WorldWideScience

Sample records for plant biomass degradation

  1. An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Suen, Garret; Barry, Kerrie; Goodwin, Lynne; Scott, Jarrod; Aylward, Frank; Adams, Sandra; Pinto-Tomas, Adrian; Foster, Clifton; Pauly, Markus; Weimer, Paul; Bouffard, Pascal; Li, Lewyn; Osterberger, Jolene; Harkins, Timothy; Slater, Steven; Donohue, Timothy; Currie, Cameron; Tringe, Susannah G.

    2010-09-23

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome?s predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.

  2. An insect herbivore microbiome with high plant biomass-degrading capacity.

    Directory of Open Access Journals (Sweden)

    Garret Suen

    2010-09-01

    Full Text Available Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini, which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome's predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.

  3. Efficient plant biomass degradation by thermophilic fungus Myceliophthora heterothallica

    NARCIS (Netherlands)

    van den Brink, J.; van Muiswinkel, G.C.; Theelen, B.; Hinz, S.W.; de Vries, R.P.

    2013-01-01

    Rapid and efficient enzymatic degradation of plant biomass into fermentable sugars is a major challenge for the sustainable production of biochemicals and biofuels. Enzymes that are more thermostable (up to 70 degrees C) use shorter reaction times for the complete saccharification of plant

  4. Efficient plant biomass degradation by thermophilic fungus Myceliophthora heterothallica.

    Science.gov (United States)

    van den Brink, Joost; van Muiswinkel, Gonny C J; Theelen, Bart; Hinz, Sandra W A; de Vries, Ronald P

    2013-02-01

    Rapid and efficient enzymatic degradation of plant biomass into fermentable sugars is a major challenge for the sustainable production of biochemicals and biofuels. Enzymes that are more thermostable (up to 70°C) use shorter reaction times for the complete saccharification of plant polysaccharides compared to hydrolytic enzymes of mesophilic fungi such as Trichoderma and Aspergillus species. The genus Myceliophthora contains four thermophilic fungi producing industrially relevant thermostable enzymes. Within this genus, isolates belonging to M. heterothallica were recently separated from the well-described species M. thermophila. We evaluate here the potential of M. heterothallica isolates to produce efficient enzyme mixtures for biomass degradation. Compared to the other thermophilic Myceliophthora species, isolates belonging to M. heterothallica and M. thermophila grew faster on pretreated spruce, wheat straw, and giant reed. According to their protein profiles and in vitro assays after growth on wheat straw, (hemi-)cellulolytic activities differed strongly between M. thermophila and M. heterothallica isolates. Compared to M. thermophila, M. heterothallica isolates were better in releasing sugars from mildly pretreated wheat straw (with 5% HCl) with a high content of xylan. The high levels of residual xylobiose revealed that enzyme mixtures of Myceliophthora species lack sufficient β-xylosidase activity. Sexual crossing of two M. heterothallica showed that progenies had a large genetic and physiological diversity. In the future, this will allow further improvement of the plant biomass-degrading enzyme mixtures of M. heterothallica.

  5. Plant biomass degrading ability of the coprophilic ascomycete fungus Podospora anserina.

    Science.gov (United States)

    Couturier, Marie; Tangthirasunun, Narumon; Ning, Xie; Brun, Sylvain; Gautier, Valérie; Bennati-Granier, Chloé; Silar, Philippe; Berrin, Jean-Guy

    2016-01-01

    The degradation of plant biomass is a major challenge towards the production of bio-based compounds and materials. As key lignocellulolytic enzyme producers, filamentous fungi represent a promising reservoir to tackle this challenge. Among them, the coprophilous ascomycete Podospora anserina has been used as a model organism to study various biological mechanisms because its genetics are well understood and controlled. In 2008, the sequencing of its genome revealed a great diversity of enzymes targeting plant carbohydrates and lignin. Since then, a large array of lignocellulose-acting enzymes has been characterized and genetic analyses have enabled the understanding of P. anserina metabolism and development on plant biomass. Overall, these research efforts shed light on P. anserina strategy to unlock recalcitrant lignocellulose deconstruction. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Uncovering the abilities of Agaricus bisporus to degrade plant biomass throughout its life cycle

    NARCIS (Netherlands)

    Patyshakuliyeva, A.; Post, H.; Zhou, M.; Jurak, E.; Heck, A.J.R.; Hilden, K.S.; Kabel, M.A.; Makela, M.R.; Altenaar, M.A.F.; Vries, de R.P.

    2015-01-01

    The economically important edible basidiomycete mushroom Agaricus bisporus thrives on decaying plant material in forests and grasslands of North America and Europe. It degrades forest litter and con-tributes to global carbon recycling, depolymerizing (hemi-)cellulose and lignin in plant biomass.

  7. Characterization of three plant biomass-degrading microbial consortia by metagenomics- and metasecretomics-based approaches

    NARCIS (Netherlands)

    Jiménez, Diego Javier; Brossi, Maria Julia de Lima; Schuckel, Julia; Kracun, Stjepan Kresimir; Willats, William George Tycho; van Elsas, Jan Dirk

    2016-01-01

    The selection of microbes by enrichment on plant biomass has been proposed as an efficient way to develop new strategies for lignocellulose saccharification. Here, we report an in-depth analysis of soil-derived microbial consortia that were trained to degrade once-used wheat straw (WS1-M),

  8. Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes

    Science.gov (United States)

    Rytioja, Johanna; Hildén, Kristiina; Yuzon, Jennifer; Hatakka, Annele; de Vries, Ronald P.

    2014-01-01

    SUMMARY Basidiomycete fungi subsist on various types of plant material in diverse environments, from living and dead trees and forest litter to crops and grasses and to decaying plant matter in soils. Due to the variation in their natural carbon sources, basidiomycetes have highly varied plant-polysaccharide-degrading capabilities. This topic is not as well studied for basidiomycetes as for ascomycete fungi, which are the main sources of knowledge on fungal plant polysaccharide degradation. Research on plant-biomass-decaying fungi has focused on isolating enzymes for current and future applications, such as for the production of fuels, the food industry, and waste treatment. More recently, genomic studies of basidiomycete fungi have provided a profound view of the plant-biomass-degrading potential of wood-rotting, litter-decomposing, plant-pathogenic, and ectomycorrhizal (ECM) basidiomycetes. This review summarizes the current knowledge on plant polysaccharide depolymerization by basidiomycete species from diverse habitats. In addition, these data are compared to those for the most broadly studied ascomycete genus, Aspergillus, to provide insight into specific features of basidiomycetes with respect to plant polysaccharide degradation. PMID:25428937

  9. Functional analysis of the Glucan Degradation Locus (GDL) in Caldicellulosiruptor bescii reveals essential roles of component glycoside hydrolases in plant biomass deconstruction.

    Science.gov (United States)

    Conway, Jonathan M; McKinley, Bennett S; Seals, Nathaniel L; Hernandez, Diana; Khatibi, Piyum A; Poudel, Suresh; Giannone, Richard J; Hettich, Robert L; Williams-Rhaesa, Amanda M; Lipscomb, Gina L; Adams, Michael W W; Kelly, Robert M

    2017-10-06

    The ability to hydrolyze microcrystalline cellulose is an uncommon feature in the microbial world, but one that can be exploited for conversion of lignocellulosic feedstocks into bio-based fuels and chemicals. Understanding the physiological and biochemical mechanisms by which microorganisms deconstruct cellulosic material is key to achieving this objective. The Glucan Degradation Locus (GDL) in the genomes of extremely thermophilic Caldicellulosiruptor species encodes polysaccharide lyases (PLs), unique cellulose binding proteins (tāpirins), and putative post-translational modifying enzymes, in addition to multi-domain, multi-functional glycoside hydrolases (GHs), thereby representing an alternative paradigm for plant biomass degradation, as compared to fungal or cellulosomal systems. To examine the individual and collective in vivo roles of the glycolytic enzymes, the six GHs in the GDL of Caldicellulosiruptor bescii were systematically deleted, and the extent to which the resulting mutant strains could solubilize microcrystalline cellulose (Avicel) and plant biomasses (switchgrass or poplar) was examined. Three of the GDL enzymes, Athe_1867 (CelA) (GH9-CBM3-CBM3-CBM3-GH48), Athe_1859 (GH5-CBM3-CBM3-GH44), and Athe_1857 (GH10-CBM3-CBM3-GH48), acted synergistically in vivo and accounted for 92% of naked microcellulose (Avicel) degradation. However, the relative importance of the GDL GHs varied for the plant biomass substrates tested. Furthermore, mixed cultures of mutant strains showed switchgrass solubilization depended on the secretome-bound enzymes collectively produced by the culture and not on the specific strain from which they came. These results demonstrate that certain GDL GHs are primarily responsible for the degradation of microcrystalline-containing substrates by C. bescii and provide new insights into the workings of a novel microbial mechanism for lignocellulose utilization. Importance The efficient and extensive degradation of complex

  10. Soil-derived microbial consortia enriched with different plant biomass reveal distinct players acting in lignocellulose degradation

    NARCIS (Netherlands)

    de Lima Brossi, Maria Julia; Jiménez Avella, Diego; Cortes Tolalpa, Larisa; van Elsas, Jan

    Here, we investigated how different plant biomass, and-for one substrate-pH, drive the composition of degrader microbial consortia. We bred such consortia from forest soil, incubated along nine aerobic sequential - batch enrichments with wheat straw (WS1, pH 7.2; WS2, pH 9.0), switchgrass (SG, pH

  11. Hydrolytic bacteria in mesophilic and thermophilic degradation of plant biomass

    Energy Technology Data Exchange (ETDEWEB)

    Zverlov, Vladimir V.; Hiegl, Wolfgang; Koeck, Daniela E.; Koellmeier, Tanja; Schwarz, Wolfgang H. [Department of Microbiology, Technische Universitaet Muenchen, Freising-Weihenstephan (Germany); Kellermann, Josef [Max Planck Institute for Biochemistry, Am Klopferspitz, Martinsried (Germany)

    2010-12-15

    Adding plant biomass to a biogas reactor, hydrolysis is the first reaction step in the chain of biological events towards methane production. Maize silage was used to enrich efficient hydrolytic bacterial consortia from natural environments under conditions imitating those in a biogas plant. At 55-60 C a more efficient hydrolyzing culture could be isolated than at 37 C. The composition of the optimal thermophilic bacterial consortium was revealed by sequencing clones from a 16S rRNA gene library. A modified PCR-RFLP pre-screening method was used to group the clones. Pure anaerobic cultures were isolated. 70% of the isolates were related to Clostridium thermocellum. A new culture-independent method for identification of cellulolytic enzymes was developed using the isolation of cellulose-binding proteins. MALDI-TOF/TOF analysis and end-sequencing of peptides from prominent protein bands revealed cellulases from the cellulosome of C. thermocellum and from a major cellulase of Clostridium stercorarium. A combined culture of C. thermocellum and C. stercorarium was shown to excellently degrade maize silage. A spore preparation method suitable for inoculation of maize silage and optimal hydrolysis was developed for the thermophilic bacterial consortium. This method allows for concentration and long-term storage of the mixed culture for instance for inoculation of biogas fermenters. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Ecological Insights into the Dynamics of Plant Biomass-Degrading Microbial Consortia.

    Science.gov (United States)

    Jiménez, Diego Javier; Dini-Andreote, Francisco; DeAngelis, Kristen M; Singer, Steven W; Salles, Joana Falcão; van Elsas, Jan Dirk

    2017-10-01

    Plant biomass (PB) is an important resource for biofuel production. However, the frequent lack of efficiency of PB saccharification is still an industrial bottleneck. The use of enzyme cocktails produced from PB-degrading microbial consortia (PB-dmc) is a promising approach to optimize this process. Nevertheless, the proper use and manipulation of PB-dmc depends on a sound understanding of the ecological processes and mechanisms that exist in these communities. This Opinion article provides an overview of arguments as to how spatiotemporal nutritional fluxes influence the successional dynamics and ecological interactions (synergism versus competition) between populations in PB-dmc. The themes of niche occupancy, 'sugar cheaters', minimal effective consortium, and the Black Queen Hypothesis are raised as key subjects that foster our appraisal of such systems. Here we provide a conceptual framework that describes the critical topics underpinning the ecological basis of PB-dmc, giving a solid foundation upon which further prospective experimentation can be developed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification.

    Science.gov (United States)

    Longoni, Paolo; Leelavathi, Sadhu; Doria, Enrico; Reddy, Vanga Siva; Cella, Rino

    2015-01-01

    Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry.

  14. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil.

    Science.gov (United States)

    Tara, Nain; Afzal, Muhammad; Ansari, Tariq M; Tahseen, Razia; Iqbal, Samina; Khan, Qaiser M

    2014-01-01

    Inoculation of plants with pollutant-degrading and plant growth-promoting microorganisms is a simple strategy to enhance phytoremediation activity. The objective of this study was to determine the effect of inoculation of different bacterial strains, possessing alkane-degradation and 1-amino-cyclopropane-1 -carboxylic acid (ACC) deaminase activity, on plant growth and phytoremediation activity. Carpet grass (Axonopus affinis) was planted in soil spiked with diesel (1% w/w) for 90 days and inoculated with different bacterial strains, Pseudomonas sp. ITRH25, Pantoea sp. BTRH79 and Burkholderia sp. PsJN, individually and in combination. Generally, bacterial application increased total numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere ofcarpet grass, plant biomass production, hydrocarbon degradation and reduced genotoxicity. Bacterial strains possessing different beneficial traits affect plant growth and phytoremediation activity in different ways. Maximum bacterial population, plant biomass production and hydrocarbon degradation were achieved when carpet grass was inoculated with a consortium of three strains. Enhanced plant biomass production and hydrocarbon degradation were associated with increased numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere of carpet grass. The present study revealed that the combined use of different bacterial strains, exhibiting different beneficial traits, is a highly effective strategy to improve plant growth and phytoremediation activity.

  15. Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis

    Directory of Open Access Journals (Sweden)

    Couturier Marie

    2012-02-01

    Full Text Available Abstract Background Filamentous fungi are potent biomass degraders due to their ability to thrive in ligno(hemicellulose-rich environments. During the last decade, fungal genome sequencing initiatives have yielded abundant information on the genes that are putatively involved in lignocellulose degradation. At present, additional experimental studies are essential to provide insights into the fungal secreted enzymatic pools involved in lignocellulose degradation. Results In this study, we performed a wide analysis of 20 filamentous fungi for which genomic data are available to investigate their biomass-hydrolysis potential. A comparison of fungal genomes and secretomes using enzyme activity profiling revealed discrepancies in carbohydrate active enzymes (CAZymes sets dedicated to plant cell wall. Investigation of the contribution made by each secretome to the saccharification of wheat straw demonstrated that most of them individually supplemented the industrial Trichoderma reesei CL847 enzymatic cocktail. Unexpectedly, the most striking effect was obtained with the phytopathogen Ustilago maydis that improved the release of total sugars by 57% and of glucose by 22%. Proteomic analyses of the best-performing secretomes indicated a specific enzymatic mechanism of U. maydis that is likely to involve oxido-reductases and hemicellulases. Conclusion This study provides insight into the lignocellulose-degradation mechanisms by filamentous fungi and allows for the identification of a number of enzymes that are potentially useful to further improve the industrial lignocellulose bioconversion process.

  16. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification

    Directory of Open Access Journals (Sweden)

    Paolo Longoni

    2015-01-01

    Full Text Available Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry.

  17. How Fencing Affects the Soil Quality and Plant Biomass in the Grassland of the Loess Plateau.

    Science.gov (United States)

    Zeng, Quanchao; Liu, Yang; Xiao, Li; Huang, Yimei

    2017-09-25

    Overgrazing is a severe problem in several regions in Northwestern China and has caused serious land degradation. Secondary natural succession plays an important role in the accumulation of soil carbon and nitrogen contents. Estimating the effects of grazing exclusion on soil quality and plant diversity will improve our understanding of the succession process after overgrazing and promote judicious management of degraded pastures. This experiment was designed to measure soil properties and plant diversity following an age chronosequence of grasslands (ages ranged from one year, 12 years, 20 years, and 30 years) in Northwestern China. The results showed that continuous fencing resulted in a considerable increase in plant coverage, plant biomass (above- and below-ground biomass), and plant diversity, which can directly or indirectly improve the accumulation of soil organic carbon and total nitrogen content. The plant coverage and the above- and below-ground biomass linearly increased along the succession time, whereas soil organic C and N contents showed a significant decline in the first 12 years and, subsequently, a significant increase. The increased plant biomass caused an increase in soil organic carbon and soil total nitrogen. These results suggested that soil restoration and plant cover were an incongruous process. Generally, soil restoration is a slow process and falls behind vegetation recovery after grazing exclusion. Although the accumulation of soil C and N stocks needed a long term, vegetation restoration was a considerable option for the degraded grassland due to the significant increase of plant biomass, diversity, and soil C and N stocks. Therefore, fencing with natural succession should be considered in the design of future degraded pastures.

  18. Leucoagaricus gongylophorus produces diverse enzymes for the degradation of recalcitrant plant polymers in leaf-cutter ant fungus gardens.

    Science.gov (United States)

    Aylward, Frank O; Burnum-Johnson, Kristin E; Tringe, Susannah G; Teiling, Clotilde; Tremmel, Daniel M; Moeller, Joseph A; Scott, Jarrod J; Barry, Kerrie W; Piehowski, Paul D; Nicora, Carrie D; Malfatti, Stephanie A; Monroe, Matthew E; Purvine, Samuel O; Goodwin, Lynne A; Smith, Richard D; Weinstock, George M; Gerardo, Nicole M; Suen, Garret; Lipton, Mary S; Currie, Cameron R

    2013-06-01

    Plants represent a large reservoir of organic carbon comprised primarily of recalcitrant polymers that most metazoans are unable to deconstruct. Many herbivores gain access to nutrients in this material indirectly by associating with microbial symbionts, and leaf-cutter ants are a paradigmatic example. These ants use fresh foliar biomass as manure to cultivate gardens composed primarily of Leucoagaricus gongylophorus, a basidiomycetous fungus that produces specialized hyphal swellings that serve as a food source for the host ant colony. Although leaf-cutter ants are conspicuous herbivores that contribute substantially to carbon turnover in Neotropical ecosystems, the process through which plant biomass is degraded in their fungus gardens is not well understood. Here we present the first draft genome of L. gongylophorus, and, using genomic and metaproteomic tools, we investigate its role in lignocellulose degradation in the gardens of both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants. We show that L. gongylophorus produces a diversity of lignocellulases in ant gardens and is likely the primary driver of plant biomass degradation in these ecosystems. We also show that this fungus produces distinct sets of lignocellulases throughout the different stages of biomass degradation, including numerous cellulases and laccases that likely play an important role in lignocellulose degradation. Our study provides a detailed analysis of plant biomass degradation in leaf-cutter ant fungus gardens and insight into the enzymes underlying the symbiosis between these dominant herbivores and their obligate fungal cultivar.

  19. Leucoagaricus gongylophorus Produces Diverse Enzymes for the Degradation of Recalcitrant Plant Polymers in Leaf-Cutter Ant Fungus Gardens

    Energy Technology Data Exchange (ETDEWEB)

    Aylward, Frank O. [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burnum-Johnson, Kristin E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tringe, Susannah G. [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Teiling, Clotilde [Roche Diagnostics, Indianapolis, IN (United States); Tremmel, Daniel [Univ. of Wisconsin, Madison, WI (United States); Moeller, Joseph [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scott, Jarrod J. [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Barry, Kerrie W. [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Piehowski, Paul D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nicora, Carrie D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Malfatti, Stephanie [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Monroe, Matthew E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Purvine, Samuel O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Goodwin, Lynne A. [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Smith, Richard D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weinstock, George [Washington Univ. School of Medicine, St. Louis, MS (United States); Gerardo, Nicole [Emory Univ., Atlanta, GA (United States); Suen, Garret [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Lipton, Mary S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Currie, Cameron R. [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smothsonian Tropical Research Inst., Balboa (Panama)

    2013-06-12

    Plants represent a large reservoir of organic carbon comprised largely of recalcitrant polymers that most metazoans are unable to deconstruct. Many herbivores gain access to nutrients in this material indirectly by associating with microbial symbionts, and leaf-cutter ants are a paradigmatic example. These ants use fresh foliar biomass as manure to cultivate fungus gardens composed primarily of Leucoagaricus gongylophorus, a basidiomycetous symbiont that produces specialized hyphal swellings that serve as a food source for the host ant colony. Although leaf-cutter ants are conspicuous herbivores that contribute substantially to carbon turnover in Neotropical ecosystems, the process through which plant biomass is degraded in their fungus gardens is not well understood. Here we present the first draft genome of L. gongylophorus, and using genomic, metaproteomic, and phylogenetic tools we investigate its role in lignocellulose degradation in the fungus gardens of both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants. We show that L. gongylophorus produces a diversity of lignocellulases in fungus gardens, and is likely the primary driver of plant biomass degradation in these ecosystems. We also show that this fungus produces distinct sets of lignocellulases throughout the different stages of biomass degradation, including numerous cellulases and laccases that may be playing an important but previously uncharacterized role in lignocellulose degradation. Our study provides a comprehensive analysis of plant biomass degradation in leaf-cutter ant fungus gardens and provides insight into the molecular dynamics underlying the symbiosis between these dominant herbivores and their obligate fungal cultivar.

  20. Early-branching Gut Fungi Possess A Large, And Comprehensive Array Of Biomass-Degrading Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Kevin V.; Haitjema, Charles; Henske, John K.; Gilmore, Sean P.; Borges-Rivera, Diego; Lipzen, Anna; Brewer, Heather M.; Purvine, Samuel O.; Wright, Aaron T.; Theodorou, Michael K.; Grigoriev, Igor V.; Regev, Aviv; Thompson, Dawn; O' Malley, Michelle A.

    2016-03-11

    The fungal kingdom is the source of almost all industrial enzymes in use for lignocellulose bioprocessing. Its more primitive members, however, remain relatively unexploited. We developed a systems-level approach that integrates RNA-Seq, proteomics, phenotype and biochemical studies of relatively unexplored early-branching free-living fungi. Anaerobic gut fungi isolated from herbivores produce a large array of biomass-degrading enzymes that synergistically degrade crude, unpretreated plant biomass, and are competitive with optimized commercial preparations from Aspergillus and Trichoderma. Compared to these model platforms, gut fungal enzymes are unbiased in substrate preference due to a wealth of xylan-degrading enzymes. These enzymes are universally catabolite repressed, and are further regulated by a rich landscape of noncoding regulatory RNAs. Furthermore, we identified several promising sequence divergent enzyme candidates for lignocellulosic bioprocessing.

  1. Community analysis of plant biomass-degrading microorganisms from Obsidian Pool, Yellowstone National Park.

    Science.gov (United States)

    Vishnivetskaya, Tatiana A; Hamilton-Brehm, Scott D; Podar, Mircea; Mosher, Jennifer J; Palumbo, Anthony V; Phelps, Tommy J; Keller, Martin; Elkins, James G

    2015-02-01

    The conversion of lignocellulosic biomass into biofuels can potentially be improved by employing robust microorganisms and enzymes that efficiently deconstruct plant polysaccharides at elevated temperatures. Many of the geothermal features of Yellowstone National Park (YNP) are surrounded by vegetation providing a source of allochthonic material to support heterotrophic microbial communities adapted to utilize plant biomass as a primary carbon and energy source. In this study, a well-known hot spring environment, Obsidian Pool (OBP), was examined for potential biomass-active microorganisms using cultivation-independent and enrichment techniques. Analysis of 33,684 archaeal and 43,784 bacterial quality-filtered 16S rRNA gene pyrosequences revealed that archaeal diversity in the main pool was higher than bacterial; however, in the vegetated area, overall bacterial diversity was significantly higher. Of notable interest was a flooded depression adjacent to OBP supporting a stand of Juncus tweedyi, a heat-tolerant rush commonly found growing near geothermal features in YNP. The microbial community from heated sediments surrounding the plants was enriched in members of the Firmicutes including potentially (hemi)cellulolytic bacteria from the genera Clostridium, Anaerobacter, Caloramator, Caldicellulosiruptor, and Thermoanaerobacter. Enrichment cultures containing model and real biomass substrates were established at a wide range of temperatures (55-85 °C). Microbial activity was observed up to 80 °C on all substrates including Avicel, xylan, switchgrass, and Populus sp. Independent of substrate, Caloramator was enriched at lower (65 °C) temperatures.

  2. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks.

    Science.gov (United States)

    Trumbo, Jennifer Lynn; Zhang, Baohong; Stewart, Charles Neal

    2015-04-01

    Petroleum-based fuels are nonrenewable and unsustainable. Renewable sources of energy, such as lignocellulosic biofuels and plant metabolite-based drop-in fuels, can offset fossil fuel use and reverse environmental degradation through carbon sequestration. Despite these benefits, the lignocellulosic biofuels industry still faces many challenges, including the availability of economically viable crop plants. Cell wall recalcitrance is a major economic barrier for lignocellulosic biofuels production from biomass crops. Sustainability and biomass yield are two additional, yet interrelated, foci for biomass crop improvement. Many scientists are searching for solutions to these problems within biomass crop genomes. MicroRNAs (miRNAs) are involved in almost all biological and metabolic process in plants including plant development, cell wall biosynthesis and plant stress responses. Because of the broad functions of their targets (e.g. auxin response factors), the alteration of plant miRNA expression often results in pleiotropic effects. A specific miRNA usually regulates a biologically relevant bioenergy trait. For example, relatively low miR156 overexpression leads to a transgenic feedstock with enhanced biomass and decreased recalcitrance. miRNAs have been overexpressed in dedicated bioenergy feedstocks such as poplar and switchgrass yielding promising results for lignin reduction, increased plant biomass, the timing of flowering and response to harsh environments. In this review, we present the status of miRNA-related research in several major biofuel crops and relevant model plants. We critically assess published research and suggest next steps for miRNA manipulation in feedstocks for increased biomass and sustainability for biofuels and bioproducts. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Exploring the microbiota dynamics related to vegetable biomasses degradation and study of lignocellulose-degrading bacteria for industrial biotechnological application

    Science.gov (United States)

    Ventorino, Valeria; Aliberti, Alberto; Faraco, Vincenza; Robertiello, Alessandro; Giacobbe, Simona; Ercolini, Danilo; Amore, Antonella; Fagnano, Massimo; Pepe, Olimpia

    2015-02-01

    The aims of this study were to evaluate the microbial diversity of different lignocellulosic biomasses during degradation under natural conditions and to isolate, select, characterise new well-adapted bacterial strains to detect potentially improved enzyme-producing bacteria. The microbiota of biomass piles of Arundo donax, Eucalyptus camaldulensis and Populus nigra were evaluated by high-throughput sequencing. A highly complex bacterial community was found, composed of ubiquitous bacteria, with the highest representation by the Actinobacteria, Proteobacteria, Bacteroidetes and Firmicutes phyla. The abundances of the major and minor taxa retrieved during the process were determined by the selective pressure produced by the lignocellulosic plant species and degradation conditions. Moreover, cellulolytic bacteria were isolated using differential substrates and screened for cellulase, cellobiase, xylanase, pectinase and ligninase activities. Forty strains that showed multienzymatic activity were selected and identified. The highest endo-cellulase activity was seen in Promicromonospora sukumoe CE86 and Isoptericola variabilis CA84, which were able to degrade cellulose, cellobiose and xylan. Sixty-two percent of bacterial strains tested exhibited high extracellular endo-1,4-ß-glucanase activity in liquid media. These approaches show that the microbiota of lignocellulosic biomasses can be considered an important source of bacterial strains to upgrade the feasibility of lignocellulose conversion for the `greener' technology of second-generation biofuels.

  4. The fungus gardens of leaf-cutter ants undergo a distinct physiological transition during biomass degradation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Eric L.; Aylward, Frank O.; Kim, Young-Mo; Webb-Robertson, Bobbie-Jo M.; Nicora, Carrie D.; Hu, Zeping; Metz, Thomas O.; Lipton, Mary S.; Smith, Richard D.; Currie, Cameron R.; Burnum-Johnson, Kristin E.

    2014-08-01

    Leaf-cutter ants are dominant herbivores in ecosystems throughout the Neotropics. Rather than directly consuming the fresh foliar biomass they harvest, these ants use it to cultivate specialized fungus gardens. Although recent investigations have shed light on how plant biomass is degraded in fungus gardens, the cycling of nutrients that takes place in these specialized microbial ecosystems is still not well understood. Here, using metametabolomics and metaproteomics techniques, we examine the dynamics of nutrient turnover and biosynthesis in these gardens. Our results reveal that numerous free amino acids and sugars are depleted throughout the process of biomass degradation, indicating that easily accessible nutrients from plant material are readily consumed by microbes in these ecosystems. Accumulation of cellobiose and lignin derivatives near the end of the degradation process is consistent with previous findings of cellulases and laccases produced by Leucoagaricus gongylophorus, the fungus cultivated by leaf-cutter ants. Our results also suggest that ureides may be an important source of nitrogen in fungus gardens, especially during nitrogen-limiting conditions. No free arginine was detected in our metametabolomics experiments despite evidence that the host ants cannot produce this amino acid, suggesting that biosynthesis of this metabolite may be tightly regulated in the fungus garden. These results provide new insights into the dynamics of nutrient cycling that underlie this important ant-fungus symbiosis.

  5. Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass.

    Science.gov (United States)

    Boutard, Magali; Cerisy, Tristan; Nogue, Pierre-Yves; Alberti, Adriana; Weissenbach, Jean; Salanoubat, Marcel; Tolonen, Andrew C

    2014-11-01

    Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme) assays, RNA sequencing (RNA-seq), and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.

  6. Biomass of tree species as a response to planting density and interspecific competition

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Lima e Silva

    2014-04-01

    Full Text Available Planting trees is an important way to promote the recovery of degraded areas in the Caatinga region. Experiments (E1, E2, and E3 were conducted in a randomized blocks design, with three, three, and five replicates, respectively. The objectives were to evaluate biomass of the shoots of: a gliricidia (G and sabiá (S, as a response to planting density; b G, S, and neem (N in competition; c G, and S in agroforestry. E1 was conducted in split-plots, and planting densities (400, 600, 800, 1000, and 1200 plants ha-1 as subplots. E2 consisted of a factorial comprising the following plots: GGG, NGN, SGS, NNN, GNG, SNS, SSS, GSG, NSN (each letter represents a row of plants. E3 was conducted with G and S in agroforestry experiment. The trees were harvested after 54, 42, and 27 months old, in E1, E2 and E3, respectively. In E1, G presented higher green biomass of the stems and leaf at smaller densities than S, but lower green biomass of branches at most densities. The species did not differ for mean stem dry biomass and leaf dry biomass, but G showed higher branch dry biomass at most densities. Higher planting densities increased green and dry biomass of stems, branches, and leaves in S, but decreased those characteristics in G, with the exception of leaf dry mass, which was not influenced by density. In E2, the behavior of each species was identical in plots containing the same or different species. Griricidia showed the highest green biomass of stems and branches, and the highest values for geren biomass of the leaf were observed for gliricidia and neem. The highest stem, branch, and leaf dry biomass values were obtained for G, S, and N, respectively. In E3, G was superior for stem and leaf green biomass, and for stem and branch dry biomass. There were no differences between species for the other biomass values.

  7. Restoration of areas degraded by alluvial sand mining: use of soil microbiological activity and plant biomass growth to assess evolution of restored riparian vegetation.

    Science.gov (United States)

    Venson, Graziela R; Marenzi, Rosemeri C; Almeida, Tito César M; Deschamps-Schmidt, Alexandre; Testolin, Renan C; Rörig, Leonardo R; Radetski, Claudemir M

    2017-03-01

    River or alluvial sand mining is causing a variety of environmental problems in the Itajaí-açú river basin in Santa Catarina State (south of Brazil). When this type of commercial activity degrades areas around rivers, environmental restoration programs need to be executed. In this context, the aim of this study was to assess the evolution of a restored riparian forest based on data on the soil microbial activity and plant biomass growth. A reference site and three sites with soil degradation were studied over a 3-year period. Five campaigns were performed to determine the hydrolysis of the soil enzyme fluorescein diacetate (FDA), and the biomass productivity was determined at the end of the studied period. The variation in the enzyme activity for the different campaigns at each site was low, but this parameter did differ significantly according to the site. Well-managed sites showed the highest biomass productivity, and this, in turn, showed a strong positive correlation with soil enzyme activity. In conclusion, soil enzyme activity could form the basis for monitoring and the early prediction of the success of vegetal restoration programs, since responses at the higher level of biological organization take longer, inhibiting the assessment of the project within an acceptable time frame.

  8. End-to-end gene fusions and their impact on the production of multifunctional biomass degrading enzymes

    International Nuclear Information System (INIS)

    Rizk, Mazen; Antranikian, Garabed; Elleuche, Skander

    2012-01-01

    Highlights: ► Multifunctional enzymes offer an interesting approach for biomass degradation. ► Size and conformation of separate constructs play a role in the effectiveness of chimeras. ► A connecting linker allows for maximal flexibility and increased thermostability. ► Genes with functional similarities are the best choice for fusion candidates. -- Abstract: The reduction of fossil fuels, coupled with its increase in price, has made the search for alternative energy resources more plausible. One of the topics gaining fast interest is the utilization of lignocellulose, the main component of plants. Its primary constituents, cellulose and hemicellulose, can be degraded by a series of enzymes present in microorganisms, into simple sugars, later used for bioethanol production. Thermophilic bacteria have proven to be an interesting source of enzymes required for hydrolysis since they can withstand high and denaturing temperatures, which are usually required for processes involving biomass degradation. However, the cost associated with the whole enzymatic process is staggering. A solution for cost effective and highly active production is through the construction of multifunctional enzyme complexes harboring the function of more than one enzyme needed for the hydrolysis process. There are various strategies for the degradation of complex biomass ranging from the regulation of the enzymes involved, to cellulosomes, and proteins harboring more than one enzymatic activity. In this review, the construction of multifunctional biomass degrading enzymes through end-to-end gene fusions, and its impact on production and activity by choosing the enzymes and linkers is assessed.

  9. Predicting plant biomass accumulation from image-derived parameters

    Science.gov (United States)

    Chen, Dijun; Shi, Rongli; Pape, Jean-Michel; Neumann, Kerstin; Graner, Andreas; Chen, Ming; Klukas, Christian

    2018-01-01

    Abstract Background Image-based high-throughput phenotyping technologies have been rapidly developed in plant science recently, and they provide a great potential to gain more valuable information than traditionally destructive methods. Predicting plant biomass is regarded as a key purpose for plant breeders and ecologists. However, it is a great challenge to find a predictive biomass model across experiments. Results In the present study, we constructed 4 predictive models to examine the quantitative relationship between image-based features and plant biomass accumulation. Our methodology has been applied to 3 consecutive barley (Hordeum vulgare) experiments with control and stress treatments. The results proved that plant biomass can be accurately predicted from image-based parameters using a random forest model. The high prediction accuracy based on this model will contribute to relieving the phenotyping bottleneck in biomass measurement in breeding applications. The prediction performance is still relatively high across experiments under similar conditions. The relative contribution of individual features for predicting biomass was further quantified, revealing new insights into the phenotypic determinants of the plant biomass outcome. Furthermore, methods could also be used to determine the most important image-based features related to plant biomass accumulation, which would be promising for subsequent genetic mapping to uncover the genetic basis of biomass. Conclusions We have developed quantitative models to accurately predict plant biomass accumulation from image data. We anticipate that the analysis results will be useful to advance our views of the phenotypic determinants of plant biomass outcome, and the statistical methods can be broadly used for other plant species. PMID:29346559

  10. High Potential Source for Biomass Degradation Enzyme Discovery and Environmental Aspects Revealed through Metagenomics of Indian Buffalo Rumen

    Directory of Open Access Journals (Sweden)

    K. M. Singh

    2014-01-01

    Full Text Available The complex microbiomes of the rumen functions as an effective system for plant cell wall degradation, and biomass utilization provide genetic resource for degrading microbial enzymes that could be used in the production of biofuel. Therefore the buffalo rumen microbiota was surveyed using shot gun sequencing. This metagenomic sequencing generated 3.9 GB of sequences and data were assembled into 137270 contiguous sequences (contigs. We identified potential 2614 contigs encoding biomass degrading enzymes including glycoside hydrolases (GH: 1943 contigs, carbohydrate binding module (CBM: 23 contigs, glycosyl transferase (GT: 373 contigs, carbohydrate esterases (CE: 259 contigs, and polysaccharide lyases (PE: 16 contigs. The hierarchical clustering of buffalo metagenomes demonstrated the similarities and dissimilarity in microbial community structures and functional capacity. This demonstrates that buffalo rumen microbiome was considerably enriched in functional genes involved in polysaccharide degradation with great prospects to obtain new molecules that may be applied in the biofuel industry.

  11. Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming

    Directory of Open Access Journals (Sweden)

    Kai Xue

    2016-09-01

    Full Text Available Clipping (i.e., harvesting aboveground plant biomass is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened.

  12. Hydrocarbon degradation and plant colonization of selected bacterial strains isolated from the rhizsophere and plant interior of Italian ryegrass and Birdsfoot trefoil

    Science.gov (United States)

    Sohail, Y.; Andria, V.; Reichenauer, T. G.; Sessitsch, A.

    2009-04-01

    Hydrocarbon-degrading strains were isolated from the rhizosphere, root and shoot interior of Italian ryegrass (Lolium multiflorum var. Taurus), Birdsfoot trefoil (Lotus corniculatus var. Leo) grown in a soil contaminated with petroleum oil. Strains were tested regarding their phylogeny and their degradation efficiency. The most efficient strains were tested regarding their suitability to be applied for phytoremediation of diesel oils. Sterilized and non-sterilized agricultural soil, with and with out compost, were spiked with diesel and used for planting Italian ryegrass and birdsfoot trefoil. Four selected strains with high degradation activities, derived from the rhizosphere and plant interior, were selected for individual inoculation. Plants were harvested at flowering stage and plant biomass and hydrocarbon degradation was determined. Furthermore, it was investigated to which extent the inoculant strains were able to survive and colonize plants. Microbial community structures were analysed by 16S rRNA and alkB gene analysis. Results showed efficient colonization by the inoculant strains and improved degradation by the application of compost combined with inoculation as well as on microbial community structures will be presented.

  13. Digital Biomass Accumulation Using High-Throughput Plant Phenotype Data Analysis.

    Science.gov (United States)

    Rahaman, Md Matiur; Ahsan, Md Asif; Gillani, Zeeshan; Chen, Ming

    2017-09-01

    Biomass is an important phenotypic trait in functional ecology and growth analysis. The typical methods for measuring biomass are destructive, and they require numerous individuals to be cultivated for repeated measurements. With the advent of image-based high-throughput plant phenotyping facilities, non-destructive biomass measuring methods have attempted to overcome this problem. Thus, the estimation of plant biomass of individual plants from their digital images is becoming more important. In this paper, we propose an approach to biomass estimation based on image derived phenotypic traits. Several image-based biomass studies state that the estimation of plant biomass is only a linear function of the projected plant area in images. However, we modeled the plant volume as a function of plant area, plant compactness, and plant age to generalize the linear biomass model. The obtained results confirm the proposed model and can explain most of the observed variance during image-derived biomass estimation. Moreover, a small difference was observed between actual and estimated digital biomass, which indicates that our proposed approach can be used to estimate digital biomass accurately.

  14. Nano-cellulose biopolymer based nano-biofilm biomaterial using plant biomass: An innovative plant biomaterial dataset

    Directory of Open Access Journals (Sweden)

    A.B.M. Sharif hossain

    2018-04-01

    Full Text Available The nano-cellulose derived nano-biofilm keeps a magnificent role in medical, biomedical, bioengineering and pharmaceutical industries. Plant biomaterial is naturally organic and biodegradable. This study has been highlighted as one of the strategy introducing biomass based nano-bioplastic (nanobiofilm to solve dependency on petroleum and environment pollution because of non-degradable plastic. The data study was carried out to investigate the nano-biopolymer (nanocellulose based nano-biofilm data from corn leaf biomass coming after bioprocess technology without chemicals. Corn leaf biomass was used to produce biodegradable nano-bioplastic for medical and biomedical and other industrial uses. Data on water absorption, odor, pH, cellulose content, shape and firmness, color coating and tensile strength test have been exhibited under standardization of ASTM (American standard for testing and materials. Moreover, the chemical elements of nanobiofilm like K+, CO3−−, Cl−, Na+ showed standard data using the EN (166. Keywords: Nanocellulose, Nanobiofilm, Nanobioplastic, Biodegradable, Corn leaf

  15. Lag phase and biomass determination of Rhodococcus pyridinivorans GM3 for degradation of phenol

    Science.gov (United States)

    Al-Defiery, M. E. J.; Reddy, G.

    2018-05-01

    Among various techniques available for removal of phenol, biodegradation is an eco-friendly and cost effective method. Thus, it is required to understand the process of biodegradation of phenol, such as investigate on lag phase and biomass concentration. Phenol degrading bacteria were isolated from soil samples of industrial sites in enriched mineral salts medium (MSM) with phenol as a sole source of energy and carbon. One isolate of potential phenol degradation from consortium for phenol degrading studies was identified as Rhodococcus pyridinivorans GM3. Lag phase and biomass determination of R. pyridinivorans GM3 was studied with different phenol concentrations under pH 8.5 at temperature 32 Co and 200 rpm. Microbial biomass was directly proportional to increasing phenol concentration between 1.0 to 2.0 g/L with a maximum dry biomass of 1.745 g/L was noted after complete degradation of 2.0 g/L phenol in 48 hours.

  16. Recombinant protein production facility for fungal biomass-degrading enzymes using the yeast Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mireille eHaon

    2015-09-01

    Full Text Available Filamentous fungi are the predominant source of lignocellulolytic enzymes used in industry for the transformation of plant biomass into high-value molecules and biofuels. The rapidity with which new fungal genomic and post-genomic data are being produced is vastly outpacing functional studies. This underscores the critical need for developing platforms dedicated to the recombinant expression of enzymes lacking confident functional annotation, a prerequisite to their functional and structural study. In the last decade, the yeast Pichia pastoris has become increasingly popular as a host for the production of fungal biomass-degrading enzymes, and particularly carbohydrate-active enzymes (CAZymes. This study aimed at setting-up a platform to easily and quickly screen the extracellular expression of biomass-degrading enzymes in Pichia pastoris. We first used three fungal glycoside hydrolases that we previously expressed using the protocol devised by Invitrogen to try different modifications of the original protocol. Considering the gain in time and convenience provided by the new protocol, we used it as basis to set-up the facility and produce a suite of fungal CAZymes (glycoside hydrolases, carbohydrate esterases and auxiliary activity enzyme families out of which more than 70% were successfully expressed. The platform tasks range from gene cloning to automated protein purifications and activity tests, and is open to the CAZyme users’ community.

  17. Aboveground Biomass Variability Across Intact and Degraded Forests in the Brazilian Amazon

    Science.gov (United States)

    Longo, Marcos; Keller, Michael; Dos-Santos, Maiza N.; Leitold, Veronika; Pinage, Ekena R.; Baccini, Alessandro; Saatchi, Sassan; Nogueira, Euler M.; Batistella, Mateus; Morton, Douglas C.

    2016-01-01

    Deforestation rates have declined in the Brazilian Amazon since 2005, yet degradation from logging, re, and fragmentation has continued in frontier forests. In this study we quantified the aboveground carbon density (ACD) in intact and degraded forests using the largest data set of integrated forest inventory plots (n 359) and airborne lidar data (18,000 ha) assembled to date for the Brazilian Amazon. We developed statistical models relating inventory ACD estimates to lidar metrics that explained70 of the variance across forest types. Airborne lidar-ACD estimates for intact forests ranged between 5.0 +/- 2.5 and 31.9 +/- 10.8 kg C m(exp -2). Degradation carbon losses were large and persistent. Sites that burned multiple times within a decade lost up to 15.0 +/- 0.7 kg C m(-2)(94%) of ACD. Forests that burned nearly15 years ago had between 4.1 +/- 0.5 and 6.8 +/- 0.3 kg C m(exp -2) (22-40%) less ACD than intact forests. Even for low-impact logging disturbances, ACD was between 0.7 +/- 0.3 and 4.4 +/- 0.4 kg C m(exp -2)(4-21%) lower than unlogged forests. Comparing biomass estimates from airborne lidar to existing biomass maps, we found that regional and pan-tropical products consistently overestimated ACD in degraded forests, under-estimated ACD in intact forests, and showed little sensitivity to res and logging. Fine-scale heterogeneity in ACD across intact and degraded forests highlights the benefits of airborne lidar for carbon mapping. Differences between airborne lidar and regional biomass maps underscore the need to improve and update biomass estimates for dynamic land use frontiers, to better characterize deforestation and degradation carbon emissions for regional carbon budgets and Reduce Emissions from Deforestation and forest Degradation(REDD+).

  18. Untargeted Metabolic Profiling of Winery-Derived Biomass Waste Degradation by Penicillium chrysogenum.

    Science.gov (United States)

    Karpe, Avinash V; Beale, David J; Godhani, Nainesh B; Morrison, Paul D; Harding, Ian H; Palombo, Enzo A

    2015-12-16

    Winery-derived biomass waste was degraded by Penicillium chrysogenum under solid state fermentation over 8 days in a (2)H2O-supplemented medium. Multivariate statistical analysis of the gas chromatography-mass spectrometry (GC-MS) data resulted in the identification of 94 significant metabolites, within 28 different metabolic pathways. The majority of biomass sugars were utilized by day 4 to yield products such as sugars, fatty acids, isoprenoids, and amino acids. The fungus was observed to metabolize xylose to xylitol, an intermediate of ethanol production. However, enzyme inhibition and autolysis were observed from day 6, indicating 5 days as the optimal time for fermentation. P. chrysogenum displayed metabolism of pentoses (to alcohols) and degraded tannins and lignins, properties that are lacking in other biomass-degrading ascomycetes. Rapid fermentation (3-5 days) may not only increase the pentose metabolizing efficiency but also increase the yield of medicinally important metabolites, such as syringate.

  19. Indian Farmers’ Perceptions and Willingness to Supply Surplus Biomass to an Envisioned Biomass-Based Power Plant

    Directory of Open Access Journals (Sweden)

    Anas Zyadin

    2015-04-01

    Full Text Available The main objectives of this socio-technical study are to investigate the Indian farmers’ biomass production capacities and their perceptions and willingness to supply their surplus biomass to fuel an envisioned biomass-based power plant in three selected Indian states: Maharashtra, Madhya Pradesh and Tamil Nadu. For doing so, 471 farmers (about one-third from each state have been interviewed in the field with info-sheet filled in by the field investigators. The farmers from all of the states appeared very much willing to sell their surplus biomass directly to a power plant. The farmers seem to depreciate the involvement of a middleman in the biomass procurement process. The farmers, however, appeared to highly appreciate a community-based association to regulate the biomass prices, with varying perceptions regarding government intervention. The majority of the farmers perceived the establishment of a biomass-based power plant in their region with positive economic outcomes. The farmers identified several barriers to supply biomass to a power plant where transportation logistics appeared to be the main barrier. The study recommends considering biomass collection, storage and transportation logistics as a fundamental segment of any envisioned investment in a biomass-based power plant. Biomass processing, such as pelletization or briquetting is recommended for efficient transportation of biomass at longer distances to reduce the transportation costs. The study further encourages the establishment of a farmers’ association aimed at collecting and selling biomass in agriculture areas predominant for small land holdings.

  20. Leaf-Cutter Ant Fungus Gardens Are Biphasic Mixed Microbial Bioreactors That Convert Plant Biomass to Polyols with Biotechnological Applications

    Science.gov (United States)

    Somera, Alexandre F.; Lima, Adriel M.; dos Santos-Neto, Álvaro J.; Lanças, Fernando M.

    2015-01-01

    Leaf-cutter ants use plant matter to culture the obligate mutualistic basidiomycete Leucoagaricus gongylophorus. This fungus mediates ant nutrition on plant resources. Furthermore, other microbes living in the fungus garden might also contribute to plant digestion. The fungus garden comprises a young sector with recently incorporated leaf fragments and an old sector with partially digested plant matter. Here, we show that the young and old sectors of the grass-cutter Atta bisphaerica fungus garden operate as a biphasic solid-state mixed fermenting system. An initial plant digestion phase occurred in the young sector in the fungus garden periphery, with prevailing hemicellulose and starch degradation into arabinose, mannose, xylose, and glucose. These products support fast microbial growth but were mostly converted into four polyols. Three polyols, mannitol, arabitol, and inositol, were secreted by L. gongylophorus, and a fourth polyol, sorbitol, was likely secreted by another, unidentified, microbe. A second plant digestion phase occurred in the old sector, located in the fungus garden core, comprising stocks of microbial biomass growing slowly on monosaccharides and polyols. This biphasic operation was efficient in mediating symbiotic nutrition on plant matter: the microbes, accounting for 4% of the fungus garden biomass, converted plant matter biomass into monosaccharides and polyols, which were completely consumed by the resident ants and microbes. However, when consumption was inhibited through laboratory manipulation, most of the plant polysaccharides were degraded, products rapidly accumulated, and yields could be preferentially switched between polyols and monosaccharides. This feature might be useful in biotechnology. PMID:25911490

  1. A theoretical and experimental study of the thermal degradation of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Groenli, Morten G.

    1996-12-31

    This thesis relates to the thermal degradation of biomass covering a theoretical and experimental study in two parts. In the first part, there is presented an experimental and modeling work on the pyrolysis of biomass under regimes controlled by chemical kinetics, and the second part presents an experimental and modeling work on the pyrolysis of biomass under regimes controlled by heat and mass transfer. Five different celluloses, and hemicellulose and lignin isolated from birch and spruce have been studied by thermogravimetry. The thermo grams of wood species revealed different weight loss characteristics which can be attributed to their different chemical composition. The kinetic analysis gave activation energies between 210 and 280 kJ/mole for all the celluloses, and a model of independent parallel reactions was successfully used to describe the thermal degradation. In the second part of the thesis there is presented experimental and modeling work on the pyrolysis of biomass under regimes controlled by heat and mass transfer. The effect of heating conditions on the product yields distribution and reacted fraction was investigated. The experiments show that heat flux alters the pyrolysis products as well as the intra particle temperatures to the greatest extent. A comprehensive mathematical model which can simulate drying and pyrolysis of moist wood is presented. The simulation of thermal degradation and heat transport processes agreed well with experimental results. 198 refs., 139 figs., 68 abs.

  2. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots

    Science.gov (United States)

    Powell, C. L.; Goltz, M. N.; Agrawal, A.

    2014-12-01

    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs by the root-associated methane-oxidizing bacteria at initial aqueous [CH4] ~ 1.9 mg L- 1, and initial aqueous [CAH] ~ 150 μg L- 1; cisDCE and TCE (in the presence of 1,1,1TCA) degraded significantly, with a removal efficiency of approximately 90% and 46%, respectively. 1,1,1TCA degradation was not observed in the presence of active methane oxidizers. The pseudo first-order degradation rate-constants of TCE and cisDCE were 0.12 ± 0.01 and 0.59 ± 0.07 d- 1, respectively, which are comparable to published values. However, their biomass-normalized degradation rate constants obtained in this study were significantly smaller than pure-culture studies, yet they were comparable to values reported for biofilm systems. The study suggests that CAH removal in wetland plant roots may be comparable to processes within biofilms. This has led us to speculate that the active biomass may be on the root surface as a biofilm. The cisDCE and TCE mass losses due to methane oxidizers in this study offer insight into the role of shallow, vegetated wetlands as an environmental sink for such xenobiotic compounds.

  3. An efficient Azorean thermophilic consortium for lignocellulosic biomass degradation

    OpenAIRE

    Martins, Rita; Teixeira, Mário; Toubarro, Duarte; Simões, Nelson; Domingues, Lucília; Teixeira, J. A.

    2015-01-01

    [Excerpt] Lignocellulosic plant biomass is being envisioned by biorefinery industry as an alternative to current petroleum platform because of the large scale availability, low cost and environmentally benign production. The industrial bioprocessing designed to transform lignocellulosic biomass into biofuels are harsh and the enzymatic reactions may be severely compromised reducing the production of fermentable sugars from lignocellulosic biomass. Thermophilic bacteria consortium are a potent...

  4. Winery biomass waste degradation by sequential sonication and mixed fungal enzyme treatments.

    Science.gov (United States)

    Karpe, Avinash V; Dhamale, Vijay V; Morrison, Paul D; Beale, David J; Harding, Ian H; Palombo, Enzo A

    2017-05-01

    To increase the efficiency of winery-derived biomass biodegradation, grape pomace was ultrasonicated for 20min in the presence of 0.25M, 0.5Mand1.0MKOH and 1.0MNaOH. This was followed by treatment with a 1:1 (v/v) mix of crude enzyme preparation derived from Phanerochaete chrysosporium and Trametes versicolor for 18h and a further 18h treatment with a 60:14:4:2 percent ratio combination of enzymes derived from Aspergillus niger: Penicillium chrysogenum: Trichoderma harzianum: P. citrinum, repsectively. Process efficiency was evaluated by its comparison to biological only mixed fungal degradation over 16days. Ultrasonication treatment with 0.5MKOH followed by mixed enzyme treatment yielded the highest lignin degradation of about 13%. Cellulase, β-glucosidase, xylanase, laccase and lignin peroxidase activities of 77.9, 476, 5,390.5, 66.7 and 29,230.7U/mL, respectively, were observed during biomass degradation. Gas chromatography-mass spectrometry (GC-MS) analysis of the degraded material identified commercially important compounds such as gallic acid, lithocholic acid, glycolic acid and lactic acid which were generated in considerable quantities. Thus, the combination of sonication pre-treatment and enzymatic degradation has the potential to considerably improve the breakdown of agricultural biomass and produce commercially useful compounds in markedly less time (<40h) with respect to biological only degradation (16days). Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Communal biomass conversion plants

    International Nuclear Information System (INIS)

    1991-06-01

    The Coordinating Committee set up by the Danish government in 1986 were given the responsibility of investigating the potentials for biomass conversion plants in Denmark, especially in relation to agricultural, environmental and energy aspects. The results of the Committee's plan of management for this project are presented. This main report covers 13 background reports which deal with special aspects in detail. The report describes the overall plan of management, the demonstration and follow-up programme and the individual biogas demonstration plants. Information gained from these investigations is presented. The current general status, (with emphasis on the technical and economical aspects) and the prospects for the future are discussed. The interest other countries have shown in Danish activities within the field of biogas production is described, and the possibilities for Danish export of technology and know-how in this relation are discussed. It is claimed that Denmark is the first country that has instigated a coordinated development programme for biomass conversion plants. (AB) 24 refs

  6. Lessons learned from existing biomass power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, G.

    2000-02-24

    This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

  7. Do plants modulate biomass allocation in response to petroleum pollution?

    Science.gov (United States)

    Nie, Ming; Yang, Qiang; Jiang, Li-Fen; Fang, Chang-Ming; Chen, Jia-Kuan; Li, Bo

    2010-01-01

    Biomass allocation is an important plant trait that responds plastically to environmental heterogeneities. However, the effects on this trait of pollutants owing to human activities remain largely unknown. In this study, we investigated the response of biomass allocation of Phragmites australis to petroleum pollution by a 13CO2 pulse-labelling technique. Our data show that plant biomass significantly decreased under petroleum pollution, but the root–shoot ratio for both plant biomass and 13C increased with increasing petroleum concentration, suggesting that plants could increase biomass allocation to roots in petroleum-polluted soil. Furthermore, assimilated 13C was found to be significantly higher in soil, microbial biomass and soil respiration after soils were polluted by petroleum. These results suggested that the carbon released from roots is rapidly turned over by soil microbes under petroleum pollution. This study found that plants can modulate biomass allocation in response to petroleum pollution. PMID:20484231

  8. Heterologous Expression of Plant Cell Wall Degrading Enzymes for Effective Production of Cellulosic Biofuels

    Science.gov (United States)

    Jung, Sang-Kyu; Parisutham, Vinuselvi; Jeong, Seong Hun; Lee, Sung Kuk

    2012-01-01

    A major technical challenge in the cost-effective production of cellulosic biofuel is the need to lower the cost of plant cell wall degrading enzymes (PCDE), which is required for the production of sugars from biomass. Several competitive, low-cost technologies have been developed to produce PCDE in different host organisms such as Escherichia coli, Zymomonas mobilis, and plant. Selection of an ideal host organism is very important, because each host organism has its own unique features. Synthetic biology-aided tools enable heterologous expression of PCDE in recombinant E. coli or Z. mobilis and allow successful consolidated bioprocessing (CBP) in these microorganisms. In-planta expression provides an opportunity to simplify the process of enzyme production and plant biomass processing and leads to self-deconstruction of plant cell walls. Although the future of currently available technologies is difficult to predict, a complete and viable platform will most likely be available through the integration of the existing approaches with the development of breakthrough technologies. PMID:22911272

  9. Competitiveness of biomass-fueled electrical power plants.

    Science.gov (United States)

    Bruce A. McCarl; Darius M. Adams; Ralph J. Alig; John T. Chmelik

    2000-01-01

    One way countries like the United States can comply with suggested rollbacks in greenhouse gas emissions is by employing power plants fueled with biomass. We examine the competitiveness of biomass-based fuel for electrical power as opposed to coal using a mathematical programming structure. We consider fueling power plants from milling residues, whole trees, logging...

  10. Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement

    Directory of Open Access Journals (Sweden)

    Shamsa Akbar

    Full Text Available ABSTRACT Background: Since 1960s, the organophosphate pesticide chlorpyrifos has been widely used for the purpose of pest control. However, given its persistence and toxicity towards life forms, the elimination of chlorpyrifos from contaminated sites has become an urgent issue. For this process bioremediation is the method of choice. Results: Two bacterial strains, JCp4 and FCp1, exhibiting chlorpyrifos-degradation potential were isolated from pesticide contaminated agricultural fields. These isolates were able to degrade 84.4% and 78.6% of the initial concentration of chlorpyrifos (100 mg L-1 within a period of only 10 days. Based on 16S rRNA sequence analysis, these strains were identified as Achromobacter xylosoxidans (JCp4 and Ochrobactrum sp. (FCp1. These strains exhibited the ability to degrade chlorpyrifos in sterilized as well as non-sterilized soils, and were able to degrade 93-100% of the input concentration (200 mg kg-1 within 42 days. The rate of degradation in inoculated soils ranged from 4.40 to 4.76 mg-1 kg-1 d-1 with rate constants varying between 0.047 and 0.069 d-1. These strains also displayed substantial plant growth promoting traits such as phosphate solubilization, indole acetic acid production and ammonia production both in absence as well as in the presence of chlorpyrifos. However, presence of chlorpyrifos (100 and 200 mg L-1 was found to have a negative effect on indole acetic acid production and phosphate solubilization with percentage reduction values ranging between 2.65-10.6% and 4.5-17.6%, respectively. Plant growth experiment demonstrated that chlorpyrifos has a negative effect on plant growth and causes a decrease in parameters such as percentage germination, plant height and biomass. Inoculation of soil with chlorpyrifos-degrading strains was found to enhance plant growth significantly in terms of plant length and weight. Moreover, it was noted that these strains degraded chlorpyrifos at an increased rate (5

  11. Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement.

    Science.gov (United States)

    Akbar, Shamsa; Sultan, Sikander

    2016-01-01

    Since 1960s, the organophosphate pesticide chlorpyrifos has been widely used for the purpose of pest control. However, given its persistence and toxicity towards life forms, the elimination of chlorpyrifos from contaminated sites has become an urgent issue. For this process bioremediation is the method of choice. Two bacterial strains, JCp4 and FCp1, exhibiting chlorpyrifos-degradation potential were isolated from pesticide contaminated agricultural fields. These isolates were able to degrade 84.4% and 78.6% of the initial concentration of chlorpyrifos (100mgL(-1)) within a period of only 10 days. Based on 16S rRNA sequence analysis, these strains were identified as Achromobacter xylosoxidans (JCp4) and Ochrobactrum sp. (FCp1). These strains exhibited the ability to degrade chlorpyrifos in sterilized as well as non-sterilized soils, and were able to degrade 93-100% of the input concentration (200mgkg(-1)) within 42 days. The rate of degradation in inoculated soils ranged from 4.40 to 4.76mg(-1)kg(-1)d(-1) with rate constants varying between 0.047 and 0.069d(-1). These strains also displayed substantial plant growth promoting traits such as phosphate solubilization, indole acetic acid production and ammonia production both in absence as well as in the presence of chlorpyrifos. However, presence of chlorpyrifos (100 and 200mgL(-1)) was found to have a negative effect on indole acetic acid production and phosphate solubilization with percentage reduction values ranging between 2.65-10.6% and 4.5-17.6%, respectively. Plant growth experiment demonstrated that chlorpyrifos has a negative effect on plant growth and causes a decrease in parameters such as percentage germination, plant height and biomass. Inoculation of soil with chlorpyrifos-degrading strains was found to enhance plant growth significantly in terms of plant length and weight. Moreover, it was noted that these strains degraded chlorpyrifos at an increased rate (5.69mg(-1)kg(-1)d(-1)) in planted soil. The

  12. Marine biomass power plant using methane fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, T.; Saito, H.; Amano, T.; Sugawara, H.; Seki, T.; Abe, T. [Technology Research Inst., Tokyo Gas Co. Ltd., Tokyo (Japan)

    2004-07-01

    This study presented an effective way to produce biogas from the large quantities of seaweed waste in Japan. A large-scale marine biomass pilot plant was built to produce biogas from marine biomass. Methane fermentation was the process used to produce biogas from Laminaria sp. The maximum treating capacity of the pilot plant is 1 ton of seaweed per day. The pilot plant includes a pretreatment facility, fermentation, biogas storage and power generation. The maximum methane yield from the biomass plant is 22 cubic ton-seaweed. The purified biogas has generated 10 kW of electricity and 23 kW of heat. The biogas was also mixed with natural gas for use in a gas engine generator. The engine operation remained stable despite changes in quantity and composition of the collected biogas caused by changes with the source of biomass and sea conditions. The thermal efficiency of the gas engine running on mixed biogas and natural gas was more than 10 per cent higher than an engine running on biogas fuel alone. 4 refs., 2 tabs., 3 figs.

  13. Analysis of genomic regions of Trichoderma harzianum IOC-3844 related to biomass degradation.

    Science.gov (United States)

    Crucello, Aline; Sforça, Danilo Augusto; Horta, Maria Augusta Crivelente; dos Santos, Clelton Aparecido; Viana, Américo José Carvalho; Beloti, Lilian Luzia; de Toledo, Marcelo Augusto Szymanski; Vincentz, Michel; Kuroshu, Reginaldo Massanobu; de Souza, Anete Pereira

    2015-01-01

    Trichoderma harzianum IOC-3844 secretes high levels of cellulolytic-active enzymes and is therefore a promising strain for use in biotechnological applications in second-generation bioethanol production. However, the T. harzianum biomass degradation mechanism has not been well explored at the genetic level. The present work investigates six genomic regions (~150 kbp each) in this fungus that are enriched with genes related to biomass conversion. A BAC library consisting of 5,760 clones was constructed, with an average insert length of 90 kbp. The assembled BAC sequences revealed 232 predicted genes, 31.5% of which were related to catabolic pathways, including those involved in biomass degradation. An expression profile analysis based on RNA-Seq data demonstrated that putative regulatory elements, such as membrane transport proteins and transcription factors, are located in the same genomic regions as genes related to carbohydrate metabolism and exhibit similar expression profiles. Thus, we demonstrate a rapid and efficient tool that focuses on specific genomic regions by combining a BAC library with transcriptomic data. This is the first BAC-based structural genomic study of the cellulolytic fungus T. harzianum, and its findings provide new perspectives regarding the use of this species in biomass degradation processes.

  14. Microbial degradation of coconut coir dust for biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Uyenco, F.R.; Ochoa, J.A.K.

    Several species of white-rot fungi were studied for its ability to degrade the lignocellulose components of coir dust at optimum conditions. The most effective fungi was Phanerochaeta chrysosporium UPCC 4003. This organism degraded the lignocellulose complex of coir dust at a rate of about 25 percent in 4 weeks. The degradation process was carried on with minimal nitrogen concentration, coconut water supplementation and moisture levels between 85-90 percent. Shake flask cultures of the degraded coir dust using cellulolytic fungi were not effective. In fermentor cultures with Chaetomium cellulolyticum UPCC 3934, supplemented coir dust was converted into a microbial biomass product (MBP) with 15.58 percent lignin, 19.20 percent cellulose and 18.87 percent protein. More work is being done on the utilization of coir dust on a low technology.

  15. Soil Properties and Plant Biomass Production in Natural Rangeland Management Systems

    Directory of Open Access Journals (Sweden)

    Romeu de Souza Werner

    Full Text Available ABSTRACT Improper management of rangelands can cause land degradation and reduce the economic efficiency of livestock activity. The aim of this study was to evaluate soil properties and quantify plant biomass production in four natural rangeland management systems in the Santa Catarina Plateau (Planalto Catarinense of Brazil. The treatments, which included mowed natural rangeland (NR, burned natural rangeland (BR, natural rangeland improved through the introduction of plant species after harrowing (IH, and natural rangeland improved through the introduction of plant species after chisel plowing (IC, were evaluated in a Nitossolo Bruno (Nitisol. In the improved treatments, soil acidity was corrected, phosphate fertilizer was applied, and intercropped annual ryegrass (Lolium multiflorum, velvet grass (Holcus lanatus, and white clover (Trifolium repens were sown. Management systems with harrowed or chisel plowed soil showed improved soil physical properties; however, the effect decreased over time and values approached those of burned and mowed natural rangelands. Natural rangeland systems in the establishment phase had little influence on soil organic C. The mowed natural rangeland and improved natural rangeland exhibited greater production of grazing material, while burning the field decreased production and increased the proportion of weeds. Improvement of the natural rangelands increased leguminous biomass for pasture.

  16. Physiological and molecular aspects of degradation of plant polysaccharides by fungi: What have we learned from Aspergillus?

    NARCIS (Netherlands)

    Culleton, H.; McKie, V.; de Vries, R.P.

    2013-01-01

    Plant biomass is the most abundant and usable carbon source for many fungal species. Due to its diverse and complex structure, fungi need to produce a large range of enzymes to degrade these polysaccharides into monomeric components. The fine-tuned production of such diverse enzyme sets requires

  17. Substrate Shift Reveals Roles for Members of Bacterial Consortia in Degradation of Plant Cell Wall Polymers

    Directory of Open Access Journals (Sweden)

    Camila Carlos

    2018-03-01

    Full Text Available Deconstructing the intricate matrix of cellulose, hemicellulose, and lignin poses a major challenge in biofuel production. In diverse environments in nature, some microbial communities, are able to overcome plant biomass recalcitrance. Identifying key degraders of each component of plant cell wall can help improve biological degradation of plant feedstock. Here, we sequenced the metagenome of lignocellulose-adapted microbial consortia sub-cultured on xylan and alkali lignin media. We observed a drastic shift on community composition after sub-culturing, independently of the original consortia. Proteobacteria relative abundance increased after growth in alkali lignin medium, while Bacteroidetes abundance increased after growth in xylan medium. At the genus level, Pseudomonas was more abundant in the communities growing on alkali lignin, Sphingobacterium in the communities growing on xylan and Cellulomonas abundance was the highest in the original microbial consortia. We also observed functional convergence of microbial communities after incubation in alkali lignin, due to an enrichment of genes involved in benzoate degradation and catechol ortho-cleavage pathways. Our results represent an important step toward the elucidation of key members of microbial communities on lignocellulose degradation and may aide the design of novel lignocellulolytic microbial consortia that are able to efficiently degrade plant cell wall polymers.

  18. Substrate Shift Reveals Roles for Members of Bacterial Consortia in Degradation of Plant Cell Wall Polymers.

    Science.gov (United States)

    Carlos, Camila; Fan, Huan; Currie, Cameron R

    2018-01-01

    Deconstructing the intricate matrix of cellulose, hemicellulose, and lignin poses a major challenge in biofuel production. In diverse environments in nature, some microbial communities, are able to overcome plant biomass recalcitrance. Identifying key degraders of each component of plant cell wall can help improve biological degradation of plant feedstock. Here, we sequenced the metagenome of lignocellulose-adapted microbial consortia sub-cultured on xylan and alkali lignin media. We observed a drastic shift on community composition after sub-culturing, independently of the original consortia. Proteobacteria relative abundance increased after growth in alkali lignin medium, while Bacteroidetes abundance increased after growth in xylan medium. At the genus level, Pseudomonas was more abundant in the communities growing on alkali lignin, Sphingobacterium in the communities growing on xylan and Cellulomonas abundance was the highest in the original microbial consortia. We also observed functional convergence of microbial communities after incubation in alkali lignin, due to an enrichment of genes involved in benzoate degradation and catechol ortho-cleavage pathways. Our results represent an important step toward the elucidation of key members of microbial communities on lignocellulose degradation and may aide the design of novel lignocellulolytic microbial consortia that are able to efficiently degrade plant cell wall polymers.

  19. Engineered plant biomass feedstock particles

    Science.gov (United States)

    Dooley, James H [Federal Way, WA; Lanning, David N [Federal Way, WA; Broderick, Thomas F [Lake Forest Park, WA

    2012-04-17

    A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

  20. Carbohydrate degradation mechanisms and compounds from pretreated biomass

    DEFF Research Database (Denmark)

    Rasmussen, Helena

    The formation of inhibitors during pretreatment of lignocellulosic feedstocks is a persistent problem, and notably the compounds that retard enzymatic cellulose conversion represent an obstacle for achieving optimal enzymatic productivity and high glucose yields. Compounds with many chemical...... pretreated wheat straw after enzymatic treatment. It was found that formation of the oligophenolic degradation compounds were common across biomass sources as sugar cane bagasse and oil palm empty fruit bunches. These findings were in line with that the oligophenolic compounds arise from reactions involving...... functionalities are formed during biomass pretreatment, which gives possibilities for various chemical reactions to take place and hence formation of many new potential inhibitor compounds. This somehow overlooked contemplation formed the basis for the main hypothesis investigated in this work: Hypothesis 1...

  1. Genome Sequence of Streptomyces viridosporus Strain T7A ATCC 39115, a Lignin-Degrading Actinomycete

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Jennifer R. [Brown University; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Teshima, Hazuki [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Wei, Chia-Lin [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Szeto, Ernest [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Sello, Jason K. [Brown University

    2013-01-01

    We announce the availability of the genome sequence of Streptomyces viridosporus strain T7A ATCC 39115, a plant biomass- degrading actinomycete. This bacterium is of special interest because of its capacity to degrade lignin, an underutilized compo- nent of plants in the context of bioenergy. It has a full complement of genes for plant biomass catabolism.

  2. Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP)

    Science.gov (United States)

    Ma, Hongyan; Delafield, Daniel G.; Wang, Zhe; You, Jianlan; Wu, Si

    2017-04-01

    The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion.

  3. Visual comparative omics of fungi for plant biomass deconstruction

    Directory of Open Access Journals (Sweden)

    Shingo Miyauchi

    2016-08-01

    Full Text Available Wood-decay fungi are able to decompose plant cell wall components such as cellulose, hemicelluloses and lignin. Such fungal capabilities may be exploited for the enhancement of directed enzymatic degradation of recalcitrant plant biomass. The comparative analysis of wood-decay fungi using a multi-omics approach gives not only new insights into the strategies for decomposing complex plant materials but also basic knowledge for the design of combinations of enzymes for biotechnological applications. We have developed an analytical workflow, Applied Biomass Conversion Design for Efficient Fungal Green Technology (ABCDEFGT, to simplify the analysis and interpretation of transcriptomic and secretomic data. The ABCDEFGT workflow is primarily constructed of self-organizing maps for grouping genes with similar transcription patterns and an overlay with secreted proteins. The ABCDEFGT workflow produces simple graphic outputs of genome-wide transcriptomes and secretomes. It enables visual inspection without a priori of the omics data, facilitating discoveries of co-regulated genes and proteins. Genome-wide omics landscapes were built with the newly sequenced fungal species Pycnoporus coccineus, Pycnoporus sanguineus, and Pycnoporus cinnabarinus grown on various carbon sources. Integration of the post-genomic data showed a global overlap, confirming the pertinence of the genome-wide approach to study the fungal biological responses to the carbon sources. Our method was compared to a recently-developed clustering method in order to assess the biological relevance of the method and ease of interpretation. Our approach provided a better biological representation of fungal behaviors. The genome-wide multi-omics strategy allowed us to determine the potential synergy of enzymes participating in the decomposition of cellulose, hemicellulose and lignin such as Lytic Polysaccharide Monooxygenases (LPMO, modular enzymes associated with a cellulose binding module

  4. Use of phytoproductivity data in the choice of native plant species to restore a degraded coal mining site amended with a stabilized industrial organic sludge.

    Science.gov (United States)

    Chiochetta, Claudete G; Toumi, Hela; Böhm, Renata F S; Engel, Fernanda; Poyer-Radetski, Gabriel; Rörig, Leonardo R; Adani, Fabrizio; Radetski, Claudemir M

    2017-11-01

    Coal mining-related activities result in a degraded landscape and sites associated with large amounts of dumped waste material. The arid soil resulting from acid mine drainage affects terrestrial and aquatic ecosystems, and thus, site remediation programs must be implemented to mitigate this sequential deleterious processes. A low-cost alternative material to counterbalance the affected physico-chemical-microbiological aspects of the degraded soil is the amendment with low contaminated and stabilized industrial organic sludge. The content of nutrients P and N, together with stabilized organic matter, makes this material an excellent fertilizer and soil conditioner, fostering biota colonization and succession in the degraded site. However, choice of native plant species to restore a degraded site must be guided by some minimal criteria, such as plant survival/adaptation and plant biomass productivity. Thus, in this 3-month study under environmental conditions, phytoproductivity tests with five native plant species (Surinam cherry Eugenia uniflora L., C. myrianthum-Citharexylum myrianthum, Inga-Inga spp., Brazilian peppertree Schinus terebinthifolius, and Sour cherry Prunus cerasus) were performed to assess these criteria, and additional biochemical parameters were measured in plant tissues (i.e., protein content and peroxidase activity) exposed to different soil/sludge mixture proportions. The results show that three native plants were more adequate to restore vegetation on degraded sites: Surinam cherry, C. myrianthum, and Brazilian peppertree. Thus, this study demonstrates that phytoproductivity tests associated with biochemical endpoint measurements can help in the choice of native plant species, as well as aiding in the choice of the most appropriate soil/stabilized sludge proportion in order to optimize biomass production.

  5. Prevention of Tibetan eco-environmental degradation caused by traditional use of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiang [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China)

    2009-12-15

    Tibet is short in fossil energy, but rich in renewable energy sources, such as biomass, hydro, solar, geothermal, and wind power. This potential energy supply in Tibet can be juxtaposed to what drives Tibetan energy consumption its economic motivation and its cultural traditions. Currently, biomass heavily dominates Tibet's energy consumption. In 2003, total energy consumption was about 2 million tce (ton coal equivalent), traditional biomass accounting for nearly 70%. The rarified atmosphere and use of outdated stoves, make for a very low combustion efficiency, utilizing 10-15% of the potential energy of biomass. With population and economic growth, traditional use of biomass has become the principal factor responsible for deforestation, grassland degradation, desertification, and soil erosion. To eradicate the negative impact of the traditional use of biomass on the eco-environment in Tibet, a series of effective countermeasures are investigated. Among these are improved efficiency of stoves, widespread use of solar energy, hydroelectricity as a substitute for traditional biomass, and the development of biogas. (author)

  6. Parametric Optimization of Biomass Steam-and-Gas Plant

    Directory of Open Access Journals (Sweden)

    V. Sednin

    2013-01-01

    Full Text Available The paper contains a parametric analysis of the simplest scheme of a steam-and gas plant for the conditions required for biomass burning. It has been shown that application of gas-turbine and steam-and-gas plants can significantly exceed an efficiency of steam-power supply units which are used at the present moment. Optimum thermo-dynamical conditions for application of steam-and gas plants with the purpose to burn biomass require new technological solutions in the field of heat-exchange equipment designs.

  7. Plant Biomass Leaching for Nutrient Recovery in Closed Loop Systems Project

    Science.gov (United States)

    Zeitlin, Nancy P.; Wheeler, Raymond (Compiler); Lunn, Griffin

    2015-01-01

    Plants will be important for food and O2 production during long term human habitation in space. Recycling of nutrients (e.g., from waste materials) could reduce the resupply costs of fertilizers for growing these plants. Work at NASA's Kennedy Space Center has shown that ion exchange resins can extract fertilizer (plant essential nutrients) from human waste water, after which the residual brine could be treated with electrodialysis to recover more water and produce high value chemicals (e.g., acids and bases). In habitats with significant plant production, inedible biomass becomes a major source of solid waste. To "close the loop" we also need to recover useful nutrients and fertilizer from inedible biomass. We are investigating different approaches to retrieve nutrients from inedible plant biomass, including physical leaching with water, processing the biomass in bioreactors, changing the pH of leaching processing, and/or conducting multiple leaches of biomass residues.

  8. Decomposition of fresh and anaerobically digested plant biomass in soil

    International Nuclear Information System (INIS)

    Moorhead, K.K.; Graetz, D.A.; Reddy, K.R.

    1987-01-01

    Using water hyacinth [Eichhornia crassipes (Mart.) Solms] for waste water renovation produces biomass that must be disposed of. This biomass may be anaerobically digested to produce CH 4 or added to soil directly as an amendment. In this study, fresh and anaerobically digested water hyacinth biomass, with either low or high N tissue content, were added to soil to evaluate C and N mineralization characteristics. The plant biomass was labeled with 15 N before digestion. The fresh plant biomass and digested biomass sludge were freeze-dried and ground to pass a 0.84-mm sieve. The materials were thoroughly mixed with a Kindrick fine sand at a rate of 5 g kg -1 soil and incubated for 90 d at 27 0 C at a moisture content adjusted to 0.01 MPa. Decomposition was evaluated by CO 2 evolution and 15 N mineralization. After 90 d, approximately 20% of the added C of the digested sludges had evolved as CO 2 compared to 39 and 50% of the added C of the fresh plant biomass with a low and high N content, respectively. First-order kinetics were used to describe decomposition stages. Mineralization of organic 15 N to 15 NO 3 - -N accounted for 8% of applied N for both digested sludges at 90 d. Nitrogen mineralization accounted for 3 and 33% of the applied organic N for fresh plant biomass with a low and high N content, respectively

  9. Communal biomass conversion plants

    International Nuclear Information System (INIS)

    Holm-Nielsen, J.B.; Huntingford, S.; Halberg, N.

    1993-03-01

    The aim was to show the agricultural advantages of farmers being in connection with Communal Biogas Plant. Whether a more environmentally protectire distribution of plant nutrients from animal manure takes place through a biogas plants distribution system, whether the nitrogen in the digested slurry is better utilized and whether the connection results in slurry transportation-time reduction, are discussed. The average amount of nitrogen from animal manure used per hectare was reduced. The area of manure distribution was larger. The nitrogen efficiency was increased when using digested slurry and purchase of N mineral fertilizer decreased, resulting in considerable reduction in nitrogen leaching. The amount of slurry delivered to the local storage tanks was approximately 45 per cent of the total amount treated on the biogas plant. Conditions of manure transport improved greatly as this was now the responsibility of the communal biomass conversion plant administrators. (AB) (24 refs.)

  10. Bacterial enzymes involved in lignin degradation

    NARCIS (Netherlands)

    de Gonzalo, Gonzalo; Colpa, Dana I; Habib, Mohamed H M; Fraaije, Marco W

    2016-01-01

    Lignin forms a large part of plant biomass. It is a highly heterogeneous polymer of 4-hydroxyphenylpropanoid units and is embedded within polysaccharide polymers forming lignocellulose. Lignin provides strength and rigidity to plants and is rather resilient towards degradation. To improve the

  11. Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains

    International Nuclear Information System (INIS)

    Yousaf, Sohail; Afzal, Muhammad; Reichenauer, Thomas G.; Brady, Carrie L.; Sessitsch, Angela

    2011-01-01

    The genus Enterobacter comprises a range of beneficial plant-associated bacteria showing plant growth promotion. Enterobacter ludwigii belongs to the Enterobacter cloacae complex and has been reported to include human pathogens but also plant-associated strains with plant beneficial capacities. To assess the role of Enterobacter endophytes in hydrocarbon degradation, plant colonization, abundance and expression of CYP153 genes in different plant compartments, three plant species (Italian ryegrass, birdsfoot trefoil and alfalfa) were grown in sterile soil spiked with 1% diesel and inoculated with three endophytic E. ludwigii strains. Results showed that all strains were capable of hydrocarbon degradation and efficiently colonized the rhizosphere and plant interior. Two strains, ISI10-3 and BRI10-9, showed highest degradation rates of diesel fuel up to 68% and performed best in combination with Italian ryegrass and alfalfa. All strains expressed the CYP153 gene in all plant compartments, indicating an active role in degradation of diesel in association with plants. - Highlights: → E. ludwigii strains efficiently colonized plants in a non-sterile soil environment. → E. ludwigii strains efficiently expressed alkane degradation genes in plants. → E. ludwigii efficiently degraded alkane contaminations and promoted plant growth. → E. ludwigii interacted more effectively with Italian ryegrass than with other plants. → Degradation activity varied with plant and microbial genotype as well as with time. - Enterobacter ludwigii strains belonging to the E. cloacae complex are able to efficiently degrade alkanes when associated with plants and to promote plant growth.

  12. Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains

    Energy Technology Data Exchange (ETDEWEB)

    Yousaf, Sohail [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria); Afzal, Muhammad [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria); National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad (Pakistan); Reichenauer, Thomas G. [AIT Austrian Institute of Technology GmbH, Environmental Resources and Technologies Unit, A-2444 Seibersdorf (Austria); Brady, Carrie L. [Forestry and Agricultural Biotechnology Institute, Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria (South Africa); Sessitsch, Angela, E-mail: angela.sessitsch@ait.ac.at [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria)

    2011-10-15

    The genus Enterobacter comprises a range of beneficial plant-associated bacteria showing plant growth promotion. Enterobacter ludwigii belongs to the Enterobacter cloacae complex and has been reported to include human pathogens but also plant-associated strains with plant beneficial capacities. To assess the role of Enterobacter endophytes in hydrocarbon degradation, plant colonization, abundance and expression of CYP153 genes in different plant compartments, three plant species (Italian ryegrass, birdsfoot trefoil and alfalfa) were grown in sterile soil spiked with 1% diesel and inoculated with three endophytic E. ludwigii strains. Results showed that all strains were capable of hydrocarbon degradation and efficiently colonized the rhizosphere and plant interior. Two strains, ISI10-3 and BRI10-9, showed highest degradation rates of diesel fuel up to 68% and performed best in combination with Italian ryegrass and alfalfa. All strains expressed the CYP153 gene in all plant compartments, indicating an active role in degradation of diesel in association with plants. - Highlights: > E. ludwigii strains efficiently colonized plants in a non-sterile soil environment. > E. ludwigii strains efficiently expressed alkane degradation genes in plants. > E. ludwigii efficiently degraded alkane contaminations and promoted plant growth. > E. ludwigii interacted more effectively with Italian ryegrass than with other plants. > Degradation activity varied with plant and microbial genotype as well as with time. - Enterobacter ludwigii strains belonging to the E. cloacae complex are able to efficiently degrade alkanes when associated with plants and to promote plant growth.

  13. Biomass and biomass and biogas yielding potential of sorghum as affected by planting density, sowing time and cultivar

    International Nuclear Information System (INIS)

    Mahmood, A.; Hussain, A.; Shahzad, A. N.; Honermeier, B.

    2015-01-01

    Biogas from biomass is a promising renewable energy source whose importance is increasing in European as well as in other countries. A field experiment at one location (Experimental Station Giessen, Justus Liebig University of Giessen, Germany) over two years was designed to study the effect of altering sowing time (ST), planting density and cultivar on the biomass yield and chemical composition of biomass sorghum, and its potential for methane production. Of the two cultivars tested, cv. Goliath (intraspecific hybrid) was more productive with respect to biomass yield than cv. Bovital (S. bicolor x S. sudanense hybrid). ST also influenced biomass yield and most of the quality parameters measured. Delayed sowing was in general advantageous. The choice of cultivar had a marked effect on biogas and methane yield. The highest biogas and methane yields were produced by late sown cv. Bovital. Sub-optimal planting densities limited biomass accumulation of the crop, however neither the chemical composition nor the methane yield was affected by planting density. (author)

  14. Plant species influence on soil C after afforestation of Mediterranean degraded soils

    Science.gov (United States)

    Dominguez, Maria T.; García-Vargas, Carlos; Madejón, Engracia; Marañón, Teodoro

    2015-04-01

    Increasing C sequestration in terrestrial ecosystems is one of the main current environmental challenges to mitigate climate change. Afforestation of degraded and contaminated lands is one of the key strategies to achieve an increase in C sequestration in ecosystems. Plant species differ in their mechanisms of C-fixation, C allocation into different plant organs, and interaction with soil microorganisms, all these factors influencing the dynamics of soil C following the afforestation of degraded soils. In this work we examine the influence of different woody plant species on soil C dynamics in degraded and afforested Mediterranean soils. The soils were former agricultural lands that were polluted by a mining accident and later afforested with different native plant species. We analysed the effect of four of these species (Olea europaea var. sylvestris Brot., Populus alba L., Pistacia lentiscus L. and Retama sphaerocarpa (L.) Boiss.) on different soil C fractions, soil nutrient availability, microbial activity (soil enzyme activities) and soil CO2 fluxes 15 years after the establishment of the plantations. Results suggest that the influence of the planted trees and shrubs is still limited, being more pronounced in the more acidic and nutrient-poor soils. Litter accumulation varied among species, with the highest C accumulated in the litter under the deciduous species (Populus alba L.). No differences were observed in the amount of total soil organic C among the studied species, or in the concentrations of phenols and sugars in the dissolved organic C (DOC), which might have indicated differences in the biodegradability of the DOC. Microbial biomass and activity was highly influenced by soil pH, and plant species had a significant influence on soil pH in the more acidic site. Soil CO2 fluxes were more influenced by the plant species than total soil C content. Our results suggest that changes in total soil C stocks after the afforestation of degraded Mediterranean

  15. Restoration of Degraded Soil in the Nanmangalam Reserve Forest with Native Tree Species: Effect of Indigenous Plant Growth-Promoting Bacteria.

    Science.gov (United States)

    Ramachandran, Andimuthu; Radhapriya, Parthasarathy

    Restoration of a highly degraded forest, which had lost its natural capacity for regeneration, was attempted in the Nanmangalam Reserve Forest in Eastern Ghats of India. In field experiment, 12 native tree species were planted. The restoration included inoculation with a consortium of 5 native plant growth-promoting bacteria (PGPB), with the addition of small amounts of compost and a chemical fertilizer (NPK). The experimental fields were maintained for 1080 days. The growth and biomass varied depending on the plant species. All native plants responded well to the supplementation with the native PGPB. The plants such as Pongamia pinnata, Tamarindus indica, Gmelina arborea, Wrightia tinctoria, Syzygium cumini, Albizia lebbeck, Terminalia bellirica, and Azadirachta indica performed well in the native soil. This study demonstrated, by using native trees and PGPB, a possibility to restore the degraded forest.

  16. Restoration of Degraded Soil in the Nanmangalam Reserve Forest with Native Tree Species: Effect of Indigenous Plant Growth-Promoting Bacteria

    Directory of Open Access Journals (Sweden)

    Andimuthu Ramachandran

    2016-01-01

    Full Text Available Restoration of a highly degraded forest, which had lost its natural capacity for regeneration, was attempted in the Nanmangalam Reserve Forest in Eastern Ghats of India. In field experiment, 12 native tree species were planted. The restoration included inoculation with a consortium of 5 native plant growth-promoting bacteria (PGPB, with the addition of small amounts of compost and a chemical fertilizer (NPK. The experimental fields were maintained for 1080 days. The growth and biomass varied depending on the plant species. All native plants responded well to the supplementation with the native PGPB. The plants such as Pongamia pinnata, Tamarindus indica, Gmelina arborea, Wrightia tinctoria, Syzygium cumini, Albizia lebbeck, Terminalia bellirica, and Azadirachta indica performed well in the native soil. This study demonstrated, by using native trees and PGPB, a possibility to restore the degraded forest.

  17. Design of novel DME/methanol synthesis plants based on gasification of biomass

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard

    -scale DME plants based on gasification of torrefied biomass. 2. Small-scale DME/methanol plants based on gasification of wood chips. 3. Alternative methanol plants based on electrolysis of water and gasification of biomass. The plants were modeled by using the component based thermodynamic modeling...... why the differences, in biomass to DME/methanol efficiency, between the small-scale and the large-scale plants, showed not to be greater, was the high cold gas efficiency of the gasifier used in the small-scale plants (93%). By integrating water electrolysis in a large-scale methanol plant, an almost...... large-scale DME plant) to 63%, due to the relatively inefficient electrolyser....

  18. Communal biomass conversion plants. From idea to reality

    International Nuclear Information System (INIS)

    1995-11-01

    The first Danish biomass conversion plant for the production of methane was built in the nineteen seventies. It was just a little plant based on manure slurries from a local herd of farm animals. It was not until the nineteen eighties that larger plants were established so that enough methane could be produced as part fuels for decentral district heating and/or cogeneration plants. By November 1995 there were 15 communal biomass conversion plants producing methane in Denmark, three more plants were in the course of establishment and a number of similar projects were on the drawing board. The history of this development is narrated and plans for the future are indicated. The document also deals with the technological aspects, operational economics, environmental impacts, resources and re-use, wastes used as fertilizers, household organic wastes and sewage slam, standards of hygiene and reduction of infection risks, exports and commercial development and socio-economic evaluations in addition to areas within this field which need special attention in the very near future. It is concluded that the economics of Danish biomass conversion plants have improved significantly since 1987, and many older plants have been brought right up to date. Improvements in technology and an increase in the supply of industrial wastes have increased production. Details of the basis of many other betterments that have taken place in recent years are also given. (AB) 27 refs

  19. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    Science.gov (United States)

    2013-01-01

    Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 103 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also

  20. Higher Novel L-Cys Degradation Activity Results in Lower Organic-S and Biomass in Sarcocornia than the Related Saltwort, Salicornia.

    Science.gov (United States)

    Kurmanbayeva, Assylay; Bekturova, Aizat; Srivastava, Sudhakar; Soltabayeva, Aigerim; Asatryan, Armine; Ventura, Yvonne; Khan, Mohammad Suhail; Salazar, Octavio; Fedoroff, Nina; Sagi, Moshe

    2017-09-01

    Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, whereas Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia : the sulfate reductive pathway that generates Cys and l-Cys desulfhydrase that degrades Cys to H 2 S, NH 3 , and pyruvate. The major function of O -acetyl-Ser-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of l-Cys, but our study shows that the OAS-TL A and OAS-TL B of both halophytes are enzymes that also degrade l-Cys to H 2 S. This activity was significantly higher in Sarcocornia than in Salicornia , especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5'-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia These results suggest that the low organic-S level in Sarcocornia is the result of high l-Cys degradation rate by OAS-TLs, whereas the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low l-Cys degradation rate, resulting in higher net Cys biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia . © 2017 American Society of Plant Biologists. All Rights Reserved.

  1. Fusion of Plant Height and Vegetation Indices for the Estimation of Barley Biomass

    Directory of Open Access Journals (Sweden)

    Nora Tilly

    2015-09-01

    Full Text Available Plant biomass is an important parameter for crop management and yield estimation. However, since biomass cannot be determined non-destructively, other plant parameters are used for estimations. In this study, plant height and hyperspectral data were used for barley biomass estimations with bivariate and multivariate models. During three consecutive growing seasons a terrestrial laser scanner was used to establish crop surface models for a pixel-wise calculation of plant height and manual measurements of plant height confirmed the results (R2 up to 0.98. Hyperspectral reflectance measurements were conducted with a field spectrometer and used for calculating six vegetation indices (VIs, which have been found to be related to biomass and LAI: GnyLi, NDVI, NRI, RDVI, REIP, and RGBVI. Furthermore, biomass samples were destructively taken on almost the same dates. Linear and exponential biomass regression models (BRMs were established for evaluating plant height and VIs as estimators of fresh and dry biomass. Each BRM was established for the whole observed period and pre-anthesis, which is important for management decisions. Bivariate BRMs supported plant height as a strong estimator (R2 up to 0.85, whereas BRMs based on individual VIs showed varying performances (R2: 0.07–0.87. Fused approaches, where plant height and one VI were used for establishing multivariate BRMs, yielded improvements in some cases (R2 up to 0.89. Overall, this study reveals the potential of remotely-sensed plant parameters for estimations of barley biomass. Moreover, it is a first step towards the fusion of 3D spatial and spectral measurements for improving non-destructive biomass estimations.

  2. Understanding Biomass Ignition in Power Plant Mills

    DEFF Research Database (Denmark)

    Schwarzer, Lars; Jensen, Peter Arendt; Glarborg, Peter

    2017-01-01

    Converting existing coal fired power plants to biomass is a readily implemented strategy to increase the share of renewable energy. However, changing from one fuel to another is not straightforward: Experience shows that wood pellets ignite more readily than coal in power plant mills or storages...

  3. THE BREAKEVEN POINT GIVEN LIMIT COST USING BIOMASS CHP PLANT

    Directory of Open Access Journals (Sweden)

    Paula VOICU

    2015-06-01

    Full Text Available Biomass is a renewable source, non-fossil, from which can be obtained fuels, which can be used in power generation systems. The main difference of fossil fuels is the availability biomass in nature and that it is in continue "reproduction". The use its enable the use of materials that could be destined destruction, as a source of energy "renewable", though result with many ecological values. In this paper we will study, applying a calculation model in view optimal sizing of the cogeneration plant based on biomass, biomass cost limit for the net present value is zero. It will consider that in cogeneration systems and in heating peak systems using biomass. After applying the mathematical model for limit value of biomass cost will determine the nominal optimal coefficient of cogeneration, for which discounted net revenue value is zero. Optimal sizing of CHP plants based on using biomass will be given by optimum coefficient of cogeneration determined following the application of the proposed mathematical model.

  4. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass

    NARCIS (Netherlands)

    Eisenhauer, Nico; Lanoue, Arnaud; Strecker, Tanja; Scheu, Stefan; Steinauer, Katja; Thakur, Madhav P.; Mommer, Liesje

    2017-01-01

    Plant diversity has been shown to determine the composition and functioning of soil biota. Although root-derived organic inputs are discussed as the main drivers of soil communities, experimental evidence is scarce. While there is some evidence that higher root biomass at high plant diversity

  5. Analysis of evapotranspiration and biomass in pastures with degradation indicatives in the Upper Tocantins River Basin, in Brazilian Savanna

    Directory of Open Access Journals (Sweden)

    Ricardo Guimarães Andrade

    Full Text Available ABSTRACT The objective of this study was to apply the Simple Algorithm For Evapotranspiration Retrieving (SAFER with MODIS images together with meteorological data to analyze evapotranspiration (ET and biomass production (BIO according to indicative classes of pasture degradation in Upper Tocantins River Basin. Indicative classes of degraded pastures were obtained from the NDVI time-series (2002-2012. To estimate ET and BIO in each class, MODIS images and data from meteorological stations of the year 2012 were used. The results show that compared to not-degraded pastures, ET and BIO were different in pastures with moderate to strong degradation, mainly during water stress period. Therefore, changes in energy balance partition may occur according to the degradation levels, considering that those indicatives of degradation processes were identified in 24% of the planted pasture areas. In this context, ET and BIO estimates using remote sensing techniques can be a reliable indicator of forage availability, and large-scale aspects related to the degradation of pastures. It is expected that this knowledge may contribute to initiatives of public policies aimed at controlling the loss of production potential of pasture areas in the Upper Tocantins River Basin in the state of Goiás, Brazil.

  6. Phosphorus, carbon- and nitrogen interactions in productive and degraded tropical pastures

    Science.gov (United States)

    Oberson, A.; Hegglin, D. D.; Nesper, M.; Rao, I.; Fonte, S.; Ramirez, B.; Velasquez, J.; Tamburini, F.; Bünemann, E. K.; Frossard, E.

    2011-12-01

    Pastures are the main land use in deforested areas of tropical South America. The highly weathered soils of these regions usually have low total and available phosphorus (P) contents. Low P availability can strongly limit plant and animal productivity and other soil ecosystem functions. Most introduced pastures of Brachiaria spp. are grass-alone (GA) while some are grass-legume (GL) pastures. The majority of the introduced pastures, particularly the grass-alone are at some state of degradation (GD). Pasture degradation induces severe loss of plant biomass production, with drastic ecological and economic implications. Although the importance of P deficiency in pasture degradation has been recognized, the knowledge generated on stoichiometry of carbon (C), nitrogen (N) and P along pathways of the nutrient cycles of pastures, with different botanical composition and productivity, has been very limited. We will present results of a case study realized during 2010 to 2011 in the forest margins agro-ecosystem of the department of Caquetá, Colombia. Our objectives were to determine: i) whether P availability is lower in degraded compared to productive pastures, and ii) whether the introduction of legumes in the pasture increases P availability through enhanced biological P cycling through plant growth, plant litter decomposition and the soil microbial biomass; and iii) whether pasture types (GA vs GL) and the state of pasture degradation affect the C:N:P ratios in nutrient pools of the soil-plant system. An on-farm study was conducted on nine farms in the department of Caquetá, Colombia. On every farm three different pasture types were studied: degraded grass alone pastures (GD), productive grass-alone pastures (GA) and productive grass-legume pastures (GL). Basic soil characteristics and indicators on soil P status, microbial P cycling, plant biomass production, plant litter deposition and nutrient concentrations in plant tissue were determined. Analysis of P, C and N

  7. Application of radiation degraded carbohydrates for plants

    International Nuclear Information System (INIS)

    Kume, T.; Nagasawa, N.; Yoshu, F.

    1999-01-01

    Radiation degraded carbohydrates such as chitosan, sodium alginate, carageenan, cellulose, pectin, etc. were applied for plant cultivation. Chitosan (poly-β -D-glucosamine) was easily degraded by irradiation and induced various kinds of biological activities such as anti-microbacterial activity, promotion of plant growth, suppression of heavy metal stress on plants, phytoalexins induction, etc. Pectic fragments obtained from degraded pectin also induced the phytoalexins such as glyceollins in soybean and pisafin in pea. The irradiated chitosan shows the higher elicitor activity for pisafin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. The hot water and ethanol extracts from EFB and sugar cane bagasse were increased by irradiation. These extracts promoted the growth of plants and suppressed the damage on barley with salt and Zn stress. The results show that the degraded polysaccharides by radiation have the potential to induce various biological activities and the products can be use for agricultural and medical fields

  8. Mapping the polysaccharide degradation potential of Aspergillus niger

    DEFF Research Database (Denmark)

    Andersen, Mikael Rørdam; Giese, Malene; de Vries, Ronald P.

    2012-01-01

    Background: The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required....... For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential...... of a given fungus for polysaccharide degradation. Results: Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list...

  9. Continuous exposure of pesticides in an aquifer changes microbial biomass, diversity and degradation potential

    DEFF Research Database (Denmark)

    de Lipthay, J. R.; Johnsen, K.; Aamand, J.

    2000-01-01

    We studied in situ effects of pesticide exposure on microbial degradation potential and community structure of aquifer sediments. Sediment samples pre-exposed to pesticides were significantly different to non-exposed control samples. Pre-exposed sediment showed an increased degradation potential ...... towards phenoxyalcanoic acid herbicides as well as impact on microbial diversity was observed. Furthermore, bacterial biomass was changed, e.g. increased numbers of phenoxyalcanoic acid degraders in pesticide exposed sediment.......We studied in situ effects of pesticide exposure on microbial degradation potential and community structure of aquifer sediments. Sediment samples pre-exposed to pesticides were significantly different to non-exposed control samples. Pre-exposed sediment showed an increased degradation potential...

  10. Diversity of drought-resistant plants and the benefits of their biomass for improving fertility of a degraded soil of Brantas River Basin

    Directory of Open Access Journals (Sweden)

    E Arisoesilaningsih

    2015-01-01

    Full Text Available In support of healthy agriculture development to improve farmer’s prosperity status, soil remediation and land conservation efforts maybe relied on the use of biomass of local vegetation. Results of field exploration conducted at Brantas Watershed of East Java indicated that there were at least 154 species of undergrowth scrubs, 47 species of agriculture-plantation crops, and 59 species of road shelter trees. The native undergrowth vegetations had undergone enormous seasonal variations. Biomass of predominance vegetations, e.g. Psophocarpus tetragonolobus, Phaseolus lunatus, Flemingia, Mimosa somian, Acacia villosa, Cassia mimosoides, Mucuna could potentially be used as organic matter sources to improve availability of nitrogen and phosphorus in soils. The amount of nitrogen and phosphorus contributed of the plant biomass significantly correlated with quality of the biomass.

  11. Materials Problems and Solutions in Biomass Fired Plants

    DEFF Research Database (Denmark)

    Larsen, Ole Hede; Montgomery, Melanie

    2006-01-01

    ascribed to the composition of the deposit and the metal surface temperature. In woodchip boilers, a similar corrosion rate and corrosion mechanism has on some occasions been observed. Co-firing of straw (10 and 20% energy basis) with coal has shown corrosion rates lower than those in straw-fired plants......Due to Denmark’s pledge to reduce carbon dioxide emissions, biomass is utilised increasingly as a fuel for generating energy. Extensive research and demonstration projects especially in the area of material performance for biomass fired boilers have been undertaken to make biomass a viable fuel...... resource. When straw is combusted, potassium chloride and potassium sulphate are present in ash products, which condense on superheater components. This gives rise to specific chlorine corrosion problems not previously encountered in coal-fired power plants. The type of corrosion attack can be directly...

  12. Effect of cropping cycles and repeated herbicide applications on the degradation of diclofop-methyl, bentazone, diuron, isoproturon and pendimethalin in soil.

    Science.gov (United States)

    Piutti, Séverine; Marchand, Anne-Laure; Lagacherie, Bernard; Martin-Laurent, Fabrice; Soulas, Guy

    2002-03-01

    A greenhouse study was conducted to investigate the ability of four crops (wheat, corn, oilseed rape and soybean) to influence the degradation of bentazone, diclofop-methyl, diuron, isoproturon and pendimethalin in soil. The present study showed that microbial biomass-carbon was significantly higher in planted soils than in bulk soil, especially with wheat and corn, after several cropping cycles. The biomass in corn and soybean planted soils was adversely affected by bentazone but recovered after three cropping cycles. In wheat-planted soils, diclofop-methyl application resulted in persistent increase of the amount of microbial biomass. Bentazone did not show accelerated degradation even after five successive treatments, differing from diclofop-methyl, for which two applications were sufficient to enhance significantly its rate of degradation. Enhanced degradation of diclofop-methyl was even more pronounced in wheat-planted soil. The rates of mineralisation of diuron, isoproturon and pendimethalin were not affected after the first cropping cycle, but were significantly increased in planted soils after five cropping cycles. The results confirm that plants may promote pesticide degradation in soil by stimulating biodegradation processes. In the case of diclofop-methyl, stimulation of accelerated degradation was observed.

  13. Carbon Storage and Allocation Pattern in Plant Biomass among Different Forest Plantation Stands in Guangdong, China

    Directory of Open Access Journals (Sweden)

    Yuanqi Chen

    2015-03-01

    Full Text Available In order to understand how carbon storage and allocation patterns vary among plantation types, we estimated carbon allocation between above- and below-ground compartments in four subtropical plantations and a naturally recovered shrubland (as a control. Results indicated that the carbon storage and allocation pattern varied greatly among forest types and was highly dependent on specific traits of trees and understory vegetation. The fast-growing species, such as Eucalyptus urophylla, accumulated more carbon in plant biomass. The biomass carbon was about 1.9- and 2.2-times greater than the 10-species mixed plantation and Castanopsis hystrix plantations, respectively. Meanwhile, the plantations sequestered 1.5- to 3-times more carbon in biomass than naturally recovered shrubland. The carbon allocation pattern between above- and below-ground compartments also varied with plantation type and stand age. The ratio of tree root carbon to tree aboveground carbon decreased with stand age for Eucalyptus urophylla and the 10-species mixed plantation. In contrast, the ratio increased for Acacia crassicarpa. Our data suggested that planting the fast-growing species in the degraded land of subtropical China was an effective choice in terms of carbon sequestration. The information about carbon allocation patterns was also valuable for decision making in sustainable forest management and climate change mitigation.

  14. Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction.

    Science.gov (United States)

    Asem, Dhaneshwaree; Leo, Vincent Vineeth; Passari, Ajit Kumar; Tonsing, Mary Vanlalhruaii; Joshi, J Beslin; Uthandi, Sivakumar; Hashem, Abeer; Abd Allah, Elsayed Fathi; Singh, Bhim Pratap

    2017-01-01

    The gastrointestinal (GI) habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk) and a domesticated goat (Black Bengal) were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF) of D2 (alkaline pretreated pulpy biomass) using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL) and FPase (0.5 U/mL) activities (55°C, pH 8). The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion.

  15. Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction.

    Directory of Open Access Journals (Sweden)

    Dhaneshwaree Asem

    Full Text Available The gastrointestinal (GI habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk and a domesticated goat (Black Bengal were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF of D2 (alkaline pretreated pulpy biomass using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL and FPase (0.5 U/mL activities (55°C, pH 8. The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion.

  16. The opportunities for obtaining of the biogas on methane fermentation from marine algae biomass and water plant biomass

    OpenAIRE

    Jachniak Ewa; Chmura Joanna; Kuglarz Mariusz; Wiktor Józef

    2018-01-01

    The aim of the research was to try to obtain of the biogas on a laboratory scale from marine algae biomass and water plant biomass. The research was conducted in 2016 year and samples were taken from the Polish coast of the Baltic Sea. In laboratory work, algae and plant species were first identified. The next, in order to subject them to methane fermentation processes and to obtain biogas,partial mechanical treatment of the biomass was conducted. Dry matter content and dry organic matter con...

  17. Environmental status of plant-based industries. Biomass and bio-materials; Bilan environnemental des filieres vegetales. Biomasse et biomateriaux

    Energy Technology Data Exchange (ETDEWEB)

    Vindimian, E; Boeglin, N; Houillon, G; Osset, Ph; Vial, E; Leguern, Y; Gosse, G; Gabrielle, B; Dohy, M; Bewa, H; Rigal, L; Guilbert, St; Cesar, G; Pandard, P; Oster, D; Normand, N; Piccardi, M; Garoux, V; Arnaud, L; Barbier, J; Mougin, G; Krausz, P; Pluquet, V; Massacrier, L; Dussaud, J

    2005-07-01

    The French agency of environment and energy mastery (Ademe) and the agency of Agriculture for chemistry and energy (Agrice) have jointly organized these technical days about the potentialities of plant-based products in front of the big environmental stakes of the diversification of energy sources, the development of new outputs for agriculture and the opening of new fields of industrial innovation. This document gathers the articles and transparencies of the presentations given during these 2 days of conference: 1 - Biomass and life cycle analysis (LCA) - impacts and benefits: introduction to LCA (E. Vindimian), keys to understand this environmental evaluation tool (N. Boeglin); environmental status of plant-based industries for chemistry, materials and energy: LCA knowledge status, plant versus fossil (G. Houillon), detailed analysis of 2 industries: agro-materials and bio-polymers (J. Payet); example of environmental and LCA studies: energy and greenhouse gas statuses of the biofuel production processes (P. Osset, E. Vial), LCA of collective and industrial wood-fueled space heating (Y. Leguern), contribution and limitations of LCA for plant-based industries (G. Gosse, B. Gabrielle), conclusion of the first day (M. Dohy). 2 - Biomass and materials: a reality: biomaterials in the Agrice program (H. Bewa), plant-derived materials: resources, status and perspectives (L. Rigal); biopolymers: overview of the industrial use of biopolymers: materials and markets, applications (S. Guibert), degradation mechanisms of biopolymers used in agriculture: biodegradability, eco-toxicity and accumulation in soils (G. Cesar, P. Pandard), present and future regulatory framework: specifications and methods of biodegradability evaluation of materials for agriculture and horticulture (D. Oster), standardization: necessity and possibilities (N. Normand); vegetable fibers and composite materials: market of new vegetable fiber uses (M. Piccardi, V. Garoux), vegetable particulates and

  18. Is biomass a reliable estimate of plant fitness?

    Czech Academy of Sciences Publication Activity Database

    Younginger, B.S.; Sirová, Dagmara; Cruzan, M.B.; Ballhorn, D.J.

    2017-01-01

    Roč. 5, č. 2 (2017), č. článku 1600094. ISSN 2168-0450 Institutional support: RVO:60077344 Keywords : biomass * fecundity * fitness * plant performance * selection Subject RIV: EH - Ecology, Behaviour OBOR OECD: Plant sciences, botany Impact factor: 1.492, year: 2016

  19. Drivers of biomass co-firing in U.S. coal-fired power plants

    Science.gov (United States)

    Michael E. Goerndt; Francisco X. Aguilar; Kenneth Skog

    2013-01-01

    Substantial knowledge has been generated in the U.S. about the resource base for forest and other residue-derived biomass for bioenergy including co-firing in power plants. However, a lack of understanding regarding power plant-level operations and manager perceptions of drivers of biomass co-firing remains. This study gathered information from U.S. power plant...

  20. Assessment of plant biomass and nitrogen nutrition with plant height in early-to mid-season corn.

    Science.gov (United States)

    Yin, Xinhua; Hayes, Robert M; McClure, M Angela; Savoy, Hubert J

    2012-10-01

    The physiological basis for using non-destructive high-resolution measurements of plant height through plant height sensing to guide variable-rate nitrogen (N) applications on corn (Zea mays L.) during early (six-leaf growth stage, V6) to mid (V12) season is largely unknown. This study was conducted to assess the relationships of plant biomass and leaf N with plant height in early- to mid-season corn under six different N rate treatments. Corn plant biomass was significantly and positively related to plant height under an exponential model when both were measured at V6. This relationship explained 62-78% of the variations in corn biomass production. Leaf N concentration was, in general, significantly and positively related to plant height when both were measured at V6, V8, V10 and V12. This relationship became stronger as the growing season progressed from V6 to V12. The relationship of leaf N with plant height in early- to mid-season corn was affected by initial soil N fertility and abnormal weather conditions. The relationship of leaf N concentration with plant height may provide a physiological basis for using plant height sensing to guide variable-rate N applications on corn. Copyright © 2012 Society of Chemical Industry.

  1. Controlled biomass formation and kinetics of toluene degradation in a bioscrubber and in a reactor with a periodically moved trickle-bed.

    Science.gov (United States)

    Wübker, S M; Laurenzis, A; Werner, U; Friedrich, C

    1997-08-20

    The kinetics of degradation of toluene from a model waste gas and of biomass formation were examined in a bioscrubber operated under different nutrient limitations with a mixed culture. The applicability of the kinetics of continuous cultivation of the mixed culture was examined for a special trickle-bed reactor with a periodically moved filter bed. The efficiency of toluene elimination of the bioscrubber was 50 to 57% and depended on the toluene mass transfer as evident from a constant productivity of 0.026 g dry cell weight/L . h over the dilution rate. Under potassium limitation the biomass productivity was reduced by 60% to 0.011 g dry cell weight/L . h at a dilution rate of 0.013/h. Conversely, at low dilution rates the specific toluene degradation rates increased. Excess biomass in a trickle-bed reactor causes reduction of interfacial area and mass transfer, and increase in pressure drop. To avoid these disadvantages, the trickle-bed was moved periodically and biomass was removed with outflowing medium. The concentration of steady state biomass fixed on polyamide beads decreased hyperbolically with the dilution rate. Also, the efficiency of toluene degradation decreased from 72 to 56% with increasing dilution rate while the productivity increased. Potassium limitation generally caused a reduction in biomass, productivity, and yield while the specific degradation increased with dilution rate. This allowed the application of the principles of the chemostat to the trickle-bed reactor described here, for toluene degradation from waste gases. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 686-692, 1997.

  2. Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms

    DEFF Research Database (Denmark)

    Rasmussen, Helena; Sørensen, Hanne R.; Meyer, Anne S.

    2014-01-01

    , several aldehydes and ketones and many different organic acids and aromatic compounds may be generated during hydrothermal treatment of lignocellulosic biomass. The reaction mechanisms are of interest because the very same compounds that are possible inhibitors for biomass processing enzymes......The degradation compounds formed during pretreatment when lignocellulosic biomass is processed to ethanol or other biorefinery products include furans, phenolics, organic acids, as well as mono- and oligomeric pentoses and hexoses. Depending on the reaction conditions glucose can be converted to 5......-(hydroxymethyl)-2-furaldehyde (HMF) and/or levulinic acid, formic acid and different phenolics at elevated temperatures. Correspondingly, xylose can follow different reaction mechanisms resulting in the formation of furan-2-carbaldehyde (furfural) and/or various C-1 and C-4 compounds. At least four routes...

  3. Improved biomass degradation using fungal glucuronoyl-esterases-hydrolysis of natural corn fiber substrate

    DEFF Research Database (Denmark)

    d'Errico, Clotilde; Börjesson, Johan; Ding, Hanshu

    2016-01-01

    of improved degradation of lignocellulosic biomass by the use of GEs. Improved C5 sugar, glucose and glucuronic acid release was observed when heat pretreated corn fiber was incubated in the presence of GEs from Cerrena unicolor and Trichoderma reesei on top of different commercial cellulase...

  4. Can biomass responses to warming at plant to ecosystem levels be predicted by leaf-level responses?

    Science.gov (United States)

    Xia, J.; Shao, J.; Zhou, X.; Yan, W.; Lu, M.

    2015-12-01

    Global warming has the profound impacts on terrestrial C processes from leaf to ecosystem scales, potentially feeding back to climate dynamics. Although numerous studies had investigated the effects of warming on C processes from leaf to plant and ecosystem levels, how leaf-level responses to warming scale up to biomass responses at plant, population, and community levels are largely unknown. In this study, we compiled a dataset from 468 papers at 300 experimental sites and synthesized the warming effects on leaf-level parameters, and plant, population and ecosystem biomass. Our results showed that responses of plant biomass to warming mainly resulted from the changed leaf area rather than the altered photosynthetic capacity. The response of ecosystem biomass to warming was weaker than those of leaf area and plant biomass. However, the scaling functions from responses of leaf area to plant biomass to warming were different in diverse forest types, but functions were similar in non-forested biomes. In addition, it is challenging to scale the biomass responses from plant up to ecosystem. These results indicated that leaf area might be the appropriate index for plant biomass response to warming, and the interspecific competition might hamper the scaling of the warming effects on plant and ecosystem levels, suggesting that the acclimation capacity of plant community should be incorporated into land surface models to improve the prediction of climate-C cycle feedback.

  5. Data from: Root biomass and exudates link plant diversity with soil bacterial and fungal biomass

    NARCIS (Netherlands)

    Eisenhauer, Nico; Strecker, Tanja; Lanoue, Arnaud; Scheu, Stefan; Steinauer, Katja; Thakur, Madhav P.; Mommer, L.

    2017-01-01

    Plant diversity has been shown to determine the composition and functioning of soil biota. Although root-derived organic inputs are discussed as the main drivers of soil communities, experimental evidence is scarce. While there is some evidence that higher root biomass at high plant diversity

  6. Methane and fertilizer production from seaweed biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Betzer, P.R.; Humm, H.J.

    1984-01-01

    It was demonstrated that several varieties of abundant benthic algae indigenous to Tampa Bay (Gracilaria, Hypnea, and Ulva) were readily degradable via anaerobic digestion to methane. The energy yield per unit weight biomass degraded was higher than any previously reported. Given the large masses of readily degradable plants which are annually produced in and around Tampa Bay, the resource is estimated to be at least equivalent to several million gallons of gasoline.

  7. How efficient work biomass cogeneration plants? A survey of plant operators; Wie effizient arbeiten Biomasseheiz(kraft)werke? Befragung von Anlagenbetreibern

    Energy Technology Data Exchange (ETDEWEB)

    Meiller, Martin; Jakuttis, Michael [Fraunhofer-Institut fuer Umwelt-, Sicherheits- und Energietechnik UMSICHT, Sulzbach-Rosenberg (Germany); Binder, Samir [Fraunhofer-Institut fuer Umwelt-, Sicherheits- und Energietechnik UMSICHT, Sulzbach-Rosenberg (Germany); Bayerischer Forschungsverbund Foreta, Sulzbach-Rosenberg (Germany)

    2013-03-01

    The use of biomass has increased very much in recent years. Due to the intensive use, the price of biomass fuels such as wood chips has increased substantially. This development bothers mainly biomass cogeneration plants. Many operators suffered considerable financial losses or even had to file for bankruptcy. The topic of efficiency is one of the central and critical success factors for the long-term viability of biomass-fired plants. (orig.)

  8. Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: Effects of demineralization by diverse acid solutions

    International Nuclear Information System (INIS)

    Asadieraghi, Masoud; Wan Daud, Wan Mohd Ashri

    2014-01-01

    Highlights: • HF showed interesting results on EFB (empty fruit bunches) and PMF (palm mesocarp fibre) deashing. • HCl indicated maximum ash removal from PKS (palm kernel shell). • Significant pyrolysis reactions took place at ∼250 °C to ∼400 °C. • Inorganics played a considerable catalytic role during the biomasses pyrolysis. • Acid pretreatment introduced some impacts on the biomasses structure. - Abstract: To eliminate the negative impacts of inorganic constituents during biomass thermochemical processes, leaching method by different diluted acid solutions was chosen. The different palm oil biomass samples (palm kernel shell (PKS), empty fruit bunches (EFB) and palm mesocarp fiber (PMF)) were pretreated by various diluted acid solutions (H 2 SO 4 , HClO 4 , HF, HNO 3 , HCl). Acids with the highest degrees of demineralization were selected to investigate the dematerialization impacts on the biomass thermal characteristics and physiochemical structure. Thermogravimetric analysis coupled with mass spectroscopy (TGA-MS) and Fourier transform infrared spectroscopy (TGA-FTIR) were employed to examine the biomass thermal degradation. TGA and DTG (Derivative thermogravimetry) indicated that the maximum degradation temperatures increased after acid pretreatment due to the minerals catalytic effects. The main permanent evolved gases comprising H 2 , CO 2 , CO were detected online during analysis. The major permanent gases produced at the temperature range of 250–750 °C were attributed to the condensable vapors cracking and probably some secondary reactions. The physiochemical structure change of the acid-treated biomass samples was examined by using Brunauer Emmett Teller (BET) method, Scanning Electron Microscope (SEM) and FTIR. The pyrolysis kinetics of the different palm oil biomasses were investigated using first order reaction model

  9. Comparative plant uptake and microbial degradation of trichloroethylene in the rhizospheres of five plant species-- implications for bioremediation of contaminated surface soils

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T. A. [Tennessee Univ., Knoxville, TN (United States); Walton, B. T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    1992-01-01

    The objective of this study was to collect data that would provide a foundation for the concept of using vegetation to enhance in situ bioremediation of contaminated surface soils. Soil and vegetation (Lespedeza cuneata, Paspalum notatum, Pinus taeda, and Solidago sp.) samples from the Miscellaneous Chemicals Basin (MCB) at the Savannah River Site were used in tests to identify critical plant and microbiological variables affecting the fate of trichloroethylene (TCE) in the root zone. Microbiological assays including phospholipid acid analyses, and 14C-acetate incorporation were conducted to elucidate differences in rhizosphere and nonvegetated soil microbial communities from the MCB. The microbial activity, biomass, and degradation of TCE in rhizosphere soils were significantly greater than corresponding nonvegetated soils. Vegetation had a positive effect on microbial degradation of 14C-TCE in whole-plant experiments. Soils from the MCB containing Lespedeza cuneata, Pinus taeda, and Glycine max mineralized greater than 25% of the 14C- TCE added compared with less than 20% in nonvegetated soils. Collectively, these results provide evidence for the positive role of vegetation in enhancing biodegradation.

  10. Comparative plant uptake and microbial degradation of trichloroethylene in the rhizospheres of five plant species-- implications for bioremediation of contaminated surface soils

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.A. (Tennessee Univ., Knoxville, TN (United States)); Walton, B.T. (Oak Ridge National Lab., TN (United States))

    1992-01-01

    The objective of this study was to collect data that would provide a foundation for the concept of using vegetation to enhance in situ bioremediation of contaminated surface soils. Soil and vegetation (Lespedeza cuneata, Paspalum notatum, Pinus taeda, and Solidago sp.) samples from the Miscellaneous Chemicals Basin (MCB) at the Savannah River Site were used in tests to identify critical plant and microbiological variables affecting the fate of trichloroethylene (TCE) in the root zone. Microbiological assays including phospholipid acid analyses, and {sup 14}C-acetate incorporation were conducted to elucidate differences in rhizosphere and nonvegetated soil microbial communities from the MCB. The microbial activity, biomass, and degradation of TCE in rhizosphere soils were significantly greater than corresponding nonvegetated soils. Vegetation had a positive effect on microbial degradation of {sup 14}C-TCE in whole-plant experiments. Soils from the MCB containing Lespedeza cuneata, Pinus taeda, and Glycine max mineralized greater than 25% of the {sup 14}C- TCE added compared with less than 20% in nonvegetated soils. Collectively, these results provide evidence for the positive role of vegetation in enhancing biodegradation.

  11. Microbial surface displayed enzymes based biofuel cell utilizing degradation products of lignocellulosic biomass for direct electrical energy.

    Science.gov (United States)

    Fan, Shuqin; Hou, Chuantao; Liang, Bo; Feng, Ruirui; Liu, Aihua

    2015-09-01

    In this work, a bacterial surface displaying enzyme based two-compartment biofuel cell for the direct electrical energy conversion from degradation products of lignocellulosic biomass is reported. Considering that the main degradation products of the lignocellulose are glucose and xylose, xylose dehydrogenase (XDH) displayed bacteria (XDH-bacteria) and glucose dehydrogenase (GDH) displayed bacteria (GDH-bacteria) were used as anode catalysts in anode chamber with methylene blue as electron transfer mediator. While the cathode chamber was constructed with laccase/multi-walled-carbon nanotube/glassy-carbon-electrode. XDH-bacteria exhibited 1.75 times higher catalytic efficiency than GDH-bacteria. This assembled enzymatic fuel cell exhibited a high open-circuit potential of 0.80 V, acceptable stability and energy conversion efficiency. Moreover, the maximum power density of the cell could reach 53 μW cm(-2) when fueled with degradation products of corn stalk. Thus, this finding holds great potential to directly convert degradation products of biomass into electrical energy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Sugar catabolism in Aspergillus and other fungi related to the utilization of plant biomass

    NARCIS (Netherlands)

    Khosravi, Claire; Benocci, Tiziano; Battaglia, Evy; Benoit, Isabelle; de Vries, Ronald P

    2015-01-01

    Fungi are found in all natural and artificial biotopes and can use highly diverse carbon sources. They play a major role in the global carbon cycle by decomposing plant biomass and this biomass is the main carbon source for many fungi. Plant biomass is composed of cell wall polysaccharides

  13. Engineering Plant Biomass Lignin Content and Composition for Biofuels and Bioproducts

    Directory of Open Access Journals (Sweden)

    Cassie Marie Welker

    2015-07-01

    Full Text Available Lignin is an aromatic biopolymer involved in providing structural support to plant cell walls. Compared to the other cell wall polymers, i.e., cellulose and hemicelluloses, lignin has been considered a hindrance in cellulosic bioethanol production due to the complexity involved in its separation from other polymers of various biomass feedstocks. Nevertheless, lignin is a potential source of valuable aromatic chemical compounds and upgradable building blocks. Though the biosynthetic pathway of lignin has been elucidated in great detail, the random nature of the polymerization (free radical coupling process poses challenges for its depolymerization into valuable bioproducts. The absence of specific methodologies for lignin degradation represents an important opportunity for research and development. This review highlights research development in lignin biosynthesis, lignin genetic engineering and different biological and chemical means of depolymerization used to convert lignin into biofuels and bioproducts.

  14. The Evritania (Greece) demonstration plant of biomass pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Zabaniotou, A.A.; Karabela, A.J. [Aristotle University of Thessaloniki (Greece). Dept. of Chemical Engineering and Chemical Process Engineering Research Institute

    1999-06-01

    This paper is focused on describing the Evritania demonstration plant for pyrolysis of forestry biomass. This plant was constructed in the village of Voulpi, district of Evritania, in central Greece, in 1995, with a threefold purpose; development of know-how, forest fire prevention and rural development. The products are charcoal and bio-oil. The plant capacity is 1200-1450 kg/h of wet biomass and the pyrolysis temperature is approx. 400 deg C. The raw material used is Arbutus unedo, which is an evergreen broad-leaf tree which covers the area. Other agricultural waste could also be used, such as olive pits and cuttings, almond shells and cotton kernels. The paper includes the conceptual process flow sheet, the changes and improvements made during the trial phase, data from the start-up phase, and product characteristics. Comparison of the process with the Alten process is presented. Additionally, comparisons are made of product characteristics with those from other pyrolysis processes. In general, the results obtained are encouraging even though several improvements of the pilot plant are required. (author)

  15. Practical experience with biodegradable biomass waste bags in several different German composting plants; Praxiserfahrungen zum Abbau kompostierbarer Bioabfallsaecke auf verschiedenen Kompostierungsanlagen in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Ziermann, Andreas; Schmidt, Bettina [C.A.R.M.E.N. e.V., Straubing (Germany)

    2012-11-01

    The study intended to find out how fast biodegradable biomass waste bags are degraded in practical conditions in composting and fermentation plants. The plants differ with regard to the processes employed; further, rotting times may be much shorter in practice than the twelve weeks requested by DIN EN 13432 and DIN EN 14995. For the study, plant types were selected that are practically relevant for biomass waste utilisation in Germany. (orig.) [German] Ziel der vorliegenden Studie war es, herauszufinden, wie schnell kompostierbare Bioabfallsaecke unter Praxisbedingungen in verschiedenen Kompost- und Vergaerungsanlagentypen abgebaut werden. Zum einen bestehen teilweise grosse verfahrenstechnische Unterschiede zwischen den Anlagentypen, zum anderen sind die Rottezeiten in der Praxis zum Teil wesentlich kuerzer, als die in der DIN EN 13432 und DIN EN 14995 geforderten zwoelf Wochen. Fuer die Studie wurden Anlagentypen ausgewaehlt, die fuer die Verwertung von Bioabfaellen in Deutschland praxisrelevant sind. (orig.)

  16. Biomass Supply Planning for Combined Heat and Power Plants using Stochastic Programming

    DEFF Research Database (Denmark)

    Guericke, Daniela; Blanco, Ignacio; Morales González, Juan Miguel

    method using stochastic optimization to support the biomass supply planning for combined heat and power plants. Our two-phase approach combines mid-term decisions about biomass supply contracts with the short-term decisions regarding the optimal market participation of the producer to ensure......During the last years, the consumption of biomass to produce power and heat has increased due to the new carbon neutral policies. Nowadays, many district heating systems operate their combined heat and power (CHP) plants using different types of biomass instead of fossil fuel, especially to produce......, and heat demand and electricity prices vary drastically during the planning period. Furthermore, the optimal operation of combined heat and power plants has to consider the existing synergies between the power and heating systems while always fulfilling the heat demand of the system. We propose a solution...

  17. Evaluation of Hybrid Power Plants using Biomass, Photovoltaics and Steam Electrolysis for Hydrogen and Power Generation

    Science.gov (United States)

    Petrakopoulou, F.; Sanz, J.

    2014-12-01

    Steam electrolysis is a promising process of large-scale centralized hydrogen production, while it is also considered an excellent option for the efficient use of renewable solar and geothermal energy resources. This work studies the operation of an intermediate temperature steam electrolyzer (ITSE) and its incorporation into hybrid power plants that include biomass combustion and photovoltaic panels (PV). The plants generate both electricity and hydrogen. The reference -biomass- power plant and four variations of a hybrid biomass-PV incorporating the reference biomass plant and the ITSE are simulated and evaluated using exergetic analysis. The variations of the hybrid power plants are associated with (1) the air recirculation from the electrolyzer to the biomass power plant, (2) the elimination of the sweep gas of the electrolyzer, (3) the replacement of two electric heaters with gas/gas heat exchangers, and (4) the replacement two heat exchangers of the reference electrolyzer unit with one heat exchanger that uses steam from the biomass power plant. In all cases, 60% of the electricity required in the electrolyzer is covered by the biomass plant and 40% by the photovoltaic panels. When comparing the hybrid plants with the reference biomass power plant that has identical operation and structure as that incorporated in the hybrid plants, we observe an efficiency decrease that varies depending on the scenario. The efficiency decrease stems mainly from the low effectiveness of the photovoltaic panels (14.4%). When comparing the hybrid scenarios, we see that the elimination of the sweep gas decreases the power consumption due to the elimination of the compressor used to cover the pressure losses of the filter, the heat exchangers and the electrolyzer. Nevertheless, if the sweep gas is used to preheat the air entering the boiler of the biomass power plant, the efficiency of the plant increases. When replacing the electric heaters with gas-gas heat exchangers, the

  18. Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity

    Science.gov (United States)

    2012-01-01

    Background Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. Results In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera) wood-chips and mown lawn grass clippings (85:15 in dry-weight) and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. Conclusion The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP) and solid-state fermentation for the production of cellulolytic enzymes and biofuels. PMID:22490508

  19. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products.

    Science.gov (United States)

    Chen, Hong-Zhang; Liu, Zhi-Hua

    2015-06-01

    Pretreatment is a key unit operation affecting the refinery efficiency of plant biomass. However, the poor efficiency of pretreatment and the lack of basic theory are the main challenges to the industrial implementation of the plant biomass refinery. The purpose of this work is to review steam explosion and its combinatorial pretreatment as a means of overcoming the intrinsic characteristics of plant biomass, including recalcitrance, heterogeneity, multi-composition, and diversity. The main advantages of the selective use of steam explosion and other combinatorial pretreatments across the diversity of raw materials are introduced. Combinatorial pretreatment integrated with other unit operations is proposed as a means to exploit the high-efficiency production of bio-based products from plant biomass. Finally, several pilot- and demonstration-scale operations of the plant biomass refinery are described. Based on the principle of selective function and structure fractionation, and multi-level and directional composition conversion, an integrated process with the combinatorial pretreatments of steam explosion and other pretreatments as the core should be feasible and conform to the plant biomass refinery concept. Combinatorial pretreatments of steam explosion and other pretreatments should be further exploited based on the type and intrinsic characteristics of the plant biomass used, the bio-based products to be made, and the complementarity of the processes. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Knowns and unknowns of plasma membrane protein degradation in plants.

    Science.gov (United States)

    Liu, Chuanliang; Shen, Wenjin; Yang, Chao; Zeng, Lizhang; Gao, Caiji

    2018-07-01

    Plasma membrane (PM) not only creates a physical barrier to enclose the intracellular compartments but also mediates the direct communication between plants and the ever-changing environment. A tight control of PM protein homeostasis by selective degradation is thus crucial for proper plant development and plant-environment interactions. Accumulated evidences have shown that a number of plant PM proteins undergo clathrin-dependent or membrane microdomain-associated endocytic routes to vacuole for degradation in a cargo-ubiquitination dependent or independent manner. Besides, several trans-acting determinants involved in the regulation of endocytosis, recycling and multivesicular body-mediated vacuolar sorting have been identified in plants. More interestingly, recent findings have uncovered the participation of selective autophagy in PM protein turnover in plants. Although great progresses have been made to identify the PM proteins that undergo dynamic changes in subcellular localizations and to explore the factors that control the membrane protein trafficking, several questions remain to be answered regarding the molecular mechanisms of PM protein degradation in plants. In this short review article, we briefly summarize recent progress in our understanding of the internalization, sorting and degradation of plant PM proteins. More specifically, we focus on discussing the elusive aspects underlying the pathways of PM protein degradation in plants. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Planting Date and Seeding Rate Effects on Sunn Hemp Biomass and Nitrogen Production for a Winter Cover Crop

    Directory of Open Access Journals (Sweden)

    Kipling S. Balkcom

    2011-01-01

    Full Text Available Sunn hemp (Crotalaria juncea L. is a tropical legume that produces plant biomass and nitrogen (N quickly. Our objectives were to assess the growth of a new sunn hemp cultivar breed to produce seed in a temperate climate and determine the residual N effect on a rye (Secale cereale L. cover crop in east-central Alabama from 2007 to 2009. Plant populations, plant height, stem diameter, biomass production, and N content were determined for two sunn hemp planting dates, following corn (Zea mays L. and wheat (Triticum aestivum L. harvest, across different seeding rates (17, 34, 50, and 67 kg/ha. Rye biomass was measured the following spring. Sunn hemp biomass production was inconsistent across planting dates, but did relate to growing degree accumulation. Nitrogen concentrations were inversely related to biomass production, and subsequent N contents corresponded to biomass levels. Neither planting date nor seeding rate affected rye biomass production, but rye biomass averaged over both planting dates following wheat/sunn hemp averaged 43% and 33% greater than rye following fallow. Rye biomass following corn/sunn hemp was equivalent to fallow plots. Early planting dates are recommended for sunn hemp with seeding rates between 17 and 34 kg/ha to maximize biomass and N production.

  2. Biomass Allocation and Growth Data of Seeded Plants

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set of leaf, stem, and root biomass for various plant taxa was compiled from the primary literature of the 20th century with a significant...

  3. Shorten fungal treatment of lignocellulosic waste with additives to improve rumen degradability

    NARCIS (Netherlands)

    Kuijk, van S.J.A.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; Cone, J.W.

    2014-01-01

    Selective lignin degrading fungi can be used as pre-treatment to make cellulose in plant cell walls accessible for rumen microbes. According to previous studies, Ceriporiopsis subvermispora and Lentinula edodes can increase the in vitro rumen degradability of lignocellulosic biomass in 7 to 8 weeks.

  4. Biomass Allocation and Growth Data of Seeded Plants

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set of leaf, stem, and root biomass for various plant taxa was compiled from the primary literature of the 20th century with a significant portion derived...

  5. Climate-related variation in plant peak biomass and growth phenology across Pacific Northwest tidal marshes

    Science.gov (United States)

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.

    2018-03-01

    The interannual variability of tidal marsh plant phenology is largely unknown and may have important ecological consequences. Marsh plants are critical to the biogeomorphic feedback processes that build estuarine soils, maintain marsh elevation relative to sea level, and sequester carbon. We calculated Tasseled Cap Greenness, a metric of plant biomass, using remotely sensed data available in the Landsat archive to assess how recent climate variation has affected biomass production and plant phenology across three maritime tidal marshes in the Pacific Northwest of the United States. First, we used clipped vegetation plots at one of our sites to confirm that tasseled cap greenness provided a useful measure of aboveground biomass (r2 = 0.72). We then used multiple measures of biomass each growing season over 20-25 years per study site and developed models to test how peak biomass and the date of peak biomass varied with 94 climate and sea-level metrics using generalized linear models and Akaike Information Criterion (AIC) model selection. Peak biomass was positively related to total annual precipitation, while the best predictor for date of peak biomass was average growing season temperature, with the peak 7.2 days earlier per degree C. Our study provides insight into how plants in maritime tidal marshes respond to interannual climate variation and demonstrates the utility of time-series remote sensing data to assess ecological responses to climate stressors.

  6. High Temperature Corrosion in Biomass Incineration Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Gotthjælp, K.

    1997-01-01

    The aim of the project is to study the role of ash deposits in high temperature corrosion of superheater materials in biomass and refuse fire combined heat and power plants. The project has included the two main activities: a) A chemical characterisation of ash deposits collected from a major...

  7. Permitting a biomass-fired power plant in California -- A case study

    International Nuclear Information System (INIS)

    Reisman, J.I.; Needham, G.A.

    1995-01-01

    This paper describes the process of preparing an air permit application for a proposed biomass-fired power plant. The plant is designed to produce a net electric power output of 16 megawatts (MW) for sale to Pacific Gas and Electric Company. The biomass fuel will consist of urban wood waste, construction wood waste, and waste from agricultural products, such as tree prunings and fruit pits. The site is located in an industrial park in Soledad, California

  8. Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review.

    Science.gov (United States)

    van Kuijk, S J A; Sonnenberg, A S M; Baars, J J P; Hendriks, W H; Cone, J W

    2015-01-01

    In ruminant nutrition, there is an increasing interest for ingredients that do not compete with human nutrition. Ruminants are specialists in digesting carbohydrates in plant cell walls; therefore lignocellulosic biomass has potential in ruminant nutrition. The presence of lignin in biomass, however, limits the effective utilization of cellulose and hemicellulose. Currently, most often chemical and/or physical treatments are used to degrade lignin. White rot fungi are selective lignin degraders and can be a potential alternative to current methods which involve potentially toxic chemicals and expensive equipment. This review provides an overview of research conducted to date on fungal pretreatment of lignocellulosic biomass for ruminant feeds. White rot fungi colonize lignocellulosic biomass, and during colonization produce enzymes, radicals and other small compounds to breakdown lignin. The mechanisms on how these fungi degrade lignin are not fully understood, but fungal strain, the origin of lignocellulose and culture conditions have a major effect on the process. Ceriporiopsis subvermispora and Pleurotus eryngii are the most effective fungi to improve the nutritional value of biomass for ruminant nutrition. However, conclusions on the effectiveness of fungal delignification are difficult to draw due to a lack of standardized culture conditions and information on fungal strains used. Methods of analysis between studies are not uniform for both chemical analysis and in vitro degradation measurements. In vivo studies are limited in number and mostly describing digestibility after mushroom production, when the fungus has degraded cellulose to derive energy for fruit body development. Optimization of fungal pretreatment is required to shorten the process of delignification and make it more selective for lignin. In this respect, future research should focus on optimization of culture conditions and gene expression to obtain a better understanding of the mechanisms

  9. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy M.; Grigoriev, Igor V.; Otillar, Robert; Salamov, Asaf; Grimwood, Jane; Reid, Ian; Ishmael, Nadeeza; John, Tricia; Darmond, Corinne; Moisan, Marie-Claude; Henrissat, Bernard; Coutinho, Pedro M.; Lombard, Vincent; Natvig, Donald O.; Lindquist, Erika; Schmutz, Jeremy; Lucas, Susan; Harris, Paul; Powlowski, Justin; Bellemare, Annie; Taylor, David; Butler, Gregory; de Vries, Ronald P.; Allijn, Iris E.; van den Brink, Joost; Ushinsky, Sophia; Storms, Reginald; Powell, Amy J.; Paulsen, Ian T.; Elbourne, Liam D. H.; Baker, Scott. E.; Magnuson, Jon; LaBoissiere, Sylvie; Clutterbuck, A. John; Martinez, Diego; Wogulis, Mark; Lopez de Leon, Alfredo; Rey, Michael W.; Tsang, Adrian

    2011-05-16

    Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.

  10. Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts

    Science.gov (United States)

    Chenthamara, Komal; Zhang, Jian; Atanasova, Lea; Yang, Dongqing; Miao, Youzhi; Grujic, Marica; Pourmehdi, Shadi; Pretzer, Carina; Kopchinskiy, Alexey G.; Hundley, Hope; Wang, Mei; Aerts, Andrea; Salamov, Asaf; Lipzen, Anna; Barry, Kerrie; Grigoriev, Igor V.; Shen, Qirong; Kubicek, Christian P.

    2018-01-01

    Unlike most other fungi, molds of the genus Trichoderma (Hypocreales, Ascomycota) are aggressive parasites of other fungi and efficient decomposers of plant biomass. Although nutritional shifts are common among hypocrealean fungi, there are no examples of such broad substrate versatility as that observed in Trichoderma. A phylogenomic analysis of 23 hypocrealean fungi (including nine Trichoderma spp. and the related Escovopsis weberi) revealed that the genus Trichoderma has evolved from an ancestor with limited cellulolytic capability that fed on either fungi or arthropods. The evolutionary analysis of Trichoderma genes encoding plant cell wall-degrading carbohydrate-active enzymes and auxiliary proteins (pcwdCAZome, 122 gene families) based on a gene tree / species tree reconciliation demonstrated that the formation of the genus was accompanied by an unprecedented extent of lateral gene transfer (LGT). Nearly one-half of the genes in Trichoderma pcwdCAZome (41%) were obtained via LGT from plant-associated filamentous fungi belonging to different classes of Ascomycota, while no LGT was observed from other potential donors. In addition to the ability to feed on unrelated fungi (such as Basidiomycota), we also showed that Trichoderma is capable of endoparasitism on a broad range of Ascomycota, including extant LGT donors. This phenomenon was not observed in E. weberi and rarely in other mycoparasitic hypocrealean fungi. Thus, our study suggests that LGT is linked to the ability of Trichoderma to parasitize taxonomically related fungi (up to adelphoparasitism in strict sense). This may have allowed primarily mycotrophic Trichoderma fungi to evolve into decomposers of plant biomass. PMID:29630596

  11. OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice.

    Science.gov (United States)

    Li, Fengcheng; Xie, Guosheng; Huang, Jiangfeng; Zhang, Ran; Li, Yu; Zhang, Miaomiao; Wang, Yanting; Li, Ao; Li, Xukai; Xia, Tao; Qu, Chengcheng; Hu, Fan; Ragauskas, Arthur J; Peng, Liangcai

    2017-09-01

    Genetic modification of plant cell walls has been posed to reduce lignocellulose recalcitrance for enhancing biomass saccharification. Since cellulose synthase (CESA) gene was first identified, several dozen CESA mutants have been reported, but almost all mutants exhibit the defective phenotypes in plant growth and development. In this study, the rice (Oryza sativa) Osfc16 mutant with substitutions (W481C, P482S) at P-CR conserved site in CESA9 shows a slightly affected plant growth and higher biomass yield by 25%-41% compared with wild type (Nipponbare, a japonica variety). Chemical and ultrastructural analyses indicate that Osfc16 has a significantly reduced cellulose crystallinity (CrI) and thinner secondary cell walls compared with wild type. CESA co-IP detection, together with implementations of a proteasome inhibitor (MG132) and two distinct cellulose inhibitors (Calcofluor, CGA), shows that CESA9 mutation could affect integrity of CESA4/7/9 complexes, which may lead to rapid CESA proteasome degradation for low-DP cellulose biosynthesis. These may reduce cellulose CrI, which improves plant lodging resistance, a major and integrated agronomic trait on plant growth and grain production, and enhances biomass enzymatic saccharification by up to 2.3-fold and ethanol productivity by 34%-42%. This study has for the first time reported a direct modification for the low-DP cellulose production that has broad applications in biomass industries. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Tactical supply chain planning for a forest biomass power plant under supply uncertainty

    International Nuclear Information System (INIS)

    Shabani, Nazanin; Sowlati, Taraneh; Ouhimmou, Mustapha; Rönnqvist, Mikael

    2014-01-01

    Uncertainty in biomass supply is a critical issue that needs to be considered in the production planning of bioenergy plants. Incorporating uncertainty in supply chain planning models provides improved and stable solutions. In this paper, we first reformulate a previously developed non-linear programming model for optimization of a forest biomass power plant supply chain into a linear programming model. The developed model is a multi-period tactical-level production planning problem and considers the supply and storage of forest biomass as well as the production of electricity. It has a one-year planning horizon with monthly time steps. Next, in order to incorporate uncertainty in monthly available biomass into the planning, we develop a two-stage stochastic programming model. Finally, to balance the risk and profit, we propose a bi-objective model. The results show that uncertainty in availability of biomass has an additional cost of $0.4 million for the power plant. Using the proposed stochastic optimization model could reduce this cost by half. - Highlights: • Developed a two-stage stochastic optimization model to consider supply uncertainty. • Maximized the profit of a forest biomass power plant value chain. • Minimized two risk measures, variability index and downside risk, to manage risks. • Stochastic optimization model provided feasible solution for all scenarios. • Results showed a trade-off between profit and risk management

  13. Grassland degradation caused by tourism activities in Hulunbuir, Inner Mongolia, China

    International Nuclear Information System (INIS)

    Le, C; Ikazaki, K; Siriguleng; Kosaki, T; Kadono, A

    2014-01-01

    The recent increase in the number of tourists has raised serious concerns about grassland degradation by tourism activities in Inner Mongolia. Thus, we evaluated the effects of tourism activities on the vegetation and soil in Hulunbuir grassland. We identified all the plant species, measured the number and height of plant and plant coverage rate, and calculated species diversity, estimated above-ground biomass in use plot and non-use plot. We also measured soil hardness, and collected soil samples for physical and chemical analysis in both plots. The obtained results were as follows: a) the height of the dominant plants, plant coverage rate, species diversity, and above-ground biomass were significantly lower in use plot than in non-use plot, b) Carex duriuscula C.A.Mey., indicator plant for soil degradation, was dominant in use plot, c) soil hardness was significantly higher in use plot than in non-use plot, and spatial dependence of soil hardness was only found in the use plot, d) CEC, TC, TN and pH in the topsoil were significantly lower in use plot than non-use plot. On the basis of the results, we concluded that the tourism activities can be another major cause of the grassland degradation in Inner Mongolia

  14. Grassland degradation caused by tourism activities in Hulunbuir, Inner Mongolia, China

    Science.gov (United States)

    Le, C.; Ikazaki, K.; Siriguleng; Kadono, A.; Kosaki, T.

    2014-02-01

    The recent increase in the number of tourists has raised serious concerns about grassland degradation by tourism activities in Inner Mongolia. Thus, we evaluated the effects of tourism activities on the vegetation and soil in Hulunbuir grassland. We identified all the plant species, measured the number and height of plant and plant coverage rate, and calculated species diversity, estimated above-ground biomass in use plot and non-use plot. We also measured soil hardness, and collected soil samples for physical and chemical analysis in both plots. The obtained results were as follows: a) the height of the dominant plants, plant coverage rate, species diversity, and above-ground biomass were significantly lower in use plot than in non-use plot, b) Carex duriuscula C.A.Mey., indicator plant for soil degradation, was dominant in use plot, c) soil hardness was significantly higher in use plot than in non-use plot, and spatial dependence of soil hardness was only found in the use plot, d) CEC, TC, TN and pH in the topsoil were significantly lower in use plot than non-use plot. On the basis of the results, we concluded that the tourism activities can be another major cause of the grassland degradation in Inner Mongolia.

  15. Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity

    Directory of Open Access Journals (Sweden)

    Wei Hui

    2012-04-01

    Full Text Available Abstract Background Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. Results In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera wood-chips and mown lawn grass clippings (85:15 in dry-weight and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. Conclusion The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP and solid-state fermentation for the production of cellulolytic enzymes and biofuels.

  16. Combating corrosion in biomass and waste fired plant

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Pamela [Vattenfall AB, Stockholm (Sweden). Research and Development; Hjoernhede, Anders [Vattenfall AB, Gothenburg (Sweden). Power Consultant

    2010-07-01

    Many biomass- or waste-fired plants have problems with high temperature corrosion especially if the steam temperature is greater than 500 C. An increase in the combustion of waste fuels means that an increasing number of boilers have had problems. Therefore, there is great interest in reducing the costs associated with high temperature corrosion and at the same time there exists a desire to improve the electrical efficiency of a plant by the use of higher steam temperatures. Assuming that the fuel is well-mixed and that there is good combustion control, there are in addition a number of other measures which can be used to reduce superheater corrosion in biomass and waste fired plants, and these are described in this paper. These include the use of fuel additives, specifically sulphur-containing ones; design aspects like placing superheaters in less corrosive positions in a boiler, using tube shielding, a wider pitch between the tubes; operational considerations such as more controlled soot-blowing and the use of better materials. (orig.)

  17. Age-Related Degradation of Nuclear Power Plant Structures and Components

    International Nuclear Information System (INIS)

    Braverman, J.; Chang, T.-Y.; Chokshi, N.; Hofmayer, C.; Morante, R.; Shteyngart, S.

    1999-01-01

    This paper summarizes and highlights the results of the initial phase of a research project on the assessment of aged and degraded structures and components important to the safe operation of nuclear power plants (NPPs). A review of age-related degradation of structures and passive components at NPPs was performed. Instances of age-related degradation have been collected and reviewed. Data were collected from plant generated documents such as Licensing Event Reports, NRC generic communications, NUREGs and industry reports. Applicable cases of degradation occurrences were reviewed and then entered into a computerized database. The results obtained from the review of degradation occurrences are summarized and discussed. Various trending analyses were performed to identify which structures and components are most affected, whether degradation occurrences are worsening, and what was the most common aging mechanisms. The paper also discusses potential aging issues and degradation-susceptible structures and passive components which would have the greatest impact on plant risk

  18. Climate-related variation in plant peak biomass and growth phenology across Pacific Northwest tidal marshes

    Science.gov (United States)

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.

    2018-01-01

    The interannual variability of tidal marsh plant phenology is largely unknown and may have important ecological consequences. Marsh plants are critical to the biogeomorphic feedback processes that build estuarine soils, maintain marsh elevation relative to sea level, and sequester carbon. We calculated Tasseled Cap Greenness, a metric of plant biomass, using remotely sensed data available in the Landsat archive to assess how recent climate variation has affected biomass production and plant phenology across three maritime tidal marshes in the Pacific Northwest of the United States. First, we used clipped vegetation plots at one of our sites to confirm that tasseled cap greenness provided a useful measure of aboveground biomass (r2 = 0.72). We then used multiple measures of biomass each growing season over 20–25 years per study site and developed models to test how peak biomass and the date of peak biomass varied with 94 climate and sea-level metrics using generalized linear models and Akaike Information Criterion (AIC) model selection. Peak biomass was positively related to total annual precipitation, while the best predictor for date of peak biomass was average growing season temperature, with the peak 7.2 days earlier per degree C. Our study provides insight into how plants in maritime tidal marshes respond to interannual climate variation and demonstrates the utility of time-series remote sensing data to assess ecological responses to climate stressors.

  19. Effects of uranium on soil microbial biomass carbon, enzymes, plant biomass and microbial diversity in yellow soils

    International Nuclear Information System (INIS)

    Yan, X.; Zhang, Y.; Luo, X.; Yu, L.

    2016-01-01

    We conducted an experiment to investigate the effects of uranium (U) on soil microbial biomass carbon (MBC), enzymes, plant biomass and microbial diversity in yellow soils under three concentrations: 0 mg kg"-"1 (T1, control), 30 mg kg"-"1 (T2) and 60 mg kg"-"1 (T3). Under each treatment, elevated U did not reduce soil MBC or plant biomass, but inhibited the activity of the soil enzymes urease (UR), dehydrogenase (DH) and phosphatase (PHO). The microbial diversity was different, with eight dominant phyla in T1 and six in T2 and T3. Furthermore, Proteobacteria and material X were both detected in each treatment site (T1, T2 and T3). Pseudomonas sp. was the dominant strain, followed by Acidiphilium sp. This initial study provided valuable data for further research toward a better understanding of U contamination in yellow soils in China. (authors)

  20. Biomass Co-Firing in Suspension-Fired Power Plants

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Hvid, Søren Lovmand; Baxter, Larry

    , in the future it is expected to become relevant to cofire in more advanced plants as the trend in the power plant structure is towards older plants having fewer operating hours or being decommissioned. A major product of this project is an experimentally validated computational fluid dynamics (CFD) based...... modelling tool adapted to accommodate biomass cofiring combustion features. The CFD tool will be able to predict deposit accumulation, particle conversion, fly ash composition, temperatures, velocities, and composition of furnace gases, etc. The computer model will primarily be used in the development...

  1. Degradation of Total Petroleum Hydrocarbon in Phytoremediation Using Terrestrial Plants

    Directory of Open Access Journals (Sweden)

    Mushrifah Idris

    2014-06-01

    Full Text Available This study focused on the total petroleum hydrocarbon (TPH degradation in phytoremediation of spiked diesel in sand. The diesel was added to the sand that was planted with terrestrial plants. Four selected terrestrial plants used were Paspalum vaginatum Sw, Paspalums crobiculatum L. varbispicatum Hack, Eragrotis atrovirens (Desf. Trin. ex Steud and Cayratia trifolia (L. Domin since all the plants could survive at a hydrocarbon petroleum contaminated site in Malaysia. The samplings were carried out on Day 0, 7, 14, 28, 42 and 72. The analysis of the TPH was conducted by extracting the spiked sand using ultrasonic extraction. The determination of the TPH concentration in the sand was performed using GC-FID. The degradation of TPH depends on the plant species and time of exposure. The highest percentage degradation by P. vaginatum, P. scrobiculatum, E. atrovirens and C. trifolia were 91.9, 74.0, 68.9 and 62.9%, respectively. In conclusion, the ability to degrade TPH by plants were P. vaginatum > P. scrobiculatum > E. atrovirens> C. trifolia.

  2. Assessment of the degradation efficiency of full-scale biogas plants: A comparative study of degradation indicators.

    Science.gov (United States)

    Li, Chao; Nges, Ivo Achu; Lu, Wenjing; Wang, Haoyu

    2017-11-01

    Increasing popularity and applications of the anaerobic digestion (AD) process has necessitated the development and identification of tools for obtaining reliable indicators of organic matter degradation rate and hence evaluate the process efficiency especially in full-scale, commercial biogas plants. In this study, four biogas plants (A1, A2, B and C) based on different feedstock, process configuration, scale and operational performance were selected and investigated. Results showed that the biochemical methane potential (BMP) based degradation rate could be use in incisively gauging process efficiency in lieu of the traditional degradation rate indicators. The BMP degradation rates ranged from 70 to 90% wherein plants A2 and C showed the highest throughput. This study, therefore, corroborates the feasibility of using the BMP degradation rate as a practical tool for evaluating process performance in full-scale biogas processes and spots light on the microbial diversity in full-scale biogas processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Chemical profiling of Jatropha tissues under different torrefaction conditions: application to biomass waste recovery.

    Directory of Open Access Journals (Sweden)

    Taiji Watanabe

    Full Text Available Gradual depletion of the world petroleum reserves and the impact of environmental pollution highlight the importance of developing alternative energy resources such as plant biomass. To address these issues, intensive research has focused on the plant Jatropha curcas, which serves as a rich source of biodiesel because of its high seed oil content. However, producing biodiesel from Jatropha generates large amounts of biomass waste that are difficult to use. Therefore, the objective of our research was to analyze the effects of different conditions of torrefaction on Jatropha biomass. Six different types of Jatropha tissues (seed coat, kernel, stem, xylem, bark, and leaf were torrefied at four different temperature conditions (200°C, 250°C, 300°C, and 350°C, and changes in the metabolite composition of the torrefied products were determined by Fourier transform-infrared spectroscopy and nuclear magnetic resonance analyses. Cellulose was gradually converted to oligosaccharides in the temperature range of 200°C-300°C and completely degraded at 350°C. Hemicellulose residues showed different degradation patterns depending on the tissue, whereas glucuronoxylan efficiently decomposed between 300°C and 350°C. Heat-induced depolymerization of starch to maltodextrin started between 200°C and 250°C, and oligomer sugar structure degradation occurred at higher temperatures. Lignin degraded at each temperature, e.g., syringyl (S degraded at lower temperatures than guaiacyl (G. Finally, the toxic compound phorbol ester degraded gradually starting at 235°C and efficiently just below 300°C. These results suggest that torrefaction is a feasible treatment for further processing of residual biomass to biorefinery stock or fertilizer.

  4. Accurate inference of shoot biomass from high-throughput images of cereal plants

    Directory of Open Access Journals (Sweden)

    Tester Mark

    2011-02-01

    Full Text Available Abstract With the establishment of advanced technology facilities for high throughput plant phenotyping, the problem of estimating plant biomass of individual plants from their two dimensional images is becoming increasingly important. The approach predominantly cited in literature is to estimate the biomass of a plant as a linear function of the projected shoot area of plants in the images. However, the estimation error from this model, which is solely a function of projected shoot area, is large, prohibiting accurate estimation of the biomass of plants, particularly for the salt-stressed plants. In this paper, we propose a method based on plant specific weight for improving the accuracy of the linear model and reducing the estimation bias (the difference between actual shoot dry weight and the value of the shoot dry weight estimated with a predictive model. For the proposed method in this study, we modeled the plant shoot dry weight as a function of plant area and plant age. The data used for developing our model and comparing the results with the linear model were collected from a completely randomized block design experiment. A total of 320 plants from two bread wheat varieties were grown in a supported hydroponics system in a greenhouse. The plants were exposed to two levels of hydroponic salt treatments (NaCl at 0 and 100 mM for 6 weeks. Five harvests were carried out. Each time 64 randomly selected plants were imaged and then harvested to measure the shoot fresh weight and shoot dry weight. The results of statistical analysis showed that with our proposed method, most of the observed variance can be explained, and moreover only a small difference between actual and estimated shoot dry weight was obtained. The low estimation bias indicates that our proposed method can be used to estimate biomass of individual plants regardless of what variety the plant is and what salt treatment has been applied. We validated this model on an independent

  5. Utilization of emergent aquatic plants for biomass-energy-systems development

    Energy Technology Data Exchange (ETDEWEB)

    Kresovich, S.; Wagner, C.K.; Scantland, D.A.; Groet, S.S.; Lawhon, W.T.

    1982-02-01

    A review was conducted of the available literature pertaining to the following aspects of emergent aquatic biomass: identification of prospective emergent plant species for management; evaluation of prospects for genetic manipulation; evaluation of biological and environmental tolerances; examination of current production technologies; determination of availability of seeds and/or other propagules, and projections for probable end-uses and products. Species identified as potential candidates for production in biomass systems include Arundo donax, Cyperus papyrus, Phragmites communis, Saccharum spontaneum, Spartina alterniflora, and Typha latifolia. If these species are to be viable candidates in biomass systems, a number of research areas must be further investigated. Points such as development of baseline yield data for managed systems, harvesting conceptualization, genetic (crop) improvement, and identification of secondary plant products require refinement. However, the potential pay-off for developing emergent aquatic systems will be significant if development is successful.

  6. [Effects of large-area planting water hyacinth on macro-benthos community structure and biomass].

    Science.gov (United States)

    Liu, Guo-Feng; Liu, Hai-Qin; Zhang, Zhi-Yong; Zhang, Ying-Ying; Yan, Shao-Hua; Zhong, Ji-Cheng; Fan, Cheng-Xin

    2010-12-01

    The effects on macro-benthos and benthos environment of planting 200 hm2 water hyacinth (E. crassipens) in Zhushan Bay, Lake Taihu, were studied during 8-10 months consecutive surveys. Results indicated that average densities of mollusca (the main species were Bellamya aeruginosa) in far-planting, near-planting and planting area were 276.67, 371.11 and 440.00 ind/m2, respectively, and biomass were 373.15, 486.57 and 672.54 g/m2, respectively, showed that average density and biomass of planting area's were higher than those of others. However, the average density and biomass of Oligochaeta (the main species was Limodrilus hoffmeisteri) and Chironomidae in planting area were lower than that of outside planting area. The density and biomass of three dominant species of benthic animal increased quickly during 8-9 months, decreased quickly in October inside and outside water hyacinth planting area. The reason of this phenomenon could be possible that lots of cyanobacteria cells died and consumed dissolve oxygen in proceed decomposing. Algae cells released lots of phosphorus and nitrogen simultaneously, so macro-benthos died in this environment. The indexes of Shannon-Weaver and Simpson indicated that water environment was in moderate polluted state. On the basis of the survey results, the large-area and high-density planting water hyacinth haven't demonstrated a great impact on macrobenthos and benthos environment in short planting time (about 6 months planting time).

  7. Recent patents on genetic modification of plants and microbes for biomass conversion to biofuels.

    Science.gov (United States)

    Lubieniechi, Simona; Peranantham, Thinesh; Levin, David B

    2013-04-01

    Development of sustainable energy systems based on renewable biomass feedstocks is now a global effort. Lignocellulosic biomass contains polymers of cellulose, hemicellulose, and lignin, bound together in a complex structure. Liquid biofuels, such as ethanol, can be made from biomass via fermentation of sugars derived from the cellulose and hemicellulose within lignocellulosic materials, but pre-treatment of the biomass to release sugars for microbial conversion is a significant barrier to commercial success of lignocellulosic biofuel production. Strategies to reduce the energy and cost inputs required for biomass pre-treatment include genetic modification of plant materials to reduce lignin content. Significant efforts are also underway to create recombinant microorganisms capable of converting sugars derived from lignocellulosic biomass to a variety of biofuels. An alternative strategy to reduce the costs of cellulosic biofuel production is the use of cellulolytic microorganisms capable of direct microbial conversion of ligno-cellulosic biomass to fuels. This paper reviews recent patents on genetic modification of plants and microbes for biomass conversion to biofuels.

  8. Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria.

    Science.gov (United States)

    Beltran-Garcia, Miguel J; White, James F; Prado, Fernanda M; Prieto, Katia R; Yamaguchi, Lydia F; Torres, Monica S; Kato, Massuo J; Medeiros, Marisa H G; Di Mascio, Paolo

    2014-11-06

    Plants form symbiotic associations with endophytic bacteria within tissues of leaves, stems, and roots. It is unclear whether or how plants obtain nitrogen from these endophytic bacteria. Here we present evidence showing nitrogen flow from endophytic bacteria to plants in a process that appears to involve oxidative degradation of bacteria. In our experiments we employed Agave tequilana and its seed-transmitted endophyte Bacillus tequilensis to elucidate organic nitrogen transfer from (15)N-labeled bacteria to plants. Bacillus tequilensis cells grown in a minimal medium with (15)NH4Cl as the nitrogen source were watered onto plants growing in sand. We traced incorporation of (15)N into tryptophan, deoxynucleosides and pheophytin derived from chlorophyll a. Probes for hydrogen peroxide show its presence during degradation of bacteria in plant tissues, supporting involvement of reactive oxygen in the degradation process. In another experiment to assess nitrogen absorbed as a result of endophytic colonization of plants we demonstrated that endophytic bacteria potentially transfer more nitrogen to plants and stimulate greater biomass in plants than heat-killed bacteria that do not colonize plants but instead degrade in the soil. Findings presented here support the hypothesis that some plants under nutrient limitation may degrade and obtain nitrogen from endophytic microbes.

  9. Growing Periandra mediterranea on post-mining substrate: native Fabaceae with potential for revegetation of degraded rupestrian grasslands in Brazil

    Directory of Open Access Journals (Sweden)

    Maurilio Assis Figueiredo

    2018-01-01

    Full Text Available ABSTRACT Recovery of degraded areas of rupestrian grasslands is hampered mainly by the limited knowledge regarding substrate management and the biology of native species suitable for revegetation of these areas. The aim of our study was to examine the establishment and growth of Periandra mediterranea in different textures of lateritic substrate from a mining-degraded area. The growth of P. mediterranea was evaluated using fine and coarse laterite, both with and without the addition of topsoil. Survival, dry biomass, content of chemical elements and nodulation were evaluated in ten individuals per treatment sixteen months after planting. Although the substrate has low nutrient content, yet high metal concentrations, all plants survived. Plants growing on coarse laterite had 140 % greater biomass than those growing on fine laterite. The addition of topsoil increased biomass in coarse and fine laterite by 46 and 151 %, respectively, and doubled the number of nodulated plants, regardless of grain size. The biomass accumulation of P. mediterranea to a dystrophic substrate revealed its potential for use in the revegetation of degraded areas of rupestrian grasslands. Furthermore, the addition of topsoil facilitated the association of P. mediterranea with nitrogen-fixing bacteria, and increased its growth and capacity to improve substrate fertility.

  10. A test of plant-aided petroleum hydrocarbon degradation

    Energy Technology Data Exchange (ETDEWEB)

    Hosler, K R [Water Technology International Corp., Burlington, ON (Canada); Drake, E N [Exxon Research Engineering Co., Annandale, NJ (United States)

    1999-12-31

    A research program was established to develop environmental restoration technologies which apply to contaminated industrial sites. The program involved two separate but related parts. Part One involved a multi-year field study, Part Two a greenhouse potted plant study. This paper presents the results of the greenhouse-based phytoremediation experiment which assessed the potential impacts of three treatment factors on the degradation of total petroleum hydrocarbons (TPH) in contaminated soils for use in those cases where the use of plants for restoring contaminated environments might be a simple and cost-effective clean-up alternative. This study showed that biologically-aided contaminant degradation can be enhanced by various treatments such as adding nutrients in the form of inorganic fertilizers, adding oxygen or modifying soil conditions. The study also showed that contaminant degradation can be enhanced in the rhizosphere of various plant species and that remediation of some contaminants can be achieved by exploiting the unique symbiotic relationship between some fungal species and plant roots. 22 refs., 3 tabs., 1 fig.

  11. A test of plant-aided petroleum hydrocarbon degradation

    International Nuclear Information System (INIS)

    Hosler, K.R.; Drake, E.N.

    1998-01-01

    A research program was established to develop environmental restoration technologies which apply to contaminated industrial sites. The program involved two separate but related parts. Part One involved a multi-year field study, Part Two a greenhouse potted plant study. This paper presents the results of the greenhouse-based phytoremediation experiment which assessed the potential impacts of three treatment factors on the degradation of total petroleum hydrocarbons (TPH) in contaminated soils for use in those cases where the use of plants for restoring contaminated environments might be a simple and cost-effective clean-up alternative. This study showed that biologically-aided contaminant degradation can be enhanced by various treatments such as adding nutrients in the form of inorganic fertilizers, adding oxygen or modifying soil conditions. The study also showed that contaminant degradation can be enhanced in the rhizosphere of various plant species and that remediation of some contaminants can be achieved by exploiting the unique symbiotic relationship between some fungal species and plant roots. 22 refs., 3 tabs., 1 fig

  12. Exploring bacterial lignin degradation.

    Science.gov (United States)

    Brown, Margaret E; Chang, Michelle C Y

    2014-04-01

    Plant biomass represents a renewable carbon feedstock that could potentially be used to replace a significant level of petroleum-derived chemicals. One major challenge in its utilization is that the majority of this carbon is trapped in the recalcitrant structural polymers of the plant cell wall. Deconstruction of lignin is a key step in the processing of biomass to useful monomers but remains challenging. Microbial systems can provide molecular information on lignin depolymerization as they have evolved to break lignin down using metalloenzyme-dependent radical pathways. Both fungi and bacteria have been observed to metabolize lignin; however, their differential reactivity with this substrate indicates that they may utilize different chemical strategies for its breakdown. This review will discuss recent advances in studying bacterial lignin degradation as an approach to exploring greater diversity in the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Fungal treatment of lignocellulosic biomass: Importance of fungal species, colonization and time on chemical composition and in vitro rumen degradability

    NARCIS (Netherlands)

    Kuijk, van S.J.A.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; Cone, J.W.

    2015-01-01

    The aim of this study is to evaluate fungal treatments to improve in vitro rumen degradability of lignocellulosic biomass. In this study four selective lignin degrading fungi, Ganoderma lucidum, Lentinula edodes, Pleurotus eryngii and Pleurotus ostreatus, were used to pre-treat lignocellulosic

  14. From the idea to the construction of a biomass fuelled plant. The marketing potential

    International Nuclear Information System (INIS)

    Beyer, Ranveig Vaa

    2000-12-01

    The report deals with the case handling in connection with the planning of a biomass fuelled plant as well as the market potential for a biomass fuelled Stirling engines and direct combustion of biomass with a steam circuit

  15. Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants

    International Nuclear Information System (INIS)

    Drescher, Ulli; Brueggemann, Dieter

    2007-01-01

    In small solid biomass power and heat plants, the ORC is used for cogeneration. This application shows constraints different from other ORC. These constraints are described and an adapted power plant design is presented. The new design influences the selection criteria of working fluids. A software has been developed to find thermodynamic suitable fluids for ORC in biomass power and heat plants. Highest efficiencies are found within the family of alkylbenzenes

  16. Water stress mitigates the negative effects of ozone on photosynthesis and biomass in poplar plants.

    Science.gov (United States)

    Gao, Feng; Catalayud, Vicent; Paoletti, Elena; Hoshika, Yasutomo; Feng, Zhaozhong

    2017-11-01

    Tropospheric ozone (O 3 ) pollution frequently overlaps with drought episodes but the combined effects are not yet understood. We investigated the physiological and biomass responses of an O 3 sensitive hybrid poplar clone ('546') under three O 3 levels (charcoal-filtered ambient air, non-filtered ambient air (NF), and NF plus 40 ppb) and two watering regimes (well-watered (WW) and reduced watering (RW), i.e. 40% irrigation) for one growing season. Water stress increased chlorophyll and carotenoid contents, protecting leaves from pigment degradation by O 3 . Impairment of photosynthesis by O 3 was also reduced by stomatal closure due to water stress, which preserved light-saturated CO 2 assimilation rate, and the maximum carboxylation efficiency. Water stress increased water use efficiency of the leaves while O 3 decreased it, showing significant interactions. Effects were more evident in older leaves than in younger leaves. Water stress reduced biomass production, but the negative effects of O 3 were less in RW than in WW for total biomass per plant. A stomatal O 3 flux-based dose-response relationship was parameterized considering water stress effects, which explained biomass losses much better than a concentration-based approach. The O 3 critical level of Phytotoxic Ozone Dose over a threshold of 7 nmol O 3 .m -2 .s -1 (POD 7 ) for a 4% biomass loss in this poplar clone under different water regimes was 4.1 mmol m -2 . Our results suggest that current O 3 levels in most parts of China threaten poplar growth and that interaction with water availability is a key factor for O 3 risk assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Materials Problems and Solutions in Biomass fired plants

    DEFF Research Database (Denmark)

    Larsen, Ole Hede; Montgomery, Melanie

    2006-01-01

    be directly ascribed to the composition of the deposit and the metal surface temperature. In woodchip boilers, a similar corrosion rate and corrosion mechanism has on some occasions been observed. Cofiring of straw (10 and 20% energy basis) with coal has shown corrosion rates lower than those in straw fired......Owing to Denmark's pledge to reduce carbon dioxide emissions, biomass is being increasingly utilised as a fuel for generating energy. Extensive research and development projects, especially in the area of material performance for biomass fired boilers, have been undertaken to make biomass a viable...... fuel resource. When straw is combusted, potassium chloride and potassium sulphate are present in ash products, which condense on superheater components. This gives rise to specific chlorine corrosion problems not previously encountered in coal fired power plants. The type of corrosion attack can...

  18. Sexual crossing of thermophilic fungus Myceliophthora heterothallica improved enzymatic degradation of sugar beet pulp

    NARCIS (Netherlands)

    Aguilar-Pontes, Maria Victoria; Zhou, Miaomiao; van der Horst, Sjors; Theelen, Bart; de Vries, Ronald P.; van den Brink, Joost

    2016-01-01

    Background Enzymatic degradation of plant biomass requires a complex mixture of many different enzymes. Like most fungi, thermophilic Myceliophthora species therefore have a large set of enzymes targeting different linkages in plant polysaccharides. The majority of these enzymes have not been

  19. Hydrothermal processing of biomass from invasive aquatic plants

    Science.gov (United States)

    W. James Catallo; Todd F. Shupe; Thomas L. Eberhardt

    2008-01-01

    The purpose of this study was to examine the hydrothermal (HT) treatment of three invasive aquatic plants (i.e., Lemna sp., Hydrilla sp., and Eichhornia sp.) with respect to the generation of semi-volatile hydrocarbon product mixtures and biomass volume reduction. Identical HT treatments yielded similar semi-...

  20. Measuring Biomass and Carbon Stock in Resprouting Woody Plants

    Science.gov (United States)

    Matula, Radim; Damborská, Lenka; Nečasová, Monika; Geršl, Milan; Šrámek, Martin

    2015-01-01

    Resprouting multi-stemmed woody plants form an important component of the woody vegetation in many ecosystems, but a clear methodology for reliable measurement of their size and quick, non-destructive estimation of their woody biomass and carbon stock is lacking. Our goal was to find a minimum number of sprouts, i.e., the most easily obtainable, and sprout parameters that should be measured for accurate sprout biomass and carbon stock estimates. Using data for 5 common temperate woody species, we modelled carbon stock and sprout biomass as a function of an increasing number of sprouts in an interaction with different sprout parameters. The mean basal diameter of only two to five of the thickest sprouts and the basal diameter and DBH of the thickest sprouts per stump proved to be accurate estimators for the total sprout biomass of the individual resprouters and the populations of resprouters, respectively. Carbon stock estimates were strongly correlated with biomass estimates, but relative carbon content varied among species. Our study demonstrated that the size of the resprouters can be easily measured, and their biomass and carbon stock estimated; therefore, resprouters can be simply incorporated into studies of woody vegetation. PMID:25719601

  1. Precise plant height monitoring and biomass estimation with Terrestrial Laser Scanning in paddy rice

    Directory of Open Access Journals (Sweden)

    N. Tilly

    2013-10-01

    Full Text Available Optimizing crop management is a major topic in the field of precision agriculture as the growing world population puts pressure on the efficiency of field production. Accordingly, methods to measure plant parameters with the needed precision and within-field resolution are required. Studies show that Terrestrial Laser Scanning (TLS is a suitable method to capture small objects like crop plants. In this contribution, the results of multi-temporal surveys on paddy rice fields with the TLS system Riegl LMS-Z420i are presented. Three campaigns were carried out during the key vegetative stage of rice plants in the growing period 2012 to monitor the plant height. The TLS-derived point clouds are interpolated to visualize plant height above ground as crop surface models (CSMs with a high resolution of 0.01 m. Spatio-temporal differences within the data of one campaign and between consecutive campaigns can be detected. The results were validated against manually measured plant heights with a high correlation (R2 = 0.71. Furthermore, the dependence of actual biomass from plant height was evaluated. To the present, no method for the non-destructive determination of biomass is found yet. Thus, plant parameters, like the height, have to be used for biomass estimations. The good correlation (R2 = 0.66 leads to the assumption that biomass can be estimated from plant height measurements. The results show that TLS can be considered as a very promising tool for precision agriculture.

  2. Process simulation of co-firing torrefied biomass in a 220 MWe coal-fired power plant

    International Nuclear Information System (INIS)

    Li, Jun; Zhang, Xiaolei; Pawlak-Kruczek, Halina; Yang, Weihong; Kruczek, Pawel; Blasiak, Wlodzimierz

    2014-01-01

    Highlights: • The performances of torrefaction based co-firing power plant are simulated by using Aspen Plus. • Mass loss properties and released gaseous components have been studied during biomass torrefaction processes. • Mole fractions of CO 2 and CO account for 69–91% and 4–27% in total torrefied gases. • The electrical efficiency reduced when increasing either torrefaction temperature or substitution ratio of biomass. - Abstract: Torrefaction based co-firing in a pulverized coal boiler has been proposed for large percentage of biomass co-firing. A 220 MWe pulverized coal-power plant is simulated using Aspen Plus for full understanding the impacts of an additional torrefaction unit on the efficiency of the whole power plant, the studied process includes biomass drying, biomass torrefaction, mill systems, biomass/coal devolatilization and combustion, heat exchanges and power generation. Palm kernel shells (PKS) were torrefied at same residence time but 4 different temperatures, to prepare 4 torrefied biomasses with different degrees of torrefaction. During biomass torrefaction processes, the mass loss properties and released gaseous components have been studied. In addition, process simulations at varying torrefaction degrees and biomass co-firing ratios have been carried out to understand the properties of CO 2 emission and electricity efficiency in the studied torrefaction based co-firing power plant. According to the experimental results, the mole fractions of CO 2 and CO account for 69–91% and 4–27% in torrefied gases. The predicted results also showed that the electrical efficiency reduced when increasing either torrefaction temperature or substitution ratio of biomass. A deep torrefaction may not be recommended, because the power saved from biomass grinding is less than the heat consumed by the extra torrefaction process, depending on the heat sources

  3. The opportunities for obtaining of the biogas on methane fermentation from marine algae biomass and water plant biomass

    Directory of Open Access Journals (Sweden)

    Jachniak Ewa

    2018-01-01

    Full Text Available The aim of the research was to try to obtain of the biogas on a laboratory scale from marine algae biomass and water plant biomass. The research was conducted in 2016 year and samples were taken from the Polish coast of the Baltic Sea. In laboratory work, algae and plant species were first identified. The next, in order to subject them to methane fermentation processes and to obtain biogas,partial mechanical treatment of the biomass was conducted. Dry matter content and dry organic matter content were also determined. The research has shown different production of the biogas depending on the various species of the algae and plants. The percentage composition of the biogas was also determined (% CO2 and % CH4. In this research some kinds and species of algae and aquatic plants were distinguished: Scytosiphon cf. S. tortilis, Fucus vesiculosus, Cladophora, Audouinella, Potamogeton perfoliatus. Production of biogas from selected algae and water plants oscillated between 0.023 dm3·g-1 and 0.303 dm3·g-1. The highest content of the methane in biogas was obtained from the mixture of Ectocarpus from spring and autumn harvest (values oscillated from 80.7 % to 81.2 %, while the highest percentage share of carbon dioxide in the biogas was characterized by the mixture Fucus vesiculosus and Audouinella (22 %. Due to a small amount of the research in this field, more research is needed.

  4. A molecular analysis of (hemi-)cellulose degradation by Aspergilli

    NARCIS (Netherlands)

    Gielkens, M.M.C.

    1999-01-01

    Glycosylhydrolases like cellulases and xylanases are of great importance for the ecological recycling of biomass. The saprophytic fungi, e.g Aspergillus niger , are capable of degrading plant cell wall material by secreting these enzymes. Because of their properties, a

  5. Ruminal degradation of aerial biomass and seeds of wild species of Lupinus

    OpenAIRE

    Pablo-Pérez, Maricela; Lagunes-Espinoza, Luz del C; Ramos-Juárez, Jesús; López-Upton, Javier; Aranda-Ibáñez, Emilio M; Vargas-Villamil, Luis

    2014-01-01

    Ruminal degradation of dry matter (DMD) and crude protein (CPD) for aerial biomass at the flowering stage and for the seeds of L. campestris, L. exaltatus, L. hintonii and L. montanus was determined using the nylon bag technique with two fistulated steers in five incubation times (3, 9, 12, 24 and 48 h), including a sample of soybean paste (SP). The data obtained were analyzed using PROC MIXED of SAS for repeated measures. The results showed interactions between species and incubation time fo...

  6. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, March 1-August 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D. I.C.

    1980-09-01

    Progress is reported in this coordinated research program to effect the microbiological degradation of cellulosic biomass by anaerobic microorganisms possessing cellulolytic enzymes. Three main areas of research are discussed: increasing enzyme levels through genetics, mutations, and genetic manipulation; the direct conversion of cellulosic biomass to liquid fuel (ethanol); and the production of chemical feedstocks from biomass (acrylic acid, acetone/butanol, and acetic acid). (DMC)

  7. Production of marine plant biomass: Management, cultivation, and genetic modification of macrophytic algae

    Science.gov (United States)

    Vandermeer, J. P.

    1982-12-01

    Every second of every day, the Sun's fusion reactions convert thousands of tons of hydrogen into helium with the release of almost unimaginable amounts of energy. Through the photosynthetic activity of plants, both aquatic and terrestrial, a small fraction of this energy is trapped and stored as plant biomass. The oceans cover a greater fraction of the globe than do the land masses, making it appropriate to consider their contribution to the total biomass production, and their potential as a source of raw materials for the extraction of chemicals and fuels. A rather broad synthesis, convering the total seaweed resource and some of the constraints placed on harvesting these plants, attempts to farm the oceans to increase the supply of desirable species, attempts to cultivate seaweeds in enclosures where environmental parameters are controlled, and finally, the limited amount of genetic manipulation that was applied to these plants was presented. Only the larger red and brown seaweeds were considered because they represent the bulk of the biomass.

  8. Testing the generality of above-ground biomass allometry across plant functional types at the continent scale.

    Science.gov (United States)

    Paul, Keryn I; Roxburgh, Stephen H; Chave, Jerome; England, Jacqueline R; Zerihun, Ayalsew; Specht, Alison; Lewis, Tom; Bennett, Lauren T; Baker, Thomas G; Adams, Mark A; Huxtable, Dan; Montagu, Kelvin D; Falster, Daniel S; Feller, Mike; Sochacki, Stan; Ritson, Peter; Bastin, Gary; Bartle, John; Wildy, Dan; Hobbs, Trevor; Larmour, John; Waterworth, Rob; Stewart, Hugh T L; Jonson, Justin; Forrester, David I; Applegate, Grahame; Mendham, Daniel; Bradford, Matt; O'Grady, Anthony; Green, Daryl; Sudmeyer, Rob; Rance, Stan J; Turner, John; Barton, Craig; Wenk, Elizabeth H; Grove, Tim; Attiwill, Peter M; Pinkard, Elizabeth; Butler, Don; Brooksbank, Kim; Spencer, Beren; Snowdon, Peter; O'Brien, Nick; Battaglia, Michael; Cameron, David M; Hamilton, Steve; McAuthur, Geoff; Sinclair, Jenny

    2016-06-01

    Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost-effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above-ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power-law models explained 84-95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand-based biomass from allometric models of varying levels of generalization (species-specific, plant functional type) were validated using whole-plot harvest data from 17 contrasting stands (range: 9-356 Mg ha(-1) ). Losses in efficiency of prediction were <1% if generalized models were used in place of species-specific models. Furthermore, application of generalized multispecies models did not introduce significant bias in biomass prediction in 92% of the 53 species tested. Further, overall efficiency of stand-level biomass prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost-effective prediction of biomass across a wide range of stands, we recommend use of generic allometric models based on plant functional types. Development of new species

  9. Soil microbial species loss affects plant biomass and survival of an introduced bacterial strain, but not inducible plant defences.

    Science.gov (United States)

    Kurm, Viola; van der Putten, Wim H; Pineda, Ana; Hol, W H Gera

    2018-02-12

    Plant growth-promoting rhizobacteria (PGPR) strains can influence plant-insect interactions. However, little is known about the effect of changes in the soil bacterial community in general and especially the loss of rare soil microbes on these interactions. Here, the influence of rare soil microbe reduction on induced systemic resistance (ISR) in a wild ecotype of Arabidopsis thaliana against the aphid Myzus persicae was investigated. To create a gradient of microbial abundances, soil was inoculated with a serial dilution of a microbial community and responses of Arabidopsis plants that originated from the same site as the soil microbes were tested. Plant biomass, transcription of genes involved in plant defences, and insect performance were measured. In addition, the effects of the PGPR strain Pseudomonas fluorescens SS101 on plant and insect performance were tested under the influence of the various soil dilution treatments. Plant biomass showed a hump-shaped relationship with soil microbial community dilution, independent of aphid or Pseudomonas treatments. Both aphid infestation and inoculation with Pseudomonas reduced plant biomass, and led to downregulation of PR1 (salicylic acid-responsive gene) and CYP79B3 (involved in synthesis of glucosinolates). Aphid performance and gene transcription were unaffected by soil dilution. Neither the loss of rare microbial species, as caused by soil dilution, nor Pseudomonas affect the resistance of A. thaliana against M. persicae. However, both Pseudomonas survival and plant biomass respond to rare species loss. Thus, loss of rare soil microbial species can have a significant impact on both above- and below-ground organisms. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Relationships between Plant Biomass and Species Richness under ...

    African Journals Online (AJOL)

    The study was conducted in a montane grassland of Kokosa District, West Arsi Zone of Oromia Region, southern Ethiopia. The objective of the study was to investigate the relationships between aboveground plant biomass and species richness in three farming systems and four grazing management systems. A total of 180 ...

  11. Evaluation of the Environmental DNA Method for Estimating Distribution and Biomass of Submerged Aquatic Plants.

    Science.gov (United States)

    Matsuhashi, Saeko; Doi, Hideyuki; Fujiwara, Ayaka; Watanabe, Sonoko; Minamoto, Toshifumi

    2016-01-01

    The environmental DNA (eDNA) method has increasingly been recognized as a powerful tool for monitoring aquatic animal species; however, its application for monitoring aquatic plants is limited. To evaluate eDNA analysis for estimating the distribution of aquatic plants, we compared its estimated distributions with eDNA analysis, visual observation, and past distribution records for the submerged species Hydrilla verticillata. Moreover, we conducted aquarium experiments using H. verticillata and Egeria densa and analyzed the relationships between eDNA concentrations and plant biomass to investigate the potential for biomass estimation. The occurrences estimated by eDNA analysis closely corresponded to past distribution records, and eDNA detections were more frequent than visual observations, indicating that the method is potentially more sensitive. The results of the aquarium experiments showed a positive relationship between plant biomass and eDNA concentration; however, the relationship was not always significant. The eDNA concentration peaked within three days of the start of the experiment in most cases, suggesting that plants do not release constant amounts of DNA. These results showed that eDNA analysis can be used for distribution surveys, and has the potential to estimate the biomass of aquatic plants.

  12. Responses of plant community composition and biomass production to warming and nitrogen deposition in a temperate meadow ecosystem.

    Science.gov (United States)

    Zhang, Tao; Guo, Rui; Gao, Song; Guo, Jixun; Sun, Wei

    2015-01-01

    Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China.

  13. An update technology for integrated biomass gasification combined cycle power plant

    International Nuclear Information System (INIS)

    Bhattacharya, P.; Dey, S.

    2014-01-01

    A discussion is presented on the technical analysis of a 6.4 M W_e integrated biomass gasification combined cycle (IBGCC) plant. It features three numbers of downdraft biomass gasifier systems with suitable gas clean-up trains, three numbers of internal combustion (IC) producer gas engines for producing 5.85 MW electrical power in open cycle and 550 kW power in a bottoming cycle using waste heat. Comparing with IC gas engine single cycle systems, this technology route increases overall system efficiency of the power plant, which in turn improves plant economics. Estimated generation cost of electricity indicates that mega-watt scale IBGCC power plants can contribute to good economies of scale in India. This paper also highlight's the possibility of activated carbon generation from the char, a byproduct of gasification process, and use of engine's jacket water heat to generate chilled water through VAM for gas conditioning. (author)

  14. Emerging Technologies for the Production of Renewable Liquid Transport Fuels from Biomass Sources Enriched in Plant Cell Walls

    Directory of Open Access Journals (Sweden)

    Hwei-Ting Tan

    2016-12-01

    Full Text Available Plant cell walls are composed predominantly of cellulose, a range of non-cellulosic polysaccharides and lignin. The walls account for a large proportion not only of crop residues such as wheat straw and sugarcane bagasse, but also of residues of the timber industry and specialist grasses and other plants being grown specifically for biofuel production. The polysaccharide components of plant cell walls have long been recognized as an extraordinarily large source of fermentable sugars that might be used for the production of bioethanol and other renewable liquid transport fuels. Estimates place annual plant cellulose production from captured light energy in the order of hundreds of billions of tonnes. Lignin is synthesised in the same order of magnitude and, as a very large polymer of phenylpropanoid residues, lignin is also an abundant, high energy macromolecule. However, one of the major functions of these cell wall constituents in plants is to provide the extreme tensile and compressive strengths that enable plants to resist the forces of gravity and a broad range of other mechanical forces. Over millions of years these wall constituents have evolved under natural selection to generate extremely tough and resilient biomaterials. The rapid degradation of these tough cell wall composites to fermentable sugars is therefore a difficult task and has significantly slowed the development of a viable lignocellulose-based biofuels industry. However, good progress has been made in overcoming this so-called recalcitrance of lignocellulosic feedstocks for the biofuels industry, through modifications to the lignocellulose itself, innovative pre-treatments of the biomass, improved enzymes and the development of superior yeasts and other microorganisms for the fermentation process. Nevertheless, it has been argued that bioethanol might not be the best or only biofuel that can be generated from lignocellulosic biomass sources and that hydrocarbons with

  15. Emerging Technologies for the Production of Renewable Liquid Transport Fuels from Biomass Sources Enriched in Plant Cell Walls

    Science.gov (United States)

    Tan, Hwei-Ting; Corbin, Kendall R.; Fincher, Geoffrey B.

    2016-01-01

    Plant cell walls are composed predominantly of cellulose, a range of non-cellulosic polysaccharides and lignin. The walls account for a large proportion not only of crop residues such as wheat straw and sugarcane bagasse, but also of residues of the timber industry and specialist grasses and other plants being grown specifically for biofuel production. The polysaccharide components of plant cell walls have long been recognized as an extraordinarily large source of fermentable sugars that might be used for the production of bioethanol and other renewable liquid transport fuels. Estimates place annual plant cellulose production from captured light energy in the order of hundreds of billions of tons. Lignin is synthesized in the same order of magnitude and, as a very large polymer of phenylpropanoid residues, lignin is also an abundant, high energy macromolecule. However, one of the major functions of these cell wall constituents in plants is to provide the extreme tensile and compressive strengths that enable plants to resist the forces of gravity and a broad range of other mechanical forces. Over millions of years these wall constituents have evolved under natural selection to generate extremely tough and resilient biomaterials. The rapid degradation of these tough cell wall composites to fermentable sugars is therefore a difficult task and has significantly slowed the development of a viable lignocellulose-based biofuels industry. However, good progress has been made in overcoming this so-called recalcitrance of lignocellulosic feedstocks for the biofuels industry, through modifications to the lignocellulose itself, innovative pre-treatments of the biomass, improved enzymes and the development of superior yeasts and other microorganisms for the fermentation process. Nevertheless, it has been argued that bioethanol might not be the best or only biofuel that can be generated from lignocellulosic biomass sources and that hydrocarbons with intrinsically higher energy

  16. Pilot project concerning the establishment of a collective biomass conversion plant on the island of Mors

    International Nuclear Information System (INIS)

    1993-06-01

    This pilot project comprises a feasibility study in connection with plans to establish a biomass conversion plant, on the Danish island of Mors, which would provide methane to be used as fuel, in combination with natural gas, for a cogeneration plant serving six villages. The subjects of location, organization, the transportation of biomass, the design of the biomass conversion plant, economical aspects and conditions of the use of the methane are discussed as a basis for decisions in this respect. Environmental considerations are also dealt with. (AB)

  17. Directed plant cell-wall accumulation of iron: embedding co-catalyst for efficient biomass conversion

    Science.gov (United States)

    Chien-Yuan Lin; Joseph E. Jakes; Bryon S. Donohoe; Peter N. Ciesielski; Haibing Yang; Sophie-Charlotte Gleber; Stefan Vogt; Shi-You Ding; Wendy A. Peer; Angus S. Murphy; Maureen C. McCann; Michael E. Himmel; Melvin P. Tucker; Hui Wei

    2016-01-01

    Background: Plant lignocellulosic biomass is an abundant, renewable feedstock for the production of biobased fuels and chemicals. Previously, we showed that iron can act as a co-catalyst to improve the deconstruction of lignocellulosic biomass. However, directly adding iron catalysts into biomass prior to pretreatment is diffusion limited,...

  18. Complete genome sequence of N2-fixing model strain Klebsiella sp. nov. M5al, which produces plant cell wall-degrading enzymes and siderophores

    Directory of Open Access Journals (Sweden)

    Zhili Yu

    2018-03-01

    Full Text Available The bacterial strain M5al is a model strain for studying the molecular genetics of N2-fixation and molecular engineering of microbial production of platform chemicals 1,3-propanediol and 2,3-butanediol. Here, we present the complete genome sequence of the strain M5al, which belongs to a novel species closely related to Klebsiella michiganensis. M5al secretes plant cell wall-degrading enzymes and colonizes rice roots but does not cause soft rot disease. M5al also produces siderophores and contains the gene clusters for synthesis and transport of yersiniabactin which is a critical virulence factor for Klebsiella pathogens in causing human disease. We propose that the model strain M5al can be genetically modified to study bacterial N2-fixation in association with non-legume plants and production of 1,3-propanediol and 2,3-butanediol through degradation of plant cell wall biomass.

  19. Accumulation of americium-241 in the biomass of aquatic plants of the Yenisei river: experimental study

    International Nuclear Information System (INIS)

    Zotina, T.A.; Bolsunovsky, A.Y.A.; Bondareva, L.G.

    2004-01-01

    Due to the operation of the Mining-and-Chemical Combine (Krasnoyarsk-26), which has been manufacturing weapons-grade plutonium for several decades, the Yenisei River is contaminated with transuranic elements (including 241 Am). 241 Am was found in the riverside soil, sediment and in the biomass of aquatic plants (Bolsunovsky et al., 1999, 2002). Aquatic plants are an important link in the migration of radionuclides in an aquatic ecosystem. In laboratory experiments, we investigated accumulation of 241 Am by the submerged macrophyte from the Yenisei River: the pond weed (Elodea canadensis) and the aquatic moss (Fontinalis antipyretica), and release of 241 Am from the biomass. The content of 241 Am was measured on a Canberra (USA) gamma-spectrometer. The experiments showed that specific accumulation and concentration factors of 241 Am in the plants were in inverse proportion to their biomass. We obtained new data on release of 241 Am from the biomass of macrophyte. Americium-241 was more firmly fixed in the biomass of the aquatic moss. In 12 months, the biomass of the aquatic moss released about 30% of the initial americium activity into the water. To compare, the biomass of the pond weed released into the water medium up to 64% of the initial 241 Am activity in 1.5 4 months. The release rate was dependent on the decomposition rate of the plant biomass. The experiments showed that submerged macrophyte of the Yenisei River can accumulate considerable activities of 241 Am and retain americium for long periods of time in biomass. (author)

  20. Public opinion on age-related degradation in nuclear power plants

    International Nuclear Information System (INIS)

    Matsuda, Toshihiro

    2005-01-01

    The first objective of this study is to shed light on the public opinion on age-related degradation at nuclear power plants, namely, on how the general public recognizes or views age-related degradation, which is a safety-related issue and one of the factors contributing to accidents and failures which occur at nuclear power plants. The second objective is to look into the impacts of the accident at Mihama Unit 3, which was caused by a failure to check on the piping wall thickness, on the public opinion on age-related degradation. The first survey was conducted in August 2003, followed by the second survey in October 2004, two months after the accident. The surveys found that the age-related degradation is being perceived by people as one of the risk factors that affect the safety of nuclear power plants. The characteristics of the citizens' perceptions toward age-related degradation in the form of piping cracks are that: (a) many respondents feel uneasy but a relatively few people consider that nuclear operators are technologically capable of coping with this problem; (b) many people believe that radioactivity may be released; and (c) numerous respondents consider that signs of cracks must be thoroughly detected through inspections, while on the other hand, a large percentage of the respondents attribute the accident to improper inspections/maintenance. Based on these results, the government and nuclear operators are expected to give most illuminating explanation on the current situation of and remedial measures against age-related degradation at nuclear power plants. As for the effects of the Mihama-3 accident on the public opinion on age-related degradation, it was revealed that the accident has not so significantly affected the general view for the safety of nuclear power plants, but has newly or strongly aroused people's consciousness of two of the risk factors - improper inspections/maintenance and the age-related degradation of piping. (author)

  1. Biomass Allocation Patterns Are Linked to Genotypic Differences in Whole-Plant Transpiration Efficiency in Sunflower

    Directory of Open Access Journals (Sweden)

    Luciano Velázquez

    2017-11-01

    Full Text Available Increased transpiration efficiency (the ratio of biomass to water transpired, TE could lead to increased drought tolerance under some water deficit scenarios. Intrinsic (i.e., leaf-level TE is usually considered as the primary source of variation in whole-plant TE, but empirical data usually contradict this assumption. Sunflower has a significant variability in TE, but a better knowledge of the effect of leaf and plant-level traits could be helpful to obtain more efficient genotypes for water use. The objective of this study was, therefore, to assess if genotypic variation in whole-plant TE is better related to leaf- or plant-level traits. Three experiments were conducted, aimed at verifying the existence of variability in whole-plant TE and whole-plant and leaf-level traits, and to assess their correlation. Sunflower public inbred lines and a segregating population of recombinant inbred lines were grown under controlled conditions and subjected to well-watered and water-deficit treatments. Significant genotypic variation was found for TE and related traits. These differences in whole-plant transpiration efficiency, both between genotypes and between plants within each genotype, showed no association to leaf-level traits, but were significantly and negatively correlated to biomass allocation to leaves and to the ratio of leaf area to total biomass. These associations are likely of a physiological origin, and not only a consequence of genetic linkage in the studied population. These results suggest that genotypic variation for biomass allocation could be potentially exploited as a source for increased transpiration efficiency in sunflower breeding programmes. It is also suggested that phenotyping for TE in this species should not be restricted to leaf-level measurements, but also include measurements of plant-level traits, especially those related to biomass allocation between photosynthetic and non-photosynthetic organs.

  2. Biomass Allocation Patterns Are Linked to Genotypic Differences in Whole-Plant Transpiration Efficiency in Sunflower.

    Science.gov (United States)

    Velázquez, Luciano; Alberdi, Ignacio; Paz, Cosme; Aguirrezábal, Luis; Pereyra Irujo, Gustavo

    2017-01-01

    Increased transpiration efficiency (the ratio of biomass to water transpired, TE) could lead to increased drought tolerance under some water deficit scenarios. Intrinsic (i.e., leaf-level) TE is usually considered as the primary source of variation in whole-plant TE, but empirical data usually contradict this assumption. Sunflower has a significant variability in TE, but a better knowledge of the effect of leaf and plant-level traits could be helpful to obtain more efficient genotypes for water use. The objective of this study was, therefore, to assess if genotypic variation in whole-plant TE is better related to leaf- or plant-level traits. Three experiments were conducted, aimed at verifying the existence of variability in whole-plant TE and whole-plant and leaf-level traits, and to assess their correlation. Sunflower public inbred lines and a segregating population of recombinant inbred lines were grown under controlled conditions and subjected to well-watered and water-deficit treatments. Significant genotypic variation was found for TE and related traits. These differences in whole-plant transpiration efficiency, both between genotypes and between plants within each genotype, showed no association to leaf-level traits, but were significantly and negatively correlated to biomass allocation to leaves and to the ratio of leaf area to total biomass. These associations are likely of a physiological origin, and not only a consequence of genetic linkage in the studied population. These results suggest that genotypic variation for biomass allocation could be potentially exploited as a source for increased transpiration efficiency in sunflower breeding programmes. It is also suggested that phenotyping for TE in this species should not be restricted to leaf-level measurements, but also include measurements of plant-level traits, especially those related to biomass allocation between photosynthetic and non-photosynthetic organs.

  3. Differences in Cellulosic Supramolecular Structure of Compositionally Similar Rice Straw Affect Biomass Metabolism by Paddy Soil Microbiota.

    Directory of Open Access Journals (Sweden)

    Tatsuki Ogura

    Full Text Available Because they are strong and stable, lignocellulosic supramolecular structures in plant cell walls are resistant to decomposition. However, they can be degraded and recycled by soil microbiota. Little is known about the biomass degradation profiles of complex microbiota based on differences in cellulosic supramolecular structures without compositional variations. Here, we characterized and evaluated the cellulosic supramolecular structures and composition of rice straw biomass processed under different milling conditions. We used a range of techniques including solid- and solution-state nuclear magnetic resonance (NMR and Fourier transform infrared spectroscopy followed by thermodynamic and microbial degradability characterization using thermogravimetric analysis, solution-state NMR, and denaturing gradient gel electrophoresis. These measured data were further analyzed using an "ECOMICS" web-based toolkit. From the results, we found that physical pretreatment of rice straw alters the lignocellulosic supramolecular structure by cleaving significant molecular lignocellulose bonds. The transformation from crystalline to amorphous cellulose shifted the thermal degradation profiles to lower temperatures. In addition, pretreated rice straw samples developed different microbiota profiles with different metabolic dynamics during the biomass degradation process. This is the first report to comprehensively characterize the structure, composition, and thermal degradation and microbiota profiles using the ECOMICS toolkit. By revealing differences between lignocellulosic supramolecular structures of biomass processed under different milling conditions, our analysis revealed how the characteristic compositions of microbiota profiles develop in addition to their metabolic profiles and dynamics during biomass degradation.

  4. Impact of different national biomass policies on investment costs of biomass district heating plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-01

    The BIO-COST project - co-ordinated by E.V.A. - was funded by the European Commission's THERMIE Type B Programme. The objective of BIO-COST was to analyse the impact of national biomass policies on the investment costs of biomass district heating (DH) plants. The European comparison should help identifying measures to reduce investment costs for biomass DH plants and/or components down to a 'best practice' level. The investigation is based on the comparison of 20 biomass DH plants by country, with Denmark and Sweden having mainly high energy taxes as driver, while Austria and France rely mainly on subsidy systems. The results of BIO-COST show, that governmental policies can have a big impact especially on grid and buildings costs, effecting of course the overall costs of the plant enormously. Emission standards have their effects especially on the costs for technical equipment, however, this fact was not reflected in the BIO-COST data. The results do not show a clear advantage of either the energy tax approach or the subsidy approach: The French subsidy approach leads to fairly low cost levels compared to the Danish tax approach, while the Swedish tax approach seems to yield the lowest cost level. On the other hand the Austrian subsidy approach seems to intercrease investment costs. In principle both the tax as the subsidy approach can lead to the same effect: a project is calculated in such a way, that it just meets economic breakeven. This is typically the case when the project is not carried out by a private enterprise but by an operator aiming at enhanced public welfare (e.g. co-operative, municipality). In this case a subsidy model might yield more possibilities to encourage an economically efficient development, than a tax. Instead of giving subsidies as a fixed percentage of investments they could be adjusted to the actual needs of the project as proven by a standardised calculation. Of course this can create the incentive to expect higher

  5. Hotspots of human-induced biomass productivity decline and their social-ecological types toward supporting national policy and local studies on combating land degradation

    Science.gov (United States)

    Vu, Quyet Manh; Le, Quang Bao; Vlek, Paul L. G.

    2014-10-01

    Identification and social-ecological characterization of areas that experience high levels of persistent productivity decline are essential for planning appropriate management measures. Although land degradation is mainly induced by human actions, the phenomenon is concurrently influenced by global climate changes that need to be taken into account in land degradation assessments. This study aims to delineate the geographic hotspots of human-induced land degradation in the country and classify the social-ecological characterizations of each specific degradation hotspot type. The research entailed a long-term time-series (1982-2006) of Normalized Difference Vegetation Index to specify the extents of areas with significant biomass decline or increase in Vietnam. Annual rainfall and temperature time-series were then used to separate areas of human-induced biomass productivity decline from those driven by climate dynamics. Next, spatial cluster analyses identified social-ecological types of degradation for guiding further investigations at regional and local scales. The results show that about 19% of the national land mass experienced persistent declines in biomass productivity over the last 25 years. Most of the degraded areas are found in the Southeast and Mekong River Delta (17,984 km2), Northwest Mountains (14,336 km2), and Central Highlands (13,504 km2). We identified six and five social-ecological types of degradation hotspots in agricultural and forested zones, respectively. Constraints in soil nutrient availability and nutrient retention capability are widely spreading in all degradation hotspot types. These hotspot types are different from each other in social and ecological conditions, suggesting that region-specific strategies are needed for the formulation of land degradation combating policy.

  6. Biomass energy and the global carbon balance

    International Nuclear Information System (INIS)

    Hall, D.O.; House, J.I.

    1994-01-01

    Studies on climate change and energy production increasingly recognise the crucial role of biological systems. Carbon sinks in forests (above and below ground), CO 2 emissions from deforestation, planting trees for carbon storage, and biomass as a substitute for fossil fuels are some of the key issues which arise. Halting deforestation is of paramount importance, but there is also great potential for reforestation of degraded lands, agroforestry and improved forest management. It is concluded that biomass energy plantations and other types of energy cropping could be a more effective strategy for carbon mitigation than simply growing trees as a carbon store, particularly on higher productivity lands. Use of the biomass produced as an energy source has the added advantage of a wide range of other environmental, social and economic benefits. (author)

  7. Evaluation of wheat growth, morphological characteristics, biomass yield and quality in Lunar Palace-1, plant factory, green house and field systems

    Science.gov (United States)

    Dong, Chen; Shao, Lingzhi; Fu, Yuming; Wang, Minjuan; Xie, Beizhen; Yu, Juan; Liu, Hong

    2015-06-01

    Wheat (Triticum aestivum L.) is one of the most important agricultural crops in both space such as Bioregenerative Life Support Systems (BLSS) and urban agriculture fields, and its cultivation is affected by several environmental factors. The objective of this study was to investigate the influences of different environmental conditions (BLSS, plant factory, green house and field) on the wheat growth, thousand kernel weight (TKW), harvest index (HI), biomass yield and quality during their life cycle. The results showed that plant height partially influenced by the interaction effects with environment, and this influence decreased gradually with the plant development. It was found that there was no significant difference between the BLSS and plant factory treatments on yields per square, but the yield of green house and field treatments were both lower. TKW and HI in BLSS and plant factory were larger than those in the green house and field. However, grain protein concentration can be inversely correlated with grain yield. Grain protein concentrations decreased under elevate CO2 condition and the magnitude of the reductions depended on the prevailing environmental condition. Conditional interaction effects with environment also influenced the components of straw during the mature stage. It indicated that CO2 enriched environment to some extent was better for inedible biomass degradation and had a significant effect on "source-sink flow" at grain filling stage, which was more beneficial to recycle substances in the processes of the environment regeneration.

  8. Woody and non-woody biomass utilisation for fuel and implications ...

    African Journals Online (AJOL)

    Plant biomass is a major source of energy for households in eastern Africa. Unfortunately, the heavy reliance on this form of energy is a threat to forest ecosystems and a recipe for accelerated land resource degradation. Due to the increasing scarcity of traditional fuel wood resources, rural communities have shifted to ...

  9. Accumulation of americium-241 in the biomass of aquatic plants of the Yenisei river: experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Zotina, T.A.; Bolsunovsky, A.Y.A.; Bondareva, L.G. [Institute of Biophysics SB RAS, Akademgorodok, Krasnoyarsk (Russian Federation)

    2004-07-01

    Due to the operation of the Mining-and-Chemical Combine (Krasnoyarsk-26), which has been manufacturing weapons-grade plutonium for several decades, the Yenisei River is contaminated with transuranic elements (including {sup 241}Am). {sup 241}Am was found in the riverside soil, sediment and in the biomass of aquatic plants (Bolsunovsky et al., 1999, 2002). Aquatic plants are an important link in the migration of radionuclides in an aquatic ecosystem. In laboratory experiments, we investigated accumulation of {sup 241}Am by the submerged macrophyte from the Yenisei River: the pond weed (Elodea canadensis) and the aquatic moss (Fontinalis antipyretica), and release of {sup 241}Am from the biomass. The content of {sup 241}Am was measured on a Canberra (USA) gamma-spectrometer. The experiments showed that specific accumulation and concentration factors of {sup 241}Am in the plants were in inverse proportion to their biomass. We obtained new data on release of {sup 241}Am from the biomass of macrophyte. Americium-241 was more firmly fixed in the biomass of the aquatic moss. In 12 months, the biomass of the aquatic moss released about 30% of the initial americium activity into the water. To compare, the biomass of the pond weed released into the water medium up to 64% of the initial {sup 241}Am activity in 1.5 4 months. The release rate was dependent on the decomposition rate of the plant biomass. The experiments showed that submerged macrophyte of the Yenisei River can accumulate considerable activities of {sup 241}Am and retain americium for long periods of time in biomass. (author)

  10. Production of a recombinant swollenin from Trichoderma harzianum in Escherichia coli and its potential synergistic role in biomass degradation.

    Science.gov (United States)

    Santos, Clelton A; Ferreira-Filho, Jaire A; O'Donovan, Anthonia; Gupta, Vijai K; Tuohy, Maria G; Souza, Anete P

    2017-05-16

    Fungal swollenins (SWOs) constitute a class of accessory proteins that are homologous to canonical plant expansins. Expansins and expansin-related proteins are well known for acting in the deagglomeration of cellulose structure by loosening macrofibrils. Consequently, SWOs can increase the accessibility and efficiency of the other enzymes involved in the saccharification of cellulosic substrates. Thus, SWOs are promising targets for improving the hydrolysis of plant biomass and for use as an additive to enhance the efficiency of an enzyme cocktail designed for the production of biofuels. Here, we report the initial characterization of an SWO from Trichoderma harzianum (ThSwo) that was successfully produced using Escherichia coli as a host. Initially, transcriptome and secretome data were used to compare swo gene expression and the amount of secreted ThSwo. The results from structural modeling and phylogenetic analysis of the ThSwo protein showed that ThSwo does preserve some structural features of the plant expansins and family-45 glycosyl hydrolase enzymes, but it evolutionarily diverges from both of these protein classes. Recombinant ThSwo was purified at a high yield and with high purity and showed secondary folding similar to that of a native fungal SWO. Bioactivity assays revealed that the purified recombinant ThSwo created a rough and amorphous surface on Avicel and displayed a high synergistic effect with a commercial xylanase from T. viride, enhancing its hydrolytic performance up to 147 ± 7%. Many aspects of the structure and mechanism of action of fungal SWOs remain unknown. In the present study, we produced a recombinant, active SWO from T. harzianum using a prokaryotic host and confirmed its potential synergistic role in biomass degradation. Our work paves the way for further studies evaluating the structure and function of this protein, especially regarding its use in biotechnology.

  11. Review about corrosion of superheaters tubes in biomass plants

    International Nuclear Information System (INIS)

    Berlanga-Labari, C.; Fernandez-Carrasquilla, J.

    2006-01-01

    The design of new biomass-fired power plants with increased steam temperature raises concerns of high-temperature corrosion. The high potassium and chlorine contents in many biomass, specially in wheat straw, are potentially harmful elements with regard to corrosion. Chlorine may cause accelerated corrosion resulting in increased oxidation, metal wastage, internal attack, void formations and loose non-adherent scales. The most severe corrosion problems in biomass-fired systems are expected to occur due to Cl-rich deposits formed on superheater tubes. In the first part of this revision the corrosion mechanism proposed are described in function of the conditions and compounds involved. The second part is focused on the behaviour of the materials tested so far in the boiler and in the laboratory. First the traditional commercial alloys are studied and secondly the new alloys and the coasting. (Author). 102 refs

  12. Applying a dryland degradation framework for rangelands: the case of Mongolia.

    Science.gov (United States)

    Jamsranjav, C; Reid, R S; Fernández-Giménez, M E; Tsevlee, A; Yadamsuren, B; Heiner, M

    2018-04-01

    Livestock-caused rangeland degradation remains a major policy concern globally and the subject of widespread scientific study. This concern persists in part because it is difficult to isolate the effects of livestock from climate and other factors that influence ecosystem conditions. Further, degradation studies seldom use multiple plant and soil indicators linked to a clear definition of and ecologically grounded framework for degradation assessment that distinguishes different levels of degradation. Here, we integrate two globally applicable rangeland degradation frameworks and apply them to a broad-scale empirical data set for the country of Mongolia. We compare our assessment results with two other recent national rangeland degradation assessments in Mongolia to gauge consistency of findings across assessments and evaluate the utility of our framework. We measured livestock-use impacts across Mongolia's major ecological zones: mountain and forest steppe, eastern steppe, steppe, and desert steppe. At 143 sites in 36 counties, we measured livestock-use and degradation indicators at increasing distances from livestock corrals in winter-grazed pastures. At each site, we measured multiple indicators linked to our degradation framework, including plant cover, standing biomass, palatability, species richness, forage quality, vegetation gaps, and soil surface characteristics. Livestock use had no effect on soils, plant species richness, or standing crop biomass in any ecological zone, but subtly affected plant cover and palatable plant abundance. Livestock effects were strongest in the steppe zone, moderate in the desert steppe, and limited in the mountain/forest and eastern steppes. Our results aligned closely with those of two other recent country-wide assessments, suggesting that our framework may have widespread application. All three assessments found that very severe and irreversible degradation is rare in Mongolia (1-18% of land area), with most rangelands

  13. Mapping the polysaccharide degradation potential of Aspergillus niger

    Science.gov (United States)

    2012-01-01

    Background The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required. For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential of a given fungus for polysaccharide degradation. Results Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus forming an analysis framework, which can be queried. Combination of this information network with gene expression analysis on mono- and polysaccharide substrates has allowed elucidation of concerted gene expression from this organism. One such example is the identification of a full set of extracellular polysaccharide-acting genes for the degradation of oat spelt xylan. Conclusions The mapping of plant polysaccharide structures along with the corresponding enzymatic activities is a powerful framework for expression analysis of carbohydrate-active enzymes. Applying this network-based approach, we provide the first genome-scale characterization of all genes coding for carbohydrate-active enzymes identified in A. niger. PMID:22799883

  14. Sugar catabolism during growth on plant biomass in Aspergillus

    NARCIS (Netherlands)

    Khosravi, C.

    2017-01-01

    A growing industrial sector in which plant degrading enzymes are used is the production of alternative fuels, such as bio-ethanol, and biochemicals. Plant polysaccharides can be converted to fermentable sugars by fungal enzymes. The sugars are then fermented to ethanol and other products mainly by

  15. Establishment of a communal biomass conversion plant in the municipal area of Sydthy

    International Nuclear Information System (INIS)

    1992-09-01

    The report should form the basis for an application to the Danish Energy Agency regarding potentials for a planned biomass conversion plant demonstration project, including effective storage of liquid manures. A survey of the needed resources in the form of organic wastes is given in addition to a description of immediate heat demand and heat production prices. The location of the plant and the supply of manures are discussed and the design of the plant is described in detail. The concentration of the biomass after conversion in order to facilitate storage and the organization and financing of the project are elucidated in addition to agricultural, environmental and administrational aspects. (AB)

  16. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    Science.gov (United States)

    2014-01-01

    . Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also revealed a complex history of lineage-specific expansions and attritions for the PL1 family. Conclusions Our study provides insights into the variety and expansion of fungal CAZyme classes and revealed the relationship of CAZyme size and diversity with their nutritional strategy and host specificity. PMID:24422981

  17. USE OF THE MICROWAVE RADIATION FOR UPGRADING OF A BIOMASS ALCOHOLIC FERMENTATION

    Directory of Open Access Journals (Sweden)

    Anna Nowicka

    2017-04-01

    Full Text Available Perform pretreatment is crucial particularly in the case of the use of hard-degradable biomass, the biochemical susceptibility to degradation, for example, alcoholic fermentation is limited. Biomass disintegration processes lead to the destruction of compact structures and release of the organic substance to the phase dissolved in a resultant increase in the concentration of dissolved easily degradable organic substances. Effective pretreatment should meet several criteria, including ensuring the separation of lignin from cellulose, to increase the share of amorphous cellulose, provide a higher porosity substrates, eliminate waste sugars limit formation of inhibitors, minimize energy costs. The aim of this paper is to show the possibilities of using electromagnetic microwave radiation for pre-treatment plant biomass before the fermentation process of alcohol and comparison of the effectiveness of the described method with other commonly used techniques of pre-treatment. The substrate subjected to microwave treatment has a fast rate of hydrolysis and a high content of glucose in the hydrolyzate, which increases the efficiency of the production of bioethanol.

  18. GIS-BASED location optimization of a biomass conversion plant on contaminated willow in the Campine region (Belgium)

    International Nuclear Information System (INIS)

    Voets, Thomas; Neven, An; Thewys, Theo; Kuppens, Tom

    2013-01-01

    The Campine region is diffusely contaminated with heavy metals like cadmium. Since traditional excavation techniques are too expensive, phytoremediation is preferred as a remediation technique. In a previous study, the biomass potential from phytoremediation of contaminated agricultural land in the Campine region in Belgium was assessed. Based on recently upgraded figures of willow potential from phytoremediation on agricultural land in the seven most contaminated municipalities of the Belgian Campine region, the current paper uses GIS-knowledge to investigate which of three previously identified locations is most suitable for a biomass plant, taking into account the spatial distribution of the contaminated willow supply and the total cost of willow transport. Biomass transport distance from the centroid of each contaminated agricultural parcel to each of the three potential biomass plant locations was determined following Euclidian distance calculations and distance calculations over the existing road network. A transport cost model consisting of distance fixed and distance dependent biomass transport costs was developed. Of the locations identified, the Overpelt Fabriek site results in the lowest biomass transport distance and costs. When willow allocation for each parcel occurs based on the nearest potential plant location, transport costs are on average 23% lower than when all biomass is transported to the single Overpelt Fabriek site location. Therefore, when only considering transport costs, installing a smaller plant at each of the three potential plant locations would be less expensive than when installing a single biomass plant at the Overpelt Fabriek site. -- Highlights: ► Overpelt Fabriek site most attractive for time frames considered. ► Average tortuosity factor in Campine region between 1.27 and 1.42. ► Share of willow transport costs in willow supply costs 21%. ► Optimal allocation of willow results in lower transport costs

  19. ZERO-DIMENSIONAL MODEL OF A DIMETHYL ETHER (DME) PLANT BASED ON GASIFICATION OF TORREFIED BIOMASS

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard; Elmegaard, Brian; Houbak, Niels

    2009-01-01

    similar to coal, which enables the use of commercially available coal gasification processing equipment. The DME plant model is integrated with a steam cycle that utilizes waste heat from the plant and covers the on-site electricity consumption. The plant model predicts a fuel production efficiency of 67...... % (LHV) from torrefied biomass to DME and 70 % (LHV) if the exported electricity is included. When accounting for raw, untreated biomass, the efficiency for DME production is reduced to about 60 %....

  20. Base-line data on everglades soil-plant systems: elemental composition, biomass, and soil depth

    International Nuclear Information System (INIS)

    Volk, B.G.; Schemnitz, S.D.; Gamble, J.F.; Sartain, J.B.

    1975-01-01

    Plants and soils from plots in the Everglades Wildlife Management Area, Conservation Area 3, were examined. Chemical composition (N, P, K, Ca, Mg, Na, Cu, Fe, Mn, Zn, Co, Sr, Pb, Ni, Cr, Al, and Si) of most plant and soil digests was determined. Cladium jamaicense was the predominant plant species contributing to biomass in all plots except the wet prairie, where Rhynchospora sp. and Panicum hemitomon were most common. The biomass of dead C. jamaicense was greater than that of the living plants in unburned saw-grass plots. The burned saw grass, muck burn, and wet prairie were characterized by a large number of plant species per square meter but smaller average biomass production than the unburned saw-grass locations. Levels of Cu, Mn, Ca, Mg, K, and N in C. jamaicense differed significantly across locations. Highly significant differences in elemental composition existed between plant species. Concentrations of several elements (particularly Zn, Ca, Mg, P, and N) were low in live C. jamaicense compared with other plant species. Cesium-137 levels ranged from 670 to 3100 pCi/kg in sandy and in organic soils, respectively. Polygonum had a 137 Cs level of 11,600 pCi/kg. Dead C. jamaicense indicated a rapid leaching loss of 137 Cs from dead tissue

  1. Monetization of External Costs Using Lifecycle Analysis—A Comparative Case Study of Coal-Fired and Biomass Power Plants in Northeast China

    Directory of Open Access Journals (Sweden)

    Lingling Wang

    2015-02-01

    Full Text Available In this study, the structures of external costs are built in line with coal-fired and biomass power plant life cycle activities in Northeast China. The external cost of coal-fired and biomass power plants was compared, using the lifecycle approach. In addition, the external costs of a biomass power plant are calculated for each stage for comparison with those of a coal-fired power plant. The results highlight that the external costs of a coal-fired plant are 0.072 US $/kWh, which are much higher than that of a biomass power plant, 0.00012 US$/kWh. The external cost of coal-fired power generation is as much as 90% of the current price of electricity generated by coal, while the external cost of a biomass power plant is 1/1000 of the current price of electricity generated by biomass. In addition, for a biomass power plant, the external cost associated with SO2, NOX, and PM2.5 are particularly lower than those of a coal-fired power plant. The prospect of establishing precise estimations for external cost mechanisms and sustainable energy policies is discussed to show a possible direction for future energy schemes in China. The paper has significant value for supporting the biomass power industry and taxing or regulating coal-fired power industry to optimize the energy structure in China.

  2. Deadwood biomass: an underestimated carbon stock in degraded tropical forests?

    Science.gov (United States)

    Pfeifer, Marion; Lefebvre, Veronique; Turner, Edgar; Cusack, Jeremy; Khoo, MinSheng; Chey, Vun K.; Peni, Maria; Ewers, Robert M.

    2015-04-01

    Despite a large increase in the area of selectively logged tropical forest worldwide, the carbon stored in deadwood across a tropical forest degradation gradient at the landscape scale remains poorly documented. Many carbon stock studies have either focused exclusively on live standing biomass or have been carried out in primary forests that are unaffected by logging, despite the fact that coarse woody debris (deadwood with ≥10 cm diameter) can contain significant portions of a forest’s carbon stock. We used a field-based assessment to quantify how the relative contribution of deadwood to total above-ground carbon stock changes across a disturbance gradient, from unlogged old-growth forest to severely degraded twice-logged forest, to oil palm plantation. We measured in 193 vegetation plots (25 × 25 m), equating to a survey area of >12 ha of tropical humid forest located within the Stability of Altered Forest Ecosystems Project area, in Sabah, Malaysia. Our results indicate that significant amounts of carbon are stored in deadwood across forest stands. Live tree carbon storage decreased exponentially with increasing forest degradation 7-10 years after logging while deadwood accounted for >50% of above-ground carbon stocks in salvage-logged forest stands, more than twice the proportion commonly assumed in the literature. This carbon will be released as decomposition proceeds. Given the high rates of deforestation and degradation presently occurring in Southeast Asia, our findings have important implications for the calculation of current carbon stocks and sources as a result of human-modification of tropical forests. Assuming similar patterns are prevalent throughout the tropics, our data may indicate a significant global challenge to calculating global carbon fluxes, as selectively-logged forests now represent more than one third of all standing tropical humid forests worldwide.

  3. Methods for producing and using densified biomass products containing pretreated biomass fibers

    Science.gov (United States)

    Dale, Bruce E.; Ritchie, Bryan; Marshall, Derek

    2015-05-26

    A process is provided comprising subjecting a quantity of plant biomass fibers to a pretreatment to cause at least a portion of lignin contained within each fiber to move to an outer surface of said fiber, wherein a quantity of pretreated tacky plant biomass fibers is produced; and densifying the quantity of pretreated tacky plant biomass fibers to produce one or more densified biomass particulates, wherein said biomass fibers are densified without using added binder.

  4. Bioremediation of aqueous pollutants using biomass embedded in hydrophilic foam. Final report

    International Nuclear Information System (INIS)

    Wilde, E.W.; Radway, J.C.; Santo Domingo, J.; Zingmark, R.G.; Whitaker, M.J.

    1996-01-01

    The major objective of this project was to examine the potential of a novel hydrophilic polyurethane foam as an immobilization medium for algal, bacteria, and other types of biomass, and to test the resulting foam/biomass aggregates for their use in cleaning up waters contaminated with heavy metals, radionuclides and toxic organic compounds. Initial investigations focused on the bioremoval of heavy metals from wastewaters at SRS using immobilized algal biomass. This effort met with limited success for reasons which included interference in the binding of biomass and target metals by various non-target constituents in the wastewater, lack of an appropriate wastewater at SRS for testing, and the unavailability of bioreactor systems capable of optimizing contact of target pollutants with sufficient biomass binding sites. Subsequent studies comparing algal, bacterial, fungal, and higher plant biomass demonstrated that other biomass sources were also ineffective for metal bioremoval under the test conditions. Radionuclide bioremoval using a Tc-99 source provided more promising results than the metal removal studies with the various types of biomass, and indicated that the alga Cyanidium was the best of the tested sources of biomass for this application. However, all of the biomass/foam aggregates tested were substantially inferior to a TEVA resin for removing Tc-99 in comparative testing. The authors also explored the use of hydrophilic polyurethane foam to embed Burkholderia cepacia, which is an efficient degrader of trichloroethylene (TCE), a contaminant of considerable concern at SRS and elsewhere. The embedded population proved to be incapable of growth on nutrient media, but retained respiratory activity. Lastly, the degradative capabilities of embedded G4 were examined. Phenol- or benzene-induced bacteria retained the ability to degrade TCE and benzene. The authors were successful in inducing enzyme activity after the organisms had already been embedded

  5. Bioremediation of aqueous pollutants using biomass embedded in hydrophilic foam. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W.; Radway, J.C.; Santo Domingo, J.; Zingmark, R.G.; Whitaker, M.J.

    1996-12-31

    The major objective of this project was to examine the potential of a novel hydrophilic polyurethane foam as an immobilization medium for algal, bacteria, and other types of biomass, and to test the resulting foam/biomass aggregates for their use in cleaning up waters contaminated with heavy metals, radionuclides and toxic organic compounds. Initial investigations focused on the bioremoval of heavy metals from wastewaters at SRS using immobilized algal biomass. This effort met with limited success for reasons which included interference in the binding of biomass and target metals by various non-target constituents in the wastewater, lack of an appropriate wastewater at SRS for testing, and the unavailability of bioreactor systems capable of optimizing contact of target pollutants with sufficient biomass binding sites. Subsequent studies comparing algal, bacterial, fungal, and higher plant biomass demonstrated that other biomass sources were also ineffective for metal bioremoval under the test conditions. Radionuclide bioremoval using a Tc-99 source provided more promising results than the metal removal studies with the various types of biomass, and indicated that the alga Cyanidium was the best of the tested sources of biomass for this application. However, all of the biomass/foam aggregates tested were substantially inferior to a TEVA resin for removing Tc-99 in comparative testing. The authors also explored the use of hydrophilic polyurethane foam to embed Burkholderia cepacia, which is an efficient degrader of trichloroethylene (TCE), a contaminant of considerable concern at SRS and elsewhere. The embedded population proved to be incapable of growth on nutrient media, but retained respiratory activity. Lastly, the degradative capabilities of embedded G4 were examined. Phenol- or benzene-induced bacteria retained the ability to degrade TCE and benzene. The authors were successful in inducing enzyme activity after the organisms had already been embedded.

  6. Hybrid biomass-wind power plant for reliable energy generation

    International Nuclear Information System (INIS)

    Perez-Navarro, A.; Alfonso, D.; Alvarez, C.; Ibanez, F.; Sanchez, C.; Segura, I.

    2010-01-01

    Massive implementation of renewable energy resources is a key element to reduce CO 2 emissions associated to electricity generation. Wind resources can provide an important alternative to conventional electricity generation mainly based on fossil fuels. However, wind generators are greatly affected by the restrictive operating rules of electricity markets because, as wind is naturally variable, wind generators may have serious difficulties on submitting accurate generation schedules on a day ahead basis, and on complying with scheduled obligations in real-time operation. In this paper, an innovative system combining a biomass gasification power plant, a gas storage system and stand-by generators to stabilize a generic 40 MW wind park is proposed and evaluated with real data. The wind park power production model is based on real data about power production of a Spanish wind park and a probabilistic approach to quantify fluctuations and so, power compensation needs. The hybrid wind-biomass system is analysed to obtain main hybrid system design parameters. This hybrid system can mitigate wind prediction errors and so provide a predictable source of electricity. An entire year cycle of hourly power compensations needs has been simulated deducing storage capacity, extra power needs of the biomass power plant and stand-by generation capacity to assure power compensation during critical peak hours with acceptable reliability. (author)

  7. Aruscular mycorhizal fungi alter plant allometry and biomass - density relationships

    DEFF Research Database (Denmark)

    Zhang, Qian; Zhang, Lu; Weiner, Jacob

    2011-01-01

    Background and Aims Plant biomass–density relationships during self-thinning are determined mainly by allometry. Both allometry and biomass–density relationship have been shown to vary with abiotic conditions, but the effects of biotic interactions have not been investigated. Arbuscular mycorrhizal....... In self-thinning populations, the slope of the log (mean shoot biomass) vs. log density relationship was significantly steeper for the high AMF treatment (slope = –1·480) than for the low AMF treatment (–1·133). The canopy radius–biomass allometric exponents were not significantly affected by AMF level...

  8. A CSP plant combined with biomass CHP using ORC-technology in Bronderslev Denmark

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Yuan, Guofeng

    2017-01-01

    A new CSP plant combined with biomass CHP, using ORC technology, will be built and taken into operation in Bronderslev, Denmark during spring 2017. The price for Biomass is expected to increase with more and more use of this very limited energy source and then CSP will be cost effective in the long...... run, also in the Danish climate. Oil is used as heat transfer fluid instead of steam giving several advantages in this application for district heating at high latitudes. Total efficiencies and costs, competitive to PV plants. are expected....

  9. Management of age-related degradation for nuclear power plants

    International Nuclear Information System (INIS)

    Gregor, Frank E.

    2004-01-01

    Life extension for nuclear power plants has been studied in the USA for the last six years, largely supported by EPRI, DOE and the USNRC. Though there are diverse opinions for the strategies and priorities of life extension and aging management, one common conclusion has been formulated regarding the need of current maintenance programs having to focus on aging and degradation management. Such program, called 'Maintenance Effectiveness Evaluation and Enhancement' or M3E for short, has been developed to assist plant operators to upgrade and enhance existing programs by integrating aging/degradation management activities for important or critical equipment and components. The key elements of the M3E program consist of the definition and selection of the critical components or commodities to be included in the scope, the survey/inventory of the current programs and their respective action steps, frequencies, corrective measures and extent of coverage, the component/commodity degradation mechanism, sites and severity, safety functions and service environments and lastly, the correlation of degradation/aging with the individual maintenance activities. The degree of correlation provides a measure of effectiveness and the opportunity to identify/specify needed enhancements, abandonment or generation of new maintenance activities. Implementation of the activities can then be prioritized at the option of the plant staff. (author)

  10. 76 FR 20624 - Oglethorpe Power Corporation: Proposed Biomass Power Plant

    Science.gov (United States)

    2011-04-13

    ... DEPARTMENT OF AGRICULTURE Rural Utilities Service Oglethorpe Power Corporation: Proposed Biomass Power Plant AGENCY: Rural Utilities Service, USDA. ACTION: Notice of Availability of a Draft... financial assistance to Oglethorpe Power Corporation (Oglethorpe) for the construction of a 100 megawatt (MW...

  11. Novel transcriptional activators of Aspergillus involved in plant biomass utilization

    NARCIS (Netherlands)

    Gruben, B.S.

    2012-01-01

    Fungi play an important role in the carbon cycle on Earth. Many fungi can degrade dead or living plant material that consist mainly of polysaccharides. These polysaccharides need to be degraded to monosaccharides before they can be taken up and used as nutrients by the fungal cell. Different

  12. Estimation of the fraction of biologically active methyl tert-butyl ether degraders in a heterogeneous biomass sample

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2008-01-01

    The fraction of biologically active methyl tert-butyl ether degraders in reactors is just as important for prediction of removal rates as knowledge of the kinetic parameters. The fraction of biologically active methyl tert-butyl ether degraders in a heterogeneous biomass sample, taken from a packed...... bed reactor, was determined using a batch kinetic based approach. The procedure involved modeling of methyl tert-butyl ether removal rates from batch experiments followed by parameter estimations. It was estimated to be 5-14% (w/w) of the measured volatile suspended solids concentration in the reactor....

  13. Overview of the age-related degradation of nuclear power plant structures

    International Nuclear Information System (INIS)

    Deng, Daniel

    2004-01-01

    License renewal of nuclear power plants is an issue of increasing interest to the U.S. nuclear industry and the U.S. NRC. This paper presents and evaluates the plausible age-related degradation mechanisms that may affect the concrete and steel containment structures and other Class I structures to continue to perform their safety functions. Preventive and/or mitigative options are outlined for managing degradation mechanisms that could significantly affect plant performance during the license renewal period. The provided technical information and the degradation management options may be used as references for comparison with plant specific conditions to ensure that age-related degradation is controlled during the license renewal term. Plausible degradation mechanisms described and analyzed as they may affect the concrete, reinforcing steel, containment steel shell, prestressed-tendon, steel liner and other structural components typically used in Class I structures. The significance of these age-related degradation mechanisms to the structural components are evaluated, giving consideration to the design basis and quality of construction; typical service conditions; operating and maintenance history; and current test, inspection and refurbishment practices for containment and Class I structures. Degradation mechanisms which cannot be generically dispositioned on the basis of the two-step approach: (1) they will not cause significant degradation, or (2) any potential degradation will be bounded by current test, inspection, analytical evaluation, and/or refurbishment programs are identified. Aging degradation management measures are recommended to address the remaining age-related degradation mechanisms. A three-phase approach for the management of the containment and Class I structures is introduced. Various techniques, testing tools and the acceptable criteria for each step of the evaluation of the structures status are provided. The preventive and mitigative

  14. Mapping the polysaccharide degradation potential of Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Andersen Mikael R

    2012-07-01

    Full Text Available Abstract Background The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required. For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential of a given fungus for polysaccharide degradation. Results Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus forming an analysis framework, which can be queried. Combination of this information network with gene expression analysis on mono- and polysaccharide substrates has allowed elucidation of concerted gene expression from this organism. One such example is the identification of a full set of extracellular polysaccharide-acting genes for the degradation of oat spelt xylan. Conclusions The mapping of plant polysaccharide structures along with the corresponding enzymatic activities is a powerful framework for expression analysis of carbohydrate-active enzymes. Applying this network-based approach, we provide the first genome-scale characterization of all genes coding for carbohydrate-active enzymes identified in A. niger.

  15. Bioaugmentation with Petroleum-Degrading Consortia Has a Selective Growth-Promoting Impact on Crop Plants Germinated in Diesel Oil-Contaminated Soil

    DEFF Research Database (Denmark)

    Graj, Weronika; Lisiecki, Piotr; Szulc, Alicja

    2013-01-01

    or seeds with indigenous rhizospheric populations is a common approach in the rhizoremediation. However, we introduced hydrocarbon-degrading consortia (M10, R3, and K52) that were previously isolated from crude oil-contaminated soil instead of indigenous microbes. Bioaugmentation with these petroleum...... with the rhizospheric microbes. The microorganisms may be stimulated by the secreted root exudates, which results in an increased breakdown of contaminants in the rhizosphere. The main goal of this study was to establish a potential rhizoremediation combination for a diesel-polluted site. Inoculation of plant roots...... degraders was applied to screen four high biomass crop species (Indian mustard, alfalfa, high erucic acid rapeseed, HEAR, and low erucic acid rapeseed, LEAR) for their tolerance towards diesel oil. At no pollution, a promoting effect of M10 bacteria could be observed on germination and root elongation...

  16. The degradation diagnosis of low voltage cables used at nuclear power plants

    International Nuclear Information System (INIS)

    Yamamoto, Toshio; Ashida, Tetsuya; Ikeda, Takeshi; Yasuhara, Takeshi; Takechi, Kei; Araki, Shogo

    2001-01-01

    Low voltage cables which have been used for the supply of electric power and the propagation of control signals in nuclear power plants must be sound for safe and stable operation. The long use of nuclear power plants has been reviewed, and the degradation diagnosis to estimate the soundness of low voltage cables has been emphasized. Mitsubishi Cable Industries has established a degradation diagnosis method of cables which convert the velocity of ultrasonic wave in the surface layer of the cable insulation or jacket into breaking elongation, and has developed a degradation diagnosis equipment of low voltage cables used at nuclear power plants in cooperation with Mitsubishi Heavy Industries. This equipment can be moved by an ultrasonic probe by sequential control and measure the ultrasonic velocity automatically. It is capable of a fast an sensitive diagnosis of the cables. We report the outline of this degradation diagnosis equipment and an example of the adaptability estimation at an actual nuclear power plant. (author)

  17. Transcriptome analysis of the digestive system of a wood-feeding termite (Coptotermes formosanus) revealed a unique mechanism for effective biomass degradation.

    Science.gov (United States)

    Geng, Alei; Cheng, Yanbing; Wang, Yongli; Zhu, Daochen; Le, Yilin; Wu, Jian; Xie, Rongrong; Yuan, Joshua S; Sun, Jianzhong

    2018-01-01

    Wood-feeding termite, Coptotermes formosanus Shiraki, represents a highly efficient system for biomass deconstruction and utilization. However, the detailed mechanisms of lignin modification and carbohydrate degradation in this system are still largely elusive. In order to reveal the inherent mechanisms for efficient biomass degradation, four different organs (salivary glands, foregut, midgut, and hindgut) within a complete digestive system of a lower termite, C. formosanus , were dissected and collected. Comparative transcriptomics was carried out to analyze these organs using high-throughput RNA sequencing. A total of 71,117 unigenes were successfully assembled, and the comparative transcriptome analyses revealed significant differential distributions of GH (glycosyl hydrolase) genes and auxiliary redox enzyme genes in different digestive organs. Among the GH genes in the salivary glands, the most abundant were GH9, GH22, and GH1 genes. The corresponding enzymes may have secreted into the foregut and midgut to initiate the hydrolysis of biomass and to achieve a lignin-carbohydrate co-deconstruction system. As the most diverse GH families, GH7 and GH5 were primarily identified from the symbiotic protists in the hindgut. These enzymes could play a synergistic role with the endogenous enzymes from the host termite for biomass degradation. Moreover, twelve out of fourteen genes coding auxiliary redox enzymes from the host termite origin were induced by the feeding of lignin-rich diets. This indicated that these genes may be involved in lignin component deconstruction with its redox network during biomass pretreatment. These findings demonstrate that the termite digestive system synergized the hydrolysis and redox reactions in a programmatic process, through different parts of its gut system, to achieve a maximized utilization of carbohydrates. The detailed unique mechanisms identified from the termite digestive system may provide new insights for advanced design of

  18. 76 FR 77963 - Oglethorpe Power Corporation; Proposed Biomass Power Plant

    Science.gov (United States)

    2011-12-15

    ... Service Oglethorpe Power Corporation; Proposed Biomass Power Plant AGENCY: Rural Utilities Service, USDA... related to possible financial assistance to Oglethorpe Power Corporation's (Oglethorpe) for the... online at the following Web site: http://www.rurdev.usda.gov/UWP-OglethorpePower.html and at the: Warren...

  19. Feasibilities of a Coal-Biomass to Liquids Plant in Southern West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Debangsu [West Virginia Univ., Morgantown, WV (United States); DVallance, David [West Virginia Univ., Morgantown, WV (United States); Henthorn, Greg [West Virginia Univ., Morgantown, WV (United States); Grushecky, Shawn [West Virginia Univ., Morgantown, WV (United States)

    2016-09-30

    This project has generated comprehensive and realistic results of feasibilities for a coal-biomass to liquids (CBTL) plant in southern West Virginia; and evaluated the sensitivity of the analyses to various anticipated scenarios and parametric uncertainties. Specifically the project has addressed economic feasibility, technical feasibility, market feasibility, and financial feasibility. In the economic feasibility study, a multi-objective siting model was developed and was then used to identify and rank the suitable facility sites. Spatial models were also developed to assess the biomass and coal feedstock availabilities and economics. Environmental impact analysis was conducted mainly to assess life cycle analysis and greenhouse gas emission. Uncertainty and sensitivity analysis were also investigated in this study. Sensitivity analyses on required selling price (RSP) and greenhouse gas (GHG) emissions of CBTL fuels were conducted according to feedstock availability and price, biomass to coal mix ratio, conversion rate, internal rate of return (IRR), capital cost, operational and maintenance cost. The study of siting and capacity showed that feedstock mixed ratio limited the CBTL production. The price of coal had a more dominant effect on RSP than that of biomass. Different mix ratios in the feedstock and conversion rates led to RSP ranging from $104.3 - $157.9/bbl. LCA results indicated that GHG emissions ranged from 80.62 kg CO2 eq to 101.46 kg CO2 eq/1,000 MJ of liquid fuel at various biomass to coal mix ratios and conversion rates if carbon capture and storage (CCS) was applied. Most of water and fossil energy were consumed in conversion process. Compared to petroleum-derived-liquid fuels, the reduction in GHG emissions could be between -2.7% and 16.2% with CBTL substitution. As for the technical study, three approaches of coal and biomass to liquids, direct, indirect and hybrid, were considered in the analysis. The process models including

  20. Biomass recalcitrance

    DEFF Research Database (Denmark)

    Felby, Claus

    2009-01-01

    Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes - this co......Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes...... - this collective resistance is known as "biomass recalcitrance." Breakthrough technologies are needed to overcome barriers to developing cost-effective processes for converting biomass to fuels and chemicals. This book examines the connection between biomass structure, ultrastructure, and composition......, to resistance to enzymatic deconstruction, with the aim of discovering new cost-effective technologies for biorefineries. It contains chapters on topics extending from the highest levels of biorefinery design and biomass life-cycle analysis, to detailed aspects of plant cell wall structure, chemical treatments...

  1. ORC power plant for electricity production from forest and agriculture biomass

    International Nuclear Information System (INIS)

    Borsukiewicz-Gozdur, A.; Wiśniewski, S.; Mocarski, S.; Bańkowski, M.

    2014-01-01

    Highlights: • Results for three variants of CHP plant fuelled by sawmill biomass are presented. • Octamethyltrisiloxane, MDM, methanol and H 2 O working fluids was conducted in CHP. • CHP with internal regeneration and “dry” working fluid has the highest electric power. • Power output, drying heat and drying temperature depend on CHP variant and ORC fluid. - Abstract: The paper presents the calculation results for three variants of CHP plant fuelled by sawmill biomass. The plant shall produce electricity and heat for a drying chamber. An analysis of the system efficiency for four different working fluids was conducted: octamethyltrisiloxane, methylcyclohexane, methanol and water. The highest electric power was obtained for the system with internal regeneration and methylcyclohexane applied as the “dry” working fluid, the highest temperature to supply the drying chamber was obtained for the system with external regeneration and octamethyltrisiloxane applied as the working fluid. The results of the analysis indicate that, by proper choice of the working fluid and of the regeneration variant (internal or external), it is possible to “adjust” the work of the system to the needs and expectations of the plant investor (user)

  2. Sewage sludge conditioning with the application of ash from biomass-fired power plant

    Science.gov (United States)

    Wójcik, Marta; Stachowicz, Feliks; Masłoń, Adam

    2018-02-01

    During biomass combustion, there are formed combustion products. Available data indicates that only 29.1 % of biomass ashes were recycled in Poland in 2013. Chemical composition and sorptive properties of ashes enable their application in the sewage sludge treatment. This paper analyses the impact of ashes from biomass-combustion power plant on sewage sludge dewatering and higienisation. The results obtained in laboratory tests proved the possitive impact of biomass ashes on sewage sludge hydration reduction after dewatering and the increase of filtrate volume. After sludge conditioning with the use of biomass combustion by-products, the final moisture content decreased by approximatelly 10÷25 % in comparison with raw sewage sludge depending on the method of dewatering. The application of biomass combustion products in sewage sludge management could provide an alternative method of their utilization according to law and environmental requirements.

  3. Inactivation of Cellobiose Dehydrogenases Modifies the Cellulose Degradation Mechanism of Podospora anserina.

    Science.gov (United States)

    Tangthirasunun, Narumon; Navarro, David; Garajova, Sona; Chevret, Didier; Tong, Laetitia Chan Ho; Gautier, Valérie; Hyde, Kevin D; Silar, Philippe; Berrin, Jean-Guy

    2017-01-15

    Conversion of biomass into high-value products, including biofuels, is of great interest to developing sustainable biorefineries. Fungi are an inexhaustible source of enzymes to degrade plant biomass. Cellobiose dehydrogenases (CDHs) play an important role in the breakdown through synergistic action with fungal lytic polysaccharide monooxygenases (LPMOs). The three CDH genes of the model fungus Podospora anserina were inactivated, resulting in single and multiple CDH mutants. We detected almost no difference in growth and fertility of the mutants on various lignocellulose sources, except on crystalline cellulose, on which a 2-fold decrease in fertility of the mutants lacking P. anserina CDH1 (PaCDH1) and PaCDH2 was observed. A striking difference between wild-type and mutant secretomes was observed. The secretome of the mutant lacking all CDHs contained five beta-glucosidases, whereas the wild type had only one. P. anserina seems to compensate for the lack of CDH with secretion of beta-glucosidases. The addition of P. anserina LPMO to either the wild-type or mutant secretome resulted in improvement of cellulose degradation in both cases, suggesting that other redox partners present in the mutant secretome provided electrons to LPMOs. Overall, the data showed that oxidative degradation of cellulosic biomass relies on different types of mechanisms in fungi. Plant biomass degradation by fungi is a complex process involving dozens of enzymes. The roles of each enzyme or enzyme class are not fully understood, and utilization of a model amenable to genetic analysis should increase the comprehension of how fungi cope with highly recalcitrant biomass. Here, we report that the cellobiose dehydrogenases of the model fungus Podospora anserina enable it to consume crystalline cellulose yet seem to play a minor role on actual substrates, such as wood shavings or miscanthus. Analysis of secreted proteins suggests that Podospora anserina compensates for the lack of cellobiose

  4. 78 FR 26747 - Oglethorpe Power Corporation: Proposed Biomass Power Plant

    Science.gov (United States)

    2013-05-08

    ... Decision. SUMMARY: The Rural Utilities Service (RUS) has issued a Record of Decision (ROD) for the.... Accordingly, comments submitted in the EIS process also informed RUS's decision making in the Section 106... Oglethorpe for RUS financing to construct the 100 megawatt (MW) biomass plant and related facilities...

  5. Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEXTM-pre-treated biomass

    Science.gov (United States)

    Pattathil, Sivakumar; Hahn, Michael G.; Dale, Bruce E.; Chundawat, Shishir P. S.

    2015-01-01

    Cell walls, which constitute the bulk of plant biomass, vary considerably in their structure, composition, and architecture. Studies on plant cell walls can be conducted on both native and pre-treated plant biomass samples, allowing an enhanced understanding of these structural and compositional variations. Here glycome profiling was employed to determine the relative abundance of matrix polysaccharides in several phylogenetically distinct native and pre-treated plant biomasses. Eight distinct biomass types belonging to four different subgroups (i.e. monocot grasses, woody dicots, herbaceous dicots, and softwoods) were subjected to various regimes of AFEX™ (ammonia fiber expansion) pre-treatment [AFEX is a trademark of MBI, Lansing (http://www.mbi.org]. This approach allowed detailed analysis of close to 200 cell wall glycan epitopes and their relative extractability using a high-throughput platform. In general, irrespective of the phylogenetic origin, AFEX™ pre-treatment appeared to cause loosening and improved accessibility of various xylan epitope subclasses in most plant biomass materials studied. For most biomass types analysed, such loosening was also evident for other major non-cellulosic components including subclasses of pectin and xyloglucan epitopes. The studies also demonstrate that AFEX™ pre-treatment significantly reduced cell wall recalcitrance among diverse phylogenies (except softwoods) by inducing structural modifications to polysaccharides that were not detectable by conventional gross composition analyses. It was found that monitoring changes in cell wall glycan compositions and their relative extractability for untreated and pre-treated plant biomass can provide an improved understanding of variations in structure and composition of plant cell walls and delineate the role(s) of matrix polysaccharides in cell wall recalcitrance. PMID:25911738

  6. Importance of whole-plant biomass allocation and reproductive timing to habitat differentiation across the North American sunflowers.

    Science.gov (United States)

    Mason, Chase M; Goolsby, Eric W; Davis, Kaleigh E; Bullock, Devon V; Donovan, Lisa A

    2017-05-01

    Trait-based plant ecology attempts to use small numbers of functional traits to predict plant ecological strategies. However, a major gap exists between our understanding of organ-level ecophysiological traits and our understanding of whole-plant fitness and environmental adaptation. In this gap lie whole-plant organizational traits, including those that describe how plant biomass is allocated among organs and the timing of plant reproduction. This study explores the role of whole-plant organizational traits in adaptation to diverse environments in the context of life history, growth form and leaf economic strategy in a well-studied herbaceous system. A phylogenetic comparative approach was used in conjunction with common garden phenotyping to assess the evolution of biomass allocation and reproductive timing across 83 populations of 27 species of the diverse genus Helianthus (the sunflowers). Broad diversity exists among species in both relative biomass allocation and reproductive timing. Early reproduction is strongly associated with resource-acquisitive leaf economic strategy, while biomass allocation is less integrated with either reproductive timing or leaf economics. Both biomass allocation and reproductive timing are strongly related to source site environmental characteristics, including length of the growing season, temperature, precipitation and soil fertility. Herbaceous taxa can adapt to diverse environments in many ways, including modulation of phenology, plant architecture and organ-level ecophysiology. Although leaf economic strategy captures one key aspect of plant physiology, on their own leaf traits are not particularly predictive of ecological strategies in Helianthus outside of the context of growth form, life history and whole-plant organization. These results highlight the importance of including data on whole-plant organization alongside organ-level ecophysiological traits when attempting to bridge the gap between functional traits and plant

  7. Radiation degradation of alginate and some results of biological effect of degraded alginate on plants

    International Nuclear Information System (INIS)

    Hien, N.Q.; Hai, L.; Luan, L.Q.; Hanh, T.T.; Nagasawa, Naotsugu; Yoshii, Fumio; Makuuchi, Keizo; Kume, Tamikazu

    2000-01-01

    Radiation degradation yields (Gd) of alginate in aqueous solution with different concentration were determined by viscometry method. The relationship between Gd and the alginate concentration was found out as: Gd=33.5 x C -0.68 , with C% (w/v) and dry alginate referred to C=100%. An empirical equation for preparing degraded alginate with the desired low viscometry average molecular weight (Mv) by radiation was proposed. Alginate extracted directly horn seaweed'Sagassum, degraded by radiation was used for field experiments and results of the biological effect on plants (tea, carrot, chrysanthemum) were presented. (author)

  8. Environmental life cycle assessment of high temperature nuclear fission and fusion biomass gasification plants

    International Nuclear Information System (INIS)

    Takeda, Shutaro; Sakurai, Shigeki; Kasada, Ryuta; Konishi, Satoshi

    2017-01-01

    The authors propose nuclear biomass gasification plant as an advancement of conventional gasification plants. Environmental impacts of both fission and fusion plants were assessed through life cycle assessment. The result suggested the reduction of green-house gas emissions would be as large as 85.9% from conventional plants, showing a potential for the sustainable future for both fission and fusion plants. (author)

  9. Nuclear plant service water system aging degradation assessment

    International Nuclear Information System (INIS)

    Jarrell, D.B.; Larson, L.L.; Stratton, R.C.; Bohn, S.J.; Gore, M.L.

    1992-10-01

    This report discusses the second phase of the aging assessment of nuclear plant service water systems (SWSs) which was performed by the Pacific Northwest Laboratory (PNL) to support the US Nuclear Regulatory Commission's (NRC's) Nuclear Plant Aging Research (NPAR) program. The SWS was selected for study because of its essential role in the mitigation of and recovery from accident scenarios involving the potential for core-melt, and because it is subject to a variety of aging mechanisms. The objectives of the SWS task under the NPAR program are to identify and characterize the principal age-related degradation mechanisms relevant to this system, to assess the impact of aging degradation on operational readiness, and to provide a methodology for the management of aging on the service water aspect of nuclear plant safety. The primary degradation mechanism in the SWSs as stated in the Phase I assessment and confirmed by the analysis in Phase II, is corrosion compounded by biologic and inorganic accumulation. It then follows that the most effective means for mitigating degradation in these systems is to pursue appropriate programs to effectively control the water chemistry properties when possible and to use biocidal agents where necessary. A methodology for producing a complete root-cause analysis was developed as a result of needs identified in the Phase I assessment for a more formal procedure that would lend itself to a generic, standardized approach. It is recommended that this, or a similar methodology, be required as a part of the documentation for corrective maintenance performed on the safety-related portions of SWSs to provide an accurate focus for effective management of aging

  10. The effectiveness of arbuscular-mycorrhizal fungi and Aspergillus niger or Phanerochaete chrysosporium treated organic amendments from olive residues upon plant growth in a semi-arid degraded soil.

    Science.gov (United States)

    Medina, A; Roldán, A; Azcón, R

    2010-12-01

    Arbuscular mycorrhizal (AM) fungi and a residue from dry olive cake (DOC) supplemented with rock phosphate (RP) and treated with either Aspergillus niger (DOC-A) or Phanerochaete chrysosporium (DOC-P), were assayed in a natural, semi-arid soil using Trifolium repens or Dorycnium pentaphyllum plants. The effects of the AM fungi and/or DOC-A were compared with P-fertilisation (P) over eleven successive harvests to evaluate the persistence of the effectiveness of the treatments. The biomass of dually-treated plants after four successive harvests was greater than that obtained for non-treated plants or those receiving the AM inoculum or DOC-A treatments after eleven yields. The AM inoculation was critical for obtaining plant growth benefit from the application of fermented DOC-A residue. The abilities of the treatments to prevent plant drought stress were also assayed. Drought-alleviating effects were evaluated in terms of plant growth, proline and total sugars concentration under alternative drought and re-watering conditions (8th and 9th harvests). The concentrations of both compounds in plant biomass increased under drought when DOC-A amendment and AM inoculation were employed together: they reinforced the plant drought-avoidance capabilities and anti-oxidative defence. Water stress was less compensated in P-fertilised than in DOC-A-treated plants. DOC-P increased D. pentaphyllum biomass, shoot P content, nodule number and AM colonisation, indicating the greater DOC-transforming ability of P. chrysosporium compared to A. niger. The lack of AM colonisation and nodulation in this soil was compensated by the application of DOC-P, particularly with AM inoculum. The management of natural resources (organic amendments and soil microorganisms) represents an important strategy that assured the growth, nutrition and plant establishment in arid, degraded soils, preventing the damage that arises from limited water and nutrient supply. Copyright © 2010 Elsevier Ltd. All rights

  11. Canadian programs on understanding and managing aging degradation of nuclear power plant components

    International Nuclear Information System (INIS)

    Chadha, J.A.; Pachner, J.

    1989-06-01

    Maintaining adequate safety and reliability of nuclear power plants and nuclear power plant life assurance and life extension are growing in importance as nuclear plants get older. Age-related degradation of plant components is complex and not fully understood. This paper provides an overview of the Canadian approach and the main activities and their results towards understanding and managing age-related degradation of nuclear power plant components, structures and systems. A number of pro-active programs have been initiated to anticipate, detect and mitigate potential aging degradation at an early stage before any serious impact on plant safety and reliability. These programs include Operational Safety Management Program, Nuclear Plant Life Assurance Program, systematic plant condition assessment, refurbishment and upgrading, post-service examination and testing, equipment qualification, research and development, and participation in the IAEA programs on safety aspects of nuclear power plant aging and life extension. A regulatory policy on nuclear power plants is under development and will be based on the domestic as well as foreign and international studies and experience

  12. Tundra plant above-ground biomass and shrub dominance mapped across the North Slope of Alaska

    Science.gov (United States)

    Berner, Logan T.; Jantz, Patrick; Tape, Ken D.; Goetz, Scott J.

    2018-03-01

    Arctic tundra is becoming greener and shrubbier due to recent warming. This is impacting climate feedbacks and wildlife, yet the spatial distribution of plant biomass in tundra ecosystems is uncertain. In this study, we mapped plant and shrub above-ground biomass (AGB; kg m-2) and shrub dominance (%; shrub AGB/plant AGB) across the North Slope of Alaska by linking biomass harvests at 28 field sites with 30 m resolution Landsat satellite imagery. We first developed regression models (p plant AGB (r 2 = 0.79) and shrub AGB (r 2 = 0.82) based on the normalized difference vegetation index (NDVI) derived from imagery acquired by Landsat 5 and 7. We then predicted regional plant and shrub AGB by combining these regression models with a regional Landsat NDVI mosaic built from 1721 summer scenes acquired between 2007 and 2016. Our approach employed a Monte Carlo uncertainty analysis that propagated sampling and sensor calibration errors. We estimated that plant AGB averaged 0.74 (0.60, 0.88) kg m-2 (95% CI) and totaled 112 (91, 135) Tg across the region, with shrub AGB accounting for ~43% of regional plant AGB. The new maps capture landscape variation in plant AGB visible in high resolution satellite and aerial imagery, notably shrubby riparian corridors. Modeled shrub AGB was strongly correlated with field measurements of shrub canopy height at 25 sites (rs  = 0.88) and with a regional map of shrub cover (rs  = 0.76). Modeled plant AGB and shrub dominance were higher in shrub tundra than graminoid tundra and increased between areas with the coldest and warmest summer air temperatures, underscoring the fact that future warming has the potential to greatly increase plant AGB and shrub dominance in this region. These new biomass maps provide a unique source of ecological information for a region undergoing rapid environmental change.

  13. Understanding Biomass Ignition in Power Plant Mills

    DEFF Research Database (Denmark)

    Schwarzer, Lars; Jensen, Peter Arendt; Glarborg, Peter

    2017-01-01

    . This is not very well explained by apply-ing conventional thermal ignition theory. An experimental study at lab scale, using pinewood as an example fuel, was conducted to examine self-heating and self-ignition. Supplemental experiments were performed with bituminous coal. Instead of characterizing ignition......Converting existing coal fired power plants to biomass is a readily implemented strategy to increase the share of renewable energy. However, changing from one fuel to another is not straightforward: Experience shows that wood pellets ignite more readily than coal in power plant mills or storages...... temperature in terms of sample volume, mass-scaling seems more physically correct for the self-ignition of solids. Findings also suggest that the transition between self-heating and self-ignition is controlled both by the availability of reactive material and temperature. Comparison of experiments at 20...

  14. Quantification of Lignin and Its Structural Features in Plant Biomass Using

    NARCIS (Netherlands)

    Erven, Van Gijs; Visser, de Ries; Merkx, Donny W.H.; Strolenberg, Willem; Gijsel, de Peter; Gruppen, Harry; Kabel, Mirjam A.

    2017-01-01

    Understanding the mechanisms underlying plant biomass recalcitrance at the molecular level can only be achieved by accurate analyses of both the content and structural features of the molecules involved. Current quantification of lignin is, however, majorly based on unspecific gravimetric

  15. Sexual crossing of thermophilic fungus Myceliophthora heterothallica improved enzymatic degradation of sugar beet pulp.

    Science.gov (United States)

    Aguilar-Pontes, Maria Victoria; Zhou, Miaomiao; van der Horst, Sjors; Theelen, Bart; de Vries, Ronald P; van den Brink, Joost

    2016-01-01

    Enzymatic degradation of plant biomass requires a complex mixture of many different enzymes. Like most fungi, thermophilic Myceliophthora species therefore have a large set of enzymes targeting different linkages in plant polysaccharides. The majority of these enzymes have not been functionally characterized, and their role in plant biomass degradation is unknown. The biotechnological challenge is to select the right set of enzymes to efficiently degrade a particular biomass. This study describes a strategy using sexual crossing and screening with the thermophilic fungus Myceliophthora heterothallica to identify specific enzymes associated with improved sugar beet pulp saccharification. Two genetically diverse M. heterothallica strains CBS 203.75 and CBS 663.74 were used to generate progenies with improved growth on sugar beet pulp. One progeny, named SBP.F1.2.11, had a different genetic pattern from the parental strains and had improved saccharification activity after the growth on 3 % sugar beet pulp. The improved SBP saccharification was not explained by altered activities of the major (hemi-)cellulases. Exo-proteome analysis of progeny and parental strains after 7-day growth on sugar beet pulp showed that only 17 of the 133 secreted CAZy enzymes were more abundant in progeny SBP.F1.2.11. Particularly one enzyme belonging to the carbohydrate esterase family 5 (CE5) was more abundant in SBP.F1.2.11. This CE5-CBM1 enzyme, named as Axe1, was phylogenetically related to acetyl xylan esterases. Biochemical characterization of Axe1 confirmed de-acetylation activity with optimal activities at 75-85 °C and pH 5.5-6.0. Supplementing Axe1 to CBS 203.75 enzyme set improved release of xylose and glucose from sugar beet pulp. This study identified beneficial enzymes for sugar beet pulp saccharification by selecting progeny with improved growth on this particular substrate. Saccharification of sugar beet pulp was improved by supplementing enzyme mixtures with a previously

  16. Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance.

    Science.gov (United States)

    Kalluri, Udaya C; Yin, Hengfu; Yang, Xiaohan; Davison, Brian H

    2014-12-01

    Fine-tuning plant cell wall properties to render plant biomass more amenable to biofuel conversion is a colossal challenge. A deep knowledge of the biosynthesis and regulation of plant cell wall and a high-precision genome engineering toolset are the two essential pillars of efforts to alter plant cell walls and reduce biomass recalcitrance. The past decade has seen a meteoric rise in use of transcriptomics and high-resolution imaging methods resulting in fresh insights into composition, structure, formation and deconstruction of plant cell walls. Subsequent gene manipulation approaches, however, commonly include ubiquitous mis-expression of a single candidate gene in a host that carries an intact copy of the native gene. The challenges posed by pleiotropic and unintended changes resulting from such an approach are moving the field towards synthetic biology approaches. Synthetic biology builds on a systems biology knowledge base and leverages high-precision tools for high-throughput assembly of multigene constructs and pathways, precision genome editing and site-specific gene stacking, silencing and/or removal. Here, we summarize the recent breakthroughs in biosynthesis and remodelling of major secondary cell wall components, assess the impediments in obtaining a systems-level understanding and explore the potential opportunities in leveraging synthetic biology approaches to reduce biomass recalcitrance. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Advanced circulating fluidised bed technology (CFB) for large-scale solid biomass fuel firing power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jaentti, Timo; Zabetta, Edgardo Coda; Nuortimo, Kalle [Foster Wheeler Energia Oy, Varkaus (Finland)

    2013-04-01

    Worldwide the nations are taking initiatives to counteract global warming by reducing their greenhouse gas emissions. Efforts to increase boiler efficiency and the use of biomass and other solid renewable fuels are well in line with these objectives. Circulating fluidised bed boilers (CFB) are ideal for efficient power generation, capable to fire a broad variety of solid biomass fuels from small CHP plants to large utility power plants. Relevant boiler references in commercial operation are made for Finland and Poland.

  18. Drag forces of common plant species in temperate streams: consequences of morphology, velocity and biomass

    DEFF Research Database (Denmark)

    Jensen, Kaj Sand

    2008-01-01

    Swift flow in streams may physically influence the morphology and distribution of plants. I quantified drag as a function of velocity, biomass and their interaction on the trailing canopy of seven European stream species in an experimental flume and evaluated its importance for species distributi...... than an uneven distribution with the same biomass confined to dense patches surrounded by open flow channels. Thus, management strategies to ensure a patchy plants distribution should be suitable for combining agricultural drainage and ecological stream quality....

  19. Radiation degradation of alginate and some results of biological effect of degraded alginate on plants

    Energy Technology Data Exchange (ETDEWEB)

    Hien, N.Q.; Hai, L.; Luan, L.Q.; Hanh, T.T. [Nuclear Research Institute, Dalat (Viet Nam); Nagasawa, Naotsugu; Yoshii, Fumio; Makuuchi, Keizo; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Radiation degradation yields (Gd) of alginate in aqueous solution with different concentration were determined by viscometry method. The relationship between Gd and the alginate concentration was found out as: Gd=33.5 x C{sup -0.68}, with C% (w/v) and dry alginate referred to C=100%. An empirical equation for preparing degraded alginate with the desired low viscometry average molecular weight (Mv) by radiation was proposed. Alginate extracted directly horn seaweed'Sagassum, degraded by radiation was used for field experiments and results of the biological effect on plants (tea, carrot, chrysanthemum) were presented. (author)

  20. Eutrophication in Poyang Lake (Eastern China) over the Last 300 Years in Response to Changes in Climate and Lake Biomass.

    Science.gov (United States)

    Liao, Mengna; Yu, Ge; Guo, Ya

    2017-01-01

    Poyang Lake is suffering from persistent eutrophication, which is degrading the local ecosystem. A better understanding of the mechanisms that drive eutrophication in lake systems is essential to fight the ongoing deterioration. In this study, hydraulic residence time (HRT) was used to evaluate Poyang Lake's trophic state. A hydrology and ecosystem forced model was constructed to simulate long-term changes in algae and aquatic plant biomass and total phosphorous (TP). A comparison analysis revealed that between 1812 and 1828 (i.e., a consistent-change stage), climate and hydrology were the main driving forces, while algae and aquatic plant biomass contributed only 20.9% to the trophic changes in Poyang Lake. However, between 1844 and 1860 the biomass predominated contributing 63.6%. This could be attributed to nutrient absorption by algae and aquatic plants. A correlation analysis of the water TP and algae and aquatic plant biomass revealed a strong positive relationship. However, the algae and aquatic plant growth rate tended to decline after the biomass reached half of the maximum. This research reconstructs the long-term trophic evolution of Poyang Lake and provides a better understanding of the relationship between climatic and hydrological changes and lake ecosystems.

  1. Cellulases for biomass degradation: comparing recombinant cellulase expression platforms.

    Science.gov (United States)

    Garvey, Megan; Klose, Holger; Fischer, Rainer; Lambertz, Camilla; Commandeur, Ulrich

    2013-10-01

    Improvement of cellulase expression has the potential to change the nature of the biofuel industry. Increasing the economic feasibility of cellulase systems would significantly broaden the range of practicable biomass conversion, lowering the environmental impact of our civilisations' fuel needs. Cellulases are derived from certain fungi and bacteria, which are often difficult to culture on an industrial scale. Accordingly, methods to recombinantly express important cellulases and other glycosyl hydrolase (GH) enzymes are under serious investigation. Herein, we examine the latest developments in bacterial, yeast, plant, and fungal expression systems. We discuss current strategies for producing cellulases, and evaluate the benefits and drawbacks in yield, stability, and activity of enzymes from each system, and the overall progress in the field. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Plant exudates promote PCB degradation by a rhodococcal rhizobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Toussaint, Jean-Patrick; Pham, Thi Thanh My; Barriault, Diane; Sylvestre, Michel [Instiut National de la Recherche Scientifique INRS, Laval, QC (Canada). Inst. Armand-Frappier

    2012-09-15

    Rhodococcus erythropolis U23A is a polychlorinated biphenyl (PCB)-degrading bacterium isolated from the rhizosphere of plants grown on a PCB-contaminated soil. Strain U23A bphA exhibited 99% identity with bphA1 of Rhodococcus globerulus P6. We grew Arabidopsis thaliana in a hydroponic axenic system, collected, and concentrated the plant secondary metabolite-containing root exudates. Strain U23A exhibited a chemotactic response toward these root exudates. In a root colonizing assay, the number of cells of strain U23A associated to the plant roots (5.7 x 105 CFU g{sup -1}) was greater than the number remaining in the surrounding sand (4.5 x 104 CFU g{sup -1}). Furthermore, the exudates could support the growth of strain U23A. In a resting cell suspension assay, cells grown in a minimal medium containing Arabidopsis root exudates as sole growth substrate were able to metabolize 2,3,4'- and 2,3',4-trichlorobiphenyl. However, no significant degradation of any of congeners was observed for control cells grown on Luria-Bertani medium. Although strain U23A was unable to grow on any of the flavonoids identified in root exudates, biphenyl-induced cells metabolized flavanone, one of the major root exudate components. In addition, when used as co-substrate with sodium acetate, flavanone was as efficient as biphenyl to induce the biphenyl catabolic pathway of strain U23A. Together, these data provide supporting evidence that some rhodococci can live in soil in close association with plant roots and that root exudates can support their growth and trigger their PCB-degrading ability. This suggests that, like the flagellated Gram-negative bacteria, non-flagellated rhodococci may also play a key role in the degradation of persistent pollutants. (orig.)

  3. Feasibility study for biomass power plants in Thailand. Volume 1. Main report. Export trade information

    International Nuclear Information System (INIS)

    1997-01-01

    This study, conducted by Black and Veatch, was funded by the U.S. Trade and Development Agency. The report presents a technical and commercial analysis for the development of three nearly identical electricity generating facilities (biomass steam power plants) in the towns of Chachoengsao, Suphan Buri, and Pichit in Thailand. The Main Report is divided into the following sections: (1.0) Executive Study; (2.0) Project Objectives; (3.0) Review of Combustion Technology for Biomass Fueled Steam Generator Units; (4.0) Conceptual Design; (5.0) Plant Descriptions; (6.0) Plant Operations Staffing; (7.0) Project Schedule; (8.0) Project Cost Estimate; (9.0) Financial Analysis; Appendix - Financial Analysis

  4. Retrofit options to enable biomass firing at Irish peat plants: Background report 4.2 for the EU Joule 2+ project: Energy from biomass: An assessment of two promising systems for energy production

    International Nuclear Information System (INIS)

    Van den Broek, R.; Faaij, A.; Blaney, G.

    1995-05-01

    An overview is given of the most promising options for retrofitting existing Irish peat plants to accept biomass fuel. It is expected that with low investment costs the existing peat stations can be adapted to enable them to fire biomass. It will also be possible to co-fire peat and biomass, this option will become a way of using biomass in power generation with relatively low risk, both on the field of initial investments and supply security. The objectives of this report are: assessing the different technical options for retrofitting the plants to enable biomass firing; provide investment costs, efficiencies, emissions and expected lifetimes for the different retrofit options. The results from this study are used in the final integration phase of the EU-Joule project 'Energy from biomass'. Chapter 2 deals with methodological considerations which have been made in estimation of the investment costs. In chapter 3 the present situation is described. Both peat harvesting and power plant operation of both sod and milled peat plants are explained. Also some past experiences with wood chips firing in Irish peat stations are discussed. Chapter 4 gives a general view on retrofitting peat plants to enable biomass firing. Some starting points like biomass fuel feeding and emission standards that have to be met are highlighted. The rationale behind four main choices are given. Finally, a technical description is presented of the two boiler adaptations that will be considered among the different retrofit options, namely conversion of milled peat units into bubbling fluidized bed and into a whole tree energy unit. Six retrofit options are described in more detail in chapter 5. Information is given on the present status of the plants, the technical considerations of the retrofit, expected performance and an estimation of a range in which the investment costs can be expected. 4 figs., 10 tabs., 5 appendices

  5. Effects of the distribution density of a biomass combined heat and power plant network on heat utilisation efficiency in village-town systems.

    Science.gov (United States)

    Zhang, Yifei; Kang, Jian

    2017-11-01

    The building of biomass combined heat and power (CHP) plants is an effective means of developing biomass energy because they can satisfy demands for winter heating and electricity consumption. The purpose of this study was to analyse the effect of the distribution density of a biomass CHP plant network on heat utilisation efficiency in a village-town system. The distribution density is determined based on the heat transmission threshold, and the heat utilisation efficiency is determined based on the heat demand distribution, heat output efficiency, and heat transmission loss. The objective of this study was to ascertain the optimal value for the heat transmission threshold using a multi-scheme comparison based on an analysis of these factors. To this end, a model of a biomass CHP plant network was built using geographic information system tools to simulate and generate three planning schemes with different heat transmission thresholds (6, 8, and 10 km) according to the heat demand distribution. The heat utilisation efficiencies of these planning schemes were then compared by calculating the gross power, heat output efficiency, and heat transmission loss of the biomass CHP plant for each scenario. This multi-scheme comparison yielded the following results: when the heat transmission threshold was low, the distribution density of the biomass CHP plant network was high and the biomass CHP plants tended to be relatively small. In contrast, when the heat transmission threshold was high, the distribution density of the network was low and the biomass CHP plants tended to be relatively large. When the heat transmission threshold was 8 km, the distribution density of the biomass CHP plant network was optimised for efficient heat utilisation. To promote the development of renewable energy sources, a planning scheme for a biomass CHP plant network that maximises heat utilisation efficiency can be obtained using the optimal heat transmission threshold and the nonlinearity

  6. Radiation degradation of carbohydrates and their biological activities for plants

    International Nuclear Information System (INIS)

    Kume, T.; Nagasawa, N.; Matsuhashi, S.

    2000-01-01

    Radiation effects on carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to improve the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities such as anti-bacterial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Pectic fragments obtained from degraded pectin induced the phytoalexins such as glyceollins in soybean and pisatin in pea. The irradiated chitosan shows the higher elicitor activity for pisatin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. Kappa and iota carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa irradiated at 100 kGy. Some radiation degraded carbohydrates suppressed the damage of heavy metals on plants. The effects of irradiated carbohydrates on transportation of heavy metals have been investigated by PETIS (Positron Emitting Tracer Imaging System) and autoradiography using 48 V and 62 Zn. (author)

  7. Energy production from biomass

    International Nuclear Information System (INIS)

    Bestebroer, S.I.

    1995-01-01

    The aim of the task group 'Energy Production from Biomass', initiated by the Dutch Ministry of Economic Affairs, was to identify bottlenecks in the development of biomass for energy production. The bottlenecks were identified by means of a process analysis of clean biomass fuels to the production of electricity and/or heat. The subjects in the process analysis are the potential availability of biomass, logistics, processing techniques, energy use, environmental effects, economic impact, and stimulation measures. Three categories of biomass are distinguished: organic residual matter, imported biomass, and energy crops, cultivated in the Netherlands. With regard to the processing techniques attention is paid to co-firing of clean biomass in existing electric power plants (co-firing in a coal-fired power plant or co-firing of fuel gas from biomass in a coal-fired or natural gas-fired power plant), and the combustion or gasification of clean biomass in special stand-alone installations. 5 figs., 13 tabs., 28 refs

  8. Structural Studies of Biomass Degrading Enzyme Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lunin, Vladimir V.; Alahuhta, Markus; Brunecky, Roman; Donohoe, Bryon; Xu, Qi; Bomble, Yannick J.; Himmel, Michael E.

    2014-08-05

    Renewable energy today comprises wind, photovoltaics, geothermal, and biofuels. Biomass is the leading source of renewable, sustainable energy used for the production of liquid transportation fuels. While the focus is shifting today from the ethanol towards next generation or advanced biofuels the real challenge however remains the same: reducing the recalcitrance of biomass to deconstruction, which yields the sugars needed for further processing.

  9. Understanding how the complex molecular architecture of mannan-degrading hydrolases contributes to plant cell wall degradation.

    Science.gov (United States)

    Zhang, Xiaoyang; Rogowski, Artur; Zhao, Lei; Hahn, Michael G; Avci, Utku; Knox, J Paul; Gilbert, Harry J

    2014-01-24

    Microbial degradation of plant cell walls is a central component of the carbon cycle and is of increasing importance in environmentally significant industries. Plant cell wall-degrading enzymes have a complex molecular architecture consisting of catalytic modules and, frequently, multiple non-catalytic carbohydrate binding modules (CBMs). It is currently unclear whether the specificities of the CBMs or the topology of the catalytic modules are the primary drivers for the specificity of these enzymes against plant cell walls. Here, we have evaluated the relationship between CBM specificity and their capacity to enhance the activity of GH5 and GH26 mannanases and CE2 esterases against intact plant cell walls. The data show that cellulose and mannan binding CBMs have the greatest impact on the removal of mannan from tobacco and Physcomitrella cell walls, respectively. Although the action of the GH5 mannanase was independent of the context of mannan in tobacco cell walls, a significant proportion of the polysaccharide was inaccessible to the GH26 enzyme. The recalcitrant mannan, however, was fully accessible to the GH26 mannanase appended to a cellulose binding CBM. Although CE2 esterases display similar specificities against acetylated substrates in vitro, only CjCE2C was active against acetylated mannan in Physcomitrella. Appending a mannan binding CBM27 to CjCE2C potentiated its activity against Physcomitrella walls, whereas a xylan binding CBM reduced the capacity of esterases to deacetylate xylan in tobacco walls. This work provides insight into the biological significance for the complex array of hydrolytic enzymes expressed by plant cell wall-degrading microorganisms.

  10. Energetic and environmental performance of three biomass upgrading processes integrated with a CHP plant

    International Nuclear Information System (INIS)

    Kohl, Thomas; Laukkanen, Timo; Järvinen, Mika; Fogelholm, Carl-Johan

    2013-01-01

    Highlights: ► We simulate CHP-integrated production of wood pellets, torrefied wood pellets and pyrolysis slurry. ► Integration increases operation hours and district heat output by up to 38% and 22%. ► Additionally installed equipment reduces yearly power generation by up to 7%. ► Wood pellet production performs best energetically and environmentally. ► Integrated concepts substantially reduce fuel consumption and CO 2 emissions. - Abstract: In order to react on future expected increased competition on restricted biomass resources, communal combined heat and power (CHP) plants can be integrated with biomass upgrading processes that add valuable products to the portfolio. In this paper, outgoing from a base case, the retrofit integration of production of wood pellets (WPs), torrefied wood pellets (TWPs) and wood fast pyrolysis slurry (PS) with an existing wood-fired CHP plant was simulated. Within the integration concept, free boiler capacity during times of low district heat demands is used to provide energy for the upgrading processes. By detailed part-load modelling, critical process parameters are discussed. With help of a multiperiod model of the heat duration curve, the work further shows the influence of the integration on plant operating hours, electricity production and biomass throughput. Environmental and energetic performance is assessed according to European standard EN 15603 and compared to the base case as well as to stand-alone production in two separate units. The work shows that all three integration options are well possible within the operational limits of the CHP plant. Summarising, this work shows that integration of WP, TWP and PS production from biomass with a CHP plant by increasing the yearly boiler workload leads to improved primary energy efficiency, reduced CO 2 emissions, and, when compared to stand-alone production, also to substantial fuel savings

  11. Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables

    International Nuclear Information System (INIS)

    Caputo, Antonio C.; Palumbo, Mario; Pelagagge, Pacifico M.; Scacchia, Federica

    2005-01-01

    The substitution of conventional fossil fuels with biomass for energy production results both in a net reduction of greenhouse gases emissions and in the replacement of non-renewable energy sources. However, at present, generating energy from biomass is rather expensive due to both technological limits related to lower conversion efficiencies, and logistic constraints. In particular, the logistics of biomass fuel supply is likely to be complex owing to the intrinsic feedstock characteristics, such as the limited period of availability and the scattered geographical distribution over the territory. In this paper, the economical feasibility of biomass utilization for direct production of electric energy by means of combustion and gasification-conversion processes, has been investigated and evaluated over a capacity range from 5 to 50 MW, taking into account total capital investments, revenues from energy sale and total operating costs, also including a detailed evaluation of logistic costs. Moreover, in order to evaluate the impact of logistics on the bio-energy plants profitability, the effects of main logistic variables such as specific vehicle transport costs, vehicles capacity, specific purchased biomass costs and distribution density, have been examined. Finally, a mapping of logistic constraints on plant profitability in the specified capacity range has been carried out

  12. Genetic Improvement of Switchgrass and Other Herbaceous Plants for Use as Biomass Fuel Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, K.P.

    2001-01-11

    It should be highly feasible to genetically modify the feedstock quality of switchgrass and other herbaceous plants using both conventional and molecular breeding techniques. Effectiveness of breeding to modify herbages of switchgrass and other perennial and annual herbaceous species has already been demonstrated. The use of molecular markers and transformation technology will greatly enhance the capability of breeders to modify the plant structure and cell walls of herbaceous plants. It will be necessary to monitor gene flow to remnant wild populations of plants and have strategies available to curtail gene flow if it becomes a potential problem. It also will be necessary to monitor plant survival and long-term productivity as affected by genetic changes that improve forage quality. Information on the conversion processes that will be used and the biomass characteristics that affect conversion efficiency and rate is absolutely essential as well as information on the relative economic value of specific traits. Because most forage or biomass quality characteristics are highly affected by plant maturity, it is suggested that plant material of specific maturity stages be used in research to determining desirable feedstock quality characteristics. Plant material could be collected at various stages of development from an array of environments and storage conditions that could be used in conversion research. The same plant material could be used to develop NIRS calibrations that could be used by breeders in their selection programs and also to develop criteria for a feedstock quality assessment program. Breeding for improved feedstock quality will likely affect the rate of improvement of biomass production per acre. If the same level of resources are used, multi-trait breeding simply reduces the selection pressure and hence the breeding progress that can be made for a single trait unless all the traits are highly correlated. Since desirable feedstock traits are likely

  13. Calculating the share of process energy consumed by biomass conversion plants. Bestimmung der Anteile der Prozessenergie bei einer Biogasanlage

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, W

    1984-06-01

    During the winter season the process energy consumption of biomass conversion plants is relatively high. Apart from the quantity and temperature of manures and insulation of the fermentation tank the process energy consumption depends on the efficiency of the heating system. Moreover, heat losses decide on the required quantities of process energy. Compared with the process energy consumption the electric power consumption of the engines supplying the biomass conversion plant is relatively low. Along with calculations tests and measurements in a biomass conversion plant during the winter season of 1981/1982 give access to the interrelation between process energy and electric power consumption.

  14. Plant biomass and species composition along an environmental gradient in montane riparian meadows

    Science.gov (United States)

    Kathleen A. Dwire; J. Boone Kauffman; E. N. Jack Brookshire; John E. Baham

    2004-01-01

    In riparian meadows, narrow zonation of the dominant vegetation frequently occurs along the elevational gradient from the stream edge to the floodplain terrace. We measured plant species composition and above- and belowground biomass in three riparian plant communities - a priori defined as wet, moist, and dry meadow - along short streamside topographic gradients in...

  15. Site-specific proteolytic degradation of IgG monoclonal antibodies expressed in tobacco plants.

    Science.gov (United States)

    Hehle, Verena K; Lombardi, Raffaele; van Dolleweerd, Craig J; Paul, Mathew J; Di Micco, Patrizio; Morea, Veronica; Benvenuto, Eugenio; Donini, Marcello; Ma, Julian K-C

    2015-02-01

    Plants are promising hosts for the production of monoclonal antibodies (mAbs). However, proteolytic degradation of antibodies produced both in stable transgenic plants and using transient expression systems is still a major issue for efficient high-yield recombinant protein accumulation. In this work, we have performed a detailed study of the degradation profiles of two human IgG1 mAbs produced in plants: an anti-HIV mAb 2G12 and a tumour-targeting mAb H10. Even though they use different light chains (κ and λ, respectively), the fragmentation pattern of both antibodies was similar. The majority of Ig fragments result from proteolytic degradation, but there are only a limited number of plant proteolytic cleavage events in the immunoglobulin light and heavy chains. All of the cleavage sites identified were in the proximity of interdomain regions and occurred at each interdomain site, with the exception of the VL /CL interface in mAb H10 λ light chain. Cleavage site sequences were analysed, and residue patterns characteristic of proteolytic enzymes substrates were identified. The results of this work help to define common degradation events in plant-produced mAbs and raise the possibility of predicting antibody degradation patterns 'a priori' and designing novel stabilization strategies by site-specific mutagenesis. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass

    DEFF Research Database (Denmark)

    Klinke, H.B.; Thomsen, A.B.; Ahring, Birgitte Kiær

    2004-01-01

    for ethanol fermentation. The resulting hydrolyzsates contain substances inhibitory to fermentation-depending on both the raw material (biomass) and the pre-treatment applied. An overview of the inhibitory effect on ethanol production by yeast and bacteria is presented. Apart from furans formed by sugar......An overview of the different inhibitors formed by pre-treatment of lignocellulosic materials and their inhibition of ethanol production in yeast and bacteria is given. Different high temperature physical pre-treatment methods are available to render the carbohydrates in lignocellulose accessible...... degradation, phenol monomers from lignin degradation are important co-factors in hydrolysate inhibition, and inhibitory effects of these aromatic compounds on different ethanol producing microorganisms is reviewed. The furans and phenols generally inhibited growth and ethanol production rate (Q...

  17. SCR in biomass and waste fuelled plants. Benchmarking of Swedish and European plants; SCR i biobraensle- och avfallseldade anlaeggningar. Erfarenheter fraan svenska och europeiska anlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Barbara; Olsson, Henrik; Lindstroem, Erica

    2010-11-15

    In this report the state-of-art of SCR technology in biomass and waste fired plants is investigated. The aim of the investigation is to answer the question why new Swedish biomass combustion and co-combustion plants often prefer SNCR technology, whilst European waste combustion plants often choose SCR technology. In the report positives and negatives of various types of SCR installations are discussed, high-dust versus tail-end, 'normal' SCR versus low-temperature SCR, etc. Experiences, e g catalyst lifetime, deactivation and maintenance requirement, are discussed. The investigation is based partly on literature, but mainly on interviews with plant owners and with suppliers of SCR installations. The interviewed suppliers are mentioned in the reference list and the interviewed plant owners are mentioned in appendix A and B. The experiences from the Swedish and European plants are quite similar. Tail-end SCR is often operated without serious problems in both biomass and waste fuelled plants. The catalyst lifetimes are as long or even longer than for coal fired plants with high-dust SCR. In waste incineration plants high-dust SCR causes big problems and these plants are almost always equipped with tail-end SCR. In co-combustion boilers, where coal and biomass is co-combusted, high-dust SCR is more common, especially if the boilers were originally coal fired. In plants with both SNCR and high-dust SCR, i.e. slip-SCR, the SCR installation is considered to be much less of a problem. Although the activity loss of the catalyst is as quick as in conventional high-dust SCR, the catalyst can be changed less often. This is due to the fact that installed slip-SCR catalysts often are as large as conventional SCR catalysts, although less NO{sub x} reduction is required after the initial SNCR step. Thus, the catalyst lifetime is prolonged.

  18. High temperature degradation in power plants and refineries

    Directory of Open Access Journals (Sweden)

    Furtado Heloisa Cunha

    2004-01-01

    Full Text Available Thermal power plants and refineries around the world share many of the same problems, namely aging equipment, high costs of replacement, and the need to produce more efficiently while being increasingly concerned with issues of safety and reliability. For equipment operating at high temperature, there are many different mechanisms of degradation, some of which interact, and the rate of accumulation of damage is not simple to predict. The paper discusses the mechanisms of degradation at high temperature and methods of assessment of such damage and of the remaining safe life for operation.

  19. The determination of mercury content in the biomass untended for industrial power plant

    Directory of Open Access Journals (Sweden)

    Wiktor Magdalena

    2017-01-01

    Full Text Available Biomass is one of the oldest and most widely used renewable energy sources. The biomass is the whole organic matter of vegetable or animal origin which is biodegradable. Biomass includes leftovers from agricultural production, forestry residues, and industrial and municipal waste. The use of biomass in the power industry has become a standard and takes place in Poland and other European countries. This paper discusses the correlation of mercury content in different biomass types used in the power industry and in products of biomass combustion. Different biomass types, which are currently burned in a commercial power plant in Poland, were discussed. A photographic documentation of different biomass types, such as straw briquettes, wood briquettes, pellets from energy crops (sunflower husk and wood husk, wood pellets, wood chips, and agro-biomass (seeds was carried out. The presented paper discusses the results obtained for 15 biomass samples. Five selected biomass samples were burned in controlled conditions in the laboratory at the University of Silesia. The ash resulting from the combustion of five biomass samples was tested for mercury content. A total of twenty biomass samples and its combustion products were tested. Based on the obtained results, it was found that any supply of biomass, regardless of its type, is characterized by variable mercury content in dry matter. In the case of e.g. wood chips, the spread of results reaches 235.1 μm/kg (in dry matter. Meanwhile, the highest mercury content, 472.4 μm/kg (in dry matter was recorded in the biomass of straw, wood pellets, and pellets from energy crops (sunflower husk. In the case of combustion products of five selected biomass types, a three or four fold increase in the mercury content has been observed.

  20. Plant-conservative agriculture of acid and degraded Raña-grassland enhances diversity of the common soil mites (Oribatida)

    Energy Technology Data Exchange (ETDEWEB)

    Jorrín, J.; González-Fernández, P.

    2016-11-01

    The seminatural prairie of the Raña of Cañamero (Spain) is a degraded and unproductive agrosystem with acid and stony soils, and low coverage of xerophytic grasses. In a project about secondary reconversion of the raña-prairie to a more productive cropland, an experimental field (EF) was established to assess the effect on plot-productivity of the interaction between correction of soil pH (liming) with three cropping systems: a no-tilled and annually fertilized and improved prairies, and a conventionally-tilled forage crop. The EF model of management was designed as plant-conservative, because no herbicide was applied after seeding to preserve the post-emergence of wild herbs and the natural grass diversity of the prairie. Between 2008 and 2012, we analysed the effect of managing factors (initial conventional-tillage, fertilization, liming and cropping) and agricultural predictors (pH, C:N ratio, soil bulk density and herbaceous biomass) on the alpha(α)-diversity of one of the major group of soil animals, the oribatids. In relation to the raña-prairie, all EF-plots improved their soil bulk density (ρs) and herbaceous biomass (t/ha), and enhanced desirable α-diversity values (richness, abundance and community equity). We conclude that the plant-conservative model: i) do not affect statistically the species richness of the prairie; ii) the desirable α-diversity responses are negatively correlated with soil bulk density and positively with herbaceous biomass, and iii) the low input or minimum intervention model, of an initial and conventional till and annual fertilisation, is the threshold and optimal model of agricultural management to improving oribatids diversity of the raña-soil. (Author)

  1. Treatment of the lignocellulosic biomass by the gamma ray and its effect on lignin degradation

    International Nuclear Information System (INIS)

    El Abdi, Ines

    2009-01-01

    The development of alternative energies requires many research effort, with an aim of exploiting the lignocellulosic biomass. In fact, the stage of pretreatment makes it possible to facilitate the hydrolysis of the cellulose fractions, to give fermentable sugars by yeasts. However, several methods of pretreatment were identified, among them the treatment by the gamma rays. In this context, we have studied initially the effect of the gamma irradiation on the lignin degradation and on second place we added to the irradiation the treatment by dilute acid in order to optimize the rate of sugars. Thus, from 20 KGy there is a good degradation of lignins to give polyphenols components for about 4 Mg per gram of vegetable matter. However, the irradiation with 100KGy plus the acid treatment 1% has made possible to release 80% of fermentable sugars. (Author)

  2. Experimental fact-finding in CFB biomass gasification for ECN's 500 kWth pilot-plant

    NARCIS (Netherlands)

    Kersten, Sascha R.A.; Prins, W.; van der Drift, A.; van Swaaij, Willibrordus Petrus Maria

    2003-01-01

    CFB biomass gasification has been studied by experimentation with ECN's pilot facility and a cold-flow model of this plant. Data obtained by normal operation of this plant and the results of some special experiments have provided new insight into the behavior of circulating fluidized bed reactors

  3. Plant diversity and biomass of Marudu bay mangroves in Malaysia

    International Nuclear Information System (INIS)

    Hanum, F.; Kudus, K.A.; Saari, N.S

    2012-01-01

    The mangroves of Marudu Bay in the state of Sabah is situated at the tip of Borneo Island, and at the southern limit of the Coral Triangle whose waters hold the highest diversity of corals, fish, molluscks, crustaceans and marine plant species in the world. The ecosystem shows a deterioration due to unsustainable fishing, pollution and encroachment, and these are impacting the Marudu Bay coastal communities economically. Fishing is the major economic activity here. Realising the importance of conserving the mangroves to uplift the socio-economic livelihood of the coastal community, a resource inventory of the mangroves and its productivity study were carried out. A total of 16 plant species in 12 genera and 9 families were identified. It was also found that 0.7 ha is capable of capturing all the species in the mangrove forest. The mangrove forests of Marudu Bay are dominated by Rhizopora apiculata and R. mucronata. The highest Importance Value index (IVI) was given by Rhizophora mucronata. Total Above Ground Biomass (TAGB) for 1-ha of mangrove forest in Marudu Bay was estimated to be 98.4 t/ha. It was found in other parallel studies that the mangroves of Marudu Bay are productive ecosystems that provide valuable habitats, nurseries and spawning grounds for various commercially important species of fish and invertebrates such as shrimp besides many species of wildlife. The mangroves at Marudu Bay are not only aesthetically attractive but provide opportunities for ecotourism activities that can be undertaken by the local community inhabiting the area to uplift their meagre income, These activities include mangrove cruising, recreational fishing, educational tourism and mangrove honey production, amongst others. This way, the degradation of the mangrove in Marudu Bay can be halted and reversed. (author)

  4. Insights into lignin degradation and its potential industrial applications.

    Science.gov (United States)

    Abdel-Hamid, Ahmed M; Solbiati, Jose O; Cann, Isaac K O

    2013-01-01

    Lignocellulose is an abundant biomass that provides an alternative source for the production of renewable fuels and chemicals. The depolymerization of the carbohydrate polymers in lignocellulosic biomass is hindered by lignin, which is recalcitrant to chemical and biological degradation due to its complex chemical structure and linkage heterogeneity. The role of fungi in delignification due to the production of extracellular oxidative enzymes has been studied more extensively than that of bacteria. The two major groups of enzymes that are involved in lignin degradation are heme peroxidases and laccases. Lignin-degrading peroxidases include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), and dye-decolorizing peroxidase (DyP). LiP, MnP, and VP are class II extracellular fungal peroxidases that belong to the plant and microbial peroxidases superfamily. LiPs are strong oxidants with high-redox potential that oxidize the major non-phenolic structures of lignin. MnP is an Mn-dependent enzyme that catalyzes the oxidation of various phenolic substrates but is not capable of oxidizing the more recalcitrant non-phenolic lignin. VP enzymes combine the catalytic activities of both MnP and LiP and are able to oxidize Mn(2+) like MnP, and non-phenolic compounds like LiP. DyPs occur in both fungi and bacteria and are members of a new superfamily of heme peroxidases called DyPs. DyP enzymes oxidize high-redox potential anthraquinone dyes and were recently reported to oxidize lignin model compounds. The second major group of lignin-degrading enzymes, laccases, are found in plants, fungi, and bacteria and belong to the multicopper oxidase superfamily. They catalyze a one-electron oxidation with the concomitant four-electron reduction of molecular oxygen to water. Fungal laccases can oxidize phenolic lignin model compounds and have higher redox potential than bacterial laccases. In the presence of redox mediators, fungal laccases can oxidize non

  5. Radiocesium storage in soil microbial biomass of undisturbed alpine meadow soils and its relation to 137Cs soil-plant transfer

    International Nuclear Information System (INIS)

    Stemmer, Michael; Hromatka, Angelika; Lettner, Herbert; Strebl, Friederike

    2005-01-01

    This study focuses on radiocesium storage in soil microbial biomass of undisturbed alpine meadow sites and its relation to the soil-to-plant transfer. Soil and plant samples were taken in August 1999 from an altitude transect (800-1600 m.a.s.l.) at Gastein valley, Austria. Soil samples were subdivided into 3-cm layers for analyses of total, K 2 SO 4 -extractable and microbially stored 137 Cs. Microbial biomass was measured by the fumigation extraction method, and fungal biomass was quantified using ergosterol as biomarker molecule. In general, the quantity of 137 Cs stored in the living soil microbial biomass was relatively small. At the high-altitude meadows, showing high amounts of fungal biomass, microbially stored 137 Cs amounted to 0.64 ± 0.14 kBq m -2 which corresponds to about 1.2-2.7% of the total 137 Cs soil inventory. At lower altitudes, microbial 137 Cs content was distinctly smaller and in most cases not measurable at all using the fumigation extraction method. However, a positive correlation between the observed soil-to-plant aggregated transfer factor, microbially stored 137 Cs and fungal biomass was found, which indicates a possible role of fungal biomass in the storage and turnover of 137 Cs in soils and in the 137 Cs uptake by plants

  6. Process for producing ethanol from plant biomass using the fungus Paecilomyces sp

    Science.gov (United States)

    Wu, J.F.

    1985-08-08

    A process for producing ethanol from plant biomass is disclosed. The process includes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the fungus Paecilomyces which has the ability to ferment both cellobiose and xylose to ethanol is then selected and isolated. The substrate is inoculated with this fungus, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol. Finally, ethanol is recovered from the fermented substrate. 5 figs., 3 tabs.

  7. Experimental methods for laboratory-scale ensilage of lignocellulosic biomass

    International Nuclear Information System (INIS)

    Tanjore, Deepti; Richard, Tom L.; Marshall, Megan N.

    2012-01-01

    Anaerobic fermentation is a potential storage method for lignocellulosic biomass in biofuel production processes. Since biomass is seasonally harvested, stocks are often dried or frozen at laboratory scale prior to fermentation experiments. Such treatments prior to fermentation studies cause irreversible changes in the plant cells, influencing the initial state of biomass and thereby the progression of the fermentation processes itself. This study investigated the effects of drying, refrigeration, and freezing relative to freshly harvested corn stover in lab-scale ensilage studies. Particle sizes, as well as post-ensilage drying temperatures for compositional analysis, were tested to identify the appropriate sample processing methods. After 21 days of ensilage the lowest pH value (3.73 ± 0.03), lowest dry matter loss (4.28 ± 0.26 g. 100 g-1DM), and highest water soluble carbohydrate (WSC) concentrations (7.73 ± 0.26 g. 100 g-1DM) were observed in control biomass (stover ensiled within 12 h of harvest without any treatments). WSC concentration was significantly reduced in samples refrigerated for 7 days prior to ensilage (3.86 ± 0.49 g. 100 g −1 DM). However, biomass frozen prior to ensilage produced statistically similar results to the fresh biomass control, especially in treatments with cell wall degrading enzymes. Grinding to decrease particle size reduced the variance amongst replicates for pH values of individual reactors to a minor extent. Drying biomass prior to extraction of WSCs resulted in degradation of the carbohydrates and a reduced estimate of their concentrations. The methods developed in this study can be used to improve ensilage experiments and thereby help in developing ensilage as a storage method for biofuel production. -- Highlights: ► Laboratory-scale methods to assess the influence of ensilage biofuel production. ► Drying, freezing, and refrigeration of biomass influenced microbial fermentation. ► Freshly ensiled stover exhibited

  8. Comparison of Paraffin and Diesel Oil as Cultivation Medium Supplements for Preparing a Hydrocarbon-Degrading Bacterial Biomass

    Directory of Open Access Journals (Sweden)

    Dokukins Eduards

    2016-05-01

    Full Text Available The effect of liquid paraffin and diesel oil as nutrient amendments for hydrocarbon-degrading bacteria was compared. Different parameters were analyzed - optical density of bacterial suspension, oxygen consumption by biomass, morphology of bacteria, etc. In some experiments the paraffin was more preferable for microorganisms, but in other tests the results for both substances were similar. The influence of the comparable substances strongly depends on cultivation conditions.

  9. Hybrid concentrated solar power (CSP)–biomass plants in a semiarid region: A strategy for CSP deployment in Brazil

    International Nuclear Information System (INIS)

    Soria, Rafael; Portugal-Pereira, Joana; Szklo, Alexandre; Milani, Rodrigo; Schaeffer, Roberto

    2015-01-01

    The production of electricity using concentrated solar power (CSP) technology is not yet possible in Brazil due to the technology’s high capital costs and the lack of a local industry. However, this study introduces a low-cost approach to CSP in Brazil by describing and simulating the operation of hybrid CSP plants that use sustainably managed biomass in Brazil’s semiarid northeast. Biomass hybridisation of a CSP plant with a solar multiple (SM) of 1.2 and a biomass fill fraction (BFF) of 30% can generate electricity at 110 USD/MWh. The high direct normal irradiation (DNI) and the availability of local low-cost biomass in Brazil’s semiarid northeast suggest the possibility of developing a CSP industry capable of supplying low-cost components under a national program framework, with the co-benefits of local job and income generation. For example, the deployment of 10 CSP plants of 30 MWe each would generate 760 direct and indirect jobs during the 24 months of plant construction and approximately 2100 annual jobs associated with the operation and maintenance (O&M) of the generating units. These 10 new units would generate additional local income on the order of USD 57 million. - Highlights: • CSP plant with supplementary biomass hybridisation is a strategic option for Brazil. • DNI and biomass availability in Brazil's semiarid can foster local CSP industry. • LCOE of CSP would cost 11 cent USD/kWh becoming competitive at solar auctions. • Co-benefits of local job and income generation due to CSP in Brazil are high.

  10. Eutrophication in Poyang Lake (Eastern China over the Last 300 Years in Response to Changes in Climate and Lake Biomass.

    Directory of Open Access Journals (Sweden)

    Mengna Liao

    Full Text Available Poyang Lake is suffering from persistent eutrophication, which is degrading the local ecosystem. A better understanding of the mechanisms that drive eutrophication in lake systems is essential to fight the ongoing deterioration. In this study, hydraulic residence time (HRT was used to evaluate Poyang Lake's trophic state. A hydrology and ecosystem forced model was constructed to simulate long-term changes in algae and aquatic plant biomass and total phosphorous (TP. A comparison analysis revealed that between 1812 and 1828 (i.e., a consistent-change stage, climate and hydrology were the main driving forces, while algae and aquatic plant biomass contributed only 20.9% to the trophic changes in Poyang Lake. However, between 1844 and 1860 the biomass predominated contributing 63.6%. This could be attributed to nutrient absorption by algae and aquatic plants. A correlation analysis of the water TP and algae and aquatic plant biomass revealed a strong positive relationship. However, the algae and aquatic plant growth rate tended to decline after the biomass reached half of the maximum. This research reconstructs the long-term trophic evolution of Poyang Lake and provides a better understanding of the relationship between climatic and hydrological changes and lake ecosystems.

  11. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  12. Degradation of pheromone and plant volatile components by a same odorant-degrading enzyme in the cotton leafworm, Spodoptera littoralis.

    Directory of Open Access Journals (Sweden)

    Nicolas Durand

    Full Text Available Odorant-Degrading Enzymes (ODEs are supposed to be involved in the signal inactivation step within the olfactory sensilla of insects by quickly removing odorant molecules from the vicinity of the olfactory receptors. Only three ODEs have been both identified at the molecular level and functionally characterized: two were specialized in the degradation of pheromone compounds and the last one was shown to degrade a plant odorant.Previous work has shown that the antennae of the cotton leafworm Spodoptera littoralis, a worldwide pest of agricultural crops, express numerous candidate ODEs. We focused on an esterase overexpressed in males antennae, namely SlCXE7. We studied its expression patterns and tested its catalytic properties towards three odorants, i.e. the two female sex pheromone components and a green leaf volatile emitted by host plants.SlCXE7 expression was concomitant during development with male responsiveness to odorants and during adult scotophase with the period of male most active sexual behaviour. Furthermore, SlCXE7 transcription could be induced by male exposure to the main pheromone component, suggesting a role of Pheromone-Degrading Enzyme. Interestingly, recombinant SlCXE7 was able to efficiently hydrolyze the pheromone compounds but also the plant volatile, with a higher affinity for the pheromone than for the plant compound. In male antennae, SlCXE7 expression was associated with both long and short sensilla, tuned to sex pheromones or plant odours, respectively. Our results thus suggested that a same ODE could have a dual function depending of it sensillar localisation. Within the pheromone-sensitive sensilla, SlCXE7 may play a role in pheromone signal termination and in reduction of odorant background noise, whereas it could be involved in plant odorant inactivation within the short sensilla.

  13. Out of the shadows : multiple nutrient limitations drive relationships among biomass, light and plant diversity

    NARCIS (Netherlands)

    Harpole, W. Stanley; Sullivan, Lauren L.; Lind, Eric M.; Firn, Jennifer; Adler, Peter B.; Borer, Elizabeth T.; Chase, Jonathan; Fay Jennifer Firn, Philip A.; Hautier, Yann; Hillebrand, Helmut; MacDougall, Andrew S.; Seabloom, Eric W.; Bakker, Jonathan D.; Cadotte, Marc W; Chaneton, Enrique J; Chu, Chengjin; Hagenah, Nicole; Kirkman, Kevin; La Pierre, Kimberly J.; Moore, Joslin L.; Morgan, John W.; Prober, Suzanne M.; Risch, Anita C.; Schuetz, Martin; Stevens, Carly J.

    2017-01-01

    The paradigmatic hypothesis for the effect of fertilisation on plant diversity represents a one-dimensional trade-off for plants competing for below-ground nutrients (generically) and above-ground light: fertilisation reduces competition for nutrients while increasing biomass and thereby shifts

  14. Co-firing coal and biomass blends and their influence on the post-combustion CO2 capture installation

    Directory of Open Access Journals (Sweden)

    Więckol-Ryk Angelika

    2017-01-01

    Research proved that co-firing of biomass in fossil fuel power plants is beneficial for PCC process. It may also reduce the corrosion of CO2 capture installation. The oxygen concentration in the flue gases from hard coal combustion was comparable with the respective value for a fuel blend of biomass content of 20% w/w. It was also noted that an increase in biomass content in a sample from 20 to 40 % w/w increased the concentration of oxygen in the flue gas streams. However, this concentration should not have a significant impact on the rate of amine oxidative degradation.

  15. Bilirubin oxidase-like proteins from Podospora anserina: promising thermostable enzymes for application in transformation of plant biomass.

    Science.gov (United States)

    Xie, Ning; Ruprich-Robert, Gwenaël; Silar, Philippe; Chapeland-Leclerc, Florence

    2015-03-01

    Plant biomass degradation by fungi is a critical step for production of biofuels, and laccases are common ligninolytic enzymes envisioned for ligninolysis. Bilirubin oxidases (BODs)-like are related to laccases, but their roles during lignocellulose degradation have not yet been fully investigated. The two BODs of the ascomycete fungus Podospora anserina were characterized by targeted gene deletions. Enzymatic assay revealed that the bod1(Δ) and bod2(Δ) mutants lost partly a thermostable laccase activity. A triple mutant inactivated for bod1, bod2 and mco, a previously investigated multicopper oxidase gene distantly related to laccases, had no thermostable laccase activity. The pattern of fruiting body production in the bod1(Δ) bod2(Δ) double mutant was changed. The bod1(Δ) and bod2(Δ) mutants were reduced in their ability to grow on ligneous and cellulosic materials. Furthermore, bod1(Δ) and bod2(Δ) mutants were defective towards resistance to phenolic substrates and H2 O2 , which may also impact lignocellulose breakdown. Double and triple mutants were more affected than single mutants, evidencing redundancy of function among BODs and mco. Overall, the data show that bod1, bod2 and mco code for non-canonical thermostable laccases that participate in the degradation of lignocellulose. Thanks to their thermal stability, these enzymes may be more promising candidate for biotechnological application than canonical laccases. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Contribution to the study of the degradation of the solvent used in a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Goasmat, F.

    1984-01-01

    The degradation of a mixed solvent (tributylphosphate - hydrocarbons) in a fuel reprocessing plant (UP 2 at La Hague, France) is studied in this thesis. Laboratory studies on degradation mechanisms, decomposition products and regeneration processes are reviewed in a bibliographic synthesis. Solvent degradation is investigated on a real solvent from a reprocessing plant. Influence of degradation on solvent performance is shown and regeneration processes should be improved. Many regeneration processes are tested on solvent from the plant and results are discussed. Separation and analysis of degradation products show the polyfunctional structure of compounds formed [fr

  17. Transfer of Ni, Cr, Zn, Cu and 99mTc to plant biomass of Raphanus sativus L. Role of 125I-fulvic acid and the influence of different treatments on urban soil in Havana

    International Nuclear Information System (INIS)

    Santana Romero, Jorge Luis; Diaz Velazquez, Alberto; Garcia Cespedes, Damaris; Lima Cazorla, Lazaro; Saborit Sanchez, Israel; Olivares Rieumont, Susana; Rivas, Edgar; Manduca, Michel

    2011-01-01

    The importance of studying the transfer of heavy metals from soil to plant biomass is a current scientific topic. The global economic changes have caused accelerated environmental degradation processes in urban soils, in which important amount of agricultural production is obtained. The application of 'ecological' techniques on these soils, including the use of vermicompost, is be-coming more and more extensive and common. The question is: Is always safe and pertinent to apply vermicompost to urban soils?. Hence the importance of studying the heavy metal mobility and bioavailability to plant biomass in these conditions. In the present work, using different analytical techniques, a sample of Havana urban soil is characterized by determination of ph, electrical conductivity, organic material content and the total and EDTA extractable Ni, Cr, Zn and Cu levels. Fulvic acid was extracted from vermicompost and chemically characterized as well as its ability to chelate metals. The conditional stability constant, K of the fulvic acid-copper complex at different ph values was determined (log K cond = 7.39) using size-exclusion chromatography method. The Ni, Cr, Zn and Cu transfer study was conducted using biomass of Raphanus sativus L. The result shows significative statistical agreement with proposed experimental design 2 4-1 and allowed us to recognize the significant positive influence of factors such as the addition of Cu as possible pollutant in soil, ph, addition of fulvic acid and the time of addition of fulvic acid (vermicompost) at different physiological stages of plant development in increasing the bioavailability of Cu into plant biomass studied. The application of radiochemical methods with the use of fulvic acid labeled with 99mTc and 125I respectively allowed to ratify the influence of the factors studied on the transfer of heavy metals into biomass in terms of urban soil. It was possible to determine that the fulvic acid acts as a heavy metals transporter in

  18. Burning of biomass waste

    International Nuclear Information System (INIS)

    Holm Christensen, B.; Evald, A.; Buelow, K.

    1997-01-01

    The amounts of waste wood from the Danish wood processing industry available for the energy market has been made. Furthermore a statement of residues based on biomass, including waste wood, used in 84 plants has been made. The 84 plants represent a large part of the group of purchasers of biomass. A list of biomass fuel types being used or being potential fuels in the future has been made. Conditions in design of plants of importance for the environmental impact and possibility of changing between different biomass fuels are illustrated through interview of the 84 plants. Emissions from firing with different types of residues based on biomass are illustrated by means of different investigations described in the literature of the composition of fuels, of measured emissions from small scale plants and full scale plants, and of mass balance investigations where all incoming and outgoing streams are analysed. An estimate of emissions from chosen fuels from the list of types of fuels is given. Of these fuels can be mentioned residues from particle board production with respectively 9% and 1% glue, wood pellets containing binding material with sulphur and residues from olive production. (LN)

  19. The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Qianxin; Mendelssohn, Irving A [Wetland Biogeochemistry Institute, Center for Coastal, Energy, and Environmental Resources, Louisiana State University, Baton Rouge, LA 70803 (United States)

    1998-06-30

    The combined effects of biostimulation and phytoremediation as a means of post-oil spill habitat restoration and enhancement of oil degradation in the soil were evaluated. Marsh sods of Spartina alterniflora and Spartina patens were dosed with 0, 4, 8, 16 and 24 l m{sup -2} of south Louisiana crude oil in the greenhouse. Plants were killed at oil dosages of 8 l m{sup -2} in the growing season following oil application. Two years after application of the oil, S. alterniflora and S. patens individuals were transplanted into the oiled and unoiled sods. Fertilizer was applied 1 and 7 months after transplantation. Application of the fertilizer significantly increased biomass of the transplants within 6 months and regrowth biomass of the transplants 1 year after transplantation for both plant species. The residual oil in the soil did not significantly affect the biomass of the S. patens transplants compared with that in the no oil treatment, except at the highest oil level. However, regrowth biomass of the S. alterniflora transplants treated with fertilizer was significantly higher at all oil levels up to 250 mg g{sup -1} than in the unoiled treatment, with or without fertilizer. The oil degradation rate in the soil was significantly enhanced by the application of fertilizer in conjunction with the presence of transplants. These results suggest that vegetative transplantation, when implemented with fertilization, can simultaneously restore oil contaminated wetlands and accelerate oil degradation in the soil

  20. National renewable energy policy and local opposition in the UK: the failed development of a biomass electricity plant

    International Nuclear Information System (INIS)

    Upreti, B.R.; Horst, Dan van der

    2004-01-01

    Biomass energy developments in the UK are supported by central government but face considerable opposition from the public. The purpose of this study is to explore the causes and consequences of public opposition to biomass energy development in North Wiltshire where Ambient Energy Ltd. proposed the development of a 5 MWe wood gasification plant near the town of Cricklade. The case study was conducted through in-depth interviews, content analysis, person to person questionnaire survey, focus group discussion and participatory appraisal methods. Though biomass energy plants in general have fewer environmental impacts than plants which use fossil fuel, there could still be local impacts which give rise to concerns and local opposition to the development. The opposition could be partially explained by the fact that the general public is relatively unfamiliar with biomass energy. Public acceptance or rejection was mainly based on the public trust or mistrust. The case study demonstrates two distinctly rigid characteristics among the key stakeholders of biomass energy development. These are the 'not-in-my-back-yard' attitude from the public and the 'there-is-no-alternative' attitude of the developers. These rigid stances were widely contributing to the failure of the project to gain planning permission. The environmental justification of biomass energy at the national level is not always sufficient to convince the local residents. Winning public support to promote biomass energy requires an alternative approach of planning and action through interactive communication, public participation and collective learning among all the stakeholders

  1. Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production.

    Science.gov (United States)

    Weselowski, Brian; Nathoo, Naeem; Eastman, Alexander William; MacDonald, Jacqueline; Yuan, Ze-Chun

    2016-10-18

    Paenibacillus polymyxa is a plant-growth promoting rhizobacterium that could be exploited as an environmentally friendlier alternative to chemical fertilizers and pesticides. Various strains have been isolated that can benefit agriculture through antimicrobial activity, nitrogen fixation, phosphate solubilization, plant hormone production, or lignocellulose degradation. However, no single strain has yet been identified in which all of these advantageous traits have been confirmed. P. polymyxa CR1 was isolated from degrading corn roots from southern Ontario, Canada. It was shown to possess in vitro antagonistic activities against the common plant pathogens Phytophthora sojae P6497 (oomycete), Rhizoctonia solani 1809 (basidiomycete fungus), Cylindrocarpon destructans 2062 (ascomycete fungus), Pseudomonas syringae DC3000 (bacterium), and Xanthomonas campestris 93-1 (bacterium), as well as Bacillus cereus (bacterium), an agent of food-borne illness. P. polymyxa CR1 enhanced growth of maize, potato, cucumber, Arabidopsis, and tomato plants; utilized atmospheric nitrogen and insoluble phosphorus; produced the phytohormone indole-3-acetic acid (IAA); and degraded and utilized the major components of lignocellulose (lignin, cellulose, and hemicellulose). P. polymyxa CR1 has multiple beneficial traits that are relevant to sustainable agriculture and the bio-economy. This strain could be developed for field application in order to control pathogens, promote plant growth, and degrade crop residues after harvest.

  2. Biomass Deconstruction and Recalcitrance

    DEFF Research Database (Denmark)

    Zhang, Heng

    This thesis is about the use of an agricultural residue as a feedstock for fermentable sugars to be used for second generation (2G) bioethanol. The main focus of this thesis work is upon the recalcitrance of different anatomical fractions of wheat straw. Biomass recalcitrance is a collective...... of lignocellulosic biomass’ degradability, a high throughput screening (HTS) platform was developed for combined thermochemical pretreatment and enzymatic degradation in Copenhagen laboratory during this thesis work. The platform integrates an automatized biomass grinding and dispensing system, a pressurized heating...... system, a plate incubator and a high performance liquid chromatography (HPLC) system. In comparison with the reported HTS platforms, the Copenhagen platform is featured by the fully automatic biomass sample preparation system, the bench-scale hydrothermal pretreatment setup, and precise sugar measurement...

  3. Biomass Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Decker, Steve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brunecky, Roman [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lin, Chien-Yuan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Amore, Antonella [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wei, Hui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chen, Xiaowen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tucker, Melvin P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Czernik, Stefan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sluiter, Amie D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Magrini, Kimberly A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Himmel, Michael E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sheehan, John [Formerly NREL; Dayton, David C. [Formerly NREL; Bozell, Joseph J. [Formerly NREL; Adney, William S. [Formerly NREL; Aden, Andy [Formerly NREL; Hames, Bonnie [Formerly NREL; Thomas, Steven R. [Formerly NREL; Bain, Richard L. [Formerly NREL

    2017-08-02

    Biomass constitutes all the plant matter found on our planet, and is produced directly by photosynthesis, the fundamental engine of life on earth. It is the photosynthetic capability of plants to utilize carbon dioxide from the atmosphere that leads to its designation as a 'carbon neutral' fuel, meaning that it does not introduce new carbon into the atmosphere. This article discusses the life cycle assessments of biomass use and the magnitude of energy captured by photosynthesis in the form of biomass on the planet to appraise approaches to tap this energy to meet the ever-growing demand for energy.

  4. Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants

    DEFF Research Database (Denmark)

    Petersen, Pia; Lau, Jane; Ebert, Berit

    2012-01-01

    Background: Cost-efficient generation of second-generation biofuels requires plant biomass that can easily be degraded into sugars and further fermented into fuels. However, lignocellulosic biomass is inherently recalcitrant toward deconstruction technologies due to the abundant lignin and cross......-linked hemicelluloses. Furthermore, lignocellulosic biomass has a high content of pentoses, which are more difficult to ferment into fuels than hexoses. Engineered plants with decreased amounts of xylan in their secondary walls have the potential to render plant biomass a more desirable feedstock for biofuel production...... in the xylem vessels is sufficient to complement the irx phenotype of xylan deficient mutants, while maintaining low overall amounts of xylan and lignin in the cell wall. This engineering approach has the potential to yield bioenergy crop plants that are more easily deconstructed and fermented into biofuels....

  5. Effect of single and mixed polycyclic aromatic hydrocarbon contamination on plant biomass yield and PAH dissipation during phytoremediation.

    Science.gov (United States)

    Afegbua, Seniyat Larai; Batty, Lesley Claire

    2018-04-27

    Polycyclic aromatic hydrocarbon (PAH)-contaminated sites have a mixture of PAH of varying concentration which may affect PAH dissipation differently to contamination with a single PAH. In this study, pot experiments investigated the impact of PAH contamination on Medicago sativa, Lolium perenne, and Festuca arundinacea biomass and PAH dissipation from soils spiked with phenanthrene (Phe), fluoranthene (Flu), and benzo[a]pyrene (B[a]P) in single and mixed treatments. Stimulatory or inhibitory effects of PAH contamination on plant biomass yields were not different for the single and mixed PAH treatments. Results showed significant effect of PAH treatments on plant growth with an increased root biomass yield for F. arundinacea in the Phe (175%) and Flu (86%) treatments and a root biomass decrease in the mixed treatment (4%). The mean residual PAHs in the planted treatments and unplanted control for the single treatments were not significantly different. B[a]P dissipation was enhanced for single and mixed treatments (71-72%) with F. arundinacea compared to the unplanted control (24-50%). On the other hand, B[a]P dissipation was inhibited with L. perenne (6%) in the single treatment and M. sativa (11%) and L. perenne (29%) in the mixed treatment. Abiotic processes had greater contribution to PAH dissipation compared to rhizodegradation in both treatments. In most cases, a stimulatory effect of PAH contamination on plant biomass yield without an enhancement of PAH dissipation was observed. Plant species among other factors affect the relative contribution of PAH dissipation mechanisms during phytoremediation. These factors determine the effectiveness and suitability of phytoremediation as a remedial strategy for PAH-contaminated sites. Further studies on impact of PAH contamination, plant selection, and rhizosphere activities on soil microbial community structure and remediation outcome are required.

  6. Lifetime design strategy for binary geothermal plants considering degradation of geothermal resource productivity

    International Nuclear Information System (INIS)

    Budisulistyo, Denny; Wong, Choon Seng; Krumdieck, Susan

    2017-01-01

    Highlights: • A new lifetime strategy for binary plants considering thermal resource degradations. • The net present value and energy return on investment are selected as indicators. • The results indicate that the design based on point 2 has the best revenue. • Improving plant performance by parameters adjustments and adaptable designs. - Abstract: This work proposes a lifetime design strategy for binary geothermal plants which takes into account heat resource degradation. A model of the resource temperature and mass flow rate decline over a 30 year plant life is developed from a survey of data. The standard approach to optimise a basic subcritical cycle of n-pentane working fluid and select component sizes is used for the resource characteristics in years 1, 7, 15 and 30. The performances of the four plants designed for the different resource conditions are then simulated over the plant life to obtain the best lifetime design. The net present value and energy return on investment are selected as the measures of merit. The production history of a real geothermal well in the Taupo Volcanic Zone, New Zealand, is used as a case study for the lifetime design strategy. The results indicate that the operational parameters (such as mass flow rate of n-pentane, inlet turbine pressure and air mass flow rate) and plant performance (net power output) decrease over the whole plant life. The best lifetime plant design was at year 7 with partly degraded conditions. This condition has the highest net present value at USD 6,894,615 and energy return on investment at 4.15. Detailed thermo-economic analysis was carried out with the aim of improving the plant performance to overcome the resource degradation in two ways: operational parameters adjustments and adaptable designs. The results shows that mass flow rates of n-pentane and air cooling should be adjusted to maintain the performance over the plant life. The plant design can also be adapted by installing a recuperator

  7. Higher Novel L-Cys Degradation Activity Results in Lower Organic-S and Biomass in Sarcocornia than the Related Saltwort, Salicornia1[OPEN

    Science.gov (United States)

    Kurmanbayeva, Assylay; Bekturova, Aizat; Soltabayeva, Aigerim; Asatryan, Armine; Ventura, Yvonne; Salazar, Octavio; Fedoroff, Nina

    2017-01-01

    Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, whereas Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia: the sulfate reductive pathway that generates Cys and l-Cys desulfhydrase that degrades Cys to H2S, NH3, and pyruvate. The major function of O-acetyl-Ser-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of l-Cys, but our study shows that the OAS-TL A and OAS-TL B of both halophytes are enzymes that also degrade l-Cys to H2S. This activity was significantly higher in Sarcocornia than in Salicornia, especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5′-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia. These results suggest that the low organic-S level in Sarcocornia is the result of high l-Cys degradation rate by OAS-TLs, whereas the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low l-Cys degradation rate, resulting in higher net Cys biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia. PMID:28743765

  8. Three-year study of fast-growing trees in degraded soils amended with composts: Effects on soil fertility and productivity.

    Science.gov (United States)

    Madejón, Paula; Alaejos, Joaquin; García-Álbala, José; Fernández, Manuel; Madejón, Engracia

    2016-03-15

    Currently, worries about the effects of intensive plantations on long-term nutrient supply and a loss of productivity have risen. In this study two composts were added to degraded soils where this type of intensive crops were growing, to avoid the soil fertility decrease and try to increase biomass production. For the experiment, two degraded soils in terms of low organic carbon content and low pH were selected in South-West Spain: La Rábida (RA) and Villablanca (VI) sites. Both study sites were divided into 24 plots. In RA, half of the plots were planted with Populus x canadensis "I-214"; the other half was planted with Eucalyptus globulus. At the VI site, half of the plots were planted with Paulownia fortunei, and the other plots were planted with Eucalyptus globulus. For each tree and site, three treatments were established (two organic composts and a control without compost), with four replications per treatment. The organic amendments were "alperujo" compost, AC, a solid by-product from the extraction of olive oil, and BC, biosolid compost. During the three years of experimentation, samples of soils and plants were analyzed for studying chemical and biochemical properties of soil, plant growth and plant nutritional status and biomass production. The composts increased total organic carbon, water-soluble carbon, nutrients and pH of soil only in the most acidic soil. Soil biochemical quality was calculated with the geometric mean of the enzymatic activities (Dehydrogenase, β-glucosidase, Phosphatase and Urease activities) determined in soils. The results showed a beneficial improvement in comparison with soils without compost. However, the best results were found in the growth and biomass production of the studied trees, especially in Eucalyptus. Nutritional levels of leaves of the trees were, in general, in the normal established range for each species, although no clear effect of the composts was observed. The results of this study justify the addition of

  9. Experience with a biomass-fuelled power plant in Peru. Peru kokunai no biomass nenryoka no hatsuden plant no keiken

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    This paper describes the result of operating a 25-kW biomass-fuelled power plant for 500 hours installed for people in a small village in jungle along the Amazon basin in Peru. The gasifier plant consists of two invert type gas combustors combined with series cyclone dryer filters. Filtration used activated carbons and cotton cloths. The fuel for the plant is wood chips containing water at 5.5% to 11% with calorific power of 20 mJ/kg, consumed at 2.0 kg of lumber per kWh (25 kWh). A gas analysis showed values of CO2 at 13%, CO at 14%, H2 at 18%, CH4 at 3%, and N2 at 52%. Because the fuel of wood chips may cause problems if the size is too large, a size of about 10[times]20[times]30 mm was selected finally. Pressure drop in the gas purifying system was measured using a manometer, which verified that a textile filtering material can be used. The gasoline engine rotation was fixed at 2700 rpm upon discussions. The gasoline engine had no need of modification except at a pipe to the carburetor. This system can be installed at any small village. 1 ref., 1 fig.

  10. Occupational exposure at a contemplated Belarussian power plant fired with contaminated biomass

    DEFF Research Database (Denmark)

    Andersson, Kasper Grann; Fogh, C.L.; Roed, Jørn

    1999-01-01

    To meet the current demand in Belarus for remediation of the vast forest areas that were contaminated by the Chernobyl accident and at the same time establish a much needed energy production, applying contaminated forest biomass as fuel in special power plants is being considered. This paper......-called 'big bags' filled with fly ash waste. Inhalation doses were estimated to be low. External doses received while working at the power plant do not appear to be highly significant compared with the doses from environmental contamination in the area where the power plant is expected to be constructed....

  11. Phylogeny in Defining Model Plants for Lignocellulosic Ethanol Production: A Comparative Study of Brachypodium distachyon, Wheat, Maize, and Miscanthus x giganteus Leaf and Stem Biomass

    Science.gov (United States)

    Meineke, Till; Manisseri, Chithra; Voigt, Christian A.

    2014-01-01

    The production of ethanol from pretreated plant biomass during fermentation is a strategy to mitigate climate change by substituting fossil fuels. However, biomass conversion is mainly limited by the recalcitrant nature of the plant cell wall. To overcome recalcitrance, the optimization of the plant cell wall for subsequent processing is a promising approach. Based on their phylogenetic proximity to existing and emerging energy crops, model plants have been proposed to study bioenergy-related cell wall biochemistry. One example is Brachypodium distachyon, which has been considered as a general model plant for cell wall analysis in grasses. To test whether relative phylogenetic proximity would be sufficient to qualify as a model plant not only for cell wall composition but also for the complete process leading to bioethanol production, we compared the processing of leaf and stem biomass from the C3 grasses B. distachyon and Triticum aestivum (wheat) with the C4 grasses Zea mays (maize) and Miscanthus x giganteus, a perennial energy crop. Lambda scanning with a confocal laser-scanning microscope allowed a rapid qualitative analysis of biomass saccharification. A maximum of 108–117 mg ethanol·g−1 dry biomass was yielded from thermo-chemically and enzymatically pretreated stem biomass of the tested plant species. Principal component analysis revealed that a relatively strong correlation between similarities in lignocellulosic ethanol production and phylogenetic relation was only given for stem and leaf biomass of the two tested C4 grasses. Our results suggest that suitability of B. distachyon as a model plant for biomass conversion of energy crops has to be specifically tested based on applied processing parameters and biomass tissue type. PMID:25133818

  12. Biomass energy development and carbon dioxide mitigation options

    International Nuclear Information System (INIS)

    Hall, D.O.; House, J.I.

    1995-01-01

    Studies on climate change and energy production increasingly recognize the crucial role of biological systems. Carbon sinks in forests (above and below ground), CO 2 emissions from deforestation, planting trees for carbon storage, and biomass as a substitute for fossil fuels are some of the key issues which arise. Halting deforestation is of paramount importance, but there is also great potential for reforestation of degraded lands, agroforestry and improved forest management. We conclude that biomass energy plantations and other types of energy cropping could be a more effective strategy for carbon mitigation than simply growing trees as a carbon store. Using the biomass for production of modern energy carriers such as electricity, and liquid and gaseous fuels also has a wide range of other environmental, social and economic benefits. In order for biomass projects to succeed, it is necessary to ensure that these benefits are felt locally as well as nationally, furthermore, environmental sustainability of bioenergy projects is an essential requirement. The constraints to achieving environmentally-acceptable biomass production are not insurmountable. Rather they should be seen as scientific and entrepreneurial opportunities which will yield numerous advantages at local, national and international levels in the long term. (au) 76 refs

  13. Private capital requirements for international biomass energy projects

    Energy Technology Data Exchange (ETDEWEB)

    Goldemberg, J [University of Sao Paulo, Sao Paulo (Brazil)

    1995-12-01

    In developing countries, the use of biomass for energy production faces two contradictory pressures. On the one hand, biomass costs very little and it is used inefficiently for fuel or charcoal production, leading to widespread destruction of forested areas and environmental degradation; this problem is being attenuated by the promotion, through aid programmes, of more efficient cook stoves for poor people. On the other hand, the conversion of biomass into high-grade fuel such as ethanol from sugar cane or burning urban refuse or gasifying it to produce electricity is not economically competitive at this time and requires subsidies of approximately 30% to make it as attractive as conventional fuels. Only electricity production using residues from sawmills, crops and other biomass by-products is competitive, and a number of plants are in operation in some countries, particularly the United States. For such plants, the usual rates of return and long-term contract purchases that characterize investments of this kind are applied. Although technologies are available for the widespread efficient use of biomass, the financial hurdle of high initial costs has impeded their market penetration, which in turn precludes any decline in costs that might otherwise have come from production increases. Intervention by governments or by GEF, justified on grounds of environmental protection, is needed to accelerate the introduction of the new technologies. The only private flows that are taking place at the moment are those from enlightened investors wishing to guarantee themselves a strong position in the area for the future or to preempt command and control regulations, such as carbon taxes, imposed by governments. The joint implementation of biomass technologies between industrialized and developing countries might be one method of accelerating this flow. (author) 9 refs, 4 figs, 3 tabs

  14. Private capital requirements for international biomass energy projects

    International Nuclear Information System (INIS)

    Goldemberg, J.

    1995-01-01

    In developing countries, the use of biomass for energy production faces two contradictory pressures. On the one hand, biomass costs very little and it is used inefficiently for fuel or charcoal production, leading to widespread destruction of forested areas and environmental degradation; this problem is being attenuated by the promotion, through aid programmes, of more efficient cook stoves for poor people. On the other hand, the conversion of biomass into high-grade fuel such as ethanol from sugar cane or burning urban refuse or gasifying it to produce electricity is not economically competitive at this time and requires subsidies of approximately 30% to make it as attractive as conventional fuels. Only electricity production using residues from sawmills, crops and other biomass by-products is competitive, and a number of plants are in operation in some countries, particularly the United States. For such plants, the usual rates of return and long-term contract purchases that characterize investments of this kind are applied. Although technologies are available for the widespread efficient use of biomass, the financial hurdle of high initial costs has impeded their market penetration, which in turn precludes any decline in costs that might otherwise have come from production increases. Intervention by governments or by GEF, justified on grounds of environmental protection, is needed to accelerate the introduction of the new technologies. The only private flows that are taking place at the moment are those from enlightened investors wishing to guarantee themselves a strong position in the area for the future or to preempt command and control regulations, such as carbon taxes, imposed by governments. The joint implementation of biomass technologies between industrialized and developing countries might be one method of accelerating this flow. (author)

  15. Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, Kristen; Allgaier, Martin; Chavarria, Yaucin; Fortney, Julian; Hugenholtz, Phillip; Simmons, Blake; Sublette, Kerry; Silver, Whendee; Hazen, Terry

    2011-07-14

    Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterized by frequent anoxic conditions and fluctuating redox, suggesting the presence of lignin-degrading organisms and mechanisms that are different from known fungal decomposers and oxygen-dependent enzyme activities. We explored microbial lignin-degraders by burying bio-traps containing lignin-amended and unamended biosep beads in the soil for 1, 4, 13 and 30 weeks. At each time point, phenol oxidase and peroxidase enzyme activity was found to be elevated in the lignin-amended versus the unamended beads, while cellulolytic enzyme activities were significantly depressed in lignin-amended beads. Quantitative PCR of bacterial communities showed more bacterial colonization in the lignin-amended compared to the unamended beads after one and four weeks, suggesting that the lignin supported increased bacterial abundance. The microbial community was analyzed by small subunit 16S ribosomal RNA genes using microarray (PhyloChip) and by high-throughput amplicon pyrosequencing based on universal primers targeting bacterial, archaeal, and eukaryotic communities. Community trends were significantly affected by time and the presence of lignin on the beads. Lignin-amended beads have higher relative abundances of representatives from the phyla Actinobacteria, Firmicutes, Acidobacteria and Proteobacteria compared to unamended beads. This study suggests that in low and fluctuating redox soils, bacteria could play a role in anaerobic lignin decomposition.

  16. Characterization of trapped lignin-degrading microbes in tropical forest soil

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, K.M.; Allgaier, M.; Chavarria, Y.; Fortney, J.L.; Hugenholz, P.; Simmons, B.; Sublette, K.; Silver, W.L.; Hazen, T.C.

    2011-03-01

    Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterized by frequent anoxic conditions and fluctuating redox, suggesting the presence of lignin-degrading organisms and mechanisms that are different from known fungal decomposers and oxygen-dependent enzyme activities. We explored microbial lignin-degraders by burying bio-traps containing lignin-amended and unamended biosep beads in the soil for 1, 4, 13 and 30 weeks. At each time point, phenol oxidase and peroxidase enzyme activity was found to be elevated in the lignin-amended versus the unamended beads, while cellulolytic enzyme activities were significantly depressed in lignin-amended beads. Quantitative PCR of bacterial communities showed more bacterial colonization in the lignin-amended compared to the unamended beads after one and four weeks, suggesting that the lignin supported increased bacterial abundance. The microbial community was analyzed by small subunit 16S ribosomal RNA genes using microarray (PhyloChip) and by high-throughput amplicon pyrosequencing based on universal primers targeting bacterial, archaeal, and eukaryotic communities. Community trends were significantly affected by time and the presence of lignin on the beads. Lignin-amended beads have higher relative abundances of representatives from the phyla Actinobacteria, Firmicutes, Acidobacteria and Proteobacteria compared to unamended beads. This study suggests that in low and fluctuating redox soils, bacteria could play a role in anaerobic lignin decomposition.

  17. Mapping the Centimeter-Scale Spatial Variability of PAHs and Microbial Populations in the Rhizosphere of Two Plants.

    Directory of Open Access Journals (Sweden)

    Amélia Bourceret

    Full Text Available Rhizoremediation uses root development and exudation to favor microbial activity. Thus it can enhance polycyclic aromatic hydrocarbon (PAH biodegradation in contaminated soils. Spatial heterogeneity of rhizosphere processes, mainly linked to the root development stage and to the plant species, could explain the contrasted rhizoremediation efficiency levels reported in the literature. Aim of the present study was to test if spatial variability in the whole plant rhizosphere, explored at the centimetre-scale, would influence the abundance of microorganisms (bacteria and fungi, and the abundance and activity of PAH-degrading bacteria, leading to spatial variability in PAH concentrations. Two contrasted rhizospheres were compared after 37 days of alfalfa or ryegrass growth in independent rhizotron devices. Almost all spiked PAHs were degraded, and the density of the PAH-degrading bacterial populations increased in both rhizospheres during the incubation period. Mapping of multiparametric data through geostatistical estimation (kriging revealed that although root biomass was spatially structured, PAH distribution was not. However a greater variability of the PAH content was observed in the rhizosphere of alfalfa. Yet, in the ryegrass-planted rhizotron, the Gram-positive PAH-degraders followed a reverse depth gradient to root biomass, but were positively correlated to the soil pH and carbohydrate concentrations. The two rhizospheres structured the microbial community differently: a fungus-to-bacterium depth gradient similar to the root biomass gradient only formed in the alfalfa rhizotron.

  18. Biotechnological Strategies to Improve Plant Biomass Quality for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Julián Mario Peña-Castro

    2017-01-01

    Full Text Available The transition from an economy dependent on nonrenewable energy sources to one with higher diversity of renewables will not be a simple process. It requires an important research effort to adapt to the dynamics of the changing energy market, sort costly processes, and avoid overlapping with social interest markets such as food and livestock production. In this review, we analyze the desirable traits of raw plant materials for the bioethanol industry and the molecular biotechnology strategies employed to improve them, in either plants already under use (as maize or proposed species (large grass families. The fundamentals of these applications can be found in the mechanisms by which plants have evolved different pathways to manage carbon resources for reproduction or survival in unexpected conditions. Here, we review the means by which this information can be used to manipulate these mechanisms for commercial uses, including saccharification improvement of starch and cellulose, decrease in cell wall recalcitrance through lignin modification, and increase in plant biomass.

  19. Biotechnological Strategies to Improve Plant Biomass Quality for Bioethanol Production

    Science.gov (United States)

    del Moral, Sandra; Núñez-López, Lizeth; Barrera-Figueroa, Blanca E.; Amaya-Delgado, Lorena

    2017-01-01

    The transition from an economy dependent on nonrenewable energy sources to one with higher diversity of renewables will not be a simple process. It requires an important research effort to adapt to the dynamics of the changing energy market, sort costly processes, and avoid overlapping with social interest markets such as food and livestock production. In this review, we analyze the desirable traits of raw plant materials for the bioethanol industry and the molecular biotechnology strategies employed to improve them, in either plants already under use (as maize) or proposed species (large grass families). The fundamentals of these applications can be found in the mechanisms by which plants have evolved different pathways to manage carbon resources for reproduction or survival in unexpected conditions. Here, we review the means by which this information can be used to manipulate these mechanisms for commercial uses, including saccharification improvement of starch and cellulose, decrease in cell wall recalcitrance through lignin modification, and increase in plant biomass. PMID:28951875

  20. Cofiring versus biomass-fired power plants: GHG (Greenhouse Gases) emissions savings comparison by means of LCA (Life Cycle Assessment) methodology

    International Nuclear Information System (INIS)

    Sebastian, F.; Royo, J.; Gomez, M.

    2011-01-01

    One way of producing nearly CO 2 free electricity is by using biomass as a combustible. In many cases, removal of CO 2 in biomass grown is almost the same as the emissions for the bioelectricity production at the power plant. For this reason, bioelectricity is generally considered CO 2 neutral. For large-scale biomass electricity generation two alternatives can be considered: biomass-only fired power plants, or cofiring in an existing coal power plant. Among other factors, two important aspects should be analyzed in order to choose between the two options. Firstly, which is the most appealing alternative if their Greenhouse Gases (GHG) Emissions savings are taken into account. Secondly, which biomass resource is the best, if the highest impact reduction is sought. In order to quantify all the GHG emissions related to each system, a Life Cycle Assessment (LCA) methodology has been performed and all the processes involved in each alternative have been assessed in a cradle-to-grave manner. Sensitivity analyses of the most dominant parameters affecting GHG emissions, and comparisons between the obtained results, have also been carried out.

  1. Optimal Level of Woody Biomass Co-Firing with Coal Power Plant Considering Advanced Feedstock Logistics System

    Directory of Open Access Journals (Sweden)

    Sangpil Ko

    2018-05-01

    Full Text Available Co-firing from woody biomass feedstock is one of the alternatives toward increased use of renewable feedstock in existing coal power plants. However, the economic level of co-firing at a particular power plant depends on several site-specific factors. Torrefaction has been identified recently as a promising biomass pretreatment option to lead to reduction of the feedstock delivered cost, and thus facilitate an increase in the co-firing ratio. In this study, a mixed integer linear program (MILP is developed to integrate supply chain of co-firing and torrefaction process and find the optimal level of biomass co-firing in terms of minimized transportation and logistics costs, with or without tax credits. A case study of 26 existing coal power plants in three Great Lakes States of the US is used to test the model. The results reveal that torrefaction process can lead to higher levels of co-firing, but without the tax credit, the effect is limited to the low capacity of power plants. The sensitivity analysis shows that co-firing ratio has higher sensitivity to variation in capital and operation costs of torrefaction than to the variation in the transportation and feedstock purchase costs.

  2. Impact of biogas interventions on forest biomass and regeneration in southern India

    Directory of Open Access Journals (Sweden)

    M. Agarwala

    2017-07-01

    Full Text Available Programs to provide alternative energy sources such as biogas improve indoor air quality and potentially reduce pressure on forests from fuelwood collection. This study tests whether biogas intervention is associated with higher forest biomass and forest regeneration in degraded forests in Chikkaballapur district in Southern India. Using propensity score matching, we find that forest plots in proximity to villages with biogas interventions (treatment had greater forest biomass than comparable plots around villages without biogas (control. We also found significantly higher sapling abundance and diversity in treatment than control plots despite no significant difference in seedling abundances and diversity in treatment forests, suggesting that plants have a higher probability of reaching sapling stage. These results indicate the potential for alternative energy sources that reduce dependence on fuelwood to promote regeneration of degraded forests. However, forest regrowth is not uniform across treatments and is limited by soil nutrients and biased towards species that are light demanding, fire-resistant and can thrive in poor soil conditions.

  3. Land degradation and halophytic plant diversity of milleyha wetland ecosystem (samandag-hatay), Turkey

    International Nuclear Information System (INIS)

    Altay, V.

    2012-01-01

    Investigations were undertaken during 2010-2011 to study effect of human induced land degradation on structure of some halophytic plant communities. Over all 183 taxa of vascular plant were recorded. Out of these 76 were of typical halophytes. The dominant plant taxa were; Phragmites australis, Halimione portulacoides and Bolboschoenus maritimus. The threatened categories of these taxa were identified from the Red Data Book of Turkey together with their distribution. The impact of degradation on the habitats due to land use for agriculture, organic and inorganic waste disposal and housing for tourisitc purposes were identified and conservation measures were outlined in this study. (author)

  4. Rapid estimation of the biochemical methane potential of plant biomasses using Fourier transform mid-infrared photoacoustic spectroscopy.

    Science.gov (United States)

    Bekiaris, Georgios; Triolo, Jin M; Peltre, Clément; Pedersen, Lene; Jensen, Lars S; Bruun, Sander

    2015-12-01

    Biochemical methane potential (BMP) is a very important characteristic of a given feedstock for optimisation of its use in biogas production. However, the long digestion time needed to determine BMP is the main limitation for the use of this assay during the operation of anaerobic digesters to produce biogas. Fourier transform mid-infrared photoacoustic spectroscopy (FTIR-PAS) was used to predict the BMP of 87 plant biomasses. The developed calibration model was able to explain 81% of the variance in the measured BMP of a selected test set with a root mean square error (RMSE) of 40NLCH4kg(-1) of volatile solids (VS) and a ratio of performance to deviation (RPD) of 2.38. The interpretation of the regression coefficients used in the calibration revealed a positive correlation of BMP with easily degradable compounds (amorphous cellulose, hemicellulose and aliphatic compounds) and a negative correlation with inhibitors of cellulose hydrolysis (lignin, hemicellulose). Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Unravelling the Interactions between Hydrolytic and Oxidative Enzymes in Degradation of Lignocellulosic Biomass by Sporothrix carnis under Various Fermentation Conditions

    Directory of Open Access Journals (Sweden)

    Olusola A. Ogunyewo

    2016-01-01

    Full Text Available The mechanism underlying the action of lignocellulolytic enzymes in biodegradation of lignocellulosic biomass remains unclear; hence, it is crucial to investigate enzymatic interactions involved in the process. In this study, degradation of corn cob by Sporothrix carnis and involvement of lignocellulolytic enzymes in biodegradation were investigated over 240 h cultivation period. About 60% degradation of corn cob was achieved by S. carnis at the end of fermentation. The yields of hydrolytic enzymes, cellulase and xylanase, were higher than oxidative enzymes, laccase and peroxidase, over 144 h fermentation period. Maximum yields of cellulase (854.4 U/mg and xylanase (789.6 U/mg were at 96 and 144 h, respectively. Laccase and peroxidase were produced cooperatively with maximum yields of 489.06 U/mg and 585.39 U/mg at 144 h. Drastic decline in production of cellulase at 144 h (242.01 U/mg and xylanase at 192 h (192.2 U/mg indicates that they play initial roles in biodegradation of lignocellulosic biomass while laccase and peroxidase play later roles. Optimal degradation of corn cob (76.6% and production of hydrolytic and oxidative enzymes were achieved with 2.5% inoculum at pH 6.0. Results suggest synergy in interactions between the hydrolytic and oxidative enzymes which can be optimized for improved biodegradation.

  6. The distribution and degradation of chlormequat in wheat plants

    NARCIS (Netherlands)

    Dekhuijzen, H.M.; Vonk, C.R.

    The distribution and degradation of chlormequat chloride (2-chloro 1,2-14C ethyltrimethylammonium chloride) was determined after uptake by the roots of summer wheat seedlings. This plant regulator was readily translocated from the roots to the above ground parts and converted into choline. Choline

  7. Metagenomic analysis of a tropical composting operation at the são paulo zoo park reveals diversity of biomass degradation functions and organisms.

    Directory of Open Access Journals (Sweden)

    Layla Farage Martins

    Full Text Available Composting operations are a rich source for prospection of biomass degradation enzymes. We have analyzed the microbiomes of two composting samples collected in a facility inside the São Paulo Zoo Park, in Brazil. All organic waste produced in the park is processed in this facility, at a rate of four tons/day. Total DNA was extracted and sequenced with Roche/454 technology, generating about 3 million reads per sample. To our knowledge this work is the first report of a composting whole-microbial community using high-throughput sequencing and analysis. The phylogenetic profiles of the two microbiomes analyzed are quite different, with a clear dominance of members of the Lactobacillus genus in one of them. We found a general agreement of the distribution of functional categories in the Zoo compost metagenomes compared with seven selected public metagenomes of biomass deconstruction environments, indicating the potential for different bacterial communities to provide alternative mechanisms for the same functional purposes. Our results indicate that biomass degradation in this composting process, including deconstruction of recalcitrant lignocellulose, is fully performed by bacterial enzymes, most likely by members of the Clostridiales and Actinomycetales orders.

  8. Pectin-rich biomass as feedstock for fuel ethanol production.

    Science.gov (United States)

    Edwards, Meredith C; Doran-Peterson, Joy

    2012-08-01

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes.

  9. Pectin-rich biomass as feedstock for fuel ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Meredith C.; Doran-Peterson, Joy [Georgia Univ., Athens, GA (United States). Dept. of Microbiology

    2012-08-15

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes. (orig.)

  10. Environmental and socioeconomic aspects in the strategic analysis of a biomass power plant integration

    International Nuclear Information System (INIS)

    Varela, M.; Lechon, Y.; Saez, R.

    1999-01-01

    The aim of the work was to assess the potential weaknesses and threats of the integration of a biomass power plant proposed in a depressed area of Spain as well as to analyse the inherent strengths and opportunities that such a project could have in economic, technical or environmental terms. For this purpose an analysis of site, biomass resources, problems associated to fuel mix combustion, electricity production and connection were assessed. The socioeconomic (employment, GDP effects or tax revenue impact) and environmental (human health, soil erosion, fertiliser application) outcomes associated with the proposed biomass scheme have been evaluated. Finally, a list of actions to take into account for successful implementation of this proposed project has been defined. (author)

  11. System analysis of CO_2 sequestration from biomass cogeneration plants (Bio-CHP-CCS). Technology, economic efficiency, sustainability

    International Nuclear Information System (INIS)

    Hartmann, Claus

    2014-10-01

    In the present work a system analysis is carried out to determine the extent to which a combination of the three areas of energetic biomass use, combined heat and power (CHP) and CO_2 sequestration (CCS - Carbon Capture and Storage) is fundamentally possible and meaningful. The term ''CO_2 sequestration'' refers to the process chain from CO_2 capture, CO_2 transport and CO_2 storage. While the use of biomass in combined heat and power plants is a common practice, CO_2 sequestration (based on fossil fuels) is at the research and development stage. A combination of CCS with biomass has so far been little studied, a combination with combined heat and power plants has not been investigated at all. The two technologies for the energetic use of biomass and cogeneration represent fixed variables in the energy system of the future in the planning of the German federal government. According to the lead scenario of the Federal Ministry of the Environment, electricity generation from biomass is to be almost doubled from 2008 to 2020. At the same time, the heat generated in cogeneration is to be trebled [cf. Nitsch and Wenzel, 2009, p. 10]. At the same time, the CCS technology is to be used in half of all German coal-fired power plants until 2030 [cf. Krassuki et al., 2009, p. 17]. The combination of biomass and CCS also represents an option which is conceivable for the German federal policy [cf. Bundestag, 2008b, p. 4]. In addition, the CCS technology will provide very good export opportunities for the German economy in the future [cf. Federal Government, 2010, p. 20]. The combination of biomass combined heat and power plants with CCS offers the interesting opportunity to actively remove CO_2 from the atmosphere as a future climate protection instrument by means of CO_2 neutrality. Therefore, in the energy concept of the German federal government called for a storage project for industrial or biogenic CO_2 emissions to be established until 2020, as well as the use of CO_2 as

  12. Balance sheet of the first year of O&M at the Ence biomass plant in Mérida

    International Nuclear Information System (INIS)

    2016-01-01

    Having received the Final Commissioning Protocol from the Ministry of Agriculture, Rural Development, Environment and Energy of the Extremadura Regional Government, Ence’s biomass generation plant in Mérida started to deliver energy to the electrical system in April 2014. With the construction and commissioning of the Sener turnkey project for the biomass plant having been completed, Ence - the engineering and technology group – set up the company Biomasa Mérida O&M S.L. to provide operation and maintenance works for the facility’s first two years of operation. Following signature of the provisional acceptance of the plant by Ence, Biomasa Mérida O&M S.L. accepted its mission and started work on 15 September 2014. (Author)

  13. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents.

    Science.gov (United States)

    Poorter, Hendrik; Jagodzinski, Andrzej M; Ruiz-Peinado, Ricardo; Kuyah, Shem; Luo, Yunjian; Oleksyn, Jacek; Usoltsev, Vladimir A; Buckley, Thomas N; Reich, Peter B; Sack, Lawren

    2015-11-01

    We compiled a global database for leaf, stem and root biomass representing c. 11 000 records for c. 1200 herbaceous and woody species grown under either controlled or field conditions. We used this data set to analyse allometric relationships and fractional biomass distribution to leaves, stems and roots. We tested whether allometric scaling exponents are generally constant across plant sizes as predicted by metabolic scaling theory, or whether instead they change dynamically with plant size. We also quantified interspecific variation in biomass distribution among plant families and functional groups. Across all species combined, leaf vs stem and leaf vs root scaling exponents decreased from c. 1.00 for small plants to c. 0.60 for the largest trees considered. Evergreens had substantially higher leaf mass fractions (LMFs) than deciduous species, whereas graminoids maintained higher root mass fractions (RMFs) than eudicotyledonous herbs. These patterns do not support the hypothesis of fixed allometric exponents. Rather, continuous shifts in allometric exponents with plant size during ontogeny and evolution are the norm. Across seed plants, variation in biomass distribution among species is related more to function than phylogeny. We propose that the higher LMF of evergreens at least partly compensates for their relatively low leaf area : leaf mass ratio. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  14. Ash characteristics and plant nutrients in some aquatic biomasses

    Science.gov (United States)

    Masto, Reginald; Pandit, Ankita; George, Joshy; Mukhopadhyay, Sangeeta; Selvi, Vetrivel; Ram, Lal

    2016-04-01

    Aquatic biomasses are explored as potential fuel source for direct combustion because of their faster growth and no land requirement. The energy density and the ash characteristics of the aquatic biomasses are to be evaluated for their suitability for energy extraction. In the study, four aquatic plant samples namely Eichornia crassipes, Hydrilla verticilleta, Lemna minor, Spirogyra spp were collected from a pond in Digwadih Campus of Central Institute of Mining and Fuel Research, Dhanbad. The biomasses were air dried, powdered and ashed at different temperatures. Volatile C was relatively lower in Spirogyra and Hydrilla (53 %) than Eichornia (62.6 %) or Lemna (59.7 %), whereas fixed C was higher for Eichornia and Lemna (about 10 %) and lower for Hydrilla (1 %). Ultimate analysis showed that the carbon content was in the order Eichornia > Lemna > Spirogyra > Hydrilla. The IR spectra of each raw biomass is compared to their respective ashes obtained at different temperatures (500-900°C). With increase in ashing temperature from 500-900°C there is gradual breakdown of the cellulosic structure hence, peaks around 2900-2800cm-1 caused by aliphatic C-H vibration tends to disappear slowly in ash. More number of peaks appears at lower wavenumbers in ashes of all the biomass samples indicating towards increased percentage of inorganic ion species. Considerable enrichment of SiO2 is validated with prominent peaks at 1100-900 cm-1 in all the ashes. Lemna and Spirogyra has a similar ash composition (Si > Al > Ca > K), whereas, Ca was higher in Hydrilla (Si > Ca > K > Al). Eichornia (Si > K > Ca > Al) has higher K and Ca than Al. SiO2 and Al2O3 were higher in Spirogyra, while SiO2 and CaO in Eichornia and Hydrilla. K first increased from 500-700/800⁰C, and then decreased from 800-900⁰C. Cl is lost slowly in ash from 500-700/800⁰C and then by a drastic reduction from 800-900⁰C. S is enhanced in ash at all temperatures although the change is quite small. Most of the Cl

  15. Effects of snails, submerged plants and their coexistence on eutrophication in aquatic ecosystems

    Directory of Open Access Journals (Sweden)

    Mo Shuqing

    2017-01-01

    Full Text Available Eutrophication resulting from nutrient loading to freshwater habitats is a severe problem, leading to degradation of ecosystems, including deterioration of water quality, water clarity and loss of biodiversity. Measures enacted to restore degraded freshwater ecosystems often involve the reintroduction of submerged plants and aquatic animals with beneficial ecological functions. In a mesocosm experiment, three treatments (planting with Vallisneria natans, introduction of the snail Bellamya aeruginosa and a combined treatment with both plants and snails were compared with controls to evaluate their effects on trophic state. The total nitrogen (TN, total phosphorus (TP and chlorophyll a (Chl a concentrations of planktonic and benthic algal samples were determined every two weeks, along with light intensity at the sediment surface. The plant-only treatment significantly reduced the TN levels and planktonic and benthic algal biomass and increased the light intensity at the sediment surface. The snail-only treatment reduced the concentrations of TN and reduced planktonic and benthic algal biomass. The combined treatment decreased the concentrations of TN and TP, reduced planktonic algal biomass and increased the light intensity on the sediment surface. The results indicate that while submerged plants and snails can both improve water quality, the most pronounced effect in aquatic ecosystems is achieved by their presence in combination. A combined reintroduction approach may provide enhanced benefits in restoring the eutrophic ecosystems, following the reduction of external nutrient loading.

  16. Expression of CphB- and CphE-type cyanophycinases in cyanophycin-producing tobacco and comparison of their ability to degrade cyanophycin in plant and plant extracts.

    Science.gov (United States)

    Ponndorf, Daniel; Broer, Inge; Nausch, Henrik

    2017-08-01

    Increasing the arginine (Arg) content in plants used as feed or food is of interest, since the supplementation of food with conditionally essential Arg has been shown to have nutritional benefits. An increase was achieved by the expression of the Arg-rich bacterial storage component, cyanophycin (CGP), in the chloroplast of transgenic plants. CGP is stable in plants and its degradation into β-aspartic acid (Asp)-Arg dipeptides, is solely catalyzed by bacterial cyanophycinases (CGPase). Dipeptides can be absorbed by animals even more efficiently than free amino acids (Matthews and Adibi 1976; Wenzel et al. 2001). The simultaneous production of CGP and CGPase in plants could be a source of β-Asp-Arg dipeptides if CGP degradation can be prevented in planta or if dipeptides are stable in the plants. We have shown for the first time that it is possible to co-express CGP and CGPase in the same plant without substrate degradation in planta by transient expression of the cyanobacterial CGPase CPHB (either in the plastid or cytosol), and the non-cyanobacterial CGPase CPHE (cytosol) in CGP-producing Nicotiana tabacum plants. We compared their ability to degrade CGP in planta and in crude plant extracts. No CGP degradation appeared prior to cell homogenization independent of the CGPase produced. In crude plant extracts, only cytosolic CPHE led to a fast degradation of CGP. CPHE also showed higher stability and in vitro activity compared to both CPHB variants. This work is the next step to increase Arg in forage plants using a stable, Arg-rich storage protein.

  17. Pipelines : moving biomass and energy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2006-07-01

    Moving biomass and energy through pipelines was presented. Field sourced biomass utilization for fuel was discussed in terms of competing cost factors; economies of scale; and differing fuel plant sizes. The cost versus scale in a bioenergy facility was illustrated in chart format. The transportation cost of biomass was presented as it is a major component of total biomass processing cost and is in the typical range of 25-45 per cent of total processing costs for truck transport of biomass. Issues in large scale biomass utilization, scale effects in transportation, and components of transport cost were identified. Other topics related to transportation issues included approaches to pipeline transport; cost of wood chips in pipeline transport; and distance variable cost of transporting wood chips by pipeline. Practical applications were also offered. In addition, the presentation provided and illustrated a model for an ethanol plant supplied by truck transport as well as a sample configuration for 19 truck based ethanol plants versus one large facility supplied by truck plus 18 pipelines. Last, pipeline transport of bio-oil and pipeline transport of syngas was discussed. It was concluded that pipeline transport can help in reducing congestion issues in large scale biomass utilization and that it can offer a means to achieve large plant size. Some current research at the University of Alberta on pipeline transport of raw biomass, bio-oil and hydrogen production from biomass for oil sands and pipeline transport was also presented. tabs., figs.

  18. Analyzing the biomass filter behavior in an anaerobic wastewater treatment plants

    International Nuclear Information System (INIS)

    Carlos-Hernandez, S.

    2009-01-01

    Nowadays, waste emissions in air, water and soil must be reduced in order to reach the more and more strict environmental rules. In the case of wastewater, there exists a big interest to improve treatment plants performances. The paper deals with the analysis, via the phase protratis method, of a biomass filter behavior in a completely stirred tank reactor deals with the analysis. (Author)

  19. Small-scale CHP Plant based on a 35 kWel Hermetic Four Cylinder Stirling Engine for Biomass Fuels- Development, Technology and Operating Experiences

    DEFF Research Database (Denmark)

    Obernberger, I.; Carlsen, Henrik; Biedermann, F.

    2003-01-01

    ) process and the Stirling engine process. The ORC process represents an economically interesting technology for small-scale biomass-fired combined heat and power plants in a power range between 400 and 1,500 kWel. A newly developed ORC technology with a nominal electric capacity of 1,000 kW was implemented...... in the biomass CHP plant Lienz (A) in the framework of an EU demonstration project. This plant was put in operation in February 2002. Stirling engines are a promising solution for installations with nominal electric capacities between 10 and 150 kW. A biomass CHP pilot plant based on a 35 kWel-Stirling engine...

  20. Biogas Production from Vietnamese Animal Manure, Plant Residues and Organic Waste: Influence of Biomass Composition on Methane Yield

    Directory of Open Access Journals (Sweden)

    T. T. T. Cu

    2015-02-01

    Full Text Available Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane (CH4 production to the chemical characteristics of the biomass. The biochemical methane potential (BMP and biomass characteristics were measured. Results showed that piglet manure produced the highest CH4 yield of 443 normal litter (NL CH4 kg−1 volatile solids (VS compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL CH4 kg−1 VS, respectively. The BMP experiment also demonstrated that the CH4 production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square at 0.95. This model was applied to calculate the CH4 yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam.

  1. Biogas production from vietnamese animal manure, plant residues and organic waste: influence of biomass composition on methane yield.

    Science.gov (United States)

    Cu, T T T; Nguyen, T X; Triolo, J M; Pedersen, L; Le, V D; Le, P D; Sommer, S G

    2015-02-01

    Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane (CH4) production to the chemical characteristics of the biomass. The biochemical methane potential (BMP) and biomass characteristics were measured. Results showed that piglet manure produced the highest CH4 yield of 443 normal litter (NL) CH4 kg(-1) volatile solids (VS) compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza) was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL CH4 kg(-1) VS, respectively. The BMP experiment also demonstrated that the CH4 production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square) at 0.95. This model was applied to calculate the CH4 yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam.

  2. Formation and degradation pathways of intermediate products formed during the hydropyrolysis of glucose as a model substance for wet biomass in a tubular reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sinag, A. [Department of Chemistry, Science Faculty, Ankara University, 06100 Besevler-Ankara (Turkey); Kruse, A.; Schwarzkopf, V. [Institut fuer Technische Chemie - CPV, Forschungszentrum Karlsruhe GmbH, P.O. Box 3640, D-76021 Karlsruhe (Germany)

    2003-12-10

    In this study, glucose as a model substance for cellulose is pyrolyzed in supercritical water. The experiments are conducted in a continuously operated tubular reactor. From the usage of model substances, key information on the degradation pathway of biomass in supercritical water can be obtained. With this knowledge, it is tried to optimize a new method for gasification of wet biomass considering high yields of hydrogen and methane and also the suppressing of tar and char formation. The gaseous products mainly contain hydrogen, carbon dioxide, methane and a small amount of carbon monoxide. The effect of experimental conditions, such as pressure, temperature and reaction time, on the degradation of glucose is investigated in the experiments. The qualitative and quantitative composition of the gas and liquid phases formed are determined. The results show that only the amount of phenols increases with increasing temperature in the liquid phase. No complete gasification of glucose is achieved in the studied temperature range between 400 C and 500 C. The addition of alkali salts leads to a higher gas generation and to a decrease in carbon monoxide concentration via water-gas-shift reaction. A lower furfural concentration is obtained in the presence of KHCO{sub 3}. Furthermore, this study shows that there is a wide conformity between the results of real and model biomass. A simplified scheme for glucose degradation is also presented with the help of the results found. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  3. Diesel power plants based on biomass gasification; Biomassan ja turpeen kaasutukseen perustuvien dieselvoimalaitosten toteutettavuustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Solantausta, Y.; Wilen, C.

    1995-12-31

    Different power production systems have been developed for biomass feedstocks. However, only few of these systems can meet the following three requirements: (a) suitability to small scale electricity production (< 5-10 MWe), (b) reliable operation with realistically available biomass feedstocks, and (c) potential for economical competitiveness. The fluidized-bed boilers have been successfully operated with wood waste and peat down to outputs of the order of 5 MWe and the investment costs have been successfully lowered to a reasonable level. However, this concept is most suitable for combined heat and electricity production and smaller plant sizes are not considered feasible. One of the most promising alternative for this commercially proven technology is the diesel power plant based on gasification. This concept has a potential for higher power to heat ratios in cogeneration or higher efficiency in separate electricity production. The objectives of this project were (a) to evaluate the technical and economical feasibility of diesel power plants based on biomass gasification and (b) to study the effects of operating conditions (temperature, bed material and air staging) on the performance of a circulating fluidized-bed gasifier. The experimental part of the project was carried out on a new PDU-scale Circulating Fluidized-Bed Gasification test facility of VTT. Wood residues were used as the feedstocks and the experiments were mainly focused on tar formation and gasifier performance. The results will be compared to earlier VTT data obtained for bubbling-bed reactors. The techno-economic feasibility studies are carried out using existing process modelling tools of VTT and the gasification based diesel plants will be compared to conventional fluidized-bed boilers

  4. Diesel power plants based on biomass gasification; Biomassan ja turpeen kaasutukseen perustuvien dieselvoimalaitosten toteutettavuustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E; Staahlberg, P; Solantausta, Y; Wilen, C

    1996-12-31

    Different power production systems have been developed for biomass feedstocks. However, only few of these systems can meet the following three requirements: (a) suitability to small scale electricity production (< 5-10 MWe), (b) reliable operation with realistically available biomass feedstocks, and (c) potential for economical competitiveness. The fluidized-bed boilers have been successfully operated with wood waste and peat down to outputs of the order of 5 MWe and the investment costs have been successfully lowered to a reasonable level. However, this concept is most suitable for combined heat and electricity production and smaller plant sizes are not considered feasible. One of the most promising alternative for this commercially proven technology is the diesel power plant based on gasification. This concept has a potential for higher power to heat ratios in cogeneration or higher efficiency in separate electricity production. The objectives of this project were (a) to evaluate the technical and economical feasibility of diesel power plants based on biomass gasification and (b) to study the effects of operating conditions (temperature, bed material and air staging) on the performance of a circulating fluidized-bed gasifier. The experimental part of the project was carried out on a new PDU-scale Circulating Fluidized-Bed Gasification test facility of VTT. Wood residues were used as the feedstocks and the experiments were mainly focused on tar formation and gasifier performance. The results will be compared to earlier VTT data obtained for bubbling-bed reactors. The techno-economic feasibility studies are carried out using existing process modelling tools of VTT and the gasification based diesel plants will be compared to conventional fluidized-bed boilers

  5. Advances in High Throughput Screening of Biomass Recalcitrance (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Turner, G. B.; Decker, S. R.; Tucker, M. P.; Law, C.; Doeppke, C.; Sykes, R. W.; Davis, M. F.; Ziebell, A.

    2012-06-01

    This was a poster displayed at the Symposium. Advances on previous high throughput screening of biomass recalcitrance methods have resulted in improved conversion and replicate precision. Changes in plate reactor metallurgy, improved preparation of control biomass, species-specific pretreatment conditions, and enzymatic hydrolysis parameters have reduced overall coefficients of variation to an average of 6% for sample replicates. These method changes have improved plate-to-plate variation of control biomass recalcitrance and improved confidence in sugar release differences between samples. With smaller errors plant researchers can have a higher degree of assurance more low recalcitrance candidates can be identified. Significant changes in plate reactor, control biomass preparation, pretreatment conditions and enzyme have significantly reduced sample and control replicate variability. Reactor plate metallurgy significantly impacts sugar release aluminum leaching into reaction during pretreatment degrades sugars and inhibits enzyme activity. Removal of starch and extractives significantly decreases control biomass variability. New enzyme formulations give more consistent and higher conversion levels, however required re-optimization for switchgrass. Pretreatment time and temperature (severity) should be adjusted to specific biomass types i.e. woody vs. herbaceous. Desalting of enzyme preps to remove low molecular weight stabilizers and improved conversion levels likely due to water activity impacts on enzyme structure and substrate interactions not attempted here due to need to continually desalt and validate precise enzyme concentration and activity.

  6. Lignin from hydrothermally pretreated grass biomass retards enzymatic cellulose degradation by acting as a physical barrier rather than by inducing nonproductive adsorption of enzymes.

    Science.gov (United States)

    Djajadi, Demi T; Jensen, Mads M; Oliveira, Marlene; Jensen, Anders; Thygesen, Lisbeth G; Pinelo, Manuel; Glasius, Marianne; Jørgensen, Henning; Meyer, Anne S

    2018-01-01

    Lignin is known to hinder efficient enzymatic conversion of lignocellulose in biorefining processes. In particular, nonproductive adsorption of cellulases onto lignin is considered a key mechanism to explain how lignin retards enzymatic cellulose conversion in extended reactions. Lignin-rich residues (LRRs) were prepared via extensive enzymatic cellulose degradation of corn stover ( Zea mays subsp. mays L.), Miscanthus  ×  giganteus stalks (MS) and wheat straw ( Triticum aestivum L.) (WS) samples that each had been hydrothermally pretreated at three severity factors (log R 0 ) of 3.65, 3.83 and 3.97. The LRRs had different residual carbohydrate levels-the highest in MS; the lowest in WS. The residual carbohydrate was not traceable at the surface of the LRRs particles by ATR-FTIR analysis. The chemical properties of the lignin in the LRRs varied across the three types of biomass, but monolignols composition was not affected by the severity factor. When pure cellulose was added to a mixture of LRRs and a commercial cellulolytic enzyme preparation, the rate and extent of glucose release were unaffected by the presence of LRRs regardless of biomass type and severity factor, despite adsorption of the enzymes to the LRRs. Since the surface of the LRRs particles were covered by lignin, the data suggest that the retardation of enzymatic cellulose degradation during extended reaction on lignocellulosic substrates is due to physical blockage of the access of enzymes to the cellulose caused by the gradual accumulation of lignin at the surface of the biomass particles rather than by nonproductive enzyme adsorption. The study suggests that lignin from hydrothermally pretreated grass biomass retards enzymatic cellulose degradation by acting as a physical barrier blocking the access of enzymes to cellulose rather than by inducing retardation through nonproductive adsorption of enzymes.

  7. Italian Residential Buildings: Economic Assessments for Biomass Boilers Plants

    Directory of Open Access Journals (Sweden)

    Maurizio Carlini

    2013-01-01

    Full Text Available Biomass is increasingly used for energy generation since it represents a useful alternative to fossil fuel in order to face the pollutions and the global warming problem. It can be exploited for heating purposes and for supplying domestic hot water. The most common applications encompass wood and pellet boilers. The economic aspect is becoming an important issue in order to achieve the ambitious targets set by the European Directives on Renewable Sources. Thus, the present paper deals with the economic feasibility of biomass boiler plants with specific regard to an existing residential building. An Italian case study is further investigated, focusing the attention on European and national regulations on energy efficiency and considering the recent public incentives and supporting measures. The main thermoclimatic parameters—that is, heating degree days (HDDs, building thermal insulation and thermal needs—are taken into account. Moreover, the following economic indicators are calculated: cumulative cash flow, discounted cumulative cash flow, payback period (PP, net present value (NPV, Internal rate of return (IRR, discounted payback period (DPP, and profit index (PI.

  8. Experimental effects of herbivore density on above-ground plant biomass in an alpine grassland ecosystem

    OpenAIRE

    Austrheim, Gunnar; Speed, James David Mervyn; Martinsen, Vegard; Mulder, Jan; Mysterud, Atle

    2014-01-01

    Herbivores may increase or decrease aboveground plant productivity depending on factors such as herbivore density and habitat productivity. The grazing optimization hypothesis predicts a peak in plant production at intermediate herbivore densities, but has rarely been tested experimentally in an alpine field setting. In an experimental design with three densities of sheep (high, low, and no sheep), we harvested aboveground plant biomass in alpine grasslands prior to treatment and after five y...

  9. Assessment of the phytoextraction potential of high biomass crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Allica, Javier [NEIKER-tecnalia, Basque Institute of Agricultural Research and Development, c/Berreaga 1, E-48160 Derio (Spain); Becerril, Jose M. [Department of Plant Biology and Ecology, University of the Basque Country, P.O. Box 644, E-48080 Bilbao (Spain); Garbisu, Carlos [NEIKER-tecnalia, Basque Institute of Agricultural Research and Development, c/Berreaga 1, E-48160 Derio (Spain)], E-mail: cgarbisu@neiker.net

    2008-03-15

    A hydroponic screening method was used to identify high biomass crop plants with the ability to accumulate metals. Highest values of shoot accumulation were found in maize cv. Ranchero, rapeseed cv. Karat, and cardoon cv. Peralta for Pb (18 753 mg kg{sup -1}), Zn (10 916 mg kg{sup -1}), and Cd (242 mg kg{sup -1}), respectively. Subsequently, we tested the potential of these three cultivars for the phytoextraction of a metal spiked compost, finding out that, in cardoon and maize plants, increasing Zn and Cd concentrations led to lower values of root and shoot DW. By contrast, rapeseed shoot growth was not significantly affected by Cd concentration. Finally, a metal polluted soil was used to check these cultivars' phytoextraction capacity. Although the soil was phytotoxic enough to prevent the growth of cardoon and rapeseed plants, maize plants phytoextracted 3.7 mg Zn pot{sup -1}. We concluded that the phytoextraction performance of cultivars varies depending on the screening method used. - The phytoextraction performance of cultivars varies significantly depending on the screening method used.

  10. Assessment of the phytoextraction potential of high biomass crop plants

    International Nuclear Information System (INIS)

    Hernandez-Allica, Javier; Becerril, Jose M.; Garbisu, Carlos

    2008-01-01

    A hydroponic screening method was used to identify high biomass crop plants with the ability to accumulate metals. Highest values of shoot accumulation were found in maize cv. Ranchero, rapeseed cv. Karat, and cardoon cv. Peralta for Pb (18 753 mg kg -1 ), Zn (10 916 mg kg -1 ), and Cd (242 mg kg -1 ), respectively. Subsequently, we tested the potential of these three cultivars for the phytoextraction of a metal spiked compost, finding out that, in cardoon and maize plants, increasing Zn and Cd concentrations led to lower values of root and shoot DW. By contrast, rapeseed shoot growth was not significantly affected by Cd concentration. Finally, a metal polluted soil was used to check these cultivars' phytoextraction capacity. Although the soil was phytotoxic enough to prevent the growth of cardoon and rapeseed plants, maize plants phytoextracted 3.7 mg Zn pot -1 . We concluded that the phytoextraction performance of cultivars varies depending on the screening method used. - The phytoextraction performance of cultivars varies significantly depending on the screening method used

  11. Biomass pyrolysis for chemicals

    Energy Technology Data Exchange (ETDEWEB)

    De Wild, P.

    2011-07-15

    The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for materials and energy where biomass provides the only renewable source for chemicals. In a biorefinery, biomass is converted via different technologies into heat, power and various products. Here, pyrolysis (thermal degradation without added oxygen) of lignocellulosic biomass can play an important role, because it leads to an array of useful chemicals. Examples are furfural and acetic acid from hemicellulose, levoglucosan from cellulose and phenols and biochar from lignin. Since the three major biomass polymers hemicellulose, cellulose and lignin possess dissimilar thermal stabilities and reactivities, type and amount of degradation products are tunable by proper selection of the pyrolysis conditions. To determine if step-wise pyrolysis would be suitable for the production of chemicals, staged degasification of lignocellulosic biomass was studied. Due to limited yields, a hot pressurized water pre-treatment (aquathermolysis) followed by pyrolysis was subsequently developed as an improved version of a staged approach to produce furfural and levoglucosan from the carbohydrate fraction of the biomass. Lignin is the only renewable source for aromatic chemicals. Lignocellulosic biorefineries for bio-ethanol produce lignin as major by-product. The pyrolysis of side-streams into valuable chemicals is of prime importance for a profitable biorefinery. To determine the added-value of lignin side-streams other than their use as fuel for power, application research including techno-economic analysis is required. In this thesis, the pyrolytic valorisation of lignin into phenols and biochar was investigated and proven possible.

  12. Enhanced degradation activity by endophytic bacteria of plants growing in hydrocarbon contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, L.; Germida, J.J. [Saskatchewan Univ., Saskatoon, SK (Canada); Greer, C.W. [National Research Council of Canada, Montreal, PQ (Canada). Biotechnology Research Inst.

    2006-07-01

    The feasibility of using phytoremediation for cleaning soils contaminated with petroleum hydrocarbons was discussed. Petroleum hydrocarbons are problematic because of their toxicity, mobility and persistence in the environment. Appropriate clean-up methods are needed, given that 60 per cent of Canada's contaminated sites contain these compounds. Phytoremediation is an in situ biotechnology in which plants are used to facilitate contaminant removal. The approach relies on a synergistic relationship between plants and their root-associated microbial communities. Previous studies on phytoremediation have focussed on rhizosphere communities. However, it is believed that endophytic microbes may also play a vital role in organic contaminant degradation. This study investigated the structural and functional dynamics of both rhizosphere and endophytic microbial communities of plants from a phytoremediation field site in south-eastern Saskatchewan. The former flare pit contains up to 10,000 ppm of F3 to F4 hydrocarbon fractions. Root samples were collected from tall wheatgrass, wild rye, saltmeadow grass, perennial ryegrass, and alfalfa. Culture-based and culture-independent methods were used to evaluate the microbial communities associated with these roots. Most probable number assays showed that the rhizosphere communities contained more n-hexadecane, diesel fuel, and PAH degraders. However, mineralization assays with 14C labelled n-hexadecane, naphthalene, and phenanthrene showed that endophytic communities had more degradation activities per standardized initial degrader populations. Total community DNA samples taken from bulk, rhizosphere, and endophytic samples, were analyzed by denaturing gradient gel electrophoresis. It was shown that specific bacteria increased in endophytic communities compared to rhizosphere communities. It was suggested plants may possibly recruit specific bacteria in response to hydrocarbon contamination, thereby increasing degradation

  13. Biomass co-firing

    DEFF Research Database (Denmark)

    Yin, Chungen

    2013-01-01

    Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized-bed combus......Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized......-bed combustion (FBC) systems, and grate-firing systems, which are employed in about 50%, 40% and 10% of all the co-firing plants, respectively. Their basic principles, process technologies, advantages, and limitations are presented, followed by a brief comparison of these technologies when applied to biomass co...

  14. Diverging temperature responses of CO2 assimilation and plant development explain the overall effect of temperature on biomass accumulation in wheat leaves and grains.

    Science.gov (United States)

    Collins, Nicholas C; Parent, Boris

    2017-01-09

    There is a growing consensus in the literature that rising temperatures influence the rate of biomass accumulation by shortening the development of plant organs and the whole plant and by altering rates of respiration and photosynthesis. A model describing the net effects of these processes on biomass would be useful, but would need to reconcile reported differences in the effects of night and day temperature on plant productivity. In this study, the working hypothesis was that the temperature responses of CO 2 assimilation and plant development rates were divergent, and that their net effects could explain observed differences in biomass accumulation. In wheat (Triticum aestivum) plants, we followed the temperature responses of photosynthesis, respiration and leaf elongation, and confirmed that their responses diverged. We measured the amount of carbon assimilated per "unit of plant development" in each scenario and compared it to the biomass that accumulated in growing leaves and grains. Our results suggested that, up to a temperature optimum, the rate of any developmental process increased with temperature more rapidly than that of CO 2 assimilation and that this discrepancy, summarised by the CO 2 assimilation rate per unit of plant development, could explain the observed reductions in biomass accumulation in plant organs under high temperatures. The model described the effects of night and day temperature equally well, and offers a simple framework for describing the effects of temperature on plant growth. Published by Oxford University Press on behalf of the Annals of Botany Company.

  15. Testing of downstream catalysts for tar destruction with a guard bed in a fluidised bed biomass gasifier at pilot plant scale

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M.P.; Frances, E.; Campos, I.J.; Martin, J.A.; Gil, J. [Saragossa Univ. (Spain). Dept. of Chemistry and Environment Engineering; Corella, J. [Complutense Univ. of Madrid (Spain). Dept. of Chemical Engineering

    1996-12-31

    A new pilot plant for advanced gasification of biomass in a fast fluidised bed is now fully operative at University of Saragossa, Spain. It is a `3rd generation` pilot plant. It has been built up after having used two previous pilot plants for biomass gasification. The main characteristic of this pilot plant is that it has two catalytic reactors connected in series, downstream the biomass gasifier. Such reactors, of 4 cm i.d., are placed in a slip stream in a by-pass from the main gasifier exit gas. The gasification is made at atmospheric pressure, with flow rates of 3-50 kg/in, using steam + O{sub 2} mixtures as the gasifying agent. Several commercial Ni steam-reforming catalyst are being tested under a realistic raw gas composition. Tar eliminations or destructions higher than 99 % are easily achieved. (orig.) 2 refs.

  16. Testing of downstream catalysts for tar destruction with a guard bed in a fluidised bed biomass gasifier at pilot plant scale

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M P; Frances, E; Campos, I J; Martin, J A; Gil, J [Saragossa Univ. (Spain). Dept. of Chemistry and Environment Engineering; Corella, J [Complutense Univ. of Madrid (Spain). Dept. of Chemical Engineering

    1997-12-31

    A new pilot plant for advanced gasification of biomass in a fast fluidised bed is now fully operative at University of Saragossa, Spain. It is a `3rd generation` pilot plant. It has been built up after having used two previous pilot plants for biomass gasification. The main characteristic of this pilot plant is that it has two catalytic reactors connected in series, downstream the biomass gasifier. Such reactors, of 4 cm i.d., are placed in a slip stream in a by-pass from the main gasifier exit gas. The gasification is made at atmospheric pressure, with flow rates of 3-50 kg/in, using steam + O{sub 2} mixtures as the gasifying agent. Several commercial Ni steam-reforming catalyst are being tested under a realistic raw gas composition. Tar eliminations or destructions higher than 99 % are easily achieved. (orig.) 2 refs.

  17. Relationship between Remote Sensing Data, Plant Biomass and Soil Nitrogen Dynamics in Intensively Managed Grasslands under Controlled Conditions.

    Science.gov (United States)

    Knoblauch, Christoph; Watson, Conor; Berendonk, Clara; Becker, Rolf; Wrage-Mönnig, Nicole; Wichern, Florian

    2017-06-23

    The sustainable use of grasslands in intensive farming systems aims to optimize nitrogen (N) inputs to increase crop yields and decrease harmful losses to the environment at the same time. To achieve this, simple optical sensors may provide a non-destructive, time- and cost-effective tool for estimating plant biomass in the field, considering spatial and temporal variability. However, the plant growth and related N uptake is affected by the available N in the soil, and therefore, N mineralization and N losses. These soil N dynamics and N losses are affected by the N input and environmental conditions, and cannot easily be determined non-destructively. Therefore, the question arises: whether a relationship can be depicted between N fertilizer levels, plant biomass and N dynamics as indicated by nitrous oxide (N₂O) losses and inorganic N levels. We conducted a standardized greenhouse experiment to explore the potential of spectral measurements for analyzing yield response, N mineralization and N₂O emissions in a permanent grassland. Ryegrass was subjected to four mineral fertilizer input levels over 100 days (four harvests) under controlled environmental conditions. The soil temperature and moisture content were automatically monitored, and the emission rates of N₂O and carbon dioxide (CO₂) were detected frequently. Spectral measurements of the swards were performed directly before harvesting. The normalized difference vegetation index (NDVI) and simple ratio (SR) were moderately correlated with an increasing biomass as affected by fertilization level. Furthermore, we found a non-linear response of increasing N₂O emissions to elevated fertilizer levels. Moreover, inorganic N and extractable organic N levels at the end of the experiment tended to increase with the increasing N fertilizer addition. However, microbial biomass C and CO₂ efflux showed no significant differences among fertilizer treatments, reflecting no substantial changes in the soil

  18. Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei.

    Science.gov (United States)

    Borin, Gustavo Pagotto; Sanchez, Camila Cristina; de Santana, Eliane Silva; Zanini, Guilherme Keppe; Dos Santos, Renato Augusto Corrêa; de Oliveira Pontes, Angélica; de Souza, Aline Tieppo; Dal'Mas, Roberta Maria Menegaldo Tavares Soares; Riaño-Pachón, Diego Mauricio; Goldman, Gustavo Henrique; Oliveira, Juliana Velasco de Castro

    2017-06-30

    Second generation (2G) ethanol is produced by breaking down lignocellulosic biomass into fermentable sugars. In Brazil, sugarcane bagasse has been proposed as the lignocellulosic residue for this biofuel production. The enzymatic cocktails for the degradation of biomass-derived polysaccharides are mostly produced by fungi, such as Aspergillus niger and Trichoderma reesei. However, it is not yet fully understood how these microorganisms degrade plant biomass. In order to identify transcriptomic changes during steam-exploded bagasse (SEB) breakdown, we conducted a RNA-seq comparative transcriptome profiling of both fungi growing on SEB as carbon source. Particular attention was focused on CAZymes, sugar transporters, transcription factors (TFs) and other proteins related to lignocellulose degradation. Although genes coding for the main enzymes involved in biomass deconstruction were expressed by both fungal strains since the beginning of the growth in SEB, significant differences were found in their expression profiles. The expression of these enzymes is mainly regulated at the transcription level, and A. niger and T. reesei also showed differences in TFs content and in their expression. Several sugar transporters that were induced in both fungal strains could be new players on biomass degradation besides their role in sugar uptake. Interestingly, our findings revealed that in both strains several genes that code for proteins of unknown function and pro-oxidant, antioxidant, and detoxification enzymes were induced during growth in SEB as carbon source, but their specific roles on lignocellulose degradation remain to be elucidated. This is the first report of a time-course experiment monitoring the degradation of pretreated bagasse by two important fungi using the RNA-seq technology. It was possible to identify a set of genes that might be applied in several biotechnology fields. The data suggest that these two microorganisms employ different strategies for biomass

  19. Three biomass power plants in New England first five years of challenges and solutions

    International Nuclear Information System (INIS)

    LeBlanc, J.D.

    1993-01-01

    Generating electricity from biomass fuels, through stand-alone power plants, represents a renewal of a half-century old plus, renewable technology. New England has generated its electricity sequentially, and still in parallel, from hydro, coal, oil, and nuclear sources during this period, and most recently during the 1980's, from a mixture of various alternate technologies including wood waste fuels and domestic waste fuels. Three plants located in New Hampshire and Maine, of identical power-island design, were constructed in eighteen months, and began operation in the period December, 1987 through March, 1988. These plants almost from the start have experienced an outstanding record of operation, dependability, and reliability. This paper will describe how each plant has fit into its respective location and environment, the personnel, technical and administrative support required, the biomass wood waste production and supply infra-structure which has developed around these facilities; and the technical problems and challenges which arose and were resolved in the process of handling a cantankerous, bulk fuel and turning it into a reliable supply of electricity. These plants are designed around a zero discharge concept. The author will discuss the design features built in, and operating practices which have evolved, to effectively use waste water internally, minimize air emissions, and recycle 100% of its solid waste as an effective fertilizer and soil conditioner

  20. Enhanced Cellulose Degradation Using Cellulase-Nanosphere Complexes

    Science.gov (United States)

    Blanchette, Craig; Lacayo, Catherine I.; Fischer, Nicholas O.; Hwang, Mona; Thelen, Michael P.

    2012-01-01

    Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production. PMID:22870287

  1. Enhanced cellulose degradation using cellulase-nanosphere complexes.

    Directory of Open Access Journals (Sweden)

    Craig Blanchette

    Full Text Available Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC; however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production.

  2. Enhanced cellulose degradation using cellulase-nanosphere complexes.

    Science.gov (United States)

    Blanchette, Craig; Lacayo, Catherine I; Fischer, Nicholas O; Hwang, Mona; Thelen, Michael P

    2012-01-01

    Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production.

  3. Extraction of solubles from plant biomass for use as microbial growth stimulant and methods related thereto

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Ming Woei

    2015-12-08

    A method for producing a microbial growth stimulant (MGS) from a plant biomass is described. In one embodiment, an ammonium hydroxide solution is used to extract a solution of proteins and ammonia from the biomass. Some of the proteins and ammonia are separated from the extracted solution to provide the MGS solution. The removed ammonia can be recycled and the proteins are useful as animal feeds. In one embodiment, the method comprises extracting solubles from pretreated lignocellulosic biomass with a cellulase enzyme-producing growth medium (such T. reesei) in the presence of water and an aqueous extract.

  4. Focus on CSIR research in pollution waste: Cellulose degradation, volatile fatty acid formation and biological sulphate removal operating and anaerobic hybrid reactor

    CSIR Research Space (South Africa)

    Greben, H

    2007-08-01

    Full Text Available The biological sulphate removal technology requires carbon and energy sources to reduce sulphate to sulphide. Plant biomass, e.g. cut grass, is a sustainable source of energy when cellulose is utilised in the anaerobic degradation to produce...

  5. Biomass energy in the making

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Wood, straw, agricultural residues, organic wastes, biomass is everywhere you look. But the efficient use of this source of green electricity - the world's second largest renewable energy source - requires optimization of biomass collection and combustion processes. Biomass is back on the political agenda. In mid-June of this year, the French government gave this renewable energy a boost by selecting twenty-two projects to generate power and heat with biomass. The plants, to be commissioned by 2010, will be located in eleven different regions and will consume energy from organic plant matter. The power generated will be bought at a firm price of 128 euros per megawatt-hour. Most of the fuel will come from forest and paper industry waste, but straw and even grape pomace will be used in some cases. The plants will have a combined generating capacity of 300 MWh, raising France's installed biomass capacity to a total of 700 MWe. A drop of water in the ocean in the overall scheme of France's electricity. It is true that France has long neglected biomass. In 2004, electricity generated from biological resources represented a mere 1.74 TWhe in France, just 0.3% of its power consumption. This will rise to 0.6% once the new plants have come on line. The trend is the same in all of the EU's 27 member states, according to Eurostat, the statistical office of the European Communities: the amount of electricity generated from biomass (including biogas, municipal waste and wood) has practically doubled in six years, rising from 40 to 80 TWhe between 2000 and 2005. This is an improvement, but it still only represents 2.5% of the electricity supplied to Europeans. On a global scale, biomass contributes just 1% of total electric power generation. Yet biomass is an energy resource found all over the world, whether as agricultural waste, wood chips, or dried treatment plant sludge, to name but a few. Biomass power plants have managed to gain a foothold mainly in countries that produce

  6. Real-Time Imaging of Plant Cell Wall Structure at Nanometer Scale, with Respect to Cellulase Accessibility and Degradation Kinetics (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Ding, S. Y.

    2012-05-01

    Presentation on real-time imaging of plant cell wall structure at nanometer scale. Objectives are to develop tools to measure biomass at the nanometer scale; elucidate the molecular bases of biomass deconstruction; and identify factors that affect the conversion efficiency of biomass-to-biofuels.

  7. Biomass CCS study

    Energy Technology Data Exchange (ETDEWEB)

    Cavezzali, S.

    2009-11-15

    The use of biomass in power generation is one of the important ways in reducing greenhouse gas emissions. Specifically, the cofiring of biomass with coal could be regarded as a common feature to any new build power plant if a sustainable supply of biomass fuel is readily accessible. IEA GHG has undertaken a techno-economic evaluation of the use of biomass in biomass fired and co-fired power generation, using post-combustion capture technology. This report is the result of the study undertaken by Foster Wheeler Italiana.

  8. Plant-bacteria partnership: phytoremediation of hydrocarbons contaminated soil and expression of catabolic genes

    Directory of Open Access Journals (Sweden)

    Hamna Saleem

    2016-01-01

    Full Text Available Petroleum hydrocarbons are harmful to living organisms when they are exposed in natural environment. Once they come in contact, it is not an easy to remove them because many of their constituents are persistent in nature. To achieve this target, different approaches have been exploited by using plants, bacteria, and plant-bacteria together. Among them, combined use of plants and bacteria has gained tremendous attention as bacteria possess set of catabolic genes which produce catabolic enzymes to decontaminate hydrocarbons. In return, plant ooze out root exudates containing nutrients and necessary metabolites which facilitate the microbial colonization in plant rhizosphere. This results into high gene abundance and gene expression in the rhizosphere and, thus, leads to enhanced degradation. Moreover, high proportions of beneficial bacteria helps plant to gain more biomass due to their plant growth promoting activities and production of phytohromones. This review focuses functioning and mechanisms of catabolic genes responsible for degradation of straight chain and aromatic hydrocarbons with their potential of degradation in bioremediation. With the understanding of expression mechanisms, rate of degradation can be enhanced by adjusting environmental factors and acclimatizing plant associated bacteria in plant rhizosphere.

  9. Biomass power in transition

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, D.K. [Zurn/NEPCO, Redmond, WA (United States)

    1996-12-31

    Electricity production from biomass fuel has been hailed in recent years as an environmentally acceptable energy source that delivers on its promise of economically viable renewable energy. A Wall Street Journal article from three years ago proclaimed wood to be {open_quotes}moving ahead of costly solar panels and wind turbines as the leading renewable energy alternative to air-fouling fossils fuels and scary nuclear plants.{close_quotes} Biomass fuel largely means wood; about 90% of biomass generated electricity comes from burning waste wood, the remainder from agricultural wastes. Biomass power now faces an uncertain future. The maturing of the cogeneration and independent power plant market, restructuring of the electric industry, and technological advances with power equipment firing other fuels have placed biomass power in a competitive disadvantage with other power sources.

  10. Study on new biomass energy systems

    Science.gov (United States)

    1992-03-01

    A biomass energy total system is proposed, and its feasibility is studied. It is the system in which liquid fuel is produced from eucalyptuses planted in the desert area in Australia for production of biomass resource. Eucalyptus tree planting aims at a growth amount of 40 cu m/ha. per year and a practical application area of 45,000ha. CO2 fixation in the biomass plantation becomes 540,000 tons at a 12 ton/ha. rate. Assuming that 0.55 ton of liquid fuel is produced from 1 ton of biomass, a petrochemical plant having a production of 2.5 million bbl/year per unit (equivalent to the fuel used in the 100,000kW class power plant) is needed. Moreover, survey is made on practicality of diesel substitution fuel by esterification of palm oil, and a marked effect of reduction in soot/smoke and particulates in exhaust gas is confirmed. The biomass conversion process technology and the technology for afforestation at the arid land and irrigation are important as future subjects, and the technology development using a bench plant and a pilot plant is needed.

  11. Diesel power plants based on biomass gasification; Biomassan ja turpeen kaasutukseen perustuen dieselvoimalaitosten toteutettavuustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Solantausta, Y. [VTT Energy, Espoo (Finland)

    1996-12-01

    Different power production systems have been developed for biomass feedstocks. However, only few of these systems can meet the following three requirements: (1) suitability to small scale electricity production (<5-10 MWe), (2) reliable operation with realistically available biomass feedstocks, and (3) potential for economical competitiveness. The fluidized-bed boilers have been successfully operated with wood waste and peat down to outputs of the order of 5 MWe and the investment costs have been successfully lowered to a reasonable level. However, this concept is most suitable for combined heat and electricity production and smaller plant sizes are not considered feasible. One of the most promising alternative for this commercially proven technology is the diesel power plant based on gasification. This concept has a potential for higher power to heat ratios in cogeneration or higher efficiency in separate electricity production. The objectives of this project were (1) to evaluate the technical and economical feasibility of diesel power plants based on biomass gasification and (2) to study the effects of operating conditions (temperature, bed material and air staging) on the performance of a circulating fluidized-bed gasifier. The experimental part of the project was carried out on a new PDU-scale Circulating Fluidized-Bed Gasification test facility of VTT. Wood residues were used as the feedstocks and the experiments were mainly focused on tar formation and gasifier performance. The results will be compared to earlier VTT data obtained for bubbling-bed reactors. The techno-economic feasibility studies are carried out using existing process modelling tools of VTT and the gasification based diesel plants will be compared to conventional fluidized-bed boilers. The studies are scheduled to be completed in March 1996. (author)

  12. Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant

    NARCIS (Netherlands)

    Miedema, Jan H.; Benders, Rene M. J.; Moll, Henri C.; Pierie, Frank

    2017-01-01

    Within this paper, biomass supply chains, with different shares of biomass co-combustion in coal fired power plants, are analysed on energy efficiency, energy consumption, renewable energy production, and greenhouse gas (GHG) emissions and compared with the performance of a 100% coal supply chain

  13. Degradation of β-Aryl Ether Bonds in Transgenic Plants

    DEFF Research Database (Denmark)

    Mnich, Ewelina

    Lignin is one of the main building blocks of the plant cell wall. It tethers the cell wall by cross-linking with polysaccharides conferring mechanical strength to plants, aiding water transport and providing a mechanical barrier against pathogens. It is generated by the polymerization....... Compared to other plants grass cell walls contain elevated amount of ferulates which play a crucial role in cross-linking of polysaccharides and lignin. In addition ferulates are believed to be nucleation cites for the lignification. The bacterium Sphingomonas paucimobilis SYK6 has developed an enzyme...... of the cell wall. The aim of the study was to alter lignin structure by expression in plants of the enzymes from S. paucimobilis involved in ether bond degradation (LigDFG). Arabidopsis thaliana and Brachypodium distachyon transgenic lines were generated and characterized with respect to lignin structure...

  14. Integrated biomass gasification combined cycle distributed generation plant with reciprocating gas engine and ORC

    International Nuclear Information System (INIS)

    Kalina, Jacek

    2011-01-01

    The paper theoretically investigates the performance of a distributed generation plant made up of gasifier, Internal Combustion Engine (ICE) and Organic Rankine Cycle (ORC) machine as a bottoming unit. The system can be used for maximization of electricity production from biomass in the case where there is no heat demand for cogeneration plant. To analyze the performance of the gasifier a model based on the thermodynamic equilibrium approach is used. Performance of the gas engine is estimated on the basis of the analysis of its theoretical thermodynamic cycle. Three different setups of the plant are being examined. In the first one the ORC module is driven only by the heat recovered from engine exhaust gas and cooling water. Waste heat from a gasifier is used for gasification air preheating. In the second configuration a thermal oil circuit is applied. The oil transfers heat from engine and raw gas cooler into the ORC. In the third configuration it is proposed to apply a double cascade arrangement of the ORC unit with a two-stage low temperature evaporation of working fluid. This novel approach allows utilization of the total waste heat from the low temperature engine cooling circuit. Two gas engines of different characteristics are taken into account. The results obtained were compared in terms of electric energy generation efficiency of the system. The lowest obtained value of the efficiency was 23.6% while the highest one was 28.3%. These are very favorable values in comparison with other existing small and medium scale biomass-fuelled power generation plants. - Highlights: →The study presents performance analysis of a biomass-fuelled local power plant. →Downdraft wood gasifier, gas engine and ORC module are modelled theoretically. →Method for estimation of the producer gas fired engine performance is proposed. →Two gas engines of different characteristics are taken into account. →Different arrangements of the bottoming ORC cycle ere examined.

  15. Solid biomass barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    The primary energy production from solid biomass in the European Union reached 79.3 Mtoe in 2010 which implies a growth rate of 8% between 2009 and 2010. The trend, which was driven deeper by Europe's particularly cold winter of 2009-2010, demonstrates that the economic down-turn failed to weaken the member states' efforts to structure the solid biomass sector. Heat consumption rose sharply: the volume of heat sold by heating networks increased by 18% and reached 6.7 Mtoe and if we consider the total heat consumption (it means with and without recovery via heating networks) the figure is 66 Mtoe in 2010, which amounts to 10.1% growth. The growth of electricity production continued through 2010 (8.3% up on 2009) and rose to 67 TWh but at a slower pace than in 2009 (when it rose by 11.3% on 2008). The situation of the main producer countries: Sweden, Finland, Germany and France is reviewed. It appears that cogeneration unit manufacturers and biomass power plant constructors are the main beneficiaries of the current biomass energy sector boom. There is a trend to replace coal-fired plants that are either obsolete or near their end of life with biomass or multi-fuel plants. These opportunities will enable the industry to develop and further exploit new technologies such as gasification, pyrolysis and torrefaction which will enable biomass to be turned into bio-coal. (A.C.)

  16. Biomass Scenario Model | Energy Analysis | NREL

    Science.gov (United States)

    Biomass Scenario Model Biomass Scenario Model The Biomass Scenario Model (BSM) is a unique range of lignocellulosic biomass feedstocks into biofuels. Over the past 25 years, the corn ethanol plant matter (lignocellulosic biomass) to fermentable sugars for the production of fuel ethanol

  17. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Rudolf, Andreas

    2011-01-01

    This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermochemical process, which produces a liquid product, often called bio-oil or bi-crude. During...... the hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed...... by dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction...

  18. Degradation of PVC/HC blends. II. Terrestrial plant growth test.

    Science.gov (United States)

    Pascu, Mihaela; Agafiţei, Gabriela-Elena; Profire, Lenuţa; Vasile, Cornelia

    2009-01-01

    The behavior at degradation by soil burial of some plasticized polyvinyl chloride (PVC) based blends with a variable content of hydrolyzed collagen (HC) has been followed. The modifications induced in the environment by the polymer systems (pH variation, physiologic state of the plants, assimilatory pigments) were studied. Using the growth test of the terrestrial plants, we followed the development of Triticum (wheat), Helianthus annus minimus (little sunflower), Pisum sativum (pea), and Vicia X hybrida hort, during a vegetation cycle. After the harvest, for each plant, the quantities of chlorophyll and carotenoidic pigments and of trace- and macroelements were determined. It was proved that, in the presence of polymer blends, the plants do not suffer morphological and physiological modifications, the products released in the culture soil being not toxic for the plants growth.

  19. Predictive based monitoring of nuclear plant component degradation using support vector regression

    International Nuclear Information System (INIS)

    Agarwal, Vivek; Alamaniotis, Miltiadis; Tsoukalas, Lefteri H.

    2015-01-01

    Nuclear power plants (NPPs) are large installations comprised of many active and passive assets. Degradation monitoring of all these assets is expensive (labor cost) and highly demanding task. In this paper a framework based on Support Vector Regression (SVR) for online surveillance of critical parameter degradation of NPP components is proposed. In this case, on time replacement or maintenance of components will prevent potential plant malfunctions, and reduce the overall operational cost. In the current work, we apply SVR equipped with a Gaussian kernel function to monitor components. Monitoring includes the one-step-ahead prediction of the component's respective operational quantity using the SVR model, while the SVR model is trained using a set of previous recorded degradation histories of similar components. Predictive capability of the model is evaluated upon arrival of a sensor measurement, which is compared to the component failure threshold. A maintenance decision is based on a fuzzy inference system that utilizes three parameters: (i) prediction evaluation in the previous steps, (ii) predicted value of the current step, (iii) and difference of current predicted value with components failure thresholds. The proposed framework will be tested on turbine blade degradation data.

  20. Evaluation of cable aging degradation based on plant operating condition

    International Nuclear Information System (INIS)

    Kim, Jong-Seog

    2005-01-01

    Extending the lifetime of nuclear power plant [(hereafter referred simply as ''NPP'')] is one of the most important concerns in the world nuclear industry. Cables are one of the long live items which have not been considered to be replaced during the design life of NPP. To extend the cable life beyond the design life, we need to prove that the design life is too conservative compared with the actual aging. Condition monitoring is one of the useful ways for evaluating the aging condition of cable. In order to simulate the natural aging in nuclear power plant, a study on accelerated aging needs to be conducted first. In this paper, evaluations of mechanical aging degradation for cable jacket were performed after accelerated aging under the continuous heating and intermittent heating. Contrary to general expectation, the intermittent heating to cable jacket showed low aging degradation, 50% break-elongation and 60% indenter modulus, compared with continuous heating. With the plant maintenance period of 1 month after every 12 or 18 months operation, we can easily deduce that the life time of cable jacket can be extended much longer than estimated through the general EQ (Environmental Qualification) test, which adopts continuous accelerated aging for determining cable life. Therefore, a systematic approach which considers the actual environment condition of nuclear power plant is required for determining the life of cables. (author)

  1. Bioenergy guide. Projecting, operation and economic efficiency of biomass power plants; Leitfaden Bioenergie. Planung, Betrieb und Wirtschaftlichkeit von Bioenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Deimling, S. [Stuttgart Univ. (DE). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung (IER); Kaltschmitt, M; Schneider, B. [and others

    2000-07-01

    This guide gives an survey over planning, operation and economics of biomass conversion plants. Main topics are: production and supply of biomass fuels, combustion properties, licensing, cost and financing. It shows planning and management of projects and the legal background for Germany and the European Union.

  2. High yielding tropical energy crops for bioenergy production: Effects of plant components, harvest years and locations on biomass composition.

    Science.gov (United States)

    Surendra, K C; Ogoshi, Richard; Zaleski, Halina M; Hashimoto, Andrew G; Khanal, Samir Kumar

    2018-03-01

    The composition of lignocellulosic feedstock, which depends on crop type, crop management, locations and plant parts, significantly affects the conversion efficiency of biomass into biofuels and biobased products. Thus, this study examined the composition of different parts of two high yielding tropical energy crops, Energycane and Napier grass, collected across three locations and years. Significantly higher fiber content was found in the leaves of Energycane than stems, while fiber content was significantly higher in the stems than the leaves of Napier grass. Similarly, fiber content was higher in Napier grass than Energycane. Due to significant differences in biomass composition between the plant parts within a crop type, neither biological conversion, including anaerobic digestion, nor thermochemical pretreatment alone is likely to efficiently convert biomass components into biofuels and biobased products. However, combination of anaerobic digestion with thermochemical conversion technologies could efficiently utilize biomass components in generating biofuels and biobased products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Development of a new steady state zero-dimensional simulation model for woody biomass gasification in a full scale plant

    International Nuclear Information System (INIS)

    Formica, Marco; Frigo, Stefano; Gabbrielli, Roberto

    2016-01-01

    Highlights: • A simulation model with Aspen Plus is created for a full scale biomass gasification plant. • Test results, equipment data and control logics are considered in the simulation model. • The simulation results are in agreement with the experimental data. • The gasifying air temperature affects largely the energy performance of the gasification plant. • Increasing the equivalent ratio implies a strong reduction of the gasification efficiency. - Abstract: A new steady state zero-dimensional simulation model for a full-scale woody biomass gasification plant with fixed-bed downdraft gasifier has been developed using Aspen Plus®. The model includes the technical characteristics of all the components (gasifier, cyclone, exchangers, piping, etc.) of the plant and works in accordance with its actual main control logics. Simulation results accord with those obtained during an extensive experimental activity. After the model validation, the influence of operating parameters such as the equivalent ratio, the biomass moisture content and the gasifying air temperature on syngas composition have been analyzed in order to assess the operative behavior and the energy performance of the experimental plant. By recovering the sensible heat of the syngas at the outlet of the gasifier, it is possible to obtain higher values of the gasifying air temperature and an improvement of the overall gasification performances.

  4. Simulated performance of biomass gasification based combined power and refrigeration plant for community scale application

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S., E-mail: suman.mech09@gmail.com [Department of Mechanical Engineering, NIT, Agarpara, Kolkata – 700109, West Bengal (India); Mondal, P., E-mail: mondal.pradip87@gmail.com; Ghosh, S., E-mail: sudipghosh.becollege@gmail.com [Department of Mechanical Engineering, IIEST, Shibpur, Howrah – 711103, West Bengal (India)

    2016-07-12

    Thermal performance analysis and sizing of a biomass gasification based combined power and refrigeration plant (CPR) is reported in this study. The plant is capable of producing 100 kWe of electrical output while simultaneously producing a refrigeration effect, varying from 28-68 ton of refrigeration (TR). The topping gas turbine cycle is an indirectly heated all-air cycle. A combustor heat exchanger duplex (CHX) unit burns producer gas and transfer heat to air. This arrangement avoids complex gas cleaning requirements for the biomass-derived producer gas. The exhaust air of the topping GT is utilized to run a bottoming ammonia absorption refrigeration (AAR) cycle via a heat recovery steam generator (HRSG), steam produced in the HRSG supplying heat to the generator of the refrigeration cycle. Effects of major operating parameters like topping cycle pressure ratio (r{sub p}) and turbine inlet temperature (TIT) on the energetic performance of the plant are studied. Energetic performance of the plant is evaluated via energy efficiency, required biomass consumption and fuel energy savings ratio (FESR). The FESR calculation method is significant for indicating the savings in fuel of a combined power and process heat plant instead of separate plants for power and process heat. The study reveals that, topping cycle attains maximum power efficiency of 30%in pressure ratio range of 8-10. Up to a certain value of pressure ratio the required air flow rate through the GT unit decreases with increase in pressure ratio and then increases with further increase in pressure ratio. The capacity of refrigeration of the AAR unit initially decreases up to a certain value of topping GT cycle pressure ratio and then increases with further increase in pressure ratio. The FESR is found to be maximized at a pressure ratio of 9 (when TIT=1100°C), the maximum value being 53%. The FESR is higher for higher TIT. The heat exchanger sizing is also influenced by the topping cycle pressure ratio

  5. Overexpression of the WOX gene STENOFOLIA improves biomass yield and sugar release in transgenic grasses and display altered cytokinin homeostasis.

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2017-03-01

    Full Text Available Lignocellulosic biomass can be a significant source of renewable clean energy with continued improvement in biomass yield and bioconversion strategies. In higher plants, the leaf blade is the central energy convertor where solar energy and CO2 are assimilated to make the building blocks for biomass production. Here we report that introducing the leaf blade development regulator STENOFOLIA (STF, a WOX family transcription factor, into the biofuel crop switchgrass, significantly improves both biomass yield and sugar release. We found that STF overexpressing switchgrass plants produced approximately 2-fold more dry biomass and release approximately 1.8-fold more solubilized sugars without pretreatment compared to controls. The biomass increase was attributed mainly to increased leaf width and stem thickness, which was also consistent in STF transgenic rice and Brachypodium, and appeared to be caused by enhanced cell proliferation. STF directly binds to multiple regions in the promoters of some cytokinin oxidase/dehydrogenase (CKX genes and represses their expression in all three transgenic grasses. This repression was accompanied by a significant increase in active cytokinin content in transgenic rice leaves, suggesting that the increase in biomass productivity and sugar release could at least in part be associated with improved cytokinin levels caused by repression of cytokinin degrading enzymes. Our study provides a new tool for improving biomass feedstock yield in bioenergy crops, and uncovers a novel mechanistic insight in the function of STF, which may also apply to other repressive WOX genes that are master regulators of several key plant developmental programs.

  6. Vegetation in karst terrain of southwestern China allocates more biomass to roots

    Science.gov (United States)

    Ni, J.; Luo, D. H.; Xia, J.; Zhang, Z. H.; Hu, G.

    2015-07-01

    In mountainous areas of southwestern China, especially Guizhou province, continuous, broadly distributed karst landscapes with harsh and fragile habitats often lead to land degradation. Research indicates that vegetation located in karst terrains has low aboveground biomass and land degradation that reduces vegetation biomass, but belowground biomass measurements are rarely reported. Using the soil pit method, we investigated the root biomass of karst vegetation in five land cover types: grassland, grass-scrub tussock, thorn-scrub shrubland, scrub-tree forest, and mixed evergreen and deciduous forest in Maolan, southern Guizhou province, growing in two different soil-rich and rock-dominated habitats. The results show that roots in karst vegetation, especially the coarse roots, and roots in rocky habitats are mostly distributed in the topsoil layers (89 % on the surface up to 20 cm depth). The total root biomass in all habitats of all vegetation degradation periods is 18.77 Mg ha-1, in which roots in rocky habitat have higher biomass than in earthy habitat, and coarse root biomass is larger than medium and fine root biomass. The root biomass of mixed evergreen and deciduous forest in karst habitat (35.83 Mg ha-1) is not greater than that of most typical, non-karst evergreen broad-leaved forests in subtropical regions of China, but the ratio of root to aboveground biomass in karst forest (0.37) is significantly greater than the mean ratio (0.26 ± 0.07) of subtropical evergreen forests. Vegetation restoration in degraded karst terrain will significantly increase the belowground carbon stock, forming a potential regional carbon sink.

  7. A Study on the Measurement of Ultrasound Velocity to Evaluate Degradation of Low Voltage Cables for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Cho; Kang, Suk Chull; Goo, Cheol Soo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kim, Jin Ho; Park, Jae Seok; Joo, Geum Jong; Park, Chi Seung [KAITEC, Seoul (Korea, Republic of)

    2004-08-15

    Several kinds of low voltage cables have been used in nuclear power plants for the supply of electric power, supervision, and the propagation of control signals. These low voltage tables must be inspected for safe and stable operation of nuclear power plants. In particular, the degradation diagnosis to estimate the integrity of low voltage rabies has recently been emphasized according to the long use of nuclear power plants. In order to evaluate their degradation, the surrounding temperature, hardness of insulation material, elongation at breaking point (EAB), etc. have been used. However, the measurement of temperature or hardness is not useful because of the absence of quantitative criteria; the inspection of a sample requires turning off of the power plant power; and, the electrical inspection method is not sufficiently sensitive from the initial through the middle stage of degradation. In this research, based on the theory that the ultrasonic velocity changes with relation to the degradation of the material, we measured the ultrasonic velocity as low voltage cables were degraded. To this end, an ultrasonic degradation diagnosis device was developed and used to measure the ultrasonic velocity with the clothing on the cable, and it was confirmed that the ultrasonic velocity changes according to the degradation of low voltage cables. The low voltage cables used in nuclear power plants were degraded at an accelerated rate, and EAB was measured in a tensile test conducted after the measurement of ultrasonic velocity. With the increasing degradation degree, the ultrasonic velocity decreased, whose potential as a useful parameter for the quantitative degradation evaluation was thus confirmed

  8. Plant species responses to oil degradation and toxicity reduction in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-01-05

    Jan 5, 2009 ... contaminated soil and sediment is an emerging techno- logy that promises effective and inexpensive clean up of certain hazardous wastes (Simeon 1993; Nwoko, 1995). Some of these processes occurs within the plants and involves the degradation or breakdown of organic and inorganic contaminants ...

  9. Invertebrate herbivory on floating-leaf macrophytes at the northeast of Argentina: should the damage be taken into account in estimations of plant biomass?

    Science.gov (United States)

    Martínez, Fedra S; Franceschini, Celeste

    2018-01-01

    We assessed the damage produced by invertebrate herbivores per leaf lamina and per m2 of populations floating-leaf macrophytes of Neotropical wetlands in the growth and decay periods, and assessed if the damage produced by the herbivores should be taken into account in the estimations of plant biomass of these macrophytes or not. The biomass removed per lamina and per m2 was higher during the growth period than in decay period in Nymphoides indica and Hydrocleys nymphoides, while Nymphaea prolifera had low values of herbivory in growth period. During decay period this plant is only present as vegetative propagules. According to the values of biomass removed per m2 of N. indica, underestimation up to 17.69% should be produced in cases that herbivory do not should be taking account to evaluate these plant parameters on this macrophyte. Therefore, for the study of biomass and productivity in the study area, we suggest the use of corrected lamina biomass after estimating the biomass removed by herbivores on N. indica. The values of damage in N. indica emphasize the importance of this macrophyte as a food resource for invertebrate herbivores in the trophic networks of the Neotropical wetlands.

  10. Demonstration of a 1 MWe biomass power plant at USMC Base Camp Lejeune

    International Nuclear Information System (INIS)

    Cleland, J.; Purvis, C.R.

    1997-01-01

    A biomass energy conversion project is being sponsored by the U.S. Environmental Protection Agency (EPA) to demonstrate an environmentally and economically sound electrical power option for government installations, industrial sites, rural cooperatives, small municipalities, and developing countries. Under a cooperative agreement with EPA, Research Triangle Institute is initiating operation of the Camp Lejeune Energy from Wood (CLEW) biomass plant. Wood gasification combined with internal combustion engines was chosen because of (1) recent improvements in gas cleaning, (2) simple, economical operation for units less than 10 MW, and (3) the option of a clean, cheap fuel for the many existing facilities generating expensive electricity from petroleum fuels with reciprocating engines. The plant incorporates a downdraft, moving bed gasifier utilizing hogged waste wood from the Marine Corps Base at Camp Lejeune, NC. A moving bed bulk wood dryer and both spark ignition and diesel engines are included. Unique process design features are briefly described relative to the gasifier, wood drying, tar separation, and process control. A test plan for process optimization and demonstration of reliability, economics, and environmental impact is outlined. (author)

  11. High plant availability of phosphorus and low availability of cadmium in four biomass combustion ashes

    International Nuclear Information System (INIS)

    Li, Xiaoxi; Rubæk, Gitte H.; Sørensen, Peter

    2016-01-01

    For biomass combustion to become a sustainable energy production system, it is crucial to minimise landfill of biomass ashes, to recycle the nutrients and to minimise the undesirable impact of hazardous substances in the ash. In order to test the plant availability of phosphorus (P) and cadmium (Cd) in four biomass ashes, we conducted two pot experiments on a P-depleted soil and one mini-plot field experiment on a soil with adequate P status. Test plants were spring barley and Italian ryegrass. Ash applications were compared to triple superphosphate (TSP) and a control without P application. Both TSP and ash significantly increased crop yields and P uptake on the P-depleted soil. In contrast, on the adequate-P soil, the barley yield showed little response to soil amendment, even at 300–500 kg P ha"−"1 application, although the barley took up more P at higher applications. The apparent P use efficiency of the additive was 20% in ryegrass - much higher than that of barley for which P use efficiencies varied on the two soils. Generally, crop Cd concentrations were little affected by the increasing and high applications of ash, except for relatively high Cd concentrations in barley after applying 25 Mg ha"−"1 straw ash. Contrarily, even modest increases in the TSP application markedly increased Cd uptake in plants. This might be explained by the low Cd solubility in the ash or by the reduced Cd availability due to the liming effect of ash. High concentrations of resin-extractable P (available P) in the ash-amended soil after harvest indicate that the ash may also contribute to P availability for the following crops. In conclusion, the biomass ashes in this study had P availability similar to the TSP fertiliser and did not contaminate the crop with Cd during the first year. - Highlights: • Effects of four biomass ashes vs. a P fertiliser (TSP) on two crops were studied. • Ashes increased crop yields with P availability similar to TSP on P-depleted soil.

  12. High plant availability of phosphorus and low availability of cadmium in four biomass combustion ashes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoxi, E-mail: Xiaoxi.Li@agro.au.dk; Rubæk, Gitte H.; Sørensen, Peter

    2016-07-01

    For biomass combustion to become a sustainable energy production system, it is crucial to minimise landfill of biomass ashes, to recycle the nutrients and to minimise the undesirable impact of hazardous substances in the ash. In order to test the plant availability of phosphorus (P) and cadmium (Cd) in four biomass ashes, we conducted two pot experiments on a P-depleted soil and one mini-plot field experiment on a soil with adequate P status. Test plants were spring barley and Italian ryegrass. Ash applications were compared to triple superphosphate (TSP) and a control without P application. Both TSP and ash significantly increased crop yields and P uptake on the P-depleted soil. In contrast, on the adequate-P soil, the barley yield showed little response to soil amendment, even at 300–500 kg P ha{sup −1} application, although the barley took up more P at higher applications. The apparent P use efficiency of the additive was 20% in ryegrass - much higher than that of barley for which P use efficiencies varied on the two soils. Generally, crop Cd concentrations were little affected by the increasing and high applications of ash, except for relatively high Cd concentrations in barley after applying 25 Mg ha{sup −1} straw ash. Contrarily, even modest increases in the TSP application markedly increased Cd uptake in plants. This might be explained by the low Cd solubility in the ash or by the reduced Cd availability due to the liming effect of ash. High concentrations of resin-extractable P (available P) in the ash-amended soil after harvest indicate that the ash may also contribute to P availability for the following crops. In conclusion, the biomass ashes in this study had P availability similar to the TSP fertiliser and did not contaminate the crop with Cd during the first year. - Highlights: • Effects of four biomass ashes vs. a P fertiliser (TSP) on two crops were studied. • Ashes increased crop yields with P availability similar to TSP on P-depleted soil

  13. Metagenomic Analysis of the Gut Microbiome of the Common Black Slug Arion ater in Search of Novel Lignocellulose Degrading Enzymes

    Directory of Open Access Journals (Sweden)

    Ryan Joynson

    2017-11-01

    Full Text Available Some eukaryotes are able to gain access to well-protected carbon sources in plant biomass by exploiting microorganisms in the environment or harbored in their digestive system. One is the land pulmonate Arion ater, which takes advantage of a gut microbial consortium that can break down the widely available, but difficult to digest, carbohydrate polymers in lignocellulose, enabling them to digest a broad range of fresh and partially degraded plant material efficiently. This ability is considered one of the major factors that have enabled A. ater to become one of the most widespread plant pest species in Western Europe and North America. Using metagenomic techniques we have characterized the bacterial diversity and functional capability of the gut microbiome of this notorious agricultural pest. Analysis of gut metagenomic community sequences identified abundant populations of known lignocellulose-degrading bacteria, along with well-characterized bacterial plant pathogens. This also revealed a repertoire of more than 3,383 carbohydrate active enzymes (CAZymes including multiple enzymes associated with lignin degradation, demonstrating a microbial consortium capable of degradation of all components of lignocellulose. This would allow A. ater to make extensive use of plant biomass as a source of nutrients through exploitation of the enzymatic capabilities of the gut microbial consortia. From this metagenome assembly we also demonstrate the successful amplification of multiple predicted gene sequences from metagenomic DNA subjected to whole genome amplification and expression of functional proteins, facilitating the low cost acquisition and biochemical testing of the many thousands of novel genes identified in metagenomics studies. These findings demonstrate the importance of studying Gastropod microbial communities. Firstly, with respect to understanding links between feeding and evolutionary success and, secondly, as sources of novel enzymes with

  14. Cell wall metabolism and hexose allocation contribute to biomass accumulation in high yielding extreme segregants of a Saccharum interspecific F2 population.

    Science.gov (United States)

    Wai, Ching Man; Zhang, Jisen; Jones, Tyler C; Nagai, Chifumi; Ming, Ray

    2017-10-11

    Sugarcane is an emerging dual-purpose biofuel crop for energy and sugar production, owing to its rapid growth rate, high sucrose storage in the stems, and high lignocellulosic yield. It has the highest biomass production reaching 1.9 billion tonnes in 2014 worldwide. To improve sugarcane biomass accumulation, we developed an interspecific cross between Saccharum officinarum 'LA Purple' and Saccharum robustum 'MOL5829'. Selected F1 individuals were self-pollinated to generate a transgressive F2 population with a wide range of biomass yield. Leaf and stem internodes of fourteen high biomass and eight low biomass F2 extreme segregants were used for RNA-seq to decipher the molecular mechanism of rapid plant growth and dry weight accumulation. Gene Ontology terms involved in cell wall metabolism and carbohydrate catabolism were enriched among 3274 differentially expressed genes between high and low biomass groups. Up-regulation of cellulose metabolism, pectin degradation and lignin biosynthesis genes were observed in the high biomass group, in conjunction with higher transcript levels of callose metabolic genes and the cell wall loosening enzyme expansin. Furthermore, UDP-glucose biosynthesis and sucrose conversion genes were differentially expressed between the two groups. A positive correlation between stem glucose, but not sucrose, levels and dry weight was detected. We thus postulated that the high biomass sugarcane plants rapidly convert sucrose to UDP-glucose, which is the building block of cell wall polymers and callose, in order to maintain the rapid plant growth. The gene interaction of cell wall metabolism, hexose allocation and cell division contributes to biomass yield.

  15. Corrosion and Materials Performance in biomass fired and co-fired power plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Larsen, OH; Biede, O

    2003-01-01

    not previously encountered in coal-fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. In woodchip boilers, a similar corrosion rate and corrosion mechanism has on some occasions been observed. Co-firing of straw (10...... and 20% energy basis) with coal has shown corrosion rates lower than those in straw-fired plants. With both 10 and 20% straw, no chlorine corrosion was seen. This paper will describe the results from in situ investigations undertaken in Denmark on high temperature corrosion in biomass fired plants....... Results from 100% straw-firing, woodchip and co-firing of straw with coal will be reported. The corrosion mechanisms observed are summarized and the corrosion rates for 18-8 type stainless steels are compared....

  16. Input of biomass in power plants for power generation. Calculation of the financial gap. Final report

    International Nuclear Information System (INIS)

    Van Tilburg, X.; De Vries, H.J.; Pfeiffer, A.E.; Cleijne, J.W.

    2005-09-01

    The Ministry of Economic Affairs has requested ECN and KEMA to answer two questions. (1) Are the costs and benefits of projects in which wood-pellets are co-fired in a coal fired power plant representative for those of bio-oil fueled co-firing projects in a gas fired plant?; and (2) Are new projects representative for existing projects? To answer these questions, ECN and KEMA have calculated the financial gaps in six different situations: co-firing bio-oil in a gas fired power plant; co-firing bio-oil in a coal fired power plant; gasification of solid biomass; co-firing wood pellets in a coal fired power plant; co-firing agricultural residues in a coal fired power plant; and co-firing waste wood (A- and B-grade) in a coal fired power plant. The ranges and reference cases show that co-firing bio-oil on average has a smaller financial gap than the solid biomass reference case. On average it can also be concluded that when using waste wood or agro-residues, the financial gaps are smaller. Based on these findings it is concluded that: (1) The reference case of co-firing wood pellets in a coal fired power plant are not representative for bio-fuel options. A new category for bio-oil options seems appropriate; and (2) The financial gap of new projects as calculated in November 2004, is often higher then the ranges for existing projects indicate [nl

  17. Pretreatment of lignocellulosic biomass using Fenton chemistry

    Science.gov (United States)

    Pretreatment is a necessary step in “biomass to biofuel conversion” due to the recalcitrant nature of lignocellulosic biomass. White-rot fungi utilize peroxidases and hydrogen peroxide (in vivo Fenton chemistry) to degrade lignin. In an attempt to mimic this process, solution phase Fenton chemistry ...

  18. [Characteristics of soil microbes and enzyme activities in different degraded alpine meadows].

    Science.gov (United States)

    Yin, Ya Li; Wang, Yu Qin; Bao, Gen Sheng; Wang, Hong Sheng; Li, Shi Xiong; Song, Mei Ling; Shao, Bao Lian; Wen, Yu Cun

    2017-12-01

    Soil microbial biomass C and N, microbial diversities and enzyme activity in 0-10 cm and 10-20 cm soil layers of different degraded grasslands (non-degradation, ND; light degradation, LD; moderate degradation, MD; sever degradation, SD; and black soil beach, ED) were measured by Biolog and other methods. The results showed that: 1) There were significant diffe-rences between 0-10 cm and 10-20 cm soil layers in soil microbial biomass, diversities and inver-tase activities in all grasslands. 2) The ratio of soil microbial biomass C to N decreased significantly with the grassland degradation. In the 0-10 cm soil layer, microbial biomass C and N in ND and LD were significantly higher than that in MD, SD and ED. Among the latter three kinds of grasslands, there was no difference for microbial biomass C, but microbial biomass N was lower in MD than in the other grasslands. The average color change rate (AWCD) and McIntosh Index (U) also decreased with grassland degradation, but only the reduction from ND to MD was significant. There were no differences among all grasslands for Shannon index (H) and Simpson Index (D). The urease activity was highest in MD and SD, and the activity of phosphatase and invertase was lowest in ED. In the 10-20 cm soil layer, microbial biomass C in ND and LD were significantly higher than that in the other grasslands. Microbial biomass N in LD and ED were significantly higher than that in the other grasslands. Carbon metabolism index in MD was significantly lower than that in LD and SD. AWCD and U index in ND and LD were significantly higher than that in ED. H index and D index showed no difference among different grasslands. The urease activity in ND and MD was significantly higher than that in the other grasslands. The phosphatase activity was highest in MD, and the invertase activity was lowest in MD. 3) The belowground biomass was significantly positively correlated with microbial biomass, carbon metabolic index and phosphatase activity

  19. Transpiration and metabolisation of TCE by willow plants - a pot experiment.

    Science.gov (United States)

    Schöftner, Philipp; Watzinger, Andrea; Holzknecht, Philipp; Wimmer, Bernhard; Reichenauer, Thomas G

    2016-01-01

    Willows were grown in glass cylinders filled with compost above water-saturated quartz sand, to trace the fate of TCE in water and plant biomass. The experiment was repeated once with the same plants in two consecutive years. TCE was added in nominal concentrations of 0, 144, 288, and 721 mg l(-1). Unplanted cylinders were set-up and spiked with nominal concentrations of 721 mg l(-1) TCE in the second year. Additionally, (13)C-enriched TCE solution (δ(13)C = 110.3 ‰) was used. Periodically, TCE content and metabolites were analyzed in water and plant biomass. The presence of TCE-degrading microorganisms was monitored via the measurement of the isotopic ratio of carbon ((13)C/(12)C) in TCE, and the abundance of (13)C-labeled microbial PLFAs (phospholipid fatty acids). More than 98% of TCE was lost via evapotranspiration from the planted pots within one month after adding TCE. Transpiration accounted to 94 to 78% of the total evapotranspiration loss. Almost 1% of TCE was metabolized in the shoots, whereby trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) were dominant metabolites; less trichloroethanol (TCOH) and TCE accumulated in plant tissues. Microbial degradation was ruled out by δ(13)C measurements of water and PLFAs. TCE had no detected influence on plant stress status as determined by chlorophyll-fluorescence and gas exchange.

  20. Biomass for energy. Danish solutions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    Information is given on a number of typical and recently established plants of all types and sizes, for converting the main Danish biomass resources (manures, straw and wood derived from agricultural activities and forestry)into energy. Danish biomass resources and energy and environmental policies are described. In Denmark there is a very wide range of technologies for converting biomass into energy, and these are clarified. In addition, performance data from a number of plants fuelled with biomass fuels are presented. The course of further developments within this field is suggested. The text is illustrated with a considerable number of coloured photographs and also with graphs and diagrams. (ARW)

  1. Degradation of aromatic compounds in plants grown under aseptic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mithaishvili, T.; Ugrekhelidze, D.; Tsereteli, B.; Sadunishvili, T.; Kvesitadze, G. [Durmishidze Inst. of Biochemistry and Biotechnology, Academy of Sciences of Georgia, Tbilisi (Georgia); Scalla, R. [Lab. des Xenobiotiques, INRA, Toulouse (France)

    2005-02-01

    The aim of the work is to investigate the ability of higher plants to absorb and detoxify environmental pollutants - aromatic compounds via aromatic ring cleavage. Transformation of {sup 14}C specifically labelled benzene derivatives, [1-6-{sup 14}C]-nitrobenzene, [1-6-{sup 14}C]-aniline, [1-{sup 14}C]- and [7-{sup 14}C]-benzoic acid, in axenic seedlings of maize (Zea mays L.), kidney bean (Phaseolus vulgaris L.), pea (Pisum sativum L.) and pumpkin (Cucurbita pepo L.) were studied. After penetration in plants, the above xenobiotics are transformed by oxidative or reductive reactions, conjugation with cell endogenous compounds, and binding to biopolymers. The initial stage of oxidative degradation consists in hydroxylation reactions. The aromatic ring can then be cleaved and degraded into organic acids of the Krebs cycle. Ring cleavage is accompanied by {sup 14}CO{sub 2} evolution. Aromatic ring cleavage in plants has thus been demonstrated for different xenobiotics carrying different substitutions on their benzene ring. Conjugation with low molecular peptides is the main pathway of aromatic xenobiotics detoxification. Peptide conjugates are formed both by the initial xenobiotics (except nitrobenzene) and by intermediate transformation products. The chemical nature of the radioactive fragment and the amino acid composition of peptides participating in conjugation were identified. (orig.)

  2. Biomass co-firing opportunities and experiences

    Energy Technology Data Exchange (ETDEWEB)

    Lyng, R. [Ontario Power Generation Inc., Niagara Falls, ON (Canada). Nanticoke Generating Station

    2006-07-01

    Biomass co-firing and opportunities in the electricity sector were described in this presentation. Biomass co-firing in a conventional coal plant was first illustrated. Opportunities that were presented included the Dutch experience and Ontario Power Generation's (OPG) plant and production mix. The biomass co-firing program at OPG's Nantucket generating station was presented in three phases. The fuel characteristics of co-firing were identified. Several images and charts of the program were provided. Results and current status of tests were presented along with conclusions of the biomass co-firing program. It was concluded that biomass firing is feasible and following the Dutch example. Biomass firing could considerably expand renewable electricity generation in Ontario. In addition, sufficient biomass exists in Ontario and the United States to support large scale biomass co-firing. Several considerations were offered such as electricity market price for biomass co-firing and intensity targets and credit for early adoption and banking. tabs., figs.

  3. Petroleum degradation by endophytic Streptomyces spp. isolated from plants grown in contaminated soil of southern Algeria.

    Science.gov (United States)

    Baoune, Hafida; Ould El Hadj-Khelil, Aminata; Pucci, Graciela; Sineli, Pedro; Loucif, Lotfi; Polti, Marta Alejandra

    2018-01-01

    Petroleum hydrocarbons are well known by their high toxicity and recalcitrant properties. Their increasing utilization around worldwide led to environmental contamination. Phytoremediation using plant-associated microbe is an interesting approach for petroleum degradation and actinobacteria have a great potential for that. For this purpose, our study aimed to isolate, characterize, and assess the ability of endophytic actinobacteria to degrade crude petroleum, as well as to produce plant growth promoting traits. Seventeen endophytic actinobacteria were isolated from roots of plants grown naturally in sandy contaminated soil. Among them, six isolates were selected on the basis of their tolerance to petroleum on solid minimal medium and characterized by 16S rDNA gene sequencing. All petroleum-tolerant isolates belonged to the Streptomyces genus. Determination by crude oil degradation by gas chromatorgraph-flame ionization detector revealed that five strains could use petroleum as sole carbon and energy source and the petroleum removal achieved up to 98% after 7 days of incubation. These isolates displayed an important role in the degradation of the n-alkanes (C 6 -C 30 ), aromatic and polycyclic aromatic hydrocarbons. All strains showed a wide range of plant growth promoting features such as siderophores, phosphate solubilization, 1-aminocyclopropane-1-carboxylate deaminase, nitrogen fixation and indole-3-acetic acid production as well as biosurfactant production. This is the first study highlighting the petroleum degradation ability and plant growth promoting attributes of endophytic Streptomyces. The finding suggests that the endophytic actinobacteria isolated are promising candidates for improving phytoremediation efficiency of petroleum contaminated soil. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Genetic variation in degradability of wheat straw and potential for improvement through plant breeding

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner; Magid, Jakob; Hansen-Møller, Jens

    2011-01-01

    contemporary gene pool. The cultivars were grown at two different locations to assess the potential for breeding for improved degradability. The straws exhibited much variation in degradability ranging from 258 g kg1 to 407 g kg1 of dry matter. The heritability for degradability was estimated to 29% indicating...... a reasonable potential for response to selection. Inclusion of height as a regression-term, indicated that only a minor part of genetic differences are directly related to plant height and that improvements in degradability may be achieved without unacceptable changes in straw length. Finally, a lack...... of correlation between degradability and grain yield indicated that straw degradability may be improved through breeding without serious negative effect on grain yield....

  5. Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China.

    Directory of Open Access Journals (Sweden)

    Lu Wen

    Full Text Available The deterioration of alpine grassland has great impact on ecosystem services in the alpine region of Qinghai-Tibetan Plateau. However, the effect of grassland degradation on ecosystem services and the consequence of grassland deterioration on economic loss still remains a mystery. So, in this study, we assessed four types of ecosystem services following the Millennium Ecosystem Assessment classification, along a degradation gradient. Five sites of alpine grassland at different levels of degradation were investigated in Guoluo Prefecture of Qinghai Province, China. The species composition, aboveground biomass, soil total organic carbon (TOC, and soil total nitrogen (TN were tested to evaluate major ecological services of the alpine grassland. We estimated the value of primary production, carbon storage, nitrogen recycling, and plant diversity. The results show the ecosystem services of alpine grassland varied along the degradation gradient. The ecosystem services of degraded grassland (moderate, heavy and severe were all significantly lower than non-degraded grassland. Interestingly, the lightly degraded grassland provided more economic benefit from carbon maintenance and nutrient sequestration compared to non-degraded. Due to the destruction of the alpine grassland, the economic loss associated with decrease of biomass in 2008 was $198/ha. Until 2008, the economic loss caused by carbon emissions and nitrogen loss on severely degraded grassland was up to $8 033/ha and $13 315/ha, respectively. Urgent actions are required to maintain or promote the ecosystem services of alpine grassland in the Qinghai-Tibetan Plateau.

  6. Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China.

    Science.gov (United States)

    Wen, Lu; Dong, Shikui; Li, Yuanyuan; Li, Xiaoyan; Shi, Jianjun; Wang, Yanlong; Liu, Demei; Ma, Yushou

    2013-01-01

    The deterioration of alpine grassland has great impact on ecosystem services in the alpine region of Qinghai-Tibetan Plateau. However, the effect of grassland degradation on ecosystem services and the consequence of grassland deterioration on economic loss still remains a mystery. So, in this study, we assessed four types of ecosystem services following the Millennium Ecosystem Assessment classification, along a degradation gradient. Five sites of alpine grassland at different levels of degradation were investigated in Guoluo Prefecture of Qinghai Province, China. The species composition, aboveground biomass, soil total organic carbon (TOC), and soil total nitrogen (TN) were tested to evaluate major ecological services of the alpine grassland. We estimated the value of primary production, carbon storage, nitrogen recycling, and plant diversity. The results show the ecosystem services of alpine grassland varied along the degradation gradient. The ecosystem services of degraded grassland (moderate, heavy and severe) were all significantly lower than non-degraded grassland. Interestingly, the lightly degraded grassland provided more economic benefit from carbon maintenance and nutrient sequestration compared to non-degraded. Due to the destruction of the alpine grassland, the economic loss associated with decrease of biomass in 2008 was $198/ha. Until 2008, the economic loss caused by carbon emissions and nitrogen loss on severely degraded grassland was up to $8 033/ha and $13 315/ha, respectively. Urgent actions are required to maintain or promote the ecosystem services of alpine grassland in the Qinghai-Tibetan Plateau.

  7. Horse grazing systems: understory biomass and plant biodiversity of a Pinus radiata stand

    Directory of Open Access Journals (Sweden)

    Antonio Rigueiro-Rodríguez

    2012-02-01

    Full Text Available Horse grazing systems may affect productivity and biodiversity of understory developed under Pinus radiata D. Don silvopastoral systems, while acting as a tool to reduce the risk of fire. This study compared continuous and rotational grazing systems effect upon biomass, fractions of stem, sprouts, leaves and woody parts of Ulex europaeus L. and alpha (Species Richness, Shannon-Wiener and beta (Jaccard and Magurran biodiversity for a period of four years in a P. radiata silvopastoral system. The experiment consisted of a randomized block design of two treatments (continuous and rotational grazing. Biomass, and species abundances were measured - biodiversity metrics were calculated based on these results for a two years of grazing and two years of post-grazing periods. Both continuous and rotational grazing systems were useful tools for reducing biomass and, therefore, fire risk. The rotational grazing system caused damage to the U. europaeus shrub, limiting its recovery once grazing was stopped. However, the more intensive grazing of U. europaeus plants under rotational had a positive effect on both alpha and beta biodiversity indexes due to the low capacity of food selection in the whole plot rather than continuous grazing systems. Biomass was not affected by the grazing system; however the rotational grazing system is more appropriate to reduce U. europaeus biomass and therefore forest fire risk at a long term and to enhance pasture biodiversity than the continuous grazing system.

  8. A review on advances of torrefaction technologies for biomass processing

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Bimal; Sule, Idris; Dutta, Animesh [University of Guelph, School of Engineering, Guelph, ON (Canada)

    2012-12-15

    Torrefaction is a thermochemical pretreatment process at 200-300 C in an inert condition which transforms biomass into a relatively superior handling, milling, co-firing and clean renewable energy into solid biofuel. This increases the energy density, water resistance and grindability of biomass and makes it safe from biological degradation which ultimately makes easy and economical on transportation and storing of the torrefied products. Torrefied biomass is considered as improved version than the current wood pellet products and an environmentally friendly future alternative for coal. Torrefaction carries devolatilisation, depolymerization and carbonization of lignocellulose components and generates a brown to black solid biomass as a productive output with water, organics, lipids, alkalis, SiO{sub 2}, CO{sub 2}, CO and CH{sub 4}. During this process, 70 % of the mass is retained as a solid product, and retains 90 % of the initial energy content. The torrefied product is then shaped into pellets or briquettes that pack much more energy density than regular wood pellets. These properties minimize on the difference in combustion characteristics between biomass and coal that bring a huge possibility of direct firing of biomass in an existing coal-fired plant. Researchers are trying to find a solution to fire/co-fire torrefied biomass instead of coal in an existing coal-fired based boiler with minimum modifications and expenditures. Currently available torrefied technologies are basically designed and tested for woody biomass so further research is required to address on utilization of the agricultural biomass with technically and economically viable. This review covers the torrefaction technologies, its' applications, current status and future recommendations for further study. (orig.)

  9. Evaluation of the degradation of the service water system in nuclear plants

    International Nuclear Information System (INIS)

    Salaices A, E.

    2003-01-01

    The service water system, the circulation water system, the cooling water system and the protection against fires system so much in nuclear plants as in fossils plants they are being degraded by a wide variety of mechanisms. These mechanisms include microbiologically influenced corrosion, cavitation, erosion-corrosion, erosion by solid particles, corrosion in cracks, stings, general corrosion, galvanic corrosion, sedimentation and obstructions and incrustations in the heat exchangers. In the last years were developed predictive models for the more common degradation forms and were installed in a new application of the CHECWORKS TM code called Cooling Water Application (CWA). This application of the code provides a new technology that so much nuclear facilities as fossil ones can use to modelling specific systems and to carry out corrosion predictions in each one of its components. Presently work the results of the employment of the CHECWORKS CWA code are described to carry out predictions of 12 different corrosion mechanisms that affect to the service water system of a nuclear plant, as well as the recommendations and options that the plant can to consider to reduce indexes of damages. This work can be used for to optimize inspections to the service water system and it gives the bases for similar changes in other nuclear plants. (Author)

  10. Large-scale biodiesel production using flue gas from coal-fired power plants with Nannochloropsis microalgal biomass in open raceway ponds.

    Science.gov (United States)

    Zhu, Baohua; Sun, Faqiang; Yang, Miao; Lu, Lin; Yang, Guanpin; Pan, Kehou

    2014-12-01

    The potential use of microalgal biomass as a biofuel source has raised broad interest. Highly effective and economically feasible biomass generating techniques are essential to realize such potential. Flue gas from coal-fired power plants may serve as an inexpensive carbon source for microalgal culture, and it may also facilitate improvement of the environment once the gas is fixed in biomass. In this study, three strains of the genus Nannochloropsis (4-38, KA2 and 75B1) survived this type of culture and bloomed using flue gas from coal-fired power plants in 8000-L open raceway ponds. Lower temperatures and solar irradiation reduced the biomass yield and lipid productivities of these strains. Strain 4-38 performed better than the other two as it contained higher amounts of triacylglycerols and fatty acids, which are used for biodiesel production. Further optimization of the application of flue gas to microalgal culture should be undertaken. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. BIOMASS UTILIZATION AS A RENEVABLE ENERGY SOURCE IN POLISH POWER INDUSTRY – CURRENT STATUS AND PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    Beata Gołuchowska

    2015-06-01

    Full Text Available The depletion of the conventional energy sources, as well as the degradation and pollution of the environment by the exploitation of fossil fuels caused the development of renewable energy sources (RES, including biomass. In Poland, biomass is the most popular renewable energy source, which is closely related to the obligations associated with the membership in the EU. Biomass is the oldest renewable energy source, and its potential, diversity and polymorphism place it over other sources. Besides, the improvement in its parameters, including an increase in its calorific value, resulted in increasing use of biomass as energy source. In the electric power industry biomass is applied in the process of co-combustion with coal. This process may contribute, inter alia, to the reduction in the emissions of carbon, nitrogen and sulfur oxides. The article presents the characteristics of the biomass burned in power boilers of one of the largest Polish power plants, located in Opole Province (Southern Poland. Besides, the impact of biomass on the installation of co-combustion, as well as the advantages and disadvantages of the co-combustion process not only in technological, but also environmental, economic and social aspects were described.

  12. Pretreated densified biomass products

    Science.gov (United States)

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  13. Controlled expression of pectic enzymes in Arabidopsis thaliana enhances biomass conversion without adverse effects on growth.

    Science.gov (United States)

    Tomassetti, Susanna; Pontiggia, Daniela; Verrascina, Ilaria; Reca, Ida Barbara; Francocci, Fedra; Salvi, Gianni; Cervone, Felice; Ferrari, Simone

    2015-04-01

    Lignocellulosic biomass from agriculture wastes is a potential source of biofuel, but its use is currently limited by the recalcitrance of the plant cell wall to enzymatic digestion. Modification of the wall structural components can be a viable strategy to overcome this bottleneck. We have previously shown that the expression of a fungal polygalacturonase (pga2 from Aspergillus niger) in Arabidopsis and tobacco plants reduces the levels of de-esterified homogalacturonan in the cell wall and significantly increases saccharification efficiency. However, plants expressing pga2 show stunted growth and reduced biomass production, likely as a consequence of an extensive loss of pectin integrity during the whole plant life cycle. We report here that the expression in Arabidopsis of another pectic enzyme, the pectate lyase 1 (PL1) of Pectobacterium carotovorum, under the control of a chemically inducible promoter, results, after induction of the transgene, in a saccharification efficiency similar to that of plants expressing pga2. However, lines with high levels of transgene induction show reduced growth even in the absence of the inducer. To overcome the problem of plant fitness, we have generated Arabidopsis plants that express pga2 under the control of the promoter of SAG12, a gene expressed only during senescence. These plants expressed pga2 only at late stages of development, and their growth was comparable to that of WT plants. Notably, leaves and stems of transgenic plants were more easily digested by cellulase, compared to WT plants, only during senescence. Expression of cell wall-degrading enzymes at the end of the plant life cycle may be therefore a useful strategy to engineer crops unimpaired in biomass yield but improved for bioconversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Environmental burdens over the entire life cycle of a biomass CHP plant

    International Nuclear Information System (INIS)

    Jungmeier, G.; Spitzer, J.; Resch, G.

    1998-01-01

    To increase the use of biomass for energy production it is important to know the possible and significant environmental effects. A life cycle inventory (LCI) was made on a 1.3 MW el biomass CHP plant located in Reuthe/Vorarlberg/Austria with the purpose of analysing the different environmental burdens over the entire life cycle. The plant is fired with coarse and small fuelwood (10,000 t/yr) from industrial waste and forest residues. The boiler for the steam process has a moving grate burner and a muffle burner. The annual production is 4700 MWh of electricity and 29,000 MWh of district heat. The methodology of the analysis is orientated on the ISO Committee Draft of the Series 13,600. The analysis was carried out for the different sections of the biomass plant over their entire life cycle-construction (1 yr), operation (20 yrs) and dismantling (1 yr). The plant in Reuthe, which is the first cogeneration system of this kind in Austria, is a model for other similar projects. The results are shown as environmental burdens of one year and of the entire life cycle. Some results of the life cycle inventory, like the mass and energy balances, selected emissions to air, allocation results and effects on carbon storage pools are given. The results demonstrate that depending on the stage and the period of life, different environmental burdens become significant, i.e. CO 2 emissions of fossil fuels during construction. NO x emission during operation, emissions to soil during dismantling. The different options for allocation the environmental burdens to electricity and heat show a wide range of possible results, depending on the choice of allocation parameters (energy, exergy, credits for heat or electricity, price) i.e. for the particles emissions: 161 mg/kWh el to minus 566 mg/kWh el , 0 mg/kWh th to 118 mg/kWh th . With the results of the analysis it is thus possible for future similar projects to know when and where significant environmental burdens might be further

  15. Technoeconomic analysis of a low CO2 emission dimethyl ether (DME) plant based on gasification of torrefied biomass

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard; Elmegaard, Brian; Houbak, Niels

    2010-01-01

    rich stream to a CO2 capture plant, which is used in the conditioning of the syngas.The plant models predict energy efficiencies from torrefied biomass to DME of 66% (RC) and 48% (OT) (LHV). If the exported electricity is included, the efficiencies are 71% (RC) and 64% (OT). When accounting for energy...... loss in torrefaction, the total efficiencies are reduced to 64% (RC) and 58% (OT). The two plants produce DME at an estimated cost of $11.9/GJLHV (RC) and $12.9/GJLHV (OT). If a credit is given for storing the CO2 captured, the future costs may become as low as $5.4/GJLHV (RC) and $3.1/GJLHV (OT)....... process that takes place at 200–300°C. Torrefied biomass has properties similar to coal, which enables the use of commercially available coal gasification processing equipment. The DME plants are designed with focus on lowering the total CO2 emissions from the plants; this includes e.g. a recycle of a CO2...

  16. Nitrogen cycling in an integrated biomass for energy system

    International Nuclear Information System (INIS)

    Moorhead, K.K.

    1986-01-01

    A series of experiments was conducted to evaluate N cycling in three components of an integrated biomass for energy system, i.e. water hyacinth production, anaerobic digestion in hyacinth biomass, and recycling of digester effluent and sludge. Plants assimilated 50 to 90% of added N in hyacinth production systems. Up to 28% of the total plant N was contained in hyacinth detritus. Nitrogen loading as plant detritus into hyacinth ponds was 92 to 148 kg N ha -1 yr -1 . Net mineralization of plant organic 15 N during anaerobic digestion was 35 and 70% for water hyacinth plants with low and high N content, respectively. Approximately 20% of the 15 N was recovered in the digested sludge while the remaining 15 N was recovered in the effluent. Water hyacinth growth in digester effluents was affected by electrical conductivity and 15 NH 4 + -N concentration. Addition of water hyacinth biomass to soil resulted in decomposition of 39 to 50% of added C for fresh plant biomass and 19 to 23% of added C for digested biomass sludge. Only 8% of added 15 N in digested sludges was mineralized to 15 NO 3 - -N despite differences in initial N content. In contrast, 3 and 33% of added 15 N in fresh biomass with low and high N content, respectively, was recovered as 15 NO 3 - -N. Total 15 N recovery after anaerobic digestion ranged from 70 to 100% of the initial plant biomass 15 N. Total N recovery by sludge and effluent recycling in the integrated biomass for energy system was 48 to 60% of the initial plant biomass 15 N

  17. Development and delivery of a workshop methodology: planning for biomass power plant projects

    Energy Technology Data Exchange (ETDEWEB)

    Gray, A.J.; Delbridge, P.; Trevorrow, E.; Pile, C.

    2001-07-01

    This report gives details of the approach used to develop a workshop methodology to help planners and stakeholders address key issues that may arise when submitting a planning application for a biomass power plant in the light of the UK government's energy and climate change targets. The results of interviews with stakeholders (central government, regulatory authorities, developers, planners, non-governmental organisations, local community, resident groups) are summarised, and the NIMBY (not in my back yard) syndrome, the lack of trust in the developer, and lack of awareness of the use of biomass are discussed. Details are given of the design and testing of the workshop methodology and the resulting workshop methodology and workbook guide aimed at understanding the stakeholder issues and concerns through stakeholder discussions.

  18. ALTENER - Biomass event in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The publication contains the lectures held in the Biomass event in Finland. The event was divided into two sessions: Fuel production and handling, and Co-combustion and gasification sessions. Both sessions consisted of lectures and the business forum during which the companies involved in the research presented themselves and their research and their equipment. The fuel production and handling session consisted of following lectures and business presentations: AFB-NETT - business opportunities for European biomass industry; Wood waste in Europe; Wood fuel production technologies in EU- countries; new drying method for wood waste; Pellet - the best package for biofuel - a view from the Swedish pelletmarket; First biomass plant in Portugal with forest residue fuel; and the business forum of presentations: Swedish experiences of willow growing; Biomass handling technology; Chipset 536 C Harvester; KIC International. The Co-combustion and gasification session consisted of following lectures and presentations: Gasification technology - overview; Overview of co-combustion technology in Europe; Modern biomass combustion technology; Wood waste, peat and sludge combustion in Enso Kemi mills and UPM-Kymmene Rauma paper mill; Enhanced CFB combustion of wood chips, wood waste and straw in Vaexjoe in Sweden and Grenaa CHP plant in Denmark; Co-combustion of wood waste; Biomass gasification projects in India and Finland; Biomass CFB gasifier connected to a 350 MW{sub t}h steam boiler fired with coal and natural gas - THERMIE demonstration project in Lahti (FI); Biomass gasification for energy production, Noord Holland plant in Netherlands and Arbre Energy (UK); Gasification of biomass in fixed bed gasifiers, Wet cleaning and condensing heat recovery of flue gases; Combustion of wet biomass by underfeed grate boiler; Research on biomass and waste for energy; Engineering and consulting on energy (saving) projects; and Research and development on combustion of solid fuels

  19. ALTENER - Biomass event in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The publication contains the lectures held in the Biomass event in Finland. The event was divided into two sessions: Fuel production and handling, and Co-combustion and gasification sessions. Both sessions consisted of lectures and the business forum during which the companies involved in the research presented themselves and their research and their equipment. The fuel production and handling session consisted of following lectures and business presentations: AFB-NETT - business opportunities for European biomass industry; Wood waste in Europe; Wood fuel production technologies in EU- countries; new drying method for wood waste; Pellet - the best package for biofuel - a view from the Swedish pelletmarket; First biomass plant in Portugal with forest residue fuel; and the business forum of presentations: Swedish experiences of willow growing; Biomass handling technology; Chipset 536 C Harvester; KIC International. The Co-combustion and gasification session consisted of following lectures and presentations: Gasification technology - overview; Overview of co-combustion technology in Europe; Modern biomass combustion technology; Wood waste, peat and sludge combustion in Enso Kemi mills and UPM-Kymmene Rauma paper mill; Enhanced CFB combustion of wood chips, wood waste and straw in Vaexjoe in Sweden and Grenaa CHP plant in Denmark; Co-combustion of wood waste; Biomass gasification projects in India and Finland; Biomass CFB gasifier connected to a 350 MW{sub t}h steam boiler fired with coal and natural gas - THERMIE demonstration project in Lahti (FI); Biomass gasification for energy production, Noord Holland plant in Netherlands and Arbre Energy (UK); Gasification of biomass in fixed bed gasifiers, Wet cleaning and condensing heat recovery of flue gases; Combustion of wet biomass by underfeed grate boiler; Research on biomass and waste for energy; Engineering and consulting on energy (saving) projects; and Research and development on combustion of solid fuels

  20. Biomass equipments. The wood-fueled heating plants; Materiels pour la biomasse. Les chaudieres bois

    Energy Technology Data Exchange (ETDEWEB)

    Chieze, B. [SA Compte R, 63 - Arlanc (France)

    1997-12-31

    This paper analyzes the consequences of the classification of biomass fuels in the French 2910 by-law on the classification of biomass-fueled combustion installations. Biomass fuels used in such installations must be only wood wastes without any treatment or coating. The design of biomass combustion systems must follow several specifications relative to the fueling system, the combustion chamber, the heat exchanger and the treatment of exhaust gases. Other technical solutions must be studied for other type of wood wastes in order to respect the environmental pollution laws. (J.S.)

  1. A hybrid model for mapping relative differences in belowground biomass and root: Shoot ratios using spectral reflectance, foliar N and plant biophysical data within coastal marsh

    Science.gov (United States)

    Jessica L. O'Connell,; Byrd, Kristin B.; Maggi Kelly,

    2015-01-01

    Broad-scale estimates of belowground biomass are needed to understand wetland resiliency and C and N cycling, but these estimates are difficult to obtain because root:shoot ratios vary considerably both within and between species. We used remotely-sensed estimates of two aboveground plant characteristics, aboveground biomass and % foliar N to explore biomass allocation in low diversity freshwater impounded peatlands (Sacramento-San Joaquin River Delta, CA, USA). We developed a hybrid modeling approach to relate remotely-sensed estimates of % foliar N (a surrogate for environmental N and plant available nutrients) and aboveground biomass to field-measured belowground biomass for species specific and mixed species models. We estimated up to 90% of variation in foliar N concentration using partial least squares (PLS) regression of full-spectrum field spectrometer reflectance data. Landsat 7 reflectance data explained up to 70% of % foliar N and 67% of aboveground biomass. Spectrally estimated foliar N or aboveground biomass had negative relationships with belowground biomass and root:shoot ratio in both Schoenoplectus acutus and Typha, consistent with a balanced growth model, which suggests plants only allocate growth belowground when additional nutrients are necessary to support shoot development. Hybrid models explained up to 76% of variation in belowground biomass and 86% of variation in root:shoot ratio. Our modeling approach provides a method for developing maps of spatial variation in wetland belowground biomass.

  2. Feasibility study of a biomass-fired cogeneration plant Groningen, Netherlands

    International Nuclear Information System (INIS)

    Rijk, P.J.; Van Loo, S.; Webb, R.

    1996-06-01

    The feasibility of the title plant is determined for district heating and electricity supply of more than 1,000 houses in Groningen, Netherlands. Also attention is paid to the feasibility of such installations in a planned area of the city. Prices and supply of several biomass resources are dealt with: prunings of parks, public and private gardens, clean wood wastes, wood wastes from forests, wood from newly planted forests, specific energy crops (willows in high densities and short cycles). Prices are calculated, including transport to the gate of the premises where the cogeneration installations is situated. For the conversion attention is paid to both the feasibility of the use of a conventional cogeneration installation (by means of a steam turbine) and the use of a new conversion technique: combined cycle of a gasification installation and a cogeneration installation. 5 figs., 5 ills., 22 tabs., 1 appendix, 33 refs

  3. Phylogeny is a powerful tool for predicting plant biomass responses to nitrogen enrichment.

    Science.gov (United States)

    Wooliver, Rachel C; Marion, Zachary H; Peterson, Christopher R; Potts, Brad M; Senior, John K; Bailey, Joseph K; Schweitzer, Jennifer A

    2017-08-01

    Increasing rates of anthropogenic nitrogen (N) enrichment to soils often lead to the dominance of nitrophilic plant species and reduce plant diversity in natural ecosystems. Yet, we lack a framework to predict which species will be winners or losers in soil N enrichment scenarios, a framework that current literature suggests should integrate plant phylogeny, functional tradeoffs, and nutrient co-limitation. Using a controlled fertilization experiment, we quantified biomass responses to N enrichment for 23 forest tree species within the genus Eucalyptus that are native to Tasmania, Australia. Based on previous work with these species' responses to global change factors and theory on the evolution of plant resource-use strategies, we hypothesized that (1) growth responses to N enrichment are phylogenetically structured, (2) species with more resource-acquisitive functional traits have greater growth responses to N enrichment, and (3) phosphorus (P) limits growth responses to N enrichment differentially across species, wherein P enrichment increases growth responses to N enrichment more in some species than others. We built a hierarchical Bayesian model estimating effects of functional traits (specific leaf area, specific stem density, and specific root length) and P fertilization on species' biomass responses to N, which we then compared between lineages to determine whether phylogeny explains variation in responses to N. In concordance with literature on N limitation, a majority of species responded strongly and positively to N enrichment. Mean responses ranged three-fold, from 6.21 (E. pulchella) to 16.87 (E. delegatensis) percent increases in biomass per g N·m -2 ·yr -1 added. We identified a strong difference in responses to N between two phylogenetic lineages in the Eucalyptus subgenus Symphyomyrtus, suggesting that shared ancestry explains variation in N limitation. However, our model indicated that after controlling for phylogenetic non

  4. A comparison of circulating fluidised bed combustion and gasification power plant technologies for processing mixtures of coal, biomass and plastic waste

    International Nuclear Information System (INIS)

    McIlveen-Wright, D.R.; Huang, Y.; McMullan, J.T.; Pinto, F.; Franco, C.; Gulyurtlu, I.; Armesto, L.; Cabanillas, A.; Caballero, M.A.; Aznar, M.P.

    2006-01-01

    Environmental regulations concerning emission limitations from the use of fossil fuels in large combustion plants have stimulated interest in biomass for electricity generation. The main objective of the present study was to examine the technical and economic viability of using combustion and gasification of coal mixed with biomass and plastic wastes, with the aim of developing an environmentally acceptable process to decrease their amounts in the waste stream through energy recovery. Mixtures of a high ash coal with biomass and/or plastic using fluidised bed technologies (combustion and gasification) were considered. Experiments were carried out in laboratory and pilot plant fluidised bed systems on the combustion and air/catalyst and air/steam gasification of these feedstocks and the data obtained were used in the techno-economic analyses. The experimental results were used in simulations of medium to large-scale circulating fluidised bed (CFB) power generation plants. Techno-economic analysis of the modelled CFB combustion systems showed efficiencies of around 40.5% (and around 46.5% for the modelled CFB gasification systems) when fuelled solely by coal, which were only minimally affected by co-firing with up to 20% biomass and/or wastes. Specific investments were found to be around $2150/kWe to $2400/kWe ($1350/kWe to $1450/kWe) and break-even electricity selling prices to be around $68/MWh to $78/MWh ($49/MWh to $54/MWh). Their emissions were found to be within the emission limit values of the large combustion plant directive. Fluidised bed technologies were found to be very suitable for co-firing coal and biomass and/or plastic waste and to offer good options for the replacement of obsolete or polluting power plants. (author)

  5. Designer biomass for next-generation biorefineries: leveraging recent insights into xylan structure and biosynthesis.

    Science.gov (United States)

    Smith, Peter J; Wang, Hsin-Tzu; York, William S; Peña, Maria J; Urbanowicz, Breeanna R

    2017-01-01

    Xylans are the most abundant noncellulosic polysaccharides in lignified secondary cell walls of woody dicots and in both primary and secondary cell walls of grasses. These polysaccharides, which comprise 20-35% of terrestrial biomass, present major challenges for the efficient microbial bioconversion of lignocellulosic feedstocks to fuels and other value-added products. Xylans play a significant role in the recalcitrance of biomass to degradation, and their bioconversion requires metabolic pathways that are distinct from those used to metabolize cellulose. In this review, we discuss the key differences in the structural features of xylans across diverse plant species, how these features affect their interactions with cellulose and lignin, and recent developments in understanding their biosynthesis. In particular, we focus on how the combined structural and biosynthetic knowledge can be used as a basis for biomass engineering aimed at developing crops that are better suited as feedstocks for the bioconversion industry.

  6. From oil spills to barley growth - oil-degrading soil bacteria and their promoting effects.

    Science.gov (United States)

    Mikolasch, Annett; Reinhard, Anne; Alimbetova, Anna; Omirbekova, Anel; Pasler, Lisa; Schumann, Peter; Kabisch, Johannes; Mukasheva, Togzhan; Schauer, Frieder

    2016-11-01

    Heavy contamination of soils by crude oil is omnipresent in areas of oil recovery and exploitation. Bioremediation by indigenous plants in cooperation with hydrocarbon degrading microorganisms is an economically and ecologically feasible means to reclaim contaminated soils. To study the effects of indigenous soil bacteria capable of utilizing oil hydrocarbons on biomass production of plants growing in oil-contaminated soils eight bacterial strains were isolated from contaminated soils in Kazakhstan and characterized for their abilities to degrade oil components. Four of them, identified as species of Gordonia and Rhodococcus turned out to be effective degraders. They produced a variety of organic acids from oil components, of which 59 were identified and 7 of them are hitherto unknown acidic oil metabolites. One of them, Rhodococcus erythropolis SBUG 2054, utilized more than 140 oil components. Inoculating barley seeds together with different combinations of these bacterial strains restored normal growth of the plants on contaminated soils, demonstrating the power of this approach for bioremediation. Furthermore, we suggest that the plant promoting effect of these bacteria is not only due to the elimination of toxic oil hydrocarbons but possibly also to the accumulation of a variety of organic acids which modulate the barley's rhizosphere environment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Hydropyrolysis of biomass to produce liquid hydrocarbon fuels. Final report. Biomass Alternative-Fuels Program

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, R K; Bodle, W W; Yuen, P C

    1982-10-01

    The ojective of the study is to provide a process design and cost estimates for a biomass hydropyrolysis plant and to establish its economic viability for commercial applications. A plant site, size, product slate, and the most probable feedstock or combination of feedstocks were determined. A base case design was made by adapting IGT's HYFLEX process to Hawaiian biomass feedstocks. The HYFLEX process was developed by IGT to produce liquid and/or gaseous fuels from carbonaceous materials. The essence of the process is the simultaneous extraction of valuable oil and gaseous products from cellulosic biomass feedstocks without forming a heavy hard-to-handle tar. By controlling rection time and temperature, the product slate can be varied according to feedstock and market demand. An optimum design and a final assessment of the applicability of the HYFLEX process to the conversion of Hawaiian biomass was made. In order to determine what feedstocks could be available in Hawaii to meet the demands of the proposed hydropyrolysis plant, various biomass sources were studied. These included sugarcane and pineapple wastes, indigenous and cultivated trees and indigenous and cultivated shrubs and grasses.

  8. Environmental impacts of biomass energy resource production and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Easterly, J L; Dunn, S M [DynCorp, Alexandria, VA (United States)

    1995-12-01

    The purpose of this paper is to provide a broad overview of the environmental impacts associated with the production, conversion and utilization of biomass energy resources and compare them with the impacts of conventional fuels. The use of sustainable biomass resources can play an important role in helping developing nations meet their rapidly growing energy needs, while providing significant environmental advantages over the use of fossil fuels. Two of the most important environmental benefits biomass energy offers are reduced net emissions of greenhouse gases, particularly CO{sub 2}, and reduced emissions of SO{sub 2}, the primary contributor to acid rain. The paper also addresses the environmental impacts of supplying a range of specific biomass resources, including forest-based resources, numerous types of biomass residues and energy crops. Some of the benefits offered by the various biomass supplies include support for improved forest management, improved waste management, reduced air emissions (by eliminating the need for open-field burning of residues) and reduced soil erosion (for example, where perennial energy crops are planted on degraded or deforested land). The environmental impacts of a range of biomass conversion technologies are also addressed, including those from the thermochemical processing of biomass (including direct combustion in residential wood stoves and industrial-scale boilers, gasification and pyrolysis); biochemical processing (anaerobic digestion and fermentation); and chemical processing (extraction of organic oils). In addition to reducing CO{sub 2} and SO{sub 2}, other environmental benefits of biomass conversion technologies include the distinctly lower toxicity of the ash compared to coal ash, reduced odours and pathogens from manure, reduced vehicle emissions of CO{sub 2}, with the use of ethanol fuel blends, and reduced particulate and hydrocarbon emissions where biodiesel is used as a substitute for diesel fuel. In general

  9. Environmental impacts of biomass energy resource production and utilization

    International Nuclear Information System (INIS)

    Easterly, J.L.; Dunn, S.M.

    1995-01-01

    The purpose of this paper is to provide a broad overview of the environmental impacts associated with the production, conversion and utilization of biomass energy resources and compare them with the impacts of conventional fuels. The use of sustainable biomass resources can play an important role in helping developing nations meet their rapidly growing energy needs, while providing significant environmental advantages over the use of fossil fuels. Two of the most important environmental benefits biomass energy offers are reduced net emissions of greenhouse gases, particularly CO 2 , and reduced emissions of SO 2 , the primary contributor to acid rain. The paper also addresses the environmental impacts of supplying a range of specific biomass resources, including forest-based resources, numerous types of biomass residues and energy crops. Some of the benefits offered by the various biomass supplies include support for improved forest management, improved waste management, reduced air emissions (by eliminating the need for open-field burning of residues) and reduced soil erosion (for example, where perennial energy crops are planted on degraded or deforested land). The environmental impacts of a range of biomass conversion technologies are also addressed, including those from the thermochemical processing of biomass (including direct combustion in residential wood stoves and industrial-scale boilers, gasification and pyrolysis); biochemical processing (anaerobic digestion and fermentation); and chemical processing (extraction of organic oils). In addition to reducing CO 2 and SO 2 , other environmental benefits of biomass conversion technologies include the distinctly lower toxicity of the ash compared to coal ash, reduced odours and pathogens from manure, reduced vehicle emissions of CO 2 , with the use of ethanol fuel blends, and reduced particulate and hydrocarbon emissions where biodiesel is used as a substitute for diesel fuel. In general, the key elements for

  10. Expression of Trichoderma reesei β-mannanase in tobacco chloroplasts and its utilization in lignocellulosic woody biomass hydrolysis.

    Directory of Open Access Journals (Sweden)

    Pankaj Agrawal

    Full Text Available Lignocellulosic ethanol offers a promising alternative to conventional fossil fuels. One among the major limitations in the lignocellulosic biomass hydrolysis is unavailability of efficient and environmentally biomass degrading technologies. Plant-based production of these enzymes on large scale offers a cost-effective solution. Cellulases, hemicellulases including mannanases and other accessory enzymes are required for conversion of lignocellulosic biomass into fermentable sugars. β-mannanase catalyzes endo-hydrolysis of the mannan backbone, a major constituent of woody biomass. In this study, the man1 gene encoding β-mannanase was isolated from Trichoderma reesei and expressed via the chloroplast genome. PCR and Southern hybridization analysis confirmed site-specific transgene integration into the tobacco chloroplast genomes and homoplasmy. Transplastomic plants were fertile and set viable seeds. Germination of seeds in the selection medium showed inheritance of transgenes into the progeny without any Mendelian segregation. Expression of endo-β-mannanase for the first time in plants facilitated its characterization for use in enhanced lignocellulosic biomass hydrolysis. Gel diffusion assay for endo-β-mannanase showed the zone of clearance confirming functionality of chloroplast-derived mannanase. Endo-β-mannanase expression levels reached up to 25 units per gram of leaf (fresh weight. Chloroplast-derived mannanase had higher temperature stability (40 °C to 70 °C and wider pH optima (pH 3.0 to 7.0 than E.coli enzyme extracts. Plant crude extracts showed 6-7 fold higher enzyme activity than E.coli extracts due to the formation of disulfide bonds in chloroplasts, thereby facilitating their direct utilization in enzyme cocktails without any purification. Chloroplast-derived mannanase when added to the enzyme cocktail containing a combination of different plant-derived enzymes yielded 20% more glucose equivalents from pinewood than the

  11. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica

    2014-01-01

    Biomass is one of the most abundant sources of renewable energy, and will be an important part of a more sustainable future energy system. In addition to direct combustion, there is growing attention on conversion of biomass into liquid en-ergy carriers. These conversion methods are divided...... into biochemical/biotechnical methods and thermochemical methods; such as direct combustion, pyrolysis, gasification, liquefaction etc. This chapter will focus on hydrothermal liquefaction, where high pressures and intermediate temperatures together with the presence of water are used to convert biomass...... into liquid biofuels, with the aim of describing the current status and development challenges of the technology. During the hydrothermal liquefaction process, the biomass macromolecules are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive...

  12. Biomass from agriculture in small-scale combined heat and power plants - A comparative life cycle assessment

    International Nuclear Information System (INIS)

    Kimming, M.; Sundberg, C.; Nordberg, A.; Baky, A.; Bernesson, S.; Noren, O.; Hansson, P.-A.

    2011-01-01

    Biomass produced on farm land is a renewable fuel that can prove suitable for small-scale combined heat and power (CHP) plants in rural areas. However, it can still be questioned if biomass-based energy generation is a good environmental choice with regards to the impact on greenhouse gas emissions, and if there are negative consequences of using of agricultural land for other purposes than food production. In this study, a simplified life cycle assessment (LCA) was conducted over four scenarios for supply of the entire demand of power and heat of a rural village. Three of the scenarios are based on utilization of biomass in 100 kW (e) combined heat and power (CHP) systems and the fourth is based on fossil fuel in a large-scale plant. The biomass systems analyzed were based on 1) biogas production with ley as substrate and the biogas combusted in a microturbine, 2) gasification of willow chips and the product gas combusted in an IC-engine and 3) combustion of willow chips for a Stirling engine. The two first scenarios also require a straw boiler. The results show that the biomass-based scenarios reduce greenhouse gas emissions considerably compared to the scenario based on fossil fuel, but have higher acidifying emissions. Scenario 1 has by far the best performance with respect to global warming potential and the advantage of utilizing a byproduct and thus not occupying extra land. Scenario 2 and 3 require less primary energy and less fossil energy input than 1, but set-aside land for willow production must be available. The low electric efficiency of scenario 3 makes it an unsuitable option.

  13. Hydrogen rich gas production by thermocatalytic decomposition of kenaf biomass

    Energy Technology Data Exchange (ETDEWEB)

    Irmak, Sibel; Oeztuerk, ilker [Department of Chemistry, Cukurova University, Arts and Sciences Faculty, Adana 01330 (Turkey)

    2010-06-15

    Kenaf (Hibiscus cannabinus L.), a well known energy crop and an annual herbaceous plant grows very fast with low lodging susceptibility was used as representative lignocellulosic biomass in the present work. Thermocatalytic conversions were performed by aqueous phase reforming (APR) of kenaf hydrolysates and direct gasification of solid biomass of kenaf using 5% Pt on activated carbon as catalyst. Hydrolysates used in APR experiments were prepared by solubilization of kenaf biomass in subcritical water under CO{sub 2} gas pressure. APR of kenaf hydrolysate with low molecular weight polysaccharides in the presence of the reforming catalyst produced more gas compared to the hydrolysate that had high molecular weight polysaccharides. APR experiments of kenaf biomass hydrolysates and glucose, which was used as a simplest biomass model compound, in the presence of catalyst produced various amounts of gas mixtures that consisted of H{sub 2}, CO, CO{sub 2}, CH{sub 4} and C{sub 2}H{sub 6}. The ratios of H{sub 2} to other gases produced were 0.98, 1.50 and 1.35 for 150 C and 250 C subcritical water-treated kenaf hydrolysates and glucose, respectively. These ratios indicated that more the degraded organic content of kenaf hydrolysate the better selectivity for hydrogen production. Although APR of 250 C-kenaf hydrolysate resulted in similar gas content and composition as glucose, the gas volume produced was three times higher in glucose feed. The use of solid kenaf biomass as starting feedstock in APR experiments resulted in less gas production since the activity of catalyst was lowered by solid biomass particles. (author)

  14. Technical, economic and environmental potential of co-firing of biomass in coal and natural gas fired power plants in the Netherlands

    International Nuclear Information System (INIS)

    Van Ree, R.; Korbee, R.; Eenkhoorn, S.; De Lange, T.; Groenendaal, B.

    2000-01-01

    In this paper the technical, economic, and environmental potential of co-firing of biomass in existing Dutch coal and natural gas fired power plants, and industrial combined-cycles (CC), is addressed. Main criteria that are considered are: the availability and contractibility of biomass for energy purposes; the (technical) operation of the conventional fossil fuel based processes may not be disturbed; the gaseous and liquid plant emissions have to comply to those applicable for power plants/CCs, the commercial applicability of the solid residues may not be negatively influenced; applicable additional biomass conversion technologies must be commercially available; the necessary additional investment costs must be acceptable from an economic point of view, and the co-firing option must result in a substantial CO 2 -emission reduction. The main result of the study described in the paper is the presentation of a clear and founded indication of the total co-firing potential of biomass in existing power plants and industrial CCs in the Netherlands. This potential is determined by considering both technical, economic, and environmental criteria. In spite of the fact that the co-firing potential for the specific Dutch situation is presented, the results of the criteria considered are more generally applicable, and therefore are also very interesting for potential co-firing initiatives outside of the Netherlands

  15. Biomass gasification in a circulating fluidized bed; Vergasung von Biomasse in der zirkulierenden Wirbelschicht

    Energy Technology Data Exchange (ETDEWEB)

    Ising, M; Hoelder, D; Backhaus, C; Althaus, W [Fraunhofer Inst. fuer Umwelt-, Sicherheits- und Energietechnik UMSICHT, Oberhausen (Germany)

    1998-09-01

    Biomass gasification in a circulating fluidized bed, in combination with a gas engine or gas burner, is a promising option for energetic use of biomass. Economic efficiency analyses on the basis of the UMSICHT plant show that this technology for combined heat and power generation from biomass is promising also for the range below 10 MW. The economic situation of any plant must be considered for the specific boundary conditions imposed by the power supply industry. The feasibility of the process was tested in a demonstration plant at Oberhausen. The plant was optimized further in extensive test series, and a number of tar reduction processes were investigated and improved on. The authors now intend to prove that gasification in a circulating fluidized bed combined with a gas engine cogeneration plant is feasible in continuous operation. (orig./SR) [Deutsch] Die Vergasung von Biomasse in der zirkulierenden Wirbelschicht ist in Kombination mit einem Gasmotor oder einem Gasbrenner eine vielversprechende Option fuer die energetische Biomassenutzung. Wirtschaftlichkeitsbetrachtungen auf Basis der UMSICHT-Anlage zeigen, dass diese Technologie fuer die gekoppelte Strom- und Waermeerzeugung aus Biomasse auch im Leistungsbereich unter 10 MW grosse Chancen verspricht. Dabei ist die oekonomische Situation einer Anlage im Einzelfall unter Beachtung der energiewirtschaftlichen Randbedingungen zu beurteilen. Durch den Betrieb einer Demonstrationsanlage in Oberhausen konnte die Funktion des Verfahrens nachgewiesen werden. In weiteren umfangreichen Versuchsreihen werden die Anlage weiter optimiert und verschiedene Konzepte zur Teerminderung untersucht und weiterentwickelt. Angestrebt ist der Nachweis des Dauerbetriebs von ZWS-Vergasung zusammen mit dem Gasmotoren-BHKW. (orig./SR)

  16. Warming increases plant biomass and reduces diversity across continents, latitudes, and species migration scenarios in experimental wetland communities.

    Science.gov (United States)

    Baldwin, Andrew H; Jensen, Kai; Schönfeldt, Marisa

    2014-03-01

    Atmospheric warming may influence plant productivity and diversity and induce poleward migration of species, altering communities across latitudes. Complicating the picture is that communities from different continents deviate in evolutionary histories, which may modify responses to warming and migration. We used experimental wetland plant communities grown from seed banks as model systems to determine whether effects of warming on biomass production and species richness are consistent across continents, latitudes, and migration scenarios. We collected soil samples from each of three tidal freshwater marshes in estuaries at three latitudes (north, middle, south) on the Atlantic coasts of Europe and North America. In one experiment, we exposed soil seed bank communities from each latitude and continent to ambient and elevated (+2.8 °C) temperatures in the greenhouse. In a second experiment, soil samples were mixed either within each estuary (limited migration) or among estuaries from different latitudes in each continent (complete migration). Seed bank communities of these migration scenarios were also exposed to ambient and elevated temperatures and contrasted with a no-migration treatment. In the first experiment, warming overall increased biomass (+16%) and decreased species richness (-14%) across latitudes in Europe and North America. Species richness and evenness of south-latitude communities were less affected by warming than those of middle and north latitudes. In the second experiment, warming also stimulated biomass and lowered species richness. In addition, complete migration led to increased species richness (+60% in North America, + 100% in Europe), but this higher diversity did not translate into increased biomass. Species responded idiosyncratically to warming, but Lythrum salicaria and Bidens sp. increased significantly in response to warming in both continents. These results reveal for the first time consistent impacts of warming on biomass and

  17. Production of methanol/DME from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenfeldt, J.; Birk Henriksen, U.; Muenster-Swendsen, J.; Fink, A.; Roengaard Clausen, L.; Munkholt Christensen, J.; Qin, K.; Lin, W.; Arendt Jensen, P.; Degn Jensen, A.

    2011-07-01

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier types have been investigated in this project: 1) The Two-Stage Gasifier (Viking Gasifier), designed to produce a very clean gas to be used in a gas engine, has been connected to a lab-scale methanol plant, to prove that the gas from the gasifier could be used for methanol production with a minimum of gas cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51-58% (LHV). By using waste heat from the plants for district heating, the total energy efficiencies could reach 87-88% (LHV). 2) A lab-scale electrically heated entrained flow gasifier has been used to gasify wood and straw. Entrained flow gasifiers are today the preferred gasifier type for commercial coal gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic fraction of the biomass that is not converted to gas appears as soot. Thermodynamic computer models of DME and methanol plants based on using entrained flow gasification were created to show the potential of such plants. These models showed that the potential torrefied biomass to DME/methanol + net electricity energy efficiency was 65-71% (LHV). Different routes to produce liquid transport fuels from biomass are possible. They include production of RME (rapeseed oil

  18. Nanobody-Directed Specific Degradation of Proteins by the 26S-Proteasome in Plants

    OpenAIRE

    Baudisch, Bianca; Pfort, Ingrid; Sorge, Eberhard; Conrad, Udo

    2018-01-01

    Here, we present data showing the directed degradation of target proteins recognized by a specific nanobody in transgenic plants. Green fluorescent protein was depleted by a chimeric nanobody fused to a distinct F-box domain, which enables protein degradation via the ubiquitin proteasome pathway. This technique could thus be used to knock out other proteins of interest in planta using specific, high-affinity binding proteins.

  19. Nanobody-Directed Specific Degradation of Proteins by the 26S-Proteasome in Plants.

    Science.gov (United States)

    Baudisch, Bianca; Pfort, Ingrid; Sorge, Eberhard; Conrad, Udo

    2018-01-01

    Here, we present data showing the directed degradation of target proteins recognized by a specific nanobody in transgenic plants. Green fluorescent protein was depleted by a chimeric nanobody fused to a distinct F-box domain, which enables protein degradation via the ubiquitin proteasome pathway. This technique could thus be used to knock out other proteins of interest in planta using specific, high-affinity binding proteins.

  20. Co-combustion of wood biomass in coal power plants, a contribution to energy turnaround and climate protection?; Die Mitverbrennung holzartiger Biomasse in Kohlekraftwerken. Ein Beitrag zur Energiewende und zum Klimaschutz?

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Claudia; Herr, Michael; Edel, Matthias; Seidl, Hannes

    2011-08-15

    Co-combustion of wood biomass in coal power plants is feasible at short notice and can is a low-cost option for climate protection. While other EU states have already provided funding mechanism, Germany has not followed this lead so far. Domestic wood resources are limited and unevenly distributed among the German regions, so that wood materials will have to be imported. During the past few years, the basic requirements for imports of wood were provided with the initiation of a global pellets market. Sustainability criteria for wood consumption were defined, and international certification systems were developed. The sustainability criteria should be extended to cover also wood-like materials and other biomass for power generation. The German EEG (Renewables Act) is a first step in this direction. Further, investments must be made in logistics capacities. The available logistics of coal power plants can be used with some minor modifications. In all, successful and sustainable international biomass markets may soon be available.

  1. Plant-associated bacterial degradation of toxic organic compounds in soil.

    LENUS (Irish Health Repository)

    McGuinness, Martina

    2009-08-01

    A number of toxic synthetic organic compounds can contaminate environmental soil through either local (e.g., industrial) or diffuse (e.g., agricultural) contamination. Increased levels of these toxic organic compounds in the environment have been associated with human health risks including cancer. Plant-associated bacteria, such as endophytic bacteria (non-pathogenic bacteria that occur naturally in plants) and rhizospheric bacteria (bacteria that live on and near the roots of plants), have been shown to contribute to biodegradation of toxic organic compounds in contaminated soil and could have potential for improving phytoremediation. Endophytic and rhizospheric bacterial degradation of toxic organic compounds (either naturally occurring or genetically enhanced) in contaminated soil in the environment could have positive implications for human health worldwide and is the subject of this review.

  2. Reduction of CO2 emission by INCAM model in Malaysia biomass power plants during the year 2016.

    Science.gov (United States)

    Amin, Nor Aishah Saidina; Talebian-Kiakalaieh, Amin

    2018-03-01

    As the world's second largest palm oil producer and exporter, Malaysia could capitalize on its oil palm biomass waste for power generation. The emission factors from this renewable energy source are far lower than that of fossil fuels. This study applies an integrated carbon accounting and mitigation (INCAM) model to calculate the amount of CO 2 emissions from two biomass thermal power plants. The CO 2 emissions released from biomass plants utilizing empty fruit bunch (EFB) and palm oil mill effluent (POME), as alternative fuels for powering steam and gas turbines, were determined using the INCAM model. Each section emitting CO 2 in the power plant, known as the carbon accounting center (CAC), was measured for its carbon profile (CP) and carbon index (CI). The carbon performance indicator (CPI) included electricity, fuel and water consumption, solid waste and waste-water generation. The carbon emission index (CEI) and carbon emission profile (CEP), based on the total monthly carbon production, were determined across the CPI. Various innovative strategies resulted in a 20%-90% reduction of CO 2 emissions. The implementation of reduction strategies significantly reduced the CO 2 emission levels. Based on the model, utilization of EFB and POME in the facilities could significantly reduce the CO 2 emissions and increase the potential for waste to energy initiatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Thermoeconomic analysis of Biomass Integrated Gasification Gas Turbine Combined Cycle (BIG GT CC) cogeneration plant

    Energy Technology Data Exchange (ETDEWEB)

    Arrieta, Felipe Raul Ponce; Lora, Electo Silva [Escola Federal de Engenharia de Itajuba, MG (Brazil). Nucleo de Estudos de Sistemas Termicos]. E-mails: aponce@iem.efei.br; electo@iem.efei.br; Perez, Silvia Azucena Nebra de [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mail: sanebra@fem. unicamp.br

    2000-07-01

    Using thermoeconomics as a tool to identify the location and magnitude of the real thermodynamic losses (energy waste, or exergy destruction and exergy losses) it is possible to assess the production costs of each product (electric power and heat) and the exergetic and exergoeconomic cost of each flow in a cogeneration plant to assist in decision-marketing procedures concerning to plant design, investment, operation and allocations of research funds. Thermo economic analysis of Biomass Integrated Gasification Gas Turbine Combined Cycle (BIG GT CC) cogeneration plant for its applications in sugar cane mills brings the following results: the global exergetic efficiency is low; the highest irreversibilities occur in the following equipment, by order: scrubber (38%), gas turbine (16%), dryer (12%), gasifier and HRSG (6%); due to the adopted cost distribution methodology, the unit exergetic cost of the heat (4,11) is lower than electricity (4,71); the lower market price of biomass is one of the most sensible parameter in the possible implementation of BIG-GT technology in sugar cane industry; the production costs are 31 US$/MWh and 32 US$/MWh for electricity and heat, respectively. The electricity cost is, after all, competitive with the actual market price. The electricity and heat costs are lower or almost equal than other values reported for actual Rankine cycle cogeneration plants. (author)

  4. Comparative secretome analysis suggests low plant cell wall degrading capacity in Frankia symbionts

    Directory of Open Access Journals (Sweden)

    Normand Philippe

    2008-01-01

    Full Text Available Abstract Background Frankia sp. strains, the nitrogen-fixing facultative endosymbionts of actinorhizal plants, have long been proposed to secrete hydrolytic enzymes such as cellulases, pectinases, and proteases that may contribute to plant root penetration and formation of symbiotic root nodules. These or other secreted proteins might logically be involved in the as yet unknown molecular interactions between Frankia and their host plants. We compared the genome-based secretomes of three Frankia strains representing diverse host specificities. Signal peptide detection algorithms were used to predict the individual secretomes of each strain, and the set of secreted proteins shared among the strains, termed the core Frankia secretome. Proteins in the core secretome may be involved in the actinorhizal symbiosis. Results The Frankia genomes have conserved Sec (general secretory and Tat (twin arginine translocase secretion systems. The potential secretome of each Frankia strain comprised 4–5% of the total proteome, a lower percentage than that found in the genomes of other actinobacteria, legume endosymbionts, and plant pathogens. Hydrolytic enzymes made up only a small fraction of the total number of predicted secreted proteins in each strain. Surprisingly, polysaccharide-degrading enzymes were few in number, especially in strain CcI3, with more esterolytic, lipolytic and proteolytic enzymes having signal peptides. A total of 161 orthologous proteins belong to the core Frankia secretome. Of these, 52 also lack homologs in closely related actinobacteria, and are termed "Frankia-specific." The genes encoding these conserved secreted proteins are often clustered near secretion machinery genes. Conclusion The predicted secretomes of Frankia sp. are relatively small and include few hydrolases, which could reflect adaptation to a symbiotic lifestyle. There are no well-conserved secreted polysaccharide-degrading enzymes present in all three Frankia

  5. Plant biomass briquetting : a review

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Agricultural and Bioresource Engineering; Shenyang Agricultural Univ., Shenyang (China). College of Engineering; Tumuluru, J.S.; Tabil, L.; Meda, V. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Agricultural and Bioresource Engineering

    2009-07-01

    The technology of converting straws into briquettes for biofuel or energy applications was discussed with particular reference to the factors that affect the quality of briquette, such as the loading pressure, particle size of the chopped material, the preheating temperature, the moisture content and residence time of the die. The study results of briquetting materials such as corn stover, switch grass, alfalfa, cotton stalks and reed canary grass were also presented. The main briquetting related technologies, systems and equipment were also reviewed. The study showed that in order to produce an economically competitive feedstock, further research should be extended to other biomass materials as well as developing technologies to obtain a high quality briquette with better efficiencies from a wide range of biomass materials.

  6. Forest biomass and tree planting for fossil fuel offsets in the Colorado Front Range

    Science.gov (United States)

    Mike A. Battaglia; Kellen Nelson; Dan Kashian; Michael G. Ryan

    2010-01-01

    This study estimates the amount of carbon available for removal in fuel reduction and reforestation treatments in montane forests of the Colorado Front Range based on site productivity, pre-treatment basal area, and planting density. Thinning dense stands will yield the greatest offsets for biomass fuel. However, this will also yield the greatest carbon losses, if the...

  7. ESCRT-dependent degradation of ubiquitylated plasma membrane proteins in plants.

    Science.gov (United States)

    Isono, Erika; Kalinowska, Kamila

    2017-12-01

    To control the abundance of plasma membrane receptors and transporters is crucial for proper perception and response to extracellular signals from surrounding cells and the environment. Posttranslational modification of plasma membrane proteins, especially ubiquitin conjugation or ubiquitylation, is key for the determination of stability for many transmembrane proteins localized on the cell surface. The targeted degradation is ensured by a complex network of proteins among which the endosomal sorting complex required for transport (ESCRT) plays a central role. This review focuses on progresses made in recent years on the understanding of the function of the ESCRT machinery in the degradation of ubiquitylated plasma membrane proteins in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Degradation of copepod fecal pellets

    DEFF Research Database (Denmark)

    Poulsen, Louise K.; Iversen, Morten

    2008-01-01

    amount of fecal pellets. The total degradation rate of pellets by the natural plankton community of Oresund followed the phytoplankton biomass, with maximum degradation rate during the spring bloom (2.5 +/- 0.49 d(-1)) and minimum (0.52 +/- 0.14 d(-1)) during late winter. Total pellet removal rate ranged...

  9. Evaluation of design and operation of fuel handling systems for 25 MW biomass fueled CFB power plants

    International Nuclear Information System (INIS)

    Precht, D.

    1991-01-01

    Two circulating fluidized bed, biomass fueled, 25MW power plants were placed into operation by Thermo Electron Energy Systems in California during late 1989. This paper discusses the initial fuel and system considerations, system design, actual operating fuel characterisitics, system operation during the first year and modifications. Biomass fuels handled by the system include urban/manufacturing wood wastes and agricultural wastes in the form of orchard prunings, vineyard prunings, pits, shells, rice hulls and straws. Equipment utilized in the fuel handling system are described and costs are evaluated. Lessons learned from the design and operational experience are offered for consideration on future biomass fueled installations where definition of fuel quality and type is subject to change

  10. Nanobody-Directed Specific Degradation of Proteins by the 26S-Proteasome in Plants

    Directory of Open Access Journals (Sweden)

    Bianca Baudisch

    2018-02-01

    Full Text Available Here, we present data showing the directed degradation of target proteins recognized by a specific nanobody in transgenic plants. Green fluorescent protein was depleted by a chimeric nanobody fused to a distinct F-box domain, which enables protein degradation via the ubiquitin proteasome pathway. This technique could thus be used to knock out other proteins of interest in planta using specific, high-affinity binding proteins.

  11. The Forest Energy Chain in Tuscany: Economic Feasibility and Environmental Effects of Two Types of Biomass District Heating Plant

    Directory of Open Access Journals (Sweden)

    Claudio Fagarazzi

    2014-09-01

    Full Text Available The purpose of this study was to examine two biomass district heating plants operating in Tuscany, with a specific focus on the ex-post evaluation of their economic and financial feasibility and of their environmental benefits. The former biomass district heating plant supplies only public users (Comunità Montana della Lunigiana, CML: administrative body that coordinates the municipalities located in mountain areas, the latter supplies both public and private users (Municipality of San Romano in Garfagnana. Ex-post investment analysis was performed to check both the consistency of results with the forecasts made in the stage of the project design and on the factors, which may have reduced or jeopardized the estimated economic performance of the investment (ex-ante assessment. The results of the study point out appreciable results only in the case of biomass district heating plants involving private users and fuelled by biomasses sourced from third parties. In this case, the factors that most influence ex-post results include the conditions of the woody biomass local market (market prices, the policies of energy selling prices to private users and the temporal dynamics of private users’ connection. To ensure the consistency of ex-post economic outcome with the expected results it is thus important to: (i have good knowledge of the woody local market; (ii define energy selling prices that should be cheap for private users but consistent with energy production costs and (iii constrain private users beforehand to prevent errors in the plant design and in the preliminary estimate of return on investment. Moreover, the results obtained during the monitoring activities could help in providing information on the effectiveness of the supporting measures adopted and also to orient future choices of policy makers and particularly designers, to identify the most efficient configuration of district heating organization for improving energy and

  12. Biomass combustion technologies for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, G.A. Jr. [Appel Consultants, Inc., Stevenson Ranch, CA (United States); McGowin, C.R.; Hughes, E.E. [Electric Power Research Institute, Palo Alto, CA (United States)

    1993-12-31

    Technology in power production from biomass has been advancing rapidly. Industry has responded to government incentives such as the PURPA legislation in the US and has recognized that there are environmental advantages to using waste biomass as fuel. During the 1980s many new biomass power plants were built. The relatively mature stoker boiler technology was improved by the introduction of water-cooled grates, staged combustion air, larger boiler sizes up to 60 MW, higher steam conditions, and advanced sootblowing systems. Circulating fluidized-bed (CFB) technology achieved full commercial status, and now is the leading process for most utility-scale power applications, with more complete combustion, lower emissions, and better fuel flexibility than stoker technology. Bubbling fluidized-bed (BFB) technology has an important market niche as the best process for difficult fuels such as agricultural wastes, typically in smaller plants. Other biomass power generation technologies are being developed for possible commercial introduction in the 1990s. Key components of Whole Tree Energy{trademark} technology have been tested, conceptual design studies have been completed with favorable results, and plans are being made for the first integrated process demonstration. Fluidized-bed gasification processes have advanced from pilot to demonstration status, and the world`s first integrated wood gasification/combined cycle utility power plant is starting operation in Sweden in early 1993. Several European vendors offer biomass gasification processes commercially. US electric utilities are evaluating the cofiring of biomass with fossil fuels in both existing and new plants. Retrofitting existing coal-fired plants gives better overall cost and performance results than any biomass technologies;but retrofit cofiring is {open_quotes}fuel-switching{close_quotes} that provides no new capacity and is attractive only with economic incentives.

  13. Materials for Waste Incinerators and Biomass Plants

    DEFF Research Database (Denmark)

    Rademakers, P.; Grossmann, G.; Karlsson, A.

    1998-01-01

    This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13.......This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13....

  14. Characterization of three plant biomass-degrading microbial consortia by metagenomics- and metasecretomics-based approaches

    DEFF Research Database (Denmark)

    Jiménez, Diego Javier; Brossi, Maria Julia de Lima; Schückel, Julia

    2016-01-01

    ). The highest degradation rates of lignin (~59 %) were observed with SG-M, whereas CS-M showed a high consumption of cellulose and hemicellulose. Analyses of the carbohydrate-active enzymes in the three microbial consortia showed the dominance of glycosyl hydrolases (e.g. of families GH3, GH43, GH13, GH10, GH29......), switchgrass (SG-M) and corn stover (CS-M) under aerobic and mesophilic conditions. Molecular fingerprintings, bacterial 16S ribosomal RNA (rRNA) gene amplicon sequencing and metagenomic analyses showed that the three microbial consortia were taxonomically distinct. Based on the taxonomic affiliation...

  15. Mixed-species allometric equations and estimation of aboveground biomass and carbon stocks in restoring degraded landscape in northern Ethiopia

    Science.gov (United States)

    Mokria, Mulugeta; Mekuria, Wolde; Gebrekirstos, Aster; Aynekulu, Ermias; Belay, Beyene; Gashaw, Tadesse; Bräuning, Achim

    2018-02-01

    Accurate biomass estimation is critical to quantify the changes in biomass and carbon stocks following the restoration of degraded landscapes. However, there is lack of site-specific allometric equations for the estimation of aboveground biomass (AGB), which consequently limits our understanding of the contributions of restoration efforts in mitigating climate change. This study was conducted in northwestern Ethiopia to develop a multi-species allometric equation and investigate the spatial and temporal variation of C-stocks following the restoration of degraded landscapes. We harvested and weighed 84 trees from eleven dominant species from six grazing exclosures and adjacent communal grazing land. We observed that AGB correlates significantly with diameter at stump height D 30 (R 2 = 0.78 P < 0.01), and tree height H (R 2 = 0.41, P < 0.05). Our best model, which includes D 30 and H as predictors explained 82% of the variations in AGB. This model produced the lowest bias with narrow ranges of errors across different diameter classes. Estimated C-stock showed a significant positive correlation with stem density (R 2 = 0.80, P < 0.01) and basal area (R 2 = 0.84, P < 0.01). At the watershed level, the mean C-stock was 3.8 (±0.5) Mg C ha-1. Plot-level C-stocks varied between 0.1 and 13.7 Mg C ha-1. Estimated C-stocks in three- and seven-year-old exclosures exceeded estimated C-stock in the communal grazing land by 50%. The species that contribute most to C-stocks were Leucaena sp. (28%), Calpurnia aurea (21%), Euclea racemosa (20.9%), and Dodonaea angustifolia (15.8%). The equations developed in this study allow monitoring changes in C-stocks and C-sequestration following the implementation of restoration practices in northern Ethiopia over space and time. The estimated C-stocks can be used as a reference against which future changes in C-stocks can be compared.

  16. On polydispersity of plant biomass recalcitrance and its effects on pretreatment optimization for sugar production

    Science.gov (United States)

    J.Y. Zhu; Steve P. Verrill; Hao Liu; Victoria L. Herian; Xuejun Pan; Donald L. Rockwood

    2011-01-01

    This paper discusses a property associated with plant biomass recalcitrance to enzyme and microbial deconstructions in sugar production from cellulose and hemicelluloses. The hemicelluloses are more readily hydrolyzed to sugars than is cellulose. As a result, optimization to maximize individual glucose and hemicellulose sugar recovery is not possible. This property is...

  17. Pyrolysis of chitin biomass

    DEFF Research Database (Denmark)

    Qiao, Yan; Chen, Shuai; Liu, Ying

    2015-01-01

    The thermal degradation of chitin biomass with various molecular structures was investigated by thermogravimetric analysis (TG), and the gaseous products were analyzed by connected mass spectroscopy (MS). The chemical structure and morphology of char residues collected at 750°C using the model...

  18. Topo-edaphic controls over woody plant biomass in South African savannas

    Directory of Open Access Journals (Sweden)

    M. S. Colgan

    2012-05-01

    Full Text Available The distribution of woody biomass in savannas reflects spatial patterns fundamental to ecosystem processes, such as water flow, competition, and herbivory, and is a key contributor to savanna ecosystem services, such as fuelwood supply. While total precipitation sets an upper bound on savanna woody biomass, the extent to which substrate and terrain constrain trees and shrubs below this maximum remains poorly understood, often occluded by local-scale disturbances such as fire and trampling. Here we investigate the role of hillslope topography and soil properties in controlling woody plant aboveground biomass (AGB in Kruger National Park, South Africa. Large-area sampling with airborne Light Detection and Ranging (LiDAR provided a means to average across local-scale disturbances, revealing an unexpectedly linear relationship between AGB and hillslope-position on basalts, where biomass levels were lowest on crests, and linearly increased toward streams (R2 = 0.91. The observed pattern was different on granite substrates, where AGB exhibited a strongly non-linear relationship with hillslope position: AGB was high on crests, decreased midslope, and then increased near stream channels (R2 = 0.87. Overall, we observed 5-to-8-fold lower AGB on clayey, basalt-derived soil than on granites, and we suggest this is due to herbivore-fire interactions rather than lower hydraulic conductivity or clay shrinkage/swelling, as previously hypothesized. By mapping AGB within and outside fire and herbivore exclosures, we found that basalt-derived soils support tenfold higher AGB in the absence of fire and herbivory, suggesting high clay content alone is not a proximal limitation on AGB. Understanding how fire and herbivory contribute to AGB heterogeneity is critical to predicting future savanna carbon storage under a changing climate.

  19. Stabilization of Pb(II) accumulated in biomass through phosphate-pretreated pyrolysis at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Saijun; Zhang, Tao; Li, Jianfa, E-mail: ljf@usx.edu.cn; Shi, Lingna; Zhu, Xiaoxiao; Lü, Jinhong; Li, Yimin

    2017-02-15

    Highlights: • Phosphate-pretreated pyrolysis can stabilize Pb(II) accumulated in biomass. • More than 95% of Pb(II) in celery and wood biomass was stabilized. • Pb from biomass was almost totally retained in char. • Most Pb was transformed into phosphates according to XRD and SEM/EDX analyses. - Abstract: The remediation of heavy metal-contaminated soil and water using plant biomass is considered to be a green technological approach, although the harmless disposal of biomass accumulated with heavy metals remains a challenge. A potential solution to this problem explored in this work involves combining phosphate pretreatment with pyrolysis. Pb(II) was accumulated in celery biomass with superior sorption capacity and also in ordinary wood biomass through biosorption. The Pb(II)-impregnated biomass was then pretreated with phosphoric acid or calcium dihydrogen phosphate (CaP) and pyrolyzed at 350 or 450 °C. Pb(II) from biomass was in turn almost totally retained in chars, and the percentage of DTPA-extractable Pb(II) was reduced to less than 5% of total Pb(II) in chars through CaP pretreatment. Pb(II) stabilization was further confirmed through a sequential extraction test, which showed that more than 95% of Pb(II) was converted into stable species composed mainly of lead phosphates according to X-ray diffraction (XRD) and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analyses. Overall, phosphate-pretreated pyrolysis can stabilize both Pb(II) and degradable biomass, so as to control efficiently the hazards of heavy metal-contaminated biomass.

  20. Precision Diagnosis, Monitoring and Control of Structural Component Degradation in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Han, J. H.; Choi, M. S.; Lee, D. H.; Hur, D. H.; Na, J. W.; Kim, K. M.; Hong, J. H.; Kim, H. S.

    2007-06-01

    The occurrence of structural material degradations in NPPs and their progress during operation are directly related to the safety and the integrity of NPPs. The various kinds of material degradation are usually examined by methods of material integrity evaluation and non-destructive evaluation(NDE). Material integrity evaluation is well known as classical method to interpret cause and mechanism of degradation and failure, however, this method has a limitation of detection and diagnosis for actual condition of flaws and defects occurring during plant operation, particularly for their formation in the early stage. NDE used widely for detection of defects formed on structural materials provides many information for safety regulation, plant management, repairing, however, this technique has a generic problem in its reliability due to low detectability and ability of signal analysis, etc. The objective of this research project is to develop the advanced technologies ensuring a precision diagnosis on the various kind of defects in structural materials of NPP and a high performance in material degradation evaluation. Many of the advanced technologies were developed in the 1st phase of this project. They contributed to interpret more precisely the root causes of degradation, failure and to establish the proper measures for the safety and integrity of NPPs. The accomplishment of comprehensive technology developed as planned will be practically applied to the nuclear industries and contributed to improve the safety and integrity of NPPs

  1. Long-term addition of fertilizer, labile carbon, and fungicide alters the biomass of plant functional groups in a subarctic-alpine community

    DEFF Research Database (Denmark)

    Haugwitz-Hardenberg-Reventlow, M S; Michelsen, A.

    2011-01-01

    experiment on a subarctic-alpine fellfield dominated by woody evergreen shrubs, bryophytes, and lichens. To manipulate nutrient availability additions of NPK fertilizer, labile C, and fungicide (benomyl) were done in a fully factorial design, replicated in six blocks. The treatments were run for 10 years...... vascular plant groups. Also, limitation of soil nutrient availability caused by labile C addition decreased the relative proportion of green shoots in evergreen shrubs, although these were expected to cope better with the nutrient limitation than the opportunistic graminoids, which, by contrast, were...... unaffected. Reduced fungal biomass due to benomyl addition was accompanied by increased evergreen shrub and clubmoss biomass. Taken together, the effects of treatments were most pronounced 16 years after initiation of the experiment, but despite changes in biomass the overall plant community composition...

  2. Energy from biomass: An overview

    International Nuclear Information System (INIS)

    Van der Toorn, L.J.; Elliott, T.P.

    1992-01-01

    Attention is paid to the effect of the use of energy from biomass on the greenhouse effect. An overview is given of the aspects of forest plantation, carbon dioxide fixation and energy from biomass, in particular with regard to the potential impact of the use of biomass energy on the speed of accumulation of carbon in the atmosphere. A simple model of the carbon cycle to illustrate the geochemical, biological and antropogenic characteristics of the cycle is presented and briefly discussed. Biomass, which is appropriate for energy applications, can be subdivided into three categories: polysaccharides, vegetable oils, and lignocellulosis. The costs for the latter are discussed. Three important options to use biomass as a commercial energy source are solid fuels, liquid fuels, and power generation. For each option the value of energy (on a large-scale level) is compared to the costs of several types of biomass. Recent evaluation of new techniques show that small biomass conversion plants can realize an electricity efficiency of 40%, with capitalized costs far below comparable conventional biomass conversion plants. One of the policy instruments to stimulate the use of biomass as an energy source is the carbon levy, in which the assumed external costs to reduce carbon dioxide emission are expressed. Political and administrative feasibility are important factors in the decision making with regard to carbon storage and energy plantations. 6 figs

  3. Diversity and strain specificity of plant cell wall degrading enzymes revealed by the draft genome of Ruminococcus flavefaciens FD-1.

    Directory of Open Access Journals (Sweden)

    Margret E Berg Miller

    Full Text Available BACKGROUND: Ruminococcus flavefaciens is a predominant cellulolytic rumen bacterium, which forms a multi-enzyme cellulosome complex that could play an integral role in the ability of this bacterium to degrade plant cell wall polysaccharides. Identifying the major enzyme types involved in plant cell wall degradation is essential for gaining a better understanding of the cellulolytic capabilities of this organism as well as highlighting potential enzymes for application in improvement of livestock nutrition and for conversion of cellulosic biomass to liquid fuels. METHODOLOGY/PRINCIPAL FINDINGS: The R. flavefaciens FD-1 genome was sequenced to 29x-coverage, based on pulsed-field gel electrophoresis estimates (4.4 Mb, and assembled into 119 contigs providing 4,576,399 bp of unique sequence. As much as 87.1% of the genome encodes ORFs, tRNA, rRNAs, or repeats. The GC content was calculated at 45%. A total of 4,339 ORFs was detected with an average gene length of 918 bp. The cellulosome model for R. flavefaciens was further refined by sequence analysis, with at least 225 dockerin-containing ORFs, including previously characterized cohesin-containing scaffoldin molecules. These dockerin-containing ORFs encode a variety of catalytic modules including glycoside hydrolases (GHs, polysaccharide lyases, and carbohydrate esterases. Additionally, 56 ORFs encode proteins that contain carbohydrate-binding modules (CBMs. Functional microarray analysis of the genome revealed that 56 of the cellulosome-associated ORFs were up-regulated, 14 were down-regulated, 135 were unaffected, when R. flavefaciens FD-1 was grown on cellulose versus cellobiose. Three multi-modular xylanases (ORF01222, ORF03896, and ORF01315 exhibited the highest levels of up-regulation. CONCLUSIONS/SIGNIFICANCE: The genomic evidence indicates that R. flavefaciens FD-1 has the largest known number of fiber-degrading enzymes likely to be arranged in a cellulosome architecture. Functional

  4. NOx emissions and thermal efficiencies of small scale biomass-fuelled combustion plant with reference to process industries in a developing country

    International Nuclear Information System (INIS)

    Tariq, A.S.; Purvis, M.R.I.

    1996-01-01

    Solid biomass materials are an important industrial fuel in many developing countries and also show good potential for usage in Europe within a future mix of renewable energy resources. The sustainable use of wood fuels for combustion relies on operation of plant with acceptable thermal efficiency. There is a clear link between plant efficiency and environmental impacts due to air pollution and deforestation. To supplement a somewhat sparse literature on thermal efficiencies and nitrogen oxide emissions from biomass-fuelled plants in developing countries, this paper presents results for tests carried out on 14 combustion units obtained during field trials in Sri Lanka. The plants tested comprised steam boilers and process air heaters. Biomass fuels included: rubber-wood, fuelwood from natural forests; coconut shells; rice husks; and sugar can bagasse. Average NO x (NO and NO 2 ) emissions for the plants were found to be 47 gNO 2 GJ -1 with 18% conversion of fuel nitrogen. The former value is the range of NO x emission values quoted for combustion of coal in grate-fired systems; some oil-fired systems and systems operating on natural gas, but is less than the emission levels for the combustion of pulverized fuel and heavy fuel oil. This value is significantly within current European standards for NO x emission from large combustion plants. Average thermal efficiency of the plants was found to be 50%. Observations made on operational practices demonstrated that there is considerable scope for the improvement of this thermal efficiency value by plant supervisor training, drying of fuelwood and the use of simple instruments for monitoring plant performance. (Author)

  5. Identification of novel biomass-degrading enzymes from genomic dark matter: Populating genomic sequence space with functional annotation.

    Science.gov (United States)

    Piao, Hailan; Froula, Jeff; Du, Changbin; Kim, Tae-Wan; Hawley, Erik R; Bauer, Stefan; Wang, Zhong; Ivanova, Nathalia; Clark, Douglas S; Klenk, Hans-Peter; Hess, Matthias

    2014-08-01

    Although recent nucleotide sequencing technologies have significantly enhanced our understanding of microbial genomes, the function of ∼35% of genes identified in a genome currently remains unknown. To improve the understanding of microbial genomes and consequently of microbial processes it will be crucial to assign a function to this "genomic dark matter." Due to the urgent need for additional carbohydrate-active enzymes for improved production of transportation fuels from lignocellulosic biomass, we screened the genomes of more than 5,500 microorganisms for hypothetical proteins that are located in the proximity of already known cellulases. We identified, synthesized and expressed a total of 17 putative cellulase genes with insufficient sequence similarity to currently known cellulases to be identified as such using traditional sequence annotation techniques that rely on significant sequence similarity. The recombinant proteins of the newly identified putative cellulases were subjected to enzymatic activity assays to verify their hydrolytic activity towards cellulose and lignocellulosic biomass. Eleven (65%) of the tested enzymes had significant activity towards at least one of the substrates. This high success rate highlights that a gene context-based approach can be used to assign function to genes that are otherwise categorized as "genomic dark matter" and to identify biomass-degrading enzymes that have little sequence similarity to already known cellulases. The ability to assign function to genes that have no related sequence representatives with functional annotation will be important to enhance our understanding of microbial processes and to identify microbial proteins for a wide range of applications. © 2014 Wiley Periodicals, Inc.

  6. Remediation of cyanide-contaminated industrial sites through woody biomass production

    Science.gov (United States)

    Dimitrova, Tsvetelina; Repmann, Frank; Freese, Dirk

    2017-04-01

    Due to the unfavourable chemical and physical soil quality parameters and the potential presence of contaminants, former industrial sites can hardly be utilized as arable land and can thus be classified as marginal areas. Still, as far as possible, they can effectively be used for the production of alternative energy, including the cultivation of fast growing trees. Apart from being a source of bioenergy, trees might facilitate the stabilization, remedation, contaminant extraction and degradation and, not on the last place, to enhance soil quality improvement on former industrial areas. This process is known as phytoremediation and has successfully been applied on industrial sites of various organic and inorganic contamination. The former manufactured gas plant site ( 2500 m2) "ehemalige Leuchtgasanstalt" Cottbus, contaminated, among others, with iron cyanides undergoes phytoremediation with simultaneous biomass production since 2011. The project "Biomass-Remediation" is fully financed by the German Railways JSC. A dense (23700 stems/ha), mixed cover of willow (Salix caprea), poplar (Populus maximowicii Henry x Populus trichocarpa Torr. et Gray (Hybrid 275)) and black locust (Robinia pseudoaccacia) trees has been planted on the site. Throughout the five years of remediation, a successful long-term stabilization of the site has been achieved as a result of the nearly outright established tree stock and the dense planting. Annual monitoring of the cyanide levels in the leaf tissue of the trees on the site and results from greenhouse experiments indicate the ability of all tree species to extract and transport the cyanide from the soil. Additonally, the greenhouse experiments suggest that the willows might be able, although not to a full extent, to detoxify the contaminant by splitting the CN moiety. The contaminated biomass material might easily be dealt with through regular harvests and subsequent incineration. Phytoremediation with simultaneous biomass production

  7. Biomass, Leaf Area, and Resource Availability of Kudzu Dominated Plant Communities Following Herbicide Treatment

    Energy Technology Data Exchange (ETDEWEB)

    L.T. Rader

    2001-10-01

    Kudzu is an exotic vine that threatens the forests of the southern U.S. Five herbicides were tested with regard to their efficacy in controlling kudzu, community recover was monitored, and interactions with planted pines were studied. The sites selected were old farm sites dominated by kudzu.These were burned following herbicide treatment. The herbicides included triclopyr, clopyralid, metsulfuron, tebuthiuron, and picloram plus 2,4-D. Pine seedlings were planted the following year. Regression equations were developed for predicting biomass and leaf area. Four distinct plant communities resulted from the treatments. The untreated check continued to be kudzu dominated. Blackberry dominated the clopyradid treatment. Metsulfron, trychlopyr and picloram treated sites resulted in herbaceous dominated communities. The tebuthiuron treatment maintained all vegetation low.

  8. deNOx catalysts for biomass combustion

    DEFF Research Database (Denmark)

    Kristensen, Steffen Buus

    The present thesis revolves around the challenges involved in removal of nitrogen oxides in biomass fired power plants. Nitrogen oxides are unwanted byproducts formed to some extent during almost any combustion. In coal fired plants these byproducts are removed by selective catalytic reduction......, however the alkali in biomass complicate matters. Alkali in biomass severely deactivates the catalyst used for the selective catalytic reduction in matter of weeks, hence a more alkali resistant catalyst is needed. In the thesis a solution to the problem is presented, the nano particle deNOx catalyst...

  9. Solar-assisted biomass-district heating: projects in Austria and operational data; Solarunterstuetzte Biomasse-Fernwaermeversorgung: Projekte in Oesterreich und Betriebsdaten

    Energy Technology Data Exchange (ETDEWEB)

    Faninger, G. [Institut fuer Interdisziplinaere Forschung und Fortbildung der Universitaeten Klagenfurt, Innsbruck und Wien (IFF), Klagenfurt (Austria)

    1998-12-31

    In recent years small-volume biomass district heating systems (district heat grids) have attracted increasing interest in Austria. By the end of 1997 some 359 biomass-district heating systems with an overall capacity of approximately 483 MW were in operation. If a biomass-district heating plant and a solar plant are combined the solar plant can supply most of the heat required outside the heating season. At present Austria runs 12 solar-assisted biomass-district heating grids with collector areas between 225 square metres and 1,250 square metres. In order to run these biomass-district heating systems in an economically and technically efficient way it is necessary to assure high quality in terms of planning, construction and operation. A list of criteria is set up on the basis of first operational data in order to evaluate energy efficiency and economic performance. These criteria should be applied in order to ensure that energy, environment and economy are equally considered in the planning and construction of solar-assisted biomass-district heating plants. They should also be helpful for the approval procedures of projects. (orig.) [Deutsch] Kleinraeumige Biomasse-Fernwaermeanlagen (Nahwaermenetze) fanden in den letzten Jahren zunehmendes Interesse in Oesterreich. So waren Ende 1997 insgesamt 359 Biomasse-Fernwaermeanlagen mit einer installierten Gesamtleistung von etwa 483 MW in Betrieb. Die Kombination einer Biomasse-Fernwaermeanlage mit einer Solaranlage bringt den Vorteil, dass die Waermebereitstellung ausserhalb der Heizsaison zu einem hohen Anteil ueber die Solaranlage vorgenommen werden kann. Derzeit werden in Oesterreich 12 solarunterstuetzte Biomasse-Nahwaermenetze mit Kollektorflaechen von 225 m{sup 2} bis 1.250 m{sup 2} betrieben. Um einen moeglichst effizienten und damit auch wirtschaftlichen Betrieb von solarunterstuetzten Biomasse-Fernwaermeanlagen zu gewaehrleisten, werden hohe Anforderungen an Planung, Ausfuehrung und Betrieb gestellt. Auf der

  10. Catalytic routes from biomass to fuels

    DEFF Research Database (Denmark)

    Riisager, Anders

    2014-01-01

    chain unaffected. This presentation will survey the status of biofuels production from different sources, and discuss the sustainability of making transportation fuels from biomass. Furthermore, recently developed chemocatalytic technologies that allow efficient conversion of lignocellulosic biomass...... the chemical industry to find new feasible chemocatalytic routes to convert the components of lignocellulosic plant biomass (green biomass) as well as aquatic biomass (blue biomass) into potential platform chemicals that can replace the fossil based chemicals in order to leave the chemical supply and value...

  11. Fiscalini Farms Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of

  12. Optimization of animal manure vermicomposting based on biomass production of earthworms and higher plants.

    Science.gov (United States)

    Borges, Yan V; Alves, Luciano; Bianchi, Ivan; Espíndola, Jonas C; Oliveira, Juahil M De; Radetski, Claudemir M; Somensi, Cleder A

    2017-11-02

    The goal of this study was to optimize the mixture of swine manure (SM) and cattle manure (CM) used in the vermicomposting process, seeking to increase the manure biodegradation rate and enhance the biomass production of both earthworms and higher plants. To achieve this goal, physico-chemical parameters were determined to assess the final compost quality after 50 days of vermicomposting. The different manure ratios used to produce the composts (C) were as follows (SM:CM, % m/m basis): C1 100:0, C2 (75:25), C3 (50:50), C4 (25:75), and C5 (0:100). In addition, the earthworm biomass and the phytoproductivity of lettuce (Lactuca sativa L.) plants grown in mixtures (1:1) of natural soil and the most viable vermicomposts were investigated. The C1 and C2 compost compositions were associated with high earthworm mortality rates. The C3 compost provided the highest mineral concentrations and C5 showed the highest lettuce yield (wet biomass). The results verify that stabilized cattle manure is an excellent substrate for the vermicomposting process and that fresh swine manure must be mixed with pre-stabilized cattle manure to ensure an optimized vermicomposting process, which must be controlled in terms of temperature and ammonia levels. It is concluded that small livestock farmers could add value to swine manure by applying the vermicomposting process, without the need for high investments and with a minimal requirement for management of the biodegradation process. These are important technical aspects to be considered when circular economy principles are applied to small farms.

  13. Effect of carbon dioxide on the thermal degradation of lignocellulosic biomass.

    Science.gov (United States)

    Kwon, Eilhann E; Jeon, Eui-Chan; Castaldi, Marco J; Jeon, Young Jae

    2013-09-17

    Using biomass as a renewable energy source via currently available thermochemical processes (i.e., pyrolysis and gasification) is environmentally advantageous owing to its intrinsic carbon neutrality. Developing methodologies to enhance the thermal efficiency of these proven technologies is therefore imperative. This study aimed to investigate the use of CO2 as a reaction medium to increase not only thermal efficiency but also environmental benefit. The influence of CO2 on thermochemical processes at a fundamental level was experimentally validated with the main constituents of biomass (i.e., cellulose and xylan) to avoid complexities arising from the heterogeneous matrix of biomass. For instance, gaseous products including H2, CH4, and CO were substantially enhanced in the presence of CO2 because CO2 expedited thermal cracking behavior (i.e., 200-1000%). This behavior was then universally observed in our case study with real biomass (i.e., corn stover) during pyrolysis and steam gasification. However, further study is urgently needed to optimize these experimental findings.

  14. Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production

    OpenAIRE

    Weselowski, Brian; Nathoo, Naeem; Eastman, Alexander William; MacDonald, Jacqueline; Yuan, Ze-Chun

    2016-01-01

    Background Paenibacillus polymyxa is a plant-growth promoting rhizobacterium that could be exploited as an environmentally friendlier alternative to chemical fertilizers and pesticides. Various strains have been isolated that can benefit agriculture through antimicrobial activity, nitrogen fixation, phosphate solubilization, plant hormone production, or lignocellulose degradation. However, no single strain has yet been identified in which all of these advantageous traits have been confirmed. ...

  15. Development of biomass power plant technologies in Malaysia: niche development and the formation of innovative capabilities

    DEFF Research Database (Denmark)

    Hansen, Ulrich Elmer

    The objective of this thesis is to contribute to advance further the emerging research agenda on the transfer and diffusion of low-carbon technologies in developing countries by adopting a study of the development of biomass power plant technologies in Malaysia. The main research question addresses...... successive periods of fieldwork in Malaysia. The thesis conceptualises the diffusion of biomass technologies in Malaysia as a niche development process and finds that the development of a palm oil biomass waste-to-energy niche in Malaysia has only made limited progress despite a period of twenty years...... of niche formation. The thesis identifies the reluctance to implement an efficient energy policy as the main limiting factor for niche development in this case. Although a number of donor programs have advocated the introduction of a stronger enabling framework for niche development, they have generally...

  16. Input of biomass in power plants or the power generation. Calculation of the financial gap

    International Nuclear Information System (INIS)

    De Vries, H.J.; Van Tilburg, X.; Pfeiffer, A.E.; Cleijne, H.

    2005-09-01

    The project on the title subject concerns two questions: (1) Are projects in which wood-pellets are co-fired in a coalfired power plant representative for bio-oil fueled co-firing projects in a gas-fired plant?; and (2) are new projects representative for existing projects? To answer those questions the financial gaps have been calculated for five different situations: Co-firing bio-oil in a gas-fired power plant; Co-firing bio-oil in a coal-fired power plant; Co-firing wood pellets in a coal-fired power plant; Co-firing agro-residues in a coal-fired power plant; and Co-firing waste-wood (A- and B-grade) in a coal-fired power plant. The ranges and reference cases in this report show that co-firing bio-oil on average has a smaller financial gap than the solid biomass reference case. On average it can also be concluded that by using waste wood or agro-residues, the financial gaps can decrease [nl

  17. Biomass in Germany

    International Nuclear Information System (INIS)

    Chapron, Thibaut

    2014-01-01

    This document provides, first, an overview of biomass industry in Germany: energy consumption and renewable energy production, the French and German electricity mix, the 2003-2013 evolution of renewable electricity production and the 2020 forecasts, the biomass power plants, plantations, biofuels production and consumption in Germany. Then, the legal framework of biofuels development in Germany is addressed (financial incentives, tariffs, direct electricity selling). Next, a focus is made on biogas production both in France and in Germany (facilities, resources). Finally, the French-German cooperation in the biomass industry and the research actors are presented

  18. GASIFICATION BASED BIOMASS CO-FIRING

    Energy Technology Data Exchange (ETDEWEB)

    Babul Patel; Kevin McQuigg; Robert Toerne; John Bick

    2003-01-01

    Biomass gasification offers a practical way to use this widespread fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be used as a supplemental fuel in an existing utility boiler. This strategy of co-firing is compatible with a variety of conventional boilers including natural gas and oil fired boilers, pulverized coal fired conventional and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a wider selection of biomass as fuel and providing opportunity in reduction of carbon dioxide emissions to the atmosphere through the commercialization of this technology. This study evaluated two plants: Wester Kentucky Energy Corporation's (WKE's) Reid Plant and TXU Energy's Monticello Plant for technical and economical feasibility. These plants were selected for their proximity to large supply of poultry litter in the area. The Reid plant is located in Henderson County in southwest Kentucky, with a large poultry processing facility nearby. Within a fifty-mile radius of the Reid plant, there are large-scale poultry farms that generate over 75,000 tons/year of poultry litter. The local poultry farmers are actively seeking environmentally more benign alternatives to the current use of the litter as landfill or as a farm spread as fertilizer. The Monticello plant is located in Titus County, TX near the town of Pittsburgh, TX, where again a large poultry processor and poultry farmers in the area generate over 110,000 tons/year of poultry litter. Disposal of this litter in the area is also a concern. This project offers a model opportunity to demonstrate the feasibility of biomass co-firing and at the same time eliminate

  19. Autophagy supports biomass production and nitrogen use efficiency at the vegetative stage in rice.

    Science.gov (United States)

    Wada, Shinya; Hayashida, Yasukzu; Izumi, Masanori; Kurusu, Takamitsu; Hanamata, Shigeru; Kanno, Keiichi; Kojima, Soichi; Yamaya, Tomoyuki; Kuchitsu, Kazuyuki; Makino, Amane; Ishida, Hiroyuki

    2015-05-01

    Much of the nitrogen in leaves is distributed to chloroplasts, mainly in photosynthetic proteins. During leaf senescence, chloroplastic proteins, including Rubisco, are rapidly degraded, and the released nitrogen is remobilized and reused in newly developing tissues. Autophagy facilitates the degradation of intracellular components for nutrient recycling in all eukaryotes, and recent studies have revealed critical roles for autophagy in Rubisco degradation and nitrogen remobilization into seeds in Arabidopsis (Arabidopsis thaliana). Here, we examined the function of autophagy in vegetative growth and nitrogen usage in a cereal plant, rice (Oryza sativa). An autophagy-disrupted rice mutant, Osatg7-1, showed reduced biomass production and nitrogen use efficiency compared with the wild type. While Osatg7-1 showed early visible leaf senescence, the nitrogen concentration remained high in the senescent leaves. (15)N pulse chase analysis revealed suppression of nitrogen remobilization during leaf senescence in Osatg7-1. Accordingly, the reduction of nitrogen available for newly developing tissues in Osatg7-1 likely led its reduced leaf area and tillers. The limited leaf growth in Osatg7-1 decreased the photosynthetic capacity of the plant. Much of the nitrogen remaining in senescent leaves of Osatg7-1 was in soluble proteins, and the Rubisco concentration in senescing leaves of Osatg7-1 was about 2.5 times higher than in the wild type. Transmission electron micrographs showed a cytosolic fraction rich with organelles in senescent leaves of Osatg7-1. Our results suggest that autophagy contributes to efficient nitrogen remobilization at the whole-plant level by facilitating protein degradation for nitrogen recycling in senescent leaves. © 2015 American Society of Plant Biologists. All Rights Reserved.

  20. Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature

    DEFF Research Database (Denmark)

    Dieleman, Wouter I. J.; Vicca, Sara; Dijkstra, Feike A.

    2012-01-01

    , possibly due to the warming‐induced acceleration of decomposition, implying that progressive nitrogen limitation (PNL) may not occur as commonly as anticipated from single factor [ CO2 ] treatment studies. Responses of total plant biomass, especially of aboveground biomass, revealed antagonistic...

  1. 1064nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials

    Science.gov (United States)

    Umesh P. Agarwal

    2014-01-01

    Raman spectroscopy with its various special techniques and methods has been applied to study plant biomass for about 30 years. Such investigations have been performed at both macro- and micro-levels. However, with the availability of the Near Infrared (NIR) (1064 nm) Fourier Transform (FT)-Raman instruments where, in most materials, successful fluorescence suppression...

  2. Production of methanol/DME from biomass

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Münster-Swendsen, Janus

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier...... cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51...... gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic...

  3. Technoeconomic analysis of a methanol plant based on gasification of biomass and electrolysis of water

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard; Houbak, N.; Elmegaard, Brian

    2010-01-01

    , and the low-temperature waste heat is used for district heat production. This results in high total energy efficiencies (similar to 90%) for the plants. The specific methanol costs for the six plants are in the range 11.8-25.3 (sic)/GJ(exergy). The lowest cost is obtained by a plant using electrolysis......Methanol production process configurations based on renewable energy sources have been designed. The processes were analyzed in the thermodynamic process simulation tool DNA. The syngas used for the catalytic methanol production was produced by gasification of biomass, electrolysis of water, CO2...... with a different syngas production method, were compared. The plants achieve methanol exergy efficiencies of 59-72%, the best from a configuration incorporating autothermal reforming of biogas and electrolysis of water for syngas production. The different processes in the plants are highly heat integrated...

  4. North American Soil Degradation: Processes, Practices, and Mitigating Strategies

    Directory of Open Access Journals (Sweden)

    R. L. Baumhardt

    2015-03-01

    Full Text Available Soil can be degraded by several natural or human-mediated processes, including wind, water, or tillage erosion, and formation of undesirable physical, chemical, or biological properties due to industrialization or use of inappropriate farming practices. Soil degradation occurs whenever these processes supersede natural soil regeneration and, generally, reflects unsustainable resource management that is global in scope and compromises world food security. In North America, soil degradation preceded the catastrophic wind erosion associated with the dust bowl during the 1930s, but that event provided the impetus to improve management of soils degraded by both wind and water erosion. Chemical degradation due to site specific industrial processing and mine spoil contamination began to be addressed during the latter half of the 20th century primarily through point-source water quality concerns, but soil chemical degradation and contamination of surface and subsurface water due to on-farm non-point pesticide and nutrient management practices generally remains unresolved. Remediation or prevention of soil degradation requires integrated management solutions that, for agricultural soils, include using cover crops or crop residue management to reduce raindrop impact, maintain higher infiltration rates, increase soil water storage, and ultimately increase crop production. By increasing plant biomass, and potentially soil organic carbon (SOC concentrations, soil degradation can be mitigated by stabilizing soil aggregates, improving soil structure, enhancing air and water exchange, increasing nutrient cycling, and promoting greater soil biological activity.

  5. BAAD: a Biomass And Allometry Database for woody plants

    Energy Technology Data Exchange (ETDEWEB)

    Falster, Daniel; Duursma, Remko; Ishihara, Masae; Barneche, Diego; Fitzjohn, Richard; Varhammar, Angelica; Aiba, Masahiro; Ando, M.; Anten, Niels; Aspinwall, Michael J.; Baltzer, Jennifer; Baraloto, Christopher; Battaglia, Michael; Battles, John; Bond-Lamberty, Benjamin; van Breugel, Michiel; Camac, James; Claveau, Yves; Coll Mir, Llus; Dannoura, Dannoura; Delagrange, Sylvain; Domec, Jean-Cristophe; Fatemi, Farrah; Feng, Wang; Gargaglione, Veronica; Goto, Yoshiaki; Hagihara, Akio; Hall, Jefferson S.; Hamilton, Steve; Harja, Degi; Hiura, Tsutom; Holdaway, Robert; Hutley, L. B.; Ichie, Tomoaki; Jokela, Eric; Kantola, Anu; Kelly, Jeffery W.; Kenzo, Tanaka; King, David A.; Kloeppel, Brian; Kohyama, Takashi; Komiyama, Akira; Laclau, Jean-Paul; Lusk, Christopher; Maguire, Doug; le Maire, Guerric; Makela, Annikki; Markesteijn, Lars; Marshall, John; McCulloh, Kate; Miyata, Itsuo; Mokany, Karen; Mori, Shigeta; Myster, Randall; Nagano, Masahiro; Naidu, Shawna; Nouvellon, Yann; O' Grady, Anthony; O' Hara, Kevin; Ohtsuka, Toshiyuki; Osada, Noriyuki; Osunkoya, Olusegun O.; Luis Peri, Pablo; Petritan, Mary; Poorter, Lourens; Portsmuth, Angelika; Potvin, Catherine; Ransijn, Johannes; Reid, Douglas; Ribeiro, Sabina C.; Roberts, Scott; Rodriguez, Rolando; Saldana-Acosta, Angela; Santa-Regina, Ignacio; Sasa, Kaichiro; Gailia Selaya, Nadezhda; Sillett, Stephen; Sterck, Frank; Takagi, Kentaro; Tange, Takeshi; Tanouchi, Hiroyuki; Tissue, David; Umehara, Tohru; Utsugi, Hajime; Vadeboncoeur, Matthew; Valladares, Fernando; Vanninen, Petteri; Wang, Jian; Wenk, Elizabeth; Williams, Dick; Ximenes, Fabiano de Aquino; Yamaba, Atsushi; Yamada, Toshihiro; Yamakura, Takuo; Yanai, Ruth; York, Robert

    2015-05-07

    Quantifying the amount of mass or energy invested in plant tissues is of fundamental interest across a range of disciplines, including ecology, forestry, ecosystem science, and climate change science (Niklas, 1994; Chave et al. 2005; Falster et al. 2011). The allocation of net primary production into different plant components is an important process affecting the lifetime of carbon in ecosystems, and resource use and productivity by plants (Cannell & Dewar, 1994; Litton et al. 2007; Poorter et al. 2012). While many studies in have destructively harvested woody plants in the name of science, most of these data have only been made available in the form of summary tables or figures included in publications. Until now, the raw data has resided piecemeal on the hard drives of individual scientists spread around the world. Several studies have gathered together the fitted (allometric) equations for separate datasets (Ter-Mikaelian & Korzukhin, 1997; Jenkins et al. 2003; Zianis et al. 2005; Henry et al. 2013), but none have previously attempted to organize and share the raw individual plant data underpinning these equations on a large scale. Gathered together, such data would represent an important resource for the community, meeting a widely recognised need for rich, open data resources to solve ecological problems (Costello et al. 2013; Fady et al. 2014; Harfoot & Roberts, 2014; Costello et al. 2013). We (D.S. Falster and R.A. Duursma, with the help of D.R. Barneche, R.G. FitzJohn and A. Vårhammar) set out to create such a resource, by asking authors directly whether they would be willing to make their raw data files freely available. The response was overwhelming: nearly everyone we contacted was interested to contribute their raw data. Moreover, we were invited to incorporate another compilation led by M. Ishihara and focussing on Japanese literature. As a result, we present BAAD: a Biomass And Allometry Database for woody plants, comprising data collected in 174

  6. Can liming change root anatomy, biomass allocation and trace element distribution among plant parts of Salix × smithiana in trace element-polluted soils?

    Science.gov (United States)

    Vondráčková, Stanislava; Tlustoš, Pavel; Száková, Jiřina

    2017-08-01

    Willows (Salix spp.) are considered to be effective for the phytoremediation of trace elements from contaminated soils, but their efficiency is limited in heavily polluted soils because of poor growth. Liming can be a desirable measure to decrease the plant availability of elements, resulting in improved plant development. Notably, large root area and maximum soil penetration are basic parameters that improve the efficiency of phytoremediation. The impact of soil chemical properties on willow root anatomy and the distribution of trace elements below-ground have rarely been studied. The effect of liming on root parameters, biomass allocation and trace element distribution in non-harvestable (coarse roots, fine roots, stumps) and harvestable plant parts (twigs and leaves) of Salix × smithiana was assessed at the end of a 4-year pot experiment with two trace element-polluted soils that differed in terms of soil pH. Stump biomass predominated in weakly acidic soil. In neutral soil, the majority of biomass was located in fine roots and stumps; the difference from other plant parts was minor. Trace elements were the most concentrated in fine roots. Translocation to above-ground biomass increased as follows: Pb roots roots). Lime application decreased the concentrations of mobile Cd and Zn and related levels in plants, improved biomass production and root parameters and increased the removal of all trace elements in weakly acidic soil. None or minimum differences in the monitored parameters were recorded for dolomite treatments in both soils. The dose and source of liming had crucial effects on root anatomy. Growing willows in limed trace element-polluted soils is a suitable measure for combination of two remediation strategies, i.e. phytoextraction of Cd and Zn and assisted phytostabilization of As and Pb.

  7. Biomass gasification in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Van der Drift, A. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-07-15

    This reports summarizes the activities, industries, and plants on biomass gasification in the Netherlands. Most of the initiatives somehow relate to waste streams, rather than clean biomass, which may seem logic for a densely populated country as the Netherlands. Furthermore, there is an increasing interest for the production of SNG (Substitute Natural Gas) from biomass, both from governments and industry.

  8. Furfural and 5-hydroxymethyl-furfural degradation using recombinant manganese peroxidase.

    Science.gov (United States)

    Yee, Kelsey L; Jansen, Lauren E; Lajoie, Curtis A; Penner, Michael H; Morse, Lettie; Kelly, Christine J

    2018-01-01

    Biomass pretreatment-derived degradation compounds, such as furfural and 5-hydroxymethyl-furfural (HMF), inhibit the growth of fermentation microorganisms that utilize biomass to produce fuels and chemicals. Here we report that recombinant manganese peroxidase (rMnP) produced from the yeast Pichia pastoris can degrade furfural and HMF making them less toxic to microorganisms. Treatment with rMnP or manganese(III) acetate reduced furfural and HMF concentrations in a dose-dependent manner. Furfural disappearance was accompanied by malonate disappearance and accumulation of four distinct degradation products. Furfural was more readily degraded by rMnP and manganese(III) acetate than HMF. Growth assays using Saccharomyces cerevisiae indicated that rMnP treatment reduced the toxicity of furfural and HMF. This work provides an avenue to use rMnP to increase the growth of fermentation microorganisms that are inhibited by toxic compounds derived from pretreatment of biomass. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Thermal and kinetic behaviors of biomass and plastic wastes in co-pyrolysis

    International Nuclear Information System (INIS)

    Çepelioğullar, Özge; Pütün, Ayşe E.

    2013-01-01

    Graphical abstract: - Highlights: • Co-pyrolysis of biomass together with the plastic wastes in thermogravimetric analyzer. • Investigations into thermal and kinetic behaviors at high temperature regions. • Determination of the kinetic parameters. - Abstract: In this study, co-pyrolysis characteristics and kinetics of biomass-plastic blends were investigated. Cotton stalk, hazelnut shell, sunflower residue, and arid land plant Euphorbia rigida, were blended in definite ratio (1:1, w/w) with polyvinyl chloride (PVC) and polyethylene terephthalate (PET). Experiments were conducted with a heating rate of 10 °C min −1 from room temperature to 800 °C in the presence of N 2 atmosphere with a flow rate of 100 cm 3 min −1 . After thermal decomposition in TGA, a kinetic analysis was performed to fit thermogravimetric data and a detailed discussion of co-pyrolysis mechanism was achieved. Experimental results demonstrated that the structural differences between biomass and plastics directly affect their thermal decomposition behaviors. Biomass pyrolysis generally based on three main steps while plastic material’s pyrolysis mechanism resulted in two steps for PET and three steps for PVC. Also, the required activation energies needed to achieve the thermal degradation for plastic were found higher than the biomass materials. In addition, it can be concluded that the evaluation of plastic materials together with biomass created significant changes not only for the thermal behaviors but also for the kinetic behaviors

  10. Nutrient-enhanced decomposition of plant biomass in a freshwater wetland

    Science.gov (United States)

    Bodker, James E.; Turner, Robert Eugene; Tweel, Andrew; Schulz, Christopher; Swarzenski, Christopher M.

    2015-01-01

    We studied soil decomposition in a Panicum hemitomon (Schultes)-dominated freshwater marsh located in southeastern Louisiana that was unambiguously changed by secondarily-treated municipal wastewater effluent. We used four approaches to evaluate how belowground biomass decomposition rates vary under different nutrient regimes in this marsh. The results of laboratory experiments demonstrated how nutrient enrichment enhanced the loss of soil or plant organic matter by 50%, and increased gas production. An experiment demonstrated that nitrogen, not phosphorus, limited decomposition. Cellulose decomposition at the field site was higher in the flowfield of the introduced secondarily treated sewage water, and the quality of the substrate (% N or % P) was directly related to the decomposition rates. We therefore rejected the null hypothesis that nutrient enrichment had no effect on the decomposition rates of these organic soils. In response to nutrient enrichment, plants respond through biomechanical or structural adaptations that alter the labile characteristics of plant tissue. These adaptations eventually change litter type and quality (where the marsh survives) as the % N content of plant tissue rises and is followed by even higher decomposition rates of the litter produced, creating a positive feedback loop. Marsh fragmentation will increase as a result. The assumptions and conditions underlying the use of unconstrained wastewater flow within natural wetlands, rather than controlled treatment within the confines of constructed wetlands, are revealed in the loss of previously sequestered carbon, habitat, public use, and other societal benefits.

  11. Techno-economic assessment of FT unit for synthetic diesel production in existing stand-alone biomass gasification plant using process simulation tool

    DEFF Research Database (Denmark)

    Hunpinyo, Piyapong; Narataruksa, Phavanee; Tungkamani, Sabaithip

    2014-01-01

    For alternative thermo-chemical conversion process route via gasification, biomass can be gasified to produce syngas (mainly CO and H2). On more applications of utilization, syngas can be used to synthesize fuels through the catalytic process option for producing synthetic liquid fuels...... such as Fischer-Tropsch (FT) diesel. The embedding of the FT plant into the stand-alone based on power mode plants for production of a synthetic fuel is a promising practice, which requires an extensive adaptation of conventional techniques to the special chemical needs found in a gasified biomass. Because...... there are currently no plans to engage the FT process in Thailand, the authors have targeted that this work focus on improving the FT configurations in existing biomass gasification facilities (10 MWth). A process simulation model for calculating extended unit operations in a demonstrative context is designed...

  12. Phytoremediation of Metal Contaminated Soil Using Willow: Exploiting Plant-Associated Bacteria to Improve Biomass Production and Metal Uptake.

    Science.gov (United States)

    Janssen, Jolien; Weyens, Nele; Croes, Sarah; Beckers, Bram; Meiresonne, Linda; Van Peteghem, Pierre; Carleer, Robert; Vangronsveld, Jaco

    2015-01-01

    Short rotation coppice (SRC) of willow and poplar is proposed for economic valorization and concurrently as remediation strategy for metal contaminated land in northeast-Belgium. However, metal phytoextraction appears insufficient to effectuate rapid reduction of soil metal contents. To increase both biomass production and metal accumulation of SRC, two strategies are proposed: (i) in situ selection of the best performing clones and (ii) bioaugmentation of these clones with beneficial plant-associated bacteria. Based on field data, two experimental willow clones, a Salix viminalis and a Salix alba x alba clone, were selected. Compared to the best performing commercial clones, considerable increases in stem metal extraction were achieved (up to 74% for Cd and 91% for Zn). From the selected clones, plant-associated bacteria were isolated and identified. All strains were subsequently screened for their plant growth-promoting and metal uptake enhancing traits. Five strains were selected for a greenhouse inoculation experiment with the selected clones planted in Cd-Zn-Pb contaminated soil. Extraction potential tended to increase after inoculation of S. viminalis plants with a Rahnella sp. strain due to a significantly increased twig biomass. However, although bacterial strains showing beneficial traits in vitro were used for inoculation, increments in extraction potential were not always observed.

  13. Wood biomass gasification: Technology assessment and prospects in developing countries

    International Nuclear Information System (INIS)

    Salvadego, C.

    1992-05-01

    This investigation of the technical-economic feasibility of the development and use of wood biomass gasification plants to help meet the energy requirements of developing countries covers the following aspects: resource availability and production; gasification technologies and biomass gasification plant typology; plant operating, maintenance and safety requirements; the use of the biomass derived gas in internal combustion engines and boilers; and the nature of energy requirements in developing countries. The paper concludes with a progress report on biomass gasification research programs being carried out in developing countries world-wide

  14. Colloid-based multiplexed method for screening plant biomass-degrading glycoside hydrolase activities in microbial communities

    Energy Technology Data Exchange (ETDEWEB)

    Reindl, W.; Deng, K.; Gladden, J.M.; Cheng, G.; Wong, A.; Singer, S.W.; Singh, S.; Lee, J.-C.; Yao, J.-S.; Hazen, T.C.; Singh, A.K; Simmons, B.A.; Adams, P.D.; Northen, T.R.

    2011-05-01

    The enzymatic hydrolysis of long-chain polysaccharides is a crucial step in the conversion of biomass to lignocellulosic biofuels. The identification and characterization of optimal glycoside hydrolases is dependent on enzyme activity assays, however existing methods are limited in terms of compatibility with a broad range of reaction conditions, sample complexity, and especially multiplexity. The method we present is a multiplexed approach based on Nanostructure-Initiator Mass Spectrometry (NIMS) that allowed studying several glycolytic activities in parallel under diverse assay conditions. Although the substrate analogs carried a highly hydrophobic perfluorinated tag, assays could be performed in aqueous solutions due colloid formation of the substrate molecules. We first validated our method by analyzing known {beta}-glucosidase and {beta}-xylosidase activities in single and parallel assay setups, followed by the identification and characterization of yet unknown glycoside hydrolase activities in microbial communities.

  15. Integration of biomass fast pyrolysis and precedent feedstock steam drying with a municipal combined heat and power plant

    International Nuclear Information System (INIS)

    Kohl, Thomas; Laukkanen, Timo P.; Järvinen, Mika P.

    2014-01-01

    Biomass fast pyrolysis (BFP) is a promising pre-treatment technology for converting biomass to transport fuel and in the future also for high-grade chemicals. BFP can be integrated with a municipal combined heat and power (CHP) plant. This paper shows the influence of BFP integration on a CHP plant's main parameters and its effect on the energetic and environmental performance of the connected district heating network. The work comprises full- and part-load operation of a CHP plant integrated with BFP and steam drying. It also evaluates different usage alternatives for the BFP products (char and oil). The results show that the integration is possible and strongly beneficial regarding energetic and environmental performance. Offering the possibility to provide lower district heating loads, the operation hours of the plant can be increased by up to 57%. The BFP products should be sold rather than applied for internal use as this increases the district heating network's primary energy efficiency the most. With this integration strategy future CHP plants can provide valuable products at high efficiency and also can help to mitigate global CO 2 emissions. - Highlights: • Part load simulation of a cogeneration plant integrated with biomas fast pyrolysis. • Analysis of energetic and environmental performance. • Assessment of different uses of the pyrolysis products

  16. Microbial degradation of plant leachate alters lignin phenols and trihalomethane precursors

    Science.gov (United States)

    Pellerin, Brian A.; Hernes, Peter J.; Saraceno, John Franco; Spencer, Robert G.M.; Bergamaschi, Brian A.

    2010-01-01

    Although the importance of vascular plant-derived dissolved organic carbon (DOC) in freshwater systems has been studied, the role of leached DOC as precursors of disinfection byproducts (DBPs) during drinking water treatment is not well known. Here we measured the propensity of leachates from four crops and four aquatic macrophytes to form trihalomethanes (THMs)—a regulated class of DBPs—before and after 21 d of microbial degradation. We also measured lignin phenol content and specific UV absorbance (SUVA254) to test the assumption that aromatic compounds from vascular plants are resistant to microbial degradation and readily form DBPs. Leaching solubilized 9 to 26% of total plant carbon, which formed 1.93 to 6.72 mmol THM mol C-1 However, leachate DOC concentrations decreased by 85 to 92% over the 21-d incubation, with a concomitant decrease of 67 to 92% in total THM formation potential. Carbon-normalized THM yields in the residual DOC pool increased by 2.5 times on average, consistent with the preferential uptake of nonprecursor material. Lignin phenol concentrations decreased by 64 to 96% over 21 d, but a lack of correlation between lignin content and THM yields or SUVA254 suggested that lignin-derived compounds are not the source of increased THM precursor yields in the residual DOC pool. Our results indicate that microbial carbon utilization alters THM precursors in ecosystems with direct plant leaching, but more work is needed to identify the specific dissolved organic matter components with a greater propensity to form DBPs and affect watershed management, drinking water quality, and human health.

  17. Thermal Degradation Kinetics Modeling of Benzophenones and Xanthones during High-Temperature Oxidation of Cyclopia genistoides (L.) Vent. Plant Material.

    Science.gov (United States)

    Beelders, Theresa; de Beer, Dalene; Joubert, Elizabeth

    2015-06-10

    Degradation of the major benzophenones, iriflophenone-3-C-glucoside-4-O-glucoside and iriflophenone-3-C-glucoside, and the major xanthones, mangiferin and isomangiferin, of Cyclopia genistoides followed first-order reaction kinetics during high-temperature oxidation of the plant material at 80 and 90 °C. Iriflophenone-3-C-glucoside-4-O-glucoside was shown to be the most thermally stable compound. Isomangiferin was the second most stable compound at 80 °C, while its degradation rate constant was influenced the most by increased temperature. Mangiferin and iriflophenone-3-C-glucoside had comparable degradation rate constants at 80 °C. The thermal degradation kinetic model was subsequently evaluated by subjecting different batches of plant material to oxidative conditions (90 °C/16 h). The model accurately predicted the individual contents of three of the compounds in aqueous extracts prepared from oxidized plant material. The impact of benzophenone and xanthone degradation was reflected in the decreased total antioxidant capacity of the aqueous extracts, as determined using the oxygen radical absorbance capacity and DPPH(•) scavenging assays.

  18. Romania biomass energy. Country study

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, M; Easterly, J L; Mark, P E; Keller, A [DynCorp, Alexandria, VA (United States)

    1995-12-01

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  19. Romania biomass energy. Country study

    International Nuclear Information System (INIS)

    Burnham, M.; Easterly, J.L.; Mark, P.E.; Keller, A.

    1995-01-01

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  20. Alkali deposits found in biomass power plants: A preliminary investigation of their extent and nature. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Miles, T.R.; Miles, T.R. Jr. [Miles (Thomas R.), Portland, OR (United States); Baxter, L.L. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility; Bryers, R.W. [Foster Wheeler Development Corp., Livingston, NJ (United States); Jenkins, B.M. [California Univ., Davis, CA (United States); Oden, L.L. [Bureau of Mines, Albany, OR (United States). Albany Research Center

    1995-04-15

    Alkali in the ash of annual crop biomass fuels creates serious fouling and slagging in conventional boilers. Even with the use of sorbents and other additives, power plants can only fire limited amounts of these fuels in combination with wood. The National Renewable Energy Laboratory (NREL), US Department of Energy, and the biomass power industry carried out eight full-scale firing tests and several laboratory experiments to study the nature and occurrence of deposits with the goal of increasing the quantities of these biofuels that can be used. This report describes the results of the laboratory and power plant tests that included: tracking and analyzing fuels and deposits by various methods; recording operating conditions; and extensive laboratory testing. The paper describes the occurrence of deposits, fuel and deposit analyses, boiler design and operation, fouling and slagging indicators, and recommendations. 37 refs., 41 figs., 17 tabs.

  1. Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates.

    Directory of Open Access Journals (Sweden)

    Adam E Vorsino

    Full Text Available Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with 0.8; True Skill Statistic >0.75 as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1. This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions.

  2. Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates

    Science.gov (United States)

    Vorsino, Adam E.; Fortini, Lucas B.; Amidon, Fred A.; Miller, Stephen E.; Jacobi, James D.; Price, Jonathan P.; `Ohukani`ohi`a Gon, Sam; Koob, Gregory A.

    2014-01-01

    Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with 0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions.

  3. Nuclear plant service water system aging degradation assessment: Phase 1

    International Nuclear Information System (INIS)

    Jarrell, D.B.; Johnson, A.B. Jr.; Zimmerman, P.W.; Gore, M.L.

    1989-06-01

    The initial phase of an aging assessment of nuclear power plant service water systems (SWSs) was performed by the Pacific Northwest Laboratory to support the Nuclear Regulatory Commission Nuclear Plant Aging Research (NPAR) program. The SWS was selected for study because of its essential role in the mitigation of and recovery from accident scenarios involving the potential for core-melt. The objectives of the SWS task under the NPAR program are to identify and characterize the principal aging degradation mechanisms relevant to this system and assess their impact on operational readiness, and to provide a methodology for the mitigation of aging on the service water aspect of nuclear plant safety. The first two of these objectives have been met and are covered in this Phase 1 report. A review of available literature and data-base information indicated that motor operated valve torque switches (an electro-mechanical device) were the prime suspect in component service water systems failures. More extensive and detailed data obtained from cooperating utility maintenance records and personnel accounts contradicted this conclusion indicating that biologic and inorganic accumulation and corrosive attack of service water on component surfaces were, in fact, the primary degradation mechanisms. A review of the development of time dependent risk assessment (aging) models shows that, as yet, this methodology has not been developed to a degree where implementation is reliable. Improvements in the accuracy of failure data documentation and time dependent risk analysis methodology should yield significant gains in relating aging phenomena to probabilistic risk assessment. 23 refs., 8 figs., 10 tabs

  4. Degradation evaluation of high temperature pipeline material for power plant using ultrasonic noise analysis

    International Nuclear Information System (INIS)

    Lee, Sang Guk; Chung, Min Hwa; Cho, Yong Sang; Lee, In Cheol

    2001-01-01

    Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep and thermal fatigue damage due to severe operating conditions such as high temperature and high pressure for an extended period time. Conventional measurement techniques for measuring creep damage have such disadvantages as complex preparation and measurement procedures, too many control parameters. And also these techniques have low practicality and applied only to component surfaces with good accessibility. In this paper, artificial degradation test and ultrasonic measurement for their degraded specimens were carried out for the purpose of evaluation for creep and thermal fatigue damage. Absolute measuring method of quantitative ultrasonic measurement for material degradation was established, and long term creep/thermal fatigue degradation tests using life prediction formula were carried out. As a result of ultrasonic tests for crept and thermal fatigued specimens, we conformed that the ultrasonic noise linearly increased in proportion to the increase of degradation.

  5. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Final report, February 1, 1978-January 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    This is a coordinated program to effect the microbiological degradation of cellulosic biomasses and will focus on the use of anaerobic microorganisms which possess cellulolytic enzyme. The studies will attempt to increase the enzyme levels through genetics, mutation and strain selection. In addition, the direct conversion from cellulosic biomasses to liquid fuel (ethanol) and/or soluble sugars by the cellulolytic, anaerobic organism is also within the scope of this program. Process and engineering scale-up, along with economic analyses, will be performed throughout the course of the program. The second area of our major effort is devoted to the production of chemical feedstocks. In particular, three fermentations have been identified for exploration. These are: acrylic acid, acetone/butanol and acetic acid. The main efforts in these fermentations will address means for the reduction of the cost of manufacturing for these large volume chemicals.

  6. Degradation of lignin β-aryl ether units in Arabidopsis thaliana expressing LigD, LigF and LigG from Sphingomonas paucimobilis SYK-6

    DEFF Research Database (Denmark)

    Mnich, Ewelina; Vanholme, Ruben; Oyarce, Paula

    2017-01-01

    Lignin is a major polymer in the secondary plant cell wall and composed of hydrophobic interlinked hydroxyphenylpropanoid units. The presence of lignin hampers conversion of plant biomass into biofuels; plants with modified lignin are therefore being investigated for increased digestibility....... The bacterium Sphingomonas paucimobilis produces lignin-degrading enzymes including LigD, LigF and LigG involved in cleaving the most abundant lignin inter-unit linkage, the β-aryl ether bond. In this study, we expressed the LigD, LigF and LigG (LigDFG) genes in Arabidopsis thaliana to introduce post...

  7. Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shenglian; Xu, Taoying; Chen, Liang [Hunan Univ., Changsha (China). College of Environmental Science and Engineering] [and others

    2012-02-15

    The effects of Bacillus sp. SLS18, a plant-growth-promoting endophyte, on the biomass production and Mn/Cd uptake of sweet sorghum (Sorghum bicolor L.), Phytolacca acinosa Roxb., and Solanum nigrum L. were investigated. SLS18 displayed multiple heavy metals and antibiotics resistances. The strain also exhibited the capacity of producing indole-3-acetic acid, siderophores, and 1-aminocyclopropane-1-carboxylic acid deaminase. In pot experiments, SLS18 could not only infect plants effectively but also significantly increase the biomass of the three tested plants in the presence of Mn/Cd. The promoting effect order of SLS18 on the biomass of the tested plants was sweet sorghum > P. acinosa > S. nigrum L. In the presence of Mn (2,000 mg kg{sup -1}) and Cd (50 mg kg{sup -1}) in vermiculite, the total Mn/Cd uptakes in the aerial parts of sweet sorghum, P. acinosa, and S. nigrum L. were increased by 65.2%/40.0%, 55.2%/31.1%, and 18.6%/25.6%, respectively, compared to the uninoculated controls. This demonstrates that the symbiont of SLS18 and sweet sorghum has the potential of improving sweet sorghum biomass production and its total metal uptake on heavy metal-polluted marginal land. It offers the potential that heavy metal-polluted marginal land could be utilized in planting sweet sorghum as biofuel feedstock for ethanol production, which not only gives a promising phytoremediation strategy but also eases the competition for limited fertile farmland between energy crops and food crops. (orig.)

  8. Environmental Degradation in a Eutrophic Shallow Lake is not Simply Due to Abundance of Non-native Cyprinus carpio

    Science.gov (United States)

    Ramírez-Herrejón, Juan P.; Mercado-Silva, Norman; Balart, Eduardo F.; Moncayo-Estrada, Rodrigo; Mar-Silva, Valentín; Caraveo-Patiño, Javier

    2015-09-01

    Non-native species are often major drivers of the deterioration of natural ecosystems. The common carp Cyprinus carpio are known to cause major changes in lentic systems, but may not be solely responsible for large scale changes in these ecosystems. We used data from extensive collection efforts to gain insight into the importance of carp as drivers of ecosystem change in Lake Patzcuaro, Mexico. We compared the structure (fish density, biomass, diversity, and evenness) of fish assemblages from six Lake Patzcuaro sites with different habitat characteristics. Intersite comparisons were carried out for both wet and dry seasons. We explored the relationships between non-carp species and carp; and studied multivariate interactions between fish abundance and habitat characteristics. From a biomass perspective, carp was dominant in only four of six sites. In terms of density, carp was not a dominant species in all sites. Further, carp density and biomass were not negatively related to native species density and biomass, even when carp density and biomass were positively correlated to water turbidity levels. Carp dominated fish assemblages in the shallowest sites with the highest water turbidity, plant detritus at the bottom, and floating macrophytes covering the lake surface. These results suggest that the effect of carp on fish assemblages may be highly dependent on habitat characteristics in Lake Patzcuaro. Watershed degradation, pollution, water level loss, and other sources of anthropogenic influence may be more important drivers of Lake Patzcuaro degradation than the abundance of carp.

  9. Environmental Degradation in a Eutrophic Shallow Lake is not Simply Due to Abundance of Non-native Cyprinus carpio.

    Science.gov (United States)

    Ramírez-Herrejón, Juan P; Mercado-Silva, Norman; Balart, Eduardo F; Moncayo-Estrada, Rodrigo; Mar-Silva, Valentín; Caraveo-Patiño, Javier

    2015-09-01

    Non-native species are often major drivers of the deterioration of natural ecosystems. The common carp Cyprinus carpio are known to cause major changes in lentic systems, but may not be solely responsible for large scale changes in these ecosystems. We used data from extensive collection efforts to gain insight into the importance of carp as drivers of ecosystem change in Lake Patzcuaro, Mexico. We compared the structure (fish density, biomass, diversity, and evenness) of fish assemblages from six Lake Patzcuaro sites with different habitat characteristics. Intersite comparisons were carried out for both wet and dry seasons. We explored the relationships between non-carp species and carp; and studied multivariate interactions between fish abundance and habitat characteristics. From a biomass perspective, carp was dominant in only four of six sites. In terms of density, carp was not a dominant species in all sites. Further, carp density and biomass were not negatively related to native species density and biomass, even when carp density and biomass were positively correlated to water turbidity levels. Carp dominated fish assemblages in the shallowest sites with the highest water turbidity, plant detritus at the bottom, and floating macrophytes covering the lake surface. These results suggest that the effect of carp on fish assemblages may be highly dependent on habitat characteristics in Lake Patzcuaro. Watershed degradation, pollution, water level loss, and other sources of anthropogenic influence may be more important drivers of Lake Patzcuaro degradation than the abundance of carp.

  10. A Honey Bee Foraging approach for optimal location of a biomass power plant

    Energy Technology Data Exchange (ETDEWEB)

    Vera, David; Jurado, Francisco [Dept. of Electrical Engineering, University of Jaen, 23700 EPS Linares, Jaen (Spain); Carabias, Julio; Ruiz-Reyes, Nicolas [Dept. of Telecommunication Engineering, University of Jaen, 23700 EPS Linares, Jaen (Spain)

    2010-07-15

    Over eight million hectares of olive trees are cultivated worldwide, especially in Mediterranean countries, where more than 97% of the world's olive oil is produced. The three major olive oil producers worldwide are Spain, Italy, and Greece. Olive tree pruning residues are an autochthonous and important renewable source that, in most of cases, farmers burn through an uncontrolled manner. Besides, industrial uses have not yet been developed. The aim of this paper consists of a new calculation tool based on particles swarm (Binary Honey Bee Foraging, BHBF). Effectively, this approach will make possible to determine the optimal location, biomass supply area and power plant size that offer the best profitability for investor. Moreover, it prevents the accurate method (not feasible from computational viewpoint). In this work, Profitability Index (PI) is set as the fitness function for the BHBF approach. Results are compared with other evolutionary optimization algorithms such as Binary Particle Swarm Optimization (BPSO), and Genetic Algorithms (GA). All the experiments have shown that the optimal plant size is 2 MW, PI = 3.3122, the best location corresponds to coordinate: X = 49, Y = 97 and biomass supply area is 161.33 km{sup 2}. The simulation times have been reduced to the ninth of time than the greedy (accurate) solution. Matlab registered is used to run all simulations. (author)

  11. Spatial differentiation of gene expression in Aspergillus niger colony grown for sugar beet pulp utilization

    NARCIS (Netherlands)

    Benoit, Isabelle; Zhou, Miaomiao; Duarte, Alexandra Vivas; Downes, Damien J.; Todd, Richard B.; Kloezen, Wendy; Post, Harm; Heck, Albert J. R.; Altelaar, A. F. Maarten; de Vries, Ronald P.

    2015-01-01

    Degradation of plant biomass to fermentable sugars is of critical importance for the use of plant materials for biofuels. Filamentous fungi are ubiquitous organisms and major plant biomass degraders. Single colonies of some fungal species can colonize massive areas as large as five soccer stadia.

  12. Cultivation of Podospora anserina on soybean hulls results in an efficient enzyme cocktail for plant biomass hydrolysis

    NARCIS (Netherlands)

    Mäkelä, Miia R; Bouzid, Ourdia; Ruiz-Robleto, J.; Post, Harm|info:eu-repo/dai/nl/341667374; Peng, Mao; Heck, Albert|info:eu-repo/dai/nl/105189332; Altelaar, Maarten|info:eu-repo/dai/nl/304833517; de Vries, Ronald P|info:eu-repo/dai/nl/186324960

    2017-01-01

    The coprophilic ascomycete fungus Podospora anserina was cultivated on three different plant biomasses, i.e. cotton seed hulls (CSH), soybean hulls (SBH) and acid-pretreated wheat straw (WS) for four days, and the potential of the produced enzyme mixtures was compared in the enzymatic

  13. Automated assay for screening the enzymatic release of reducing sugars from micronized biomass

    Directory of Open Access Journals (Sweden)

    Asther Marcel

    2010-07-01

    Full Text Available Abstract Background To reduce the production cost of bioethanol obtained from fermentation of the sugars provided by degradation of lignocellulosic biomass (i.e., second generation bioethanol, it is necessary to screen for new enzymes endowed with more efficient biomass degrading properties. This demands the set-up of high-throughput screening methods. Several methods have been devised all using microplates in the industrial SBS format. Although this size reduction and standardization has greatly improved the screening process, the published methods comprise one or more manual steps that seriously decrease throughput. Therefore, we worked to devise a screening method devoid of any manual steps. Results We describe a fully automated assay for measuring the amount of reducing sugars released by biomass-degrading enzymes from wheat-straw and spruce. The method comprises two independent and automated steps. The first step is the making of "substrate plates". It consists of filling 96-well microplates with slurry suspensions of micronized substrate which are then stored frozen until use. The second step is an enzymatic activity assay. After thawing, the substrate plates are supplemented by the robot with cell-wall degrading enzymes where necessary, and the whole process from addition of enzymes to quantification of released sugars is autonomously performed by the robot. We describe how critical parameters (amount of substrate, amount of enzyme, incubation duration and temperature were selected to fit with our specific use. The ability of this automated small-scale assay to discriminate among different enzymatic activities was validated using a set of commercial enzymes. Conclusions Using an automatic microplate sealer solved three main problems generally encountered during the set-up of methods for measuring the sugar-releasing activity of plant cell wall-degrading enzymes: throughput, automation, and evaporation losses. In its present set-up, the

  14. Limited uptake, translocation and enhanced metabolic degradation contribute to glyphosate tolerance in Mucuna pruriens var. utilis plants.

    Science.gov (United States)

    Rojano-Delgado, Antonia María; Cruz-Hipolito, Hugo; De Prado, Rafael; Luque de Castro, María Dolores; Franco, Antonio Rodríguez

    2012-01-01

    Velvet bean (Mucuna pruriens, Fabaceae) plants exhibits an innate, very high resistance (i.e., tolerance) to glyphosate similar to that of plants which have acquired resistance to this herbicide as a trait. We analyzed the uptake of [(14)C]-glyphosate by leaves and its translocation to meristematic tissues, and used scanning electron micrographs to further analyze the cuticle and 3D capillary electrophoresis to investigate a putative metabolism capable of degrading the herbicide. Velvet bean exhibited limited uptake of glyphosate and impaired translocation of the compound to meristematic tissues. Also, for the first time in a higher plant, two concurrent pathways capable of degrading glyphosate to AMPA, Pi, glyoxylate, sarcosine and formaldehyde as end products were identified. Based on the results, the innate tolerance of velvet bean to glyphosate is possibly a result of the combined action of the previous three traits, namely: limited uptake, impaired translocation and enhanced degradation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. The ecological effects of different loading rates of metalaxyl on microbial biomass in unplanted and planted soils under field conditions

    Directory of Open Access Journals (Sweden)

    M. Mansourzadeh

    2016-05-01

    Full Text Available Fungicides are most widely used pesticides in Iran and the world. Application of fungicides may affect the populations and activity of soil microorganisms, particularly fungi, with a consequence for soil fertility and crop growth. In the current study, the effects of different levels of metalaxyl on soil microbial biomass carbon (C and nitrogen (N, microbial biomass C/N ratio and metabolic quotient under field conditions were assessed. Two levels of metalaxyl (30 and 60 kg.ha-1 were applied in planted soils with corn and unplanted calcareous soils, using a split-plots experiment in a completely randomized design with three replications. The C and N contents in soil microbial biomass as well as metabolic quotient were measured at 30 and 90 days after the onset of the experiment. Results showed that in cultivated soils metalaxyl application at 30 kg.ha-1 increased (15-80% significantly (p≤0.01 the amounts of microbial biomass C and N at both intervals (except microbial biomass C at 90 days compared to the control soil (0 kg.ha-1, while in uncultivated soils both microbial biomass C and N reduced by almost 1-34%. Microbial biomass C/N ratios in unplanted soils decreased (15 and 53% with increasing loading rates of metalaxyl, without a clear effect in cultivated soils. On the other hand, metabolic quotient values reduced (48% at 30 and 60 kg.ha-1 metalaxyl in corn-cultivated soils when compared to untreated soils while in uncultivated soils metalaxyl rate at 30 kg.a-1 had the greatest values at 30 days, and increased with increasing the levels of metalaxyl at 90 days. In summary, application of metalaxyl can either reduce or increase soil biological indices, and the direction and changes are depended upon the application rate of metalaxyl, time elapsed since metalaxyl application and the presence or absence of plant.

  16. Comparison of metaheuristic techniques to determine optimal placement of biomass power plants

    International Nuclear Information System (INIS)

    Reche-Lopez, P.; Ruiz-Reyes, N.; Garcia Galan, S.; Jurado, F.

    2009-01-01

    This paper deals with the application and comparison of several metaheuristic techniques to optimize the placement and supply area of biomass-fueled power plants. Both, trajectory and population-based methods are applied for our goal. In particular, two well-known trajectory method, such as Simulated Annealing (SA) and Tabu Search (TS), and two commonly used population-based methods, such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) are hereby considered. In addition, a new binary PSO algorithm has been proposed, which incorporates an inertia weight factor, like the classical continuous approach. The fitness function for the metaheuristics is the profitability index, defined as the ratio between the net present value and the initial investment. In this work, forest residues are considered as biomass source, and the problem constraints are: the generation system must be located inside the supply area, and its maximum electric power is 5 MW. The comparative results obtained by all considered metaheuristics are discussed. Random walk has also been assessed for the problem we deal with.

  17. Comparison of metaheuristic techniques to determine optimal placement of biomass power plants

    Energy Technology Data Exchange (ETDEWEB)

    Reche-Lopez, P.; Ruiz-Reyes, N.; Garcia Galan, S. [Telecommunication Engineering Department, University of Jaen Polytechnic School, C/ Alfonso X el Sabio 28, 23700 Linares, Jaen (Spain); Jurado, F. [Electrical Engineering Department, University of Jaen Polytechnic School, C/ Alfonso X el Sabio 28, 23700 Linares, Jaen (Spain)

    2009-08-15

    This paper deals with the application and comparison of several metaheuristic techniques to optimize the placement and supply area of biomass-fueled power plants. Both, trajectory and population-based methods are applied for our goal. In particular, two well-known trajectory method, such as Simulated Annealing (SA) and Tabu Search (TS), and two commonly used population-based methods, such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) are hereby considered. In addition, a new binary PSO algorithm has been proposed, which incorporates an inertia weight factor, like the classical continuous approach. The fitness function for the metaheuristics is the profitability index, defined as the ratio between the net present value and the initial investment. In this work, forest residues are considered as biomass source, and the problem constraints are: the generation system must be located inside the supply area, and its maximum electric power is 5 MW. The comparative results obtained by all considered metaheuristics are discussed. Random walk has also been assessed for the problem we deal with. (author)

  18. Feasibility of Biomass Biodrying for Gasification Process

    Science.gov (United States)

    Hamidian, Arash

    An important challenge of biomass gasification is the limitation of feedstock quality especially the moisture content, which plays a significant role on the performance of gasification process. Gasification requires low moisture levels (20% and less) and several reports have emphasized on the moisture as a typical problem while gasifying biomass. Moisture affects overall reaction rates in the gasifiers as a result of temperature drop and ultimately increases tar content, decreases gas yield, changes the composition of produced gas and affects the efficiency. Therefore, it is mandatory to pre-treat the biomass before gasification and reduce the moisture content to the suitable and economic level. The well-known solutions are either natural drying (not practical for commercial plants) or conventional drying technologies (have high operating costs). Biodrying is an alternative process, which uses both convective air and heat of biological reactions as a source of energy, to reduce the moisture. In the biodrying reactor heat is generated from exothermic decomposition of organic fraction of biomass and that is why the process is called "self-heating process". Employing such technology for drying biomass at pre-treatment units of gasification process returns several economic and environmental advantages to mills. In Europe, municipal waste treatment (MSW) plants use the biodrying at commercial scale to degrade a part of the biodegradable fraction of waste to generate heat and reduce the moisture content for high quality SRF (Solid Recovered Fuel) production. In Italy, wine industry is seeking to develop biodrying for energy recovery of grape wastes after fermentation and distillation, which returns economic benefits to the industry. In Canada, the development of biodrying technology for pulp and paper industry was started at Ecole polytechnique de Montreal as an option for sludge management solution. Therefore, batch biodrying reactor was successfully developed in 2004

  19. Quantitative Assessment of Microalgae Biomass and Lipid Stability Post-Cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Napan, Katerine; Christianson, Tyler; Voie, Kristen; Quinn, Jason C., E-mail: jason.quinn@usu.edu [Department of Mechanical and Aerospace Engineering, Utah State University, Logan, UT (United States)

    2015-04-15

    Processing of microalgal biomass to biofuels and other products requires the removal of the culture from a well-controlled growth system to a containment or preprocessing step at non-ideal growth conditions, such as darkness, minimal gas exchange, and fluctuating temperatures. The conditions and the length of time between harvest and processing will impact microalgal metabolism, resulting in biomass and lipid degradation. This study experimentally investigates the impact of time and temperature on Nannochloropsis salina harvested from outdoor plate photobioreactors. The impact of three temperatures, 4, 40, or 70°C, on biomass and lipid content (as fatty acid methyl esters) of the harvested microalgae was evaluated over a 156 h time period. Results show that for N. salina, time and temperature are key factors that negatively impact biomass and lipid yields. The temperature of 70°C resulted in the highest degradation with the overall biofuel potential reduced by 30% over 156 h. Short time periods, 24 h, and low temperatures are shown to have little effect on the harvested biomass.

  20. Quantitative assessment of microalgae biomass and lipid stability post cultivation

    Directory of Open Access Journals (Sweden)

    Katerine eNapan

    2015-04-01

    Full Text Available Processing of microalgal biomass to biofuels and other products requires the removal of the culture from a well-controlled growth system to a containment or preprocessing step at non-ideal growth conditions, such as darkness, minimal gas exchange, and fluctuating temperatures. The conditions and the length of time between harvest and processing will impact microalgal metabolism resulting in biomass and lipid degradation. This study experimentally investigates the impact of time and temperature on Nannochloropsis salina harvested from outdoor plate photobioreactors. The impact of three temperatures, 4°, 40° or 70°C, on biomass and lipid content (as fatty acid methyl esters of the harvested microalgae was evaluated over a 156 hour time period. Results show that for N. salina, time and temperature are key factors that negatively impact biomass and lipid yields. The temperature of 70°C resulted in the highest degradation with the overall biofuel potential reduced by 30% over 156 hours. Short time periods, 24 hours, and low temperatures are shown to have little effect on the harvested biomass.