is of great potential value 1) to improve the leading results of cross-breeding by altering one or a few important characters, without the rest of the genotype, 2) to induce variability where none is existing or difficult to be introduced in highly developed species and 3) to induce variability in sterile crops or in apomicts. One of the main stumbling-blocks is the chimera formation following the irradiation of the multicellular apices in buds and the subsequent prolonged time and increased labour needed before a mutation can be detected, recovered and compared with the existing cultivars. This problem can be solved by producing plants, ultimately originating from one mutated cell, resulting in solid mutants. The in vivo adventitious bud technique, using detached leaves, has proven its value for mutation breeding. It has been demonstrated in several species that commercial results can be obtained in a relatively short time. Experiments are underway to study the factors which control the process of adventitious bud formation and to make more crops accessible to this method. So far, however, with little success. Many and increasingly more crops can be propagated clonally by in vitro methods, using plant parts (explants of leaves, flowers, flower stalk), callus or other plant material. In some cases it is expected that adventitious plantlets also will originate from one cell. In other cases it is to be investigated which method is of potential value for being used in a mutation breeding programme. In a cooperative project (C. Broertjes, S. Roest and Miss G.S. Bokelmann) it is under investigation which plant part (young flowerheads, flower stalks and leaves) is to be preferred in Chrysanthemum morifolium. Preliminary results will be presented at the meeting. (author)

  17. Genomic Prediction of Seed Quality Traits Using Advanced Barley Breeding Lines

    Science.gov (United States)

    Nielsen, Nanna Hellum; Jahoor, Ahmed; Jensen, Jens Due; Orabi, Jihad; Cericola, Fabio; Edriss, Vahid; Jensen, Just

    2016-01-01

    Genomic selection was recently introduced in plant breeding. The objective of this study was to develop genomic prediction for important seed quality parameters in spring barley. The aim was to predict breeding values without expensive phenotyping of large sets of lines. A total number of 309 advanced spring barley lines tested at two locations each with three replicates were phenotyped and each line was genotyped by Illumina iSelect 9Kbarley chip. The population originated from two different breeding sets, which were phenotyped in two different years. Phenotypic measurements considered were: seed size, protein content, protein yield, test weight and ergosterol content. A leave-one-out cross-validation strategy revealed high prediction accuracies ranging between 0.40 and 0.83. Prediction across breeding sets resulted in reduced accuracies compared to the leave-one-out strategy. Furthermore, predicting across full and half-sib-families resulted in reduced prediction accuracies. Additionally, predictions were performed using reduced marker sets and reduced training population sets. In conclusion, using less than 200 lines in the training set can result in low prediction accuracy, and the accuracy will then be highly dependent on the family structure of the selected training set. However, the results also indicate that relatively small training sets (200 lines) are sufficient for genomic prediction in commercial barley breeding. In addition, our results indicate a minimum marker set of 1,000 to decrease the risk of low prediction accuracy for some traits or some families. PMID:27783639

  18. Genomic Prediction of Seed Quality Traits Using Advanced Barley Breeding Lines.

    Directory of Open Access Journals (Sweden)

    Nanna Hellum Nielsen

    Full Text Available Genomic selection was recently introduced in plant breeding. The objective of this study was to develop genomic prediction for important seed quality parameters in spring barley. The aim was to predict breeding values without expensive phenotyping of large sets of lines. A total number of 309 advanced spring barley lines tested at two locations each with three replicates were phenotyped and each line was genotyped by Illumina iSelect 9Kbarley chip. The population originated from two different breeding sets, which were phenotyped in two different years. Phenotypic measurements considered were: seed size, protein content, protein yield, test weight and ergosterol content. A leave-one-out cross-validation strategy revealed high prediction accuracies ranging between 0.40 and 0.83. Prediction across breeding sets resulted in reduced accuracies compared to the leave-one-out strategy. Furthermore, predicting across full and half-sib-families resulted in reduced prediction accuracies. Additionally, predictions were performed using reduced marker sets and reduced training population sets. In conclusion, using less than 200 lines in the training set can result in low prediction accuracy, and the accuracy will then be highly dependent on the family structure of the selected training set. However, the results also indicate that relatively small training sets (200 lines are sufficient for genomic prediction in commercial barley breeding. In addition, our results indicate a minimum marker set of 1,000 to decrease the risk of low prediction accuracy for some traits or some families.

  19. What drives cooperative breeding?

    Directory of Open Access Journals (Sweden)

    Walter D Koenig

    2017-06-01

    Full Text Available Cooperative breeding, in which more than a pair of conspecifics cooperate to raise young at a single nest or brood, is widespread among vertebrates but highly variable in its geographic distribution. Particularly vexing has been identifying the ecological correlates of this phenomenon, which has been suggested to be favored in populations inhabiting both relatively stable, productive environments and in populations living under highly variable and unpredictable conditions. Griesser et al. provide a novel approach to this problem, performing a phylogenetic analysis indicating that family living is an intermediate step between nonsocial and cooperative breeding birds. They then examine the ecological and climatic conditions associated with these different social systems, concluding that cooperative breeding emerges when family living is favored in highly productive environments, followed secondarily by selection for cooperative breeding when environmental conditions deteriorate and within-year variability increases. Combined with recent work addressing the fitness consequences of cooperative breeding, Griesser et al.'s contribution stands to move the field forward by demonstrating that the evolution of complex adaptations such as cooperative breeding may only be understood when each of the steps leading to it are identified and carefully integrated.

  20. indigenous cattle breeds

    African Journals Online (AJOL)

    Received 31 August 1996; accepted 20 March /998. Mitochondrial DNA cleavage patterns from representative animals of the Afrikaner and Nguni sanga cattle breeds, indigenous to Southern Africa, were compared to the mitochondrial DNA cleavage patterns of the Brahman (zebu) and the Jersey. (taurine) cattle breeds.

  1. Genomic dairy cattle breeding

    DEFF Research Database (Denmark)

    Mark, Thomas; Sandøe, Peter

    2010-01-01

    the thoughts of breeders and other stakeholders on how to best make use of genomic breeding in the future. Intensive breeding has played a major role in securing dramatic increases in milk yield since the Second World War. Until recently, the main focus in dairy cattle breeding was on production traits...... it less accountable to the concern of private farmers for the welfare of their animals. It is argued that there is a need to mobilise a wide range of stakeholders to monitor developments and maintain pressure on breeding companies so that they are aware of the need to take precautionary measures to avoid...

  2. Accuracy of Genomic Prediction in a Commercial Perennial Ryegrass Breeding Program

    Directory of Open Access Journals (Sweden)

    Dario Fè

    2016-11-01

    Full Text Available The implementation of genomic selection (GS in plant breeding, so far, has been mainly evaluated in crops farmed as homogeneous varieties, and the results have been generally positive. Fewer results are available for species, such as forage grasses, that are grown as heterogenous families (developed from multiparent crosses in which the control of the genetic variation is far more complex. Here we test the potential for implementing GS in the breeding of perennial ryegrass ( L. using empirical data from a commercial forage breeding program. Biparental F and multiparental synthetic (SYN families of diploid perennial ryegrass were genotyped using genotyping-by-sequencing, and phenotypes for five different traits were analyzed. Genotypes were expressed as family allele frequencies, and phenotypes were recorded as family means. Different models for genomic prediction were compared by using practically relevant cross-validation strategies. All traits showed a highly significant level of genetic variance, which could be traced using the genotyping assay. While there was significant genotype × environment (G × E interaction for some traits, accuracies were high among F families and between biparental F and multiparental SYN families. We have demonstrated that the implementation of GS in grass breeding is now possible and presents an opportunity to make significant gains for various traits.

  3. Across Breed QTL Detection and Genomic Prediction in French and Danish Dairy Cattle Breeds

    DEFF Research Database (Denmark)

    van den Berg, Irene; Guldbrandtsen, Bernt; Hozé, C

    Our objective was to investigate the potential benefits of using sequence data to improve across breed genomic prediction, using data from five French and Danish dairy cattle breeds. First, QTL for protein yield were detected using high density genotypes. Part of the QTL detected within breed was...

  4. Cacao breeding in Bahia, Brazil - strategies and results

    Directory of Open Access Journals (Sweden)

    Uilson Vanderlei Lopes

    2011-01-01

    Full Text Available Cacao was introduced in Bahia in 1756, becoming later the largest producer state in the country. In order to supportthe planting of cacao in the region, a breeding program was established by CEPEC at the beginning of the 1970s. For a long time,the program consisted in testing new hybrids (full-sibs and releasing a mixture of the best ones to farmers. Lately, particularly afterthe witches´ broom arrival in the region, in 1989, recurrent breeding strategies were implemented, aiming mainly the developmentof clones. From 1993 to 2010, more than 500 progenies, accumulating 30 thousand trees, were developed by crossing many parentswith resistance to witches´ broom, high yield and other traits. In this period, more than 500 clones were put in trials and 39 clonesand 3 hybrids were released to farmers. In this paper the strategies and results achieved by the program are reviewed. Overall theprogram has good interface with pathology and genomic programs.

  5. Genomic Prediction of Single Crosses in the Early Stages of a Maize Hybrid Breeding Pipeline

    Directory of Open Access Journals (Sweden)

    Dnyaneshwar C. Kadam

    2016-11-01

    Full Text Available Prediction of single-cross performance has been a major goal of plant breeders since the beginning of hybrid breeding. Recently, genomic prediction has shown to be a promising approach, but only limited studies have examined the accuracy of predicting single-cross performance. Moreover, no studies have examined the potential of predicting single crosses among random inbreds derived from a series of biparental families, which resembles the structure of germplasm comprising the initial stages of a hybrid maize breeding pipeline. The main objectives of this study were to evaluate the potential of genomic prediction for identifying superior single crosses early in the hybrid breeding pipeline and optimize its application. To accomplish these objectives, we designed and analyzed a novel population of single crosses representing the Iowa Stiff Stalk synthetic/non-Stiff Stalk heterotic pattern commonly used in the development of North American commercial maize hybrids. The performance of single crosses was predicted using parental combining ability and covariance among single crosses. Prediction accuracies were estimated using cross-validation and ranged from 0.28 to 0.77 for grain yield, 0.53 to 0.91 for plant height, and 0.49 to 0.94 for staygreen, depending on the number of tested parents of the single cross and genomic prediction method used. The genomic estimated general and specific combining abilities showed an advantage over genomic covariances among single crosses when one or both parents of the single cross were untested. Overall, our results suggest that genomic prediction of single crosses in the early stages of a hybrid breeding pipeline holds great potential to redesign hybrid breeding and increase its efficiency.

  6. Combining Maize Base Germplasm for Cold Tolerance Breeding

    OpenAIRE

    Rodríguez Graña, Víctor Manuel; Butrón Gómez, Ana María; Sandoya Miranda, Germán; Ordás Pérez, Amando; Revilla Temiño, Pedro

    2007-01-01

    Early planting can contribute to increased grain yield of maize (Zea mays L.), but it requires cold tolerance. A limited number of cold-tolerant maize genotypes have been reported. The objectives of this study were to test a new strategy to improve cold tolerance in maize searching for broad x narrow genetic combinations that may be useful as base populations for breeding programs, to compare genotype performance under cold-controlled and field conditions, and to establish the major genetic e...

  7. Tritium breeding materials

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Johnson, C.E.; Abdou, M.

    1984-03-01

    Tritium breeding materials are essential to the operation of D-T fusion facilities. Both of the present options - solid ceramic breeding materials and liquid metal materials are reviewed with emphasis not only on their attractive features but also on critical materials issues which must be resolved

  8. Tritium breeding materials

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Johnson, C.E.; Abdou, M.A.

    1984-01-01

    Tritium breeding materials are essential to the operation of D-T fusion facilities. Both of the present options - solid ceramic breeding materials and liquid metal materials are reviewed with emphasis not only on their attractive features but also on critical materials issues which must be resolved

  9. The influence of cross-breeding Zlotnicka Spotted native breed sows ...

    African Journals Online (AJOL)

    To sum up, it is possible to say that the raw meat of Zlotnicka Spotted pigs and their cross-breeds with Duroc and Polish Large White breeds is characterised by good quality and because of its considerable intramuscular fat content, it has a high culinary and processing value, especially for ripening products. Key words: Pigs ...

  10. KASPTM genotyping technology and its use in gene­tic-breeding programs (a study of maize

    Directory of Open Access Journals (Sweden)

    Н. Е. Волкова

    2017-06-01

    Full Text Available Purpose. To review publications relating to the key point of the genotyping technology that is competitive allele-specific polymerase chain reaction (which is called now Kompetitive Allele Specific PCR, KASPTM and its use in various genetic-breeding researching (a study of maize. Results. The essence of KASP-genotyping, its advantages are highlighted. The requirements for matrix DNA are presented, since the success of the KASP-analysis depends on its qua­lity and quantity. Examples of global projects of plant breeding for increasing crop yields using the KASP genoty­ping technology are given. The results of KASP genotyping and their introduction into breeding and seed production, in particular, for determining genetic identity, genetic purity, origin check, marker-assisted selection, etc. are presented using maize as an example. It is demonstrated how geno­mic selection according to KASP genotyping technology can lead to rapid genetic enhancement of drought resistance in maize. Comparison of the effectiveness of creating lines with certain traits (for example, combination of high grain yield and drought resistance using traditional breeding approaches (phenotype selection and molecular genetic methods (selection by markers was proved that it takes four seasons (two years in case of greenhouses in order to unlock the potential of the plant genotype using traditional self-pollination, test-crossing and definitions, while using markers, the population was enriched with target alleles during one season. At the same time, there was no need for a stress factor. Conclusions. KASP genotyping technology is a high-precision and effective tool for modern genetics and breeding, which is successfully used to study genetic diversity, genetic relationship, population structure, gene­tic identity, genetic purity, origin check, quantitative locus mapping, allele mapping, marker-assisted selection, marker-assisted breeding. It is expedient and timely to

  11. Genetics and biology of cytoplasmic male sterility (CMS) and its applications in forage and turf grass breeding

    OpenAIRE

    Islam Mohamed Shofiqul; Studer Bruno; Møller Ian Max; Asp Torben

    2014-01-01

    Hybrid breeding can exploit heterosis and thus offers opportunities to maximize yield quality and resistance traits in crop species. Cytoplasmic male sterility (CMS) is a widely applied tool for efficient hybrid seed production. Encoded in the mitochondrial genome CMS is maternally inherited and thus it can be challenging to apply in breeding schemes of allogamous self incompatible plant species such as perennial ryegrass. Starting with a general introduction to the origin and the function of...

  12. Mutation breeding of bulb crops by means of radioactive irradiation and other methods

    International Nuclear Information System (INIS)

    Alkema, H.Y.

    1974-01-01

    Results of mutation breeding of bulb crops by means of radioactive irradiation, colchicine and heat treatment are discussed. The optimal dose of X radiation is stated. Mutation frequency was low; it is suggested to apply radiation on plant material that is propagated by way of adventitious buds

  13. From plant genomes to phenotypes

    OpenAIRE

    Bolger, Marie; Gundlach, Heidrun; Scholz, Uwe; Mayer, Klaus; Usadel, Björn; Schwacke, Rainer; Schmutzer, Thomas; Chen, Jinbo; Arend, Daniel; Oppermann, Markus; Weise, Stephan; Lange, Matthias; Fiorani, Fabio; Spannagl, Manuel

    2017-01-01

    Recent advances in sequencing technologies have greatly accelerated the rate of plant genome and applied breeding research. Despite this advancing trend, plant genomes continue to present numerous difficulties to the standard tools and pipelines not only for genome assembly but also gene annotation and downstream analysis.Here we give a perspective on tools, resources and services necessary to assemble and analyze plant genomes and link them to plant phenotypes.

  14. Radiation induced mutations for plant selection

    International Nuclear Information System (INIS)

    Brunner, H.

    1994-01-01

    The successful use of plant breeding for improving crops requires the existence of genetic variation of useful traits. Unfortunately, the desired variation is often lacking. However, radiation can be used to induce mutations and thereby generate genetic variation from which desired mutants may be selected. Mutation induction has become a proven way of creating variation within a crop variety. It offers the possibility of inducing desired attributes that either cannot be expressed in nature or have been lost during evolution. More than 1700 mutant cultivars of crop plants with significantly improved attributes such as increased yield, improved quality, disease and stress resistance, have been released worldwide in the last thirty years. The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture has contributed to these achievements through the promotion of research and development in mutation breeding techniques using nuclear and related biotechnological methods and the provision of in plant breeding is then transferred to Member States of the IAEA and the FAO through training in mutation breeding methods and the provision of technical advice. Moreover, radiation treatment services are provided to foster applications of nuclear techniques in crop improvement programmes of member states and more specifically to render direct support to plant breeders by efficient generation of mutations. Plant materials are standardized prior to radiation exposure to warrant reproducibility of the induced effects within practical limits and a radiosensitivity test is implemented to affirm useful doses for applied objectives of a request. This review deals with irradiation methods applied at the IAEA laboratories for the efficient induction of mutations in seeds, vegetative propagules and tissue and cell cultures and the establishment of genetically variable populations upon which selection of desired traits can be based. 3 tabs., 18 refs. (author)

  15. Principle and application of plant mutagenesis in crop improvement: a review

    Directory of Open Access Journals (Sweden)

    Yusuff Oladosu

    2016-01-01

    Full Text Available The first step in plant breeding is to identify suitable genotypes containing the desired genes among existing varieties, or to create one if it is not found in nature. In nature, variation occurs mainly as a result of mutations and without it, plant breeding would be impossible. In this context, the major aim in mutation-based breeding is to develop and improve well-adapted plant varieties by modifying one or two major traits to increase their productivity or quality. Both physical and chemical mutagenesis is used in inducing mutations in seeds and other planting materials. Then, selection for agronomic traits is done in the first generation, whereby most mutant lines may be discarded. The agronomic traits are confirmed in the second and third generations through evident phenotypic stability, while other evaluations are carried out in the subsequent generations. Finally, only the mutant lines with desirable traits are selected as a new variety or as a parent line for cross breeding. New varieties derived by induced mutatgenesis are used worldwide: rice in Vietnam, Thailand, China and the United States; durum wheat in Italy and Bulgaria; barley in Peru and European nations; soybean in Vietnam and China; wheat in China; as well as leguminous food crops in Pakistan and India. This paper integrates available data about the impact of mutation breeding-derived crop varieties around the world and highlights the potential of mutation breeding as a flexible and practicable approach applicable to any crop provided that appropriate objectives and selection methods are used.

  16. Breeding for cuticle-associated traits in crop species: traits, targets, and strategies.

    Science.gov (United States)

    Petit, Johann; Bres, Cécile; Mauxion, Jean-Philippe; Bakan, Bénédicte; Rothan, Christophe

    2017-11-09

    Improving crop productivity and quality while promoting sustainable agriculture have become major goals in plant breeding. The cuticle is a natural film covering the aerial organs of plants and consists of lipid polyesters covered and embedded with wax. The cuticle protects plants against water loss and pathogens and affects traits with strong impacts on crop quality such as, for horticultural crops, fruit brightness, cracking, russeting, netting, and shelf life. Here we provide an overview of the most important cuticle-associated traits that can be targeted for crop improvement. To date, most studies on cuticle-associated traits aimed at crop breeding have been done on fleshy fruits. Less information is available for staple crops such as rice, wheat or maize. Here we present new insights into cuticle formation and properties resulting from the study of genetic resources available for the various crop species. Our review also covers the current strategies and tools aimed at exploiting available natural and artificially induced genetic diversity and the technologies used to transfer the beneficial alleles affecting cuticle-associated traits to commercial varieties. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Building A NGS Genomic Resource: Towards Molecular Breeding In L. Perenne

    DEFF Research Database (Denmark)

    Ruttink, Tom; Roldán-Ruiz, Isabel; Asp, Torben

    To advance the application of molecular breeding in Lolium perenne, we have generated a sequence resource to facilitate gene discovery and SNP marker development. Illumina GAII transcriptome sequencing was performed on meristem-enriched samples of 14 Lolium genotypes. De novo assemblies for indiv......To advance the application of molecular breeding in Lolium perenne, we have generated a sequence resource to facilitate gene discovery and SNP marker development. Illumina GAII transcriptome sequencing was performed on meristem-enriched samples of 14 Lolium genotypes. De novo assemblies...... of SNP markers in selected candidate genes. In parallel, a germplasm collection of 602 Lolium genotypes was established and is being phenotyped for plant architecture, reproductive characteristics, flowering time, and forage quality traits. We will test through association genetics whether phenotypic...

  18. Inclusion and difusion studies of D in fusion breeding blanket candidate materials

    Energy Technology Data Exchange (ETDEWEB)

    Fan, L.

    2015-07-01

    Deuterium-Tritium (D-T) reaction is the most practical fusion reaction on the way to harness fusion energy. As tritium presents trace quantities on Earth [1], tritium fuel is essential to be generated simultaneously with the D-T reaction in a commerical fusion power plant. Tritium can be obtained in the lithium contained breeding blanket as a transmutation product of nuclear reaction 6Li (n, a)T. Li2T iO3 is considered to be one promising candidate solid tritium breeder material, due to its high lithium density, low activation, compatiblity with structure materials and high chemical stability. The tritium generated in Li2T iO3 breeding blanket needs to be collected and recycled back to the fusion reaction. Therefore, the study of the diffusion characteristic of breeder material Li2T iO3 is necessary to determine tritium mobility and tritium extraction efficiency. In order to study tritium release mechanism of Li2T iO3 breeding material in a fusion power plant environment, a fusion like neutron spectrum is essential while it is now not availble in any laboratory. One alternative is using ion accelerator or implantor to get energetic hydrogenic (H,D,T) ions impacting on breeding material, to simulate the tritium distribution situation. Because of the radioactive property of tritium which will complicate processing procedure, another isotope of hydrogen Deuterium is actually used to be studied. The defect structure in Li2T iO3, due to reactor exposure to fusion generated particles and ? ray irradiation, is achieved by energetic Ti ions. SRIM program is implemented to simulate the D ion or Ti ion distributions after bombarding, as well as the defects. X-ray diffraction technique helps to identify phase compositions. Transmission electron microscopy technique is used to observe the microstructures (Author)

  19. Genetic diversity of dog breeds: within-breed diversity comparing genealogical and molecular data.

    Science.gov (United States)

    Leroy, G; Verrier, E; Meriaux, J C; Rognon, X

    2009-06-01

    The genetic diversity of 61 dog breeds raised in France was investigated. Genealogical analyses were performed on the pedigree file of the French kennel club. A total of 1514 dogs were also genotyped using 21 microsatellite markers. For animals born from 2001 to 2005, the average coefficient of inbreeding ranged from 0.2% to 8.8% and the effective number of ancestors ranged from 9 to 209, according to the breed. The mean value of heterozygosity was 0.62 over all breeds (range 0.37-0.77). At the breed level, few correlations were found between genealogical and molecular parameters. Kinship coefficients and individual similarity estimators were, however, significantly correlated, with the best mean correlation being found for the Lynch & Ritland estimator (r = 0.43). According to both approaches, it was concluded that special efforts should be made to maintain diversity for three breeds, namely the Berger des Pyrénées, Braque Saint-Germain and Bull Terrier.

  20. Biotechnology in breeding of industrial oil crops - the present status and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Friedt, W.

    1988-02-01

    With increasing 'overproduction' of food supplies it is frequently emphasized now that agricultural production of industrial 'non-food' raw materials should be intensified. Many adapted crop plants are already available for producing various kinds of natural materials. Particularly the large group of oil-crops could be used even more widely for providing vegetable oils. The example of rape-seed (Brassica Napus) clearly demonstrates that the composition of vegetable oil can be completely reconstructed according to the wishes of manufacturers or consumers, even by conventional breeding methods. Rapid and efficient breeding is expected by application of modern 'biotechnology'. Where variation for a character like oil-quality is limited within a crop plnt, a wide range of alien wild species is available for broadening genetic variation of plants like rapeseed, sunflower (Helianthus annuus) or linseed (flax, Linum usitatissimum). Exploration of such 'new' genetic variation is nowadays facilitated by in vitro embryo culture or cell (protoplast)-fusion techniques. Such biotechniques can help to overcome crossing barriers between species (genus Brassica). In other important oilcrops like linseed or sunflower, biotechniques can now be applied profitably. Protoplasts can be regenerated in Linum, so that asexual interspecific hybrids can principally be produced in that way. Alien species of sunflower and lineseed show a wide range of variation regarding agronomically important characters, particularly of oil composition and disease resistance. This alien genetic variation can be used for breeding new disease resistant oil-crop cultivars. Other techniques, like the 'haploidy-method' can help to accelerate a breeding programme, ultimately leading to a homozygous line or cultivar.

  1. Genomic prediction in a breeding program of perennial ryegrass

    DEFF Research Database (Denmark)

    Fé, Dario; Ashraf, Bilal; Greve-Pedersen, Morten

    2015-01-01

    We present a genomic selection study performed on 1918 rye grass families (Lolium perenne L.), which were derived from a commercial breeding program at DLF-Trifolium, Denmark. Phenotypes were recorded on standard plots, across 13 years and in 6 different countries. Variants were identified...... this set. Estimated Breeding Value and prediction accuracies were calculated trough two different cross-validation schemes: (i) k-fold (k=10); (ii) leaving out one parent combination at the time, in order to test for accuracy of predicting new families. Accuracies ranged between 0.56 and 0.97 for scheme (i....... A larger set of 1791 F2s were used as training set to predict EBVs of 127 synthetic families (originated from poly-crosses between 5-11 single plants) for heading date and crown rust resistance. Prediction accuracies were 0.93 and 0.57 respectively. Results clearly demonstrate considerable potential...

  2. Varietal improvement of greengram and blackgram through mutation breeding

    International Nuclear Information System (INIS)

    Nalampan, Arwooth.

    1982-01-01

    This paper reports the progress results of the on-going programme of the research work on induced mutation breeding of greengram and blackgram in continuing that was reported in the First National Conference on the Use of Isotope and Radiation Applications in Agriculture (15-17 Dec 1980). Preliminary field data revealed the possibility of obtaining some better agronomic traits from M 4 plant of both mungbean and blackgram. However, further studies are needed to confirm these findings. It may be too early to say whether these desirable mutants can be utilized directly in commercial production or incorporated into conventional breeding programme. At least, collection of material with promising agronomic characters has been enriched. In addition, other physiological traits such as drought tolerance, photoperiod insensitivity and resistances to major diseases will be tested in the future as special techniques needed for evaluation are not available at present

  3. Breeding for Increased Water Use Efficiency in Corn (Maize) Using a Low-altitude Unmanned Aircraft System

    Science.gov (United States)

    Shi, Y.; Veeranampalayam-Sivakumar, A. N.; Li, J.; Ge, Y.; Schnable, J. C.; Rodriguez, O.; Liang, Z.; Miao, C.

    2017-12-01

    Low-altitude aerial imagery collected by unmanned aircraft systems (UAS) at centimeter-level spatial resolution provides great potential to collect high throughput plant phenotyping (HTP) data and accelerate plant breeding. This study is focused on UAS-based HTP for breeding increased water use efficiency in corn in eastern Nebraska. The field trail is part of an effort by the Genomes to Fields consortium effort to grow and phenotype many of the same corn (maize) hybrids at approximately 40 locations across the United States and Canada in order to stimulate new research in crop modeling, the development of new plant phenotyping technologies and the identification of genetic loci that control the adaptation of specific corn (maize) lines to specific environments. It included approximately 250 maize hybrids primary generated using recently off patent material from major seed companies. These lines are the closest material to what farmers are growing today which can be legally used for research purposes and genotyped by the public sector. During the growing season, a hexacopter equipped with a multispectral and a RGB cameras was flown and used to image this 1-hectare field trial near Mead, NE. Sensor data from the UAS were correlated directly with grain yield, measured at the end of the growing season, and were also be used to quantify other traits of interest to breeders including flowering date, plant height, leaf orientation, canopy spectral, and stand count. The existing challenges of field data acquisition (to ensure data quality) and development of effective image processing algorithms (such as detecting corn tassels) will be discussed. The success of this study and others like it will speed up the process of phenotypic data collection, and provide more accurate and detailed trait data for plant biologists, plant breeders, and other agricultural scientists. Employing advanced UAS-based machine vision technologies in agricultural applications have the potential

  4. Breeds in danger of extintion and biodiversity

    OpenAIRE

    A. Blasco

    2008-01-01

    Some arguments currently used to support breed conservation are examined. The central point is that we cannot conserve all breeds because we do not have financial resources enough to keep everything (mainly in developing countries) and in many cases we do not have special reasons to conserve breeds. A breed is a human product and it should not be confused with specie. A breed can be generated or transformed. We can create synthetic breeds with the best characteristics of several breeds. Selec...

  5. Rootstock breeding in Prunus species: Ongoing efforts and new challenges

    Directory of Open Access Journals (Sweden)

    Felipe Gainza

    2015-08-01

    Full Text Available The current global agricultural challenges imply the need to generate new technologies and farming systems. In this context, rootstocks are an essential component in modern agriculture. Most currently used are those clonally propagated and there are several ongoing efforts to develop this type of plant material. Despite this tendency, lesser number of rootstock breeding programs exists in comparison to the large number of breeding programs for scion cultivars. In the case of rootstocks, traits evaluated in new selection lines are quite different: From the agronomic standpoint vigor is a key issue in order to establish high-density orchards. Other important agronomic traits include compatibility with a wide spectrum of cultivars from different species, good tolerance to root hypoxia, water use efficiency, aptitude to extract or exclude certain soil nutrients, and tolerance to soil or water salinity. Biotic stresses are also important: Resistance/tolerance to pests and diseases, such as nematodes, soil-borne fungi, crown gall, bacterial canker, and several virus, viroids, and phytoplasms. In this sense, the creation of new rootstocks at Centro de Estudios Avanzados en Fruticultura (CEAF offers an alternative to stone fruit crop, particularly in Chile, where just a few alternatives are commercially available, and there are site-specific problems. The implementation of molecular markers in order to give support to the phenotypic evaluation of plant breeding has great potential assisting the selection of new genotypes of rootstocks. Marker-Assisted Selection (MAS can shorten the time required to obtain new cultivars and can make the process more cost-effective than selection based exclusively on phenotype, but more basic research is needed to well understood the molecular and physiological mechanisms behind the studied trait.

  6. Nuclear techniques and in vitro culture for plant improvement

    International Nuclear Information System (INIS)

    1986-01-01

    The continuous series of food shortages in many parts of the world have led scientists to consider the possibilities of using the new techniques to develop better varieties of plants. The basis for plant breeding is suitable genetic variability and mutation induction as the means to create additional variation. In vitro techniques are a relatively new tool in practical plant breeding. These Proceedings contain 62 papers and posters presented at the symposium, as well as excerpts from the discussions. The Symposium presentations are divided into the following sessions: Genetic variation from in vitro culture; Genetic stability of in vitro cultures; In vitro culture with application of mutagens; Haploids; In vitro mutant selection; Use of genetic variation derived by in vitro culture; In vitro techniques as aids in mutation breeding and Genetic engineering. A separate abstract is prepared for each of these papers and posters

  7. Genomics and the Instrinsic Value of Plants

    NARCIS (Netherlands)

    Gremmen, H.G.J.

    2005-01-01

    In discussions on genetic engineering and plant breeding, the intrinsic value of plants and crops is used as an argument against this technology. This paper focuses on the new field of plant genomics, which, according to some, is almost the same as genetic engineering. This raises the question

  8. The present state and problems of mutation breeding

    International Nuclear Information System (INIS)

    Balint, Andor

    1983-01-01

    The major achievements and problems of mutation breeding are discussed according to recent international references. Examples for the production of microorganism resistant tobacco, maize, cabbage, disease resistant sugar cane and some freeze resistant plants are listed. Special opportunities offered by mutation to increase photosynthesis and to improve yields are discussed. The significance of the new techniques to produce induced mutants by means of tissue cultures, to fix N 2 for leguminosae and to affect the activities of N 2 fixing microorganisms is emphasized. (V.N.)

  9. Review of major sweetpotato pests in Japan, with information on resistance breeding programs.

    Science.gov (United States)

    Okada, Yoshihiro; Kobayashi, Akira; Tabuchi, Hiroaki; Kuranouchi, Toshikazu

    2017-01-01

    Sweetpotato ( Ipomoeae batatas (L.) Lam.) is an important food crop affected by several pests throughout the world, especially in tropical, subtropical, and temperate regions. Although Japan is relatively free from many serious sweetpotato pests, some pests, especially soil-borne pathogens, viruses, and insects such as plant-parasitic nematodes and weevils, cause severe damage in Japan. In this review, we describe the current status and management options for sweetpotato pests and diseases in Japan and review research related to sweetpotato breeding that can promote resistance to these problems. Furthermore, we describe methods to evaluate resistance to pests and disease used in sweetpotato breeding at the National Agriculture and Food Research Organization (NARO).

  10. Chromosomal inversions effect body size and shape in different breeding resources in Drosophila buzzatii.

    Science.gov (United States)

    Fernández Iriarte, P J; Norry, F M; Hasson, E R

    2003-07-01

    The cactophilic Drosophila buzzatii provides an excellent model for the study of reaction norms across discrete environments because it breeds on rotting tissues (rots) of very different cactus species. Here we test the possible effects of second chromosome inversions on body size and shape (wing loading) across suitable natural breeding substrates. Using homokaryotypic stocks derived from several lines homozygous for four naturally occurring chromosomal inversions, we show that arrangements significantly affect size-related traits and wing loading. In addition, karyotypes show differing effects, across natural breeding resources, for wing loading. The 2st and 2jz(3) arrangements decrease and the 2j arrangement increases wing loading. For thorax length and wing loading, karyotypic correlations across host plants are slightly lower in females than in males. These results support the hypothesis that these traits have a genetic basis associated with the inversion polymorphism.

  11. Plant Mutation Reports, Vol. 2, No. 2, June 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-06-15

    Breeding a new variety is far more complex and takes much more time than performing a laboratory experiment in well controlled conditions. Further, breeding information is often not published in scientific journals, and is sometimes kept as a trade secret. Therefore, it is not an easy job to collect and analyse relevant information and write a paper to review the achievements in plant breeding. As in many other countries, induced mutations have played an important role in crop breeding in Bulgaria. In this issue, Dr. N. Tomlekova presents an excellent paper on this subject. She has succeeded in portraying a comprehensive picture of research and application of mutation breeding in Bulgaria: about 80 mutant varieties of 14 different plant species; leading mutant varieties are covering about 50% of maize growing area and almost 100% of durum wheat area; novel mutations have not only played a role in improving resistance/ tolerance to biotic/abiotic stresses, quality and nutrition traits, but also in facilitating hybrid seed production and enabling adaptation to mechanization of crop production; thousands of mutant lines have been generated and preserved as germplasm collections and used in breeding programmes. The great success in hybrid maize breeding may surprise most readers since it is widely believed that out-crossing crops like maize have sufficient genetic variability, and that induced mutations have limited roles. Such perceptions should be re-assessed against the great success of maize mutation breeding in Bulgaria

  12. Plant Mutation Reports, Vol. 2, No. 2, June 2010

    International Nuclear Information System (INIS)

    2010-06-01

    Breeding a new variety is far more complex and takes much more time than performing a laboratory experiment in well controlled conditions. Further, breeding information is often not published in scientific journals, and is sometimes kept as a trade secret. Therefore, it is not an easy job to collect and analyse relevant information and write a paper to review the achievements in plant breeding. As in many other countries, induced mutations have played an important role in crop breeding in Bulgaria. In this issue, Dr. N. Tomlekova presents an excellent paper on this subject. She has succeeded in portraying a comprehensive picture of research and application of mutation breeding in Bulgaria: about 80 mutant varieties of 14 different plant species; leading mutant varieties are covering about 50% of maize growing area and almost 100% of durum wheat area; novel mutations have not only played a role in improving resistance/ tolerance to biotic/abiotic stresses, quality and nutrition traits, but also in facilitating hybrid seed production and enabling adaptation to mechanization of crop production; thousands of mutant lines have been generated and preserved as germplasm collections and used in breeding programmes. The great success in hybrid maize breeding may surprise most readers since it is widely believed that out-crossing crops like maize have sufficient genetic variability, and that induced mutations have limited roles. Such perceptions should be re-assessed against the great success of maize mutation breeding in Bulgaria

  13. Plant Mutation Reports, Vol. 3, No. 1, July 2013

    International Nuclear Information System (INIS)

    2013-07-01

    Mutation induction as a tool in plant breeding and for genetics or genomics research is of continuous and increasing interest. Since the onset of the sequencing revolution the ability to target specific genes and to detect mutations in them has brought about a renaissance in plant mutation breeding. We are seeing increased interest in plant mutation induction which in addition to plant breeding is being used as a major tool in determining gene/allele function. This renaissance is also being fuelled by climate change as there is increasing urgency to develop crops that are more resilient to the effects of climate change and plant mutation breeding offers a fast response. As a consequence the Plant Mutation Reports (PMR) are in competition with a growing number of indexed journals with various impact factors that offer high quality standards and wide distribution through online publications. These are attractive and authors prefer to submit their data to these journals as they grant greater visibility and scientific merit. In response to this situation, and the necessity for the best possible application of the limited resources available, we have decided to dis- continue PMR as a regular journal. However, in order to allow for the publishing of short notes, e.g. on the release of new mutant varieties or success stories in plant mutation breeding, we will strengthen our regular publication of the Plant Breeding and Genetics Newsletter (PBGN), which is published twice a year. The PBGN has sections on 'success stories' and reports on the progress of Agency programmes in Technical Cooperation (TC) and in Coordinated Research Projects (CRP). We are particularly interested in short stories on the impact that the release of improved mutant varieties have on farmers, users and consumers in your respective countries. Please contact us if you have a success story and would like to have it published in the newsletters. Also, I would like to use this opportunity to encourage

  14. Changes in bird community composition in response to growth changes in short-rotation woody crop planting

    International Nuclear Information System (INIS)

    Tolbert, V.R.; Hanowski, J.; Schiller, A.; Hoffman, W.; Christian, D.; Lindberg, J.

    1997-01-01

    Hybrid poplar established as intensively managed short-rotation woody crops (SRWC) on former agricultural lands can provide habitat for wildlife. Studies of bird use of SRWC for nesting and during fall migration have shown that the numbers and kinds of breeding birds using mature plantings of hybrid poplar are similar to natural forested lands. In Minnesota, the number of species of breeding birds using habitat provided by clonal-trial plantings and young larger-scale plantings (12-64 ha) of hybrid poplar were initially most similar to those using grasslands and row-crops. As the plantings approached canopy closure, successional species became predominant. In the Pacific Northwest, breeding bird composition and density were very similar for mature plantings and forested areas; however, fall migrants were found primarily in forested areas. In the Southeast, preliminary comparisons of breeding bird use of plantings of sweetgum and sycamore with naturally regenerating forests of different ages and sizes and vegetation structure are showing no size effect on use. As with hybrid poplar, species use of the more mature plantings of sweetgum and sycamore was most similar to that of natural forests. (author)

  15. Genomic analyses of modern dog breeds.

    Science.gov (United States)

    Parker, Heidi G

    2012-02-01

    A rose may be a rose by any other name, but when you call a dog a poodle it becomes a very different animal than if you call it a bulldog. Both the poodle and the bulldog are examples of dog breeds of which there are >400 recognized worldwide. Breed creation has played a significant role in shaping the modern dog from the length of his leg to the cadence of his bark. The selection and line-breeding required to maintain a breed has also reshaped the genome of the dog, resulting in a unique genetic pattern for each breed. The breed-based population structure combined with extensive morphologic variation and shared human environments have made the dog a popular model for mapping both simple and complex traits and diseases. In order to obtain the most benefit from the dog as a genetic system, it is necessary to understand the effect structured breeding has had on the genome of the species. That is best achieved by looking at genomic analyses of the breeds, their histories, and their relationships to each other.

  16. Sire breed and breed genotype of dam effects in crossbreeding beef ...

    African Journals Online (AJOL)

    Cows bred to Afrikaner bulls were less (P < 0.05) productive than cows bred to other Bos taurus sires. An increase in proportion Afrikaner breeding in dam resulted in longer calving intervals and a decline in cow productivity, but these differences were not always significant. A breeding strategy for the retainment of superior ...

  17. Tolerance of Septoria nodorum Berk. in wheat: inheritance and potential in breeding

    International Nuclear Information System (INIS)

    Fossati, A.; Broennimann, A.

    1976-01-01

    Investigations in the genetics of tolerance towards Septoria nodorum Berk. in wheat showed that this tolerance is inherited polygenically and mainly additively. This has to be considered when breeding for tolerance. Crosses should be carried out between parents of the highest possible tolerance. Breeding for tolerance is carried out in two different manners: Conventional breeding and with the use of mutation techniques. The conventional breeding program can be divided into three steps: The choice of the parents, the selection in the narrow sense (F 2 - F 5 ) and the evaluation of the tolerant lines (F 6 till about F 9 ). When producing mutants with tolerance towards Septoria nodorum, another cultivar is treated every year in order to enlarge the genetical basis for selection. 7 cultivars have been treated since 1967. Some tolerant lines could be selected from most of the cultivars used for this treatment. The efficiency of the mutation and selection techniques used is discussed in the case of the cultivar Fermo. Besides the real improvement of tolerance the selection was accompanied in general also by an increase in plant height and grain size. But some tolerant mutants were also found which did not show these side effects. Furthermore, some mutants were selected in which the progress of infection is slowed down. (author)

  18. Participatory breeding: tool for conservation of neglected and underutilized crops

    Directory of Open Access Journals (Sweden)

    Creucí Maria Caetano

    2015-08-01

    Full Text Available Although a significant number of plant species to be recognized as food, only a small fraction meets the protein demand of the world population. Breeding crops, with a very narrow genetic base, most likely will not counteract the adverse effects of climate change. On the contrary, the crops named as underutilized, neglected, orphaned, obsolete or minor, may contain the answers in their genomes to ensure safety and nutrition and food sovereignty of populations. Duly adapted to extreme growing conditions, these local varieties, such as indigenous and landraces of Colombian maize, are part of the cultural heritage of many ethnic groups or original peoples, that select, use and conserve these varieties. Besides these, another concept refers to the promising resources, also little used, although for different reasons. Therefore, Participatory Plant Breeding is a tool to promote traditional local varieties or underutilized crops, to meet the needs of communities. In the PPB, members of the production chain (farmers, breeders, technicians and others work together in the process of development of varieties, in a decentralized and participatory process. A PB program with Colombian maize germplasm resulted in the promotion of some local varieties. Alongside, new maize landraces to Colombia were described.

  19. Molecular genetics: Step by step implementation in maize breeding

    Directory of Open Access Journals (Sweden)

    Konstantinov Kosana

    2007-01-01

    Full Text Available Efficiency in plant breeding is determined primarily by the ability to screen for genetic polymorphism, productivity and yield stability early in program. Dependent on the knowledge about the biochemical bases of the trait and nature of its genetic control, trait could be modified either through mutagenesis of genes controlling it or through the transfer of already existing mutant genes, controlling desired trait to different plant genotypes by classic crossing. Objective of this report is to present partly results on the investigation of the possibilities to apply ionizing radiations (fast neutrons, γ -rays and chemical mutagens (EI, iPMS, EMS, ENU to get maize and wheat mutants with increased amount and improved protein quality. Besides this approach in mutation breeding, results on the very early investigation of biochemical background of opaque -2 mutation including use of coupled cell - free RNA and protein synthesis containing components from both wild and opaque - 2 maize genotypes (chromatin, RNA polymerase, microsomall fraction, protein bodies will be presented. Partial results on opaque - 2 gene incorporation in different genetic background are reviewed. Part of report is dealing with different classes of molecular markers (proteins, RFLP, AFLP, RAPD, and SSR application in maize genome polymorphism investigation. Besides application of different molecular markers classes in the investigation of heterosis phenomena they are useful in biochemical pathway of important traits control determination as well. .

  20. Influence of cross-breeding of native breed sows of Zlotnicka spotted ...

    African Journals Online (AJOL)

    The aim of this study was the estimation of the cross-breeding influence of Zlotnicka spotted sows with boars of polish large white and Duroc breeds on carcass traits of fatteners. 50 pigs were divided into four groups: Zlotnicka spotted (ZS), Zlotnicka spotted x polish large white (ZS x PLW), Zlotnicka spotted x Duroc (ZS x D) ...