WorldWideScience

Sample records for plant aquaporins facilitate

  1. Plant aquaporins: roles in plant physiology.

    Science.gov (United States)

    Li, Guowei; Santoni, Véronique; Maurel, Christophe

    2014-05-01

    Aquaporins are membrane channels that facilitate the transport of water and small neutral molecules across biological membranes of most living organisms. Here, we present comprehensive insights made on plant aquaporins in recent years, pointing to their molecular and physiological specificities with respect to animal or microbial counterparts. In plants, aquaporins occur as multiple isoforms reflecting a high diversity of cellular localizations and various physiological substrates in addition to water. Of particular relevance for plants is the transport by aquaporins of dissolved gases such as carbon dioxide or metalloids such as boric or silicic acid. The mechanisms that determine the gating and subcellular localization of plant aquaporins are extensively studied. They allow aquaporin regulation in response to multiple environmental and hormonal stimuli. Thus, aquaporins play key roles in hydraulic regulation and nutrient transport in roots and leaves. They contribute to several plant growth and developmental processes such as seed germination or emergence of lateral roots. Plants with genetically altered aquaporin functions are now tested for their ability to improve plant resistance to stresses. This article is part of a Special Issue entitled Aquaporins. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. New challenges in plant aquaporin biotechnology.

    Science.gov (United States)

    Martinez-Ballesta, Maria del Carmen; Carvajal, Micaela

    2014-03-01

    Recent advances concerning genetic manipulation provide new perspectives regarding the improvement of the physiological responses in herbaceous and woody plants to abiotic stresses. The beneficial or negative effects of these manipulations on plant physiology are discussed, underlining the role of aquaporin isoforms as representative markers of water uptake and whole plant water status. Increasing water use efficiency and the promotion of plant water retention seem to be critical goals in the improvement of plant tolerance to abiotic stress. However, newly uncovered mechanisms, such as aquaporin functions and regulation, may be essential for the beneficial effects seen in plants overexpressing aquaporin genes. Under distinct stress conditions, differences in the phenotype of transgenic plants where aquaporins were manipulated need to be analyzed. In the development of nano-technologies for agricultural practices, multiple-walled carbon nanotubes promoted plant germination and cell growth. Their effects on aquaporins need further investigation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Insights into plant plasma membrane aquaporin trafficking.

    Science.gov (United States)

    Hachez, Charles; Besserer, Arnaud; Chevalier, Adrien S; Chaumont, François

    2013-06-01

    Plasma membrane intrinsic proteins (PIPs) are plant aquaporins that facilitate the diffusion of water and small uncharged solutes through the cell membrane. Deciphering the network of interacting proteins that modulate PIP trafficking to and activity in the plasma membrane is essential to improve our knowledge about PIP regulation and function. This review highlights the most recent advances related to PIP subcellular routing and dynamic redistribution, identifies some key molecular interacting proteins, and indicates exciting directions for future research in this field. A better understanding of the mechanisms by which plants optimize water movement might help in identifying new molecular players of agronomical relevance involved in the control of cellular water uptake and drought tolerance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Tonoplast aquaporins facilitate lateral root emergence

    DEFF Research Database (Denmark)

    Reinhardt, Hagen; Hachez, Charles; Bienert, Manuela Désirée

    2016-01-01

    Aquaporins (AQPs) are water channels allowing fast and passive diffusion of water across cell membranes. It was hypothesized that AQPs contribute to cell elongation processes by allowing water influx across the plasma membrane and the tonoplast to maintain adequate turgor pressure. Here, we report...... mutants showed no or minor reduction in growth of the main root. This phenotype was due to the retardation of LRP emergence. Live cell imaging revealed that tight spatiotemporal control of TIP abundance in the tonoplast of the different LRP cells is pivotal to mediating this developmental process. While...... lateral root emergence is correlated to a reduction of AtTIP1;1 and AtTIP1;2 protein levels in LRPs, expression of AtTIP2;1 is specifically needed in a restricted cell population at the base, then later at the flanks, of developing LRPs. Interestingly, the LRP emergence phenotype of the triple tip mutants...

  5. Carbon dioxide and water transport through plant aquaporins.

    Science.gov (United States)

    Groszmann, Michael; Osborn, Hannah L; Evans, John R

    2017-06-01

    Aquaporins are channel proteins that function to increase the permeability of biological membranes. In plants, aquaporins are encoded by multigene families that have undergone substantial diversification in land plants. The plasma membrane intrinsic proteins (PIPs) subfamily of aquaporins is of particular interest given their potential to improve plant water relations and photosynthesis. Flowering plants have between 7 and 28 PIP genes. Their expression varies with tissue and cell type, through development and in response to a variety of factors, contributing to the dynamic and tissue specific control of permeability. There are a growing number of PIPs shown to act as water channels, but those altering membrane permeability to CO 2 are more limited. The structural basis for selective substrate specificities has not yet been resolved, although a few key amino acid positions have been identified. Several regions important for dimerization, gating and trafficking are also known. PIP aquaporins assemble as tetramers and their properties depend on the monomeric composition. PIPs control water flux into and out of veins and stomatal guard cells and also increase membrane permeability to CO 2 in mesophyll and stomatal guard cells. The latter increases the effectiveness of Rubisco and can potentially influence transpiration efficiency. © 2016 John Wiley & Sons Ltd.

  6. Trafficking of plant plasma membrane aquaporins: multiple regulation levels and complex sorting signals.

    Science.gov (United States)

    Chevalier, Adrien S; Chaumont, François

    2015-05-01

    Aquaporins are small channel proteins which facilitate the diffusion of water and small neutral molecules across biological membranes. Compared with animals, plant genomes encode numerous aquaporins, which display a large variety of subcellular localization patterns. More specifically, plant aquaporins of the plasma membrane intrinsic protein (PIP) subfamily were first described as plasma membrane (PM)-resident proteins, but recent research has demonstrated that the trafficking and subcellular localization of these proteins are complex and highly regulated. In the past few years, PIPs emerged as new model proteins to study subcellular sorting and membrane dynamics in plant cells. At least two distinct sorting motifs (one cytosolic, the other buried in the membrane) are required to direct PIPs to the PM. Hetero-oligomerization and interaction with SNAREs (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptors) also influence the subcellular trafficking of PIPs. In addition to these constitutive processes, both the progression of PIPs through the secretory pathway and their dynamics at the PM are responsive to changing environmental conditions. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Maize plasma membrane aquaporin ZmPIP2;5, but not ZmPIP1;2, facilitates transmembrane diffusion of hydrogen peroxide.

    Science.gov (United States)

    Bienert, Gerd P; Heinen, Robert B; Berny, Marie C; Chaumont, François

    2014-01-01

    Plant aquaporins play important roles in transmembrane water transport processes, but some also facilitate the diffusion of other small uncharged solutes ranging from gases to metalloids. Recent evidence suggests that the transmembrane movement of hydrogen peroxide, an intra- and intercellular multifunctional signaling and defense compound, can be regulated by aquaporins. We addressed the question whether maize aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily facilitate hydrogen peroxide diffusion using heterologous expression in the yeast Saccharomyces cerevisiae. We showed that ZmPIP proteins belonging to the PIP1 and PIP2 groups were significantly expressed in yeast cells only after codon optimization of their cDNA. In accordance with previous localization studies in oocytes and plants, ZmPIP1;2 was mainly retained in intracellular membranes, while ZmPIP2;5 was localized to the plasma membrane. However, upon co-expression with ZmPIP2;5, ZmPIP1;2 was re-localized to the plasma membrane. Using a non-functional plasma membrane-localized ZmPIP2;5 mutant to deliver ZmPIP1;2 to the plasma membrane, we demonstrated that, in contrast to wild type ZmPIP2;5, ZmPIP1;2 was not permeable to hydrogen peroxide. Our study further highlighted the fact that, when using the yeast system, which is widely employed to study substrates for plant aquaporins and other transporters, although positive transport assay results allow direct conclusions to be drawn regarding solute permeability, negative results require additional control experiments to show that the protein is expressed and localized correctly before concluding on the lack of transport activity. © 2013.

  8. Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure.

    Science.gov (United States)

    Rodrigues, Olivier; Reshetnyak, Ganna; Grondin, Alexandre; Saijo, Yusuke; Leonhardt, Nathalie; Maurel, Christophe; Verdoucq, Lionel

    2017-08-22

    Stomatal movements are crucial for the control of plant water status and protection against pathogens. Assays on epidermal peels revealed that, similar to abscisic acid (ABA), pathogen-associated molecular pattern (PAMP) flg22 requires the At PIP2;1 aquaporin to induce stomatal closure. Flg22 also induced an increase in osmotic water permeability ( P f ) of guard cell protoplasts through activation of At PIP2;1. The use of HyPer, a genetic probe for intracellular hydrogen peroxide (H 2 O 2 ), revealed that both ABA and flg22 triggered an accumulation of H 2 O 2 in wild-type but not pip2;1 guard cells. Pretreatment of guard cells with flg22 or ABA facilitated the influx of exogenous H 2 O 2 Brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1) and open stomata 1 (OST1)/Snf1-related protein kinase 2.6 (SnRK2.6) were both necessary to flg22-induced P f and both phosphorylated At PIP2;1 on Ser121 in vitro. Accumulation of H 2 O 2 and stomatal closure as induced by flg22 was restored in pip2;1 guard cells by a phosphomimetic form (Ser121Asp) but not by a phosphodeficient form (Ser121Ala) of At PIP2;1. We propose a mechanism whereby phosphorylation of At PIP2;1 Ser121 by BAK1 and/or OST1 is triggered in response to flg22 to activate its water and H 2 O 2 transport activities. This work establishes a signaling role of plasma membrane aquaporins in guard cells and potentially in other cellular context involving H 2 O 2 signaling.

  9. Relationship between Hexokinase and the Aquaporin PIP1 in the Regulation of Photosynthesis and Plant Growth

    Science.gov (United States)

    Kelly, Gilor; Sade, Nir; Attia, Ziv; Secchi, Francesca; Zwieniecki, Maciej; Holbrook, N. Michele; Levi, Asher; Alchanatis, Victor; Moshelion, Menachem; Granot, David

    2014-01-01

    Increased expression of the aquaporin NtAQP1, which is known to function as a plasmalemma channel for CO2 and water, increases the rate of both photosynthesis and transpiration. In contrast, increased expression of Arabidopsis hexokinase1 (AtHXK1), a dual-function enzyme that mediates sugar sensing, decreases the expression of photosynthetic genes and the rate of transpiration and inhibits growth. Here, we show that AtHXK1 also decreases root and stem hydraulic conductivity and leaf mesophyll CO2 conductance (g m). Due to their opposite effects on plant development and physiology, we examined the relationship between NtAQP1 and AtHXK1 at the whole-plant level using transgenic tomato plants expressing both genes simultaneously. NtAQP1 significantly improved growth and increased the transpiration rates of AtHXK1-expressing plants. Reciprocal grafting experiments indicated that this complementation occurs when both genes are expressed simultaneously in the shoot. Yet, NtAQP1 had only a marginal effect on the hydraulic conductivity of the double-transgenic plants, suggesting that the complementary effect of NtAQP1 is unrelated to shoot water transport. Rather, NtAQP1 significantly increased leaf mesophyll CO2 conductance and enhanced the rate of photosynthesis, suggesting that NtAQP1 facilitated the growth of the double-transgenic plants by enhancing mesophyll conductance of CO2. PMID:24498392

  10. Relationship between hexokinase and the aquaporin PIP1 in the regulation of photosynthesis and plant growth.

    Directory of Open Access Journals (Sweden)

    Gilor Kelly

    Full Text Available Increased expression of the aquaporin NtAQP1, which is known to function as a plasmalemma channel for CO₂ and water, increases the rate of both photosynthesis and transpiration. In contrast, increased expression of Arabidopsis hexokinase1 (AtHXK1, a dual-function enzyme that mediates sugar sensing, decreases the expression of photosynthetic genes and the rate of transpiration and inhibits growth. Here, we show that AtHXK1 also decreases root and stem hydraulic conductivity and leaf mesophyll CO₂ conductance (g(m. Due to their opposite effects on plant development and physiology, we examined the relationship between NtAQP1 and AtHXK1 at the whole-plant level using transgenic tomato plants expressing both genes simultaneously. NtAQP1 significantly improved growth and increased the transpiration rates of AtHXK1-expressing plants. Reciprocal grafting experiments indicated that this complementation occurs when both genes are expressed simultaneously in the shoot. Yet, NtAQP1 had only a marginal effect on the hydraulic conductivity of the double-transgenic plants, suggesting that the complementary effect of NtAQP1 is unrelated to shoot water transport. Rather, NtAQP1 significantly increased leaf mesophyll CO₂ conductance and enhanced the rate of photosynthesis, suggesting that NtAQP1 facilitated the growth of the double-transgenic plants by enhancing mesophyll conductance of CO₂.

  11. Plant plasma membrane aquaporins in natural vesicles as potential stabilizers and carriers of glucosinolates.

    Science.gov (United States)

    Martínez-Ballesta, Maria Del Carmen; Pérez-Sánchez, Horacio; Moreno, Diego A; Carvajal, Micaela

    2016-07-01

    Their biodegradable nature and ability to target cells make biological vesicles potential nanocarriers for bioactives delivery. In this work, the interaction between proteoliposomes enriched in aquaporins derived from broccoli plants and the glucosinolates was evaluated. The vesicles were stored at different temperatures and their integrity was studied. Determination of glucosinolates, showed that indolic glucosinolates were more sensitive to degradation in aqueous solution than aliphatic glucosinolates. Glucoraphanin was stabilized by leaf and root proteoliposomes at 25°C through their interaction with aquaporins. An extensive hydrogen bond network, including different aquaporin residues, and hydrophobic interactions, as a consequence of the interaction between the linear alkane chain of glucoraphanin and Glu31 and Leu34 protein residues, were established as the main stabilizing elements. Combined our results showed that plasma membrane vesicles from leaf and root tissues of broccoli plants may be considered as suitable carriers for glucosinolate which stabilization can be potentially attributed to aquaporins. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Virus-induced plasma membrane aquaporin PsPIP2;1 silencing inhibits plant water transport of Pisum sativum.

    Science.gov (United States)

    Song, Juanjuan; Ye, Guoliang; Qian, Zhengjiang; Ye, Qing

    2016-12-01

    Aquaporins (AQPs) are known to facilitate water transport across cell membranes, but the role of a single AQP in regulating plant water transport, particularly in plants other than Arabidopsis remains largely unexplored. In the present study, a virus-induced gene silencing (VIGS) technique was employed to suppress the expression of a specific plasma membrane aquaporin PsPIP2;1 of Pea plants (Pisum sativum), and subsequent effects of the gene suppression on root hydraulic conductivity (Lp r ), leaf hydraulic conductivity (K leaf ), root cell hydraulic conductivity (Lp rc ), and leaf cell hydraulic conductivity (Lp lc ) were investigated, using hydroponically grown Pea plants. Compared with control plants, VIGS-PsPIP2;1 plants displayed a significant suppression of PsPIP2;1 in both roots and leaves, while the expression of other four PIP isoforms (PsPIP1;1, PsPIP1;2, PsPIP2;2, and PsPIP2;3) that were simultaneously monitored were not altered. As a consequence, significant declines in water transport of VIGS-PsPIP2;1 plants were observed at both organ and cell levels, i.e., as compared to control plants, Lp r and K leaf were reduced by 29 %, and Lp rc and Lp lc were reduced by 20 and 29 %, respectively. Our results demonstrate that PsPIP2;1 alone contributes substantially to root and leaf water transport in Pea plants, and highlight VIGS a useful tool for investigating the role of a single AQP in regulating plant water transport.

  13. Silicon-mediated Improvement in Plant Salinity Tolerance: The Role of Aquaporins

    Directory of Open Access Journals (Sweden)

    Juan J. Rios

    2017-06-01

    Full Text Available Silicon (Si is an abundant and differentially distributed element in soils that is believed to have important biological functions. However, the benefits of Si and its essentiality in plants are controversial due to differences among species in their ability to take up this element. Despite this, there is a consensus that the application of Si improves the water status of plants under abiotic stress conditions. Hence, plants treated with Si are able to maintain a high stomatal conductance and transpiration rate under salt stress, suggesting that a reduction in Na+ uptake occurs due to deposition of Si in the root. In addition, root hydraulic conductivity increases when Si is applied. As a result, a Si-mediated upregulation of aquaporin (PIP gene expression is observed in relation to increased root hydraulic conductivity and water uptake. Aquaporins of the subclass nodulin 26-like intrinsic proteins are further involved in allowing Si entry into the cell. Therefore, on the basis of available published results and recent developments, we propose a model to explain how Si absorption alleviates stress in plants grown under saline conditions through the conjugated action of different aquaporins.

  14. Genome-wide identification and expression analysis of aquaporins in tomato.

    Science.gov (United States)

    Reuscher, Stefan; Akiyama, Masahito; Mori, Chiharu; Aoki, Koh; Shibata, Daisuke; Shiratake, Katsuhiro

    2013-01-01

    The family of aquaporins, also called water channels or major intrinsic proteins, is characterized by six transmembrane domains that together facilitate the transport of water and a variety of low molecular weight solutes. They are found in all domains of life, but show their highest diversity in plants. Numerous studies identified aquaporins as important targets for improving plant performance under drought stress. The phylogeny of aquaporins is well established based on model species like Arabidopsis thaliana, which can be used as a template to investigate aquaporins in other species. In this study we comprehensively identified aquaporin encoding genes in tomato (Solanum lycopersicum), which is an important vegetable crop and also serves as a model for fleshy fruit development. We found 47 aquaporin genes in the tomato genome and analyzed their structural features. Based on a phylogenetic analysis of the deduced amino acid sequences the aquaporin genes were assigned to five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs) and their substrate specificity was assessed on the basis of key amino acid residues. As ESTs were available for 32 genes, expression of these genes was analyzed in 13 different tissues and developmental stages of tomato. We detected tissue-specific and development-specific expression of tomato aquaporin genes, which is a first step towards revealing the contribution of aquaporins to water and solute transport in leaves and during fruit development.

  15. Genome-wide identification and expression analysis of aquaporins in tomato.

    Directory of Open Access Journals (Sweden)

    Stefan Reuscher

    Full Text Available The family of aquaporins, also called water channels or major intrinsic proteins, is characterized by six transmembrane domains that together facilitate the transport of water and a variety of low molecular weight solutes. They are found in all domains of life, but show their highest diversity in plants. Numerous studies identified aquaporins as important targets for improving plant performance under drought stress. The phylogeny of aquaporins is well established based on model species like Arabidopsis thaliana, which can be used as a template to investigate aquaporins in other species. In this study we comprehensively identified aquaporin encoding genes in tomato (Solanum lycopersicum, which is an important vegetable crop and also serves as a model for fleshy fruit development. We found 47 aquaporin genes in the tomato genome and analyzed their structural features. Based on a phylogenetic analysis of the deduced amino acid sequences the aquaporin genes were assigned to five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs and their substrate specificity was assessed on the basis of key amino acid residues. As ESTs were available for 32 genes, expression of these genes was analyzed in 13 different tissues and developmental stages of tomato. We detected tissue-specific and development-specific expression of tomato aquaporin genes, which is a first step towards revealing the contribution of aquaporins to water and solute transport in leaves and during fruit development.

  16. Aquaporin Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Jennifer Virginia Roche

    2017-10-01

    Full Text Available Aquaporins are tetrameric membrane-bound channels that facilitate transport of water and other small solutes across cell membranes. In eukaryotes, they are frequently regulated by gating or trafficking, allowing for the cell to control membrane permeability in a specific manner. Protein–protein interactions play crucial roles in both regulatory processes and also mediate alternative functions such as cell adhesion. In this review, we summarize recent knowledge about aquaporin protein–protein interactions; dividing the interactions into three types: (1 interactions between aquaporin tetramers; (2 interactions between aquaporin monomers within a tetramer (hetero-tetramerization; and (3 transient interactions with regulatory proteins. We particularly focus on the structural aspects of the interactions, discussing the small differences within a conserved overall fold that allow for aquaporins to be differentially regulated in an organism-, tissue- and trigger-specific manner. A deep knowledge about these differences is needed to fully understand aquaporin function and regulation in many physiological processes, and may enable design of compounds targeting specific aquaporins for treatment of human disease.

  17. Plant aquaporins: new perspectives on water and nutrient uptake in saline environment.

    Science.gov (United States)

    del Martínez-Ballesta, M C; Silva, C; López-Berenguer, C; Cabañero, F J; Carvajal, M

    2006-09-01

    The mechanisms of salt stress and tolerance have been targets for genetic engineering, focusing on ion transport and compartmentation, synthesis of compatible solutes (osmolytes and osmoprotectants) and oxidative protection. In this review, we consider the integrated response to salinity with respect to water uptake, involving aquaporin functionality. Therefore, we have concentrated on how salinity can be alleviated, in part, if a perfect knowledge of water uptake and transport for each particular crop and set of conditions is available.

  18. Genome-wide identification, characterization, and expression profile of aquaporin gene family in flax (Linum usitatissimum).

    Science.gov (United States)

    Shivaraj, S M; Deshmukh, Rupesh K; Rai, Rhitu; Bélanger, Richard; Agrawal, Pawan K; Dash, Prasanta K

    2017-04-27

    Membrane intrinsic proteins (MIPs) form transmembrane channels and facilitate transport of myriad substrates across the cell membrane in many organisms. Majority of plant MIPs have water transporting ability and are commonly referred as aquaporins (AQPs). In the present study, we identified aquaporin coding genes in flax by genome-wide analysis, their structure, function and expression pattern by pan-genome exploration. Cross-genera phylogenetic analysis with known aquaporins from rice, arabidopsis, and poplar showed five subgroups of flax aquaporins representing 16 plasma membrane intrinsic proteins (PIPs), 17 tonoplast intrinsic proteins (TIPs), 13 NOD26-like intrinsic proteins (NIPs), 2 small basic intrinsic proteins (SIPs), and 3 uncharacterized intrinsic proteins (XIPs). Amongst aquaporins, PIPs contained hydrophilic aromatic arginine (ar/R) selective filter but TIP, NIP, SIP and XIP subfamilies mostly contained hydrophobic ar/R selective filter. Analysis of RNA-seq and microarray data revealed high expression of PIPs in multiple tissues, low expression of NIPs, and seed specific expression of TIP3 in flax. Exploration of aquaporin homologs in three closely related Linum species bienne, grandiflorum and leonii revealed presence of 49, 39 and 19 AQPs, respectively. The genome-wide identification of aquaporins, first in flax, provides insight to elucidate their physiological and developmental roles in flax.

  19. Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants.

    Science.gov (United States)

    Peng, Yanhui; Lin, Wuling; Cai, Weiming; Arora, Rajeev

    2007-08-01

    Water movement across cellular membranes is regulated largely by a family of water channel proteins called aquaporins (AQPs). Since several abiotic stresses such as, drought, salinity and freezing, manifest themselves via altering water status of plant cells and are linked by the fact that they all result in cellular dehydration, we overexpressed an AQP (tonoplast intrinsic protein) from Panax ginseng, PgTIP1, in transgenic Arabidopsis thaliana plants to test its role in plant's response to drought, salinity and cold acclimation (induced freezing tolerance). Under favorable conditions, PgTIP1 overexpression significantly increased plant growth as determined by the biomass production, and leaf and root morphology. PgTIP1 overexpression had beneficial effect on salt-stress tolerance as indicated by superior growth status and seed germination of transgenic plants under salt stress; shoots of salt-stressed transgenic plants also accumulated greater amounts of Na(+) compared to wild-type plants. Whereas PgTIP1 overexpression diminished the water-deficit tolerance of plants grown in shallow (10 cm deep) pots, the transgenic plants were significantly more tolerant to water stress when grown in 45 cm deep pots. The rationale for this contrasting response, apparently, comes from the differences in the root morphology and leaf water channel activity (speed of dehydration/rehydration) between the transgenic and wild-type plants. Plants overexpressed with PgTIP1 exhibited lower (relative to wild-type control) cold acclimation ability; however, this response was independent of cold-regulated gene expression. Our results demonstrate a significant function of PgTIP1 in growth and development of plant cells, and suggest that the water movement across tonoplast (via AQP) represents a rate-limiting factor for plant vigor under favorable growth conditions and also significantly affect responses of plant to drought, salt and cold stresses.

  20. Aquaporin-4 facilitator TGN-073 promotes interstitial fluid circulation within the blood-brain barrier: [17O]H2O JJVCPE MRI study.

    Science.gov (United States)

    Huber, Vincent J; Igarashi, Hironaka; Ueki, Satoshi; Kwee, Ingrid L; Nakada, Tsutomu

    2018-06-13

    The blood-brain barrier (BBB), which imposes significant water permeability restriction, effectively isolates the brain from the systemic circulation. Seemingly paradoxical, the abundance of aquaporin-4 (AQP-4) on the inside of the BBB strongly indicates the presence of unique water dynamics essential for brain function. On the basis of the highly specific localization of AQP-4, namely, astrocyte end feet at the glia limitans externa and pericapillary Virchow-Robin space, we hypothesized that the AQP-4 system serves as an interstitial fluid circulator, moving interstitial fluid from the glia limitans externa to pericapillary Virchow-Robin space to ensure proper glymphatic flow draining into the cerebrospinal fluid. The hypothesis was tested directly using the AQP-4 facilitator TGN-073 developed in our laboratory, and [O]H2O JJ vicinal coupling proton exchange MRI, a method capable of tracing water molecules delivered into the blood circulation. The results unambiguously showed that facilitation of AQP-4 by TGN-073 increased turnover of interstitial fluid through the system, resulting in a significant reduction in [O]H2O contents of cortex with normal flux into the cerebrospinal fluid. The study further suggested that in addition to providing the necessary water for proper glymphatic flow, the AQP-4 system produces a water gradient within the interstitial space promoting circulation of interstitial fluid within the BBB.

  1. The photosynthetic response of tobacco plants overexpressing ice plant aquaporin McMIPB to a soil water deficit and high vapor pressure deficit.

    Science.gov (United States)

    Kawase, Miki; Hanba, Yuko T; Katsuhara, Maki

    2013-07-01

    We investigated the photosynthetic capacity and plant growth of tobacco plants overexpressing ice plant (Mesembryanthemum crystallinum L.) aquaporin McMIPB under (1) a well-watered growth condition, (2) a well-watered and temporal higher vapor pressure deficit (VPD) condition, and (3) a soil water deficit growth condition to investigate the effect of McMIPB on photosynthetic responses under moderate soil and atmospheric humidity and water deficit conditions. Transgenic plants showed a significantly higher photosynthesis rate (by 48 %), higher mesophyll conductance (by 52 %), and enhanced growth under the well-watered growth condition than those of control plants. Decreases in the photosynthesis rate and stomatal conductance from ambient to higher VPD were slightly higher in transgenic plants than those in control plants. When plants were grown under the soil water deficit condition, decreases in the photosynthesis rate and stomatal conductance were less significant in transgenic plants than those in control plants. McMIPB is likely to work as a CO2 transporter, as well as control the regulation of stomata to water deficits.

  2. Aquaporins in the Eye

    DEFF Research Database (Denmark)

    Tran, Thuy Linh; Hamann, Steffen; Heegaard, Steffen

    2017-01-01

    The major part of the eye consists of water . Continuous movement of water and ions between the ocular compartments and to the systemic circulation is pivotal for many physiological functions in the eye. The movement of water facilitates removal of the many metabolic products of corneal-, ciliary...... pressure. In the retina, water is transported into the vitreous body and across the retinal pigment epithelium to regulate the extracellular environment and the hydration of the retina. Aquaporins (AQPs ) take part in the water transport throughout the eye....

  3. Tonoplast- and plasma membrane-localized aquaporin-family transporters in blue hydrangea sepals of aluminum hyperaccumulating plant.

    Directory of Open Access Journals (Sweden)

    Takashi Negishi

    Full Text Available Hydrangea (Hydrangea macrophylla is tolerant of acidic soils in which toxicity generally arises from the presence of the soluble aluminum (Al ion. When hydrangea is cultivated in acidic soil, its resulting blue sepal color is caused by the Al complex formation of anthocyanin. The concentration of vacuolar Al in blue sepal cells can reach levels in excess of approximately 15 mM, suggesting the existence of an Al-transport and/or storage system. However, until now, no Al transporter has been identified in Al hyperaccumulating plants, animals or microorganisms. To identify the transporter being responsible for Al hyperaccumulation, we prepared a cDNA library from blue sepals according to the sepal maturation stage, and then selected candidate genes using a microarray analysis and an in silico study. Here, we identified the vacuolar and plasma membrane-localized Al transporters genes vacuolar Al transporter (VALT and plasma membrane Al transporter 1 (PALT1, respectively, which are both members of the aquaporin family. The localization of each protein was confirmed by the transient co-expression of the genes. Reverse transcription-PCR and immunoblotting results indicated that VALT and PALT1 are highly expressed in sepal tissue. The overexpression of VALT and PALT1 in Arabidopsis thaliana conferred Al-tolerance and Al-sensitivity, respectively.

  4. Aquaporin Expression and Water Transport Pathways inside Leaves Are Affected by Nitrogen Supply through Transpiration in Rice Plants

    Directory of Open Access Journals (Sweden)

    Lei Ding

    2018-01-01

    Full Text Available The photosynthetic rate increases under high-N supply, resulting in a large CO2 transport conductance in mesophyll cells. It is less known that water movement is affected by nitrogen supply in leaves. This study investigated whether the expression of aquaporin and water transport were affected by low-N (0.7 mM and high-N (7 mM concentrations in the hydroponic culture of four rice varieties: (1 Shanyou 63 (SY63, a hybrid variant of the indica species; (2 Yangdao 6 (YD6, a variant of indica species; (3 Zhendao 11 (ZD11, a hybrid variant of japonica species; and (4 Jiuyou 418 (JY418, another hybrid of the japonica species. Both the photosynthetic and transpiration rate were increased by the high-N supply in the four varieties. The expressions of aquaporins, plasma membrane intrinsic proteins (PIPs, and tonoplast membrane intrinsic protein (TIP were higher in high-N than low-N leaves, except in SY63. Leaf hydraulic conductance (Kleaf was lower in high-N than low-N leaves in SY63, while Kleaf increased under high-N supply in the YD6 variant. Negative correlations were observed between the expression of aquaporin and the transpiration rate in different varieties. Moreover, there was a significant negative correlation between transpiration rate and intercellular air space. In conclusion, the change in expression of aquaporins could affect Kleaf and transpiration. A feedback effect of transpiration would regulate aquaporin expression. The present results imply a coordination of gas exchange with leaf hydraulic conductance.

  5. Aquaporin-3 in Cancer.

    Science.gov (United States)

    Marlar, Saw; Jensen, Helene H; Login, Frédéric H; Nejsum, Lene N

    2017-10-07

    Increasing evidence suggests that the water/glycerol channel aquaporin-3 (AQP3) plays a pivotal role in cancer metastasis. AQP3 knockout mice were resistant to skin tumor formation and overexpression correlated with metastasis and poor prognosis in patients with breast or gastric cancer. In cultured cancer cells, increased AQP3 expression stimulated several intracellular signaling pathways and resulted in increased cell proliferation, migration, and invasion as well as aggravation of epithelial-to-mesenchymal transition. Besides AQP facilitated water transport at the leading edge of migrating cells, AQP3 signaling mechanisms are beginning to be unraveled. Here, we give a thorough review of current knowledge regarding AQP3 expression in cancer and how AQP3 contributes to cancer progression via signaling that modulates cellular mechanisms. This review article will expand our understanding of the known pathophysiological findings regarding AQP3 in cancer.

  6. Unconventional gas development facilitates plant invasions.

    Science.gov (United States)

    Barlow, Kathryn M; Mortensen, David A; Drohan, Patrick J; Averill, Kristine M

    2017-11-01

    Vegetation removal and soil disturbance from natural resource development, combined with invasive plant propagule pressure, can increase vulnerability to plant invasions. Unconventional oil and gas development produces surface disturbance by way of well pad, road, and pipeline construction, and increased traffic. Little is known about the resulting impacts on plant community assembly, including the spread of invasive plants. Our work was conducted in Pennsylvania forests that overlay the Marcellus and Utica shale formations to determine if invasive plants have spread to edge habitat created by unconventional gas development and to investigate factors associated with their presence. A piecewise structural equation model was used to determine the direct and indirect factors associated with invasive plant establishment on well pads. The model included the following measured or calculated variables: current propagule pressure on local access roads, the spatial extent of the pre-development road network (potential source of invasive propagules), the number of wells per pad (indicator of traffic density), and pad age. Sixty-one percent of the 127 well pads surveyed had at least one invasive plant species present. Invasive plant presence on well pads was positively correlated with local propagule pressure on access roads and indirectly with road density pre-development, the number of wells, and age of the well pad. The vast reserves of unconventional oil and gas are in the early stages of development in the US. Continued development of this underground resource must be paired with careful monitoring and management of surface ecological impacts, including the spread of invasive plants. Prioritizing invasive plant monitoring in unconventional oil and gas development areas with existing roads and multi-well pads could improve early detection and control of invasive plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Differential effects of Pseudomonas mendocina and Glomus intraradices on lettuce plants physiological response and aquaporin PIP2 gene expression under elevated atmospheric CO2 and drought.

    Science.gov (United States)

    Alguacil, Maria Del Mar; Kohler, Josef; Caravaca, Fuensanta; Roldán, Antonio

    2009-11-01

    Arbuscular mycorrhizal (AM) symbiosis and plant-growth-promoting rhizobacterium (PGPR) can alleviate the effects of water stress in plants, but it is unknown whether these benefits can be maintained at elevated CO2. Therefore, we carried out a study where seedlings of Lactuca sativa were inoculated with the AM fungus (AMF) Glomus intraradices N.C. Schenk & G.S. Sm. or the PGPR Pseudomonas mendocina Palleroni and subjected to two levels of watering and two levels of atmospheric CO2 to ascertain their effects on plant physiological parameters and gene expression of one PIP aquaporin in roots. The inoculation with PGPR produced the greatest growth in lettuce plants under all assayed treatments as well as the highest foliar potassium concentration and leaf relative water content under elevated [CO2] and drought. However, under such conditions, the PIP2 gene expression remained almost unchanged. G. intraradices increased significantly the AMF colonization, foliar phosphorus concentration and leaf relative water content in plants grown under drought and elevated [CO2]. Under drought and elevated [CO2], the plants inoculated with G. intraradices showed enhanced expression of the PIP2 gene as compared to P. mendocina or control plants. Our results suggest that both microbial inoculation treatments could help to alleviate drought at elevated [CO2]. However, the PIP2 gene expression was increased only by the AMF but not by the PGPR under these conditions.

  8. Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield.

    Science.gov (United States)

    Moshelion, Menachem; Halperin, Ofer; Wallach, Rony; Oren, Ram; Way, Danielle A

    2015-09-01

    The global shortage of fresh water is one of our most severe agricultural problems, leading to dry and saline lands that reduce plant growth and crop yield. Here we review recent work highlighting the molecular mechanisms allowing some plant species and genotypes to maintain productivity under water stress conditions, and suggest molecular modifications to equip plants for greater production in water-limited environments. Aquaporins (AQPs) are thought to be the main transporters of water, small and uncharged solutes, and CO2 through plant cell membranes, thus linking leaf CO2 uptake from the intercellular airspaces to the chloroplast with water loss pathways. AQPs appear to play a role in regulating dynamic changes of root, stem and leaf hydraulic conductivity, especially in response to environmental changes, opening the door to using AQP expression to regulate plant water-use efficiency. We highlight the role of vascular AQPs in regulating leaf hydraulic conductivity and raise questions regarding their role (as well as tonoplast AQPs) in determining the plant isohydric threshold, growth rate, fruit yield production and harvest index. The tissue- or cell-specific expression of AQPs is discussed as a tool to increase yield relative to control plants under both normal and water-stressed conditions. © 2014 John Wiley & Sons Ltd.

  9. Constitutive and stress-inducible overexpression of a native aquaporin gene (MusaPIP2;6) in transgenic banana plants signals its pivotal role in salt tolerance.

    Science.gov (United States)

    Sreedharan, Shareena; Shekhawat, Upendra K Singh; Ganapathi, Thumballi R

    2015-05-01

    High soil salinity constitutes a major abiotic stress and an important limiting factor in cultivation of crop plants worldwide. Here, we report the identification and characterization of a aquaporin gene, MusaPIP2;6 which is involved in salt stress signaling in banana. MusaPIP2;6 was firstly identified based on comparative analysis of stressed and non-stressed banana tissue derived EST data sets and later overexpression in transgenic banana plants was performed to study its tangible functions in banana plants. The overexpression of MusaPIP2;6 in transgenic banana plants using constitutive or inducible promoter led to higher salt tolerance as compared to equivalent untransformed control plants. Cellular localization assay performed using transiently transformed onion peel cells indicated that MusaPIP2;6 protein tagged with green fluorescent protein was translocated to the plasma membrane. MusaPIP2;6-overexpressing banana plants displayed better photosynthetic efficiency and lower membrane damage under salt stress conditions. Our results suggest that MusaPIP2;6 is involved in salt stress signaling and tolerance in banana.

  10. Abscisic Acid Regulation of Root Hydraulic Conductivity and Aquaporin Gene Expression Is Crucial to the Plant Shoot Growth Enhancement Caused by Rhizosphere Humic Acids.

    Science.gov (United States)

    Olaetxea, Maite; Mora, Verónica; Bacaicoa, Eva; Garnica, María; Fuentes, Marta; Casanova, Esther; Zamarreño, Angel M; Iriarte, Juan C; Etayo, David; Ederra, Iñigo; Gonzalo, Ramón; Baigorri, Roberto; García-Mina, Jose M

    2015-12-01

    The physiological and metabolic mechanisms behind the humic acid-mediated plant growth enhancement are discussed in detail. Experiments using cucumber (Cucumis sativus) plants show that the shoot growth enhancement caused by a structurally well-characterized humic acid with sedimentary origin is functionally associated with significant increases in abscisic acid (ABA) root concentration and root hydraulic conductivity. Complementary experiments involving a blocking agent of cell wall pores and water root transport (polyethylenglycol) show that increases in root hydraulic conductivity are essential in the shoot growth-promoting action of the model humic acid. Further experiments involving an inhibitor of ABA biosynthesis in root and shoot (fluridone) show that the humic acid-mediated enhancement of both root hydraulic conductivity and shoot growth depended on ABA signaling pathways. These experiments also show that a significant increase in the gene expression of the main root plasma membrane aquaporins is associated with the increase of root hydraulic conductivity caused by the model humic acid. Finally, experimental data suggest that all of these actions of model humic acid on root functionality, which are linked to its beneficial action on plant shoot growth, are likely related to the conformational structure of humic acid in solution and its interaction with the cell wall at the root surface. © 2015 American Society of Plant Biologists. All Rights Reserved.

  11. Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1;2 display high tolerance levels to different abiotic stresses.

    Science.gov (United States)

    Sreedharan, Shareena; Shekhawat, Upendra K S; Ganapathi, Thumballi R

    2013-10-01

    Water transport across cellular membranes is regulated by a family of water channel proteins known as aquaporins (AQPs). As most abiotic stresses like suboptimal temperatures, drought or salinity result in cellular dehydration, it is imperative to study the cause-effect relationship between AQPs and the cellular consequences of abiotic stress stimuli. Although plant cells have a high isoform diversity of AQPs, the individual and integrated roles of individual AQPs in optimal and suboptimal physiological conditions remain unclear. Herein, we have identified a plasma membrane intrinsic protein gene (MusaPIP1;2) from banana and characterized it by overexpression in transgenic banana plants. Cellular localization assay performed using MusaPIP1;2::GFP fusion protein indicated that MusaPIP1;2 translocated to plasma membrane in transformed banana cells. Transgenic banana plants overexpressing MusaPIP1;2 constitutively displayed better abiotic stress survival characteristics. The transgenic lines had lower malondialdehyde levels, elevated proline and relative water content and higher photosynthetic efficiency as compared to equivalent controls under different abiotic stress conditions. Greenhouse-maintained hardened transgenic plants showed faster recovery towards normal growth and development after cessation of abiotic stress stimuli, thereby underlining the importance of these plants in actual environmental conditions wherein the stress stimuli is often transient but severe. Further, transgenic plants where the overexpression of MusaPIP1;2 was made conditional by tagging it with a stress-inducible native dehydrin promoter also showed similar stress tolerance characteristics in in vitro and in vivo assays. Plants developed in this study could potentially enable banana cultivation in areas where adverse environmental conditions hitherto preclude commercial banana cultivation. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons

  12. Dual regulation of root hydraulic conductivity and plasma membrane aquaporins by plant nitrate accumulation and high-affinity nitrate transporter NRT2.1.

    Science.gov (United States)

    Li, Guowei; Tillard, Pascal; Gojon, Alain; Maurel, Christophe

    2016-04-01

    The water status and mineral nutrition of plants critically determine their growth and development. Nitrate (NO3(-)), the primary nitrogen source of higher plants, is known to impact the water transport capacity of roots (root hydraulic conductivity, Lpr). To explore the effects and mode of action of NO3(-) on Lpr, we used an extended set of NO3(-) transport (nrt1.1, nrt1.2, nrt1.5 and nrt2.1), signaling (nrt1.1 and nrt2.1) and metabolism (nia) mutants in Arabidopsis, grown under various NO3(-) conditions. First, a strong positive relationship between Lpr and NO3(-) accumulation, in shoots rather than in roots, was revealed. Secondly, a specific 30% reduction of Lpr in nrt2.1 plants unraveled a major role for the high-affinity NO3(-) transporter NRT2.1 in increasing Lpr These results indicate that NO3(-)signaling rather than nitrogen assimilation products governs Lpr in Arabidopsis. Quantitative real-time reverse transcription-PCR and enzyme-linked immunosorbent assays (ELISAs) were used to investigate the effects of NO3(-) availability on plasma membrane aquaporin (plasma membrane intrinsic protein; PIP) expression. Whereas PIP regulation mostly occurs at the post-translational level in wild-type plants, a regulation of PIPs at both the transcriptional and translational levels was uncovered in nrt2.1 plants. In conclusion, this work reveals that control of Arabidopsis Lpr and PIP functions by NO3(-) involves novel shoot to root signaling and NRT2.1-dependent functions. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Aquaporins in Digestive System.

    Science.gov (United States)

    Zhu, Shuai; Ran, Jianhua; Yang, Baoxue; Mei, Zhechuan

    2017-01-01

    In this chapter, we mainly discuss the expression and function of aquaporins (AQPs ) expressed in digestive system . AQPs in gastrointestinal tract include four members of aquaporin subfamily: AQP1, AQP4, AQP5 and AQP8, and a member of aquaglyceroporin subfamily: AQP3. In the digestive glands, especially the liver, we discuss three members of aquaporin subfamily: AQP1, AQP5 and AQP8, a member of aquaglyceroporin subfamily: AQP9. AQP3 is involved in the diarrhea and inflammatory bowel disease; AQP5 is relevant to gastric carcinoma cell proliferation and migration; AQP9 plays considerable role in glycerol metabolism , urea transport and hepatocellular carcinoma. Further investigation is necessary for specific locations and functions of AQPs in digestive system.

  14. The shift from plant-plant facilitation to competition under severe water deficit is spatially explicit.

    Science.gov (United States)

    O'Brien, Michael J; Pugnaire, Francisco I; Armas, Cristina; Rodríguez-Echeverría, Susana; Schöb, Christian

    2017-04-01

    The stress-gradient hypothesis predicts a higher frequency of facilitative interactions as resource limitation increases. Under severe resource limitation, it has been suggested that facilitation may revert to competition, and identifying the presence as well as determining the magnitude of this shift is important for predicting the effect of climate change on biodiversity and plant community dynamics. In this study, we perform a meta-analysis to compare temporal differences of species diversity and productivity under a nurse plant ( Retama sphaerocarpa ) with varying annual rainfall quantity to test the effect of water limitation on facilitation. Furthermore, we assess spatial differences in the herbaceous community under nurse plants in situ during a year with below-average rainfall. We found evidence that severe rainfall deficit reduced species diversity and plant productivity under nurse plants relative to open areas. Our results indicate that the switch from facilitation to competition in response to rainfall quantity is nonlinear. The magnitude of this switch depended on the aspect around the nurse plant. Hotter south aspects under nurse plants resulted in negative effects on beneficiary species, while the north aspect still showed facilitation. Combined, these results emphasize the importance of spatial heterogeneity under nurse plants for mediating species loss under reduced precipitation, as predicted by future climate change scenarios. However, the decreased water availability expected under climate change will likely reduce overall facilitation and limit the role of nurse plants as refugia, amplifying biodiversity loss.

  15. In vitro physiological and pathophysiological models: dynamic expression of aquaporins.

    OpenAIRE

    Avola, Rosanna

    2017-01-01

    Water is the main component of biological fluids and a prerequisite of all organisms living. In 1987, Agre isolated a new integral membrane protein acting as a channel that mediates the water flux and uncharged solutes across biological membranes. This protein was called aquaporin1 and ever since its discovery, more than 300 homologues have been identified in animal, bacteria and plant. In human have been discovered 13 aquaporins (AQPs) isoform (AQP0-AQP12) widely distributed in various epith...

  16. Gut microbes may facilitate insect herbivory of chemically defended plants.

    Science.gov (United States)

    Hammer, Tobin J; Bowers, M Deane

    2015-09-01

    The majority of insect species consume plants, many of which produce chemical toxins that defend their tissues from attack. How then are herbivorous insects able to develop on a potentially poisonous diet? While numerous studies have focused on the biochemical counter-adaptations to plant toxins rooted in the insect genome, a separate body of research has recently emphasized the role of microbial symbionts, particularly those inhabiting the gut, in plant-insect interactions. Here we outline the "gut microbial facilitation hypothesis," which proposes that variation among herbivores in their ability to consume chemically defended plants can be due, in part, to variation in their associated microbial communities. More specifically, different microbes may be differentially able to detoxify compounds toxic to the insect, or be differentially resistant to the potential antimicrobial effects of some compounds. Studies directly addressing this hypothesis are relatively few, but microbe-plant allelochemical interactions have been frequently documented from non-insect systems-such as soil and the human gut-and thus illustrate their potential importance for insect herbivory. We discuss the implications of this hypothesis for insect diversification and coevolution with plants; for example, evolutionary transitions to host plant groups with novel allelochemicals could be initiated by heritable changes to the insect microbiome. Furthermore, the ecological implications extend beyond the plant and insect herbivore to higher trophic levels. Although the hidden nature of microbes and plant allelochemicals make their interactions difficult to detect, recent molecular and experimental techniques should enable research on this neglected, but likely important, aspect of insect-plant biology.

  17. Plasma membrane aquaporins mediates vesicle stability in broccoli.

    Directory of Open Access Journals (Sweden)

    Maria Del Carmen Martínez-Ballesta

    Full Text Available The use of in vitro membrane vesicles is attractive because of possible applications in therapies. Here we aimed to compare the stability and functionality of plasma membrane vesicles extracted from control and salt-treated broccoli. The impact of the amount of aquaporins was related to plasma membrane osmotic water permeability and the stability of protein secondary structure. Here, we describe for first time an increase in plant aquaporins acetylation under high salinity. Higher osmotic water permeability in NaCl vesicles has been related to higher acetylation, upregulation of aquaporins, and a more stable environment to thermal denaturation. Based on our findings, we propose that aquaporins play an important role in vesicle stability.

  18. Heterotetramerization of Plant PIP1 and PIP2 Aquaporins Is an Evolutionary Ancient Feature to Guide PIP1 Plasma Membrane Localization and Function

    Science.gov (United States)

    Bienert, Manuela D.; Diehn, Till A.; Richet, Nicolas; Chaumont, François; Bienert, Gerd P.

    2018-01-01

    Aquaporins (AQPs) are tetrameric channel proteins regulating the transmembrane flux of small uncharged solutes and in particular water in living organisms. In plants, members of the plasma membrane intrinsic protein (PIP) AQP subfamily are important for the maintenance of the plant water status through the control of cell and tissue hydraulics. The PIP subfamily is subdivided into two groups: PIP1 and PIP2 that exhibit different water-channel activities when expressed in Xenopus oocytes or yeast cells. Most PIP1 and PIP2 isoforms physically interact and assemble in heterotetramers to modulate their subcellular localization and channel activity when they are co-expressed in oocytes, yeasts, and plants. Whether the interaction between different PIPs is stochastic or controlled by cell regulatory processes is still unknown. Here, we analyzed the water transport activity and the subcellular localization behavior of the complete PIP subfamily (SmPIP1;1, SmPIP2;1, and SmPIP2;2) of the lycophyte Selaginella moellendorffii upon (co-)expression in yeast and Xenopus oocytes. As observed for most of the PIP1 and PIP2 isoforms in other species, SmPIP1;1 was retained in the ER while SmPIP2;1 was found in the plasma membrane but, upon co-expression, both isoforms were found in the plasma membrane, leading to a synergistic effect on the water membrane permeability. SmPIP2;2 behaves as a PIP1, being retained in the endoplasmic reticulum when expressed alone in oocytes or in yeasts. Interestingly, in contrast to the oocyte system, in yeasts no synergistic effect on the membrane permeability was observed upon SmPIP1;1/SmPIP2;1 co-expression. We also demonstrated that SmPIP2;1 is permeable to water and the signaling molecule hydrogen peroxide. Moreover, growth- and complementation assays in the yeast system showed that heteromerization in all possible SmPIP combinations did not modify the substrate specificity of the channels. These results suggest that the characteristics known for

  19. Heterotetramerization of Plant PIP1 and PIP2 Aquaporins Is an Evolutionary Ancient Feature to Guide PIP1 Plasma Membrane Localization and Function.

    Science.gov (United States)

    Bienert, Manuela D; Diehn, Till A; Richet, Nicolas; Chaumont, François; Bienert, Gerd P

    2018-01-01

    Aquaporins (AQPs) are tetrameric channel proteins regulating the transmembrane flux of small uncharged solutes and in particular water in living organisms. In plants, members of the plasma membrane intrinsic protein (PIP) AQP subfamily are important for the maintenance of the plant water status through the control of cell and tissue hydraulics. The PIP subfamily is subdivided into two groups: PIP1 and PIP2 that exhibit different water-channel activities when expressed in Xenopus oocytes or yeast cells. Most PIP1 and PIP2 isoforms physically interact and assemble in heterotetramers to modulate their subcellular localization and channel activity when they are co-expressed in oocytes, yeasts, and plants. Whether the interaction between different PIPs is stochastic or controlled by cell regulatory processes is still unknown. Here, we analyzed the water transport activity and the subcellular localization behavior of the complete PIP subfamily (SmPIP1;1, SmPIP2;1, and SmPIP2;2) of the lycophyte Selaginella moellendorffii upon (co-)expression in yeast and Xenopus oocytes. As observed for most of the PIP1 and PIP2 isoforms in other species, SmPIP1;1 was retained in the ER while SmPIP2;1 was found in the plasma membrane but, upon co-expression, both isoforms were found in the plasma membrane, leading to a synergistic effect on the water membrane permeability. SmPIP2;2 behaves as a PIP1, being retained in the endoplasmic reticulum when expressed alone in oocytes or in yeasts. Interestingly, in contrast to the oocyte system, in yeasts no synergistic effect on the membrane permeability was observed upon SmPIP1;1/SmPIP2;1 co-expression. We also demonstrated that SmPIP2;1 is permeable to water and the signaling molecule hydrogen peroxide. Moreover, growth- and complementation assays in the yeast system showed that heteromerization in all possible SmPIP combinations did not modify the substrate specificity of the channels. These results suggest that the characteristics known for

  20. Heterotetramerization of Plant PIP1 and PIP2 Aquaporins Is an Evolutionary Ancient Feature to Guide PIP1 Plasma Membrane Localization and Function

    Directory of Open Access Journals (Sweden)

    Manuela D. Bienert

    2018-03-01

    Full Text Available Aquaporins (AQPs are tetrameric channel proteins regulating the transmembrane flux of small uncharged solutes and in particular water in living organisms. In plants, members of the plasma membrane intrinsic protein (PIP AQP subfamily are important for the maintenance of the plant water status through the control of cell and tissue hydraulics. The PIP subfamily is subdivided into two groups: PIP1 and PIP2 that exhibit different water-channel activities when expressed in Xenopus oocytes or yeast cells. Most PIP1 and PIP2 isoforms physically interact and assemble in heterotetramers to modulate their subcellular localization and channel activity when they are co-expressed in oocytes, yeasts, and plants. Whether the interaction between different PIPs is stochastic or controlled by cell regulatory processes is still unknown. Here, we analyzed the water transport activity and the subcellular localization behavior of the complete PIP subfamily (SmPIP1;1, SmPIP2;1, and SmPIP2;2 of the lycophyte Selaginella moellendorffii upon (co-expression in yeast and Xenopus oocytes. As observed for most of the PIP1 and PIP2 isoforms in other species, SmPIP1;1 was retained in the ER while SmPIP2;1 was found in the plasma membrane but, upon co-expression, both isoforms were found in the plasma membrane, leading to a synergistic effect on the water membrane permeability. SmPIP2;2 behaves as a PIP1, being retained in the endoplasmic reticulum when expressed alone in oocytes or in yeasts. Interestingly, in contrast to the oocyte system, in yeasts no synergistic effect on the membrane permeability was observed upon SmPIP1;1/SmPIP2;1 co-expression. We also demonstrated that SmPIP2;1 is permeable to water and the signaling molecule hydrogen peroxide. Moreover, growth- and complementation assays in the yeast system showed that heteromerization in all possible SmPIP combinations did not modify the substrate specificity of the channels. These results suggest that the

  1. Belowground advantages in construction cost facilitate a cryptic plant invasion.

    Science.gov (United States)

    Caplan, Joshua S; Wheaton, Christine N; Mozdzer, Thomas J

    2014-04-30

    The energetic cost of plant organ construction is a functional trait that is useful for understanding carbon investment during growth (e.g. the resource acquisition vs. tissue longevity tradeoff), as well as in response to global change factors like elevated CO2 and N. Despite the enormous importance of roots and rhizomes in acquiring soil resources and responding to global change, construction costs have been studied almost exclusively in leaves. We sought to determine how construction costs of aboveground and belowground organs differed between native and introduced lineages of a geographically widely dispersed wetland plant species (Phragmites australis) under varying levels of CO2 and N. We grew plants under ambient and elevated atmospheric CO2, as well as under two levels of soil nitrogen. We determined construction costs for leaves, stems, rhizomes and roots, as well as for whole plants. Across all treatment conditions, the introduced lineage of Phragmites had a 4.3 % lower mean rhizome construction cost than the native. Whole-plant construction costs were also smaller for the introduced lineage, with the largest difference in sample means (3.3 %) occurring under ambient conditions. In having lower rhizome and plant-scale construction costs, the introduced lineage can recoup its investment in tissue construction more quickly, enabling it to generate additional biomass with the same energetic investment. Our results suggest that introduced Phragmites has had an advantageous tissue investment strategy under historic CO2 and N levels, which has facilitated key rhizome processes, such as clonal spread. We recommend that construction costs for multiple organ types be included in future studies of plant carbon economy, especially those investigating global change. Published by Oxford University Press on behalf of the Annals of Botany Company.

  2. Aquaporin-2 membrane targeting

    DEFF Research Database (Denmark)

    Olesen, Emma T B; Fenton, Robert A

    2017-01-01

    The targeting of the water channel aquaporin-2 (AQP2) to the apical plasma membrane of kidney collecting duct principal cells is regulated mainly by the antidiuretic peptide hormone arginine vasopressin (AVP). This process is of crucial importance for the maintenance of body water homeostasis...... of aquaporin-2 (AQP2) to the apical plasma membrane of collecting duct (CD) principal cells (10, 20). This process is mainly regulated by the actions of AVP on the type 2 AVP receptor (V2R), although the V1a receptor may also play a minor role (26). The V2R is classified within the group of 7-transmembrane....... For example, 1) stimulation with the nonspecific AC activator forskolin increases AQP2 membrane accumulation in a mouse cortical collecting duct cell line [e.g., Norregaard et al. (16)]; 2) cAMP increases CD water permeability (15); 3) the cAMP-activated protein kinase A (PKA) can phosphorylate AQP2 on its...

  3. A systematic review of the recent ecological literature on cushion plants: champions of plant facilitation

    Directory of Open Access Journals (Sweden)

    A. M. Reid

    2010-09-01

    Full Text Available Cushion-forming plant species are found in alpine and polar environments around the world. They modify the microclimate, thereby facilitating other plant species. Similar to the effectiveness of shrubs as a means to study facilitation in arid and semi-arid environments, we explore the potential for cushion plant species to expand the generality of research on this contemporary ecological interaction. A systematic review was conducted to determine the number of publications and citation frequency on relevant ecological topics whilst using shrub literature as a baseline to assess relative importance of cushions as a focal point for future ecological research. Although there are forty times more shrub articles, mean citations per paper is comparable between cushion and shrub literature. Furthermore, the scope of ecological research topics studied using cushions is broad including facilitation, competition, environmental gradients, life history, genetics, reproduction, community, ecosystem and evolution. The preliminary ecological evidence to date also strongly suggests that cushion plants can be keystone species in their ecosystems. Hence, ecological research on net interactions including facilitation and patterns of diversity can be successfully examined using cushion plants, and this is particularly timely given expectations associated with a changing climate in these regions.

  4. Cyclophilin 40 facilitates HSP90-mediated RISC assembly in plants.

    Science.gov (United States)

    Iki, Taichiro; Yoshikawa, Manabu; Meshi, Tetsuo; Ishikawa, Masayuki

    2012-01-18

    Posttranscriptional gene silencing is mediated by RNA-induced silencing complexes (RISCs) that contain AGO proteins and single-stranded small RNAs. The assembly of plant AGO1-containing RISCs depends on the molecular chaperone HSP90. Here, we demonstrate that cyclophilin 40 (CYP40), protein phosphatase 5 (PP5), and several other proteins with the tetratricopeptide repeat (TPR) domain associates with AGO1 in an HSP90-dependent manner in extracts of evacuolated tobacco protoplasts (BYL). Intriguingly, CYP40, but not the other TPR proteins, could form a complex with small RNA duplex-bound AGO1. Moreover, CYP40 that was synthesized by in-vitro translation using BYL uniquely facilitated binding of small RNA duplexes to AGO1, and as a result, increased the amount of mature RISCs that could cleave target RNAs. CYP40 was not contained in mature RISCs, indicating that the association is transient. Addition of PP5 or cyclophilin-binding drug cyclosporine A prevented the association of endogenous CYP40 with HSP90-AGO1 complex and inhibited RISC assembly. These results suggest that a complex of AGO1, HSP90, CYP40, and a small RNA duplex is a key intermediate of RISC assembly in plants.

  5. Correlation of Aquaporins and Transmembrane Solute Transporters Revealed by Genome-Wide Analysis in Developing Maize Leaf

    Directory of Open Access Journals (Sweden)

    Xun Yue

    2012-01-01

    Full Text Available Aquaporins are multifunctional membrane channels that facilitate the transmembrane transport of water and solutes. When transmembrane mineral nutrient transporters exhibit the same expression patterns as aquaporins under diverse temporal and physiological conditions, there is a greater probability that they interact. In this study, genome-wide temporal profiling of transcripts analysis and coexpression network-based approaches are used to examine the significant specificity correlation of aquaporins and transmembrane solute transporters in developing maize leaf. The results indicate that specific maize aquaporins are related to specific transmembrane solute transporters. The analysis demonstrates a systems-level correlation between aquaporins, nutrient transporters, and the homeostasis of mineral nutrients in developing maize leaf. Our results provide a resource for further studies into the physiological function of these aquaporins.

  6. Arabidopsis SNAREs SYP61 and SYP121 coordinate the trafficking of plasma membrane aquaporin PIP2;7 to modulate the cell membrane water permeability.

    Science.gov (United States)

    Hachez, Charles; Laloux, Timothée; Reinhardt, Hagen; Cavez, Damien; Degand, Hervé; Grefen, Christopher; De Rycke, Riet; Inzé, Dirk; Blatt, Michael R; Russinova, Eugenia; Chaumont, François

    2014-07-01

    Plant plasma membrane intrinsic proteins (PIPs) are aquaporins that facilitate the passive movement of water and small neutral solutes through biological membranes. Here, we report that post-Golgi trafficking of PIP2;7 in Arabidopsis thaliana involves specific interactions with two syntaxin proteins, namely, the Qc-SNARE SYP61 and the Qa-SNARE SYP121, that the proper delivery of PIP2;7 to the plasma membrane depends on the activity of the two SNAREs, and that the SNAREs colocalize and physically interact. These findings are indicative of an important role for SYP61 and SYP121, possibly forming a SNARE complex. Our data support a model in which direct interactions between specific SNARE proteins and PIP aquaporins modulate their post-Golgi trafficking and thus contribute to the fine-tuning of the water permeability of the plasma membrane. © 2014 American Society of Plant Biologists. All rights reserved.

  7. Functional diversity of microbial decomposers facilitates plant coexistence in a plant-microbe-soil feedback model.

    Science.gov (United States)

    Miki, Takeshi; Ushio, Masayuki; Fukui, Shin; Kondoh, Michio

    2010-08-10

    Theory and empirical evidence suggest that plant-soil feedback (PSF) determines the structure of a plant community and nutrient cycling in terrestrial ecosystems. The plant community alters the nutrient pool size in soil by affecting litter decomposition processes, which in turn shapes the plant community, forming a PSF system. However, the role of microbial decomposers in PSF function is often overlooked, and it remains unclear whether decomposers reinforce or weaken litter-mediated plant control over nutrient cycling. Here, we present a theoretical model incorporating the functional diversity of both plants and microbial decomposers. Two fundamental microbial processes are included that control nutrient mineralization from plant litter: (i) assimilation of mineralized nutrient into the microbial biomass (microbial immobilization), and (ii) release of the microbial nutrients into the inorganic nutrient pool (net mineralization). With this model, we show that microbial diversity may act as a buffer that weakens plant control over the soil nutrient pool, reversing the sign of PSF from positive to negative and facilitating plant coexistence. This is explained by the decoupling of litter decomposability and nutrient pool size arising from a flexible change in the microbial community composition and decomposition processes in response to variations in plant litter decomposability. Our results suggest that the microbial community plays a central role in PSF function and the plant community structure. Furthermore, the results strongly imply that the plant-centered view of nutrient cycling should be changed to a plant-microbe-soil feedback system, by incorporating the community ecology of microbial decomposers and their functional diversity.

  8. Osmotic water transport in aquaporins

    DEFF Research Database (Denmark)

    Zeuthen, Thomas; Alsterfjord, Magnus; Beitz, Eric

    2013-01-01

    Abstract  We test a novel, stochastic model of osmotic water transport in aquaporins. A solute molecule present at the pore mouth can either be reflected or permeate the pore. We assume that only reflected solute molecules induce osmotic transport of water through the pore, while permeating solute...... molecules give rise to no water transport. Accordingly, the rate of water transport is proportional to the reflection coefficient σ, while the solute permeability, P(S), is proportional to 1 - σ. The model was tested in aquaporins heterologously expressed in Xenopus oocytes. A variety of aquaporin channel...... sizes and geometries were obtained with the two aquaporins AQP1 and AQP9 and mutant versions of these. Osmotic water transport was generated by adding 20 mM of a range of different-sized osmolytes to the outer solution. The osmotic water permeability and the reflection coefficient were measured...

  9. Aquaporins of the PIP2 class are required for efficient anther dehiscence in tobacco.

    Science.gov (United States)

    Bots, Marc; Vergeldt, Frank; Wolters-Arts, Mieke; Weterings, Koen; van As, Henk; Mariani, Celestina

    2005-03-01

    Several processes during sexual reproduction in higher plants involve the movement of water between cells or tissues. Before flower anthesis, anther and pollen dehydration takes place before the release of mature pollen at dehiscence. Aquaporins represent a class of proteins that mediates the movement of water over cellular membranes. Aquaporins of the plasmamembrane PIP2 family are expressed in tobacco (Nicotiana tabacum) anthers and may therefore be involved in the movement of water in this organ. To gain more insight into the role these proteins may play in this process, we have analyzed their localization using immunolocalizations and generated plants displaying RNA interference of PIP2 aquaporins. Our results indicate that PIP2 protein expression is modulated during anther development. Furthermore, in tobacco PIP2 RNA interference plants, anther dehydration was slower, and dehiscence occurred later when compared with control plants. Together, our results suggest that aquaporins of the PIP2 class are required for efficient anther dehydration prior to dehiscence.

  10. Aquaporins and Gland Secretion.

    Science.gov (United States)

    Delporte, Christine

    2017-01-01

    Aquaporins (AQPs ) are expressed in most exocrine and endocrine secretory glands. Consequently, summarizing the expression and functions of AQPs in secretory glands represents a daunting task considering the important number of glands present in the body, as well as the number of mammalian AQPs - thirteen. The roles played by AQPs in secretory processes have been investigated in many secretory glands. However, despite considerable research, additional studies are clearly needed to pursue our understanding of the role played by AQPs in secretory processes. This book chapter will focus on summarizing the current knowledge on AQPs expression and function in the gastrointestinal tract , including salivary glands, gastric glands, Duodenal Brunner's gland, liver and gallbladder, intestinal goblets cells, exocrine and endocrine pancreas, as well as few other secretory glands including airway submucosal glands, lacrimal glands, mammary glands and eccrine sweat glands.

  11. Association between water and carbon dioxide transport in leaf plasma membranes: assessing the role of aquaporins.

    Science.gov (United States)

    Zhao, Manchun; Tan, Hwei-Ting; Scharwies, Johannes; Levin, Kara; Evans, John R; Tyerman, Stephen D

    2017-06-01

    The role of some aquaporins as CO 2 permeable channels has been controversial. Low CO 2 permeability of plant membranes has been criticized because of unstirred layers and other limitations. Here we measured both water and CO 2 permeability (P os , P CO2 ) using stopped flow on plasma membrane vesicles (pmv) isolated from Pisum sativum (pea) and Arabidopsis thaliana leaves. We excluded the chemical limitation of carbonic anhydrase (CA) in the vesicle acidification technique for P CO2 using different temperatures and CA concentrations. Unstirred layers were excluded based on small vesicle size and the positive correlation between vesicle diameter and P CO2 . We observed high aquaporin activity (P os 0.06 to 0.22 cm s -1 ) for pea pmv based on all the criteria for their function using inhibitors and temperature dependence. Inhibitors of P os did not alter P CO2 . P CO2 ranged from 0.001 to 0.012 cm s -1 (mean 0.0079 + 0.0007 cm s -1 ) with activation energy of 30.2 kJ mol -1 . Intrinsic variation between pmv batches from normally grown or stressed plants revealed a weak (R 2  = 0.27) positive linear correlation between P os and P CO2 . Despite the low P CO2 , aquaporins may facilitate CO 2 transport across plasma membranes, but probably via a different pathway than for water. © 2016 John Wiley & Sons Ltd.

  12. Model of annual plants dynamics with facilitation and competition.

    Science.gov (United States)

    Droz, Michel; Pękalski, Andrzej

    2013-10-21

    An individual-based model describing the dynamics of one type of annual plants is presented. We use Monte Carlo simulations where each plant has its own history and the interactions among plants are between nearest neighbours. The character of the interaction (positive or negative) depends on local conditions. The plants compete for two external resources-water and light. The amount of water and/or light a plant receives depends on the external factor but also on local arrangement. Survival, growth and seed production of plants are determined by how well their demands for the resources are met. The survival and seeds production tests have a probabilistic character, which makes the dynamics more realistic than by using a deterministic approach. There is a non-linear coupling between the external supplies. Water evaporates from the soil at a rate depending on constant evaporation rate, local conditions and the amount of light. We examine the dynamics of the plant population along two environmental gradients, allowing also for surplus of water and/or light. We show that the largest number of plants is when the demands for both resources are equal to the supplies. We estimate also the role of evaporation and we find that it depends on the situation. It could be negative, but sometimes it has a positive character. We show that the link between the type of interaction (positive or negative) and external conditions has a complex character. In general in favourable environment plants have a stronger tendency for competitive interactions, leading to mostly isolated plants. When the conditions are getting more difficult, cooperation becomes the dominant type of interactions and the plants grow in clusters. The type of plants-sun-loving or shade tolerating, plays also an important role. © 2013 Elsevier Ltd. All rights reserved.

  13. Ammonia and urea permeability of mammalian aquaporins

    DEFF Research Database (Denmark)

    Litman, Thomas; Søgaard, Rikke; Zeuthen, Thomas

    2009-01-01

    significant at alkaline pH. It is debated whether the H(+) ion passes via the aquaporin or by some external route; the investigation of this problem requires the aquaporin-expressing cell to be voltage-clamped. The ammonia-permeable aquaporins differ from other aquaporins by having a less restrictive aromatic...... groups differ in the amino acid composition of their aromatic/arginine regions. The location of the ammonia-permeable aquaporins in the body parallels that of the Rh proteins. This applies to erythrocytes and to cells associated with nitrogen homeostasis and high rates of anabolism. In the liver, AQPs 8...

  14. Electrostatics of aquaporin and aquaglyceroporin channels correlates with their transport selectivity

    Science.gov (United States)

    Oliva, Romina; Calamita, Giuseppe; Thornton, Janet M.; Pellegrini-Calace, Marialuisa

    2010-01-01

    Aquaporins are homotetrameric channel proteins, which allow the diffusion of water and small solutes across biological membranes. According to their transport function, aquaporins can be divided into “orthodox aquaporins”, which allow the flux of water molecules only, and “aquaglyceroporins”, which facilitate the diffusion of glycerol and other small solutes in addition to water. The contribution of individual residues in the pore to the selectivity of orthodox aquaporins and aquaglyceroporins is not yet fully understood. To gain insights into aquaporin selectivity, we focused on the sequence variation and electrostatics of their channels. The continuum Poisson-Boltzmann electrostatic potential along the channel was calculated and compared for ten three-dimensional-structures which are representatives of different aquaporin subfamilies, and a panel of functionally characterized mutants, for which high-accuracy three-dimensional-models could be derived. Interestingly, specific electrostatic profiles associated with the main selectivity to water or glycerol could be identified. In particular: (i) orthodox aquaporins showed a distinctive electrostatic potential maximum at the periplasmic side of the channel around the aromatic/Arg (ar/R) constriction site; (ii) aquaporin-0 (AQP0), a mammalian aquaporin with considerably low water permeability, had an additional deep minimum at the cytoplasmic side; (iii) aquaglyceroporins showed a rather flat potential all along the channel; and (iv) the bifunctional protozoan PfAQP had an unusual all negative profile. Evaluation of electrostatics of the mutants, along with a thorough sequence analysis of the aquaporin pore-lining residues, illuminated the contribution of specific residues to the electrostatics of the channels and possibly to their selectivity. PMID:20147624

  15. Facilitation among plants in alpine environments in the face of climate change.

    Science.gov (United States)

    Anthelme, Fabien; Cavieres, Lohengrin A; Dangles, Olivier

    2014-01-01

    While there is a large consensus that plant-plant interactions are a crucial component of the response of plant communities to the effects of climate change, available data remain scarce, particularly in alpine systems. This represents an important obstacle to making consistent predictions about the future of plant communities. Here, we review current knowledge on the effects of climate change on facilitation among alpine plant communities and propose directions for future research. In established alpine communities, while warming seemingly generates a net facilitation release, earlier snowmelt may increase facilitation. Some nurse plants are able to buffer microenvironmental changes in the long term and may ensure the persistence of other alpine plants through local migration events. For communities migrating to higher elevations, facilitation should play an important role in their reorganization because of the harsher environmental conditions. In particular, the absence of efficient nurse plants might slow down upward migration, possibly generating chains of extinction. Facilitation-climate change relationships are expected to shift along latitudinal gradients because (1) the magnitude of warming is predicted to vary along these gradients, and (2) alpine environments are significantly different at low vs. high latitudes. Data on these expected patterns are preliminary and thus need to be tested with further studies on facilitation among plants in alpine environments that have thus far not been considered. From a methodological standpoint, future studies will benefit from the spatial representation of the microclimatic environment of plants to predict their response to climate change. Moreover, the acquisition of long-term data on the dynamics of plant-plant interactions, either through permanent plots or chronosequences of glacial recession, may represent powerful approaches to clarify the relationship between plant interactions and climate change.

  16. Novel regulation of aquaporins during osmotic stress.

    Science.gov (United States)

    Vera-Estrella, Rosario; Barkla, Bronwyn J; Bohnert, Hans J; Pantoja, Omar

    2004-08-01

    Aquaporin protein regulation and redistribution in response to osmotic stress was investigated. Ice plant (Mesembryanthemum crystallinum) McTIP1;2 (McMIPF) mediated water flux when expressed in Xenopus leavis oocytes. Mannitol-induced water imbalance resulted in increased protein amounts in tonoplast fractions and a shift in protein distribution to other membrane fractions, suggesting aquaporin relocalization. Indirect immunofluorescence labeling also supports a change in membrane distribution for McTIP1;2 and the appearance of a unique compartment where McTIP1;2 is expressed. Mannitol-induced redistribution of McTIP1;2 was arrested by pretreatment with brefeldin A, wortmannin, and cytochalasin D, inhibitors of vesicle trafficking-related processes. Evidence suggests a role for glycosylation and involvement of a cAMP-dependent signaling pathway in McTIP1;2 redistribution. McTIP1;2 redistribution to endosomal compartments may be part of a homeostatic process to restore and maintain cellular osmolarity under osmotic-stress conditions.

  17. Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria

    DEFF Research Database (Denmark)

    Battini, Fabio; Grønlund, Mette; Agnolucci, Monica

    2017-01-01

    availability of soil P. This study investigated whether biofertilizers and bioenhancers, such as arbuscular mycorrhizal fungi (AMF) and their associated bacteria could enhance growth and P uptake in maize. Plants were grown with or without mycorrhizas in compartmented pots with radioactive P tracers and were...

  18. Facilitation drives the positive effects of plant richness on trace metal removal in a biodiversity experiment.

    Directory of Open Access Journals (Sweden)

    Jiang Wang

    Full Text Available BACKGROUND: Phytoextraction is an environmentally acceptable and inexpensive technique for mine tailing rehabilitation that uses metallophyte plants. These plants reduce the soil trace metal contents to environmentally acceptable levels by accumulating trace metals. Recently, whether more trace metals can be removed by species-rich communities of these plants received great attention, as species richness has been reported having positive effects on ecosystem functions. However, how the species richness affects trace metals removal of plant communities of mine tailing is rarely known. METHODOLOGY/PRINCIPAL FINDINGS: We examined the effects of species richness on soil trace metal removal in both natural and experimental plant communities. The root lengths and stem heights of each plant species were measured in order to calculate the functional diversity indices. Our results showed that trace metal (Cu, Cd, Pb and Zn concentrations in mine tailing soil declined as species richness increased in both the natural and experimental plant communities. Species richness, rather than functional diversity, positively affected the mineralomass of the experimental plant communities. The intensity of plant-plant facilitation increased with the species richness of experimental communities. Due to the incremental role of plant-plant facilitation, most of the species had higher biomasses, higher trace metal concentrations in their plant tissues and lower malondialdehyde concentrations in their leaves. Consequently, the positive effects of species richness on mineralomass were mostly attributable to facilitation among plants. CONCLUSIONS/SIGNIFICANCE: Our results provide clear evidence that, due to plant-plant facilitation, species richness positively affects the removal of trace metals from mine tailing soil through phytoextraction and provides further information on diversity conservation and environmental remediation in a mine tailing environment.

  19. Altered aquaporin expression in glaucoma eyes

    DEFF Research Database (Denmark)

    Tran, Thuy Linh; Bek, Toke; Cour, Morten la

    2014-01-01

    Aquaporins (AQP) are channels in the cell membrane that mainly facilitate a passive transport of water. In the eye, AQPs are expressed in the ciliary body and retina and may contribute to the pathogenesis of glaucoma and optic neuropathy. We investigated the expression of AQP1, AQP3, AQP4, AQP5......, AQP7 and AQP9 in human glaucoma eyes compared with normal eyes. Nine glaucoma eyes were examined. Of these, three eyes were diagnosed with primary open angle glaucoma; three eyes had neovascular glaucoma; and three eyes had chronic angle-closure glaucoma. Six eyes with normal intraocular pressure...... and without glaucoma were used as control. Immunohistochemistry was performed using antibodies against AQP1, AQP3, AQP4, AQP5, AQP7 and AQP9. For each specimen, optical densities of immunoprecipitates were measured using Photoshop and the staining intensities were calculated. Immunostaining showed labelling...

  20. Functional interactome of Aquaporin 1 sub-family reveals new physiological functions in Arabidopsis Thaliana

    Directory of Open Access Journals (Sweden)

    Mohamed Ragab Abdel Gawwad

    2013-09-01

    Full Text Available Aquaporins are channel proteins found in plasma membranes and intercellular membranes of different cellular compartments, facilitate the water flux, solutes and gases across the cellular plasma membranes. The present study highlights the sub-family plasma membrane intrinsic protein (PIP predicting the 3-D structure and analyzing the functional interactome of it homologs. PIP1 homologs integrate with many proteins with different plant physiological roles in Arabidopsis thaliana including; PIP1A and PIP1B: facilitate the transport of water, diffusion of amino acids and/or peptides from the vacuolar compartment to the cytoplasm, play a role in the control of cell turgor and cell expansion and involved in root water uptake respectively. In addition we found that PIP1B plays a defensive role against Pseudomonas syringae infection through the interaction with the plasma membrane Rps2 protein. Another substantial function of PIP1C via the interaction with PIP2E is the response to nematode infection. Generally, PIP1 sub-family interactome controlling many physiological processes in plant cell like; osmoregulation in plants under high osmotic stress such as under a high salt, response to nematode, facilitate the transport of water across cell membrane and regulation of floral initiation in Arabidopsis thaliana.

  1. Facilitation among plants in alpine environments in the face of climate change

    Directory of Open Access Journals (Sweden)

    Fabien eAnthelme

    2014-08-01

    Full Text Available While there is a large consensus that plant–plant interactions are a crucial component of the response of plant communities to the effects of climate change, available data remain scarce, particularly in alpine systems. This represents an important obstacle to making consistent predictions about the future of plant communities. Here, we review current knowledge on the effects of climate change on facilitation among alpine plant communities and propose directions for future research. In established alpine communities, while warming seemingly generates a net facilitation release, earlier snowmelt may increase facilitation. Some nurse plants are able to buffer microenvironmental changes in the long term and may ensure the persistence of other alpine plants through local migration events. For communities migrating to higher elevations, facilitation should play an important role in their reorganization because of the harsher environmental conditions. In particular, the absence of efficient nurse plants might slow down upward migration, possibly generating chains of extinction. Facilitation–climate change relationships are expected to shift along latitudinal gradients because (1 the magnitude of warming is predicted to vary along these gradients, and (2 alpine environments are significantly different at low vs. high latitudes. Data on these expected patterns are preliminary and thus need to be tested with further studies on facilitation among plants in alpine environments that have thus far not been considered. From a methodological standpoint, future studies will benefit from the spatial representation of the microclimatic environment of plants to predict their response to climate change. Moreover, the acquisition of long-term data on the dynamics of plant–plant interactions, either through permanent plots or chronosequences of glacial recession, may represent powerful approaches to clarify the relationship between plant interactions and

  2. A multitrophic perspective on functioning and evolution of facilitation in plant communities

    NARCIS (Netherlands)

    Putten, van der W.H.

    2009-01-01

    1. Plant facilitation has been studied mostly in the context of plant–plant interactions, whereas multitrophic interactions including those that occur below ground have not yet received much attention. Here, I will discuss how above-ground and below-ground natural enemies and their predators

  3. A meta-analysis of plant facilitation in coastal dune systems: responses, regions, and research gaps.

    Science.gov (United States)

    Castanho, Camila de Toledo; Lortie, Christopher J; Zaitchik, Benjamin; Prado, Paulo Inácio

    2015-01-01

    Empirical studies in salt marshes, arid, and alpine systems support the hypothesis that facilitation between plants is an important ecological process in severe or 'stressful' environments. Coastal dunes are both abiotically stressful and frequently disturbed systems. Facilitation has been documented, but the evidence to date has not been synthesized. We did a systematic review with meta-analysis to highlight general research gaps in the study of plant interactions in coastal dunes and examine if regional and local factors influence the magnitude of facilitation in these systems. The 32 studies included in the systematic review were done in coastal dunes located in 13 countries around the world but the majority was in the temperate zone (63%). Most of the studies adopt only an observational approach to make inferences about facilitative interactions, whereas only 28% of the studies used both observational and experimental approaches. Among the factors we tested, only geographic region mediates the occurrence of facilitation more broadly in coastal dune systems. The presence of a neighbor positively influenced growth and survival in the tropics, whereas in temperate and subartic regions the effect was neutral for both response variables. We found no evidence that climatic and local factors, such as life-form and life stage of interacting plants, affect the magnitude of facilitation in coastal dunes. Overall, conclusions about plant facilitation in coastal dunes depend on the response variable measured and, more broadly, on the geographic region examined. However, the high variability and the limited number of studies, especially in tropical region, indicate we need to be cautious in the generalization of the conclusions. Anyway, coastal dunes provide an important means to explore topical issues in facilitation research including context dependency, local versus regional drivers of community structure, and the importance of gradients in shaping the outcome of net

  4. A meta-analysis of plant facilitation in coastal dune systems: responses, regions, and research gaps

    Directory of Open Access Journals (Sweden)

    Camila de Toledo Castanho

    2015-02-01

    Full Text Available Empirical studies in salt marshes, arid, and alpine systems support the hypothesis that facilitation between plants is an important ecological process in severe or ‘stressful’ environments. Coastal dunes are both abiotically stressful and frequently disturbed systems. Facilitation has been documented, but the evidence to date has not been synthesized. We did a systematic review with meta-analysis to highlight general research gaps in the study of plant interactions in coastal dunes and examine if regional and local factors influence the magnitude of facilitation in these systems. The 32 studies included in the systematic review were done in coastal dunes located in 13 countries around the world but the majority was in the temperate zone (63%. Most of the studies adopt only an observational approach to make inferences about facilitative interactions, whereas only 28% of the studies used both observational and experimental approaches. Among the factors we tested, only geographic region mediates the occurrence of facilitation more broadly in coastal dune systems. The presence of a neighbor positively influenced growth and survival in the tropics, whereas in temperate and subartic regions the effect was neutral for both response variables. We found no evidence that climatic and local factors, such as life-form and life stage of interacting plants, affect the magnitude of facilitation in coastal dunes. Overall, conclusions about plant facilitation in coastal dunes depend on the response variable measured and, more broadly, on the geographic region examined. However, the high variability and the limited number of studies, especially in tropical region, indicate we need to be cautious in the generalization of the conclusions. Anyway, coastal dunes provide an important means to explore topical issues in facilitation research including context dependency, local versus regional drivers of community structure, and the importance of gradients in shaping

  5. Heterologous Expression of Two Jatropha Aquaporins Imparts Drought and Salt Tolerance and Improves Seed Viability in Transgenic Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Kasim Khan

    Full Text Available Drought and high salinity are environmental conditions that cause adverse effects on the growth and productivity of crops. Aquaporins are small integral membrane proteins that belong to the family of the major intrinsic proteins (MIPs, with members in animals, plants and microbes, where they facilitate the transport of water and/or small neutral solutes thereby affecting water balance. In this study we characterized two aquaporin genes namely, plasma membrane intrinsic protein (PIP2;7 and tonoplast intrinsic protein TIP1;3 from Jatropha curcas that are localised to the plasma membrane and vacuole respectively. Transgenic Arabidopsis thaliana lines over-expressing JcPIP2;7 and JcTIP1;3 under a constitutive promoter show improved germination under high salt and mannitol compared to control seeds. These transgenic plants also show increased root length under abiotic stress conditions compared to wild type Col-0 plants. Transgenic lines exposed to drought conditions by withholding water for 20 days, were able to withstand water stress and attained normal growth after re-watering unlike control plants which could not survive. Transgenic lines also had better seed yield than control under salt stress. Importantly, seed viability of transgenic plants grown under high salt concentration was 35%-45% compared to less than 5% for control seeds obtained from plants growing under salt stress. The effect of JcPIP2;7 and JcTIP1;3 on improving germination and seed viability in drought and salinity make these important candidates for genetic manipulation of plants for growth in saline soils.

  6. Moving forward on facilitation research : Response to changing environments and effects on the diversity, functioning and evolution of plant communities

    NARCIS (Netherlands)

    Soliveres, Santiago; Smit, Christian; Maestre, Fernando T

    Once seen as anomalous, facilitative interactions among plants and their importance for community structure and functioning are now widely recognized. The growing body of modelling, descriptive and experimental studies on facilitation covers a wide variety of terrestrial and aquatic systems

  7. Regional expression of aquaporins 1, 4, and 9 in the brain during pregnancy

    NARCIS (Netherlands)

    Wiegman, Marchien J.; Bullinger, Lisa V.; Kohlmeyer, Meghan M.; Hunter, Timothy C.; Cipolla, Marilyn J.

    Pregnancy is a state of physiologic adaptation, with significant changes in cardiovascular, renal, and hemodynamic systems. Aquaporins (AQPs) may play a role in facilitating these changes. Mile AQP expression has been assessed in several organs during pregnancy, little is known about its expression

  8. Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1.

    Science.gov (United States)

    Schnurbusch, Thorsten; Hayes, Julie; Hrmova, Maria; Baumann, Ute; Ramesh, Sunita A; Tyerman, Stephen D; Langridge, Peter; Sutton, Tim

    2010-08-01

    Boron (B) toxicity is a significant limitation to cereal crop production in a number of regions worldwide. Here we describe the cloning of a gene from barley (Hordeum vulgare), underlying the chromosome 6H B toxicity tolerance quantitative trait locus. It is the second B toxicity tolerance gene identified in barley. Previously, we identified the gene Bot1 that functions as an efflux transporter in B toxicity-tolerant barley to move B out of the plant. The gene identified in this work encodes HvNIP2;1, an aquaporin from the nodulin-26-like intrinsic protein (NIP) subfamily that was recently described as a silicon influx transporter in barley and rice (Oryza sativa). Here we show that a rice mutant for this gene also shows reduced B accumulation in leaf blades compared to wild type and that the mutant protein alters growth of yeast (Saccharomyces cerevisiae) under high B. HvNIP2;1 facilitates significant transport of B when expressed in Xenopus oocytes compared to controls and to another NIP (NOD26), and also in yeast plasma membranes that appear to have relatively high B permeability. We propose that tolerance to high soil B is mediated by reduced expression of HvNIP2;1 to limit B uptake, as well as by increased expression of Bot1 to remove B from roots and sensitive tissues. Together with Bot1, the multifunctional aquaporin HvNIP2;1 is an important determinant of B toxicity tolerance in barley.

  9. Competition and facilitation structure plant communities under nurse tree canopies in extremely stressful environments.

    Science.gov (United States)

    Al-Namazi, Ali A; El-Bana, Magdy I; Bonser, Stephen P

    2017-04-01

    Nurse plant facilitation in stressful environments can produce an environment with relatively low stress under its canopy. These nurse plants may produce the conditions promoting intense competition between coexisting species under the canopy, and canopies may establish stress gradients, where stress increases toward the edge of the canopy. Competition and facilitation on these stress gradients may control species distributions in the communities under canopies. We tested the following predictions: (1) interactions between understory species shift from competition to facilitation in habitats experiencing increasing stress from the center to the edge of canopy of a nurse plant, and (2) species distributions in understory communities are controlled by competitive interactions at the center of canopy, and facilitation at the edge of the canopy. We tested these predictions using a neighbor removal experiment under nurse trees growing in arid environments. Established individuals of each of four of the most common herbaceous species in the understory were used in the experiment. Two species were more frequent in the center of the canopy, and two species were more frequent at the edge of the canopy. Established individuals of each species were subjected to neighbor removal or control treatments in both canopy center and edge habitats. We found a shift from competitive to facilitative interactions from the center to the edge of the canopy. The shift in the effect of neighbors on the target species can help to explain species distributions in these canopies. Canopy-dominant species only perform well in the presence of neighbors in the edge microhabitat. Competition from canopy-dominant species can also limit the performance of edge-dominant species in the canopy microhabitat. The shift from competition to facilitation under nurse plant canopies can structure the understory communities in extremely stressful environments.

  10. Intraspecific competition facilitates the evolution of tolerance to insect damage in the perennial plant Solanum carolinense.

    Science.gov (United States)

    McNutt, David W; Halpern, Stacey L; Barrows, Kahaili; Underwood, Nora

    2012-12-01

    Tolerance to herbivory (the degree to which plants maintain fitness after damage) is a key component of plant defense, so understanding how natural selection and evolutionary constraints act on tolerance traits is important to general theories of plant-herbivore interactions. These factors may be affected by plant competition, which often interacts with damage to influence trait expression and fitness. However, few studies have manipulated competitor density to examine the evolutionary effects of competition on tolerance. In this study, we tested whether intraspecific competition affects four aspects of the evolution of tolerance to herbivory in the perennial plant Solanum carolinense: phenotypic expression, expression of genetic variation, the adaptive value of tolerance, and costs of tolerance. We manipulated insect damage and intraspecific competition for clonal lines of S. carolinense in a greenhouse experiment, and measured tolerance in terms of sexual and asexual fitness components. Compared to plants growing at low density, plants growing at high density had greater expression of and genetic variation in tolerance, and experienced greater fitness benefits from tolerance when damaged. Tolerance was not costly for plants growing at either density, and only plants growing at low density benefited from tolerance when undamaged, perhaps due to greater intrinsic growth rates of more tolerant genotypes. These results suggest that competition is likely to facilitate the evolution of tolerance in S. carolinense, and perhaps in other plants that regularly experience competition, while spatio-temporal variation in density may maintain genetic variation in tolerance.

  11. Unexpected complexity of the Aquaporin gene family in the moss Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Johanson Urban

    2008-04-01

    Full Text Available Abstract Background Aquaporins, also called major intrinsic proteins (MIPs, constitute an ancient superfamily of channel proteins that facilitate the transport of water and small solutes across cell membranes. MIPs are found in almost all living organisms and are particularly abundant in plants where they form a divergent group of proteins able to transport a wide selection of substrates. Results Analyses of the whole genome of Physcomitrella patens resulted in the identification of 23 MIPs, belonging to seven different subfamilies, of which only five have been previously described. Of the newly discovered subfamilies one was only identified in P. patens (Hybrid Intrinsic Protein, HIP whereas the other was found to be present in a wide variety of dicotyledonous plants and forms a major previously unrecognized MIP subfamily (X Intrinsic Proteins, XIPs. Surprisingly also some specific groups within subfamilies present in Arabidopsis thaliana and Zea mays could be identified in P. patens. Conclusion Our results suggest an early diversification of MIPs resulting in a large number of subfamilies already in primitive terrestrial plants. During the evolution of higher plants some of these subfamilies were subsequently lost while the remaining subfamilies expanded and in some cases diversified, resulting in the formation of more specialized groups within these subfamilies.

  12. Analysis of aquaporins from the euryhaline barnacle Balanus improvisus reveals differential expression in response to changes in salinity.

    Directory of Open Access Journals (Sweden)

    Ulrika Lind

    Full Text Available Barnacles are sessile macro-invertebrates, found along rocky shores in coastal areas worldwide. The euryhaline bay barnacle Balanus improvisus (Darwin, 1854 (= Amphibalanus improvisus can tolerate a wide range of salinities, but the molecular mechanisms underlying the osmoregulatory capacity of this truly brackish species are not well understood. Aquaporins are pore-forming integral membrane proteins that facilitate transport of water, small solutes and ions through cellular membranes, and that have been shown to be important for osmoregulation in many organisms. The knowledge of the function of aquaporins in crustaceans is, however, limited and nothing is known about them in barnacles. We here present the repertoire of aquaporins from a thecostracan crustacean, the barnacle B. improvisus, based on genome and transcriptome sequencing. Our analyses reveal that B. improvisus contains eight genes for aquaporins. Phylogenetic analysis showed that they represented members of the classical water aquaporins (Aqp1, Aqp2, the aquaglyceroporins (Glp1, Glp2, the unorthodox aquaporin (Aqp12 and the arthropod-specific big brain aquaporin (Bib. Interestingly, we also found two big brain-like proteins (BibL1 and BibL2 constituting a new group of aquaporins not yet described in arthropods. In addition, we found that the two water-specific aquaporins were expressed as C-terminal splice variants. Heterologous expression of some of the aquaporins followed by functional characterization showed that Aqp1 transported water and Glp2 water and glycerol, agreeing with the predictions of substrate specificity based on 3D modeling and phylogeny. To investigate a possible role for the B. improvisus aquaporins in osmoregulation, mRNA expression changes in adult barnacles were analysed after long-term acclimation to different salinities. The most pronounced expression difference was seen for AQP1 with a substantial (>100-fold decrease in the mantle tissue in low salinity (3

  13. Design measures to facilitate implementation of safeguards at future water cooled nuclear power plants

    International Nuclear Information System (INIS)

    1999-01-01

    The report is intended to present guidelines to the State authorities, designers and prospective purchasers of future water cooled power reactors which, if taken into account, will minimize the impact of IAEA safeguards on plant operation and ensure efficient and effective acquisition of safeguards data to the mutual benefit of the Member State, the plant operator and the IAEA. These guidelines incorporate the IAEA's experience in establishing and carrying out safeguards at currently operating nuclear power plants, the ongoing development of safeguards techniques and feedback of experience from plant operators and designers on the impact of IAEA safeguards on plant operation. The following main subjects are included: The IAEA's safeguards function for current and future nuclear power plants; summary of the political and legal foundations of the IAEA's safeguards system; the technical objective of safeguards and the supply and use of required design information; safeguards approaches for nuclear power plants; design implications of experience in safeguarding nuclear power plants and guidelines for future water cooled reactors to facilitate the implementation of safeguards

  14. Robust High Performance Aquaporin based Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus; Zhao, Yichun; Qiu, C.

    2013-01-01

    on top of a support membrane. Control membranes, either without aquaporins or with the inactive AqpZ R189A mutant aquaporin served as controls. The separation performance of the membranes was evaluated by cross-flow forward osmosis (FO) and reverse osmosis (RO) tests. In RO the ABM achieved a water......Aquaporins are water channel proteins with high water permeability and solute rejection, which makes them promising for preparing high-performance biomimetic membranes. Despite the growing interest in aquaporin-based biomimetic membranes (ABMs), it is challenging to produce robust and defect...... permeability of ~ 4 L/(m2 h bar) with a NaCl rejection > 97% at an applied hydraulic pressure of 5 bar. The water permeability was ~40% higher compared to a commercial brackish water RO membrane (BW30) and an order of magnitude higher compared to a seawater RO membrane (SW30HR). In FO, the ABMs had > 90...

  15. Autophagy pathway induced by a plant virus facilitates viral spread and transmission by its insect vector.

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2017-11-01

    Full Text Available Many viral pathogens are persistently transmitted by insect vectors and cause agricultural or health problems. Generally, an insect vector can use autophagy as an intrinsic antiviral defense mechanism against viral infection. Whether viruses can evolve to exploit autophagy to promote their transmission by insect vectors is still unknown. Here, we show that the autophagic process is triggered by the persistent replication of a plant reovirus, rice gall dwarf virus (RGDV in cultured leafhopper vector cells and in intact insects, as demonstrated by the appearance of obvious virus-containing double-membrane autophagosomes, conversion of ATG8-I to ATG8-II and increased level of autophagic flux. Such virus-containing autophagosomes seem able to mediate nonlytic viral release from cultured cells or facilitate viral spread in the leafhopper intestine. Applying the autophagy inhibitor 3-methyladenine or silencing the expression of Atg5 significantly decrease viral spread in vitro and in vivo, whereas applying the autophagy inducer rapamycin or silencing the expression of Torc1 facilitate such viral spread. Furthermore, we find that activation of autophagy facilitates efficient viral transmission, whereas inhibiting autophagy blocks viral transmission by its insect vector. Together, these results indicate a plant virus can induce the formation of autophagosomes for carrying virions, thus facilitating viral spread and transmission by its insect vector. We believe that such a role for virus-induced autophagy is common for vector-borne persistent viruses during their transmission by insect vectors.

  16. Aquaporin 4 and neuromyelitis optica

    Science.gov (United States)

    Papadopoulos, Marios C; Verkman, A S

    2013-01-01

    Neuromyelitis optica is an inflammatory demyelinating disorder of the CNS. The discovery of circulating IgG1 antibodies against the astrocyte water channel protein aquaporin 4 (AQP4) and the evidence that AQP4-IgG is involved in the development of neuromyelitis optica revolutionised our understanding of the disease. However, important unanswered questions remain—for example, we do not know the cause of AQP4-IgG-negative disease, how astrocyte damage causes demyelination, the role of T cells, why peripheral AQP4-expressing organs are undamaged, and how circulating AQP4-IgG enters neuromyelitis optica lesions. New drug candidates have emerged, such as aquaporumab (non-pathogenic antibody blocker of AQP4-IgG binding), sivelestat (neutrophil elastase inhibitor), and eculizumab (complement inhibitor). Despite rapid progress, randomised clinical trials to test new drugs will be challenging because of the small number of individuals with the disorder. PMID:22608667

  17. Aquaporin-3 and aquaporin-4 are sorted differently and separately in the trans-Golgi network

    DEFF Research Database (Denmark)

    Christensen, Eva Arnspang; Sundbye, S.; Nelson, W. J.

    2013-01-01

    Aquaporin-3 (AQP3) and aquaporin-4 (AQP4) are homologous proteins expressed in the basolateral plasma membrane of kidney collecting duct principal cells, where they mediate the exit pathway for apically reabsorbed water. Although both proteins are localized to the same plasma membrane domain, it ...

  18. Yeast aquaporin regulation by 4-hydroxynonenal is implicated in oxidative stress response.

    Science.gov (United States)

    Rodrigues, Claudia; Tartaro Bujak, Ivana; Mihaljević, Branka; Soveral, Graça; Cipak Gasparovic, Ana

    2017-05-01

    Reactive oxygen species, especially hydrogen peroxide (H 2 O 2 ), contribute to functional molecular impairment and cellular damage, but also are necessary in normal cellular metabolism, and in low doses play stimulatory role in cell proliferation and stress resistance. In parallel, reactive aldehydes such as 4-hydroxynonenal (HNE), are lipid peroxidation breakdown products which also contribute to regulation of numerous cellular processes. Recently, channeling of H 2 O 2 by some mammalian aquaporin isoforms has been reported and suggested to contribute to aquaporin involvement in cancer malignancies, although the mechanism by which these membrane water channels are implicated in oxidative stress is not clear. In this study, two yeast models with increased levels of membrane polyunsaturated fatty acids (PUFAs) and aquaporin AQY1 overexpression, respectively, were used to evaluate their interplay in cell's oxidative status. In particular, the aim of the study was to investigate if HNE accumulation could affect aquaporin function with an outcome in oxidative stress response. The data showed that induction of aquaporin expression by PUFAs results in increased water permeability in yeast membranes and that AQY1 activity is impaired by HNE. Moreover, AQY1 expression increases cellular sensitivity to oxidative stress by facilitating H 2 O 2 influx. On the other hand, AQY1 expression has no influence on the cellular antioxidant GSH levels and catalase activity. These results strongly suggest that aquaporins are important players in oxidative stress response and could contribute to regulation of cellular processes by regulation of H 2 O 2 influx. © 2017 IUBMB Life, 69(5):355-362, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  19. Site fidelity by bees drives pollination facilitation in sequentially blooming plant species.

    Science.gov (United States)

    Ogilvie, Jane E; Thomson, James D

    2016-06-01

    Plant species can influence the pollination and reproductive success of coflowering neighbors that share pollinators. Because some individual pollinators habitually forage in particular areas, it is also possible that plant species could influence the pollination of neighbors that bloom later. When flowers of a preferred forage plant decline in an area, site-fidelity may cause individual flower feeders to stay in an area and switch plant species rather than search for preferred plants in a new location. A newly blooming plant species may quickly inherit a set of visitors from a prior plant species, and therefore experience higher pollination success than it would in an area where the first species never bloomed. To test this, we manipulated the placement and timing of two plant species, Delphinium barbeyi and later-blooming Gentiana parryi. We recorded the responses of individually marked bumble bee pollinators. About 63% of marked individuals returned repeatedly to the same areas to forage on Delphinium. When Delphinium was experimentally taken out of bloom, most of those site-faithful individuals (78%) stayed and switched to Gentiana. Consequently, Gentiana flowers received more visits in areas where Delphinium had previously flowered, compared to areas where Delphinium was still flowering or never occurred. Gentiana stigmas received more pollen in areas where Delphinium disappeared than where it never bloomed, indicating that Delphinium increases the pollination of Gentiana when they are separated in time. Overall, we show that individual bumble bees are often site-faithful, causing one plant species to increase the pollination of another even when separated in time, which is a novel mechanism of pollination facilitation.

  20. Facilitation between woody and herbaceous plants that associate with arbuscular mycorrhizal fungi in temperate European forests.

    Science.gov (United States)

    Veresoglou, Stavros D; Wulf, Monika; Rillig, Matthias C

    2017-02-01

    In late-successional environments, low in available nutrient such as the forest understory, herbaceous plant individuals depend strongly on their mycorrhizal associates for survival. We tested whether in temperate European forests arbuscular mycorrhizal (AM) woody plants might facilitate the establishment of AM herbaceous plants in agreement with the mycorrhizal mediation hypothesis. We used a dataset spanning over 400 vegetation plots in the Weser-Elbe region (northwest Germany). Mycorrhizal status information was obtained from published resources, and Ellenberg indicator values were used to infer environmental data. We carried out tests for both relative richness and relative abundance of herbaceous plants. We found that the subset of herbaceous individuals that associated with AM profited when there was a high cover of AM woody plants. These relationships were retained when we accounted for environmental filtering effects using path analysis. Our findings build on the existing literature highlighting the prominent role of mycorrhiza as a coexistence mechanism in plant communities. From a nature conservation point of view, it may be possible to promote functional diversity in the forest understory through introducing AM woody trees in stands when absent.

  1. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins.

    Science.gov (United States)

    Perez-Martin, Alfonso; Michelazzo, Chiara; Torres-Ruiz, Jose M; Flexas, Jaume; Fernández, José E; Sebastiani, Luca; Diaz-Espejo, Antonio

    2014-07-01

    The hypothesis that aquaporins and carbonic anhydrase (CA) are involved in the regulation of stomatal (g s) and mesophyll (g m) conductance to CO2 was tested in a short-term water-stress and recovery experiment in 5-year-old olive plants (Olea europaea) growing outdoors. The evolution of leaf gas exchange, chlorophyll fluorescence, and plant water status, and a quantitative analysis of photosynthesis limitations, were followed during water stress and recovery. These variables were correlated with gene expression of the aquaporins OePIP1.1 and OePIP2.1, and stromal CA. At mild stress and at the beginning of the recovery period, stomatal limitations prevailed, while the decline in g m accounted for up to 60% of photosynthesis limitations under severe water stress. However, g m was restored to control values shortly after rewatering, facilitating the recovery of the photosynthetic rate. CA was downregulated during water stress and upregulated after recovery. The use of structural equation modelling allowed us to conclude that both OePIP1.1 and OePIP2.1 expression could explain most of the variations observed for g s and g m. CA expression also had a small but significant effect on g m in olive under water-stress conditions. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Testing the importance of plant strategies on facilitation using congeners in a coastal community.

    Science.gov (United States)

    He, Qiang; Cui, Baoshan; Bertness, Mark D; An, Yuan

    2012-09-01

    Much is known about how environmental stress mediates the strength of facilitation, but less is known about how different plant traits affect facilitation. We examined interactions between the shrub Tamarix chinensis and two congeneric forbs (Suaeda salsa and S. glauca) on the Chinese coast. Although S. salsa and S. glauca are both annuals, morphologically similar, and have synchronous phenologies, they have contrasting adaptive strategies. S. glauca is salt intolerant but competitively superior, and S. salsa is salt tolerant but competitively inferior. Field surveys showed that S. glauca was associated with T. chinensis canopies while S. salsa was more abundant in open areas. A T. chinensis removal experiment showed that S. glauca cover was lower and soil salinity higher after two years in removal than in control plots. Transplant experiments showed that S. salsa performance under T. chinensis canopies was reduced by competition from S. glauca and T. chinensis, while in open areas S. glauca was not affected by S. salsa competition. Thus, contrasting competitive abilities and stress tolerances of S. glauca and S. salsa underlie their facilitative and competitive interactions with T. chinensis, suggesting that plant strategies are critical to the outcome of species interactions.

  3. Transplanting native dominant plants to facilitate community development in restored coastal plain wetlands.

    Energy Technology Data Exchange (ETDEWEB)

    De Steven, Diane; Sharitz, Rebecca R.

    2007-12-01

    Abstract: Drained depressional wetlands are typically restored by plugging ditches or breaking drainage tiles to allow recovery of natural ponding regimes, while relying on passive recolonization from seed banks and dispersal to establish emergent vegetation. However, in restored depressions of the southeastern United States Coastal Plain, certain characteristic rhizomatous graminoid species may not recolonize because they are dispersal-limited and uncommon or absent in the seed banks of disturbed sites. We tested whether selectively planting such wetland dominants could facilitate restoration by accelerating vegetative cover development and suppressing non-wetland species. In an operational-scale project in a South Carolina forested landscape, drained depressional wetlands were restored in early 2001 by completely removing woody vegetation and plugging surface ditches. After forest removal, tillers of two rhizomatous wetland grasses (Panicum hemitomon, Leersia hexandra) were transplanted into singlespecies blocks in 12 restored depressions that otherwise were revegetating passively. Presence and cover of all plant species appearing in planted plots and unplanted control plots were recorded annually. We analyzed vegetation composition after two and four years, during a severe drought (2002) and after hydrologic recovery (2004). Most grass plantings established successfully, attaining 15%–85% cover in two years. Planted plots had fewer total species and fewer wetland species compared to control plots, but differences were small. Planted plots achieved greater total vegetative cover during the drought and greater combined cover of wetland species in both years. By 2004, planted grasses appeared to reduce cover of non-wetland species in some cases, but wetter hydrologic conditions contributed more strongly to suppression of non-wetland species. Because these two grasses typically form a dominant cover matrix in herbaceous depressions, our results indicated that

  4. Electrostatic tuning of permeation and selectivity in aquaporin water channels

    DEFF Research Database (Denmark)

    Jensen, Mogens O Stibius; Tajkhorshid, E.; Schulten, K.

    2003-01-01

    Water permeation and electrostatic interactions between water and channel are investigated in the Escherichia coli glycerol uptake facilitator GlpF, a member of the aquaporin water channel family, by molecular dynamics simulations. A tetrameric model of the channel embedded in a 16:0/ 18:1c9...... with the protein electrostatic fields enforce a bipolar water configuration inside the channel with dipole inversion at the NPA motifs. At the NPA motifs water-protein electrostatic interactions facilitate this inversion. Furthermore, water-water electrostatic interactions are in all regions inside the channel...... stronger than water-protein interactions, except near a conserved, positively charged Arg residue. We find that variations of the protein electrostatic field through the channel, owing to preserved structural features, completely explain the bipolar orientation of water. This orientation persists despite...

  5. Facilitating the recovery of natural evergreen forests in South Africa via invader plant stands

    Directory of Open Access Journals (Sweden)

    Coert J. Geldenhuys

    2017-11-01

    Full Text Available Contrary to general belief, planted and naturalized stands of introduced species facilitate the recovery of natural evergreen forests and their diversity. Forest rehabilitation actions are often performed at great cost: mature forest species are planted, while species with adaptations to recover effectively and quickly after severe disturbance are ignored; or stands are cleared of invasive alien species before native tree species are planted. By contrast, cost-effective commercial plantation forestry systems generally use fast-growing pioneer tree species introduced from other natural forest regions. Such planted tree stands often facilitate the recovery of shade-tolerant native forest species. This paper provides a brief overview of disturbance-recovery processes at landscape level, and how pioneer stands of both native and introduced tree species develop from monocultures to diverse mature forest communities. It uses one example of a study of how natural forest species from small forest patches of 3 ha in total invaded a 90-ha stand of the invasive Black wattle, Acacia mearnsii, over a distance of 3.1 ha at Swellendam near Cape Town, South Africa. The study recorded 329 forest species clusters across the wattle stand: more large clusters closer to and more smaller clusters further away from natural forest patches. The 28 recorded forest species (of potentially 40 species in the surrounding forest patches included 79% tree and 21% shrub species. Colonizing forest species had mostly larger fleshy fruit and softer small seeds, and were dispersed by mostly birds and primate species. Maturing forest trees within developing clusters in the wattle stand became a source for forest regeneration away from the clusters, showing different expansion patterns. Four sets of fenced-unfenced plots in the wattle stand showed the impact of browsing by livestock, antelope, rodents and insects on the successful establishment of regenerating forest species, and the

  6. Do Small Canopy Gaps Created by Japanese Black Bears Facilitate Fruiting of Fleshy-Fruited Plants?

    Science.gov (United States)

    Takahashi, Kazuaki; Takahashi, Kaori; Washitani, Izumi

    2015-01-01

    Japanese black bears often break branches when climbing trees and feeding on fruit in canopies, thereby creating small canopy gaps. However, the role of black bear-created canopy gaps has not been evaluated in the context of multiple forest dynamics. Our hypothesis was that small canopy gaps created by black bears improve light conditions, which facilitates fruiting of adult fleshy-fruited plants located beneath the gaps, and also that this chain interaction depends on interactions among the size of gaps, improved light conditions, forest layers, and life form of plants. The rPPFD, size of black bear-created canopy gaps, and fruiting/non-fruiting of fleshy-fruited plants were investigated in five forest layers beneath black-bear-created canopy gaps and closed canopies of Mongolian oak (Quercus crispula). We found that light conditions improved beneath black bear-disturbed trees with canopy gaps of large size, and the effect of improvement of light conditions was reduced with descending forest layers. Fruiting of fleshy-fruited plants, especially woody lianas and trees, was facilitated by the improvement of light conditions accompanied by an increase in the size of black-bear-created gaps. Data from this study revealed that canopy disturbance by black bears was key for improving light conditions and accelerating fruiting of fleshy-fruited trees and woody lianas in the canopy layers in particular. Therefore, our hypothesis was mostly supported. Our results provide evidence that Japanese black bears have high potential as ecosystem engineers that increase the availability of resources (light and fruit in this study) to other species by causing physical state changes in biotic materials (branches of Q. crispula in this study).

  7. Do Small Canopy Gaps Created by Japanese Black Bears Facilitate Fruiting of Fleshy-Fruited Plants?

    Directory of Open Access Journals (Sweden)

    Kazuaki Takahashi

    Full Text Available Japanese black bears often break branches when climbing trees and feeding on fruit in canopies, thereby creating small canopy gaps. However, the role of black bear-created canopy gaps has not been evaluated in the context of multiple forest dynamics. Our hypothesis was that small canopy gaps created by black bears improve light conditions, which facilitates fruiting of adult fleshy-fruited plants located beneath the gaps, and also that this chain interaction depends on interactions among the size of gaps, improved light conditions, forest layers, and life form of plants. The rPPFD, size of black bear-created canopy gaps, and fruiting/non-fruiting of fleshy-fruited plants were investigated in five forest layers beneath black-bear-created canopy gaps and closed canopies of Mongolian oak (Quercus crispula. We found that light conditions improved beneath black bear-disturbed trees with canopy gaps of large size, and the effect of improvement of light conditions was reduced with descending forest layers. Fruiting of fleshy-fruited plants, especially woody lianas and trees, was facilitated by the improvement of light conditions accompanied by an increase in the size of black-bear-created gaps. Data from this study revealed that canopy disturbance by black bears was key for improving light conditions and accelerating fruiting of fleshy-fruited trees and woody lianas in the canopy layers in particular. Therefore, our hypothesis was mostly supported. Our results provide evidence that Japanese black bears have high potential as ecosystem engineers that increase the availability of resources (light and fruit in this study to other species by causing physical state changes in biotic materials (branches of Q. crispula in this study.

  8. Structure and evolution of the plant cation diffusion facilitator family of ion transporters

    Directory of Open Access Journals (Sweden)

    Zanis Michael J

    2011-03-01

    Full Text Available Abstract Background Members of the cation diffusion facilitator (CDF family are integral membrane divalent cation transporters that transport metal ions out of the cytoplasm either into the extracellular space or into internal compartments such as the vacuole. The spectrum of cations known to be transported by proteins of the CDF family include Zn, Fe, Co, Cd, and Mn. Members of this family have been identified in prokaryotes, eukaryotes, and archaea, and in sequenced plant genomes. CDF families range in size from nine members in Selaginella moellendorffii to 19 members in Populus trichocarpa. Phylogenetic analysis suggests that the CDF family has expanded within plants, but a definitive plant CDF family phylogeny has not been constructed. Results Representative CDF members were annotated from diverse genomes across the Viridiplantae and Rhodophyta lineages and used to identify phylogenetic relationships within the CDF family. Bayesian phylogenetic analysis of CDF amino acid sequence data supports organizing land plant CDF family sequences into 7 groups. The origin of the 7 groups predates the emergence of land plants. Among these, 5 of the 7 groups are likely to have originated at the base of the tree of life, and 2 of 7 groups appear to be derived from a duplication event prior to or coincident with land plant evolution. Within land plants, local expansion continues within select groups, while several groups are strictly maintained as one gene copy per genome. Conclusions Defining the CDF gene family phylogeny contributes to our understanding of this family in several ways. First, when embarking upon functional studies of the members, defining primary groups improves the predictive power of functional assignment of orthologous/paralogous genes and aids in hypothesis generation. Second, defining groups will allow a group-specific sequence motif to be generated that will help define future CDF family sequences and aid in functional motif

  9. Woody structure facilitates invasion of woody plants by providing perches for birds.

    Science.gov (United States)

    Prather, Chelse M; Huynh, Andrew; Pennings, Steven C

    2017-10-01

    Woody encroachment threatens prairie ecosystems globally, and thus understanding the mechanisms that facilitate woody encroachment is of critical importance. Coastal tallgrass prairies along the Gulf Coast of the US are currently threatened by the spread of several species of woody plants. We studied a coastal tallgrass prairie in Texas, USA, to determine if existing woody structure increased the supply of seeds from woody plants via dispersal by birds. Specifically, we determined if (i) more seedlings of an invasive tree ( Tridacia sebifera ) are present surrounding a native woody plant ( Myrica cerifera ); (ii) wooden perches increase the quantity of seeds dispersed to a grassland; and (iii) perches alter the composition of the seed rain seasonally in prairie habitats with differing amounts of native and invasive woody vegetation, both underneath and away from artificial wooden perches. More T. sebifera seedlings were found within M. cerifera patches than in graminoid-dominated areas. Although perches did not affect the total number of seeds, perches changed the composition of seed rain to be less dominated by grasses and forbs. Specifically, 20-30 times as many seeds of two invasive species of woody plants were found underneath perches independent of background vegetation, especially during months when seed rain was highest. These results suggest that existing woody structure in a grassland can promote further woody encroachment by enhancing seed dispersal by birds. This finding argues for management to reduce woody plant abundance before exotic plants set seeds and argues against the use of artificial perches as a restoration technique in grasslands threatened by woody species.

  10. Facilitation and competition among invasive plants: a field experiment with alligatorweed and water hyacinth.

    Science.gov (United States)

    Wundrow, Emily J; Carrillo, Juli; Gabler, Christopher A; Horn, Katherine C; Siemann, Evan

    2012-01-01

    Ecosystems that are heavily invaded by an exotic species often contain abundant populations of other invasive species. This may reflect shared responses to a common factor, but may also reflect positive interactions among these exotic species. Armand Bayou (Pasadena, TX) is one such ecosystem where multiple species of invasive aquatic plants are common. We used this system to investigate whether presence of one exotic species made subsequent invasions by other exotic species more likely, less likely, or if it had no effect. We performed an experiment in which we selectively removed exotic rooted and/or floating aquatic plant species and tracked subsequent colonization and growth of native and invasive species. This allowed us to quantify how presence or absence of one plant functional group influenced the likelihood of successful invasion by members of the other functional group. We found that presence of alligatorweed (rooted plant) decreased establishment of new water hyacinth (free-floating plant) patches but increased growth of hyacinth in established patches, with an overall net positive effect on success of water hyacinth. Water hyacinth presence had no effect on establishment of alligatorweed but decreased growth of existing alligatorweed patches, with an overall net negative effect on success of alligatorweed. Moreover, observational data showed positive correlations between hyacinth and alligatorweed with hyacinth, on average, more abundant. The negative effect of hyacinth on alligatorweed growth implies competition, not strong mutual facilitation (invasional meltdown), is occurring in this system. Removal of hyacinth may increase alligatorweed invasion through release from competition. However, removal of alligatorweed may have more complex effects on hyacinth patch dynamics because there were strong opposing effects on establishment versus growth. The mix of positive and negative interactions between floating and rooted aquatic plants may influence local

  11. Facilitation and competition among invasive plants: a field experiment with alligatorweed and water hyacinth.

    Directory of Open Access Journals (Sweden)

    Emily J Wundrow

    Full Text Available Ecosystems that are heavily invaded by an exotic species often contain abundant populations of other invasive species. This may reflect shared responses to a common factor, but may also reflect positive interactions among these exotic species. Armand Bayou (Pasadena, TX is one such ecosystem where multiple species of invasive aquatic plants are common. We used this system to investigate whether presence of one exotic species made subsequent invasions by other exotic species more likely, less likely, or if it had no effect. We performed an experiment in which we selectively removed exotic rooted and/or floating aquatic plant species and tracked subsequent colonization and growth of native and invasive species. This allowed us to quantify how presence or absence of one plant functional group influenced the likelihood of successful invasion by members of the other functional group. We found that presence of alligatorweed (rooted plant decreased establishment of new water hyacinth (free-floating plant patches but increased growth of hyacinth in established patches, with an overall net positive effect on success of water hyacinth. Water hyacinth presence had no effect on establishment of alligatorweed but decreased growth of existing alligatorweed patches, with an overall net negative effect on success of alligatorweed. Moreover, observational data showed positive correlations between hyacinth and alligatorweed with hyacinth, on average, more abundant. The negative effect of hyacinth on alligatorweed growth implies competition, not strong mutual facilitation (invasional meltdown, is occurring in this system. Removal of hyacinth may increase alligatorweed invasion through release from competition. However, removal of alligatorweed may have more complex effects on hyacinth patch dynamics because there were strong opposing effects on establishment versus growth. The mix of positive and negative interactions between floating and rooted aquatic plants may

  12. Divalent Cations Regulate the Ion Conductance Properties of Diverse Classes of Aquaporins

    Directory of Open Access Journals (Sweden)

    Mohamad Kourghi

    2017-11-01

    Full Text Available Aquaporins (AQPs are known to facilitate water and solute fluxes across barrier membranes. An increasing number of AQPs are being found to serve as ion channels. Ion and water permeability of selected plant and animal AQPs (plant Arabidopsis thaliana AtPIP2;1, AtPIP2;2, AtPIP2;7, human Homo sapiens HsAQP1, rat Rattus norvegicus RnAQP4, RnAQP5, and fly Drosophila melanogaster DmBIB were expressed in Xenopus oocytes and examined in chelator-buffered salines to evaluate the effects of divalent cations (Ca2+, Mg2+, Ba2+ and Cd2+ on ionic conductances. AtPIP2;1, AtPIP2;2, HsAQP1 and DmBIB expressing oocytes had ionic conductances, and showed differential sensitivity to block by external Ca2+. The order of potency of inhibition by Ca2+ was AtPIP2;2 > AtPIP2;1 > DmBIB > HsAQP1. Blockage of the AQP cation channels by Ba2+ and Cd2+ caused voltage-sensitive outward rectification. The channels with the highest sensitivity to Ca2+ (AtPIP2;1 and AtPIP2;2 showed a distinctive relief of the Ca2+ block by co-application of excess Ba2+, suggesting that divalent ions act at the same site. Recognizing the regulatory role of divalent cations may enable the discovery of other classes of AQP ion channels, and facilitate the development of tools for modulating AQP ion channels. Modulators of AQPs have potential value for diverse applications including improving salinity tolerance in plants, controlling vector-borne diseases, and intervening in serious clinical conditions involving AQPs, such as cancer metastasis, cardiovascular or renal dysfunction.

  13. Dipteran larvae and microbes facilitate nutrient sequestration in the Nepenthes gracilis pitcher plant host.

    Science.gov (United States)

    Lam, Weng Ngai; Chong, Kwek Yan; Anand, Ganesh S; Tan, Hugh Tiang Wah

    2017-03-01

    The fluid-containing traps of Nepenthes carnivorous pitcher plants (Nepenthaceae) are often inhabited by organisms known as inquilines. Dipteran larvae are key components of such communities and are thought to facilitate pitcher nitrogen sequestration by converting prey protein into inorganic nitrogen, although this has never been demonstrated in Nepenthes Pitcher fluids are also inhabited by microbes, although the relationship(s) between these and the plant is still unclear. In this study, we examined the hypothesis of digestive mutualism between N. gracilis pitchers and both dipteran larvae and fluid microbes. Using dipteran larvae, prey and fluid volumes mimicking in situ pitcher conditions, we conducted in vitro experiments and measured changes in available fluid nitrogen in response to dipteran larvae and microbe presence. We showed that the presence of dipteran larvae resulted in significantly higher and faster releases of ammonium and soluble protein into fluids in artificial pitchers, and that the presence of fluid microbes did likewise for ammonium. We showed also that niche segregation occurs between phorid and culicid larvae, with the former fragmenting prey carcasses and the latter suppressing fluid microbe levels. These results clarify the relationships between several key pitcher-dwelling organisms, and show that pitcher communities facilitate nutrient sequestration in their host. © 2017 The Author(s).

  14. Aquaporin-2 regulation in health and disease

    DEFF Research Database (Denmark)

    Radin, M J; Yu, Ming-Jiun; Stødkilde-Jørgensen, Lene

    2012-01-01

    Aquaporin-2 (AQP2), the vasopressin-regulated water channel of the renal collecting duct, is dysregulated in numerous disorders of water balance in people and animals, including those associated with polyuria (urinary tract obstruction, hypokalemia, inflammation, and lithium toxicity) and with di......Aquaporin-2 (AQP2), the vasopressin-regulated water channel of the renal collecting duct, is dysregulated in numerous disorders of water balance in people and animals, including those associated with polyuria (urinary tract obstruction, hypokalemia, inflammation, and lithium toxicity...

  15. Desalination by biomimetic aquaporin membranes: Review of status and prospects

    DEFF Research Database (Denmark)

    Tang, C.Y.; Zhao, Y.; Wang, R.

    2013-01-01

    Based on their unique combination of offering high water permeability and high solute rejection aquaporin proteins have attracted considerable interest over the last years as functional building blocks of biomimetic membranes for water desalination and reuse. The purpose of this review is to prov......Based on their unique combination of offering high water permeability and high solute rejection aquaporin proteins have attracted considerable interest over the last years as functional building blocks of biomimetic membranes for water desalination and reuse. The purpose of this review...... is to provide an overview of the properties of aquaporins, their preparation and characterization. We discuss the challenges in exploiting the remarkable properties of aquaporin proteins for membrane separation processes and we present various attempts to construct aquaporin in membranes for desalination......; including an overview of our own recent developments in aquaporin-based membranes. Finally we outline future prospects of aquaporin based biomimetic membrane for desalination and water reuse....

  16. Water fluxes through aquaporin-9 prime epithelial cells for rapid wound healing

    DEFF Research Database (Denmark)

    Karlsson, T.; Lagerholm, B. C.; Vikstrom, E.

    2013-01-01

    Cells move along surfaces both as single cells and multi-cellular units. Recent research points toward pivotal roles for water flux through aquaporins (AQPs) in single cell migration. Their expression is known to facilitate this process by promoting rapid shape changes. However, little is known...... wound healing based on AQP-induced swelling and expansion of the monolayer. (C) 2012 Elsevier Inc. All rights reserved....

  17. Novel Regulation of Aquaporins during Osmotic Stress1

    Science.gov (United States)

    Vera-Estrella, Rosario; Barkla, Bronwyn J.; Bohnert, Hans J.; Pantoja, Omar

    2004-01-01

    Aquaporin protein regulation and redistribution in response to osmotic stress was investigated. Ice plant (Mesembryanthemum crystallinum) McTIP1;2 (McMIPF) mediated water flux when expressed in Xenopus leavis oocytes. Mannitol-induced water imbalance resulted in increased protein amounts in tonoplast fractions and a shift in protein distribution to other membrane fractions, suggesting aquaporin relocalization. Indirect immunofluorescence labeling also supports a change in membrane distribution for McTIP1;2 and the appearance of a unique compartment where McTIP1;2 is expressed. Mannitol-induced redistribution of McTIP1;2 was arrested by pretreatment with brefeldin A, wortmannin, and cytochalasin D, inhibitors of vesicle trafficking-related processes. Evidence suggests a role for glycosylation and involvement of a cAMP-dependent signaling pathway in McTIP1;2 redistribution. McTIP1;2 redistribution to endosomal compartments may be part of a homeostatic process to restore and maintain cellular osmolarity under osmotic-stress conditions. PMID:15299122

  18. NH3 and NH4+ permeability in aquaporin-expressing Xenopus oocytes

    DEFF Research Database (Denmark)

    Holm, Lars M.; Jahn, Thomas Paul; Møller, Anders Laurell Blom

    2005-01-01

    We have shown recently, in a yeast expression system, that some aquaporins are permeable to ammonia. In the present study, we expressed the mammalian aquaporins AQP8, AQQP9, AQP3, AQP1 and a plant aquaporin TIP2;1 in Xenopus oocytes to study the transport of ammonia (NH3) and ammonium (NH4+) under...... inwards currents carried by NH4+. This conductivity increased as a sigmoid function of external [NH3]: for AQP8 at a bath pH (pH(e)) of 6.5, the conductance was abolished, at pH(e) 7.4 it was half maximal and at pH(e) 7.8 it saturated. NY4+ influx was associated with oocyte swelling. In comparison, native...... oocytes as well as AQP1 and tip2;1-expressing oocytes showed small currents that were associated with small and even negative volume changes. We conclude that AQP8, AQP9, AQP3, and TIP2;1, apart from being water channels, also support significant fluxes of NH3. These aquaporins could support NH4...

  19. Boron Toxicity Tolerance in Barley through Reduced Expression of the Multifunctional Aquaporin HvNIP2;11[W

    Science.gov (United States)

    Schnurbusch, Thorsten; Hayes, Julie; Hrmova, Maria; Baumann, Ute; Ramesh, Sunita A.; Tyerman, Stephen D.; Langridge, Peter; Sutton, Tim

    2010-01-01

    Boron (B) toxicity is a significant limitation to cereal crop production in a number of regions worldwide. Here we describe the cloning of a gene from barley (Hordeum vulgare), underlying the chromosome 6H B toxicity tolerance quantitative trait locus. It is the second B toxicity tolerance gene identified in barley. Previously, we identified the gene Bot1 that functions as an efflux transporter in B toxicity-tolerant barley to move B out of the plant. The gene identified in this work encodes HvNIP2;1, an aquaporin from the nodulin-26-like intrinsic protein (NIP) subfamily that was recently described as a silicon influx transporter in barley and rice (Oryza sativa). Here we show that a rice mutant for this gene also shows reduced B accumulation in leaf blades compared to wild type and that the mutant protein alters growth of yeast (Saccharomyces cerevisiae) under high B. HvNIP2;1 facilitates significant transport of B when expressed in Xenopus oocytes compared to controls and to another NIP (NOD26), and also in yeast plasma membranes that appear to have relatively high B permeability. We propose that tolerance to high soil B is mediated by reduced expression of HvNIP2;1 to limit B uptake, as well as by increased expression of Bot1 to remove B from roots and sensitive tissues. Together with Bot1, the multifunctional aquaporin HvNIP2;1 is an important determinant of B toxicity tolerance in barley. PMID:20581256

  20. Overexpression of Laccaria bicolor aquaporin JQ585595 alters root water transport properties in ectomycorrhizal white spruce (Picea glauca) seedlings.

    Science.gov (United States)

    Xu, Hao; Kemppainen, Minna; El Kayal, Walid; Lee, Seong Hee; Pardo, Alejandro G; Cooke, Janice E K; Zwiazek, Janusz J

    2015-01-01

    The contribution of hyphae to water transport in ectomycorrhizal (ECM) white spruce (Picea glauca) seedlings was examined by altering expression of a major water-transporting aquaporin in Laccaria bicolor. Picea glauca was inoculated with wild-type (WT), mock transgenic or L. bicolor aquaporin JQ585595-overexpressing (OE) strains and exposed to root temperatures ranging from 5 to 20°C to examine the root water transport properties, physiological responses and plasma membrane intrinsic protein (PIP) expression in colonized plants. Mycorrhization increased shoot water potential, transpiration, net photosynthetic rates, root hydraulic conductivity and root cortical cell hydraulic conductivity in seedlings. At 20°C, OE plants had higher root hydraulic conductivity compared with WT plants and the increases were accompanied by higher expression of P. glauca PIP GQ03401_M18.1 in roots. In contrast to WT L. bicolor, the effects of OE fungi on root and root cortical cell hydraulic conductivities were abolished at 10 and 5°C in the absence of major changes in the examined transcript levels of P. glauca root PIPs. The results provide evidence for the importance of fungal aquaporins in root water transport of mycorrhizal plants. They also demonstrate links between hyphal water transport, root aquaporin expression and root water transport in ECM plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  1. A conserved fungal glycosyltransferase facilitates pathogenesis of plants by enabling hyphal growth on solid surfaces.

    Directory of Open Access Journals (Sweden)

    Robert King

    2017-10-01

    Full Text Available Pathogenic fungi must extend filamentous hyphae across solid surfaces to cause diseases of plants. However, the full inventory of genes which support this is incomplete and many may be currently concealed due to their essentiality for the hyphal growth form. During a random T-DNA mutagenesis screen performed on the pleomorphic wheat (Triticum aestivum pathogen Zymoseptoria tritici, we acquired a mutant unable to extend hyphae specifically when on solid surfaces. In contrast "yeast-like" growth, and all other growth forms, were unaffected. The inability to extend surface hyphae resulted in a complete loss of virulence on plants. The affected gene encoded a predicted type 2 glycosyltransferase (ZtGT2. Analysis of >800 genomes from taxonomically diverse fungi highlighted a generally widespread, but discontinuous, distribution of ZtGT2 orthologues, and a complete absence of any similar proteins in non-filamentous ascomycete yeasts. Deletion mutants of the ZtGT2 orthologue in the taxonomically un-related fungus Fusarium graminearum were also severely impaired in hyphal growth and non-pathogenic on wheat ears. ZtGT2 expression increased during filamentous growth and electron microscopy on deletion mutants (ΔZtGT2 suggested the protein functions to maintain the outermost surface of the fungal cell wall. Despite this, adhesion to leaf surfaces was unaffected in ΔZtGT2 mutants and global RNAseq-based gene expression profiling highlighted that surface-sensing and protein secretion was also largely unaffected. However, ΔZtGT2 mutants constitutively overexpressed several transmembrane and secreted proteins, including an important LysM-domain chitin-binding virulence effector, Zt3LysM. ZtGT2 likely functions in the synthesis of a currently unknown, potentially minor but widespread, extracellular or outer cell wall polysaccharide which plays a key role in facilitating many interactions between plants and fungi by enabling hyphal growth on solid matrices.

  2. A conserved fungal glycosyltransferase facilitates pathogenesis of plants by enabling hyphal growth on solid surfaces

    Science.gov (United States)

    Plummer, Amy; Halsey, Kirstie; Lovegrove, Alison; Hammond-Kosack, Kim

    2017-01-01

    Pathogenic fungi must extend filamentous hyphae across solid surfaces to cause diseases of plants. However, the full inventory of genes which support this is incomplete and many may be currently concealed due to their essentiality for the hyphal growth form. During a random T-DNA mutagenesis screen performed on the pleomorphic wheat (Triticum aestivum) pathogen Zymoseptoria tritici, we acquired a mutant unable to extend hyphae specifically when on solid surfaces. In contrast “yeast-like” growth, and all other growth forms, were unaffected. The inability to extend surface hyphae resulted in a complete loss of virulence on plants. The affected gene encoded a predicted type 2 glycosyltransferase (ZtGT2). Analysis of >800 genomes from taxonomically diverse fungi highlighted a generally widespread, but discontinuous, distribution of ZtGT2 orthologues, and a complete absence of any similar proteins in non-filamentous ascomycete yeasts. Deletion mutants of the ZtGT2 orthologue in the taxonomically un-related fungus Fusarium graminearum were also severely impaired in hyphal growth and non-pathogenic on wheat ears. ZtGT2 expression increased during filamentous growth and electron microscopy on deletion mutants (ΔZtGT2) suggested the protein functions to maintain the outermost surface of the fungal cell wall. Despite this, adhesion to leaf surfaces was unaffected in ΔZtGT2 mutants and global RNAseq-based gene expression profiling highlighted that surface-sensing and protein secretion was also largely unaffected. However, ΔZtGT2 mutants constitutively overexpressed several transmembrane and secreted proteins, including an important LysM-domain chitin-binding virulence effector, Zt3LysM. ZtGT2 likely functions in the synthesis of a currently unknown, potentially minor but widespread, extracellular or outer cell wall polysaccharide which plays a key role in facilitating many interactions between plants and fungi by enabling hyphal growth on solid matrices. PMID:29020037

  3. Two putative-aquaporin genes are differentially expressed during arbuscular mycorrhizal symbiosis in Lotus japonicus

    Directory of Open Access Journals (Sweden)

    Giovannetti Marco

    2012-10-01

    Full Text Available Abstract Background Arbuscular mycorrhizas (AM are widespread symbioses that provide great advantages to the plant, improving its nutritional status and allowing the fungus to complete its life cycle. Nevertheless, molecular mechanisms that lead to the development of AM symbiosis are not yet fully deciphered. Here, we have focused on two putative aquaporin genes, LjNIP1 and LjXIP1, which resulted to be upregulated in a transcriptomic analysis performed on mycorrhizal roots of Lotus japonicus. Results A phylogenetic analysis has shown that the two putative aquaporins belong to different functional families: NIPs and XIPs. Transcriptomic experiments have shown the independence of their expression from their nutritional status but also a close correlation with mycorrhizal and rhizobial interaction. Further transcript quantification has revealed a good correlation between the expression of one of them, LjNIP1, and LjPT4, the phosphate transporter which is considered a marker gene for mycorrhizal functionality. By using laser microdissection, we have demonstrated that one of the two genes, LjNIP1, is expressed exclusively in arbuscule-containing cells. LjNIP1, in agreement with its putative role as an aquaporin, is capable of transferring water when expressed in yeast protoplasts. Confocal analysis have demonstrated that eGFP-LjNIP1, under its endogenous promoter, accumulates in the inner membrane system of arbusculated cells. Conclusions Overall, the results have shown different functionality and expression specificity of two mycorrhiza-inducible aquaporins in L. japonicus. One of them, LjNIP1 can be considered a novel molecular marker of mycorrhizal status at different developmental stages of the arbuscule. At the same time, LjXIP1 results to be the first XIP family aquaporin to be transcriptionally regulated during symbiosis.

  4. Aquaporins and root water uptake

    Science.gov (United States)

    Water is one of the most critical resources limiting plant growth and crop productivity, and root water uptake is an important aspect of plant physiology governing plant water use and stress tolerance. Pathways of root water uptake are complex and are affected by root structure and physiological res...

  5. Moving forward on facilitation research: response to changing environments and effects on the diversity, functioning and evolution of plant communities

    Science.gov (United States)

    Soliveres, Santiago; Smit, Christian; Maestre, Fernando T.

    2015-01-01

    Once seen as anomalous, facilitative interactions among plants and their importance for community structure and functioning are now widely recognized. The growing body of modelling, descriptive and experimental studies on facilitation covers a wide variety of terrestrial and aquatic systems throughout the globe. However, the lack of a general body of theory linking facilitation among different types of organisms and biomes and their responses to environmental changes prevents further advances in our knowledge regarding the evolutionary and ecological implications of facilitation in plant communities. Moreover, insights gathered from alternative lines of inquiry may substantially improve our understanding of facilitation, but these have been largely neglected thus far. Despite over 15 years of research and debate on this topic, there is no consensus on the degree to which plant–plant interactions change predictably along environmental gradients (i.e. the stress-gradient hypothesis), and this hinders our ability to predict how plant–plant interactions may affect the response of plant communities to ongoing global environmental change. The existing controversies regarding the response of plant–plant interactions across environmental gradients can be reconciled when clearly considering and determining the species-specificity of the response, the functional or individual stress type, and the scale of interest (pairwise interactions or community-level response). Here, we introduce a theoretical framework to do this, supported by multiple lines of empirical evidence. We also discuss current gaps in our knowledge regarding how plant–plant interactions change along environmental gradients. These include the existence of thresholds in the amount of species-specific stress that a benefactor can alleviate, the linearity or non-linearity of the response of pairwise interactions across distance from the ecological optimum of the beneficiary, and the need to explore

  6. Role of co-occurring competition and facilitation in plant spacing hydrodynamics in water-limited environments

    Science.gov (United States)

    2017-01-01

    Plant performance (i.e., fecundity, growth, survival) depends on an individual’s access to space and resources. At the community level, plant performance is reflected in observable vegetation patterning (i.e., spacing distance, density) often controlled by limiting resources. Resource availability is, in turn, strongly dependent on plant patterning mediated by competitive and facilitative plant–plant interactions. Co-occurring competition and facilitation has never been specifically investigated from a hydrodynamic perspective. To address this knowledge gap, and to overcome limitations of field studies, three intermediate-scale laboratory experiments were conducted using a climate-controlled wind tunnel–porous media test facility to simulate the soil–plant–atmosphere continuum. The spacing between two synthetic plants, a design consideration introduced by the authors in a recent publication, was varied between experiments; edaphic and mean atmospheric conditions were held constant. The strength of the above- and belowground plant–plant interactions changed with spacing distance, allowing the creation of a hydrodynamic conceptual model based on established ecological theories. Greatest soil water loss was observed for the experiment with the smallest spacing where competition dominated. Facilitation dominated at the intermediate spacing; little to no interactions were observed for the largest plant spacing. Results suggest that there exists an optimal spacing distance range that lowers plant environmental stress, thus improving plant performance through reduced atmospheric demand and conservation of available soil water. These findings may provide a foundation for improving our understanding of many climatological, ecohydrological, and hydrological problems pertaining to the hydrodynamics of water-limited environments where plant–plant interactions and community self-organization are important. PMID:28807999

  7. PIP1 and PIP2 aquaporins are differentially expressed during tobacco anther and stigma development.

    Science.gov (United States)

    Bots, Marc; Feron, Richard; Uehlein, Norbert; Weterings, Koen; Kaldenhoff, Ralf; Mariani, Titti

    2005-01-01

    Several processes during sexual reproduction in higher plants involve the movement of water between cells or tissues, such as occurs during dehiscence of the anther and hydration of the pollen grain after it is deposited on a stigma. To get more insight in these processes, a set of putative aquaporins was cloned and it was found that at least 15 are expressed in reproductive organs, which indicates that the control of water flow is important for reproduction. Functional studies in Xenopus laevis oocytes using two of the cDNAs showed that NtPIP2;1 is an efficient aquaporin, whereas NtPIP1;1 is not. Expression studies on RNA and protein levels showed that PIP1 and PIP2 genes are differently expressed in reproductive organs: PIP1 RNA accumulates in the stigma, and PIP1 and PIP2 RNA can be detected in most tissues of the anther.

  8. Novel Commercial Aquaporin Flat-Sheet Membrane for Forward Osmosis

    DEFF Research Database (Denmark)

    Xia, Lingling; Andersen, Mads Friis; Hélix-Nielsen, Claus

    2017-01-01

    Aquaporin proteins are of great interest to the membrane science community because of their unique characteristics of high water permeability and perfect molecular selectivity. Although these characteristics make aquaporins particularly valuable for desalination applications, none of these aquapo...... was found to exhibit water and reverse solute flux performances similar to those of other commercially available varieties, although this membrane represents one of the few TFC membranes that is available to the academic community for FO testing at the time of this writing.......Aquaporin proteins are of great interest to the membrane science community because of their unique characteristics of high water permeability and perfect molecular selectivity. Although these characteristics make aquaporins particularly valuable for desalination applications, none...... of these aquaporin-based membrane designs has been produced at a large scale. In this work, we report on the recently designed and commercially available Aquaporin Inside flat-sheet membrane designed for forward osmosis (FO) by Aquaporin A/S, Lyngby, Denmark. The Aquaporin Inside flat-sheet membrane is the first...

  9. Microhabitat amelioration and reduced competition among understorey plants as drivers of facilitation across environmental gradients: towards a unifying framework

    Science.gov (United States)

    Soliveres, Santiago; Eldridge, David J.; Maestre, Fernando T.; Bowker, Matthew A.; Tighe, Matthew; Escudero, Adrián

    2015-01-01

    Studies of facilitative interactions as drivers of plant richness along environmental gradients often assume the existence of an overarching stress gradient equally affecting the performance of all the species in a given community. However, co-existing species differ in their ecophysiological adaptations, and do not experience the same stress level under particular environmental conditions. Moreover, these studies assume a unimodal richness-biomass curve, which is not as general as previously thought. We ignored these assumptions to assess changes in plant-plant interactions, and their effect on local species richness, across environmental gradients in semi-arid areas of Spain and Australia. We aimed to understand the relative importance of direct (microhabitat amelioration) and indirect (changes in the competitive relationships among the understorey species: niche segregation, competitive exclusion or intransitivity) mechanisms that might underlie the effects of nurse plants on local species richness. By jointly studying these direct and indirect mechanisms using a unifying framework, we were able to see how our nurse plants (trees, shrubs and tussock grasses) not only increased local richness by expanding the niche of neighbouring species, but also by increasing niche segregation among them, though the latter was not important in all cases. The outcome of the competition-facilitation continuum changed depending on the study area, likely because the different types of stress gradient considered. When driven by both rainfall and temperature, or rainfall alone, the community-wide importance of nurse plants remained constant (Spanish sites), or showed a unimodal relationship along the gradient (Australian sites). This study expands our understanding of the relative roles of plant-plant interactions and environmental conditions as drivers of local species richness in semi-arid environments. These results can also be used to refine predictions about the response of

  10. Microhabitat amelioration and reduced competition among understorey plants as drivers of facilitation across environmental gradients: towards a unifying framework.

    Science.gov (United States)

    Soliveres, Santiago; Eldridge, David J; Maestre, Fernando T; Bowker, Matthew A; Tighe, Matthew; Escudero, Adrián

    2011-11-20

    Studies of facilitative interactions as drivers of plant richness along environmental gradients often assume the existence of an overarching stress gradient equally affecting the performance of all the species in a given community. However, co-existing species differ in their ecophysiological adaptations, and do not experience the same stress level under particular environmental conditions. Moreover, these studies assume a unimodal richness-biomass curve, which is not as general as previously thought. We ignored these assumptions to assess changes in plant-plant interactions, and their effect on local species richness, across environmental gradients in semi-arid areas of Spain and Australia. We aimed to understand the relative importance of direct (microhabitat amelioration) and indirect (changes in the competitive relationships among the understorey species: niche segregation, competitive exclusion or intransitivity) mechanisms that might underlie the effects of nurse plants on local species richness. By jointly studying these direct and indirect mechanisms using a unifying framework, we were able to see how our nurse plants (trees, shrubs and tussock grasses) not only increased local richness by expanding the niche of neighbouring species, but also by increasing niche segregation among them, though the latter was not important in all cases. The outcome of the competition-facilitation continuum changed depending on the study area, likely because the different types of stress gradient considered. When driven by both rainfall and temperature, or rainfall alone, the community-wide importance of nurse plants remained constant (Spanish sites), or showed a unimodal relationship along the gradient (Australian sites). This study expands our understanding of the relative roles of plant-plant interactions and environmental conditions as drivers of local species richness in semi-arid environments. These results can also be used to refine predictions about the response of

  11. Acclimation of a terrestrial plant to submergence facilitates gas exchange under water

    NARCIS (Netherlands)

    Mommer, L.; Pedersen, O.; Visser, E.J.W.

    2004-01-01

    Flooding imposes stress upon terrestrial plants since it severely hampers gas exchange rates between the shoot and the environment. The resulting oxygen deficiency is considered to be the major problem for submerged plants. Oxygen microelectrode studies have, however, shown that aquatic plants

  12. Role of aquaporins in oral cancer

    Directory of Open Access Journals (Sweden)

    Mamatha G. S. Reddy

    2017-01-01

    Full Text Available Aquaporins (AQP are the membrane proteins involved in the transport of water and some neutral solutes. Thirteen types of AQP are identified in various human tissues. The expression of AQP's has been studied in various tumors among one is oral cancer. These molecules are involved in cell proliferation, migration, and metastasis. AQP target inhibitors act directly or indirectly through focal adhesion kinase-mitogen-activated protein kinase signaling pathway and shown promising results along with anti-cancer drugs. However, further researches were required to verify the efficiency and safety of these AQPs-target inhibitors in clinical therapy.

  13. Acclimation of a terrestrial plant to submergence facilitates gas exchange under water

    DEFF Research Database (Denmark)

    Mommer, L.; Pedersen, O.; Visser, E. J. W.

    2004-01-01

    Flooding imposes stress upon terrestrial plants since it severely hampers gas exchange rates between the shoot and the environment. The resulting oxygen deficiency is considered to be the major problem for submerged plants. Oxygen microelectrode studies have, however, shown that aquatic plants...... of this terrestrial plant species to submergence for gas exchange capacity is also shown. Shoot acclimation to submergence involved a reduction of the diffusion resistance to gases, which was not only functional by increasing diffusion of oxygen into the plant, but also by increasing influx of CO2, which enhances...... maintain relatively high internal oxygen pressures under water, and even may release oxygen via the roots into the sediment, also in dark. Based on these results, we challenge the dogma that oxygen pressures in submerged terrestrial plants immediately drop to levels at which aerobic respiration is impaired...

  14. Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores

    OpenAIRE

    Li, Ran; Zhang, Jin; Li, Jiancai; Zhou, Guoxin; Wang, Qi; Bian, Wenbo; Erb, Matthias; Lou, Yonggen

    2015-01-01

    eLife digest Many different animals feed on plants, including almost half of all known insect species. Some herbivores?like caterpillars for example?feed by chewing. Others, such as aphids and planthoppers, use syringe-like mouthparts to pierce plants and then feed on the fluids within. To minimize the damage caused by these herbivores, plants activate specific defenses upon attack, including proteins that can inhibit the insect's digestive enzymes. The inhibitors are effective against chewin...

  15. Renal aquaporins and water balance disorders

    DEFF Research Database (Denmark)

    Kortenoeven, Marleen; Fenton, Robert A.

    2013-01-01

    BACKGROUND: Aquaporins (AQPs) are a family of proteins that can act as water channels. Regulation of AQPs is critical to osmoregulation and the maintenance of body water homeostasis. Eight AQPs are expressed in the kidney of which five have been shown to play a role in body water balance; AQP1, A......-solute diet and diuretics. GENERAL SIGNIFICANCE: In recent years, our understanding of the underlying mechanisms of water balance disorders has increased enormously, which has opened up several possible new treatment strategies.......BACKGROUND: Aquaporins (AQPs) are a family of proteins that can act as water channels. Regulation of AQPs is critical to osmoregulation and the maintenance of body water homeostasis. Eight AQPs are expressed in the kidney of which five have been shown to play a role in body water balance; AQP1, AQP......2, AQP3, AQP4 and AQP7. AQP2 in particular is regulated by vasopressin. SCOPE OF REVIEW: This review summarizes our current knowledge of the underlying mechanisms of various water balance disorders and their treatment strategies. MAJOR CONCLUSIONS: Dysfunctions of AQPs are involved in disorders...

  16. Compartmentalization of Aquaporins in the Human Intestine

    Directory of Open Access Journals (Sweden)

    Rajendram V. Rajnarayanan

    2008-06-01

    Full Text Available Improper localization of water channel proteins called aquaporins (AQP induce mucosal injury which is implicated in Crohn’s disease and ulcerative colitis. The amino acid sequences of AQP3 and AQP10 are 79% similar and belong to the mammalian aquaglyceroporin subfamily. AQP10 is localized on the apical compartment of the intestinal epithelium called the glycocalyx while AQP3 is selectively targeted to the basolateral membrane. Despite the high sequence similarity and evolutionary relatedness, the molecular mechanism involved in the polarity, selective targeting and function of AQP3 and AQP10 in the intestine is largely unknown. Our hypothesis is that the differential polarity and selective targeting of AQP3 and AQP10 in the intestinal epithelial cells is influenced by amino acid signal motifs. We performed sequence and structural alignments to determine differences in signals for localization and posttranslational glycosylation. The basolateral sorting motif “YRLL” is present in AQP3 but absent in AQP10; while Nglycosylation signals are present in AQP10 but absent in AQP3. Furthermore, the C-terminal region of AQP3 is longer compared to AQP10. The sequence and structural differences between AQP3 and AQP10 provide insights into the differential compartmentalization and function of these two aquaporins commonly expressed in human intestines.

  17. Polyphenols as Modulators of Aquaporin Family in Health and Disease.

    Science.gov (United States)

    Fiorentini, Diana; Zambonin, Laura; Dalla Sega, Francesco Vieceli; Hrelia, Silvana

    2015-01-01

    Polyphenols are bioactive molecules widely distributed in fruits, vegetables, cereals, and beverages. Polyphenols in food sources are extensively studied for their role in the maintenance of human health and in the protection against development of chronic/degenerative diseases. Polyphenols act mainly as antioxidant molecules, protecting cell constituents against oxidative damage. The enormous number of polyphenolic compounds leads to huge different mechanisms of action not fully understood. Recently, some evidence is emerging about the role of polyphenols, such as curcumin, pinocembrin, resveratrol, and quercetin, in modulating the activity of some aquaporin (AQP) isoforms. AQPs are integral, small hydrophobic water channel proteins, extensively expressed in many organs and tissues, whose major function is to facilitate the transport of water or glycerol over cell plasma membranes. Here we summarize AQP physiological functions and report emerging evidence on the implication of these proteins in a number of pathophysiological processes. In particular, this review offers an overview about the role of AQPs in brain, eye, skin diseases, and metabolic syndrome, focusing on the ability of polyphenols to modulate AQP expression. This original analysis can contribute to elucidating some peculiar effects exerted by polyphenols and can lead to the development of an innovative potential preventive/therapeutic strategy.

  18. Polyphenols as Modulators of Aquaporin Family in Health and Disease

    Directory of Open Access Journals (Sweden)

    Diana Fiorentini

    2015-01-01

    Full Text Available Polyphenols are bioactive molecules widely distributed in fruits, vegetables, cereals, and beverages. Polyphenols in food sources are extensively studied for their role in the maintenance of human health and in the protection against development of chronic/degenerative diseases. Polyphenols act mainly as antioxidant molecules, protecting cell constituents against oxidative damage. The enormous number of polyphenolic compounds leads to huge different mechanisms of action not fully understood. Recently, some evidence is emerging about the role of polyphenols, such as curcumin, pinocembrin, resveratrol, and quercetin, in modulating the activity of some aquaporin (AQP isoforms. AQPs are integral, small hydrophobic water channel proteins, extensively expressed in many organs and tissues, whose major function is to facilitate the transport of water or glycerol over cell plasma membranes. Here we summarize AQP physiological functions and report emerging evidence on the implication of these proteins in a number of pathophysiological processes. In particular, this review offers an overview about the role of AQPs in brain, eye, skin diseases, and metabolic syndrome, focusing on the ability of polyphenols to modulate AQP expression. This original analysis can contribute to elucidating some peculiar effects exerted by polyphenols and can lead to the development of an innovative potential preventive/therapeutic strategy.

  19. Aquaporin 2 promotes cell migration and epithelial morphogenesis.

    Science.gov (United States)

    Chen, Ying; Rice, William; Gu, Zhizhan; Li, Jian; Huang, Jianmin; Brenner, Michael B; Van Hoek, Alfred; Xiong, Jianping; Gundersen, Gregg G; Norman, Jim C; Hsu, Victor W; Fenton, Robert A; Brown, Dennis; Lu, Hua A Jenny

    2012-09-01

    The aquaporin 2 (AQP2) water channel, expressed in kidney collecting ducts, contributes critically to water homeostasis in mammals. Animals lacking or having significantly reduced levels of AQP2, however, have not only urinary concentrating abnormalities but also renal tubular defects that lead to neonatal mortality from renal failure. Here, we show that AQP2 is not only a water channel but also an integrin-binding membrane protein that promotes cell migration and epithelial morphogenesis. AQP2 expression modulates the trafficking and internalization of integrin β1, facilitating its turnover at focal adhesions. In vitro, disturbing the interaction between AQP2 and integrin β1 by mutating the RGD motif led to reduced endocytosis, retention of integrin β1 at the cell surface, and defective cell migration and tubulogenesis. Similarly, in vivo, AQP2-null mice exhibited significant retention of integrin β1 at the basolateral membrane and had tubular abnormalities. In summary, these data suggest that the water channel AQP2 interacts with integrins to promote renal epithelial cell migration, contributing to the structural and functional integrity of the mammalian kidney.

  20. Ecosystem engineers on plants: indirect facilitation of arthropod communities by leaf-rollers at different scales.

    Science.gov (United States)

    Vieira, Camila; Romero, Gustavo Q

    2013-07-01

    Ecosystem engineering is a process by which organisms change the distribution of resources and create new habitats for other species via non-trophic interactions. Leaf-rolling caterpillars can act as ecosystem engineers because they provide shelter to secondary users. In this study, we report the influence of leaf-rolling caterpillars on speciose tropical arthropod communities along both spatial scales (leaf-level and plant-level effects) and temporal scales (dry and rainy seasons). We predict that rolled leaves can amplify arthropod diversity at both the leaf and plant levels and that this effect is stronger in dry seasons, when arthropods are prone to desiccation. Our results show that the abundance, richness, and biomass of arthropods within several guilds increased up to 22-fold in naturally and artificially created leaf shelters relative to unaltered leaves. These effects were observed at similar magnitudes at both the leaf and plant scales. Variation in the shelter architecture (funnel, cylinders) did not influence arthropod parameters, as diversity, abundance, orbiomass, but rolled leaves had distinct species composition if compared with unaltered leaves. As expected, these arthropod parameters on the plants with rolled leaves were on average approximately twofold higher in the dry season. Empty leaf rolls and whole plants were rapidly recolonized by arthropods over time, implying a fast replacement of individuals; within 15-day intervals the rolls and plants reached a species saturation. This study is the first to examine the extended effects of engineering caterpillars as diversity amplifiers at different temporal and spatial scales. Because shelter-building caterpillars are ubiquitous organisms in tropical and temperate forests, they can be considered key structuring elements for arthropod communities on plants.

  1. Multiple mechanisms sustain a plant-animal facilitation on a coastal ecotone

    OpenAIRE

    He, Qiang; Cui, Baoshan

    2015-01-01

    Theory suggests that species distributions are expanded by positive species interactions, but the importance of facilitation in expanding species distributions at physiological range limits has not been widely recognized. We investigated the effects of the nurse shrub Tamarix chinensis on the crab Helice tientsinensis on the terrestrial borders of salt marshes, a typical coastal ecotone, where Tamarix and Helice were on their lower and upper elevational distribution edges, respectively. Crab ...

  2. A global analysis of bidirectional interactions in alpine plant communities shows facilitators experiencing strong reciprocal fitness costs.

    Science.gov (United States)

    Schöb, Christian; Michalet, Richard; Cavieres, Lohengrin A; Pugnaire, Francisco I; Brooker, Rob W; Butterfield, Bradley J; Cook, Bradley J; Kikvidze, Zaal; Lortie, Christopher J; Xiao, Sa; Al Hayek, Patrick; Anthelme, Fabien; Cranston, Brittany H; García, Mary-Carolina; Le Bagousse-Pinguet, Yoann; Reid, Anya M; le Roux, Peter C; Lingua, Emanuele; Nyakatya, Mawethu J; Touzard, Blaise; Zhao, Liang; Callaway, Ragan M

    2014-04-01

    Facilitative interactions are defined as positive effects of one species on another, but bidirectional feedbacks may be positive, neutral, or negative. Understanding the bidirectional nature of these interactions is a fundamental prerequisite for the assessment of the potential evolutionary consequences of facilitation. In a global study combining observational and experimental approaches, we quantified the impact of the cover and richness of species associated with alpine cushion plants on reproductive traits of the benefactor cushions. We found a decline in cushion seed production with increasing cover of cushion-associated species, indicating that being a benefactor came at an overall cost. The effect of cushion-associated species was negative for flower density and seed set of cushions, but not for fruit set and seed quality. Richness of cushion-associated species had positive effects on seed density and modulated the effects of their abundance on flower density and fruit set, indicating that the costs and benefits of harboring associated species depend on the composition of the plant assemblage. Our study demonstrates 'parasitic' interactions among plants over a wide range of species and environments in alpine systems, and we consider their implications for the possible selective effects of interactions between benefactor and beneficiary species. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  3. Multiple mechanisms sustain a plant-animal facilitation on a coastal ecotone.

    Science.gov (United States)

    He, Qiang; Cui, Baoshan

    2015-02-27

    Theory suggests that species distributions are expanded by positive species interactions, but the importance of facilitation in expanding species distributions at physiological range limits has not been widely recognized. We investigated the effects of the nurse shrub Tamarix chinensis on the crab Helice tientsinensis on the terrestrial borders of salt marshes, a typical coastal ecotone, where Tamarix and Helice were on their lower and upper elevational distribution edges, respectively. Crab burrows were abundant under Tamarix, but were absent in open areas between Tamarix. Removing Tamarix decreased associated crab burrows with time, while simulating Tamarix in open areas by shading, excluding predators, and adding Tamarix branches as crab food, increased crab burrows. Measurements of soil and microclimate factors showed that removing Tamarix increased abiotic stress, while simulating Tamarix by shading decreased abiotic stress. Survival of tethered crabs was high only when protected from desiccation and predation. Thus, by alleviating abiotic and biotic stresses, as well as by food provision, Tamarix expanded the upper intertidal distribution of Helice. Our study provides clear evidence for the importance of facilitation in expanding species distributions at their range limits, and suggests that facilitation is a crucial biological force maintaining the ecotones between ecosystems.

  4. Cerebrospinal fluid aquaporin-4-immunoglobulin G disrupts blood brain barrier

    DEFF Research Database (Denmark)

    Asgari, Nasrin; Berg, Carsten Tue; Mørch, Marlene Thorsen

    2015-01-01

    associated with blood-borne horseradish peroxidase leakage indicating blood-brain barrier breakdown. The cerebrospinal fluid aquaporin-4-immunoglobulin G therefore distributes widely in brain to initiate astrocytopathy and blood-brain barrier breakdown....... was evaluated. A distinct distribution pattern of aquaporin-4-immunoglobulin G deposition was observed in the subarachnoid and subpial spaces where vessels penetrate the brain parenchyma, via a paravascular route with intraparenchymal perivascular deposition. Perivascular astrocyte-destructive lesions were...

  5. An insect-feeding guild of carnivorous plants and spiders: does optimal foraging lead to competition or facilitation?

    Science.gov (United States)

    Crowley, Philip H; Hopper, Kevin R; Krupa, James J

    2013-12-01

    Carnivorous plants and spiders, along with their prey, are main players in an insect-feeding guild found on acidic, poorly drained soils in disturbed habitat. Darwin's notion that these plants must actively attract the insects they capture raises the possibility that spiders could benefit from proximity to prey hotspots created by the plants. Alternatively, carnivorous plants and spiders may deplete prey locally or (through insect redistribution) more widely, reducing each other's gain rates from predation. Here, we formulate and analyze a model of this guild, parameterized for carnivorous sundews and lycosid spiders, under assumptions of random movement by insects and optimal foraging by predators. Optimal foraging here involves gain maximization via trap investment (optimal web sizes and sundew trichome densities) and an ideal free distribution of spiders between areas with and without sundews. We find no facilitation: spiders and sundews engage in intense exploitation competition. Insect attraction by plants modestly increases sundew gain rates but slightly decreases spider gain rates. In the absence of population size structure, optimal spider redistribution between areas with and without sundews yields web sizes that are identical for all spiders, regardless of proximity to sundews. Web-building spiders have higher gain rates than wandering spiders in this system at high insect densities, but wandering spiders have the advantage at low insect densities. Results are complex, indicating that predictions to be tested empirically must be based on careful quantitative assessment.

  6. Examining strategies to facilitate vitamin B1 biofortification of plants by genetic engineering

    Directory of Open Access Journals (Sweden)

    Lucille ePourcel

    2013-05-01

    Full Text Available Thiamin (vitamin B1 is made by plants and microorganisms but is an essential micronutrient in the human diet. All organisms require it as a cofactor in its form as thiamin pyrophosphate (TPP for the activity of key enzymes of central metabolism. In humans, deficiency is widespread particularly in populations where polished rice is a major component of the diet. Considerable progress has been made on the elucidation of the biosynthesis pathway within the last few years enabling concrete strategies for biofortification purposes to be devised, with a particular focus here on genetic engineering. Furthermore, the vitamin has been shown to play a role in both abiotic and biotic stress responses. The precursors for de novo biosynthesis of thiamin differ between microorganisms and plants. Bacteria use intermediates derived from purine and isoprenoid biosynthesis, whereas the pathway in yeast involves the use of compounds from the vitamin B3 and B6 groups. Plants on the other hand use a combination of the bacterial and yeast pathways and there is subcellular partitioning of the biosynthesis steps. Specifically, thiamin biosynthesis occurs in the chloroplast of plants through the separate formation of the pyrimidine and thiazole moieties, which are then coupled to form thiamin monophosphate (TMP. Phosphorylation of thiamin to form TPP occurs in the cytosol. Therefore, thiamin (or TMP must be exported from the chloroplast to the cytosol for the latter step to be executed. The regulation of biosynthesis is mediated through riboswitches, where binding of the product TPP to the pre-mRNA of a biosynthetic gene modulates expression. Here we examine and hypothesize on genetic engineering approaches attempting to increase the thiamin content employing knowledge gained with the model plant Arabidopsis thaliana. We will discuss the regulatory steps that need to be taken into consideration and can be used a prerequisite for devising such strategies in crop plants.

  7. [Roles of Aquaporins in Brain Disorders].

    Science.gov (United States)

    Yasui, Masato

    2015-06-01

    Aquaporin (AQP) is a water channel protein that is expressed in the cell membranes. AQPs are related to several kinds of human diseases such as cataract. In the mammalian central nervous system (CNS), AQP4 is specifically expressed in the astrocyte membranes lining the perivascular and periventricular structures. AQP4 plays a role in the development of brain edema associated with certain brain disorders. Neuromyelitis optica (NMO) is a demyelinating disorder, and patients with NMO develop autoimmune antibodies against AQP4 in their serum. Therefore, AQP4 is involved in NMO pathogenesis. A new concept referred to as "glymphatic pathway" has been recently proposed to explain the lymphatic system in the CNS. Dysfunction of the "glymphatic pathway" may cause several neurodegenerative diseases and mood disorders. Importantly, AQP4 may play a role in the "glymphatic pathway". Further investigation of AQP4 in CNS disorders is necessary, and a new drug against AQP4 is expected.

  8. The more the better? The role of polyploidy in facilitating plant invasions

    Czech Academy of Sciences Publication Activity Database

    te Beest, M.; Le Roux, J. J.; Richardson, D. M.; Brysting, A. K.; Suda, Jan; Kubešová, Magdalena; Pyšek, Petr

    2012-01-01

    Roč. 109, č. 1 (2012), s. 19-45 ISSN 0305-7364 R&D Projects: GA ČR GA206/09/0563 Institutional research plan: CEZ:AV0Z60050516 Keywords : plant invasions * evolution * polyploidy Subject RIV: EF - Botanics Impact factor: 3.449, year: 2012

  9. Facilitative and competitive interaction components among New England salt marsh plants

    Directory of Open Access Journals (Sweden)

    John F. Bruno

    2017-11-01

    Full Text Available Intra- and interspecific interactions can be broken down into facilitative and competitive components. The net interaction between two organisms is simply the sum of these counteracting elements. Disentangling the positive and negative components of species interactions is a critical step in advancing our understanding of how the interaction between organisms shift along physical and biotic gradients. We performed a manipulative field experiment to quantify the positive and negative components of the interactions between a perennial forb, Aster tenuifolius, and three dominant, matrix-forming grasses and rushes in a New England salt marsh. Specifically, we asked whether positive and negative interaction components: (1 are unique or redundant across three matrix-forming species (two grasses; Distichlis spicata and Spartina patens, and one rush; Juncus gerardi, and (2 change across Aster life stages (seedling, juvenile, and adult. For adult Aster the strength of the facilitative component of the matrix-forb interaction was stronger than the competitive component for two of the three matrix species, leading to net positive interactions. There was no statistically significant variation among matrix species in their net or component effects. We found little difference in the effects of J. gerardi on Aster at later life-history stages; interaction component strengths did not differ between juveniles and adults. However, mortality of seedlings in neighbor removal plots was 100%, indicating a particularly strong and critical facilitative effect of matrix species on this forb during the earliest life stages. Overall, our results indicate that matrix forming grasses and rushes have important, yet largely redundant, positive net effects on Aster performance across its life cycle. Studies that untangle various components of interactions and their contingencies are critical to both expanding our basic understanding of community organization, and predicting

  10. Moss cushions facilitate water and nutrient supply for plant species on bare limestone pavements

    DEFF Research Database (Denmark)

    Jensen, Kaj Sand; Hammer, Kathrine

    2012-01-01

    declined by the -0.36 power of cushion diameter, and were not significantly different from -0.50 for the square root function previously predicted for the increasing thickness of the boundary layer, with greater linear dimensions for smooth flat objects at low wind velocities. Size dependence vanished...... richness, and evaluated duration of plant activity during desiccation as a function of ground area, for a large collection of moss cushions. We found that lower evaporation and higher water storage contributed equally to extending the desiccation period with increasing cushion size. Evaporation rates......Dense moss cushions of different size are distributed across the bare limestone pavements on Øland, SE Sweden. Increasing cushion size is predicted to physically protect and improve performance and colonization by vascular plants. Therefore, we tested water balance, phosphorus supply, and species...

  11. Regime shift by an exotic nitrogen-fixing shrub mediates plant facilitation in primary succession.

    Directory of Open Access Journals (Sweden)

    Adriano Stinca

    Full Text Available Ecosystem invasion by non-native, nitrogen-fixing species is a global phenomenon with serious ecological consequences. However, in the Mediterranean basin few studies addressed the impact of invasion by nitrogen-fixing shrubs on soil quality and hydrological properties at local scale, and the possible effects on succession dynamics and ecosystem invasibility by further species. In this multidisciplinary study we investigated the impact of Genista aetnensis (Biv. DC., an exotic nitrogen-fixing shrub, on the Vesuvius Grand Cone (Southern Italy. Specifically, we tested the hypotheses that the invasion of G. aetnensis has a significant impact on soil quality, soil hydrological regime, local microclimate and plant community structure, and that its impact increases during the plant ontogenetic cycle. We showed that G. aetnensis, in a relatively short time-span (i.e. ~ 40 years, has been able to build-up an island of fertility under its canopy, by accumulating considerable stocks of C, N, and P in the soil, and by also improving the soil hydrological properties. Moreover, G. aetnensis mitigates the daily range of soil temperature, reducing the exposure of coexisting plants to extremely high temperatures and water loss by soil evaporation, particularly during the growing season. Such amelioration of soil quality, coupled with the mitigation of below-canopy microclimatic conditions, has enhanced plant colonization of the barren Grand Cone slopes, by both herbaceous and woody species. These results suggest that the invasion of G. aetnensis could eventually drive to the spread of other, more resource-demanding exotic species, promoting alternative successional trajectories that may dramatically affect the local landscape. Our study is the first record of the invasion of G. aetnensis, an additional example of the regime shifts driven by N-fixing shrubs in Mediterranean region. Further studies are needed to identity specific management practices that can

  12. Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores

    Science.gov (United States)

    Li, Ran; Zhang, Jin; Li, Jiancai; Zhou, Guoxin; Wang, Qi; Bian, Wenbo; Erb, Matthias; Lou, Yonggen

    2015-01-01

    Plants generally respond to herbivore attack by increasing resistance and decreasing growth. This prioritization is achieved through the regulation of phytohormonal signaling networks. However, it remains unknown how this prioritization affects resistance against non-target herbivores. In this study, we identify WRKY70 as a specific herbivore-induced, mitogen-activated protein kinase-regulated rice transcription factor that physically interacts with W-box motifs and prioritizes defence over growth by positively regulating jasmonic acid (JA) and negatively regulating gibberellin (GA) biosynthesis upon attack by the chewing herbivore Chilo suppressalis. WRKY70-dependent JA biosynthesis is required for proteinase inhibitor activation and resistance against C. suppressalis. In contrast, WRKY70 induction increases plant susceptibility against the rice brown planthopper Nilaparvata lugens. Experiments with GA-deficient rice lines identify WRKY70-dependent GA signaling as the causal factor in N. lugens susceptibility. Our study shows that prioritizing defence over growth leads to a significant resistance trade-off with important implications for the evolution and agricultural exploitation of plant immunity. DOI: http://dx.doi.org/10.7554/eLife.04805.001 PMID:26083713

  13. Characterization of V71M mutation in the aquaporin-2 gene causing ...

    Indian Academy of Sciences (India)

    Introduction. The aquaporin-2 (AQP2) water channel plays an important ... X-ray structure of lens aquaporin-0 open form (Lens Mip) as template (pdb. Keywords. AQP2 gene; nephrogenic diabetes insipidus; mutation; structural modelling.

  14. Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation

    DEFF Research Database (Denmark)

    Li, Zhenyu; Linares, Rodrigo Valladares; Bucs, Szilard

    2017-01-01

    Aquaporin plays a promising role in fabricating high performance biomimetic forward osmosis (FO) membranes. However, aquaporin as a protein also has a risk of denaturation caused, by various chemicals, resulting in a possible decay of membrane performance. The present study tested a novel aquaporin...

  15. Recombinant Production of Human Aquaporin-1 to an Exceptional High Membrane Density in Saccharomyces Cerevisiae

    DEFF Research Database (Denmark)

    Bomholt, Julie; Helix Nielsen, Claus; Scharff-Poulsen, Peter

    2014-01-01

    prevented Aquaporin1 mal-folding. Bioimaging of live yeast cells revealed that recombinant Aquaporin-1 accumulated in the yeast plasma membrane. A detergent screen for solubilization revealed that CYMAL-5 was superior in solubilizing recombinant Aquaporin-1 and generated a monodisperse protein preparation...

  16. Recombinant Production of Human Aquaporin-1 to an Exceptional High Membrane Density in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Bomholt, Julie; Helix Nielsen, Claus; Scharff-Poulsen, Peter

    2013-01-01

    of the expression temperature to 15°C almost completely prevented Aquaporin-1 mal-folding. Bioimaging of live yeast cells revealed that recombinant Aquaporin-1 accumulated in the yeast plasma membrane. A detergent screen for solubilization revealed that CYMAL-5 was superior in solubilizing recombinant Aquaporin-1...

  17. Directly Transforming PCR-Amplified DNA Fragments into Plant Cells Is a Versatile System That Facilitates the Transient Expression Assay

    Science.gov (United States)

    Lu, Yuming; Chen, Xi; Wu, Yuxuan; Wang, Yanping; He, Yuqing; Wu, Yan

    2013-01-01

    A circular plasmid containing a gene coding sequence has been broadly used for studying gene regulation in cells. However, to accommodate a quick screen plasmid construction and preparation can be time consuming. Here we report a PCR amplified dsDNA fragments (PCR-fragments) based transient expression system (PCR-TES) for suiting in the study of gene regulation in plant cells. Instead of transforming plasmids into plant cells, transient expression of PCR-fragments can be applicable. The transformation efficiency and expression property of PCR-fragments are comparable to transformation using plasmids. We analyzed the transformation efficiency in PCR-TES at transcription and protein levels. Our results indicate that the PCR-TES is as versatile as the conventional transformation system using plasmid DNA. Through reconstituting PYR1-mediated ABA signaling pathway in Arabidopsis mesophyll protoplasts, we were not only validating the practicality of PCR-TES but also screening potential candidates of CDPK family members which might be involved in the ABA signaling. Moreover, we determined that phosphorylation of ABF2 by CPK4 could be mediated by ABA-induced PYR1 and ABI1, demonstrating a crucial role of CDPKs in the ABA signaling. In summary, PCR-TES can be applicable to facilitate analyzing gene regulation and for the screen of putative regulatory molecules at the high throughput level in plant cells. PMID:23468926

  18. Directly transforming PCR-amplified DNA fragments into plant cells is a versatile system that facilitates the transient expression assay.

    Directory of Open Access Journals (Sweden)

    Yuming Lu

    Full Text Available A circular plasmid containing a gene coding sequence has been broadly used for studying gene regulation in cells. However, to accommodate a quick screen plasmid construction and preparation can be time consuming. Here we report a PCR amplified dsDNA fragments (PCR-fragments based transient expression system (PCR-TES for suiting in the study of gene regulation in plant cells. Instead of transforming plasmids into plant cells, transient expression of PCR-fragments can be applicable. The transformation efficiency and expression property of PCR-fragments are comparable to transformation using plasmids. We analyzed the transformation efficiency in PCR-TES at transcription and protein levels. Our results indicate that the PCR-TES is as versatile as the conventional transformation system using plasmid DNA. Through reconstituting PYR1-mediated ABA signaling pathway in Arabidopsis mesophyll protoplasts, we were not only validating the practicality of PCR-TES but also screening potential candidates of CDPK family members which might be involved in the ABA signaling. Moreover, we determined that phosphorylation of ABF2 by CPK4 could be mediated by ABA-induced PYR1 and ABI1, demonstrating a crucial role of CDPKs in the ABA signaling. In summary, PCR-TES can be applicable to facilitate analyzing gene regulation and for the screen of putative regulatory molecules at the high throughput level in plant cells.

  19. Role of Aquaporin 0 in lens biomechanics

    International Nuclear Information System (INIS)

    Sindhu Kumari, S.; Gupta, Neha; Shiels, Alan; FitzGerald, Paul G.; Menon, Anil G.; Mathias, Richard T.; Varadaraj, Kulandaiappan

    2015-01-01

    Maintenance of proper biomechanics of the eye lens is important for its structural integrity and for the process of accommodation to focus near and far objects. Several studies have shown that specialized cytoskeletal systems such as the beaded filament (BF) and spectrin-actin networks contribute to mammalian lens biomechanics; mutations or deletion in these proteins alters lens biomechanics. Aquaporin 0 (AQP0), which constitutes ∼45% of the total membrane proteins of lens fiber cells, has been shown to function as a water channel and a structural cell-to-cell adhesion (CTCA) protein. Our recent ex vivo study on AQP0 knockout (AQP0 KO) mouse lenses showed the CTCA function of AQP0 could be crucial for establishing the refractive index gradient. However, biomechanical studies on the role of AQP0 are lacking. The present investigation used wild type (WT), AQP5 KO (AQP5 −/− ), AQP0 KO (heterozygous KO: AQP0 +/− ; homozygous KO: AQP0 −/− ; all in C57BL/6J) and WT-FVB/N mouse lenses to learn more about the role of fiber cell AQPs in lens biomechanics. Electron microscopic images exhibited decreases in lens fiber cell compaction and increases in extracellular space due to deletion of even one allele of AQP0. Biomechanical assay revealed that loss of one or both alleles of AQP0 caused a significant reduction in the compressive load-bearing capacity of the lenses compared to WT lenses. Conversely, loss of AQP5 did not alter the lens load-bearing ability. Compressive load-bearing at the suture area of AQP0 +/− lenses showed easy separation while WT lens suture remained intact. These data from KO mouse lenses in conjunction with previous studies on lens-specific BF proteins (CP49 and filensin) suggest that AQP0 and BF proteins could act co-operatively in establishing normal lens biomechanics. We hypothesize that AQP0, with its prolific expression at the fiber cell membrane, could provide anchorage for cytoskeletal structures like BFs and together they help to

  20. Role of Aquaporin 0 in lens biomechanics.

    Science.gov (United States)

    Sindhu Kumari, S; Gupta, Neha; Shiels, Alan; FitzGerald, Paul G; Menon, Anil G; Mathias, Richard T; Varadaraj, Kulandaiappan

    2015-07-10

    Maintenance of proper biomechanics of the eye lens is important for its structural integrity and for the process of accommodation to focus near and far objects. Several studies have shown that specialized cytoskeletal systems such as the beaded filament (BF) and spectrin-actin networks contribute to mammalian lens biomechanics; mutations or deletion in these proteins alters lens biomechanics. Aquaporin 0 (AQP0), which constitutes ∼45% of the total membrane proteins of lens fiber cells, has been shown to function as a water channel and a structural cell-to-cell adhesion (CTCA) protein. Our recent ex vivo study on AQP0 knockout (AQP0 KO) mouse lenses showed the CTCA function of AQP0 could be crucial for establishing the refractive index gradient. However, biomechanical studies on the role of AQP0 are lacking. The present investigation used wild type (WT), AQP5 KO (AQP5(-/-)), AQP0 KO (heterozygous KO: AQP0(+/-); homozygous KO: AQP0(-/-); all in C57BL/6J) and WT-FVB/N mouse lenses to learn more about the role of fiber cell AQPs in lens biomechanics. Electron microscopic images exhibited decreases in lens fiber cell compaction and increases in extracellular space due to deletion of even one allele of AQP0. Biomechanical assay revealed that loss of one or both alleles of AQP0 caused a significant reduction in the compressive load-bearing capacity of the lenses compared to WT lenses. Conversely, loss of AQP5 did not alter the lens load-bearing ability. Compressive load-bearing at the suture area of AQP0(+/-) lenses showed easy separation while WT lens suture remained intact. These data from KO mouse lenses in conjunction with previous studies on lens-specific BF proteins (CP49 and filensin) suggest that AQP0 and BF proteins could act co-operatively in establishing normal lens biomechanics. We hypothesize that AQP0, with its prolific expression at the fiber cell membrane, could provide anchorage for cytoskeletal structures like BFs and together they help to confer

  1. Loss of native herbaceous species due to woody plant encroachment facilitates the establishment of an invasive grass.

    Science.gov (United States)

    Alofs, Karen M; Fowler, Norma L

    2013-03-01

    Although negative relationships between diversity (frequently measured as species richness) and invasibility at neighborhood or community scales have often been reported, realistic natural diversity gradients have rarely been studied at this scale. We recreated a naturally occurring gradient in species richness to test the effects of species richness on community invasibility. In central Texas savannas, as the proportion of woody plants increases (a process known as woody plant encroachment), herbaceous habitat is both lost and fragmented, and native herbaceous species richness declines. We examined the effects of these species losses on invasibility in situ by removing species that occur less frequently in herbaceous patches as woody plant encroachment advances. This realistic species removal was accompanied by a parallel and equivalent removal of biomass with no changes in species richness. Over two springs, the nonnative bunchgrass Bothriochloa ischaemum germinated significantly more often in the biomass-removal treatment than in unmanipulated control plots, suggesting an effect of native plant density independent of diversity. Additionally, significantly more germination occurred in the species-removal treatment than in the biomass-removal treatment. Changes in species richness had a stronger effect on B. ischaemum germination than changes in plant density, demonstrating that niche-related processes contributed more to biotic resistance in this system than did species-neutral competitive interactions. Similar treatment effects were found on transplant growth. Thus we show that woody plant encroachment indirectly facilitates the establishment of an invasive grass by reducing native diversity. Although we found a negative relationship between species richness and invasibility at the scale of plots with similar composition and environmental conditions, we found a positive relationship between species richness and invasibility at larger scales. This apparent

  2. Cold induced changes in the water balance affect immunocytolocalization pattern of one of the aquaporins in the vascular system in the leaves of maize (Zea mays L.).

    Science.gov (United States)

    Bilska-Kos, Anna; Szczepanik, Jarosław; Sowiński, Paweł

    2016-10-20

    Chilling stress is known to affect the water balance in plants, which often manifests itself in the decrease of the water potential in different organs. Relationships between chilling, assimilate transport and water balance are far from being understood. Although aquaporins play a key role in regulating water balance in plants, especially under stress conditions, the role of individual aquaporins in stress response remains unclear. In this report we show the specific localization within plasma membranes of one of the aquaporins (PIP2;3) in the leaves of two maize inbred lines differing in their chilling-sensitivity. This form of aquaporin has been also observed in thick-walled sieve elements - an additional type of sieve tubes of unclear function found only in monocotyledons. Moderate chilling (about 15°C) caused significant reduction of labelling in these cells accompanied by a steep decrease in the water potential in leaves of chilling-sensitive maize line. Our results suggest that both PIP2;3 and thick-walled sieve tubes may be an unknown element of the mechanism of the response of maize to cold stress. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype.

    Science.gov (United States)

    Forrest, Kerrie L; Bhave, Mrinal

    2007-10-01

    The ubiquitous cell membrane proteins called aquaporins are now firmly established as channel proteins that control the specific transport of water molecules across cell membranes in all living organisms. The aquaporins are thus likely to be of fundamental significance to all facets of plant growth and development affected by plant-water relations. A majority of plant aquaporins have been found to share essential structural features with the human aquaporin and exhibit water-transporting ability in various functional assays, and some have been shown experimentally to be of critical importance to plant survival. Furthermore, substantial evidence is now available from a number of plant species that shows differential gene expression of aquaporins in response to abiotic stresses such as salinity, drought, or cold and clearly establishes the aquaporins as major players in the response of plants to conditions that affect water availability. This review summarizes the function and regulation of these genes to develop a greater understanding of the response of plants to water insufficiency, and particularly, to identify tolerant genotypes of major crop species including wheat and rice and plants that are important in agroforestry.

  4. Detection of anti-aquaporin-4 autoantibodies in the sera of Chinese neuromyelitis optica patients

    Institute of Scientific and Technical Information of China (English)

    Miao Li; Weiheng Su; Jie Wang; Francesco Pisani; Antonio Frigeri; Tonghui Ma

    2013-01-01

    In this study, we recruited 10 neuromyelitis optica patients, two multiple sclerosis patients and two myelitis patients. Chinese hamster lung fibroblast (V79) cells transfected with a human aquaporin-4-mCherry fusion protein gene were used to detect anti-aquaporin-4 antibody in neuromyelitis optica patient sera by immunofluorescence. Anti-aquaporin-4 autoantibody was stably detected by immunofluorescence in neuromyelitis optica patient sera exclusively. The sensitivity of the assay for neuromyelitis optica was 90% and the specificity for neuromyelitis optica was 100%. The anti-aquaporin-4 antibody titers in sera were tested with serial dilutions until the signal disappeared. A positive correlation was detected between Expanded Disability Status Scale scores and serum anti-aquaporin-4 antibody titers. The anti-aquaporin-4 antibody assay is highly sensitive and specific in the sera of Chinese neuromyelitis optica patients. Detection of aquaporin-4 autoantibody is important for the diagnosis and treatment of neuromyelitis optica.

  5. Detection of anti-aquaporin-4 autoantibodies in the sera of Chinese neuromyelitis optica patients.

    Science.gov (United States)

    Li, Miao; Su, Weiheng; Wang, Jie; Pisani, Francesco; Frigeri, Antonio; Ma, Tonghui

    2013-03-15

    In this study, we recruited 10 neuromyelitis optica patients, two multiple sclerosis patients and two myelitis patients. Chinese hamster lung fibroblast (V79) cells transfected with a human aquaporin-4-mCherry fusion protein gene were used to detect anti-aquaporin-4 antibody in neuromyelitis optica patient sera by immunofluorescence. Anti-aquaporin-4 autoantibody was stably detected by immunofluorescence in neuromyelitis optica patient sera exclusively. The sensitivity of the assay for neuromyelitis optica was 90% and the specificity for neuromyelitis optica was 100%. The anti-aquaporin-4 antibody titers in sera were tested with serial dilutions until the signal disappeared. A positive correlation was detected between Expanded Disability Status Scale scores and serum anti-aquaporin-4 antibody titers. The anti-aquaporin-4 antibody assay is highly sensitive and specific in the sera of Chinese neuromyelitis optica patients. Detection of aquaporin-4 autoantibody is important for the diagnosis and treatment of neuromyelitis optica.

  6. Detection of anti-aquaporin-4 autoantibodies in the sera of Chinese neuromyelitis optica patients★

    Science.gov (United States)

    Li, Miao; Su, Weiheng; Wang, Jie; Pisani, Francesco; Frigeri, Antonio; Ma, Tonghui

    2013-01-01

    In this study, we recruited 10 neuromyelitis optica patients, two multiple sclerosis patients and two myelitis patients. Chinese hamster lung fibroblast (V79) cells transfected with a human aquaporin-4-mCherry fusion protein gene were used to detect anti-aquaporin-4 antibody in neuromyelitis optica patient sera by immunofluorescence. Anti-aquaporin-4 autoantibody was stably detected by immunofluorescence in neuromyelitis optica patient sera exclusively. The sensitivity of the assay for neuromyelitis optica was 90% and the specificity for neuromyelitis optica was 100%. The anti-aquaporin-4 antibody titers in sera were tested with serial dilutions until the signal disappeared. A positive correlation was detected between Expanded Disability Status Scale scores and serum anti-aquaporin-4 antibody titers. The anti-aquaporin-4 antibody assay is highly sensitive and specific in the sera of Chinese neuromyelitis optica patients. Detection of aquaporin-4 autoantibody is important for the diagnosis and treatment of neuromyelitis optica. PMID:25206717

  7. Effects of ultraviolet-B irradiance on intraspecific competition and facilitation of plants: self-thinning, size inequality, and phenotypic plasticity.

    Science.gov (United States)

    Zhang, Rui-Chang; Lin, Yue; Yue, Ming; Li, Qian; Zhang, Xiao-Fei; Liu, Xiao; Chi, Hong; Chai, Yong-Fu; Wang, Mao

    2012-01-01

    (1) The effects of facilitation on the structure and dynamics of plant populations have not been studied so widely as competition. The UV-B radiation, as a typical environmental factor causing stress, may result in direct stress and facilitation. (2) The effects of UV-B radiation on intraspecific competition and facilitation were investigated based on the following three predictions on self-thinning, size inequality, and phenotypic plasticity: i) Self-thinning is the reduction in density that results from the increase in the mean biomass of individuals in crowded populations, and is driven by competition. In this study, the mortality rate of the population is predicted to decrease from UV-B irradiance. ii) The size inequality of a population increases with competition intensity because larger individuals receive a disproportionate share of resources, thereby leaving limited resources for smaller individuals. The second hypothesis assumes that direct stress decreases the size inequality of the population. iii) Phenotypic plasticity is the ability to alter one's morphology in response to environmental changes. The third hypothesis assumes that certain morphological indices can change among the trade-offs between competition, facilitation, and stress. These predictions were tested by conducting a field pot experiment using mung beans, and were supported by the following results: (3) UV-B radiation increased the survival rate of the population at the end of self-thinning. However, this result was mainly due to direct stress rather than facilitation. (4) Just as competitor, facilitation was also asymmetric. It increased the size inequality of populations during self-thinning, whereas stress decreased the size inequality. (5) Direct stress and facilitation influence plants differently on various scales. Stress inhibited plant growth, whereas facilitation showed the opposite on an individual scale. Stress increased survival rate, whereas facilitation increased individual

  8. Role of Aquaporin 0 in lens biomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Sindhu Kumari, S.; Gupta, Neha [Physiology and Biophysics, Stony Brook University, Stony Brook, NY (United States); Shiels, Alan [Washington University School of Medicine, St. Louis, MO (United States); FitzGerald, Paul G. [Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA (United States); Menon, Anil G. [University of Cincinnati College of Medicine, Cincinnati, OH (United States); Mathias, Richard T. [Physiology and Biophysics, Stony Brook University, Stony Brook, NY (United States); SUNY Eye Institute, NY (United States); Varadaraj, Kulandaiappan, E-mail: kulandaiappan.varadaraj@stonybrook.edu [Physiology and Biophysics, Stony Brook University, Stony Brook, NY (United States); SUNY Eye Institute, NY (United States)

    2015-07-10

    Maintenance of proper biomechanics of the eye lens is important for its structural integrity and for the process of accommodation to focus near and far objects. Several studies have shown that specialized cytoskeletal systems such as the beaded filament (BF) and spectrin-actin networks contribute to mammalian lens biomechanics; mutations or deletion in these proteins alters lens biomechanics. Aquaporin 0 (AQP0), which constitutes ∼45% of the total membrane proteins of lens fiber cells, has been shown to function as a water channel and a structural cell-to-cell adhesion (CTCA) protein. Our recent ex vivo study on AQP0 knockout (AQP0 KO) mouse lenses showed the CTCA function of AQP0 could be crucial for establishing the refractive index gradient. However, biomechanical studies on the role of AQP0 are lacking. The present investigation used wild type (WT), AQP5 KO (AQP5{sup −/−}), AQP0 KO (heterozygous KO: AQP0{sup +/−}; homozygous KO: AQP0{sup −/−}; all in C57BL/6J) and WT-FVB/N mouse lenses to learn more about the role of fiber cell AQPs in lens biomechanics. Electron microscopic images exhibited decreases in lens fiber cell compaction and increases in extracellular space due to deletion of even one allele of AQP0. Biomechanical assay revealed that loss of one or both alleles of AQP0 caused a significant reduction in the compressive load-bearing capacity of the lenses compared to WT lenses. Conversely, loss of AQP5 did not alter the lens load-bearing ability. Compressive load-bearing at the suture area of AQP0{sup +/−} lenses showed easy separation while WT lens suture remained intact. These data from KO mouse lenses in conjunction with previous studies on lens-specific BF proteins (CP49 and filensin) suggest that AQP0 and BF proteins could act co-operatively in establishing normal lens biomechanics. We hypothesize that AQP0, with its prolific expression at the fiber cell membrane, could provide anchorage for cytoskeletal structures like BFs and

  9. Aquaporin-2 excretion in hospitalized patients with cirrhosis

    DEFF Research Database (Denmark)

    Busk, Troels M; Møller, Søren; Pedersen, Erling B.

    2017-01-01

    Background and Aim: Urinary aquaporin-2 (AQP2) is a parameter of water transport in the principal cells in the distal part of the nephron and involved in water retention in cirrhosis and may be a marker of renal function. The aim of the study was to evaluate AQP2 as a predictor of renal insuffici...

  10. Water transport between CNS compartments: contributions of aquaporins and cotransporters

    DEFF Research Database (Denmark)

    MacAulay, N; Zeuthen, T

    2010-01-01

    or hydrocephalus. The molecular pathways by which water molecules cross the cell membranes of the brain are not well-understood, although the discovery of aquaporin 4 (AQP4) in the brain improved our understanding of some of these transport processes, particularly under pathological conditions. In the present...

  11. Aquaporin-4-autoimmunity in patients with systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Asgari, Nasrin; Jarius, Sven; Laustrup, Helle

    2018-01-01

    BACKGROUND: Serum immunoglobulin G targeting the astrocyte water channel aquaporin-4 (AQP4) in the central nervous system (CNS) is a biomarker for neuromyelitis optica spectrum disease (NMOSD). Co-existence of NMOSD with systemic lupus erythematosus (SLE) putatively suggests susceptibility...

  12. Aquaporins Contribute to ABA-Triggered Stomatal Closure through OST1-Mediated Phosphorylation

    Science.gov (United States)

    Grondin, Alexandre; Rodrigues, Olivier; Verdoucq, Lionel; Merlot, Sylvain; Leonhardt, Nathalie; Maurel, Christophe

    2015-01-01

    Stomatal movements in response to environmental stimuli critically control the plant water status. Although these movements are governed by osmotically driven changes in guard cell volume, the role of membrane water channels (aquaporins) has remained hypothetical. Assays in epidermal peels showed that knockout Arabidopsis thaliana plants lacking the Plasma membrane Intrinsic Protein 2;1 (PIP2;1) aquaporin have a defect in stomatal closure, specifically in response to abscisic acid (ABA). ABA induced a 2-fold increase in osmotic water permeability (Pf) of guard cell protoplasts and an accumulation of reactive oxygen species in guard cells, which were both abrogated in pip2;1 plants. Open stomata 1 (OST1)/Snf1-related protein kinase 2.6 (SnRK2.6), a protein kinase involved in guard cell ABA signaling, was able to phosphorylate a cytosolic PIP2;1 peptide at Ser-121. OST1 enhanced PIP2;1 water transport activity when coexpressed in Xenopus laevis oocytes. Upon expression in pip2;1 plants, a phosphomimetic form (Ser121Asp) but not a phosphodeficient form (Ser121Ala) of PIP2;1 constitutively enhanced the Pf of guard cell protoplasts while suppressing its ABA-dependent activation and was able to restore ABA-dependent stomatal closure in pip2;1. This work supports a model whereby ABA-triggered stomatal closure requires an increase in guard cell permeability to water and possibly hydrogen peroxide, through OST1-dependent phosphorylation of PIP2;1 at Ser-121. PMID:26163575

  13. Combination of plant and insect eggs as food sources facilitates ovarian development in an omnivorous bug Apolygus lucorum (Hemiptera: Miridae).

    Science.gov (United States)

    Yuan, Wei; Li, Wenjing; Li, Yunhe; Wu, Kongming G

    2013-06-01

    Diet nutrient is considered as an important regulatory factor for reproduction of insects. To understand the effect of different food sources on the reproductive physiology of Apolygus lucorum (Meyer-Dür), the ovarian development in adult females was investigated when they were fed on green beans (Gb), combination of green beans Phaseolus vulgaris L and Helicoverpa armigera eggs (GbHe), or H. armigera eggs (He). A female of A. lucorum has two ovaries, and each ovary contained seven yellowish ovarioles. Females fed on Gb or GbHe had larger ovaries and the ovarioles contained larger numbers of oocytes compared with those fed on He. Females in GeHe treatment has significantly higher number of follicles per ovary throughout the whole adult period compared with those in Gb or He treatment. Furthermore, the length of the best developed ovariole was affected by the diet type. The females fed on GbHe had the most developed ovarioles, with significantly longer ovarioles than those fed on Gb or He. A method was described to quantitatively score the degree of ovarian development in the current study. Similarly, the ovarian development scores were significantly higher for females in GbHe treatment than those in other two diet treatments. The ovarian development significantly delayed for females fed on He. Our results demonstrate that A. lucorum, as an omnivorous insect species, can acquire nutrients from both plant and animal origin food sources, and the combination of plants and animal food sources can significantly facilitate the ovary development of its females.

  14. Control of the selectivity of the aquaporin water channel family by global orientational tuning

    DEFF Research Database (Denmark)

    Jensen, Morten Østergaard; Tajkhorshid, E.; Nollert, P.

    2002-01-01

    and orientation of a single file of seven to nine water molecules inside the channel. Two conserved asparagines force a central water molecule to serve strictly as a hydrogen bond donor to its neighboring water molecules. Assisted by the electrostatic potential generated by two half-membrane spanning loops......Aquaporins are transmembrane channels found in cell membranes of all life forms. We examine their apparently paradoxical property, facilitation of efficient permeation of water while excluding protons, which is of critical importance to preserving the electrochemical potential across the cell...... membrane. We have determined the structure of the Escherichia coli aquaglyceroporin GlpF with bound water, in native (2.7 angstroms) and in W48F/F200T mutant (2.1 angstroms) forms, and carried out 12-nanosecond molecular dynamics simulations that define the spatial and temporal probability distribution...

  15. Concerted action of two cation filters in the aquaporin water channel

    DEFF Research Database (Denmark)

    Wu, Binghua; Steinbronn, Christina; Alsterfjord, Magnus

    2009-01-01

    Aquaporin (AQP) facilitated water transport is common to virtually all cell membranes and is marked by almost perfect specificity and high flux rates. Simultaneously, protons and cations are strictly excluded to maintain ionic transmembrane gradients. Yet, the AQP cation filters have not been...... identified experimentally. We report that three point mutations turned the water-specific AQP1 into a proton/alkali cation channel with reduced water permeability and the permeability sequence: H(+) >>K(+) >Rb(+) >Na(+) >Cs(+) >Li(+). Contrary to theoretical models, we found that electrostatic repulsion...... at the central asn-pro-ala (NPA) region does not suffice to exclude protons. Full proton exclusion is reached only in conjunction with the aromatic/arginine (ar/R) constriction at the pore mouth. In contrast, alkali cations are blocked by the NPA region but leak through the ar/R constriction. Expression...

  16. Acidosis-induced downregulation of hepatocyte mitochondrial aquaporin-8 and ureagenesis from ammonia.

    Science.gov (United States)

    Molinas, Sara M; Soria, Leandro R; Marrone, Julieta; Danielli, Mauro; Trumper, Laura; Marinelli, Raúl A

    2015-08-01

    It has been proposed that, during metabolic acidosis, the liver downregulates mitochondrial ammonia detoxification via ureagenesis, a bicarbonate-consuming process. Since we previously demonstrated that hepatocyte mitochondrial aquaporin-8 channels (mtAQP8) facilitate the uptake of ammonia and its metabolism into urea, we studied whether mtAQP8 is involved in the liver adaptive response to acidosis. Primary cultured rat hepatocytes were adapted to acidosis by exposing them to culture medium at pH 7.0 for 40 h. Control cells were exposed to pH 7.4. Hepatocytes exposed to acid medium showed a decrease in mtAQP8 protein expression (-30%, p ammonia was assessed by incubating the cells with (15)N-labeled ammonia and measuring (15)N-labeled urea synthesis by nuclear magnetic resonance. Reduced ureagenesis was found in acidified hepatocytes (-31%, p ammonia in response to acidosis.

  17. Lipopolysaccharide impairs hepatocyte ureagenesis from ammonia: involvement of mitochondrial aquaporin-8.

    Science.gov (United States)

    Soria, Leandro R; Marrone, Julieta; Molinas, Sara M; Lehmann, Guillermo L; Calamita, Giuseppe; Marinelli, Raúl A

    2014-05-02

    We recently reported that hepatocyte mitochondrial aquaporin-8 (mtAQP8) channels facilitate the uptake of ammonia and its metabolism into urea. Here we studied the effect of bacterial lipopolysaccharides (LPS) on ammonia-derived ureagenesis. In LPS-treated rats, hepatic mtAQP8 protein expression and diffusional ammonia permeability (measured utilizing ammonia analogues) of liver inner mitochondrial membranes were downregulated. NMR studies using 15N-labeled ammonia indicated that basal and glucagon-induced ureagenesis from ammonia were significantly reduced in hepatocytes from LPS-treated rats. Our data suggest that hepatocyte mtAQP8-mediated ammonia removal via ureagenesis is impaired by LPS, a mechanism potentially relevant to the molecular pathogenesis of defective hepatic ammonia detoxification in sepsis. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. Recombinant production of human Aquaporin-1 to an exceptional high membrane density in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Julie Bomholt

    Full Text Available In the present paper we explored the capacity of yeast Saccharomyces cerevisiae as host for heterologous expression of human Aquaporin-1. Aquaporin-1 cDNA was expressed from a galactose inducible promoter situated on a plasmid with an adjustable copy number. Human Aquaporin-1 was C-terminally tagged with yeast enhanced GFP for quantification of functional expression, determination of sub-cellular localization, estimation of in vivo folding efficiency and establishment of a purification protocol. Aquaporin-1 was found to constitute 8.5 percent of total membrane protein content after expression at 15°C in a yeast host over-producing the Gal4p transcriptional activator and growth in amino acid supplemented minimal medium. In-gel fluorescence combined with western blotting showed that low accumulation of correctly folded recombinant Aquaporin-1 at 30°C was due to in vivo mal-folding. Reduction of the expression temperature to 15°C almost completely prevented Aquaporin-1 mal-folding. Bioimaging of live yeast cells revealed that recombinant Aquaporin-1 accumulated in the yeast plasma membrane. A detergent screen for solubilization revealed that CYMAL-5 was superior in solubilizing recombinant Aquaporin-1 and generated a monodisperse protein preparation. A single Ni-affinity chromatography step was used to obtain almost pure Aquaporin-1. Recombinant Aquaporin-1 produced in S. cerevisiae was not N-glycosylated in contrast to the protein found in human erythrocytes.

  19. MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lin Wang

    Full Text Available Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant.The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment.The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance.

  20. The potential of subterranean microbes in facilitating actinide migration at the Grimsel test site and waste isolation pilot plant

    International Nuclear Information System (INIS)

    Gillow, J.B.; Dunn, M.; Francis, A.J.; Lucero, D.A.; Papenguth, H.W.

    2000-01-01

    Microorganisms may affect the long-term stability and mobility of radionuclides disposed of in deep geological formations. Of particular concern is the association of radionuclides with subterranean microbial cells and their subsequent transport as biocolloids. We characterized the total microbial populations in two groundwater samples: one from the Culebra dolomite member of the Rustler formation at the waste isolation pilot plant (WIPP), NM, and the other from the granitic formation at the Grimsel test site (GTS), Switzerland. Culebra groundwater (ionic strength 2.8 M, pH 7) contained 1.51 ± 1.08 x 10 5 cells ml -1 , with a mean cell length of 0.75 ± 0.04 μm and width of 0.58 ± 0.02 μm. In contrast, low ionic-strength GTS groundwater (0.001 M, pH 10) contained 3.97 ± 0.37 x 10 3 cells ml -1 , with a mean cell length of 1.50 ± 0.14 μm and width of 0.37 ± 0.01 μm. Adding appropriate electron donors and acceptors to the groundwaters facilitated the growth of aerobic, denitrifying, fermentative, and acetogenic microorganisms. Uranium biosorption was studied in two isolates from these groundwaters, as well as several pure cultures from saline and non-saline environments. Halophilic and non-halophilic bacteria exhibited differences in the amount of U associated with the cells. Plutonium uptake by Acetobacterium sp. isolated from GTS varied from 30-145 pg of Pu mg -1 dry weight of cells. (orig.)

  1. Renal aquaporins and sodium transporters with special focus on urinary tract obstruction

    DEFF Research Database (Denmark)

    Frøkiaer, Jørgen; Li, Chunling; Shi, Yimin

    2003-01-01

    seven aquaporins are expressed at distinct sites in the kidney and 4 members of this family (AQP1-4) have been demonstrated to play pivotal roles in the physiology and pathophysiology for renal regulation of body water balance. Osmotic equilibration via renal aquaporins is maintained by active transport......The discovery of aquaporin-1 (AQP1) by Agre and colleagues explained the long-standing biophysical question of how water specifically crosses biological membranes. These studies led to the discovery and identification of a whole new family of membrane proteins, the aquaporins. At present, at least...

  2. Pancreatic aquaporin-7: a novel target for anti-diabetic drugs?

    Science.gov (United States)

    Méndez-Giménez, Leire; Ezquerro, Silvia; da Silva, Inês V.; Soveral, Graça; Frühbeck, Gema; Rodríguez, Amaia

    2018-04-01

    Aquaporins comprise a family of 13 members of water channels (AQP0-12) that facilitate a rapid transport of water across cell membranes. In some cases, these pores are also permeated by small solutes, particularly glycerol, urea or nitric oxide, among other solutes. Several aquaporins have been identified in the pancreas, an exocrine and endocrine organ that plays an essential role in the onset of insulin resistance and type 2 diabetes. The exocrine pancreas, which accounts for 90% of the total pancreas, secretes daily large volumes of a near-isotonic fluid containing digestive enzymes into the duodenum. AQP1, AQP5 and AQP8 contribute to fluid secretion especially from ductal cells, whereas AQP12 allows the proper maturation and exocytosis of secretory granules in acinar cells of the exocrine pancreas. The endocrine pancreas (10% of the total pancreatic cells) is composed by the islets of Langerhans, which are distributed in ,, ,  and pancreatic polypeptide (PP) cells that secrete glucagon, insulin, somatostatin, ghrelin and PP, respectively. AQP7, an aquaglyceroporin permeated by water and glycerol, is expressed in pancreatic -cells and murine studies have confirmed its participation in insulin secretion, triacylglycerol synthesis and proliferation of these endocrine cells. In this regard, transgenic AQP7-knockout mice develop adult-onset obesity, hyperinsulinemia, increased intracellular triacylglycerol content and reduced -cell mass in Langerhans islets. Moreover, we have recently reported that AQP7 upregulation in β-cells after bariatric surgery, an effective weight loss surgical procedure, contributes, in part, to the improvement of pancreatic steatosis and insulin secretion by increasing intracellular glycerol in obese rats. Human studies remain scarce and controversial, with some rare cases of loss-of function variants of the AQP7 gene being associated with the onset of type 2 diabetes. The present Review is focused on the role of

  3. Pancreatic Aquaporin-7: A Novel Target for Anti-diabetic Drugs?

    Science.gov (United States)

    Méndez-Giménez, Leire; Ezquerro, Silvia; da Silva, Inês V; Soveral, Graça; Frühbeck, Gema; Rodríguez, Amaia

    2018-01-01

    Aquaporins comprise a family of 13 members of water channels (AQP0-12) that facilitate a rapid transport of water across cell membranes. In some cases, these pores are also permeated by small solutes, particularly glycerol, urea or nitric oxide, among other solutes. Several aquaporins have been identified in the pancreas, an exocrine and endocrine organ that plays an essential role in the onset of insulin resistance and type 2 diabetes. The exocrine pancreas, which accounts for 90% of the total pancreas, secretes daily large volumes of a near-isotonic fluid containing digestive enzymes into the duodenum. AQP1, AQP5, and AQP8 contribute to fluid secretion especially from ductal cells, whereas AQP12 allows the proper maturation and exocytosis of secretory granules in acinar cells of the exocrine pancreas. The endocrine pancreas (10% of the total pancreatic cells) is composed by the islets of Langerhans, which are distributed in α, β, δ, ε, and pancreatic polypeptide (PP) cells that secrete glucagon, insulin, somatostatin, ghrelin and PP, respectively. AQP7, an aquaglyceroporin permeated by water and glycerol, is expressed in pancreatic β-cells and murine studies have confirmed its participation in insulin secretion, triacylglycerol synthesis and proliferation of these endocrine cells. In this regard, transgenic AQP7-knockout mice develop adult-onset obesity, hyperinsulinemia, increased intracellular triacylglycerol content and reduced β-cell mass in Langerhans islets. Moreover, we have recently reported that AQP7 upregulation in β-cells after bariatric surgery, an effective weight loss surgical procedure, contributes, in part, to the improvement of pancreatic steatosis and insulin secretion through the increase of intracytoplasmic glycerol in obese rats. Human studies remain scarce and controversial, with some rare cases of loss-of function mutations of the AQP7 gene being associated with the onset of type 2 diabetes. The present Review is focused on the role

  4. Pancreatic Aquaporin-7: A Novel Target for Anti-diabetic Drugs?

    Directory of Open Access Journals (Sweden)

    Leire Méndez-Giménez

    2018-04-01

    Full Text Available Aquaporins comprise a family of 13 members of water channels (AQP0-12 that facilitate a rapid transport of water across cell membranes. In some cases, these pores are also permeated by small solutes, particularly glycerol, urea or nitric oxide, among other solutes. Several aquaporins have been identified in the pancreas, an exocrine and endocrine organ that plays an essential role in the onset of insulin resistance and type 2 diabetes. The exocrine pancreas, which accounts for 90% of the total pancreas, secretes daily large volumes of a near-isotonic fluid containing digestive enzymes into the duodenum. AQP1, AQP5, and AQP8 contribute to fluid secretion especially from ductal cells, whereas AQP12 allows the proper maturation and exocytosis of secretory granules in acinar cells of the exocrine pancreas. The endocrine pancreas (10% of the total pancreatic cells is composed by the islets of Langerhans, which are distributed in α, β, δ, ε, and pancreatic polypeptide (PP cells that secrete glucagon, insulin, somatostatin, ghrelin and PP, respectively. AQP7, an aquaglyceroporin permeated by water and glycerol, is expressed in pancreatic β-cells and murine studies have confirmed its participation in insulin secretion, triacylglycerol synthesis and proliferation of these endocrine cells. In this regard, transgenic AQP7-knockout mice develop adult-onset obesity, hyperinsulinemia, increased intracellular triacylglycerol content and reduced β-cell mass in Langerhans islets. Moreover, we have recently reported that AQP7 upregulation in β-cells after bariatric surgery, an effective weight loss surgical procedure, contributes, in part, to the improvement of pancreatic steatosis and insulin secretion through the increase of intracytoplasmic glycerol in obese rats. Human studies remain scarce and controversial, with some rare cases of loss-of function mutations of the AQP7 gene being associated with the onset of type 2 diabetes. The present Review is

  5. Differential expression of aquaporin-3 and aquaporin-5 in pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Direito, Inês; Paulino, Jorge; Vigia, Emanuel; Brito, Maria Alexandra; Soveral, Graça

    2017-06-01

    Aquaporin-5 (AQP5) and -3 (AQP3) are protein channels that showed to be up-regulated in a variety of tumors. Our goal was to investigate the expression pattern of AQP5 and AQP3 in pancreatic ductal adenocarcinomas (PDA) and correlate with cell proliferation, tumor stage and progression, and clinical significance. 35 PDA samples in different stages of differentiation and locations were analyzed by immunohistochemistry for expression of AQP5, AQP3 and several markers of cell proliferation and tumorigenesis. In PDA samples AQP5 was overexpressed in the apical membrane of intercalated and intralobular ductal cells while AQP3 was expressed at the plasma membrane of ductal cells. AQP5 was also found in infiltrative cancer cells in duodenum. Simultaneous overexpression of EGFR, Ki-67, and CK7, with decreased E-cad and increased Vim that characterize epithelial mesenchymal transition, tumor formation and invasion, strongly suggest AQP3 and AQP5 involvement in cell proliferation and transformation. AQP3 overexpression is reinforced in late and more aggressive PDA stages whereas AQP5 is related with tumor differentiation, suggesting it may represent a novel marker for PDA aggressiveness and intestinal infiltration. These findings suggest AQP3 and AQP5 involvement in PDA development and the usefulness of AQP5 in early PDA diagnosis. © 2017 Wiley Periodicals, Inc.

  6. Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges

    DEFF Research Database (Denmark)

    Habel, Joachim Erich Otto; Hansen, Michael; Kynde, Søren

    2015-01-01

    In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs...... thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes.......In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs...... for investigating AQP incorporation including freeze-fracture transmission electron microscopy, fluorescence correlation spectroscopy, stopped-flow light scattering, and small-angle X-ray scattering. Third, we focus on recent efforts in embedding reconstituted AQPs in membrane designs that are based on conventional...

  7. Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges

    Science.gov (United States)

    Habel, Joachim; Hansen, Michael; Kynde, Søren; Larsen, Nanna; Midtgaard, Søren Roi; Jensen, Grethe Vestergaard; Bomholt, Julie; Ogbonna, Anayo; Almdal, Kristoffer; Schulz, Alexander; Hélix-Nielsen, Claus

    2015-01-01

    In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs: aquaporin proteins (AQPs), block copolymers for AQP reconstitution, and polymer-based supporting structures. First, we briefly cover challenges and review recent developments in understanding the interplay between AQP and block copolymers. Second, we review some experimental characterization methods for investigating AQP incorporation including freeze-fracture transmission electron microscopy, fluorescence correlation spectroscopy, stopped-flow light scattering, and small-angle X-ray scattering. Third, we focus on recent efforts in embedding reconstituted AQPs in membrane designs that are based on conventional thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes. PMID:26264033

  8. Foliar trichome- and aquaporin-aided water uptake in a drought-resistant epiphyte Tillandsia ionantha Planchon.

    Science.gov (United States)

    Ohrui, T; Nobira, H; Sakata, Y; Taji, T; Yamamoto, C; Nishida, K; Yamakawa, T; Sasuga, Y; Yaguchi, Y; Takenaga, H; Tanaka, Shigeo

    2007-12-01

    The atmospheric epiphyte Tillandsia ionantha is capable of surviving drought stress for 6 months or more without any exogenous water supply via an as of yet to be determined mechanism. When plants were soaked in water for 3 h, leaves absorbed a remarkably large amount of water (30-40% on the basis of fresh weight), exhibiting a bimodal absorption pattern. Radiolabeled water was taken up by the leaves by capillary action of the epidermal trichomes within 1 min (phase 1) and then transported intracellularly to leaf tissues over 3 h (phase 2). The removal of epidermal trichome wings from leaves as well as rinsing leaves with water significantly lowered the extracellular accumulation of water on leaf surfaces. The intracellular transport of water was inhibited by mercuric chloride, implicating the involvement of a water channel aquaporin in second-phase water absorption. Four cDNA clones (TiPIP1a, TiPIP1b, TiPIP1c, and TiPIP2a) homologous to PIP family aquaporins were isolated from the leaves, and RT-PCR showed that soaking plants in water stimulated the expression of TiPIP2a mRNA, suggesting the reinforcement in ability to rapidly absorb a large amount of water. The expression of TiPIP2a complementary RNA in Xenopus oocytes enhanced permeability, and treatment with inhibitors suggested that the water channel activity of TiPIP2a protein was regulated by phosphorylation. Thus, the high water uptake capability of T. ionantha leaves surviving drought is attributable to a bimodal trichome- and aquaporin-aided water uptake system based on rapid physical collection of water and subsequent, sustained chemical absorption.

  9. Developmental and environmental regulation of Aquaporin gene expression across Populus species: divergence or redundancy?

    Science.gov (United States)

    Cohen, David; Bogeat-Triboulot, Marie-Béatrice; Vialet-Chabrand, Silvère; Merret, Rémy; Courty, Pierre-Emmanuel; Moretti, Sébastien; Bizet, François; Guilliot, Agnès; Hummel, Irène

    2013-01-01

    Aquaporins (AQPs) are membrane channels belonging to the major intrinsic proteins family and are known for their ability to facilitate water movement. While in Populus trichocarpa, AQP proteins form a large family encompassing fifty-five genes, most of the experimental work focused on a few genes or subfamilies. The current work was undertaken to develop a comprehensive picture of the whole AQP gene family in Populus species by delineating gene expression domain and distinguishing responsiveness to developmental and environmental cues. Since duplication events amplified the poplar AQP family, we addressed the question of expression redundancy between gene duplicates. On these purposes, we carried a meta-analysis of all publicly available Affymetrix experiments. Our in-silico strategy controlled for previously identified biases in cross-species transcriptomics, a necessary step for any comparative transcriptomics based on multispecies design chips. Three poplar AQPs were not supported by any expression data, even in a large collection of situations (abiotic and biotic constraints, temporal oscillations and mutants). The expression of 11 AQPs was never or poorly regulated whatever the wideness of their expression domain and their expression level. Our work highlighted that PtTIP1;4 was the most responsive gene of the AQP family. A high functional divergence between gene duplicates was detected across species and in response to tested cues, except for the root-expressed PtTIP2;3/PtTIP2;4 pair exhibiting 80% convergent responses. Our meta-analysis assessed key features of aquaporin expression which had remained hidden in single experiments, such as expression wideness, response specificity and genotype and environment interactions. By consolidating expression profiles using independent experimental series, we showed that the large expansion of AQP family in poplar was accompanied with a strong divergence of gene expression, even if some cases of functional redundancy

  10. Developmental and environmental regulation of Aquaporin gene expression across Populus species: divergence or redundancy?

    Directory of Open Access Journals (Sweden)

    David Cohen

    Full Text Available Aquaporins (AQPs are membrane channels belonging to the major intrinsic proteins family and are known for their ability to facilitate water movement. While in Populus trichocarpa, AQP proteins form a large family encompassing fifty-five genes, most of the experimental work focused on a few genes or subfamilies. The current work was undertaken to develop a comprehensive picture of the whole AQP gene family in Populus species by delineating gene expression domain and distinguishing responsiveness to developmental and environmental cues. Since duplication events amplified the poplar AQP family, we addressed the question of expression redundancy between gene duplicates. On these purposes, we carried a meta-analysis of all publicly available Affymetrix experiments. Our in-silico strategy controlled for previously identified biases in cross-species transcriptomics, a necessary step for any comparative transcriptomics based on multispecies design chips. Three poplar AQPs were not supported by any expression data, even in a large collection of situations (abiotic and biotic constraints, temporal oscillations and mutants. The expression of 11 AQPs was never or poorly regulated whatever the wideness of their expression domain and their expression level. Our work highlighted that PtTIP1;4 was the most responsive gene of the AQP family. A high functional divergence between gene duplicates was detected across species and in response to tested cues, except for the root-expressed PtTIP2;3/PtTIP2;4 pair exhibiting 80% convergent responses. Our meta-analysis assessed key features of aquaporin expression which had remained hidden in single experiments, such as expression wideness, response specificity and genotype and environment interactions. By consolidating expression profiles using independent experimental series, we showed that the large expansion of AQP family in poplar was accompanied with a strong divergence of gene expression, even if some cases of

  11. The alpine cushion plant Silene acaulis as foundation species: a bug's-eye view to facilitation and microclimate.

    Directory of Open Access Journals (Sweden)

    Olivia Molenda

    Full Text Available Alpine ecosystems are important globally with high levels of endemic and rare species. Given that they will be highly impacted by climate change, understanding biotic factors that maintain diversity is critical. Silene acaulis is a common alpine nurse plant shown to positively influence the diversity and abundance of organisms--predominantly other plant species. The hypothesis that cushion or nurse plants in general are important to multiple trophic levels has been proposed but rarely tested. Alpine arthropod diversity is also largely understudied worldwide, and the plant-arthropod interactions reported are mostly negative, that is,. herbivory. Plant and arthropod diversity and abundance were sampled on S. acaulis and at paired adjacent microsites with other non-cushion forming vegetation present on Whistler Mountain, B.C., Canada to examine the relative trophic effects of cushion plants. Plant species richness and abundance but not Simpson's diversity index was higher on cushion microsites relative to other vegetation. Arthropod richness, abundance, and diversity were all higher on cushion microsites relative to other vegetated sites. On a microclimatic scale, S. acaulis ameliorated stressful conditions for plants and invertebrates living inside it, but the highest levels of arthropod diversity were observed on cushions with tall plant growth. Hence, alpine cushion plants can be foundation species not only for other plant species but other trophic levels, and these impacts are expressed through both direct and indirect effects associated with altered environmental conditions and localized productivity. Whilst this case study tests a limited subset of the membership of alpine animal communities, it clearly demonstrates that cushion-forming plant species are an important consideration in understanding resilience to global changes for many organisms in addition to other plants.

  12. The aquaporin TcAQP1 of the desert truffle Terfezia claveryi is a membrane pore for water and CO(2) transport.

    Science.gov (United States)

    Navarro-Ródenas, Alfonso; Ruíz-Lozano, Juan Manuel; Kaldenhoff, Ralf; Morte, Asunción

    2012-02-01

    Terfezia claveryi is a hypogeous mycorrhizal fungus belonging to the so-called "desert truffles," with a good record as an edible fungus and of considerable economic importance. T. claveryi improves the tolerance to water stress of the host plant Helianthemum almeriense, for which, in field conditions, symbiosis with T. claveryi is valuable for its survival. We have characterized cDNAs from T. claveryi and identified a sequence related to the aquaporin gene family. The full-length sequence was obtained by rapid amplification of cDNA ends and was named TcAQP1. This aquaporin gene encoded a functional water-channel protein, as demonstrated by heterologous expression assays in Saccharomyces cerevisiae. The mycorrhizal fungal aquaporin increased both water and CO(2) conductivity in the heterologous expression system. The expression patterns of the TcAQP1 gene in mycelium, under different water potentials, and in mycorrhizal plants are discussed. The high levels of water conductivity of TcAQP1 could be related to the adaptation of this mycorrhizal fungus to semiarid areas. The CO(2) permeability of TcAQP1 could be involved in the regulation of T. claveryi growth during presymbiotic phases, making it a good candidate to be considered a novel molecular signaling channel in mycorrhizal fungi.

  13. Regulation of Aquaporin Z osmotic permeability in ABA tri-block copolymer

    Directory of Open Access Journals (Sweden)

    Wenyuan Xie

    2015-08-01

    Full Text Available Aquaporins are transmembrane water channel proteins present in biological plasma membranes that aid in biological water filtration processes by transporting water molecules through at high speeds, while selectively blocking out other kinds of solutes. Aquaporin Z incorporated biomimetic membranes are envisaged to overcome the problem of high pressure needed, and holds great potential for use in water purification processes, giving high flux while keeping energy consumption low. The functionality of aquaporin Z in terms of osmotic permeability might be regulated by factors such as pH, temperature, crosslinking and hydrophobic thickness of the reconstituted bilayers. Hence, we reconstituted aquaporin Z into vesicles that are made from a series of amphiphilic block copolymers PMOXA-PDMS-PMOXAs with various hydrophobic molecular weights. The osmotic permeability of aquaporin Z in these vesicles was determined through a stopped-flow spectroscopy. In addition, the temperature and pH value of the vesicle solutions were adjusted within wide ranges to investigate the regulation of osmotic permeability of aquaporin Z through external conditions. Our results show that aquaporin Z permeability was enhanced by hydrophobic mismatch. In addition, the water filtration mechanism of aquaporin Z is significantly affected by the concentration of H+ and OH- ions.

  14. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HuaHu; Wei-PingZhang; LeiZhang; ZhongChen; Er-QingWei

    2004-01-01

    Aquaporin-4 (AQP4) is one of the aquaporins (AQPs), a water channel family. In the brain, AQP4 is expressed in astroeyte foot processes, and plays an important role in water homeostasis and in the formation of brain edema. In our study, AQP4 expression in human brain specimens from patients with traumatic brain injury or different brain tumors was detected

  15. Differences in distribution and regulation of astrocytic aquaporin-4 in human and rat hydrocephalic brain

    DEFF Research Database (Denmark)

    Skjolding, Anders Daehli; Holst, Anders Vedel; Broholm, Helle

    2013-01-01

    findings to human pathophysiology. This study compares expression of aquaporin-4 in hydrocephalic human brain with human controls and hydrocephalic rat brain. Methods:  Cortical biopsies from patients with chronic hydrocephalus (n=29) were sampled secondary to planned surgical intervention. Aquaporin-4...

  16. Aquaporin-11: A channel protein lacking apparent transport function expressed in brain

    Directory of Open Access Journals (Sweden)

    Tsunenari Takashi

    2006-05-01

    Full Text Available Abstract Background The aquaporins are a family of integral membrane proteins composed of two subfamilies: the orthodox aquaporins, which transport only water, and the aquaglyceroporins, which transport glycerol, urea, or other small solutes. Two recently described aquaporins, numbers 11 and 12, appear to be more distantly related to the other mammalian aquaporins and aquaglyceroporins. Results We report on the characterization of Aquaporin-11 (AQP11. AQP11 RNA and protein is found in multiple rat tissues, including kidney, liver, testes and brain. AQP11 has a unique distribution in brain, appearing in Purkinje cell dendrites, hippocampal neurons of CA1 and CA2, and cerebral cortical neurons. Immunofluorescent staining of Purkinje cells indicates that AQP11 is intracellular. Unlike other aquaporins, Xenopus oocytes expressing AQP11 in the plasma membrane failed to transport water, glycerol, urea, or ions. Conclusion AQP11 is functionally distinct from other proteins of the aquaporin superfamily and could represent a new aquaporin subfamily. Further studies are necessary to elucidate the role of AQP11 in the brain.

  17. Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation

    DEFF Research Database (Denmark)

    Li, Zhenyu; Linares, Rodrigo Valladares; Bucs, Szilard

    2017-01-01

    Aquaporin plays a promising role in fabricating high performance biomimetic forward osmosis (FO) membranes. However, aquaporin as a protein also has a risk of denaturation caused, by various chemicals, resulting in a possible decay of membrane performance. The present study tested a novel aquapor...

  18. Targeting Aquaporin Function : Potent Inhibition of Aquaglyceroporin-3 by a Gold-Based Compound

    NARCIS (Netherlands)

    Martins, Ana Paula; Marrone, Alessandro; Ciancetta, Antonella; Galan Cobo, Ana; Echevarria, Miriam; Moura, Teresa F.; Re, Nazzareno; Casini, Angela; Soveral, Graca

    2012-01-01

    Aquaporins (AQPs) are membrane channels that conduct water and small solutes such as glycerol and are involved in many physiological functions. Aquaporin-based modulator drugs are predicted to be of broad potential utility in the treatment of several diseases. Until today few AQP inhibitors have

  19. Photosynthetic Entrainment of the Circadian Clock Facilitates Plant Growth under Environmental Fluctuations: Perspectives from an Integrated Model of Phase Oscillator and Phloem Transportation

    Directory of Open Access Journals (Sweden)

    Takayuki Ohara

    2017-10-01

    Full Text Available Plants need to avoid carbon starvation and resultant growth inhibition under fluctuating light environments to ensure optimal growth and reproduction. As diel patterns of carbon metabolism are influenced by the circadian clock, appropriate regulation of the clock is essential for plants to properly manage their carbon resources. For proper adjustment of the circadian phase, higher plants utilize environmental signals such as light or temperature and metabolic signals such as photosynthetic products; the importance of the latter as phase regulators has been recently elucidated. A mutant of Arabidopsis thaliana that is deficient in phase response to sugar has been shown, under fluctuating light conditions, to be unable to adjust starch turnover and to realize carbon homeostasis. Whereas, the effects of light entrainment on growth and survival of higher plants are well studied, the impact of phase regulation by sugar remains unknown. Here we show that endogenous sugar entrainment facilitates plant growth. We integrated two mathematical models, one describing the dynamics of carbon metabolism in A. thaliana source leaves and the other growth of sink tissues dependent on sucrose translocation from the source. The integrated model predicted that sugar-sensitive plants grow faster than sugar-insensitive plants under constant as well as changing photoperiod conditions. We found that sugar entrainment enables efficient carbon investment for growth by stabilizing sucrose supply to sink tissues. Our results highlight the importance of clock entrainment by both exogenous and endogenous signals for optimizing growth and increasing fitness.

  20. Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L.

    Science.gov (United States)

    Liu, Peng; Yin, Lina; Deng, Xiping; Wang, Shiwen; Tanaka, Kiyoshi; Zhang, Suiqi

    2014-09-01

    The fact that silicon application alleviates water deficit stress has been widely reported, but the underlying mechanism remains unclear. Here the effects of silicon on water uptake and transport of sorghum seedlings (Sorghum bicolor L.) growing under polyethylene glycol-simulated osmotic stress in hydroponic culture and water deficit stress in sand culture were investigated. Osmotic stress dramatically decreased dry weight, photosynthetic rate, transpiration rate, stomatal conductance, and leaf water content, but silicon application reduced these stress-induced decreases. Although silicon application had no effect on stem water transport capacity, whole-plant hydraulic conductance (Kplant) and root hydraulic conductance (Lp) were higher in silicon-treated seedlings than in those without silicon treatment under osmotic stress. Furthermore, the extent of changes in transpiration rate was similar to the changes in Kplant and Lp. The contribution of aquaporin to Lp was characterized using the aquaporin inhibitor mercury. Under osmotic stress, the exogenous application of HgCl2 decreased the transpiration rates of seedlings with and without silicon to the same level; after recovery induced by dithiothreitol (DTT), however, the transpiration rate was higher in silicon-treated seedlings than in untreated seedlings. In addition, transcription levels of several root aquaporin genes were increased by silicon application under osmotic stress. These results indicate that the silicon-induced up-regulation of aquaporin, which was thought to increase Lp, was involved in improving root water uptake under osmotic stress. This study also suggests that silicon plays a modulating role in improving plant resistance to osmotic stress in addition to its role as a mere physical barrier. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. [Relationship between efficacy exertion of diuretic traditional Chinese medicines and aquaporin].

    Science.gov (United States)

    Wang, Peng-cheng; Zhao, Shan; Wang, Qiu-hong; Kuang, Hai-xue

    2015-06-01

    In recent years, the discovery and studies on aquaporin have made us have a more in-depth understanding about the physiological and pathological processes of water metabolism. Over years, however, there has been no quantitative study on the target sites of diuretic traditional Chinese medicines at the molecular level. In that case, aquaporin was found to been a new target molecule to explain the efficacy exertion of diuretic traditional Chinese medicines. By studying aquaporin, researchers can understand the implicit meaning of the diuretic effect of traditional Chinese medicines and conduct quantitative studies on the diuretic effect. So far, many scholars have conducted a series of studies in the traditional Chinese medicine field by using the findings on aquaporin and made certain advances. This article provides a summary about the efficacy exertion of diuretic traditional Chinese medicines through target molecule aquaporin.

  2. The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa.

    Directory of Open Access Journals (Sweden)

    Joan Laur

    Full Text Available Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant. Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs. Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf.

  3. The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa.

    Science.gov (United States)

    Laur, Joan; Hacke, Uwe G

    2014-01-01

    Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant). Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf) decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs). Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs) showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf.

  4. Can Stabilization and Inhibition of Aquaporins Contribute to Future Development of Biomimetic Membranes?

    Science.gov (United States)

    To, Janet; Torres, Jaume

    2015-08-10

    In recent years, the use of biomimetic membranes that incorporate membrane proteins, i.e., biomimetic-hybrid membranes, has increased almost exponentially. Key membrane proteins in these systems have been aquaporins, which selectively permeabilize cellular membranes to water. Aquaporins may be incorporated into synthetic lipid bilayers or to more stable structures made of block copolymers or solid-state nanopores. However, translocation of aquaporins to these alien environments has adverse consequences in terms of performance and stability. Aquaporins incorporated in biomimetic membranes for use in water purification and desalination should also withstand the harsh environment that may prevail in these conditions, such as high pressure, and presence of salt or other chemicals. In this respect, modified aquaporins that can be adapted to these new environments should be developed. Another challenge is that biomimetic membranes that incorporate high densities of aquaporin should be defect-free, and this can only be efficiently ascertained with the availability of completely inactive mutants that behave otherwise like the wild type aquaporin, or with effective non-toxic water channel inhibitors that are so far inexistent. In this review, we describe approaches that can potentially be used to overcome these challenges.

  5. Altered aquaporins in the brains of mice submitted to intermittent hypoxia model of sleep apnea.

    Science.gov (United States)

    Baronio, Diego; Martinez, Denis; Fiori, Cintia Zappe; Bambini-Junior, Victorio; Forgiarini, Luiz Felipe; Pase da Rosa, Darlan; Kim, Lenise Jihe; Cerski, Marcelle Reesink

    2013-01-15

    Rostral fluid displacement has been proposed as a pathophysiologic mechanism of both central and obstructive sleep apnea. Aquaporins are membrane proteins that regulate water transport across the cell membrane and are involved in brain edema formation and resolution. The present study investigated the effect of intermittent hypoxia (IH), a model of sleep apnea, on brain aquaporins. Mice were exposed to intermittent hypoxia to a nadir of 7% oxygen fraction. Brain water content, Aquaporin-1 and Aquaporin-3 were measured in the cerebellum and hippocampus. Hematoxylin-eosin and immunohistochemistry stainings were performed to evaluate cell damage. Compared to the sham group, the hypoxia group presented higher brain water content, lower levels of Aquaporin-1 and similar levels of Aquaporin-3. Immunoreactivity to GFAP and S100B was stronger in the hypoxia group in areas of extensive gliosis, compatible with cytotoxic edema. These findings, although preliminary, indicate an effect of IH on aquaporins levels. Further investigation about the relevance of these data on the pathophysiology of OSA is warranted. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Can Stabilization and Inhibition of Aquaporins Contribute to Future Development of Biomimetic Membranes?

    Directory of Open Access Journals (Sweden)

    Janet To

    2015-08-01

    Full Text Available In recent years, the use of biomimetic membranes that incorporate membrane proteins, i.e., biomimetic-hybrid membranes, has increased almost exponentially. Key membrane proteins in these systems have been aquaporins, which selectively permeabilize cellular membranes to water. Aquaporins may be incorporated into synthetic lipid bilayers or to more stable structures made of block copolymers or solid-state nanopores. However, translocation of aquaporins to these alien environments has adverse consequences in terms of performance and stability. Aquaporins incorporated in biomimetic membranes for use in water purification and desalination should also withstand the harsh environment that may prevail in these conditions, such as high pressure, and presence of salt or other chemicals. In this respect, modified aquaporins that can be adapted to these new environments should be developed. Another challenge is that biomimetic membranes that incorporate high densities of aquaporin should be defect-free, and this can only be efficiently ascertained with the availability of completely inactive mutants that behave otherwise like the wild type aquaporin, or with effective non-toxic water channel inhibitors that are so far inexistent. In this review, we describe approaches that can potentially be used to overcome these challenges.

  7. Preparative scale production of functional mouse aquaporin 4 using different cell-free expression modes.

    Directory of Open Access Journals (Sweden)

    Lei Kai

    Full Text Available The continuous progress in the structural and functional characterization of aquaporins increasingly attracts attention to study their roles in certain mammalian diseases. Although several structures of aquaporins have already been solved by crystallization, the challenge of producing sufficient amounts of functional proteins still remains. CF (cell free expression has emerged in recent times as a promising alternative option in order to synthesize large quantities of membrane proteins, and the focus of this report was to evaluate the potential of this technique for the production of eukaryotic aquaporins. We have selected the mouse aquaporin 4 as a representative of mammalian aquaporins. The protein was synthesized in an E. coli extract based cell-free system with two different expression modes, and the efficiencies of two modes were compared. In both, the P-CF (cell-free membrane protein expression as precipitate mode generating initial aquaporin precipitates as well as in the D-CF (cell-free membrane protein expression in presence of detergent mode, generating directly detergent solubilized samples, we were able to obtain mg amounts of protein per ml of cell-free reaction. Purified aquaporin samples solubilized in different detergents were reconstituted into liposomes, and analyzed for the water channel activity. The calculated P(f value of proteoliposome samples isolated from the D-CF mode was 133 µm/s at 10°C, which was 5 times higher as that of the control. A reversible inhibitory effect of mercury chloride was observed, which is consistent with previous observations of in vitro reconstituted aquaporin 4. In this study, a fast and convenient protocol was established for functional expression of aquaporins, which could serve as basis for further applications such as water filtration.

  8. Aquaporin-5: from structure to function and dysfunction in cancer.

    Science.gov (United States)

    Direito, Inês; Madeira, Ana; Brito, Maria Alexandra; Soveral, Graça

    2016-04-01

    Aquaporins, a highly conserved group of membrane proteins, are involved in the bidirectional transfer of water and small solutes across cell membranes taking part in many biological functions all over the human body. In view of the wide range of cancer malignancies in which aquaporin-5 (AQP5) has been detected, an increasing interest in its implication in carcinogenesis has emerged. Recent publications suggest that this isoform may enhance cancer cell proliferation, migration and survival in a variety of malignancies, with strong evidences pointing to AQP5 as a promising drug target and as a novel biomarker for cancer aggressiveness with high translational potential for therapeutics and diagnostics. This review addresses the structural and functional features of AQP5, detailing its tissue distribution and functions in human body, its expression pattern in a variety of tumors, and highlighting the underlying mechanisms involved in carcinogenesis. Finally, the actual progress of AQP5 research, implications in cancer biology and potential for cancer detection and prognosis are discussed.

  9. The Role of Aquaporins in Ocular Lens Homeostasis

    Science.gov (United States)

    Schey, Kevin L.; Petrova, Rosica S.; Gletten, Romell B.; Donaldson, Paul J.

    2017-01-01

    Aquaporins (AQPs), by playing essential roles in the maintenance of ocular lens homeostasis, contribute to the establishment and maintenance of the overall optical properties of the lens over many decades of life. Three aquaporins, AQP0, AQP1 and AQP5, each with distinctly different functional properties, are abundantly and differentially expressed in the different regions of the ocular lens. Furthermore, the diversity of AQP functionality is increased in the absence of protein turnover by age-related modifications to lens AQPs that are proposed to alter AQP function in the different regions of the lens. These regional differences in AQP functionality are proposed to contribute to the generation and directionality of the lens internal microcirculation; a system of circulating ionic and fluid fluxes that delivers nutrients to and removes wastes from the lens faster than could be achieved by passive diffusion alone. In this review, we present how regional differences in lens AQP isoforms potentially contribute to this microcirculation system by highlighting current areas of investigation and emphasizing areas where future work is required. PMID:29231874

  10. Aquaporin-11 (AQP11 Expression in the Mouse Brain

    Directory of Open Access Journals (Sweden)

    Shin Koike

    2016-06-01

    Full Text Available Aquaporin-11 (AQP11 is an intracellular aquaporin expressed in various tissues, including brain tissues in mammals. While AQP11-deficient mice have developed fatal polycystic kidneys at one month old, the role of AQP11 in the brain was not well appreciated. In this study, we examined the AQP11 expression in the mouse brain and the brain phenotype of AQP11-deficient mice. AQP11 messenger ribonucleic acid (mRNA and protein were expressed in the brain, but much less than in the thymus and kidney. Immunostaining showed that AQP11 was localized at the epithelium of the choroid plexus and at the endothelium of the brain capillary, suggesting that AQP11 may be involved in water transport at the choroid plexus and blood-brain barrier (BBB in the brain. The expression of AQP4, another brain AQP expressed at the BBB, was decreased by half in AQP11-deficient mice, thereby suggesting the presence of the interaction between AQP11 and AQP4. The brain of AQP11-deficient mice, however, did not show any morphological abnormalities and the function of the BBB was intact. Our findings provide a novel insight into a water transport mechanism mediated by AQPs in the brain, which may lead to a new therapy for brain edema.

  11. Sewage sludge amendment and inoculation with plant-parasitic nematodes do not facilitate the internalization of Salmonella Typhimurium LT2 in lettuce plants.

    Science.gov (United States)

    Fornefeld, Eva; Baklawa, Mohamed; Hallmann, Johannes; Schikora, Adam; Smalla, Kornelia

    2018-05-01

    Contamination of fruits and vegetables with Salmonella is a serious threat to human health. In order to prevent possible contaminations of fresh produce it is necessary to identify the contributing ecological factors. In this study we investigated whether the addition of sewage sludge or the presence of plant-parasitic nematodes foster the internalization of Salmonella enterica serovar Typhimurium LT2 into lettuce plants, posing a potential threat for human health. Greenhouse experiments were conducted to investigate whether the amendment of sewage sludge to soil or the presence of plant-parasitic nematodes Meloidogyne hapla or Pratylenchus crenatus promote the internalization of S. Typhimurium LT2 from soil into the edible part of lettuce plants. Unexpectedly, numbers of cultivable S. Typhimurium LT2 decreased faster in soil with sewage sludge than in control soil but not in root samples. Denaturing gradient gel electrophoresis analysis revealed shifts of the soil bacterial communities in response to sewage sludge amendment and time. Infection and proliferation of nematodes inside plant roots were observed but did not influence the number of cultivable S. Typhimurium LT2 in the root samples or in soil. S. Typhimurium LT2 was not detected in the leaf samples 21 and 49 days after inoculation. The results indicate that addition of sewage sludge, M. hapla or P. crenatus to soil inoculated with S. Typhimurium LT2 did not result in an improved survival in soil or internalization of lettuce plants. Copyright © 2017. Published by Elsevier Ltd.

  12. Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco.

    Directory of Open Access Journals (Sweden)

    Shiyi Zhou

    Full Text Available Aquaporin (AQP proteins have been shown to transport water and other small molecules through biological membranes, which is crucial for plants to combat stress caused by drought. However, the precise role of AQPs in drought stress response is not completely understood in plants. In this study, a PIP2 subgroup gene AQP, designated as TaAQP7, was cloned and characterized from wheat. Expression of TaAQP7-GFP fusion protein revealed its localization in the plasma membrane. TaAQP7 exhibited high water channel activity in Xenopus laevis oocytes and TaAQP7 transcript was induced by dehydration, and treatments with polyethylene glycol (PEG, abscisic acid (ABA and H(2O(2. Further, TaAQP7 was upregulated after PEG treatment and was blocked by inhibitors of ABA biosynthesis, implying that ABA signaling was involved in the upregulation of TaAQP7 after PEG treatment. Overexpression of TaAQP7 increased drought tolerance in tobacco. The transgenic tobacco lines had lower levels of malondialdehyde (MDA and H(2O(2, and less ion leakage (IL, but higher relative water content (RWC and superoxide dismutase (SOD and catalase (CAT activities when compared with the wild type (WT under drought stress. Taken together, our results show that TaAQP7 confers drought stress tolerance in transgenic tobacco by increasing the ability to retain water, reduce ROS accumulation and membrane damage, and enhance the activities of antioxidants.

  13. Unique Rhizosphere Micro-characteristics Facilitate Phytoextraction of Multiple Metals in Soil by the Hyperaccumulating Plant Sedum alfredii.

    Science.gov (United States)

    Hou, Dandi; Wang, Kai; Liu, Ting; Wang, Haixin; Lin, Zhi; Qian, Jie; Lu, Lingli; Tian, Shengke

    2017-05-16

    Understanding the strategies that the roots of hyperaccumulating plants use to extract heavy metals from soils is important for optimizing phytoremediation. The rhizosphere characteristics of Sedum alfredii, a hyperaccumulator, were investigated 6 months after it had been planted in weathered field soils contaminated with 5.8 μg of Cd g -1 , 1985.1 μg of Zn g -1 , 667.5 μg of Pb g -1 , and 698.8 μg of Cu g -1 . In contrast with the non-hyperaccumulating ecotype (NHE), the hyperaccumulating ecotype (HE) of S. alfredii was more tolerant to the metals, and higher levels of Cd and Zn accumulated. The HE was characterized by a unique rhizosphere, including extensive root systems, a reduced soil pH, a higher metal bioavailability, and increased rhizomicrobial activity. The bioavailability of metals was significantly correlated with the HE's unique bacterial communities (P heavy metal phytoextraction.

  14. Test of the 'glymphatic' hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma.

    Science.gov (United States)

    Smith, Alex J; Yao, Xiaoming; Dix, James A; Jin, Byung-Ju; Verkman, Alan S

    2017-08-21

    Transport of solutes through brain involves diffusion and convection. The importance of convective flow in the subarachnoid and paravascular spaces has long been recognized; a recently proposed 'glymphatic' clearance mechanism additionally suggests that aquaporin-4 (AQP4) water channels facilitate convective transport through brain parenchyma. Here, the major experimental underpinnings of the glymphatic mechanism were re-examined by measurements of solute movement in mouse brain following intracisternal or intraparenchymal solute injection. We found that: (i) transport of fluorescent dextrans in brain parenchyma depended on dextran size in a manner consistent with diffusive rather than convective transport; (ii) transport of dextrans in the parenchymal extracellular space, measured by 2-photon fluorescence recovery after photobleaching, was not affected just after cardiorespiratory arrest; and (iii) Aqp4 gene deletion did not impair transport of fluorescent solutes from sub-arachnoid space to brain in mice or rats. Our results do not support the proposed glymphatic mechanism of convective solute transport in brain parenchyma.

  15. Cellular Ubc2/Rad6 E2 ubiquitin-conjugating enzyme facilitates tombusvirus replication in yeast and plants

    International Nuclear Information System (INIS)

    Imura, Yoshiyuki; Molho, Melissa; Chuang, Chingkai; Nagy, Peter D.

    2015-01-01

    Mono- and multi-ubiquitination alters the functions and subcellular localization of many cellular and viral proteins. Viruses can co-opt or actively manipulate the ubiquitin network to support viral processes or suppress innate immunity. Using yeast (Saccharomyces cerevisiae) model host, we show that the yeast Rad6p (radiation sensitive 6) E2 ubiquitin-conjugating enzyme and its plant ortholog, AtUbc2, interact with two tombusviral replication proteins and these E2 ubiquitin-conjugating enzymes could be co-purified with the tombusvirus replicase. We demonstrate that TBSV RNA replication and the mono- and bi-ubiquitination level of p33 is decreased in rad6Δ yeast. However, plasmid-based expression of AtUbc2p could complement both defects in rad6Δ yeast. Knockdown of UBC2 expression in plants also decreases tombusvirus accumulation and reduces symptom severity, suggesting that Ubc2p is critical for virus replication in plants. We provide evidence that Rad6p is involved in promoting the subversion of Vps23p and Vps4p ESCRT proteins for viral replicase complex assembly. - Highlights: • Tombusvirus p33 replication protein interacts with cellular RAD6/Ubc2 E2 enzymes. • Deletion of RAD6 reduces tombusvirus replication in yeast. • Silencing of UBC2 in plants inhibits tombusvirus replication. • Mono- and bi-ubiquitination of p33 replication protein in yeast and in vitro. • Rad6p promotes the recruitment of cellular ESCRT proteins into the tombusvirus replicase

  16. Cellular Ubc2/Rad6 E2 ubiquitin-conjugating enzyme facilitates tombusvirus replication in yeast and plants

    Energy Technology Data Exchange (ETDEWEB)

    Imura, Yoshiyuki, E-mail: imura@brs.nihon-u.ac.jp; Molho, Melissa; Chuang, Chingkai; Nagy, Peter D., E-mail: pdnagy2@uky.edu

    2015-10-15

    Mono- and multi-ubiquitination alters the functions and subcellular localization of many cellular and viral proteins. Viruses can co-opt or actively manipulate the ubiquitin network to support viral processes or suppress innate immunity. Using yeast (Saccharomyces cerevisiae) model host, we show that the yeast Rad6p (radiation sensitive 6) E2 ubiquitin-conjugating enzyme and its plant ortholog, AtUbc2, interact with two tombusviral replication proteins and these E2 ubiquitin-conjugating enzymes could be co-purified with the tombusvirus replicase. We demonstrate that TBSV RNA replication and the mono- and bi-ubiquitination level of p33 is decreased in rad6Δ yeast. However, plasmid-based expression of AtUbc2p could complement both defects in rad6Δ yeast. Knockdown of UBC2 expression in plants also decreases tombusvirus accumulation and reduces symptom severity, suggesting that Ubc2p is critical for virus replication in plants. We provide evidence that Rad6p is involved in promoting the subversion of Vps23p and Vps4p ESCRT proteins for viral replicase complex assembly. - Highlights: • Tombusvirus p33 replication protein interacts with cellular RAD6/Ubc2 E2 enzymes. • Deletion of RAD6 reduces tombusvirus replication in yeast. • Silencing of UBC2 in plants inhibits tombusvirus replication. • Mono- and bi-ubiquitination of p33 replication protein in yeast and in vitro. • Rad6p promotes the recruitment of cellular ESCRT proteins into the tombusvirus replicase.

  17. Pollen transmission of asparagus virus 2 (AV-2) may facilitate mixed infection by two AV-2 isolates in asparagus plants.

    Science.gov (United States)

    Kawamura, Ryusuke; Shimura, Hanako; Mochizuki, Tomofumi; Ohki, Satoshi T; Masuta, Chikara

    2014-09-01

    Asparagus virus 2 (AV-2) is a member of the genus Ilarvirus and thought to induce the asparagus decline syndrome. AV-2 is known to be transmitted by seed, and the possibility of pollen transmission was proposed 25 years ago but not verified. In AV-2 sequence analyses, we have unexpectedly found mixed infection by two distinct AV-2 isolates in two asparagus plants. Because mixed infections by two related viruses are normally prevented by cross protection, we suspected that pollen transmission of AV-2 is involved in mixed infection. Immunohistochemical analyses and in situ hybridization using AV-2-infected tobacco plants revealed that AV-2 was localized in the meristem and associated with pollen grains. To experimentally produce a mixed infection via pollen transmission, two Nicotiana benthamiana plants that were infected with each of two AV-2 isolates were crossed. Derived cleaved-amplified polymorphic sequence analysis identified each AV-2 isolate in the progeny seedlings, suggesting that pollen transmission could indeed result in a mixed infection, at least in N. benthamiana.

  18. Cholesterol can modulate mitochondrial aquaporin-8 expression in human hepatic cells.

    Science.gov (United States)

    Danielli, Mauro; Capiglioni, Alejo M; Marrone, Julieta; Calamita, Giuseppe; Marinelli, Raúl A

    2017-05-01

    Hepatocyte mitochondrial aquaporin-8 (mtAQP8) works as a multifunctional membrane channel protein that facilitates the uptake of ammonia for its detoxification to urea as well as the mitochondrial release of hydrogen peroxide. Since early oligonucleotide microarray studies in liver of cholesterol-fed mice showed an AQP8 downregulation, we tested whether alterations of cholesterol content per se modulate mtAQP8 expression in human hepatocyte-derived Huh-7 cells. Cholesterol loading with methyl-β-cyclodextrin (mβCD):cholesterol complexes downregulated the proteolytic activation of cholesterol-responsive sterol regulatory element-binding protein (SREBP) transcriptions factors 1 and 2, and the expression of the target gene 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). Under such conditions, mtAQP8 mRNA and protein expressions were significantly reduced. In contrast, cholesterol depletion using mβCD alone increased SREBP-1 and 2 activation and upregulated HMGCR and mtAQP8 mRNA and protein expressions. The results suggest that cholesterol can regulate transcriptionally human hepatocyte mtAQP8 expression likely via SREBPs. The functional implications of our findings are discussed. © 2017 IUBMB Life, 69(5):341-346, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  19. Thermodynamic insight into spontaneous hydration and rapid water permeation in aquaporins

    Energy Technology Data Exchange (ETDEWEB)

    Barati Farimani, A.; Aluru, N. R. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Tajkhorshid, Emad [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Biochemistry and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2014-08-25

    We report here a detailed thermodynamic description of water molecules inside a biological water channel. Taking advantage of high-resolution molecular dynamics trajectories calculated for an aquaporin (AQP) channel, we compute the spatial translational and rotational components of water diffusion and entropy in AQP. Our results reveal that the spontaneous filling and entry of water into the pore in AQPs are driven by an entropic gain. Specifically, water molecules exhibit an elevated degree of rotational motion inside the pore, while their translational motion is slow compared with bulk. The partial charges of the lining asparagine residues at the conserved signature Asn-Pro-Ala motifs play a key role in enhancing rotational diffusion and facilitating dipole flipping of water inside the pore. The frequencies of the translational and rotational motions in the power spectra overlap indicating a strong coupling of these motions in AQPs. A shooting mechanism with diffusive behavior is observed in the extracellular region which might be a key factor in the fast conduction of water in AQPs.

  20. The grapevine root-specific aquaporin VvPIP2;4N controls root hydraulic conductance and leaf gas exchange under well-watered conditions but not under water stress.

    Science.gov (United States)

    Perrone, Irene; Gambino, Giorgio; Chitarra, Walter; Vitali, Marco; Pagliarani, Chiara; Riccomagno, Nadia; Balestrini, Raffaella; Kaldenhoff, Ralf; Uehlein, Norbert; Gribaudo, Ivana; Schubert, Andrea; Lovisolo, Claudio

    2012-10-01

    We functionally characterized the grape (Vitis vinifera) VvPIP2;4N (for Plasma membrane Intrinsic Protein) aquaporin gene. Expression of VvPIP2;4N in Xenopus laevis oocytes increased their swelling rate 54-fold. Northern blot and quantitative reverse transcription-polymerase chain reaction analyses showed that VvPIP2;4N is the most expressed PIP2 gene in root. In situ hybridization confirmed root localization in the cortical parenchyma and close to the endodermis. We then constitutively overexpressed VvPIP2;4N in grape 'Brachetto', and in the resulting transgenic plants we analyzed (1) the expression of endogenous and transgenic VvPIP2;4N and of four other aquaporins, (2) whole-plant, root, and leaf ecophysiological parameters, and (3) leaf abscisic acid content. Expression of transgenic VvPIP2;4N inhibited neither the expression of the endogenous gene nor that of other PIP aquaporins in both root and leaf. Under well-watered conditions, transgenic plants showed higher stomatal conductance, gas exchange, and shoot growth. The expression level of VvPIP2;4N (endogenous + transgene) was inversely correlated to root hydraulic resistance. The leaf component of total plant hydraulic resistance was low and unaffected by overexpression of VvPIP2;4N. Upon water stress, the overexpression of VvPIP2;4N induced a surge in leaf abscisic acid content and a decrease in stomatal conductance and leaf gas exchange. Our results show that aquaporin-mediated modifications of root hydraulics play a substantial role in the regulation of water flow in well-watered grapevine plants, while they have a minor role upon drought, probably because other signals, such as abscisic acid, take over the control of water flow.

  1. Frequency and prognostic impact of antibodies to aquaporin-4 in patients with optic neuritis

    DEFF Research Database (Denmark)

    Jarius, Sven; Frederiksen, Jette Lautrup Battistini; Waters, Patrick

    2010-01-01

    Antibodies to aquaporin-4 (AQP4-Ab) are found in 60-80% of patients with neuromyelitis optica (NMO), a severely disabling inflammatory CNS disorder of putative autoimmune aetiology, which predominantly affects the optic nerves and spinal cord....

  2. Aquaporin-6 Expression in the Cochlear Sensory Epithelium Is Downregulated by Salicylates

    Directory of Open Access Journals (Sweden)

    Paola Perin

    2010-01-01

    Full Text Available We characterize the expression pattern of aquaporin-6 in the mouse inner ear by RT-PCR and immunohistochemistry. Our data show that in the inner ear aquaporin-6 is expressed, in both vestibular and acoustic sensory epithelia, by the supporting cells directly contacting hair cells. In particular, in the Organ of Corti, expression was strongest in Deiters' cells, which provide both a mechanical link between outer hair cells (OHCs and the Organ of Corti, and an entry point for ion recycle pathways. Since aquaporin-6 is permeable to both water and anions, these results suggest its possible involvement in regulating OHC motility, directly through modulation of water and chloride flow or by changing mechanical compliance in Deiters' cells. In further support of this role, treating mice with salicylates, which impair OHC electromotility, dramatically reduced aquaporin-6 expression in the inner ear epithelia but not in control tissues, suggesting a role for this protein in modulating OHCs' responses.

  3. Aquaporin-6 expression in the cochlear sensory epithelium is downregulated by salicylates.

    Science.gov (United States)

    Perin, Paola; Tritto, Simona; Botta, Laura; Fontana, Jacopo Maria; Gastaldi, Giulia; Masetto, Sergio; Tosco, Marisa; Laforenza, Umberto

    2010-01-01

    We characterize the expression pattern of aquaporin-6 in the mouse inner ear by RT-PCR and immunohistochemistry. Our data show that in the inner ear aquaporin-6 is expressed, in both vestibular and acoustic sensory epithelia, by the supporting cells directly contacting hair cells. In particular, in the Organ of Corti, expression was strongest in Deiters' cells, which provide both a mechanical link between outer hair cells (OHCs) and the Organ of Corti, and an entry point for ion recycle pathways. Since aquaporin-6 is permeable to both water and anions, these results suggest its possible involvement in regulating OHC motility, directly through modulation of water and chloride flow or by changing mechanical compliance in Deiters' cells. In further support of this role, treating mice with salicylates, which impair OHC electromotility, dramatically reduced aquaporin-6 expression in the inner ear epithelia but not in control tissues, suggesting a role for this protein in modulating OHCs' responses.

  4. Tubular localization and expressional dynamics of aquaporins in the kidney of seawater-challenged Atlantic salmon

    DEFF Research Database (Denmark)

    Engelund, Morten Buch; Madsen, Steffen S

    2015-01-01

    Most vertebrate nephrons possess an inherited ability to secrete fluid in normal or pathophysiological states. We hypothesized that renal aquaporin expression and localization are functionally regulated in response to seawater and during smoltification in Atlantic salmon and thus reflect a shift...... in renal function from filtration towards secretion. We localized aquaporins (Aqp) in Atlantic salmon renal tubular segments by immunohistochemistry and monitored their expressional dynamics using RT-PCR and immunoblotting. Three aquaporins: Aqpa1aa, Aqp1ab and Aqp8b and two aquaglyceroporins Aqp3a and Aqp......10b were localized in the kidney of salmon. The staining for all aquaporins was most abundant in the proximal kidney tubules and there was no clear effect of salinity or developmental stage on localization pattern. Aqp1aa and Aqp3a were abundant apically but extended throughout the epithelial cells...

  5. Frequency and prognostic impact of antibodies to aquaporin-4 in patients with optic neuritis

    DEFF Research Database (Denmark)

    Jarius, Sven; Frederiksen, Jette Lautrup Battistini; Waters, Patrick

    2010-01-01

    Antibodies to aquaporin-4 (AQP4-Ab) are found in 60-80% of patients with neuromyelitis optica (NMO), a severely disabling inflammatory CNS disorder of putative autoimmune aetiology, which predominantly affects the optic nerves and spinal cord.......Antibodies to aquaporin-4 (AQP4-Ab) are found in 60-80% of patients with neuromyelitis optica (NMO), a severely disabling inflammatory CNS disorder of putative autoimmune aetiology, which predominantly affects the optic nerves and spinal cord....

  6. Aquaporins 6-12 in the human eye

    DEFF Research Database (Denmark)

    Tran, Thuy Linh; Bek, Toke; Holm, Lars

    2012-01-01

    Purpose: Aquaporins (AQPs) are widely expressed and have diverse distribution patterns in the eye. AQPs 0-5 have been localized at the cellular level in human eyes. We investigated the presence of the more recently discovered AQPs 6-12 in the human eye. Methods: RT-PCR was performed on fresh tissue...... from two human eyes divided into the cornea, corneal limbus, ciliary body and iris, lens, choroid, optic nerve, retina and sclera. Each structure was examined to detect the mRNA of AQPs 6-12. Twenty-one human eyes were examined using immunohistochemical and immunofluorescence techniques to determine...... was detected in the corneal epithelium, corneal endothelium, trabecular meshwork endothelium, ciliary epithelia, lens epithelium, the inner and outer limiting membrane of the retina, the retinal pigment epithelium and the capillary endothelium of all parts of the eye. AQP9 immunolabelling was detected...

  7. CHIP regulates aquaporin-2 quality control and body water homeostasis

    DEFF Research Database (Denmark)

    Wu, Qi; Moeller, Hanne B.; Stevens, Donté A.

    2018-01-01

    The importance of the kidney distal convoluted tubule (DCT) and cortical collecting duct (CCD) is highlighted by various water and electrolyte disorders that arise when the unique transport properties of these segments are disturbed. Despite this critical role, little is known about which proteins...... by vasopressin; interacts with aquaporin-2 (AQP2), Hsp70, and Hsc70; and can directly ubiquitylate the water channel AQP2 in vitro. shRNA knockdown of CHIP in CCD cells increased AQP2 protein t1/2 and reduced AQP2 ubiquitylation, resulting in greater levels of AQP2 andphosphorylatedAQP2.CHIP knockdown increased...... the plasma membrane abundance of AQP2 in these cells. Compared with wild-type controls, CHIP knockout mice or novel CRISPR/Cas9 mice without CHIPE3 ligase activity had greater AQP2 abundance and altered renal water handling, with decreased water intake and urine volume, alongside higher urine osmolality. We...

  8. [Involvement of aquaporin-4 in synaptic plasticity, learning and memory].

    Science.gov (United States)

    Wu, Xin; Gao, Jian-Feng

    2017-06-25

    Aquaporin-4 (AQP-4) is the predominant water channel in the central nervous system (CNS) and primarily expressed in astrocytes. Astrocytes have been generally believed to play important roles in regulating synaptic plasticity and information processing. However, the role of AQP-4 in regulating synaptic plasticity, learning and memory, cognitive function is only beginning to be investigated. It is well known that synaptic plasticity is the prime candidate for mediating of learning and memory. Long term potentiation (LTP) and long term depression (LTD) are two forms of synaptic plasticity, and they share some but not all the properties and mechanisms. Hippocampus is a part of limbic system that is particularly important in regulation of learning and memory. This article is to review some research progresses of the function of AQP-4 in synaptic plasticity, learning and memory, and propose the possible role of AQP-4 as a new target in the treatment of cognitive dysfunction.

  9. Day/night regulation of aquaporins during the CAM cycle in Mesembryanthemum crystallinum.

    Science.gov (United States)

    Vera-Estrella, Rosario; Barkla, Bronwyn J; Amezcua-Romero, Julio C; Pantoja, Omar

    2012-03-01

    Mesembryanthemum crystallinum exhibits induction of Crassulacean acid metabolism (CAM) after a threshold stage of development, by exposure to long days with high light intensities or by water and salt stress. During the CAM cycle, fluctuations in carbon partitioning within the cell lead to transient drops in osmotic potential, which are likely stabilized/balanced by passive movement of water via aquaporins (AQPs). Protoplast swelling assays were used to detect changes in water permeability during the day/night cycle of CAM. To assess the role of AQPs during the same period, we followed transcript accumulation and protein abundance of four plasma membrane intrinsic proteins (PIPs) and one tonoplast intrinsic protein (TIP). CAM plants showed a persistent rhythm of specific AQP protein abundance changes throughout the day/night cycle, including changes in amount of McPIP2;1, McTIP1;2, McPIP1;4 and McPIP1;5, while the abundance of McPIP1;2 was unchanged. These protein changes did not appear to be coordinated with transcript levels for any of the AQPs analysed; however, they did occur in parrallel to alterations in water permeability, as well as variations in cell osmolarity, pinitol, glucose, fructose and phosphoenolpyruvate carboxylase (PEPc) levels measured throughout the day/night CAM cycle. Results suggest a role for AQPs in maintaining water balance during CAM and highlight the complexity of protein expression during the CAM cycle. © 2011 Blackwell Publishing Ltd.

  10. Heterologous Expression of Tulip Petal Plasma Membrane Aquaporins in Pichia pastoris for Water Channel Analysis▿

    Science.gov (United States)

    Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2009-01-01

    Water channels formed by aquaporins (AQPs) play an important role in the control of water homeostasis in individual cells and in multicellular organisms. Plasma membrane intrinsic proteins (PIPs) constitute a subclass of plant AQPs. TgPIP2;1 and TgPIP2;2 from tulip petals are members of the PIP family. In this study, we overexpressed TgPIP2;1 and TgPIP2;2 in Pichia pastoris and monitored their water channel activity (WCA) either by an in vivo spheroplast-bursting assay performed after hypo-osmotic shock or by growth assay. Osmolarity, pH, and inhibitors of AQPs, protein kinases (PKs), and protein phosphatases (PPs) affect the WCA of heterologous AQPs in this expression system. The WCA of TgPIP2;2-expressing spheroplasts was affected by inhibitors of PKs and PPs, which indicates that the water channel of this homologue is regulated by phosphorylation in P. pastoris. From the results reported herein, we suggest that P. pastoris can be employed as a heterologous expression system to assay the WCA of PIPs and to monitor the AQP-mediated channel gating mechanism, and it can be developed to screen inhibitors/effectors of PIPs. PMID:19251885

  11. Heterologous expression of tulip petal plasma membrane aquaporins in Pichia pastoris for water channel analysis.

    Science.gov (United States)

    Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2009-05-01

    Water channels formed by aquaporins (AQPs) play an important role in the control of water homeostasis in individual cells and in multicellular organisms. Plasma membrane intrinsic proteins (PIPs) constitute a subclass of plant AQPs. TgPIP2;1 and TgPIP2;2 from tulip petals are members of the PIP family. In this study, we overexpressed TgPIP2;1 and TgPIP2;2 in Pichia pastoris and monitored their water channel activity (WCA) either by an in vivo spheroplast-bursting assay performed after hypo-osmotic shock or by growth assay. Osmolarity, pH, and inhibitors of AQPs, protein kinases (PKs), and protein phosphatases (PPs) affect the WCA of heterologous AQPs in this expression system. The WCA of TgPIP2;2-expressing spheroplasts was affected by inhibitors of PKs and PPs, which indicates that the water channel of this homologue is regulated by phosphorylation in P. pastoris. From the results reported herein, we suggest that P. pastoris can be employed as a heterologous expression system to assay the WCA of PIPs and to monitor the AQP-mediated channel gating mechanism, and it can be developed to screen inhibitors/effectors of PIPs.

  12. 50 CFR 17.107 - Facilitating enforcement.

    Science.gov (United States)

    2010-10-01

    ... WILDLIFE AND PLANTS (CONTINUED) ENDANGERED AND THREATENED WILDLIFE AND PLANTS (CONTINUED) Manatee Protection Areas § 17.107 Facilitating enforcement. Water vehicles operating in manatee sanctuary or refuge...

  13. Identification of a novel promoter from banana aquaporin family gene (MaTIP1;2) which responses to drought and salt-stress in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Song, Shun; Xu, Yi; Huang, Dongmei; Miao, Hongxia; Liu, Juhua; Jia, Caihong; Hu, Wei; Valarezo, Ana Valeria; Xu, Biyu; Jin, Zhiqiang

    2018-07-01

    Drought and salt stresses often affect plant growth and crop yields. Identification of promoters involved in drought and salt stress responses is of great significance for genetic improvement of crop resistance. Our previous studies showed that aquaporin can respond to drought and salt stresses, but its promoter has not yet been reported in plants. In the present study, cis-acting elements of MaAQP family member promoters were systematically analyzed in banana. Expression of MaTIP1; 2 was induced by drought and salt stresses but not sensitive to cold stress, waterlogging stress, or mechanical damage, and its promoter contained five stress-related cis-acting elements. The MaTIP1; 2 promoter (841 bp upstream of translation initiation site) from banana (Musa acuminata L. AAA group cv. Brazilian) was isolated through genome walking polymerase chain reaction, and found to contain a TATA Box, CAAT box, ABRE element, CCGTCC box, CGTCA motif, and TCA element. Transformation of the MaTIP1; 2 promoter into Arabidopsis to assess its function indicated that it responds to both drought and salt stress treatments. These results suggest that MaTIP1; 2 utilization may improve drought and salt stresses resistance of the transgenic plants by promoting banana aquaporin expression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Apparatus for facilitating the servicing of inverted canned pump motors having limited access space and restricted access time especially in nuclear power plants

    International Nuclear Information System (INIS)

    Matusz, J.M.

    1991-01-01

    This patent describes a service apparatus for one or more inverted canned motor pumps installed above a floor and beneath a steam generator in a nuclear or fossil power plant with limited access space and limited access time at least in the case of nuclear power plants, each of the canned motor pumps having a pump casing and a depending motor having a flange secured to a pump casing flange by tensioned studs with tightened nuts. It comprises a maintenance cart having a height greater than the height of the motor beneath the motor flange and further having a generally U-shaped frame means with an open vertical side that permits the cart to be moved horizontally such that the cart frame means can be moved under the pump casing to surround the depending motor; actuator means supported by the cart frame means and having translating arm means engageable with support means on the motor; means for operating the translating arm means to support, raise and lower the motor; means supported by the frame means to support the motor flange prior to raising the motor to its installed position and after the motor has been released from its installed position and lowered to the cart; work platform means provided on the cart frame means at an elevation beneath the motor flange elevation; and roller means provided on the bottom of the cart frame means to facilitate horizontal cart movement along the floor

  15. Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis.

    Science.gov (United States)

    Pang, Yongqi; Li, Lijuan; Ren, Fei; Lu, Pingli; Wei, Pengcheng; Cai, Jinghui; Xin, Lingguo; Zhang, Juan; Chen, Jia; Wang, Xuechen

    2010-06-01

    Boron (B) toxicity to plants is responsible for low crop productivity in many regions of the world. Here we report a novel and effective means to alleviate the B toxicity to plants under high B circumstance. Functional characterization of AtTIP5;1, an aquaporin gene, revealed that overexpression of AtTIP5;1 (OxAtTIP5;1) in Arabidopsis significantly increased its tolerance to high B toxicity. Compared to wild-type plants, OxAtTIP5;1 plants exhibited longer hypocotyls, accelerated development, increased silique production under high B treatments. GUS staining and quantitative RT-PCR (qRT-PCR) results demonstrated that the expression of AtTIP5;1 was induced by high B concentration treatment. Subcellular localization analysis revealed that the AtTIP5;1-GFP fusion protein was localized on the tonoplast membrane, which was consistent with the prediction based on bioinformatics. Taken together, our results suggest that AtTIP5;1 is involved in B transport pathway possibly via vacuolar compartmentation for B, and that overexpression of AtTIP5;1 in plants may provide an effective way to overcome the problem resulting from high B concentration toxicity. Copyright 2010 Institute of Genetics and Developmental Biology and the Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  16. Do phosphoinositides regulate membrane water permeability of tobacco protoplasts by enhancing the aquaporin pathway?

    Science.gov (United States)

    Ma, Xiaohong; Shatil-Cohen, Arava; Ben-Dor, Shifra; Wigoda, Noa; Perera, Imara Y; Im, Yang Ju; Diminshtein, Sofia; Yu, Ling; Boss, Wendy F; Moshelion, Menachem; Moran, Nava

    2015-03-01

    Enhancing the membrane content of PtdInsP 2 , the already-recognized protein-regulating lipid, increased the osmotic water permeability of tobacco protoplasts, apparently by increasing the abundance of active aquaporins in their membranes. While phosphoinositides are implicated in cell volume changes and are known to regulate some ion channels, their modulation of aquaporins activity has not yet been reported for any organism. To examine this, we compared the osmotic water permeability (P f) of protoplasts isolated from tobacco (Nicotiana tabacum) cultured cells (NT1) with different (genetically lowered or elevated relative to controls) levels of inositol trisphosphate (InsP3) and phosphatidyl inositol [4,5] bisphosphate (PtdInsP2). To achieve this, the cells were transformed with, respectively, the human InsP3 5-phosphatase ('Ptase cells') or human phosphatidylinositol (4) phosphate 5-kinase ('PIPK cells'). The mean P f of the PIPK cells was several-fold higher relative to that of controls and Ptase cells. Three results favor aquaporins over the membrane matrix as underlying this excessive P f: (1) transient expression of the maize aquaporin ZmPIP2;4 in the PIPK cells increased P f by 12-30 μm s(-1), while in the controls only by 3-4 μm s(-1). (2) Cytosol acidification-known to inhibit aquaporins-lowered the P f in the PIPK cells down to control levels. (3) The transcript of at least one aquaporin was elevated in the PIPK cells. Together, the three results demonstrate the differences between the PIPK cells and their controls, and suggest a hitherto unobserved regulation of aquaporins by phosphoinositides, which could occur through direct interaction or indirect phosphoinositides-dependent cellular effects.

  17. Aquaporin family genes exhibit developmentally-regulated and host-dependent transcription patterns in the sea louse Caligus rogercresseyi.

    Science.gov (United States)

    Farlora, Rodolfo; Valenzuela-Muñoz, Valentina; Chávez-Mardones, Jacqueline; Gallardo-Escárate, Cristian

    2016-07-01

    Aquaporins are small integral membrane proteins that function as pore channels for the transport of water and other small solutes across the cell membrane. Considering the important roles of these proteins in several biological processes, including host-parasite interactions, there has been increased research on aquaporin proteins recently. The present study expands on the knowledge of aquaporin family genes in parasitic copepods, examining diversity and expression during the ontogeny of the sea louse Caligus rogercresseyi. Furthermore, aquaporin expression was evaluated during the early infestation of Atlantic (Salmo salar) and Coho salmon (Oncorhynchus kisutch). Deep transcriptome sequencing data revealed eight full length and two partial open reading frames belonging to the aquaporin protein family. Clustering analyses with identified Caligidae sequences revealed three major clades of aquaglyceroporins (Cr-Glp), classical aquaporin channels (Cr-Bib and Cr-PripL), and unorthodox aquaporins (Cr-Aqp12-like). In silico analysis revealed differential expression of aquaporin genes between developmental stages and between sexes. Male-biased expression of Cr-Glp1_v1 and female-biased expression of Cr-Bib were further confirmed in adults by RT-qPCR. Additionally, gene expressions were measured for seven aquaporins during the early infestation stage. The majority of aquaporin genes showed significant differential transcription expressions between sea lice parasitizing different hosts, with Atlantic salmon sea lice exhibiting overall reduced expression as compared to Coho salmon. The observed differences in the regulation of aquaporin genes may reveal osmoregulatory adaptations associated with nutrient ingestion and metabolite waste export, exposing complex host-parasite relationships in C. rogercresseyi. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Opposing effects of cAMP and T259 phosphorylation on plasma membrane diffusion of the water channel aquaporin-5 in Madin-Darby canine kidney cells

    DEFF Research Database (Denmark)

    Koffman, Jennifer Skaarup; Christensen, Eva Arnspang; Marlar, Saw

    2015-01-01

    Aquaporin-5 (AQP5) facilitates passive water transport in glandular epithelia in response to secretory stimuli via intracellular pathways involving calcium release, cAMP and protein kinase A (PKA). In epithelial plasma membranes, AQP5 may be acutely regulated to facilitate water transport...... in the plasma membrane diffusion coefficient of AQP5. We aimed to test the short-term regulatory effects of the above pathways, by measuring lateral diffusion of AQP5 and an AQP5 phospho-mutant, T259A, using k-space Image Correlation Spectroscopy of quantum dot- and EGFP-labeled AQP5. Elevated cAMP and PKA...... inhibition significantly decreased lateral diffusion of AQP5, whereas T259A mutation showed opposing effects; slowing diffusion without stimulation and increasing diffusion to basal levels after cAMP elevation. Thus, lateral diffusion of AQP5 is significantly regulated by cAMP, PKA, and T259 phosphorylation...

  19. Response of three broccoli cultivars to salt stress, in relation to water status and expression of two leaf aquaporins.

    Science.gov (United States)

    Muries, Beatriz; Carvajal, Micaela; Martínez-Ballesta, María Del Carmen

    2013-05-01

    The aim of this study was to compare differences in water relations in the leaves of three broccoli cultivars and differential induction of the expression of PIP2 aquaporin isoforms under salt stress. Although broccoli is known to be moderately tolerant to salinity, scarce information exists about the involvement of leaf aquaporins in its adaptation to salinity. Thus, leaf water relations, leaf cell hydraulic conductivity (Lpc), gas exchange parameters and the PIP2 expression pattern were determined for short- (15 h) and long- (15 days) term NaCl treatments. In the long term, the lower half-time of water exchange in the cells of cv. Naxos, compared with Parthenon and Chronos, and its increased PIP2 abundance may have contributed to its Lpc maintenance. This unmodified Lpc in cv. Naxos under prolonged salinity may have diluted NaCl in the leaves, as suggested by lower Na(+) concentrations in the leaf sap. By contrast, the increase in the half-time of water exchange and the lower PIP2 abundance in cvs. Chronos and Parthenon would have contributed to the reduced Lpc values. In cv. Parthenon, there were no differences between the ε values of control and salt-stressed plants; in consequence, cell turgor was enhanced. Also, the increases in BoPIP2;2 and BoPIP2;3 expression in cv. Chronos for the short-term NaCl treatment suggest that these isoforms are involved in osmotic regulation as downstream factors in this cultivar, in fact, in the short-term, Chronos had a significantly reduced osmotic potential and higher PIP2 isoforms expression.

  20. Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation

    KAUST Repository

    Li, Zhenyu

    2017-07-27

    Aquaporin plays a promising role in fabricating high performance biomimetic forward osmosis (FO) membranes. However, aquaporin as a protein also has a risk of denaturation caused by various chemicals, resulting in a possible decay of membrane performance. The present study tested a novel aquaporin based biomimetic membrane in simulated membrane cleaning processes. The effects of cleaning agents on water flux and salt rejection were evaluated. The membrane showed a good resistance to the chemical agents. The water flux after chemical cleaning showed significant increases, particularly after cleaning with NaOCl and Alconox. Changes in the membrane structure and increased hydrophilicity in the surrounding areas of the aquaporin may be accountable for the increase in water permeability. The membrane shows stable salt rejection up to 99% after all cleaning agents were tested. A 15-day experiment with secondary wastewater effluent as the feed solution and seawater as the draw solution showed a stable flux and high salt rejection. The average rejection of the dissolved organic carbon from wastewater after the 15-day test was 90%. The results demonstrated that the aquaporin based biomimetic FO membrane exhibits chemical resistance for most agents used in membrane cleaning procedures, maintaining a stable flux and high salt rejection.

  1. Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation

    KAUST Repository

    Li, Zhenyu; Valladares Linares, Rodrigo; Bucs, Szilard; Fortunato, Luca; Hé lix-Nielsen, Claus; Vrouwenvelder, Johannes S.; Ghaffour, NorEddine; Leiknes, TorOve; Amy, Gary

    2017-01-01

    Aquaporin plays a promising role in fabricating high performance biomimetic forward osmosis (FO) membranes. However, aquaporin as a protein also has a risk of denaturation caused by various chemicals, resulting in a possible decay of membrane performance. The present study tested a novel aquaporin based biomimetic membrane in simulated membrane cleaning processes. The effects of cleaning agents on water flux and salt rejection were evaluated. The membrane showed a good resistance to the chemical agents. The water flux after chemical cleaning showed significant increases, particularly after cleaning with NaOCl and Alconox. Changes in the membrane structure and increased hydrophilicity in the surrounding areas of the aquaporin may be accountable for the increase in water permeability. The membrane shows stable salt rejection up to 99% after all cleaning agents were tested. A 15-day experiment with secondary wastewater effluent as the feed solution and seawater as the draw solution showed a stable flux and high salt rejection. The average rejection of the dissolved organic carbon from wastewater after the 15-day test was 90%. The results demonstrated that the aquaporin based biomimetic FO membrane exhibits chemical resistance for most agents used in membrane cleaning procedures, maintaining a stable flux and high salt rejection.

  2. Heterologous expression of the wheat aquaporin gene TaTIP2;2 compromises the abiotic stress tolerance of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Chunhui Xu

    Full Text Available Aquaporins are channel proteins which transport water across cell membranes. We show that the bread wheat aquaporin gene TaTIP2;2 maps to the long arm of chromosome 7b and that its product localizes to the endomembrane system. The gene is expressed constitutively in both the root and the leaf, and is down-regulated by salinity and drought stress. Salinity stress induced an increased level of C-methylation within the CNG trinucleotides in the TaTIP2;2 promoter region. The heterologous expression of TaTIP2;2 in Arabidopsis thaliana compromised its drought and salinity tolerance, suggesting that TaTIP2;2 may be a negative regulator of abiotic stress. The proline content of transgenic A. thaliana plants fell, consistent with the down-regulation of P5CS1, while the expression of SOS1, SOS2, SOS3, CBF3 and DREB2A, which are all stress tolerance-related genes acting in an ABA-independent fashion, was also down-regulated. The supply of exogenous ABA had little effect either on TaTIP2;2 expression in wheat or on the phenotype of transgenic A. thaliana. The expression level of the ABA signalling genes ABI1, ABI2 and ABF3 remained unaltered in the transgenic A. thaliana plants. Thus TaTIP2;2 probably regulates the response to stress via an ABA-independent pathway(s.

  3. Analysis of aquaporin 9 expression in human epidermis and cultured keratinocytes

    Directory of Open Access Journals (Sweden)

    Yoshinori Sugiyama

    2014-01-01

    Full Text Available Aquaporin 9 (AQP9 is a member of the aquaglyceroporin family that transports glycerol, urea and other small solutes as well as water. Compared to the expression and function in epidermal keratinocytes of AQP3, another aquaglyceroporin, our knowledge of epidermal AQP9 remains elusive. In this study, we investigated the expression of AQP9 in the human epidermis and cultured keratinocytes. Immunofluorescence studies revealed that AQP9 expression is highly restricted to the stratum granulosum of the human epidermis, where occludin is also expressed at the tight junctions. Interestingly, the AQP3 staining decreased sharply below the cell layers in which AQP9 is expressed. In cultured normal human epidermal keratinocytes (NHEK, knock-down of AQP9 expression in the differentiated cells induced by RNA interference reduced glycerol uptake, which was not as pronounced as was the case with AQP3 knock-down cells. In contrast, similar reduction of urea uptake was detected in AQP9 and AQP3 knock-down cells. These findings suggested that AQP9 expression in NHEK facilitates at least the transport of glycerol and urea. Finally, we analyzed the effect of retinoic acid (RA, a potent stimulator of keratinocyte proliferation, on AQP3 and AQP9 mRNA expression in differentiated NHEK. Stimulation with RA at 1 μM for 24 h augmented AQP3 expression and down-regulated AQP9 expression. Collectively, these results indicate that AQP9 expression in epidermal keratinocytes is regulated in a different manner from that of AQP3.

  4. Genome Wide Identification, Phylogeny, and Expression of Aquaporin Genes in Common Carp (Cyprinus carpio.

    Directory of Open Access Journals (Sweden)

    Chuanju Dong

    Full Text Available Aquaporins (Aqps are integral membrane proteins that facilitate the transport of water and small solutes across cell membranes. Among vertebrate species, Aqps are highly conserved in both gene structure and amino acid sequence. These proteins are vital for maintaining water homeostasis in living organisms, especially for aquatic animals such as teleost fish. Studies on teleost Aqps are mainly limited to several model species with diploid genomes. Common carp, which has a tetraploidized genome, is one of the most common aquaculture species being adapted to a wide range of aquatic environments. The complete common carp genome has recently been released, providing us the possibility for gene evolution of aqp gene family after whole genome duplication.In this study, we identified a total of 37 aqp genes from common carp genome. Phylogenetic analysis revealed that most of aqps are highly conserved. Comparative analysis was performed across five typical vertebrate genomes. We found that almost all of the aqp genes in common carp were duplicated in the evolution of the gene family. We postulated that the expansion of the aqp gene family in common carp was the result of an additional whole genome duplication event and that the aqp gene family in other teleosts has been lost in their evolution history with the reason that the functions of genes are redundant and conservation. Expression patterns were assessed in various tissues, including brain, heart, spleen, liver, intestine, gill, muscle, and skin, which demonstrated the comprehensive expression profiles of aqp genes in the tetraploidized genome. Significant gene expression divergences have been observed, revealing substantial expression divergences or functional divergences in those duplicated aqp genes post the latest WGD event.To some extent, the gene families are also considered as a unique source for evolutionary studies. Moreover, the whole set of common carp aqp gene family provides an

  5. Unique and analogous functions of aquaporin O for fiber cell architecture and ocular lens transparency

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, S.S.; Eswaramoorthy, S.; Mathias, R. T.; Varadaraj, K.

    2011-09-01

    Aquaporin (AQP) 1 and AQP0 water channels are expressed in lens epithelial and fiber cells, respectively, facilitating fluid circulation for nourishing the avascular lens to maintain transparency. Even though AQP0 water permeability is 40-fold less than AQP1, AQP0 is selectively expressed in the fibers. Delimited AQP0 fiber expression is attributed to a unique structural role as an adhesion protein. To validate this notion, we determined if wild type (WT) lens ultrastructure and fibercell adhesion are different in AQP0{sup -/-}, and TgAQP1{sup +/+}/AQP0{sup -/-} mice that transgenically express AQP1 (TgAQP1) in fibercells without AQP0 (AQP0{sup -/-}). In WT, lenses were transparent with 'Y' sutures. Fibers contained opposite end curvature, lateral interdigitations, hexagonal shape, and were arranged as concentric growth shells. AQP0{sup -/-}lenses were cataractous, lacked 'Y' sutures, ordered packing and well-defined lateral interdigitations. TgAQP1{sup +/+}/AQP0{sup -/-} lenses showed improvement in transparency and lateral interdigitations in the outer cortex while inner cortex and nuclear fibers were severely disintegrated. Transmission electron micrographs exhibited tightly packed fibercells in WT whereas AQP0{sup -/-} and TgAQP1{sup +/+}/AQP0{sup -/-}lenses had wide extracellular spaces. Fibers were easily separable by teasing in AQP0{sup -/-} and TgAQP1{sup +/+}/AQP0{sup -/-}lenses compared to WT. Our data suggest that the increased water permeability through AQP1 does not compensate for loss of AQP0 expression in TgAQP1{sup +/+}/AQP0{sup -/-} mice. Fibercell AQP0 expression is required to maintain their organization, which is a requisite for lenstransparency. AQP0 appears necessary for cell-to-cell adhesion and thereby to minimize light scattering since in the AQP0{sup -/-} and TgAQP1{sup +/+}/AQP0{sup -/-} lenses, fiber cell disorganization was evident.

  6. Coping mechanisms for crop plants in drought-prone environments.

    Science.gov (United States)

    Neumann, Peter M

    2008-05-01

    Drought is a major limitation to plant productivity. Various options are available for increasing water availability and sustaining growth of crop plants in drought-prone environments. After a general introduction to the problems of water availability, this review focuses on a critical evaluation of recent progress in unravelling mechanisms for modifying plant growth responses to drought. Investigations of key regulatory mechanisms integrating plant growth responses to water deficits at the whole-organism, cellular and genomic levels continue to provide novel and exiting research findings. For example, recent reports contradict the widespread conception that root-derived abscisic acid is necessarily involved in signalling for stomatal and shoot-growth responses to soil water deficits. The findings bring into question the theoretical basis for alternate-side root-irrigation techniques. Similarly, recent reports indicate that increased ABA production or increased aquaporin expression did not lead to improved drought resistance. Other reports have concerned key genes and proteins involved in regulation of flowering (FT), vegetative growth (DELLA), leaf senescence (IPT) and desiccation tolerance (LEA). Introgression of such genes, with suitable promoters, can greatly impact on whole-plant responses to drought. Further developments could facilitate the introduction by breeders of new crop varieties with growth physiologies tailored to improved field performance under drought. Parallel efforts to encourage the introduction of supplementary irrigation with water made available by improved conservation measures and by sea- or brackish-water desalination, will probably provide comprehensive solutions to coping with drought-prone environments.

  7. Aquaporin-1 and aquaporin-3 expressions in the temporo-mandibular joint condylar cartilage after an experimentally induced osteoarthritis.

    Science.gov (United States)

    Meng, Juan-hong; Ma, Xu-chen; Li, Zhi-min; Wu, Deng-cheng

    2007-12-20

    Over 70% of the total tissue weight in the cartilage matrix consists of water, and the early-stage osteoarthritic cartilage is characterized by swelling. Water transport in the cartilage matrix and across the membranes of chondrocytes may be important in normal and pathological conditions of cartilage. The purpose of this study was to identify aquaporin-1 (AQP1) and aquaporin-3 (AQP3) expressions in the mandibular condylar cartilage after experimentally induced osteoarthritis (OA) in rats. An experimental temporomandibular joint OA was induced by partial discectomy in rats. The pathological characteristics of the normal, early-stage, and late-stage osteoarthritic TMJ cartilages were verified by histological techniques. The AQP1 and AQP3 gene expressions in the normal and osteoarthritic cartilages were measured using quantitative real-time reverse-transcription PCR analysis. The cartilage sections were incubated in primary polyclonal antibodies to AQP3; immunofluorescent microscopy was used to examine the AQP3 expression shown by its protein level. The mRNA expression levels of AQP1 and AQP3, analyzed using quantitative PCR, revealed that AQP3 mRNA was highly up-regulated in the OA cartilage, which was considered significant. There was no notable difference in the expression of AQP1 mRNA between OA and normal controls. With the progressing of the OA, the localization of the AQP3 protein was quite different from that of the normal cartilage. Compared to the normal cartilage, the expressions of AQP3 protein were observed mainly in the proliferative zone and the upper mid-zone chondrocytes at the early-stage of OA, and were observed to appear frequently throughout the mid- and deep zone during the late-stage of OA. The high expression of AQP3 mRNA in the OA cartilage and the different localization of the AQP3 protein suggest that it may play a particular role in OA pathogenesis. Further study of AQP3 function may provide new insight into the understanding of the

  8. Brain Aquaporin-4 in Experimental Acute Liver Failure

    Science.gov (United States)

    Rama Rao, Kakulavarapu V.; Jayakumar, Arumugam R.; Tong, Xiaoying; Curtis, Kevin M.; Norenberg, Michael D.

    2016-01-01

    Intracranial hypertension due to brain edema and associated astrocyte swelling is a potentially lethal complication of acute liver failure (ALF). Mechanisms of edema formation are not well understood but elevated levels of blood and brain ammonia and its byproduct glutamine have been implicated in this process. We examined mRNA and protein expression of the water channel protein aquaporin-4 (AQP4) in cerebral cortex in a rat model of ALF induced by the hepatotoxin thioacetamide. Rats with ALF showed increased AQP4 protein in the plasma membrane (PM). Total tissue levels of AQP4 protein and mRNA levels were not altered indicating that increased AQP4 is not transcriptionally mediated but is likely due to a conformational change in the protein, i.e. a more stable anchoring of AQP4 to the PM and/or interference with its degradation. By immunohistochemistry there was an increase in AQP4 immunoreactivity in the PM of perivascular astrocytes in ALF. Rats with ALF showed increased levels of α-syntrophin, a protein involved in the anchoring of AQP4 to perivascular astrocytic end-feet. Increased AQP4 and α-syntrophin levels were inhibited by L-histidine, an inhibitor of glutamine transport into mitochondria, suggesting a role for glutamine in the increase of PM levels of AQP4. These results indicate that increased AQP4 PM levels in perivascular astrocytic end-feet are likely critical to the development of brain edema in ALF. PMID:20720509

  9. Role of aquaporin and sodium channel in pleural water movement.

    Science.gov (United States)

    Jiang, Jinjun; Hu, Jie; Bai, Chunxue

    2003-12-16

    The role of the ENaC sodium channel and aquaporin-1 (AQP1) water channel on pleural fluid dynamics in mice was investigated. 0.25 ml of hypertonic or isosmolar fluid was infused into the pleural space in anesthetized wildtype and AQP1 null mice. Pleural fluid was sampled at specified times to quantify the osmolality and volume. The sodium channel activator terbutaline increased isosmolar fluid clearance by 90% while the sodium channel inhibitor amiloride decreased it by 15%, but had no effect on osmotically driven water transport. AQP1 deletion significantly decreased osmotic water transport in pleural space by twofold, but it had no effect on isosmolar fluid clearance. Pretreatment with dexamethasone increased pleural osmotic fluid entry by 25%, while intravenous injection of HgCl2 decreased osmotic pleural water movement by 43%. These results provided evidence for a role of a sodium channel in pleural fluid absorption; AQP1 plays a major role in osmotic liquid transport but it does not affect isosmolar fluid clearance.

  10. Oxygen-dependent regulation of aquaporin-3 expression

    Directory of Open Access Journals (Sweden)

    Hoogewijs D

    2016-04-01

    Full Text Available David Hoogewijs,1,2 Melanie Vogler,3 Eveline Zwenger,3 Sabine Krull,3 Anke Zieseniss3 1Institute of Physiology, University of Duisburg-Essen, Essen, Germany; 2Institute of Physiology, University of Zürich, Zürich, Switzerland; 3Institute of Cardiovascular Physiology, University Medical Center Göttingen, University of Göttingen, Göttingen, GermanyAbstract: The purpose of this study was to investigate whether aquaporin-3 (AQP3 expression is altered in hypoxia and whether hypoxia-inducible transcription factor (HIF-1 regulates the hypoxic expression. AQP3 mRNA expression was studied in L929 fibrosarcoma cells and in several tissues derived from mice that were subjected to hypoxia. Computational analysis of the AQP3 promoter revealed conserved HIF binding sites within close proximity to the translational start site, and chromatin immunoprecipitation assays confirmed binding of HIF-1 to the endogenous hypoxia response elements. Furthermore, hypoxia resulted in increased expression of AQP3 mRNA in L929 fibrosarcoma cells. Consistently, shRNA-mediated knockdown of HIF-1 greatly reduced the hypoxic induction of AQP3. In addition, mRNA analysis of organs from mice exposed to inspiratory hypoxia demonstrated pronounced hypoxia-inducible expression of AQP3 in the kidney. Overall, our findings suggest that AQP3 expression can be regulated at the transcriptional level and that AQP3 represents a novel HIF-1 target gene. Keywords: transcriptional regulation, oxygen, hypoxia-inducible factor, hypoxia response element

  11. Is pruritus an indicator of aquaporin-positive neuromyelitis optica?

    Science.gov (United States)

    Netravathi, Manjunath; Saini, Jitender; Mahadevan, Anita; Hari-Krishna, Bollampalli; Yadav, Ravi; Pal, Pramod Kumar; Satishchandra, Parthasarathy

    2017-05-01

    Recently, pruritus has been recognised as an important association with neuromyelitis optica spectrum disorders (NMOSD). To determine the clinical and radiological characteristics of patients with NMOSD and pruritus. Among 57 consecutive patients with NMOSD, 15 (26.3% women) reported pruritus. All had aquaporin-4 (AQP4) antibodies. The mean age was 34.5 ± 9.1 years, age at onset was 31.3 ± 11.0 years and the duration of illness was 3.9 ± 3.1 years. Pruritus preceded the neurological disturbances in all the patients. Predominant patients experienced pruritus in the cervical dermatome (66.7%) followed by cervicothoracic region (13.3%), trigeminal nerve (13.3%) and lumbar region (6.7%). Lesions extending from cervicomedullary junction up to the thoracic segment was the most common site of affection (40%) followed by cervicothoracic (26.7%), cervicomedullary junction to cervical cord (13.3%), cervical cord (6.7%) and thoracic segment (6.7%). This report is one of the largest series reporting the close association of pruritus with onset of neurological symptoms in NMOSD. It highlights the importance of recognising this rare symptom which may help in making a correct diagnosis in a patient with suspected demyelinating disorder. In a patient with NMOSD, early treatment with immunomodulation during pruritus may prevent or minimise occurrence of neurological dysfunction.

  12. Diabetes Insipidus in Mice with a Mutation in Aquaporin-2.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Congenital nephrogenic diabetes insipidus (NDI is a disease characterized by failure of the kidney to concentrate urine in response to vasopressin. Human kindreds with nephrogenic diabetes insipidus have been found to harbor mutations in the vasopressin receptor 2 (Avpr2 gene or the vasopressin-sensitive water channel aquaporin-2 (Aqp2 gene. Development of a treatment is rendered difficult due to the lack of a viable animal model. Through forward genetic screening of ethylnitrosourea-mutagenized mice, we report the identification and characterization of a mouse model of NDI, with an F204V mutation in the Aqp2 gene. Unlike previously attempted murine models of NDI, our mice survive to adulthood and more exactly recapitulate the human disorder. Previous in vitro experiments using renal cell lines suggest recessive Aqp2 mutations result in improper trafficking of the mutant water pore. Using these animals, we have directly proven this hypothesis of improper AQP2 translocation as the molecular defect in nephrogenic diabetes insipidus in the intact organism. Additionally, using a renal cell line we show that the mutated protein, AQP2-F204V, is retained in the endoplasmic reticulum and that this abnormal localization can be rescued by wild-type protein. This novel mouse model allows for further mechanistic studies as well as testing of pharmacological and gene therapies for NDI.

  13. Metal ion toxins and brain aquaporin-4 expression: an overview

    Directory of Open Access Journals (Sweden)

    Adriana eXimenes-Da-Silva

    2016-06-01

    Full Text Available Metal ions such as iron, zinc, and manganese are essential to metabolic functions, protein synthesis, neurotransmission, and antioxidant neuroprotective mechanisms. Conversely, non-essential metals such as mercury and lead are sources of human intoxication due to occupational activities or environmental contamination. Essential or non-essential metal accumulation in the central nervous system (CNS results in changes in blood-brain barrier (BBB permeability, as well as triggering microglia activation and astrocyte reactivity and changing water transport through the cells, which could result in brain swelling. Aquaporin-4 is the main water channel in the CNS, is expressed in astrocyte foot processes in brain capillaries and along the circumventricular epithelium in the ventricles, and has important physiological functions in maintaining brain osmotic homeostasis and supporting brain excitability through regulation of the extracellular space. Some evidence has pointed to a role of AQP4 during metal intoxication in the brain, where it may act in a dual form as a neuroprotector or a mediator of the development of oxidative stress in neurons and astrocytes, resulting in brain swelling and neuronal damage. This mini-review presents the way some metal ions affect changes in AQP4 expression in the CNS and discuss the ways in which water transport in brain cells can be involved in brain damage.

  14. Facilitative root interactions in intercrops

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, H.; Jensen, E.S.

    2005-01-01

    of root architecture, exudation of growth stimulating substances, and biofumigation. Facilitative root interactions are most likely to be of importance in nutrient poor soils and in low-input agroecosystems due to critical interspecific competition for plant growth factors. However, studies from more...... nitrogen transfer between legumes and non-leguminous plants, exploitation of the soil via mycorrhizal fungi and soil-plant processes which alter the mobilisation of plant growth resources such as through exudation of amino acids, extra-cellular enzymes, acidification, competition-induced modification......Facilitation takes place when plants ameliorate the environment of their neighbours, and increase their growth and survival. Facilitation occurs in natural ecosystems as well as in agroecosystems. We discuss examples of facilitative root interactions in intercropped agroecosystems; including...

  15. Water transport and functional dynamics of aquaporins in osmoregulatory organs of fishes

    DEFF Research Database (Denmark)

    Madsen, Steffen S; Engelund, Morten B; Cutler, Christopher P

    2015-01-01

    salty desert lakes, the challenge to obtain consensus as well as specific knowledge about aquaporin physiology in these vertebrate clades is overwhelming. Because the integumental surfaces of these animals are in intimate contact with the surrounding milieu, passive water loss and uptake represent two......Aquaporins play distinct roles for water transport in fishes as they do in mammals-both at the cellular, organ, and organismal levels. However, with over 32,000 known species of fishes inhabiting almost every aquatic environment, from tidal pools, small mountain streams, to the oceans and extreme...... of the major osmoregulatory challenges that need compensation. However, neither obligatory nor regulatory water transport nor their mechanisms have been elucidated to the same degree as, for example, ion transport in fishes. Currently fewer than 60 papers address fish aquaporins. Most of these papers identify...

  16. Incipient balancing selection through adaptive loss of aquaporins in natural Saccharomyces cerevisiae populations.

    Directory of Open Access Journals (Sweden)

    Jessica L Will

    2010-04-01

    Full Text Available A major goal in evolutionary biology is to understand how adaptive evolution has influenced natural variation, but identifying loci subject to positive selection has been a challenge. Here we present the adaptive loss of a pair of paralogous genes in specific Saccharomyces cerevisiae subpopulations. We mapped natural variation in freeze-thaw tolerance to two water transporters, AQY1 and AQY2, previously implicated in freeze-thaw survival. However, whereas freeze-thaw-tolerant strains harbor functional aquaporin genes, the set of sensitive strains lost aquaporin function at least 6 independent times. Several genomic signatures at AQY1 and/or AQY2 reveal low variation surrounding these loci within strains of the same haplotype, but high variation between strain groups. This is consistent with recent adaptive loss of aquaporins in subgroups of strains, leading to incipient balancing selection. We show that, although aquaporins are critical for surviving freeze-thaw stress, loss of both genes provides a major fitness advantage on high-sugar substrates common to many strains' natural niche. Strikingly, strains with non-functional alleles have also lost the ancestral requirement for aquaporins during spore formation. Thus, the antagonistic effect of aquaporin function-providing an advantage in freeze-thaw tolerance but a fitness defect for growth in high-sugar environments-contributes to the maintenance of both functional and nonfunctional alleles in S. cerevisiae. This work also shows that gene loss through multiple missense and nonsense mutations, hallmarks of pseudogenization presumed to emerge after loss of constraint, can arise through positive selection.

  17. Incipient balancing selection through adaptive loss of aquaporins in natural Saccharomyces cerevisiae populations.

    Science.gov (United States)

    Will, Jessica L; Kim, Hyun Seok; Clarke, Jessica; Painter, John C; Fay, Justin C; Gasch, Audrey P

    2010-04-01

    A major goal in evolutionary biology is to understand how adaptive evolution has influenced natural variation, but identifying loci subject to positive selection has been a challenge. Here we present the adaptive loss of a pair of paralogous genes in specific Saccharomyces cerevisiae subpopulations. We mapped natural variation in freeze-thaw tolerance to two water transporters, AQY1 and AQY2, previously implicated in freeze-thaw survival. However, whereas freeze-thaw-tolerant strains harbor functional aquaporin genes, the set of sensitive strains lost aquaporin function at least 6 independent times. Several genomic signatures at AQY1 and/or AQY2 reveal low variation surrounding these loci within strains of the same haplotype, but high variation between strain groups. This is consistent with recent adaptive loss of aquaporins in subgroups of strains, leading to incipient balancing selection. We show that, although aquaporins are critical for surviving freeze-thaw stress, loss of both genes provides a major fitness advantage on high-sugar substrates common to many strains' natural niche. Strikingly, strains with non-functional alleles have also lost the ancestral requirement for aquaporins during spore formation. Thus, the antagonistic effect of aquaporin function-providing an advantage in freeze-thaw tolerance but a fitness defect for growth in high-sugar environments-contributes to the maintenance of both functional and nonfunctional alleles in S. cerevisiae. This work also shows that gene loss through multiple missense and nonsense mutations, hallmarks of pseudogenization presumed to emerge after loss of constraint, can arise through positive selection.

  18. Expression of aquaporin-7 and aquaporin-9 in tanycyte cells and choroid plexus during mouse estrus cycle.

    Science.gov (United States)

    Yaba, A; Sozen, B; Suzen, B; Demir, N

    2017-03-01

    Tanycytes are special ependymal cells located in the ventrolateral wall and floor of the third ventricle having processes extending nuclei that regulate reproductive functions and around of vessels in median eminance. The aquaporins (AQPs) are a family of transmembrane proteins that transport water and glycerol. AQP-7 and -9 are permeable to other small molecules as glycerol and therefore called aquaglyceroporins. In this study, we aimed to show localization of AQP-7 and -9 in epithelial cells of choroid plexus and tanycytes during female mouse estrus cycle. AQP-7 and -9 proteins were detected in α2 and β1 tanycytes in prœstrus stage. Interestingly, there is no staining in estrus stage in any type of tanycytes. We observed weak immunoreactivity in α1, α2 and β1 tanycyte cells in metestrus stage for AQP-7 and α1 for AQP-9 protein. AQP-7 and -9 showed intense immunoreactivity in α2, β1 and β2 tanycyte cells during diestrus stage. Consequently, AQP-7 and -9 showed differential staining pattern in different stages of mouse estrus cycle. In the light of our findings and other recent publications, we suggest that AQP-7 and -9-mediated glycerol transport in tanycyte cells might be under hormonal control to use glycerol as a potential energy substrate during mouse estrus cycle. Copyright © 2016. Published by Elsevier Masson SAS.

  19. Effects of Proteoliposome Composition and Draw Solution Types on Separation Performance of Aquaporin-Based Proteoliposomes

    DEFF Research Database (Denmark)

    Zhao, Yang; Vararattanavech, Ardcharaporn; Li, Xuesong

    2013-01-01

    Escherichia coli cells, and their separation properties were characterized by stopped-flow measurements. The current study systematically investigated the effect of proteoliposome composition (lipid type, protein-to-lipid ratio (PLR), and the addition of cholesterol) on water permeability and NaCl retention......Aquaporins are a large family of water transport proteins in cell membranes. Their high water permeability and solute rejection make them potential building blocks for high-performance biomimetic membranes for desalination. In the current study, proteoliposomes were prepared using AquaporinZ from...

  20. Prognostic implication of aquaporin 1 overexpression in resected lung adenocarcinoma.

    Science.gov (United States)

    Bellezza, Guido; Vannucci, Jacopo; Bianconi, Fortunato; Metro, Giulio; Del Sordo, Rachele; Andolfi, Marco; Ferri, Ivana; Siccu, Paola; Ludovini, Vienna; Puma, Francesco; Sidoni, Angelo; Cagini, Lucio

    2017-12-01

    Aquaporins (AQPs) are a group of transmembrane water-selective channel proteins thought to play a role in the regulation of water permeability for plasma membranes. Indeed, high AQP levels have been suggested to promote the progression, invasion and metastasis of tumours. Specifically, AQP1 and AQP5 overexpression in lung adenocarcinoma (AC) have been suggested to be involved in molecular mechanisms in lung cancer. The aim of this retrospective cohort single-centre study was to assess both the levels of expression and therein the prognostic significance, regarding outcome of AQP1 and AQP5 in resected AC patients. Patients with histological diagnoses of lung AC submitted to pulmonary resection were included in this cohort study. Tissue microarrays containing cores from 185 ACs were prepared. AQP1 and AQP5 expressions were assessed by immunohistochemistry. Results were scored as either low (Score 0-2) or high (Score 3-9). Clinical data, pathological tumour-node-metastasis staging and follow-up were recorded. Multivariate Cox survival analysis and Fisher's t-test were performed. AQP1 overexpression was detected in 85 (46%) patients, while AQP5 overexpression was observed in 45 (24%) patients. AQP1 did not result being significantly correlated with clinical and pathological parameters, while AQP5 resulted more expressed in AC with mucinous and papillary predominant patterns. Patients with AQP1 overexpression had shorter disease-free survival (P = 0.001) compared with patients without AQP1 overexpression. Multivariate analysis confirmed that AQP1 overexpression was significantly associated with shorter disease-free survival (P = 0.001). Our results evidenced that AQP1 overexpression resulted in a shorter disease-free survival in lung AC patients. Being so, AQP1 overexpression might be an important prognostic marker in lung AC. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights

  1. Molybdenum Sulfide Induce Growth Enhancement Effect of Rice ( Oryza sativa L.) through Regulating the Synthesis of Chlorophyll and the Expression of Aquaporin Gene.

    Science.gov (United States)

    Li, Yadong; Jin, Qian; Yang, Desong; Cui, Jianghu

    2018-04-25

    Molybdenum sulfide (MoS 2 ) has been applied widely in industrial and environmental application, leading to increasing release into environment. So far, no studies have been investigated with regard to the potential effect of MoS 2 on plants. Herein, we studied the impact of MoS 2 on the growth, chlorophyll content, lipid peroxidation, antioxidase system, and aquaporins of rice for the first time. Results showed that MoS 2 did not significantly affect the germination of rice seeds, malonaldehyde (MDA) content, and the antioxidant enzyme activity. While the length and biomass of rice root and shoot, chlorophyll content index (CCI), and expression of aquaporin genes were significantly increased. Based on these results, we concluded that MoS 2 promoted rice growth through (i) the promotion of nitrogen source assimilation, (ii) the enhancement of photosynthesis, enzymatic-related biochemical reactions, and metabolic processes, subsequently, (iii) the acceleration of cell division and expansion, furthermore (iv) no abiotic stress and favorable condition of antioxidant enzyme system. These results provided an important insight into the further application of MoS 2 on agriculture and environment.

  2. The tonoplast intrinsic aquaporin (TIP) subfamily of Eucalyptus grandis: Characterization of EgTIP2, a root-specific and osmotic stress-responsive gene.

    Science.gov (United States)

    Rodrigues, Marcela I; Bravo, Juliana P; Sassaki, Flávio T; Severino, Fábio E; Maia, Ivan G

    2013-12-01

    Aquaporins have important roles in various physiological processes in plants, including growth, development and adaptation to stress. In this study, a gene encoding a root-specific tonoplast intrinsic aquaporin (TIP) from Eucalyptus grandis (named EgTIP2) was investigated. The root-specific expression of EgTIP2 was validated over a panel of five eucalyptus organ/tissues. In eucalyptus roots, EgTIP2 expression was significantly induced by osmotic stress imposed by PEG treatment. Histochemical analysis of transgenic tobacco lines (Nicotiana tabacum SR1) harboring an EgTIP2 promoter:GUS reporter cassette revealed major GUS staining in the vasculature and in root tips. Consistent with its osmotic-stress inducible expression in eucalyptus, EgTIP2 promoter activity was up-regulated by mannitol treatment, but was down-regulated by abscisic acid. Taken together, these results suggest that EgTIP2 might be involved in eucalyptus response to drought. Additional searches in the eucalyptus genome revealed the presence of four additional putative TIP coding genes, which could be individually assigned to the classical TIP1-5 groups. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Facilitating Transfers

    DEFF Research Database (Denmark)

    Kjær, Poul F.

    to specific logics of temporalisation and spatial expansion of a diverse set of social processes in relation to, for example, the economy, politics, science and the mass media. On this background, the paper will more concretely develop a conceptual framework for classifying different contextual orders...... that the essential functional and normative purpose of regulatory governance is to facilitate, stabilise and justify the transfer of condensed social components (such as economic capital and products, political decisions, legal judgements, religious beliefs and scientific knowledge) from one social contexts...

  4. Sugar and hexokinase suppress expression of PIP aquaporins and reduce leaf hydraulics that preserves leaf water potential.

    Science.gov (United States)

    Kelly, Gilor; Sade, Nir; Doron-Faigenboim, Adi; Lerner, Stephen; Shatil-Cohen, Arava; Yeselson, Yelena; Egbaria, Aiman; Kottapalli, Jayaram; Schaffer, Arthur A; Moshelion, Menachem; Granot, David

    2017-07-01

    Sugars affect central aspects of plant physiology, including photosynthesis, stomatal behavior and the loss of water through the stomata. Yet, the potential effects of sugars on plant aquaporins (AQPs) and water conductance have not been examined. We used database and transcriptional analyses, as well as cellular and whole-plant functional techniques to examine the link between sugar-related genes and AQPs. Database analyses revealed a high level of correlation between the expression of AQPs and that of sugar-related genes, including the Arabidopsis hexokinases 1 (AtHXK1). Increased expression of AtHXK1, as well as the addition of its primary substrate, glucose (Glc), repressed the expression of 10 AQPs from the plasma membrane-intrinsic proteins (PIP) subfamily (PIP-AQPs) and induced the expression of two stress-related PIP-AQPs. The osmotic water permeability of mesophyll protoplasts of AtHXK1-expressing plants and the leaf hydraulic conductance of those plants were significantly reduced, in line with the decreased expression of PIP-AQPs. Conversely, hxk1 mutants demonstrated a higher level of hydraulic conductance, with increased water potential in their leaves. In addition, the presence of Glc reduced leaf water potential, as compared with an osmotic control, indicating that Glc reduces the movement of water from the xylem into the mesophyll. The production of sugars entails a significant loss of water and these results suggest that sugars and AtHXK1 affect the expression of AQP genes and reduce leaf water conductance, to coordinate sugar levels with the loss of water through transpiration. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. Aquaporin 2 and apical calcium-sensing receptor: new players in polyuric disorders associated with hypercalciuria.

    NARCIS (Netherlands)

    Procino, G.; Mastrofrancesco, L.; Mira, A.; Tamma, G.; Carmosino, M.; Emma, F.; Svelto, M.; Valenti, G.

    2008-01-01

    The kidney plays a critical role in regulating water homeostasis through specific proteins highly expressed in the kidney, called aquaporins, allowing water permeation at a high rate. This brief review focuses on some nephropathies associated with impaired urinary concentrating ability and in

  6. Immunogenic potential of Rhipicephalus (Boophilus) microplus aquaporin 1 against Rhipicephalus sanguineus in domestic dogs

    Science.gov (United States)

    This study evaluated a recombinant aquaporin 1 protein of Rhipicephalus (Boophilus) microplus (RmAQP1) as antigen in a vaccine against R. sanguineus. Five dogs were immunized with RmAQP1 (10 µg) + adjuvant (Montanide) (G1), and five were inoculated with adjuvant only (G2), three times. Twenty-one da...

  7. Reversed polarized delivery of an aquaporin-2 mutant causes dominant nephrogenic diabetes insipidus.

    NARCIS (Netherlands)

    Kamsteeg, E.J.; Bichet, D.G.; Konings, I.B.M.; Nivet, H.; Lonergan, M.; Arthus, M.F.; Os, C.H. van; Deen, P.M.T.

    2003-01-01

    Vasopressin regulates body water conservation by redistributing aquaporin-2 (AQP2) water channels from intracellular vesicles to the apical surface of renal collecting ducts, resulting in water reabsorption from urine. Mutations in AQP2 cause autosomal nephrogenic diabetes insipidus (NDI), a disease

  8. Demeclocycline Attenuates Hyponatremia by Reducing Aquaporin-2 Expression in the Renal Inner Medulla

    DEFF Research Database (Denmark)

    Kortenoeven, Marleen L. A.; Sinke, Anne P.; Hadrup, Niels

    2013-01-01

    Binding of vasopressin to its type-2 receptor in renal collecting ducts induces cAMP signaling, transcription and translocation of aquaporin-2 (AQP2) water channels to the plasma membrane and water reabsorption from the pro-urine. Demeclocycline is currently used to treat hyponatremia in patients...

  9. Antibodies against aquaporin-4 in neuromyelitis optica: distinction between recurrent and monophasic patients

    NARCIS (Netherlands)

    Ketelslegers, I.A.; Modderman, P.W.; Vennegoor, A.; Killestein, J.; Hamann, D.; Hintzen, R.Q.

    2011-01-01

    The detection of antibodies against aquaporin-4 (AQP4) has improved the diagnosis of neuromyelitis optica (NMO). We evaluated a recently established cell-based anti-AQP4 assay in 273 patients with inflammatory CNS demyelination. The assay had a specificity of 99% and a sensitivity of 56% to detect

  10. Facilitating participation

    DEFF Research Database (Denmark)

    Skøtt, Bo

    2018-01-01

    the resulting need for a redefinition of library competence. In doing this, I primarily address the first two questions from Chapter 1 and how they relate to the public’s informal, leisure-time activities in a networked society. In particular, I focus on the skills of reflexive self-perception and informed...... opinion formation. Further, I point out the significance which these informal leisure-time activities have for public library staff’s cultural dissemination skills. In this way, I take on the question of the skills required for facilitating the learning of a participatory public (cf. Chapter 1......), exemplifying with the competence required of library staff. My discussion will proceed by way of a literature review. In the next section, I shall explain how and what sources were chosen and section three and four present the theoretical framework and how the applied theories are related. In the fifth section...

  11. Facilitating Transfers

    DEFF Research Database (Denmark)

    Kjær, Poul F.

    2018-01-01

    Departing from the paradox that globalisation has implied an increase, rather than a decrease, in contextual diversity, this paper re-assesses the function, normative purpose and location of Regulatory Governance Frameworks in world society. Drawing on insights from sociology of law and world...... society studies, the argument advanced is that Regulatory Governance Frameworks are oriented towards facilitating transfers of condensed social components, such as economic capital and products, legal acts, political decisions and scientific knowledge, from one legally-constituted normative order, i.......e. contextual setting, to another. Against this background, it is suggested that Regulatory Governance Frameworks can be understood as schemes which act as ‘rites of passage’ aimed at providing legal stabilisation to social processes characterised by liminality, i.e ambiguity, hybridity and in-betweenness....

  12. Evidence of Positive Selection of Aquaporins Genes from Pontoporia blainvillei during the Evolutionary Process of Cetaceans.

    Directory of Open Access Journals (Sweden)

    Simone Lima São Pedro

    Full Text Available Marine mammals are well adapted to their hyperosmotic environment. Several morphological and physiological adaptations for water conservation and salt excretion are known to be present in cetaceans, being responsible for regulating salt balance. However, most previous studies have focused on the unique renal physiology of marine mammals, but the molecular bases of these mechanisms remain poorly explored. Many genes have been identified to be involved in osmotic regulation, including the aquaporins. Considering that aquaporin genes were potentially subject to strong selective pressure, the aim of this study was to analyze the molecular evolution of seven aquaporin genes (AQP1, AQP2, AQP3, AQP4, AQP6, AQP7, and AQP9 comparing the lineages of cetaceans and terrestrial mammals.Our results demonstrated strong positive selection in cetacean-specific lineages acting only in the gene for AQP2 (amino acids 23, 83, 107,179, 180, 181, 182, whereas no selection was observed in terrestrial mammalian lineages. We also analyzed the changes in the 3D structure of the aquaporin 2 protein. Signs of strong positive selection in AQP2 sites 179, 180, 181, and 182 were unexpectedly identified only in the baiji lineage, which was the only river dolphin examined in this study. Positive selection in aquaporins AQP1 (45, AQP4 (74, AQP7 (342, 343, 356 was detected in cetaceans and artiodactyls, suggesting that these events are not related to maintaining water and electrolyte homeostasis in seawater.Our results suggest that the AQP2 gene might reflect different selective pressures in maintaining water balance in cetaceans, contributing to the passage from the terrestrial environment to the aquatic. Further studies are necessary, especially those including other freshwater dolphins, who exhibit osmoregulatory mechanisms different from those of marine cetaceans for the same essential task of maintaining serum electrolyte balance.

  13. Protective role of host aquaporin 6 against Hazara virus, a model for Crimean-Congo hemorrhagic fever virus infection.

    Science.gov (United States)

    Molinas, Andrea; Mirazimi, Ali; Holm, Angelika; Loitto, Vesa M; Magnusson, Karl-Eric; Vikström, Elena

    2016-04-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is an arthropod-borne pathogen that causes infectious disease with severe hemorrhagic manifestations in vascular system in humans. The proper function of the cells in the vascular system is critically regulated by aquaporins (AQP), water channels that facilitate fluxes of water and small solutes across membranes. With Hazara virus as a model for CCHFV, we investigated the effects of viruses on AQP6 and the impact of AQP6 on virus infectivity in host cells, using transiently expressed GFP-AQP6 cells, immunofluorescent assay for virus detection, epifluorescent imaging of living cells and confocal microscopy. In GFP-AQP6 expressing cells, Hazara virus reduced both the cellular and perinuclear AQP6 distribution and changed the cell area. Infection of human cell with CCHFV strain IbAR 10200 downregulated AQP6 expression at mRNA level. Interestingly, the overexpression of AQP6 in host cells decreased the infectivity of Hazara virus, speaking for a protective role of AQP6. We suggest the possibility for AQP6 being a novel player in the virus-host interactions, which may lead to less severe outcomes of an infection. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Gene Structures, Evolution, Classification and Expression Profiles of the Aquaporin Gene Family in Castor Bean (Ricinus communis L..

    Directory of Open Access Journals (Sweden)

    Zhi Zou

    Full Text Available Aquaporins (AQPs are a class of integral membrane proteins that facilitate the passive transport of water and other small solutes across biological membranes. Castor bean (Ricinus communis L., Euphobiaceae, an important non-edible oilseed crop, is widely cultivated for industrial, medicinal and cosmetic purposes. Its recently available genome provides an opportunity to analyze specific gene families. In this study, a total of 37 full-length AQP genes were identified from the castor bean genome, which were assigned to five subfamilies, including 10 plasma membrane intrinsic proteins (PIPs, 9 tonoplast intrinsic proteins (TIPs, 8 NOD26-like intrinsic proteins (NIPs, 6 X intrinsic proteins (XIPs and 4 small basic intrinsic proteins (SIPs on the basis of sequence similarities. Functional prediction based on the analysis of the aromatic/arginine (ar/R selectivity filter, Froger's positions and specificity-determining positions (SDPs showed a remarkable difference in substrate specificity among subfamilies. Homology analysis supported the expression of all 37 RcAQP genes in at least one of examined tissues, e.g., root, leaf, flower, seed and endosperm. Furthermore, global expression profiles with deep transcriptome sequencing data revealed diverse expression patterns among various tissues. The current study presents the first genome-wide analysis of the AQP gene family in castor bean. Results obtained from this study provide valuable information for future functional analysis and utilization.

  15. Topical Erythropoietin Treatment Accelerates the Healing of Cutaneous Burn Wounds in Diabetic Pigs Through an Aquaporin-3-Dependent Mechanism.

    Science.gov (United States)

    Hamed, Saher; Ullmann, Yehuda; Egozi, Dana; Keren, Aviad; Daod, Essam; Anis, Omer; Kabha, Hoda; Belokopytov, Mark; Ashkar, Manal; Shofti, Rona; Zaretsky, Asaph; Schlesinger, Michal; Teot, Luc; Liu, Paul Y

    2017-08-01

    We have previously reported that the topical application of erythropoietin (EPO) to cutaneous wounds in rats and mice with experimentally induced diabetes accelerates their healing by stimulating angiogenesis, reepithelialization, and collagen deposition, and by suppressing the inflammatory response and apoptosis. Aquaporins (AQPs) are integral membrane proteins whose function is to regulate intracellular fluid hemostasis by enabling the transport of water and glycerol. AQP3 is the AQP that is expressed in the skin where it facilitates cell migration and proliferation and re-epithelialization during wound healing. In this report, we provide the results of an investigation that examined the contribution of AQP3 to the mechanism of EPO action on the healing of burn wounds in the skin of pigs with experimentally induced type 1 diabetes. We found that topical EPO treatment of the burns accelerated their healing through an AQP3-dependent mechanism that activates angiogenesis, triggers collagen and hyaluronic acid synthesis and the formation of the extracellular matrix (ECM), and stimulates reepithelialization by keratinocytes. We also found that incorporating fibronectin, a crucial constituent of the ECM, into the topical EPO-containing gel, can potentiate the accelerating action of EPO on the healing of the burn injury. © 2017 by the American Diabetes Association.

  16. Rat Aquaporin-5 Is pH-Gated Induced by Phosphorylation and Is Implicated in Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Claudia Rodrigues

    2016-12-01

    Full Text Available Aquaporin-5 (AQP5 is a membrane water channel widely distributed in human tissues that was found up-regulated in different tumors and considered implicated in carcinogenesis in different organs and systems. Despite its wide distribution pattern and physiological importance, AQP5 short-term regulation was not reported and mechanisms underlying its involvement in cancer are not well defined. In this work, we expressed rat AQP5 in yeast and investigated mechanisms of gating, as well as AQP5’s ability to facilitate H2O2 plasma membrane diffusion. We found that AQP5 can be gated by extracellular pH in a phosphorylation-dependent manner, with higher activity at physiological pH 7.4. Moreover, similar to other mammalian AQPs, AQP5 is able to increase extracellular H2O2 influx and to affect oxidative cell response with dual effects: whereas in acute oxidative stress conditions AQP5 induces an initial higher sensitivity, in chronic stress AQP5 expressing cells show improved cell survival and resistance. Our findings support the involvement of AQP5 in oxidative stress and suggest AQP5 modulation by phosphorylation as a novel tool for therapeutics.

  17. Association of Perivascular Localization of Aquaporin-4 With Cognition and Alzheimer Disease in Aging Brains.

    Science.gov (United States)

    Zeppenfeld, Douglas M; Simon, Matthew; Haswell, J Douglas; D'Abreo, Daryl; Murchison, Charles; Quinn, Joseph F; Grafe, Marjorie R; Woltjer, Randall L; Kaye, Jeffrey; Iliff, Jeffrey J

    2017-01-01

    Cognitive impairment and dementia, including Alzheimer disease (AD), are common within the aging population, yet the factors that render the aging brain vulnerable to these processes are unknown. Perivascular localization of aquaporin-4 (AQP4) facilitates the clearance of interstitial solutes, including amyloid-β, through the brainwide network of perivascular pathways termed the glymphatic system, which may be compromised in the aging brain. To determine whether alterations in AQP4 expression or loss of perivascular AQP4 localization are features of the aging human brain and to define their association with AD pathology. Expression of AQP4 was analyzed in postmortem frontal cortex of cognitively healthy and histopathologically confirmed individuals with AD by Western blot or immunofluorescence for AQP4, amyloid-β 1-42, and glial fibrillary acidic protein. Postmortem tissue and clinical data were provided by the Oregon Health and Science University Layton Aging and Alzheimer Disease Center and Oregon Brain Bank. Postmortem tissue from 79 individuals was evaluated, including cognitively intact "young" individuals aged younger than 60 years (range, 33-57 years), cognitively intact "aged" individuals aged older than 60 years (range, 61-96 years) with no known neurological disease, and individuals older than 60 years (range, 61-105 years) of age with a clinical history of AD confirmed by histopathological evaluation. Forty-eight patient samples (10 young, 20 aged, and 18 with AD) underwent histological analysis. Sixty patient samples underwent Western blot analysis (15 young, 24 aged, and 21 with AD). Expression of AQP4 protein, AQP4 immunoreactivity, and perivascular AQP4 localization in the frontal cortex were evaluated. Expression of AQP4 was associated with advancing age among all individuals (R2 = 0.17; P = .003). Perivascular AQP4 localization was significantly associated with AD status independent of age (OR, 11.7 per 10% increase in localization; z

  18. Gene interference regulates aquaporin-4 expression in swollen tissue of rats with cerebral ischemic edema: Correlation with variation in apparent diffusion coefficient.

    Science.gov (United States)

    Hu, Hui; Lu, Hong; He, Zhanping; Han, Xiangjun; Chen, Jing; Tu, Rong

    2012-07-25

    To investigate the effects of mRNA interference on aquaporin-4 expression in swollen tissue of rats with ischemic cerebral edema, and diagnose the significance of diffusion-weighted MRI, we injected 5 μL shRNA- aquaporin-4 (control group) or siRNA- aquaporin-4 solution (1:800) (RNA interference group) into the rat right basal ganglia immediately before occlusion of the middle cerebral artery. At 0.25 hours after occlusion of the middle cerebral artery, diffusion-weighted MRI displayed a high signal; within 2 hours, the relative apparent diffusion coefficient decreased markedly, aquaporin-4 expression increased rapidly, and intracellular edema was obviously aggravated; at 4 and 6 hours, the relative apparent diffusion coefficient slowly returned to control levels, aquaporin-4 expression slightly increased, and angioedema was observed. In the RNA interference group, during 0.25-6 hours after injection of siRNA- aquaporin-4 solution, the relative apparent diffusion coefficient slightly fluctuated and aquaporin-4 expression was upregulated; during 0.5-4 hours, the relative apparent diffusion coefficient was significantly higher, while aquaporin-4 expression was significantly lower when compared with the control group, and intracellular edema was markedly reduced; at 0.25 and 6 hours, the relative apparent diffusion coefficient and aquaporin-4 expression were similar when compared with the control group; obvious angioedema remained at 6 hours. Pearson's correlation test results showed that aquaporin-4 expression was negatively correlated with the apparent diffusion coefficient (r = -0.806, P coefficient. Aquaporin-4 gene interference can effectively inhibit the upregulation of aquaporin-4 expression during the stage of intracellular edema with time-effectiveness. Moreover, diffusion-weighted MRI can accurately detect intracellular edema.

  19. Characterization of four plasma membrane aquaporins in tulip petals: a putative homolog is regulated by phosphorylation.

    Science.gov (United States)

    Azad, Abul Kalam; Katsuhara, Maki; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2008-08-01

    We suggested previously that temperature-dependent tulip (Tulipa gesneriana) petal movement that is concomitant with water transport is regulated by reversible phosphorylation of an unidentified plasma membrane intrinsic protein (PIP). In this study, four full-length cDNAs of PIPs from tulip petals were identified and cloned. Two PIPs, namely TgPIP1;1 and TgPIP1;2, are members of the PIP1 subfamily, and the remaining two PIPs, namely TgPIP2;1 and TgPIP2;2, belong to the PIP2 subfamily of aquaporins and were named according to the nomenclature of PIP genes in plants. Of these four homologs, only TgPIP2;2 displayed significant water channel activity in the heterologous expression assay using Xenopus laevis oocytes. The water channel activity of this functional isoform was abolished by mercury and was affected by inhibitors of protein kinase and protein phosphatase. Using a site-directed mutagenesis approach to substitute several serine residues with alanine, and assessing water channel activity using the methylotrophic yeast Pichia pastoris expression assay, we showed that Ser35, Ser116 and Ser274 are the putative phosphorylation sites of TgPIP2;2. Real-time reverse transcription-PCR analysis revealed that the transcript levels of TgPIP1;1 and TgPIP1;2 in tulip petals, stems, leaves, bulbs and roots are very low when compared with those of TgPIP2;1 and TgPIP2;2. The transcript level of TgPIP2;1 is negligible in roots, and TgPIP2;2 is ubiquitously expressed in all organs with significant transcript levels. From the data reported herein, we suggest that TgPIP2;2 might be modulated by phosphorylation and dephosphorylation for regulating water channel activity, and may play a role in transcellular water transport in all tulip organs.

  20. Recruitment of human aquaporin 3 to internal membranes in the Plasmodium falciparum infected erythrocyte.

    Science.gov (United States)

    Bietz, Sven; Montilla, Irine; Külzer, Simone; Przyborski, Jude M; Lingelbach, Klaus

    2009-09-01

    The molecular mechanisms underlying the formation of the parasitophorous vacuolar membrane in Plasmodium falciparum infected erythrocytes are incompletely understood, and the protein composition of this membrane is still enigmatic. Although the differentiated mammalian erythrocyte lacks the machinery required for endocytosis, some reports have described a localisation of host cell membrane proteins at the parasitophorous vacuolar membrane. Aquaporin 3 is an abundant plasma membrane protein of various cells, including mammalian erythrocytes where it is found in distinct oligomeric states. Here we show that human aquaporin 3 is internalized into infected erythrocytes, presumably during or soon after invasion. It is integrated into the PVM where it is organized in novel oligomeric states which are not found in non-infected cells.

  1. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  2. The water channel aquaporin-1 contributes to renin cell recruitment during chronic stimulation of renin production

    DEFF Research Database (Denmark)

    Tinning, Anne Robdrup; Jensen, Boye L; Schweda, Frank

    2014-01-01

    Processing and release of secretory granules involve water movement across granule membranes. It was hypothesized that the water channel aquaporin-1 (AQP-1) contributes directly to recruitment of renin-positive cells in the afferent arteriole. AQP1(-/-) and (+/+) mice were fed a low NaCl diet (LS...... to baseline with no difference between genotypes. Plasma nitrite/nitrate concentration was unaffected by genotype and LS-ACEI. In AQP1(-/-) mice, the number of afferent arterioles with recruitment was significantly lower compared to (+/+) after LS-ACEI. It is concluded that aquaporin-1 is not necessary...... for acutely stimulated renin secretion in vivo and from isolated perfused kidney, whereas recruitment of renin-positive cells in response to chronic stimulation is attenuated or delayed in AQP1(-/-) mice....

  3. Functional characterization of water transport and cellular localization of three aquaporin paralogs in the salmonid intestine

    DEFF Research Database (Denmark)

    Madsen, Steffen S; Olesen, Jesper H; Bedal, Konstanze

    2011-01-01

    Intestinal water absorption is greatly enhanced in salmonids upon acclimation from freshwater (FW) to seawater (SW); however, the molecular mechanism for water transport is unknown. We conducted a pharmacological characterization of water absorption in the rainbow trout intestine along......%), 0.1 ouabain (72%), and 0.1 bumetanide (82%) suggesting that active transport, Na(+), K(+)-ATPase and Na(+), K(+), 2Cl(-)-co-transport are involved in establishing the driving gradient for water transport. J(v) was also inhibited by 1 mmol L(-1) HgCl(2), serosally (23% in M and 44% in P), mucosally...... (27% in M), or both (61% in M and 58% in P), suggesting involvement of both apical and basolateral aquaporins in water transport. The inhibition was antagonized by 5 mmol L(-1) mercaptoethanol. By comparison, 10 mmol L(-1) mucosal tetraethylammonium, an inhibitor of certain aquaporins, inhibited J...

  4. The Aquaporin Gene Family of the Yellow Fever Mosquito, Aedes aegypti

    OpenAIRE

    Drake, Lisa L.; Boudko, Dmitri Y.; Marinotti, Osvaldo; Carpenter, Victoria K.; Dawe, Angus L.; Hansen, Immo A.

    2010-01-01

    Background The mosquito, Aedes aegypti, is the principal vector of the Dengue and yellow fever viruses. During feeding, an adult female can take up more than its own body weight in vertebrate blood. After a blood meal females excrete large amounts of urine through their excretion system, the Malpighian tubules (MT). Diuresis starts within seconds after the mosquito starts feeding. Aquaporins (AQPs) are a family of membrane transporters that regulate the flow of water, glycerol and other small...

  5. The Role of Aquaporins in pH-Dependent Germination of Rhizopus delemar Spores.

    Directory of Open Access Journals (Sweden)

    Tidhar Turgeman

    Full Text Available Rhizopus delemar and associated species attack a wide range of fruit and vegetables after harvest. Host nutrients and acidic pH are required for optimal germination of R. delemar, and we studied how this process is triggered. Glucose induced spore swelling in an acidic environment, expressed by an up to 3-fold increase in spore diameter, whereas spore diameter was smaller in a neutral environment. When suspended in an acidic environment, the spores started to float, indicating a change in their density. Treatment of the spores with HgCl2, an aquaporin blocker, prevented floating and inhibited spore swelling and germ-tube emergence, indicating the importance of water uptake at the early stages of germination. Two putative candidate aquaporin-encoding genes-RdAQP1 and RdAQP2-were identified in the R. delemar genome. Both presented the conserved NPA motif and six-transmembrane domain topology. Expressing RdAQP1 and RdAQP2 in Arabidopsis protoplasts increased the cells' osmotic water permeability coefficient (Pf compared to controls, indicating their role as water channels. A decrease in R. delemar aquaporin activity with increasing external pH suggested pH regulation of these proteins. Substitution of two histidine (His residues, positioned on two loops facing the outer side of the cell, with alanine eliminated the pH sensing resulting in similar Pf values under acidic and basic conditions. Since hydration is critical for spore switching from the resting to activate state, we suggest that pH regulation of the aquaporins can regulate the initial phase of R. delemar spore germination, followed by germ-tube elongation and host-tissue infection.

  6. Role of Aquaporin Water Channels in Airway Fluid Transport, Humidification, and Surface Liquid Hydration

    Science.gov (United States)

    Song, Yuanlin; Jayaraman, Sujatha; Yang, Baoxue; Matthay, Michael A.; Verkman, A.S.

    2001-01-01

    Several aquaporin-type water channels are expressed in mammalian airways and lung: AQP1 in microvascular endothelia, AQP3 in upper airway epithelia, AQP4 in upper and lower airway epithelia, and AQP5 in alveolar epithelia. Novel quantitative methods were developed to compare airway fluid transport–related functions in wild-type mice and knockout mice deficient in these aquaporins. Lower airway humidification, measured from the moisture content of expired air during mechanical ventilation with dry air through a tracheotomy, was 54–56% efficient in wild-type mice, and reduced by only 3–4% in AQP1/AQP5 or AQP3/AQP4 double knockout mice. Upper airway humidification, measured from the moisture gained by dry air passed through the upper airways in mice breathing through a tracheotomy, decreased from 91 to 50% with increasing ventilation from 20 to 220 ml/min, and reduced by 3–5% in AQP3/AQP4 knockout mice. The depth and salt concentration of the airway surface liquid in trachea was measured in vivo using fluorescent probes and confocal and ratio imaging microscopy. Airway surface liquid depth was 45 ± 5 μm and [Na+] was 115 ± 4 mM in wild-type mice, and not significantly different in AQP3/AQP4 knockout mice. Osmotic water permeability in upper airways, measured by an in vivo instillation/sample method, was reduced by ∼40% by AQP3/AQP4 deletion. In doing these measurements, we discovered a novel amiloride-sensitive isosmolar fluid absorption process in upper airways (13% in 5 min) that was not affected by aquaporin deletion. These results establish the fluid transporting properties of mouse airways, and indicate that aquaporins play at most a minor role in airway humidification, ASL hydration, and isosmolar fluid absorption. PMID:11382807

  7. The influence of aquaporin-4 isoform interaction on supramolecular water channel assembly in astrocytoma cells

    OpenAIRE

    Deville, Sarah

    2012-01-01

    Traumatic brain injury (TBI) is often complicated by the development of brain edema. Despite its clinical importance, the underlying pathological mechanisms are poorly understood. Nevertheless, a central role for aquaporin-4 (AQP4) has been suggested. AQP4 is the predominant water channel of the central nervous system, where it forms supramolecular structures named orthogonal arrays of particles (OAP). This organization is essential for channel opening. OAP formation is regulated by the diffe...

  8. The gating mechanism of the human aquaporin 5 revealed by molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Lorant Janosi

    Full Text Available Aquaporins are protein channels located across the cell membrane with the role of conducting water or other small sugar alcohol molecules (aquaglyceroporins. The high-resolution X-ray structure of the human aquaporin 5 (HsAQP5 shows that HsAQP5, as all the other known aquaporins, exhibits tetrameric structure. By means of molecular dynamics simulations we analyzed the role of spontaneous fluctuations on the structural behavior of the human AQP5. We found that different conformations within the tetramer lead to a distribution of monomeric channel structures, which can be characterized as open or closed. The switch between the two states of a channel is a tap-like mechanism at the cytoplasmic end which regulates the water passage through the pore. The channel is closed by a translation of the His67 residue inside the pore. Moreover, water permeation rate calculations revealed that the selectivity filter, located at the other end of the channel, regulates the flow rate of water molecules when the channel is open, by locally modifying the orientation of His173. Furthermore, the calculated permeation rates of a fully open channel are in good agreement with the reported experimental value.

  9. Vacuolar biogenesis and aquaporin expression at early germination of broad bean seeds.

    Science.gov (United States)

    Novikova, Galina V; Tournaire-Roux, Colette; Sinkevich, Irina A; Lityagina, Snejana V; Maurel, Christophe; Obroucheva, Natalie

    2014-09-01

    A key event in seed germination is water uptake-mediated growth initiation in embryonic axes. Vicia faba var. minor (broad bean) seeds were used for studying cell growth, vacuolar biogenesis, expression and function of tonoplast water channel proteins (aquaporins) in embryonic axes during seed imbibition, radicle emergence and growth. Hypocotyl and radicle basal cells showed vacuole restoration from protein storage vacuoles, whereas de novo vacuole formation from provacuoles was observed in cells newly produced by root meristem. cDNA fragments of seven novel aquaporin isoforms including five Tonoplast Intrinsic Proteins (TIP) from three sub-types were amplified by PCR. The expression was probed using q-RT-PCR and when possible with isoform-specific antibodies. Decreased expression of TIP3s was associated to the transformation of protein storage vacuoles to vacuoles, whereas enhanced expression of a TIP2 homologue was closely linked to the fast cell elongation. Water channel functioning checked by inhibitory test with mercuric chloride showed closed water channels prior to growth initiation and active water transport into elongating cells. The data point to a crucial role of tonoplast aquaporins during germination, especially during growth of embryonic axes, due to accelerated water uptake and vacuole enlargement resulting in rapid cell elongation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Phosphorylation of rat aquaporin-4 at Ser(111) is not required for channel gating

    DEFF Research Database (Denmark)

    Assentoft, Mette; Kaptan, Shreyas; Fenton, Robert A.

    2013-01-01

    Aquaporin 4 (AQP4) is the predominant water channel in the mammalian brain and is mainly expressed in the perivascular glial endfeet at the brain-blood interface. AQP4 has been described as an important entry and exit site for water during formation of brain edema and regulation of AQP4 is theref......Aquaporin 4 (AQP4) is the predominant water channel in the mammalian brain and is mainly expressed in the perivascular glial endfeet at the brain-blood interface. AQP4 has been described as an important entry and exit site for water during formation of brain edema and regulation of AQP4...... is therefore of therapeutic interest. Phosphorylation of some aquaporins has been proposed to regulate their water permeability via gating of the channel itself. Protein kinase (PK)-dependent phosphorylation of Ser(111) has been reported to increase the water permeability of AQP4 expressed in an astrocytic...... of activators and inhibitors of PKG and PKA. Mutation of Ser(111) to alanine or aspartate (to prevent or mimic phosphorylation) did not change the water permeability of AQP4. PKG activation had no effect on the water permeability of AQP4 in primary cultures of rat astrocytes. Molecular dynamics simulations...

  11. Effects of Repeated Administration of Pilocarpine and Isoproterenol on Aquaporin-5 Expression in Rat Salivary Glands

    International Nuclear Information System (INIS)

    Susa, Taketo; Sawai, Nobuhiko; Aoki, Takeo; Iizuka-Kogo, Akiko; Kogo, Hiroshi; Negishi, Akihide; Yokoo, Satoshi; Takata, Kuniaki; Matsuzaki, Toshiyuki

    2013-01-01

    Aquaporins are water channel proteins which enable rapid water movement across the plasma membrane. Aquaporin-5 (AQP5) is the major aquaporin and is expressed on the apical membrane of salivary gland acinar cells. We examined the effects of repeated administration of pilocarpine, a clinically useful stimulant for salivary fluid secretion, and isoproterenol (IPR), a stimulant for salivary protein secretion, on the abundance of AQP5 protein in rat salivary glands by immunofluorescence microscopy and semi-quantitative immunoblotting. Unexpectedly AQP5 was decreased in pilocarpine-administered salivary glands, in which fluid secretion must be highly stimulated, implying that AQP5 might not be required for fluid secretion at least in pilocarpine-administered state. The abundance of AQP5, on the other hand, was found to be significantly increased in IPR-administered submandibular and parotid glands. To address the possible mechanism of the elevation of AQP5 abundance in IPR-administered animals, changes of AQP5 level in fasting animals, in which the exocytotic events are reduced, were examined. AQP5 was found to be decreased in fasting animals as expected. These results suggested that the elevation of cAMP and/or frequent exocytotic events could increase AQP5 protein. AQP5 expression seems to be easily changed by salivary stimulants, although these changes do not always reflect the ability in salivary fluid secretion

  12. Chemical modification of L-glutamine to alpha-amino glutarimide on autoclaving facilitates Agrobacterium infection of host and non-host plants: A new use of a known compound

    Directory of Open Access Journals (Sweden)

    Das Pralay

    2011-05-01

    Full Text Available Abstract Background Accidental autoclaving of L-glutamine was found to facilitate the Agrobacterium infection of a non host plant like tea in an earlier study. In the present communication, we elucidate the structural changes in L-glutamine due to autoclaving and also confirm the role of heat transformed L-glutamine in Agrobacterium mediated genetic transformation of host/non host plants. Results When autoclaved at 121°C and 15 psi for 20 or 40 min, L-glutamine was structurally modified into 5-oxo proline and 3-amino glutarimide (α-amino glutarimide, respectively. Of the two autoclaved products, only α-amino glutarimide facilitated Agrobacterium infection of a number of resistant to susceptible plants. However, the compound did not have any vir gene inducing property. Conclusions We report a one pot autoclave process for the synthesis of 5-oxo proline and α-amino glutarimide from L-glutamine. Xenobiotic detoxifying property of α-amino glutarimide is also proposed.

  13. The effects of noncoding aquaporin-4 single-nucleotide polymorphisms on cognition and functional progression of Alzheimer's disease.

    Science.gov (United States)

    Burfeind, Kevin G; Murchison, Charles F; Westaway, Shawn K; Simon, Matthew J; Erten-Lyons, Deniz; Kaye, Jeffrey A; Quinn, Joseph F; Iliff, Jeffrey J

    2017-09-01

    The glymphatic system is a brain-wide perivascular network that facilitates clearance of proteins, including amyloid β, from the brain interstitium through the perivascular exchange of cerebrospinal fluid and interstitial fluid. The astrocytic water channel aquaporin-4 (AQP4) is required for glymphatic system function, and impairment of glymphatic function in the aging brain is associated with altered AQP4 expression and localization. In human cortical tissue, alterations in AQP4 expression and localization are associated with Alzheimer's disease (AD) status and pathology. Although this suggests a potential role for AQP4 in the development or progression of AD, the relationship between of naturally occurring variants in the human AQP4 gene and cognitive function has not yet been evaluated. Using data from several longitudinal aging cohorts, we investigated the association between five AQP4 single-nucleotide polymorphisms (SNPs) and the rate of cognitive decline in participants with a diagnosis of AD. None of the five SNPs were associated with different rates of AD diagnosis, age of dementia onset in trial subjects. No association between AQP4 SNPs with histological measures of AD pathology, including Braak stage or neuritic plaque density was observed. However, AQP4 SNPs were associated with altered rates of cognitive decline after AD diagnosis, with two SNPS (rs9951307 and rs3875089) associated with slower cognitive decline and two (rs3763040 and rs3763043) associated with more rapid cognitive decline after AD diagnosis. These results provide the first evidence that variations in the AQP4 gene, whose gene product AQP4 is vital for glymphatic pathway function, may modulate the progression of cognitive decline in AD.

  14. Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization

    DEFF Research Database (Denmark)

    Zhao, Yang; Qiu, Changquan; Li, Xuesong

    2012-01-01

    -free ABMs that can be easily scaled up. In the current study, a thin film composite (TFC) ABM was prepared by the interfacial polymerization method, where AquaporinZ-containing proteoliposomes were added to the m-phenylene-diamine aqueous solution. Control membranes, either without aquaporins......Aquaporins are water channel proteins with excellent water permeability and solute rejection, which makes them promising for preparing high-performance biomimetic membranes. Despite the growing interest in aquaporin-based biomimetic membranes (ABMs), it is challenging to produce robust and defect...... or with inactive (mutant) aquaporins, were also similarly prepared. The separation performance of these membranes was evaluated by cross-flow reverse osmosis (RO) tests. Compared to the controls, the active ABM achieved significantly higher water permeability (∼4L/m2hbar) with comparable NaCl rejection (∼97...

  15. Development of supported biomimetic membranes for insertion of aquaporin protein water channels for novel water filtration applications

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard

    ). This constitutes a new methodology to correctly and functionally reconstitute membrane proteins in controllable amounts into giant vesicles. The method for formation of giant protein vesicles subsequently led to the first functional prototype of an aquaporin-membrane water filtration device.......Aquaporins represent a class of membrane protein channels found in all living organisms that selectively transport water molecules across biological membranes. The work presented in this thesis was motivated by the conceptual idea of incorporating aquaporin water channels into biomimetic membranes...... to develop novel water separation technologies. To accomplish this, it is necessary to construct an efficient platform to handle biomimetic membranes. Moreover, general methods are required to reliable and controllable reconstitute membrane proteins into artificially made model membranes...

  16. The role of aquaporins in polycystic ovary syndrome - A way towards a novel drug target in PCOS.

    Science.gov (United States)

    Wawrzkiewicz-Jałowiecka, Agata; Kowalczyk, Karolina; Pluta, Dagmara; Blukacz, Łukasz; Madej, Paweł

    2017-05-01

    Aquaporins (AQPs) are transmembrane proteins, able to transport water (and in some cases also small solutes, e. g. glycerol) through the cell membrane. There are twelve types of aquaporins (AQP1-AQP12) expressed in mammalian reproductive systems. According to literature, many diseases of the reproductive organs are correlated with changes of AQPs expression and their malfunction. That is the case in the polycystic ovary syndrome (PCOS), where dysfunctions of AQPs 7-9 and alterations in its levels occur. In this work, we postulate how AQPs are involved in PCOS-related disorders, in order to emphasize their potential therapeutic meaning as a drug target. Our research allows for a surprising inference, that genetic mutation causing malfunction and/or decreased expression of aquaporins, may be incorporated in the popular insulin-dependent hypothesis of PCOS pathogenesis. What is more, changes in AQP's expression may affect the folliculogenesis and follicular atresia in PCOS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The Wheat Bax Inhibitor-1 Protein Interacts with an Aquaporin TaPIP1 and Enhances Disease Resistance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Pan-Pan Lu

    2018-01-01

    Full Text Available Bax inhibitor-1 (BI-1 is an endoplasmic reticulum (ER-resident cell death suppressor evolutionarily conserved in eukaryotes. The ability of BI-1 to inhibit the biotic and abiotic stresses have been well-studied in Arabidopsis, while the functions of wheat BI-1 are largely unknown. In this study, the wheat BI-1 gene TaBI-1.1 was isolated by an RNA-seq analysis of Fusarium graminearum (Fg-treated wheat. TaBI-1.1 expression was induced by a salicylic acid (SA treatment and down-regulated by an abscisic acid (ABA treatment. Based on β-glucuronidase (GUS staining, TaBI-1.1 was expressed in mature leaves and roots but not in the hypocotyl or young leaves. Constitutive expression of TaBI-1.1 in Arabidopsis enhanced its resistance to Pseudomonas syringae pv. Tomato (Pst DC3000 infection and induced SA-related gene expression. Additionally, TaBI-1.1 transgenic Arabidopsis exhibited an alleviation of damage caused by high concentrations of SA and decreased the sensitivity to ABA. Consistent with the phenotype, the RNA-seq analysis of 35S::TaBI-1.1 and Col-0 plants showed that TaBI-1.1 was involved in biotic stresses. These results suggested that TaBI-1.1 positively regulates SA signals and plays important roles in the response to biotic stresses. In addition, TaBI-1.1 interacted with the aquaporin TaPIP1, and both them were localized to ER membrane. Furthermore, we demonstrated that TaPIP1 was up-regulated by SA treatment and TaPIP1 transgenic Arabidopsis enhanced the resistance to Pst DC3000 infection. Thus, the interaction between TaBI-1.1 and TaPIP1 on the ER membrane probably occurs in response to SA signals and defense response.

  18. Changes in plasma membrane aquaporin gene expression under osmotic stress and blue light in tomato

    Czech Academy of Sciences Publication Activity Database

    Balarynová, Jana; Danihlík, J.; Fellner, Martin

    2018-01-01

    Roč. 40, č. 2 (2018), č. článku 27. ISSN 0137-5881 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : male-sterile mutant * arabidopsis-thaliana * seed-germination * abscisic-acid * solanum-lycopersicon * nitric-oxide * 7b-1 * protein * hypocotyl * responses * Tomato * Seed * Aquaporins * Blue light * 7B-1 mutant * Mannitol * PIPs Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 1.364, year: 2016

  19. Regulation of the Water Channel Aquaporin-2 via 14-3-3θ and -ζ

    DEFF Research Database (Denmark)

    Moeller, Hanne B; Slengerik-Hansen, Joachim; Aroankins, Takwa

    2016-01-01

    The 14-3-3 family of proteins are multifunctional proteins that interact with many of their cellular targets in a phosphorylation-dependent manner. Here, we determined that 14-3-3 proteins interact with phosphorylated forms of the water channel aquaporin-2 (AQP2) and modulate its function. With t...... levels. In conclusion, this study demonstrates phosphorylation-dependent interactions of AQP2 with 14-3-3 θ and ζ. These interactions play divergent roles in modulating AQP2 trafficking, phosphorylation, ubiquitylation and degradation....

  20. Aquaporin expression in the fetal porcine urinary tract changes during gestation

    DEFF Research Database (Denmark)

    Jakobsen, L K; Trelborg, K; Kingo, P S

    2018-01-01

    The expression of aquaporins (AQPs) in the fetal porcine urinary tract and its relation to gestational age has not been established. Tissue samples from the renal pelvis, ureter, bladder and urethra were obtained from porcine fetuses. Samples were examined by RT-PCR (AQPs 1-11), QPCR (AQPs positive....... Immunohistochemistry showed AQP1 staining in sub-urothelial vessels at all locations. Western blotting analysis confirmed increased AQP1 protein levels in bladder samples during gestation. Expression levels of AQP1, 3, 5, 9 and 11 in the urinary tract change during gestation, and further studies are needed to provide...

  1. Convergence spasm due to aquaporin-positive neuromyelitis optica spectrum disorder

    Directory of Open Access Journals (Sweden)

    Pınar Özçelik

    2017-06-01

    Full Text Available A female 27 presented with nausea and diplopia for 1 week. On examination she had normal vertical gaze but would develop convergence with miosis whenever she made horizontal saccades. Pupils were 6 mm and unreactive to light. MRI showed extensive hyperintensity in the dorsal midbrain and thalamus. Spinal MRI and CSF were both normal. Serum aquaporin-4-antibody was positive. She was treated with steroids and plasmapheresis and after 3 months convergence spasm resolved but pupils remained unreactive. Neuromyelitis optica often presents with brainstem signs, rarely a dorsal midbrain syndrome. Convergence spasm is occasionally of organic neurologic origin.

  2. Stabilization and immobilization of aquaporin reconstituted lipid vesicles for water purification.

    Science.gov (United States)

    Sun, Guofei; Chung, Tai-Shung; Jeyaseelan, Kandiah; Armugam, Arunmozhiarasi

    2013-02-01

    Aquaporins are water channel proteins in biological membranes that have extraordinary water permeability and selectivity. In this work, we have demonstrated that one of their family members, AquaporinZ (AqpZ), can be possibly applied in a pressure-driven water purification process. A nanofiltration membrane was designed and fabricated by immobilization of AqpZ-reconstituted liposomes on a polydopamine (PDA) coated microporous membrane. Amine-functionalized proteoliposomes were first deposited via gentle vacuum suction and subsequently conjugated on the PDA layer via an amine-catechol adduct formation. Due to the existence of a polymer network within the lipid bilayers, the membrane could sustain hydraulic pressure of 5 bar as well as the strong surface agitation in nanofiltration tests, indicating a relatively stable membrane structure. In comparison with membrane without AqpZ incorporation, the membrane with AqpZ-to-lipid weight ratio of 1:100 increased the water flux by 65% with enhanced NaCl and MgCl(2) rejections of 66.2% and 88.1%, respectively. With AqpZ incorporation, the vesicle immobilized membrane exhibits a promising strategy for high productivity water purification. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Expression of aquaporin8 in human astrocytomas: Correlation with pathologic grade

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Shu-juan; Wang, Ke-jian; Gan, Sheng-wei; Xu, Jin; Xu, Shi-ye; Sun, Shan-quan, E-mail: sunsq2151@cqmu.edu.cn

    2013-10-11

    Highlights: •AQP8 is mainly distributed in the cytoplasm of human astrocytoma cells. •AQP8 over-expressed in human astrocytomas, especially glioblastoma. •The up-regulation of AQP8 is related to the pathological grade of human astrocytomas. •AQP8 may contribute to the growth and proliferation of astrocytomas. -- Abstract: Aquaporin8 (AQP8), a member of the aquaporin (AQP) protein family, is weakly distributed in mammalian brains. Previous studies on AQP8 have focused mainly on the digestive and the reproductive systems. AQP8 has a pivotal role in keeping the fluid and electrolyte balance. In this study, we investigated the expression changes of AQP8 in 75 cases of human brain astrocytic tumors using immunohistochemistry, Western blotting, and reverse transcription polymerase chain reaction. The results demonstrated that AQP8 was mainly distributed in the cytoplasm of astrocytoma cells. The expression levels and immunoreactive score of AQP8 protein and mRNA increased in low-grade astrocytomas, and further increased in high-grade astrocytomas, especially in glioblastoma. Therefore, AQP8 may contribute to the proliferation of astrocytomas, and may be a biomarker and candidate therapy target for patients with astrocytomas.

  4. Expression of aquaporin8 in human astrocytomas: Correlation with pathologic grade

    International Nuclear Information System (INIS)

    Zhu, Shu-juan; Wang, Ke-jian; Gan, Sheng-wei; Xu, Jin; Xu, Shi-ye; Sun, Shan-quan

    2013-01-01

    Highlights: •AQP8 is mainly distributed in the cytoplasm of human astrocytoma cells. •AQP8 over-expressed in human astrocytomas, especially glioblastoma. •The up-regulation of AQP8 is related to the pathological grade of human astrocytomas. •AQP8 may contribute to the growth and proliferation of astrocytomas. -- Abstract: Aquaporin8 (AQP8), a member of the aquaporin (AQP) protein family, is weakly distributed in mammalian brains. Previous studies on AQP8 have focused mainly on the digestive and the reproductive systems. AQP8 has a pivotal role in keeping the fluid and electrolyte balance. In this study, we investigated the expression changes of AQP8 in 75 cases of human brain astrocytic tumors using immunohistochemistry, Western blotting, and reverse transcription polymerase chain reaction. The results demonstrated that AQP8 was mainly distributed in the cytoplasm of astrocytoma cells. The expression levels and immunoreactive score of AQP8 protein and mRNA increased in low-grade astrocytomas, and further increased in high-grade astrocytomas, especially in glioblastoma. Therefore, AQP8 may contribute to the proliferation of astrocytomas, and may be a biomarker and candidate therapy target for patients with astrocytomas

  5. Function of the Membrane Water Channel Aquaporin-5 in the Salivary Gland

    International Nuclear Information System (INIS)

    Matsuzaki, Toshiyuki; Susa, Taketo; Shimizu, Kinue; Sawai, Nobuhiko; Suzuki, Takeshi; Aoki, Takeo; Yokoo, Satoshi; Takata, Kuniaki

    2012-01-01

    The process of saliva production in the salivary glands requires transepithelial water transfer from the interstitium to the acinar lumen. There are two transepithelial pathways: the transcellular and paracellular. In the transcellular pathway, the aquaporin water channels induce passive water diffusion across the membrane lipid bilayer. It is well known that aquaporin-5 (AQP5) is expressed in the salivary glands, in which it is mainly localized at the apical membrane of the acinar cells. This suggests the physiological importance of AQP5 in transcellular water transfer. Reduced saliva secretion under pilocarpine stimulation in AQP5-null mice compared with normal mice further indicates the importance of AQP5 in this process, at least in stimulated saliva secretion. Questions remain therefore regarding the role and importance of AQP5 in basal saliva secretion. It has been speculated that there would be some short-term regulation of AQP5 such as a trafficking mechanism to regulate saliva secretion. However, no histochemical evidence of AQP5-trafficking has been found, although some of biochemical analyses suggested that it may occur. There are no reports of human disease caused by AQP5 mutations, but some studies have revealed an abnormal subcellular distribution of AQP5 in patients or animals with xerostomia caused by Sjögren’s syndrome and X-irradiation. These findings suggest the possible pathophysiological importance of AQP5 in the salivary glands

  6. Neuromyelitis optica and the evolving spectrum of autoimmune aquaporin-4 channelopathies: a decade later

    Science.gov (United States)

    Pittock, Sean J.; Lucchinetti, Claudia F.

    2015-01-01

    The discovery of AQP4-IgG (a pathogenic antibody that targets the astrocytic water channel aquaporin-4) as the first sensitive and specific biomarker for any inflammatory central nervous system demyelinating disease, has shifted emphasis from the oligodendrocyte and myelin to the astrocyte as a central immunopathogenic player. Neuromyelitis optica (NMO) spectrum disorders (SD) represent an evolving spectrum of IDDs extending beyond the optic nerves and spinal cord to include the brain (especially in children) and, rarely, muscle. NMOSD typical brain lesions are located in areas that highly express the target antigen, AQP4, including the circumventricular organs (accounting for intractable nausea and vomiting) and the diencephalon (accounting for sleep disorders, endocrinopathies, and syndrome of inappropriate antidiuresis). Magnetic resonance imaging (MRI) brain abnormalities fulfill Barkoff criteria for multiple sclerosis in up to 10% of patients. As the spectrum broadens, the importance of highly specific assays that detect pathogenic AQP4-IgG targeting extracellular epitopes of AQP4 cannot be overemphasized. The rapid evolution of our understanding of the immunobiology of AQP4 autoimmunity necessitates continuing revision of NMOSD diagnostic criteria. Here, we describe scientific advances that have occurred since the discovery of NMO-IgG in 2004 and review novel targeted immunotherapies. We also suggest that NMOSDs should now be considered under the umbrella term autoimmune aquaporin-4 channelopathy. PMID:26096370

  7. Downregulation of aquaporin-1 in alveolar microvessels in lungs adapted to chronic heart failure

    DEFF Research Database (Denmark)

    Müllertz, Katrine M; Strøm, Claes; Trautner, Simon

    2011-01-01

    The threshold pressure for lung edema formation is increased in severe chronic heart failure (CHF) due to reduced microvascular permeability. The water channel aquaporin-1 (AQP1) is present in the pulmonary microvascular endothelium, and a number of studies suggest the importance of AQP1 as a mol......The threshold pressure for lung edema formation is increased in severe chronic heart failure (CHF) due to reduced microvascular permeability. The water channel aquaporin-1 (AQP1) is present in the pulmonary microvascular endothelium, and a number of studies suggest the importance of AQP1...... as a molecular determinant of pulmonary microvascular water transport. The present study examined the abundance and localization of AQP1 in lungs from rats with CHF. We used two different models of CHF: ligation of the left anterior descending coronary artery (LAD ligation) and aorta-banding (AB). Sham......-operated rats served as controls. Echocardiographic verification of left ventricular dysfunction, enhanced left ventricular end-diastolic pressure, and right ventricular hypertrophy confirmed the presence of CHF. Western blotting of whole-lung homogenates revealed significant downregulation of AQP1 in LAD...

  8. DAMPAK FASILITATIF TUMBUHAN LEGUM PENUTUP TANAH DAN TANAMAN BERMIKORIZA PADA SUKSESI PRIMER DI LAHAN BEKAS TAMBANG KAPUR (Facilitative Impacts of Legume Cover-crop and Mycorrhizal-inoculated Plant on Primary Succession of Limestone Quarries

    Directory of Open Access Journals (Sweden)

    Retno Prayudyaningsih

    2015-11-01

    melalui peningkatkan kerapatan individu dan keanekaragaman jenis pada semua tingkatan habitus, meskipun untuk tingkat herba dan semak, kerapatan individu dan keanekaragaman jenis terendah pada areal pertanaman tanpa mikoriza. ABSTRACT Limestone mining using open pit mining method that involves vegetation removal and soil drilling and blasting in accessing limestone material has caused ecosystem damages. Natural recovery of such a harsh site is a slow process as the site condition in the successional process do not favor the natural vegetation development. Plants Establishment could facilitate other plants by ameliorating harsh environmental characteristics and/or increasing the availability of nutrient resources. Facilitation impact of legume cover crop (Centrosema pubescens and mycorrhizal-inoculated plantation (Vitex cofassus was studied on primary succession of TNS limestone mining quarry. The emergence of natural plants is measured using individual density, diversity and number of species by quadrat systematic plot method base on their habitus. Site conditions measured by litterfall thickness and biomass, soil organic matter content and soil organic carbon levels. The study was conducted in four types of areas on limestone postmining lands are open areas/natural conditions without planting, legume cover crop area, non mycorrhizal-inoculated plant area and mycorrhizal-inoculated plant area. The results indicated, establishment of legume cover crops and mycorrhizal-inoculated plants improved site conditions of limestone quarry. Legume cover crops establishment produced a large amount of litters with 1.08 cm of a thickness and 188.96 g/m2 of biomass, and it’s subsequent decomposition increased soil organic matter of 3.80% and the organic carbon content of 2.20%. Plantation formation gave similar impact as well, particulary those inoculated with Arbuscula Mycorrhizae Fungi (AMF produced amount of litters with 1.32 cm of a thickness and 220.48 g/m2 of biomass, with 3

  9. Immunogenic potential of the recombinant Rhipicephalus microplus aquaporin protein against the tick Rhipicephalus sanguineus Latreille, 1806 in domestic dogs

    Science.gov (United States)

    Aquaporins regulate water transport through the highly hydrophobic lipid bilayer of cell membranes. As ticks ingest large volumes of host blood in relation to their size, they are required to concentrate blood components and have efficient water transport mechanisms. This study aimed to evaluate the...

  10. Genotypic variation in tolerance to drought stress is highly coordinated with hydraulic conductivity-photosynthesis interplay and aquaporin expression in field-grown mulberry (Morus spp.).

    Science.gov (United States)

    Reddy, Kanubothula Sitarami; Sekhar, Kalva Madhana; Reddy, Attipalli Ramachandra

    2017-07-01

    Hydraulic conductivity quantifies the efficiency of a plant to transport water from root to shoot and is a major constriction on leaf gas exchange physiology. Mulberry (Morus spp.) is the most economically important crop for sericulture industry. In this study, we demonstrate a finely coordinated control of hydraulic dynamics on leaf gas exchange characteristics in 1-year-old field-grown mulberry genotypes (Selection-13 (S13); Kollegal Local (KL) and Kanva-2 (K2)) subjected to water stress by withholding water for 20 days and subsequent recovery for 7 days. Significant variations among three mulberry genotypes have been recorded in net photosynthetic rates (Pn), stomatal conductance and sap flow rate, as well as hydraulic conductivity in stem (KS) and leaf (KL). Among three genotypes, S13 showed significantly high rates of Pn, KS and KL both in control as well as during drought stress (DS) and recovery, providing evidence for superior drought-adaptive strategies. The plant water hydraulics-photosynthesis interplay was finely coordinated with the expression of certain key aquaporins (AQPs) in roots and leaves. Our data clearly demonstrate that expression of certain AQPs play a crucial role in hydraulic dynamics and photosynthetic carbon assimilation during DS and recovery, which could be effectively targeted towards mulberry improvement programs for drought adaptation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Ectopically expressing MdPIP1;3, an aquaporin gene, increased fruit size and enhanced drought tolerance of transgenic tomatoes.

    Science.gov (United States)

    Wang, Lin; Li, Qing-Tian; Lei, Qiong; Feng, Chao; Zheng, Xiaodong; Zhou, Fangfang; Li, Lingzi; Liu, Xuan; Wang, Zhi; Kong, Jin

    2017-12-19

    Water deficit severely reduces apple growth and production, is detrimental to fruit quality and size. This problem is exacerbated as global warming is implicated in producing more severe drought stress. Thus water-efficiency has becomes the major target for apple breeding. A desired apple tree can absorb and transport water efficiently, which not only confers improved drought tolerance, but also guarantees fruit size for higher income returns. Aquaporins, as water channels, control water transportation across membranes and can regulate water flow by changing their amount and activity. The exploration of molecular mechanism of water efficiency and the gene wealth will pave a way for molecular breeding of drought tolerant apple tree. In the current study, we screened out a drought inducible aquaporin gene MdPIP1;3, which specifically enhanced its expression during fruit expansion in 'Fuji' apple (Malus domestica Borkh. cv. Red Fuji). It localized on plasma membranes and belonged to PIP1 subfamily. The tolerance to drought stress enhanced in transgenic tomato plants ectopically expressing MdPIP1;3, showing that the rate of losing water in isolated transgenic leaves was slower than wild type, and stomata of transgenic plants closed sensitively to respond to drought compared with wild type. Besides, length and diameter of transgenic tomato fruits increased faster than wild type, and in final, fruit sizes and fresh weights of transgenic tomatoes were bigger than wild type. Specially, in cell levels, fruit cell size from transgenic tomatoes was larger than wild type, showing that cell number per mm 2 in transgenic fruits was less than wild type. Altogether, ectopically expressing MdPIP1;3 enhanced drought tolerance of transgenic tomatoes partially via reduced water loss controlled by stomata closure in leaves. In addition, the transgenic tomato fruits are larger and heavier with larger cells via more efficient water transportation across membranes. Our research will

  12. Ethylene sensitivity and relative air humidity regulate root hydraulic properties in tomato plants.

    Science.gov (United States)

    Calvo-Polanco, Monica; Ibort, Pablo; Molina, Sonia; Ruiz-Lozano, Juan Manuel; Zamarreño, Angel María; García-Mina, Jose María; Aroca, Ricardo

    2017-11-01

    The effect of ethylene and its precursor ACC on root hydraulic properties, including aquaporin expression and abundance, is modulated by relative air humidity and plant sensitivity to ethylene. Relative air humidity (RH) is a main factor contributing to water balance in plants. Ethylene (ET) is known to be involved in the regulation of root water uptake and stomatal opening although its role on plant water balance under different RH is not very well understood. We studied, at the physiological, hormonal and molecular levels (aquaporins expression, abundance and phosphorylation state), the plant responses to exogenous 1-aminocyclopropane-1-carboxylic acid (ACC; precursor of ET) and 2-aminoisobutyric acid (AIB; inhibitor of ET biosynthesis), after 24 h of application to the roots of tomato wild type (WT) plants and its ET-insensitive never ripe (nr) mutant, at two RH levels: regular (50%) and close to saturation RH. Highest RH induced an increase of root hydraulic conductivity (Lp o ) of non-treated WT plants, and the opposite effect in nr mutants. The treatment with ACC reduced Lp o in WT plants at low RH and in nr plants at high RH. The application of AIB increased Lp o only in nr plants at high RH. In untreated plants, the RH treatment changed the abundance and phosphorylation of aquaporins that affected differently both genotypes according to their ET sensitivity. We show that RH is critical in regulating root hydraulic properties, and that Lp o is affected by the plant sensitivity to ET, and possibly to ACC, by regulating aquaporins expression and their phosphorylation status. These results incorporate the relationship between RH and ET in the response of Lp o to environmental changes.

  13. Molecular Characterization of Aquaporin 1 and Aquaporin 3 from the Gills of the African Lungfish, Protopterus annectens, and Changes in Their Branchial mRNA Expression Levels and Protein Abundance during Three Phases of Aestivation.

    Science.gov (United States)

    Chng, You R; Ong, Jasmine L Y; Ching, Biyun; Chen, Xiu L; Hiong, Kum C; Wong, Wai P; Chew, Shit F; Lam, Siew H; Ip, Yuen K

    2016-01-01

    African lungfishes can undergo long periods of aestivation on land during drought. During aestivation, lungfishes are confronted with desiccation and dehydration, and their gills become non-functional and covered with a thick layer of dried mucus. Aquaporins (Aqps) are a superfamily of integral membrane proteins which generally facilitate the permeation of water through plasma membranes. This study aimed to obtain the complete cDNA coding sequences of aqp1 and aqp3 from the gills of Protopterus annectens , and to determine their branchial mRNA and protein expression levels during the induction, maintenance and arousal phases of aestivation. Dendrogramic analyses of the deduced Aqp1 and Aqp3 amino acid sequences of P. annectens revealed their close relationships with those of Latimeria chalumnae and tetrapods. During the induction phase, there were significant decreases in the transcript levels of aqp1 and aqp3 in the gills of P. annectens , but the branchial Aqp1 and Aqp3 protein abundance remained unchanged. As changes in transcription might precede changes in translation, this could be regarded as an adaptive response to decrease the protein abundance of Aqp1 and Aqp3 in the subsequent maintenance phase of aestivation. As expected, the branchial transcript levels and protein abundance of aqp1 /Aqp1 and aqp3 /Aqp3 were significantly down-regulated during the maintenance phase, probably attributable to the shutdown of branchial functions and the cessation of volume regulation of branchial epithelial cells. Additionally, these changes could reduce the loss of water through branchial epithelial surfaces, supplementing the anti-desiccating property of the dried mucus. Upon arousal, it was essential for the lungfish to restore branchial functions. Indeed, the protein abundance of Aqp1 recovered partially, with complete recovery of mRNA expression level and protein abundance of Aqp3, in the gills of P. annectens after 3 days of arousal. These results provide insights

  14. Immunohistochemical evalulation of activated Ras and Rac1 as potential downstream effectors of aquaporin-5 in breast cancer in vivo.

    Science.gov (United States)

    Jensen, Helene H; Login, Frédéric H; Park, Ji-Young; Kwon, Tae-Hwan; Nejsum, Lene N

    2017-11-25

    Aberrant levels of aquaporin-5 (AQP5) expression have been observed in several types of cancer, including breast cancer, where AQP5 overexpression is associated with metastasis and poor prognosis. In cultured cancer cells, AQP5 facilitates cell migration and activates Ras signaling. Both increased cell migration and Ras activation are associated with cancer metastasis, but so far it is unknown if AQP5 also affects these processes in vivo. Therefore, we investigated if high AQP5 expression in breast cancer tissue correlated with increased activation of Ras and of Rac1, which is a GTPase also involved in cell migration. This was accomplished by immunohistochemical analysis of invasive ductal carcinoma of breast tissue sections from human patients, followed by qualitative and quantitative correlation analysis between AQP5 and activated Ras and Rac1. Immunohistochemistry revealed that activation of Ras and Rac1 was positively correlated. There was, however, no correlation between high AQP5 expression and activation of Ras, whereas a nonsignificant, but positive, tendency between the levels of AQP5 and activated Rac1 levels was observed. In summary, this is the first report that correlates AQP5 expression levels to downstream signaling partners in breast cancer tissue sections. The results suggest Rac1 as a potential downstream signaling partner of AQP5 in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Composite Transport Model and Water and Solute Transport across Plant Roots: An Update

    Directory of Open Access Journals (Sweden)

    Yangmin X. Kim

    2018-02-01

    Full Text Available The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM. It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots – apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs, which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic. Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle. The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.

  16. Composite Transport Model and Water and Solute Transport across Plant Roots: An Update.

    Science.gov (United States)

    Kim, Yangmin X; Ranathunge, Kosala; Lee, Seulbi; Lee, Yejin; Lee, Deogbae; Sung, Jwakyung

    2018-01-01

    The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM). It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots - apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs), which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic). Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle). The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.

  17. Identification of Loop D Domain Amino Acids in the Human Aquaporin-1 Channel Involved in Activation of the Ionic Conductance and Inhibition by AqB011

    Directory of Open Access Journals (Sweden)

    Mohamad Kourghi

    2018-04-01

    Full Text Available Aquaporins are integral proteins that facilitate the transmembrane transport of water and small solutes. In addition to enabling water flux, mammalian Aquaporin-1 (AQP1 channels activated by cyclic GMP can carry non-selective monovalent cation currents, selectively blocked by arylsulfonamide compounds AqB007 (IC50 170 μM and AqB011 (IC50 14 μM. In silico models suggested that ligand docking might involve the cytoplasmic loop D (between AQP1 transmembrane domains 4 and 5, but the predicted site of interaction remained to be tested. Work here shows that mutagenesis of two conserved arginine residues in loop D slowed the activation of the AQP1 ion conductance and impaired the sensitivity of the channel to block by AqB011. Substitution of residues in loop D with proline showed effects on ion conductance amplitude that varied with position, suggesting that the structural conformation of loop D is important for AQP1 channel gating. Human AQP1 wild type, AQP1 mutant channels with alanines substituted for two arginines (R159A+R160A, and mutants with proline substituted for single residues threonine (T157P, aspartate (D158P, arginine (R159P, R160P, or glycine (G165P were expressed in Xenopus laevis oocytes. Conductance responses were analyzed by two-electrode voltage clamp. Optical osmotic swelling assays and confocal microscopy were used to confirm mutant and wild type AQP1-expressing oocytes were expressed in the plasma membrane. After application of membrane-permeable cGMP, R159A+R160A channels had a significantly slower rate of activation as compared with wild type, consistent with impaired gating. AQP1 R159A+R160A channels showed no significant block by AqB011 at 50 μM, in contrast to the wild type channel which was blocked effectively. T157P, D158P, and R160P mutations had impaired activation compared to wild type; R159P showed no significant effect; and G165P appeared to augment the conductance amplitude. These findings provide evidence for the

  18. Phosphorylation of human aquaporin 2 (AQP2) allosterically controls its interaction with the lysosomal trafficking protein LIP5.

    Science.gov (United States)

    Roche, Jennifer Virginia; Survery, Sabeen; Kreida, Stefan; Nesverova, Veronika; Ampah-Korsah, Henry; Gourdon, Maria; Deen, Peter M T; Törnroth-Horsefield, Susanna

    2017-09-01

    The interaction between the renal water channel aquaporin-2 (AQP2) and the lysosomal trafficking regulator-interacting protein LIP5 targets AQP2 to multivesicular bodies and facilitates lysosomal degradation. This interaction is part of a process that controls AQP2 apical membrane abundance in a vasopressin-dependent manner, allowing for urine volume adjustment. Vasopressin regulates phosphorylation at four sites within the AQP2 C terminus (Ser 256 , Ser 261 , Ser 264 , and Thr 269 ), of which Ser 256 is crucial and sufficient for AQP2 translocation from storage vesicles to the apical membrane. However, whether AQP2 phosphorylation modulates AQP2-LIP5 complex affinity is unknown. Here we used far-Western blot analysis and microscale thermophoresis to show that the AQP2 binds LIP5 in a phosphorylation-dependent manner. We constructed five phospho-mimicking mutants (S256E, S261E, S264E, T269E, and S256E/T269E) and a C-terminal truncation mutant (ΔP242) that lacked all phosphorylation sites but retained a previously suggested LIP5-binding site. CD spectroscopy indicated that wild-type AQP2 and the phospho-mimicking mutants had similar overall structure but displayed differences in melting temperatures possibly arising from C-terminal conformational changes. Non-phosphorylated AQP2 bound LIP5 with the highest affinity, whereas AQP2-ΔP242 had 20-fold lower affinity as determined by microscale thermophoresis. AQP2-S256E, S261E, T269E, and S256E/T269E all had reduced affinity. This effect was most prominent for AQP2-S256E, which fits well with its role in apical membrane targeting. AQP2-S264E had affinity similar to non-phosphorylated AQP2, possibly indicating a role in exosome excretion. Our data suggest that AQP2 phosphorylation allosterically controls its interaction with LIP5, illustrating how altered affinities to interacting proteins form the basis for regulation of AQP2 trafficking by post-translational modifications. © 2017 by The American Society for

  19. Aquaporin 0 plays a pivotal role in refractive index gradient development in mammalian eye lens to prevent spherical aberration

    International Nuclear Information System (INIS)

    Kumari, S. Sindhu; Varadaraj, Kulandaiappan

    2014-01-01

    Highlights: • Intact AQP0 functions as fiber cell-to-fiber cell adhesion protein. • AQP0 facilitates reduction in extracellular space and lens water content. • AQP0 adhesion function aids in lens refractive index gradient (RING) formation. • AQP0 prevents lens spherical aberration by establishing RING. • AQP0 is critical for lens transparency and homeostasis. - Abstract: Aquaporin 0 (AQP0) is a transmembrane channel that constitutes ∼45% of the total membrane protein of the fiber cells in mammalian lens. It is critical for lens transparency and homeostasis as mutations and knockout cause autosomal dominant lens cataract. AQP0 functions as a water channel and as a cell-to-cell adhesion (CTCA) molecule in the lens. Our recent in vitro studies showed that the CTCA function of AQP0 could be crucial to establish lens refractive index gradient (RING). However, there is a lack of in vivo data to corroborate the role of AQP0 as a fiber CTCA molecule which is critical for creating lens RING. The present investigation is undertaken to gather in vivo evidence for the involvement of AQP0 in developing lens RING. Lenses of wild type (WT) mouse, AQP0 knockout (heterozygous, AQP0 +/− ) and AQP0 knockout lens transgenically expressing AQP1 (heterozygous AQP0 +/− /AQP1 +/− ) mouse models were used for the study. Data on AQP0 protein profile of intact and N- and/or C-terminal cleaved AQP0 in the lens by MALDI-TOF mass spectrometry and SDS–PAGE revealed that outer cortex fiber cells have only intact AQP0 of ∼28 kDa, inner cortical and outer nuclear fiber cells have both intact and cleaved forms, and inner nuclear fiber cells have only cleaved forms (∼26–24 kDa). Knocking out of 50% of AQP0 protein caused light scattering, spherical aberration (SA) and cataract. Restoring the lost fiber cell membrane water permeability (P f ) by transgene AQP1 did not reinstate complete lens transparency and the mouse lenses showed light scattering and SA. Transmission and

  20. Aquaporin 0 plays a pivotal role in refractive index gradient development in mammalian eye lens to prevent spherical aberration

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, S. Sindhu [Physiology and Biophysics, Stony Brook University, Stony Brook, NY (United States); Varadaraj, Kulandaiappan, E-mail: kulandaiappan.varadaraj@stonybrook.edu [Physiology and Biophysics, Stony Brook University, Stony Brook, NY (United States); SUNY Eye Institute, New York, NY (United States)

    2014-10-03

    Highlights: • Intact AQP0 functions as fiber cell-to-fiber cell adhesion protein. • AQP0 facilitates reduction in extracellular space and lens water content. • AQP0 adhesion function aids in lens refractive index gradient (RING) formation. • AQP0 prevents lens spherical aberration by establishing RING. • AQP0 is critical for lens transparency and homeostasis. - Abstract: Aquaporin 0 (AQP0) is a transmembrane channel that constitutes ∼45% of the total membrane protein of the fiber cells in mammalian lens. It is critical for lens transparency and homeostasis as mutations and knockout cause autosomal dominant lens cataract. AQP0 functions as a water channel and as a cell-to-cell adhesion (CTCA) molecule in the lens. Our recent in vitro studies showed that the CTCA function of AQP0 could be crucial to establish lens refractive index gradient (RING). However, there is a lack of in vivo data to corroborate the role of AQP0 as a fiber CTCA molecule which is critical for creating lens RING. The present investigation is undertaken to gather in vivo evidence for the involvement of AQP0 in developing lens RING. Lenses of wild type (WT) mouse, AQP0 knockout (heterozygous, AQP0{sup +/−}) and AQP0 knockout lens transgenically expressing AQP1 (heterozygous AQP0{sup +/−}/AQP1{sup +/−}) mouse models were used for the study. Data on AQP0 protein profile of intact and N- and/or C-terminal cleaved AQP0 in the lens by MALDI-TOF mass spectrometry and SDS–PAGE revealed that outer cortex fiber cells have only intact AQP0 of ∼28 kDa, inner cortical and outer nuclear fiber cells have both intact and cleaved forms, and inner nuclear fiber cells have only cleaved forms (∼26–24 kDa). Knocking out of 50% of AQP0 protein caused light scattering, spherical aberration (SA) and cataract. Restoring the lost fiber cell membrane water permeability (P{sub f}) by transgene AQP1 did not reinstate complete lens transparency and the mouse lenses showed light scattering and SA

  1. The Sodium Glucose Cotransporter SGLT1 Is an Extremely Efficient Facilitator of Passive Water Transport.

    Science.gov (United States)

    Erokhova, Liudmila; Horner, Andreas; Ollinger, Nicole; Siligan, Christine; Pohl, Peter

    2016-04-29

    The small intestine is void of aquaporins adept at facilitating vectorial water transport, and yet it reabsorbs ∼8 liters of fluid daily. Implications of the sodium glucose cotransporter SGLT1 in either pumping water or passively channeling water contrast with its reported water transporting capacity, which lags behind that of aquaporin-1 by 3 orders of magnitude. Here we overexpressed SGLT1 in MDCK cell monolayers and reconstituted the purified transporter into proteoliposomes. We observed the rate of osmotic proteoliposome deflation by light scattering. Fluorescence correlation spectroscopy served to assess (i) SGLT1 abundance in both vesicles and plasma membranes and (ii) flow-mediated dilution of an aqueous dye adjacent to the cell monolayer. Calculation of the unitary water channel permeability, pf, yielded similar values for cell and proteoliposome experiments. Neither the absence of glucose or Na(+), nor the lack of membrane voltage in vesicles, nor the directionality of water flow grossly altered pf Such weak dependence on protein conformation indicates that a water-impermeable occluded state (glucose and Na(+) in their binding pockets) lasts for only a minor fraction of the transport cycle or, alternatively, that occlusion of the substrate does not render the transporter water-impermeable as was suggested by computational studies of the bacterial homologue vSGLT. Although the similarity between the pf values of SGLT1 and aquaporin-1 makes a transcellular pathway plausible, it renders water pumping physiologically negligible because the passive flux would be orders of magnitude larger. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Genome-wide identification of Jatropha curcas aquaporin genes and the comparative analysis provides insights into the gene family expansion and evolution in Hevea brasiliensis

    Directory of Open Access Journals (Sweden)

    Zhi eZou

    2016-03-01

    Full Text Available Aquaporins (AQPs are channel-forming integral membrane proteins that transport water and other small solutes across biological membranes. Despite the vital role of AQPs, to date, little is known in physic nut (Jatropha curcas L., Euphorbiaceae, an important non-edible oilseed crop with great potential for the production of biodiesel. In this study, 32 AQP genes were identified from the physic nut genome and the family number is relatively small in comparison to 51 in another Euphorbiaceae plant, rubber tree (Hevea brasiliensis Muell. Arg.. Based on the phylogenetic analysis, the JcAQPs were assigned to five subfamilies, i.e., 9 plasma membrane intrinsic proteins (PIPs, 9 tonoplast intrinsic proteins (TIPs, 8 NOD26-like intrinsic proteins (NIPs, 2 X intrinsic proteins (XIPs and 4 small basic intrinsic proteins (SIPs. Like rubber tree and other plant species, functional prediction based on the aromatic/arginine selectivity filter, Froger’s positions and specificity-determining positions showed a remarkable difference in substrate specificity among subfamilies of JcAQPs. Genome-wide comparative analysis revealed the specific expansion of PIP and TIP subfamilies in rubber tree and the specific gene loss of the XIP subfamily in physic nut. Furthermore, by analyzing deep transcriptome sequencing data, the expression evolution especially the expression divergence of duplicated HbAQP genes was also investigated and discussed. Results obtained from this study not only provide valuable information for future functional analysis and utilization of Jc/HbAQP genes, but also provide a useful reference to survey the gene family expansion and evolution in Euphorbiaceae plants and other plant species.

  3. Systemic administration of lipopolysaccharide increases the expression of aquaporin-4 in the rat anterior pituitary gland.

    Science.gov (United States)

    Kuwahara-Otani, Sachi; Maeda, Seishi; Tanaka, Koichi; Hayakawa, Tetsu; Seki, Makoto

    2013-01-01

    We investigated the effects of lipopolysaccharide (LPS)-induced endotoxemia on the expression of aquaporin-4 (AQP4) in the rat anterior pituitary gland, using the real-time polymerase chain reaction and immunohistochemistry. After intraperitoneal injection of LPS, the level of AQP4 mRNA doubled at 2, 4 and 8 hr. Immunohistochemical analysis showed an increase with time in AQP4 immunostaining in folliculo-stellate cells following LPS injection; the intensity of immunoreactivity peaked at 8 hr. At the same time, some cyst-like structures, formed by AQP4-positive cells, were observed. These findings indicate that LPS induces the expression of AQP4 in the anterior pituitary gland. The present results should provide an important key to elucidate the pathogenesis of the anterior pituitary gland during endotoxemia.

  4. A preliminary study of aquaporin 1 immunolocalization in chronic subdural hematoma membranes.

    Science.gov (United States)

    Basaldella, Luca; Perin, Alessandro; Orvieto, Enrico; Marton, Elisabetta; Itskevich, David; Dei Tos, Angelo Paolo; Longatti, Pierluigi

    2010-07-01

    Aquaporin 1 (AQP1) is a molecular water channel expressed in many anatomical locations, particularly in epithelial barriers specialized in water transport. The aim of this study was to investigate AQP1 expression in chronic subdural hematoma (CSDH) membranes. In this preliminary study, 11 patients with CSDH underwent burr hole craniectomy and drainage. Membrane specimens were stained with a monoclonal antibody targeting AQP1 for immunohistochemical analysis. The endothelial cells of the sinusoid capillaries of the outer membranes exhibited an elevated immunoreactivity to AQP1 antibody compared to the staining intensity of specimens from the inner membrane and normal dura. These findings suggest that the outer membrane might be the source of the increased fluid accumulation responsible for chronic hematoma enlargement.

  5. Vasopressin-dependent short-term regulation of aquaporin 4 expressed in Xenopus oocytes

    DEFF Research Database (Denmark)

    Moeller, H B; Fenton, R A; Zeuthen, T

    2009-01-01

    Aquaporin 4 (AQP4) is abundantly expressed in the perivascular glial endfeet in the central nervous system (CNS), where it is involved in the exchange of fluids between blood and brain. At this location, AQP4 contributes to the formation and/or the absorption of the brain edema that may arise...... following pathologies such as brain injuries, brain tumours, and cerebral ischemia. As vasopressin and its G-protein-coupled receptor (V1(a)R) have been shown to affect the outcome of brain edema, we have investigated the regulatory interaction between AQP4 and V1(a)R by heterologous expression in Xenopus......)R may prove to be a potential therapeutic target in the prevention and treatment of brain edema....

  6. Fouling Characterization of Forward Osmosis Biomimetic Aquaporin Membranes Used for Water Recovery from Municipal Wastewater

    DEFF Research Database (Denmark)

    Zarebska, Agata; Petrinic, Irena; Hey, Tobias

    , organic, and biological fouling, membrane characterization is not a trivial task. The aim of this work is to characterize fouling of FO biomimetic aquaporin membranes during water recovery from municipal wastewater. Membrane fouling was characterized using Scanning Electron Microscopy, X-ray Dispersive......Generally more than 99.93% of municipal wastewater is composed of water, therefore water recovery can alleviate global water stress which currently exists. Traditional ways to extract water from wastewater by the use of membrane bioreactors combined with reverse osmosis (RO), or micro...... compared to other pressure driven membrane processes, some fouling can occur. This entails that by reducing fouling, increased FO membrane performance can be expected, thus increasing the economic viability of FO processes. Since various types of fouling might occur in membrane systems such as inorganic...

  7. Contribution of spinal cord biopsy to diagnosis of aquaporin-4 antibody positive neuromyelitis optica spectrum disorder.

    Science.gov (United States)

    Ringelstein, M; Metz, I; Ruprecht, K; Koch, A; Rappold, J; Ingwersen, J; Mathys, C; Jarius, S; Brück, W; Hartung, H-P; Paul, F; Aktas, O

    2014-06-01

    Longitudinally extensive transverse myelitis is characteristic but not pathognomonic for neuromyelitis optica spectrum disorders (NMOSDs) and may mimic local tumors. In this retrospective study based on a cohort of 175 NMOSD patients we identified seven patients who initially presented with a longitudinally extensive spinal cord lesion and underwent spinal cord biopsy due to magnetic resonance imaging (MRI)-suspected malignancies. Remarkably, routine neuropathology was inconclusive and did not guide the diagnostic process to anti-aquaporin-4 (AQP4)-seropositive NMOSD. Serious postoperative complications occurred in 5/7 patients and persisted during follow-up in 2/7 patients (29%). Considering these sequelae, AQP4-antibody testing should be mandatory in patients with inconclusive longitudinally extensive spinal cord lesions prior to biopsy. © The Author(s) 2013.

  8. Aquaporin-4 serostatus does not predict response to immunotherapy in neuromyelitis optica spectrum disorders.

    Science.gov (United States)

    Mealy, Maureen A; Kim, Su-Hyun; Schmidt, Felix; López, Reydmar; Jimenez Arango, Jorge A; Paul, Friedemann; Wingerchuk, Dean M; Greenberg, Benjamin M; Kim, Ho Jin; Levy, Michael

    2017-08-01

    Debate exists about whether neuromyelitis optica spectrum disorder seronegative disease represents the same immune-mediated attack on astrocytic aquaporin-4 as in seropositive disease. We investigated whether response to common treatments for neuromyelitis optica spectrum disorder differed by serostatus, as assessed by change in annualized relapse rate. We performed a multicenter retrospective analysis of 245 patients with neuromyelitis optica spectrum disorder who were treated with either rituximab or mycophenolate mofetil as their first-line immunosuppressive treatment for disease prevention. Patients were followed for a minimum of 6 months following treatment initiation. In those started on rituximab, the pre-treatment annualized relapse rates for seropositive and seronegative patients were 1.81 and 1.93, respectively. On-treatment annualized relapse rates significantly declined to 0.32 (seropositive; p optica spectrum disorder patients, treatment was effective regardless of serostatus. This suggests that treatment should not differ when considering these treatments.

  9. Hyperglycemia Induces Cellular Hypoxia through Production of Mitochondrial ROS Followed by Suppression of Aquaporin-1.

    Science.gov (United States)

    Sada, Kiminori; Nishikawa, Takeshi; Kukidome, Daisuke; Yoshinaga, Tomoaki; Kajihara, Nobuhiro; Sonoda, Kazuhiro; Senokuchi, Takafumi; Motoshima, Hiroyuki; Matsumura, Takeshi; Araki, Eiichi

    2016-01-01

    We previously proposed that hyperglycemia-induced mitochondrial reactive oxygen species (mtROS) generation is a key event in the development of diabetic complications. Interestingly, some common aspects exist between hyperglycemia and hypoxia-induced phenomena. Thus, hyperglycemia may induce cellular hypoxia, and this phenomenon may also be involved in the pathogenesis of diabetic complications. In endothelial cells (ECs), cellular hypoxia increased after incubation with high glucose (HG). A similar phenomenon was observed in glomeruli of diabetic mice. HG-induced cellular hypoxia was suppressed by mitochondria blockades or manganese superoxide dismutase (MnSOD) overexpression, which is a specific SOD for mtROS. Overexpression of MnSOD also increased the expression of aquaporin-1 (AQP1), a water and oxygen channel. AQP1 overexpression in ECs suppressed hyperglycemia-induced cellular hypoxia, endothelin-1 and fibronectin overproduction, and apoptosis. Therefore, hyperglycemia-induced cellular hypoxia and mtROS generation may promote hyperglycemic damage in a coordinated manner.

  10. Requirement for asparagine in the aquaporin NPA sequence signature motifs for cation exclusion

    DEFF Research Database (Denmark)

    Wree, Dorothea; Wu, Binghua; Zeuthen, Thomas

    2011-01-01

    Two highly conserved NPA motifs are a hallmark of the aquaporin (AQP) family. The NPA triplets form N-terminal helix capping structures with the Asn side chains located in the centre of the water or solute-conducting channel, and are considered to play an important role in AQP selectivity. Although...... interchangeable at both NPA sites without affecting protein expression or water, glycerol and methylamine permeability. However, other mutations in the NPA region led to reduced permeability (S186C and S186D), to nonfunctional channels (N64D), or even to lack of protein expression (S186A and S186T). Using...... electrophysiology, we found that an analogous mammalian AQP1 N76S mutant excluded protons and potassium ions, but leaked sodium ions, providing an argument for the overwhelming prevalence of Asn over other amino acids. We conclude that, at the first position in the NPA motifs, only Asn provides efficient helix cap...

  11. The effect of aquaporin 5 overexpression on the Ras signaling pathway

    International Nuclear Information System (INIS)

    Woo, Janghee; Lee, Juna; Kim, Myoung Sook; Jang, Se Jin; Sidransky, David; Moon, Chulso

    2008-01-01

    Human aquaporin 5 (AQP5) has been shown to be overexpressed in multiple cancers, such as pancreatic cancer and colon cancer. Furthermore, it has been reported that ectopic expression of AQP5 leads to many phenotypic changes characteristic of transformation. However, the biochemical mechanism leading to transformation in AQP5-overexpressing cells has not been clearly elucidated. In this report, the overexpression of AQP5 in NIH3T3 cells demonstrated a significant effect on Ras activity and, thus, cell proliferation. Furthermore, this influence was shown to be mediated by phosphorylation of the PKA consensus site of AQP5. This is the first evidence demonstrating an association between AQP5 and a signaling pathway, namely the Ras signal transduction pathway, which may be the basis of the oncogenic properties seen in AQP-overexpressing cells

  12. Endocrinopathies in paediatric-onset neuromyelitis optica spectrum disorder with aquaporin 4 (AQP4) antibody.

    Science.gov (United States)

    Hacohen, Yael; Messina, Silvia; Gan, Hoong-Wei; Wright, Sukhvir; Chandratre, Saleel; Leite, Maria Isabel; Fallon, Penny; Vincent, Angela; Ciccarelli, Olga; Wassmer, Evangeline; Lim, Ming; Palace, Jacqueline; Hemingway, Cheryl

    2018-04-01

    The involvement of the diencephalic regions in neuromyelitis optica spectrum disorder (NMOSD) may lead to endocrinopathies. In this study, we identified the following endocrinopathies in 60% (15/25) of young people with paediatric-onset aquaporin 4-Antibody (AQP4-Ab) NMOSD: morbid obesity ( n = 8), hyperinsulinaemia ( n = 5), hyperandrogenism ( n = 5), amenorrhoea ( n = 5), hyponatraemia ( n = 4), short stature ( n = 3) and central hypothyroidism ( n = 2) irrespective of hypothalamic lesions. Morbid obesity was seen in 88% (7/8) of children of Caribbean origin. As endocrinopathies were prevalent in the majority of paediatric-onset AQP4-Ab NMOSD, endocrine surveillance and in particular early aggressive weight management is required for patients with AQP4-Ab NMOSD.

  13. Characterization of protein phosphatase 2A acting on phosphorylated plasma membrane aquaporin of tulip petals.

    Science.gov (United States)

    Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2004-05-01

    A protein phosphatase holo-type enzyme (38, 65, and 75 kDa) preparation and a free catalytic subunit (38 kDa) purified from tulip petals were characterized as protein phosphatase 2A (PP2A) by immunological and biochemical approaches. The plasma membrane containing the putative plasma membrane aquaporin (PM-AQP) was prepared from tulip petals, phosphorylated in vitro, and used as the substrate for both of the purified PP2A preparations. Although both preparations dephosphorylated the phosphorylated PM-AQP at 20 degrees C, only the holo-type enzyme preparation acted at 5 degrees C on the phosphorylated PM-AQP with higher substrate specificity, suggesting that regulatory subunits are required for low temperature-dependent dephosphorylation of PM-AQP in tulip petals.

  14. The Aquaporin gene family of the yellow fever mosquito, Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Lisa L Drake

    2010-12-01

    Full Text Available The mosquito, Aedes aegypti, is the principal vector of the Dengue and yellow fever viruses. During feeding, an adult female can take up more than its own body weight in vertebrate blood. After a blood meal females excrete large amounts of urine through their excretion system, the Malpighian tubules (MT. Diuresis starts within seconds after the mosquito starts feeding. Aquaporins (AQPs are a family of membrane transporters that regulate the flow of water, glycerol and other small molecules across cellular membranes in both prokaryotic and eukaryotic cells. Our aim was to identify aquaporins that function as water channels, mediating transcellular water transport in MTs of adult female Ae. aegypti.Using a bioinformatics approach we screened genome databases and identified six putative AQPs in the genome of Ae. aegypti. Phylogenetic analysis showed that five of the six Ae. aegypti AQPs have high similarity to classical water-transporting AQPs of vertebrates. Using microarray, reverse transcription and real time PCR analysis we found that all six AQPs are expressed in distinct patterns in mosquito tissues/body parts. AaAQP1, 4, and 5 are strongly expressed in the adult female MT. RNAi-mediated knockdown of the MT-expressed mosquito AQPs resulted in significantly reduced diuresis.Our results support the notion that AQP1, 4, and 5 function as water transporters in the MTs of adult female Ae. aegypti mosquitoes. Our results demonstrate the importance of these AQPs for mosquito diuresis after blood ingestion and highlight their potential as targets for the development of novel vector control strategies.

  15. The Aquaporin gene family of the yellow fever mosquito, Aedes aegypti.

    Science.gov (United States)

    Drake, Lisa L; Boudko, Dmitri Y; Marinotti, Osvaldo; Carpenter, Victoria K; Dawe, Angus L; Hansen, Immo A

    2010-12-29

    The mosquito, Aedes aegypti, is the principal vector of the Dengue and yellow fever viruses. During feeding, an adult female can take up more than its own body weight in vertebrate blood. After a blood meal females excrete large amounts of urine through their excretion system, the Malpighian tubules (MT). Diuresis starts within seconds after the mosquito starts feeding. Aquaporins (AQPs) are a family of membrane transporters that regulate the flow of water, glycerol and other small molecules across cellular membranes in both prokaryotic and eukaryotic cells. Our aim was to identify aquaporins that function as water channels, mediating transcellular water transport in MTs of adult female Ae. aegypti. Using a bioinformatics approach we screened genome databases and identified six putative AQPs in the genome of Ae. aegypti. Phylogenetic analysis showed that five of the six Ae. aegypti AQPs have high similarity to classical water-transporting AQPs of vertebrates. Using microarray, reverse transcription and real time PCR analysis we found that all six AQPs are expressed in distinct patterns in mosquito tissues/body parts. AaAQP1, 4, and 5 are strongly expressed in the adult female MT. RNAi-mediated knockdown of the MT-expressed mosquito AQPs resulted in significantly reduced diuresis. Our results support the notion that AQP1, 4, and 5 function as water transporters in the MTs of adult female Ae. aegypti mosquitoes. Our results demonstrate the importance of these AQPs for mosquito diuresis after blood ingestion and highlight their potential as targets for the development of novel vector control strategies.

  16. Cardiac Morphology and Function, and Blood Gas Transport in Aquaporin-1 Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Samer eAl-Samir

    2016-05-01

    Full Text Available We have studied cardiac and respiratory functions of aquaporin- 1-deficient mice by the Pressure-Volume-loop technique and by blood gas analysis. In addition, the morphological properties of the animals’ hearts were analysed. In anesthesia under maximal dobutamine stimulation, the mice exhibit a moderately elevated heart rate of < 600 min-1 and an O2 consumption of ~0.6 ml/min/g, which is about twice the basal rate. In this state, which is similar to the resting state of the conscious animal, all cardiac functions including stroke volume and cardiac output exhibited resting values and were identical between deficient and wildtype animals. Likewise, pulmonary and peripheral exchange of O2 and CO2 were normal. In contrast, several morphological parameters of the heart tissue of deficient mice were altered: 1 left ventricular wall thickness was reduced by 12%, 2 left ventricular mass, normalized to tibia length, was reduced by 10-20%, 3 cardiac muscle fiber cross sectional area was decreased by 17%, and 4 capillary density was diminished by 10%. As the P-V-loop technique yielded normal end-diastolic and end-systolic left ventricular volumes, the deficient hearts are characterized by thin ventricular walls in combination with normal intraventricular volumes. The aquaporin-1-deficient heart thus seems to be at a disadvantage compared to the wildtype heart by a reduced left-ventricular wall thickness and an increased diffusion distance between blood capillaries and muscle mitochondria. While under the present quasi-resting conditions these morphological alterations have no consequences for cardiac function, we expect that the deficient hearts will show a reduced maximal cardiac output.

  17. Aquaporin 3 (AQP3) participates in the cytotoxic response to nucleoside-derived drugs

    International Nuclear Information System (INIS)

    Pérez-Torras, Sandra; Casado, F Javier; Pastor-Anglada, Marçal

    2012-01-01

    Nucleoside analogs used in the chemotherapy of solid tumors, such as the capecitabine catabolite 5 ′ -deoxy-5-fluorouridine (5 ′ -DFUR) trigger a transcriptomic response that involves the aquaglyceroporin aquaporin 3 along with other p53-dependent genes. Here, we examined whether up-regulation of aquaporin 3 (AQP3) mRNA in cancer cells treated with 5 ′ -DFUR represents a collateral transcriptomic effect of the drug, or conversely, AQP3 participates in the activity of genotoxic agents. The role of AQP3 in cell volume increase, cytotoxicity and cell cycle arrest was analyzed using loss-of-function approaches. 5 ′ -DFUR and gemcitabine, but not cisplatin, stimulated AQP3 expression and cell volume, which was partially and significantly blocked by knockdown of AQP3. Moreover, AQP3 siRNA significantly blocked other effects of nucleoside analogs, including G 1 /S cell cycle arrest, p21 and FAS up-regulation, and cell growth inhibition. Short incubations with 5-fluorouracil (5-FU) also induced AQP3 expression and increased cell volume, and the inhibition of AQP3 expression significantly blocked growth inhibition triggered by this drug. To further establish whether AQP3 induction is related to cell cycle arrest and apoptosis, cells were exposed to long incubations with escalating doses of 5-FU. AQP3 was highly up-regulated at doses associated with cell cycle arrest, whereas at doses promoting apoptosis induction of AQP3 mRNA expression was reduced. Based on the results, we propose that the aquaglyceroporin AQP3 is required for cytotoxic activity of 5’-DFUR and gemcitabine in the breast cancer cell line MCF7 and the colon adenocarcinoma cell line HT29, and is implicated in cell volume increase and cell cycle arrest

  18. Aliskiren increases aquaporin-2 expression and attenuates lithium-induced nephrogenic diabetes insipidus.

    Science.gov (United States)

    Lin, Yu; Zhang, Tiezheng; Feng, Pinning; Qiu, Miaojuan; Liu, Qiaojuan; Li, Suchun; Zheng, Peili; Kong, Yonglun; Levi, Moshe; Li, Chunling; Wang, Weidong

    2017-10-01

    The direct renin inhibitor aliskiren has been shown to be retained and persist in medullary collecting ducts even after treatment is discontinued, suggesting a new mechanism of action for this drug. The purpose of the present study was to investigate whether aliskiren regulates renal aquaporin expression in the collecting ducts and improves urinary concentrating defect induced by lithium in mice. The mice were fed with either normal chow or LiCl diet (40 mmol·kg dry food -1 ·day -1 for 4 days and 20 mmol·kg dry food -1 ·day -1 for the last 3 days) for 7 days. Some mice were intraperitoneally injected with aliskiren (50 mg·kg body wt -1 ·day -1 in saline). Aliskiren significantly increased protein abundance of aquaporin-2 (AQP2) in the kidney inner medulla in mice. In inner medulla collecting duct cell suspension, aliskiren markedly increased AQP2 and phosphorylated AQP2 at serine 256 (pS256-AQP2) protein abundance, which was significantly inhibited both by adenylyl cyclase inhibitor MDL-12330A and by PKA inhibitor H89, indicating an involvement of the cAMP-PKA signaling pathway in aliskiren-induced increased AQP2 expression. Aliskiren treatment improved urinary concentrating defect in lithium-treated mice and partially prevented the decrease of AQP2 and pS256-AQP2 protein abundance in the inner medulla of the kidney. In conclusion, the direct renin inhibitor aliskiren upregulates AQP2 protein expression in inner medullary collecting duct principal cells and prevents lithium-induced nephrogenic diabetes insipidus likely via cAMP-PKA pathways. Copyright © 2017 the American Physiological Society.

  19. Genetic variation in Aquaporin-4 moderates the relationship between sleep and brain Aβ-amyloid burden.

    Science.gov (United States)

    Rainey-Smith, Stephanie R; Mazzucchelli, Gavin N; Villemagne, Victor L; Brown, Belinda M; Porter, Tenielle; Weinborn, Michael; Bucks, Romola S; Milicic, Lidija; Sohrabi, Hamid R; Taddei, Kevin; Ames, David; Maruff, Paul; Masters, Colin L; Rowe, Christopher C; Salvado, Olivier; Martins, Ralph N; Laws, Simon M

    2018-02-26

    The glymphatic system is postulated to be a mechanism of brain Aβ-amyloid clearance and to be most effective during sleep. Ablation of the astrocytic end-feet expressed water-channel protein, Aquaporin-4, in mice, results in impairment of this clearance mechanism and increased brain Aβ-amyloid deposition, suggesting that Aquaporin-4 plays a pivotal role in glymphatic function. Currently there is a paucity of literature regarding the impact of AQP4 genetic variation on sleep, brain Aβ-amyloid burden and their relationship to each other in humans. To address this a cross-sectional observational study was undertaken in cognitively normal older adults from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study. Genetic variants in AQP4 were investigated with respect to self-reported Pittsburgh Sleep Quality Index sleep parameters, positron emission tomography derived brain Aβ-amyloid burden and whether these genetic variants moderated the sleep-Aβ-amyloid burden relationship. One AQP4 variant, rs72878776, was associated with poorer overall sleep quality, while several SNPs moderated the effect of sleep latency (rs491148, rs9951307, rs7135406, rs3875089, rs151246) and duration (rs72878776, rs491148 and rs2339214) on brain Aβ-amyloid burden. This study suggests that AQP4 genetic variation moderates the relationship between sleep and brain Aβ-amyloid burden, which adds weight to the proposed glymphatic system being a potential Aβ-amyloid clearance mechanism and suggests that AQP4 genetic variation may impair this function. Further, AQP4 genetic variation should be considered when interpreting sleep-Aβ relationships.

  20. Targeting aquaporin function: potent inhibition of aquaglyceroporin-3 by a gold-based compound.

    Directory of Open Access Journals (Sweden)

    Ana Paula Martins

    Full Text Available Aquaporins (AQPs are membrane channels that conduct water and small solutes such as glycerol and are involved in many physiological functions. Aquaporin-based modulator drugs are predicted to be of broad potential utility in the treatment of several diseases. Until today few AQP inhibitors have been described as suitable candidates for clinical development. Here we report on the potent inhibition of AQP3 channels by gold(III complexes screened on human red blood cells (hRBC and AQP3-transfected PC12 cells by a stopped-flow method. Among the various metal compounds tested, Auphen is the most active on AQP3 (IC(50 = 0.8±0.08 µM in hRBC. Interestingly, the compound poorly affects the water permeability of AQP1. The mechanism of gold inhibition is related to the ability of Au(III to interact with sulphydryls groups of proteins such as the thiolates of cysteine residues. Additional DFT and modeling studies on possible gold compound/AQP adducts provide a tentative description of the system at a molecular level. The mapping of the periplasmic surface of an homology model of human AQP3 evidenced the thiol group of Cys40 as a likely candidate for binding to gold(III complexes. Moreover, the investigation of non-covalent binding of Au complexes by docking approaches revealed their preferential binding to AQP3 with respect to AQP1. The high selectivity and low concentration dependent inhibitory effect of Auphen (in the nanomolar range together with its high water solubility makes the compound a suitable drug lead for future in vivo studies. These results may present novel metal-based scaffolds for AQP drug development.

  1. Evidence for aquaporin-mediated water transport in nematocytes of the jellyfish Pelagia noctiluca.

    Science.gov (United States)

    Marino, Angela; Morabito, Rossana; La Spada, Giuseppina; Adragna, Norma C; Lauf, Peter K

    2011-01-01

    Nematocytes, the stinging cells of Cnidarians, have a cytoplasm confined to a thin rim. The main cell body is occupied by an organoid, the nematocyst, containing the stinging tubule and venom. Exposed to hypotonic shock, nematocytes initially swell during an osmotic phase (OP) and then undergo regulatory volume decrease (RVD) driven by K(+), Cl(-) and obligatory water extrusion mechanisms. The purpose of this report is to characterize the OP. Nematocytes were isolated by the NaSCN/Ca(2+) method from tentacles of the jellyfish Pelagia noctiluca, collected in the Strait of Messina, Italy. Isolated nematocytes were subjected to hyposmotic shock in 65% artificial seawater (ASW) for 15 min. The selective aquaporin water channel inhibitor HgCl(2) (0.1-25 μM) applied prior to osmotic shock prevented the OP and thus RVD. These effects were attenuated in the presence of 1mM dithiothreitol (DTT), a mercaptide bond reducing agent. AgNO(3) (1 μM) and TEA (tetraethylammonium, 100 μM), also reported to inhibit water transport, did not alter the OP but significantly diminished RVD, suggesting different modes of action for the inhibitors tested. Based on estimates of the nematocyte surface area and volume, and OP duration, a relative water permeability of ~10(-7) cm/sec was calculated and the number of putative aquaporin molecules mediating the OP was estimated. This water permeability is 3-4 orders of magnitude lower in comparison to higher order animals and may constitute an evolutionary advantage for Cnidarian survival. Copyright © 2011 S. Karger AG, Basel.

  2. Annotation of Selaginella moellendorffii major intrinsic proteins and the evolution of the protein family in terrestrial plants

    Directory of Open Access Journals (Sweden)

    Hanna Isa Anderberg

    2012-02-01

    Full Text Available Major intrinsic proteins (MIPs also called aquaporins form pores in membranes to facilitate the permeation of water and certain small polar solutes across membranes. MIPs are present in virtually every organism but are uniquely abundant in land plants. To elucidate the evolution and function of MIPs in terrestrial plants, the MIPs encoded in the genome of the spikemoss Selaginella moellendorffii were identified and analyzed. In total 19 MIPs were found in S. moellendorffii belonging to six of the seven MIP subfamilies previously identified in the moss Physcomitrella patens. Only three of the MIPs were classified as members of the conserved water specific plasma membrane intrinsic protein (PIP subfamily whereas almost half were found to belong to the diverse NOD26-like intrinsic protein (NIP subfamily permeating various solutes. The small number of PIPs in S. moellendorffii is striking compared to all other land plants and no other species has more NIPs than PIPs. Similar to moss, S. moellendorffii only has one type of tonoplast intrinsic protein (TIP. Based on ESTs from non-angiosperms we conclude that the specialized groups of TIPs present in higher plants are not found in primitive vascular plants but evolved later in a common ancestor of seed plants. We also note that the silicic acid permeable NIP2 group that has been reported from angiosperms appears at the same time. We suggest that the expansion of the number MIP isoforms in higher plants is primarily associated with an increase in the different types of specialized tissues rather than the emergence of vascular tissue per se and that the loss of subfamilies has been possible due to a functional overlap between some subfamilies.

  3. Genome-wide identification of aquaporin encoding genes in Brassica oleracea and their phylogenetic sequence comparison to Brassica crops and Arabidopsis

    Science.gov (United States)

    Diehn, Till A.; Pommerrenig, Benjamin; Bernhardt, Nadine; Hartmann, Anja; Bienert, Gerd P.

    2015-01-01

    Aquaporins (AQPs) are essential channel proteins that regulate plant water homeostasis and the uptake and distribution of uncharged solutes such as metalloids, urea, ammonia, and carbon dioxide. Despite their importance as crop plants, little is known about AQP gene and protein function in cabbage (Brassica oleracea) and other Brassica species. The recent releases of the genome sequences of B. oleracea and Brassica rapa allow comparative genomic studies in these species to investigate the evolution and features of Brassica genes and proteins. In this study, we identified all AQP genes in B. oleracea by a genome-wide survey. In total, 67 genes of four plant AQP subfamilies were identified. Their full-length gene sequences and locations on chromosomes and scaffolds were manually curated. The identification of six additional full-length AQP sequences in the B. rapa genome added to the recently published AQP protein family of this species. A phylogenetic analysis of AQPs of Arabidopsis thaliana, B. oleracea, B. rapa allowed us to follow AQP evolution in closely related species and to systematically classify and (re-) name these isoforms. Thirty-three groups of AQP-orthologous genes were identified between B. oleracea and Arabidopsis and their expression was analyzed in different organs. The two selectivity filters, gene structure and coding sequences were highly conserved within each AQP subfamily while sequence variations in some introns and untranslated regions were frequent. These data suggest a similar substrate selectivity and function of Brassica AQPs compared to Arabidopsis orthologs. The comparative analyses of all AQP subfamilies in three Brassicaceae species give initial insights into AQP evolution in these taxa. Based on the genome-wide AQP identification in B. oleracea and the sequence analysis and reprocessing of Brassica AQP information, our dataset provides a sequence resource for further investigations of the physiological and molecular functions of

  4. Visual explorer facilitator's guide

    CERN Document Server

    Palus, Charles J

    2010-01-01

    Grounded in research and practice, the Visual Explorer™ Facilitator's Guide provides a method for supporting collaborative, creative conversations about complex issues through the power of images. The guide is available as a component in the Visual Explorer Facilitator's Letter-sized Set, Visual Explorer Facilitator's Post card-sized Set, Visual Explorer Playing Card-sized Set, and is also available as a stand-alone title for purchase to assist multiple tool users in an organization.

  5. Learning facilitating leadership

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard; Hansen, Mette Sanne

    2016-01-01

    This paper explains how engineering students at a Danish university acquired the necessary skills to become emergent facilitators of organisational development. The implications of this approach are discussed and related to relevant viewpoints and findings in the literature. The methodology deplo....... By connecting the literature, the authors’ and engineering students’ reflections on facilitator skills, this paper adds value to existing academic and practical discussions on learning facilitating leadership....

  6. Population Shift between the Open and Closed States Changes the Water Permeability of an Aquaporin Z Mutant

    DEFF Research Database (Denmark)

    Xin, Lin; Helix Nielsen, Claus; Su, Haibin

    2012-01-01

    gate in the triple mutant with R189 as the primary steric gate in both mutant and WT AqpZ. The double gates (R189 and W43-F183) result in a high population of the closed conformation in the mutant. Occasionally an open state, with diffusive water permeability very close to that of WT AqpZ, was observed...... be modulated and may further point to how aquaporin function can be optimized for biomimetic membrane applications....

  7. A cohesion/tension mechanism explains the gating of water channels (aquaporins) in Chara internodes by high concentration.

    Science.gov (United States)

    Ye, Qing; Wiera, Boguslaw; Steudle, Ernst

    2004-02-01

    Isolated internodes of Chara corallina have been used to study the gating of aquaporins (water channels) in the presence of high concentrations of osmotic solutes of different size (molecular weight). Osmolytes were acetone and three glycol ethers: ethylene glycol monomethyl ether (EGMME), diethylene glycol monomethyl ether (DEGMME), and triethylene glycol monoethyl ether (TEGMEE). The 'osmotic efficiency' of osmolytes was quite different. Their reflection coefficients ranged between 0.15 (acetone), 0.59 (EGMME), 0.78 (DEGMME), and 0.80 (TEGMEE). Bulk water permeability (Lp) and diffusive permeabilities (Ps) of heavy water (HDO), hydrogen peroxide (H2O2), acetone, and glycol ethers (EGMME, DEGMME, and TEGMEE) were measured using a cell pressure probe. Cells were treated with different concentrations of osmotic solutes of up to 800 mM ( approximately 2.0 MPa of osmotic pressure). Inhibition of aquaporin activity increased with both increasing concentration and size of solutes (reflection coefficients). As cell Lp decreased, Ps increased, indicating that water and solutes used different passages across the plasma membrane. Similar to earlier findings of an osmotic gating of ion channels, a cohesion/tension model of the gating of water channels in Chara internodes by high concentration is proposed. According to the model, tensions (negative pressures) within water channels affected the open/closed state by changing the free energy between states and favoured a distorted/collapsed rather than the open state. They should have differed depending on the concentration and size of solutes that are more or less excluded from aquaporins. The bigger the solute, the lower was the concentration required to induce a reversible closure of aquaporins, as predicted by the model.

  8. Aquaporins in the wild: natural genetic diversity and selective pressure in the PIP gene family in five Neotropical tree species

    Directory of Open Access Journals (Sweden)

    Vendramin Giovanni G

    2010-06-01

    Full Text Available Abstract Background Tropical trees undergo severe stress through seasonal drought and flooding, and the ability of these species to respond may be a major factor in their survival in tropical ecosystems, particularly in relation to global climate change. Aquaporins are involved in the regulation of water flow and have been shown to be involved in drought response; they may therefore play a major adaptive role in these species. We describe genetic diversity in the PIP sub-family of the widespread gene family of Aquaporins in five Neotropical tree species covering four botanical families. Results PIP Aquaporin subfamily genes were isolated, and their DNA sequence polymorphisms characterised in natural populations. Sequence data were analysed with statistical tests of standard neutral equilibrium and demographic scenarios simulated to compare with the observed results. Chloroplast SSRs were also used to test demographic transitions. Most gene fragments are highly polymorphic and display signatures of balancing selection or bottlenecks; chloroplast SSR markers have significant statistics that do not conform to expectations for population bottlenecks. Although not incompatible with a purely demographic scenario, the combination of all tests tends to favour a selective interpretation of extant gene diversity. Conclusions Tropical tree PIP genes may generally undergo balancing selection, which may maintain high levels of genetic diversity at these loci. Genetic variation at PIP genes may represent a response to variable environmental conditions.

  9. Key steps in type III secretion system (T3SS) towards translocon assembly with potential sensor at plant plasma membrane.

    Science.gov (United States)

    Ji, Hongtao; Dong, Hansong

    2015-09-01

    Many plant- and animal-pathogenic Gram-negative bacteria employ the type III secretion system (T3SS) to translocate effector proteins from bacterial cells into the cytosol of eukaryotic host cells. The effector translocation occurs through an integral component of T3SS, the channel-like translocon, assembled by hydrophilic and hydrophobic proteinaceous translocators in a two-step process. In the first, hydrophilic translocators localize to the tip of a proteinaceous needle in animal pathogens, or a proteinaceous pilus in plant pathogens, and associate with hydrophobic translocators, which insert into host plasma membranes in the second step. However, the pilus needs to penetrate plant cell walls in advance. All hydrophilic translocators so far identified in plant pathogens are characteristic of harpins: T3SS accessory proteins containing a unitary hydrophilic domain or an additional enzymatic domain. Two-domain harpins carrying a pectate lyase domain potentially target plant cell walls and facilitate the penetration of the pectin-rich middle lamella by the bacterial pilus. One-domain harpins target plant plasma membranes and may play a crucial role in translocon assembly, which may also involve contrapuntal associations of hydrophobic translocators. In all cases, sensory components in the target plasma membrane are indispensable for the membrane recognition of translocators and the functionality of the translocon. The conjectural sensors point to membrane lipids and proteins, and a phosphatidic acid and an aquaporin are able to interact with selected harpin-type translocators. Interactions between translocators and their sensors at the target plasma membrane are assumed to be critical for translocon assembly. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  10. Containers, facilitators, innovators?

    DEFF Research Database (Denmark)

    Makkonen, Teemu; Merisalo, Maria; Inkinen, Tommi

    2018-01-01

    : are they containers, facilitators or innovators? This is investigated here through empirical material derived from 27 interviews with top departmental management in three Finnish cities (Helsinki, Espoo and Vantaa). The results show that local city governments (LCGs) consider cities as facilitators of innovation...

  11. Training facilitators and supervisors

    DEFF Research Database (Denmark)

    Kjær, Louise Binow; O Connor, Maja; Krogh, Kristian

    At the Master’s program in Medicine at Aarhus University, Denmark, we have developed a faculty development program for facilitators and supervisors in 4 progressing student modules in communication, cooperation, and leadership. 1) A course for module 1 and 3 facilitators inspired by the apprentic...

  12. Characterization of Aquaporin 4 Protein Expression and Localization in Tissues of the Dogfish (Squalus acanthias).

    Science.gov (United States)

    Cutler, Christopher P; Harmon, Sheena; Walsh, Jonathon; Burch, Kia

    2012-01-01

    The role of aquaporin water channels such as aquaporin 4 (Aqp4) in elasmobranchs such as the dogfish Squalus acanthias is completely unknown. This investigation set out to determine the expression and cellular and sub-cellular localization of Aqp4 protein in dogfish tissues. Two polyclonal antibodies were generated (AQP4/1 and AQP4/2) and these showed somewhat different characteristics in Western blotting and immunohistochemistry. Western blots using the AQP4/1 antibody showed two bands (35.5 and 49.5 kDa) in most tissues in a similar fashion to mammals. Liver had an additional band of 57 kDa and rectal gland two further faint bands of 37.5 and 38.5 kDa. However, unlike in mammals, Aqp4 protein was ubiquitously expressed in all tissues including gill and liver. The AQP4/2 antibody appeared much less specific in Western blots. Both antibodies were used in immunohistochemistry and showed similar cellular localizations, although the AQP4/2 antibody had a more restricted sub-cellular distribution compared to AQP4/1 and therefore appeared to be more specific for Aqp4. In kidney a sub-set of tubules were stained which may represent intermediate tubule segments (In-III-In-VI). AQP4/1 and AQP4/2 antibodies localized to the same tubules segments in serial sections although the intensity and sub-cellular distribution were different. AQP4/2 showed a basal or basolateral membrane distribution whereas AQP4/1 was often distributed throughout the whole cell including the nuclear region. In rectal gland and cardiac stomach Aqp4 was localized to secretory tubules but again AQP/1 and AQP/2 exhibited different sub-cellular distributions. In gill, both antibodies stained large cells in the primary filament and secondary lamellae. Again AQP4/1 antibody stained most or all the cell including the nucleus, whereas AQP4/2 had a plasma membrane or plasma membrane and cytoplasmic distribution. Two types of large mitochondrial rich transport cells are known to exist in elasmobranchs

  13. Laxative effect of repeated Daiokanzoto is attributable to decrease in aquaporin-3 expression in the colon.

    Science.gov (United States)

    Kon, Risako; Yamamura, Miho; Matsunaga, Yukari; Kimura, Hiroshi; Minami, Moe; Kato, Saki; Ikarashi, Nobutomo; Sugiyama, Kiyoshi

    2018-03-01

    Daiokanzoto (DKT) exerts its laxative effect via colonic inflammation caused by sennoside A in Daio (rhubarb). Previously, we showed that the laxative effect of sennoside A is related to decreased aquaporin-3 (AQP3) expression in mucosal epithelial cells due to colonic inflammation. We also found that a combination of glycyrrhizin, an ingredient in Kanzo (glycyrrhiza), and sennoside A attenuates the inflammatory response induced by sennoside A and reduces its laxative effect. These findings indicate that DKT may be a long-term treatment for chronic constipation, but there is no evidence supporting this hypothesis. In this study, we analyzed the laxative effect of repeated DKT administration, focusing on AQP3 expression in the colon. After rats were treated for 7 days, decreased AQP3 expression and the onset of diarrhea were observed in the DKT group, but were not seen in the Daio group either. Although the relative abundance of gut microbiota after repeated DKT administration was similar to that after control treatment, Daio reduced Lactobacillaceae, Bifidobacteriaceae, and Bacteroidaceae levels and markedly increased Lachnospiraceae levels. In this study, we show that DKT has a sustained laxative effect, even upon repeated use, probably because it maintains decreased AQP3 expression and gut microbiota homeostasis. This outcome therefore indicates that DKT can be used as a long-term treatment for chronic constipation.

  14. Glia protein aquaporin-4 regulates aversive motivation of spatial memory in Morris water maze.

    Science.gov (United States)

    Zhang, Ji; Li, Ying; Chen, Zhong-Guo; Dang, Hui; Ding, Jian-Hua; Fan, Yi; Hu, Gang

    2013-12-01

    Although extensive investigation has revealed that an astrocyte-specific protein aquaporin-4 (AQP4) participates in regulating synaptic plasticity and memory, a functional relationship between AQP4 and learning processing has not been clearly established. This study was designed to test our hypothesis that AQP4 modulates the aversive motivation in Morris water maze (MWM). Using hidden platform training, we observed that AQP4 KO mice significantly decreased their swimming velocity compared with wild-type (WT) mice. To test for a relationship between velocities and escape motivation, we removed the platform and subjected a new group of mice similar to the session of hidden platform training. We found that KO mice exhibited a gradual reduction in swimming velocity, while WT mice did not alter their velocity. In the subsequent probe trial, KO mice after no platform training significantly decreased their mean velocity compared with those KO mice after hide platform training. However, all of KO mice were not impaired in their ability to locate a visible, cued escape platform. Our findings, along with a previous report that AQP4 regulates memory consolidation, implicate a novel role for this glial protein in modulating the aversive motivation in spatial learning paradigm. © 2013 John Wiley & Sons Ltd.

  15. Impact of monoolein on aquaporin1-based supported lipid bilayer membranes

    International Nuclear Information System (INIS)

    Wang, Zhining; Wang, Xida; Ding, Wande; Wang, Miaoqi; Gao, Congjie; Qi, Xin

    2015-01-01

    Aquaporin (AQP) based biomimetic membranes have attracted considerable attention for their potential water purification applications. In this paper, AQP1 incorporated biomimetic membranes were prepared and characterized. The morphology and structure of the biomimetic membranes were characterized by in situ atomic force microscopy (AFM), infrared absorption spectroscopy, fluorescence microscopy, and contact angle measurements. The nanofiltration performance of the AQP1 incorporated membranes was investigated at 4 bar by using 2 g l −1 NaCl as feed solution. Lipid mobility plays an important role in the performance of the AQP1 incorporated supported lipid bilayer (SLB) membranes. We demonstrated that the lipid mobility is successfully tuned by the addition of monoolein (MO). Through in situ AFM and fluorescence recovery after photo-bleaching (FRAP) measurements, the membrane morphology and the molecular mobility were studied. The lipid mobility increased in the sequence DPPC < DPPC/MO (R MO = 5/5) < DOPC/MO (R MO = 5/5) < DOPC, which is consistent with the flux increment and salt rejection. This study may provide some useful insights for improving the water purification performance of biomimetic membranes. (paper)

  16. Bioinformatics analysis and construction of phylogenetic tree of aquaporins from Echinococcus granulosus.

    Science.gov (United States)

    Wang, Fen; Ye, Bin

    2016-09-01

    Cyst echinococcosis caused by the matacestodal larvae of Echinococcus granulosus (Eg), is a chronic, worldwide, and severe zoonotic parasitosis. The treatment of cyst echinococcosis is still difficult since surgery cannot fit the needs of all patients, and drugs can lead to serious adverse events as well as resistance. The screen of target proteins interacted with new anti-hydatidosis drugs is urgently needed to meet the prevailing challenges. Here, we analyzed the sequences and structure properties, and constructed a phylogenetic tree by bioinformatics methods. The MIP family signature and Protein kinase C phosphorylation sites were predicted in all nine EgAQPs. α-helix and random coil were the main secondary structures of EgAQPs. The numbers of transmembrane regions were three to six, which indicated that EgAQPs contained multiple hydrophobic regions. A neighbor-joining tree indicated that EgAQPs were divided into two branches, seven EgAQPs formed a clade with AQP1 from human, a "strict" aquaporins, other two EgAQPs formed a clade with AQP9 from human, an aquaglyceroporins. Unfortunately, homology modeling of EgAQPs was aborted. These results provide a foundation for understanding and researches of the biological function of E. granulosus.

  17. Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines.

    Science.gov (United States)

    Zhu, Cui; Chen, Zhuang; Jiang, Zongyong

    2016-08-29

    Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs) represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1-11) have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes), goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines.

  18. Basolateral cholesterol depletion alters Aquaporin-2 post-translational modifications and disrupts apical plasma membrane targeting.

    Science.gov (United States)

    Moeller, Hanne B; Fuglsang, Cecilia Hvitfeldt; Pedersen, Cecilie Nøhr; Fenton, Robert A

    2018-01-01

    Apical plasma membrane accumulation of the water channel Aquaporin-2 (AQP2) in kidney collecting duct principal cells is critical for body water homeostasis. Posttranslational modification (PTM) of AQP2 is important for regulating AQP2 trafficking. The aim of this study was to determine the role of cholesterol in regulation of AQP2 PTM and in apical plasma membrane targeting of AQP2. Cholesterol depletion from the basolateral plasma membrane of a collecting duct cell line (mpkCCD14) using methyl-beta-cyclodextrin (MBCD) increased AQP2 ubiquitylation. Forskolin, cAMP or dDAVP-mediated AQP2 phosphorylation at Ser269 (pS269-AQP2) was prevented by cholesterol depletion from the basolateral membrane. None of these effects on pS269-AQP2 were observed when cholesterol was depleted from the apical side of cells, or when MBCD was applied subsequent to dDAVP stimulation. Basolateral, but not apical, MBCD application prevented cAMP-induced apical plasma membrane accumulation of AQP2. These studies indicate that manipulation of the cholesterol content of the basolateral plasma membrane interferes with AQP2 PTM and subsequently regulated apical plasma membrane targeting of AQP2. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Lack of Aquaporin 3 in bovine erythrocyte membranes correlates with low glycerol permeation.

    Science.gov (United States)

    Campos, Elisa; Moura, Teresa F; Oliva, Abel; Leandro, Paula; Soveral, Graça

    2011-05-13

    In general, erythrocytes are highly permeable to water, urea and glycerol. However, expression of aquaporin isoforms in erythrocytes appears to be species characteristic. In the present study, human (hRBC) and bovine (bRBC) erythrocytes were chosen for comparative studies due to their significant difference in membrane glycerol permeability. Osmotic water permeability (P(f)) at 23°C was (2.89 ± 0.37) × 10(-2) and (5.12 ± 0.61) × 10(-2)cms(-1) for human and bovine cells, respectively, with similar activation energies for water transport. Glycerol permeability (P(gly)) for human ((1.37 ± 0.26) × 10(-5)cms(-1)) differed in three orders of magnitude from bovine erythrocytes ((5.82 ± 0.37) × 10(-8)cms(-1)) that also showed higher activation energy for glycerol transport. When compared to human, bovine erythrocytes showed a similar expression pattern of AQP1 glycosylated forms on immunoblot analysis, though in slight higher levels, which could be correlated with the 1.5-fold larger P(f) found. However, AQP3 expression was not detectable. Immunofluorescence analysis confirmed the absence of AQP3 expression in bovine erythrocyte membranes. In conclusion, lack of AQP3 in bovine erythrocytes points to the lipid pathway as responsible for glycerol permeation and explains the low glycerol permeability and high E(a) for transport observed in ruminants. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Hydrocephalus: the role of cerebral aquaporin-4 channels and computational modeling considerations of cerebrospinal fluid.

    Science.gov (United States)

    Desai, Bhargav; Hsu, Ying; Schneller, Benjamin; Hobbs, Jonathan G; Mehta, Ankit I; Linninger, Andreas

    2016-09-01

    Aquaporin-4 (AQP4) channels play an important role in brain water homeostasis. Water transport across plasma membranes has a critical role in brain water exchange of the normal and the diseased brain. AQP4 channels are implicated in the pathophysiology of hydrocephalus, a disease of water imbalance that leads to CSF accumulation in the ventricular system. Many molecular aspects of fluid exchange during hydrocephalus have yet to be firmly elucidated, but review of the literature suggests that modulation of AQP4 channel activity is a potentially attractive future pharmaceutical therapy. Drug therapy targeting AQP channels may enable control over water exchange to remove excess CSF through a molecular intervention instead of by mechanical shunting. This article is a review of a vast body of literature on the current understanding of AQP4 channels in relation to hydrocephalus, details regarding molecular aspects of AQP4 channels, possible drug development strategies, and limitations. Advances in medical imaging and computational modeling of CSF dynamics in the setting of hydrocephalus are summarized. Algorithmic developments in computational modeling continue to deepen the understanding of the hydrocephalus disease process and display promising potential benefit as a tool for physicians to evaluate patients with hydrocephalus.

  1. Agmatine attenuates brain edema through reducing the expression of aquaporin-1 after cerebral ischemia

    Science.gov (United States)

    Kim, Jae Hwan; Lee, Yong Woo; Park, Kyung Ah; Lee, Won Taek; Lee, Jong Eun

    2010-01-01

    Brain edema is frequently shown after cerebral ischemia. It is an expansion of brain volume because of increasing water content in brain. It causes to increase mortality after stroke. Agmatine, formed by the decarboxylation of -arginine by arginine decarboxylase, has been shown to be neuroprotective in trauma and ischemia models. The purpose of this study was to investigate the effect of agmatine for brain edema in ischemic brain damage and to evaluate the expression of aquaporins (AQPs). Results showed that agmatine significantly reduced brain swelling volume 22 h after 2 h middle cerebral artery occlusion in mice. Water content in brain tissue was clearly decreased 24 h after ischemic injury by agmatine treatment. Blood–brain barrier (BBB) disruption was diminished with agmatine than without. The expressions of AQPs-1 and -9 were well correlated with brain edema as water channels, were significantly decreased by agmatine treatment. It can thus be suggested that agmatine could attenuate brain edema by limitting BBB disruption and blocking the accumulation of brain water content through lessening the expression of AQP-1 after cerebral ischemia. PMID:20029450

  2. Evaluation of Clinical Interest of Anti-Aquaporin-4 Autoantibody Followup in Neuromyelitis Optica

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Chanson

    2013-01-01

    Full Text Available Neuromyelitis optica (NMO is an autoimmune disease in which a specific biomarker named NMO-IgG and directed against aquaporin-4 (AQP4 has been found. A correlation between disease activity and anti-AQP4 antibody (Ab serum concentration or complement-mediated cytotoxicity has been reported, but the usefulness of longitudinal evaluation of these parameters remains to be evaluated in actual clinical practice. Thirty serum samples from 10 NMO patients positive for NMO-IgG were collected from 2006 to 2011. Anti-AQP4 Ab serum concentration and complement-mediated cytotoxicity were measured by flow cytometry using two quantitative cell-based assays (CBA and compared with clinical parameters. We found a strong correlation between serum anti-AQP4 Ab concentration and complement-mediated cytotoxicity (P<0.0001. Nevertheless, neither relapse nor worsening of impairment level was closely associated with a significant increase in serum Ab concentration or cytotoxicity. These results suggest that complement-mediated serum cytotoxicity assessment does not provide extra insight compared to anti-AQP4 Ab serum concentration. Furthermore, none of these parameters appears closely related to disease activity and/or severity. Therefore, in clinical practice, serum anti-AQP4 reactivity seems not helpful as a predictive biomarker in the followup of NMO patients as a means of predicting the onset of a relapse and adapting the treatment accordingly.

  3. Comparative molecular dynamics study of neuromyelitis optica-immunoglobulin G binding to aquaporin-4 extracellular domains.

    Science.gov (United States)

    Alberga, Domenico; Trisciuzzi, Daniela; Lattanzi, Gianluca; Bennett, Jeffrey L; Verkman, Alan S; Mangiatordi, Giuseppe Felice; Nicolotti, Orazio

    2017-08-01

    Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system in which most patients have serum autoantibodies (called NMO-IgG) that bind to astrocyte water channel aquaporin-4 (AQP4). A potential therapeutic strategy in NMO is to block the interaction of NMO-IgG with AQP4. Building on recent observation that some single-point and compound mutations of the AQP4 extracellular loop C prevent NMO-IgG binding, we carried out comparative Molecular Dynamics (MD) investigations on three AQP4 mutants, TP 137-138 AA, N 153 Q and V 150 G, whose 295-ns long trajectories were compared to that of wild type human AQP4. A robust conclusion of our modeling is that loop C mutations affect the conformation of neighboring extracellular loop A, thereby interfering with NMO-IgG binding. Analysis of individual mutations suggested specific hydrogen bonding and other molecular interactions involved in AQP4-IgG binding to AQP4. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. New Perspectives on the Potential Role of Aquaporins (AQPs in the Physiology of Inflammation

    Directory of Open Access Journals (Sweden)

    Rosaria Meli

    2018-02-01

    Full Text Available Aquaporins (AQPs are emerging, in the last few decades, as critical proteins regulating water fluid homeostasis in cells involved in inflammation. AQPs represent a family of ubiquitous membrane channels that regulate osmotically water flux in various tissues and sometimes the transport of small solutes, including glycerol. Extensive data indicate that AQPs, working as water channel proteins, regulate not only cell migration, but also common events essential for inflammatory response. The involvement of AQPs in several inflammatory processes, as demonstrated by their dysregulation both in human and animal diseases, identifies their new role in protection and response to different noxious stimuli, including bacterial infection. This contribution could represent a new key to clarify the dilemma of host-pathogen communications, and opens up new scenarios regarding the investigation of the modulation of specific AQPs, as target for new pharmacological therapies. This review provides updated information on the underlying mechanisms of AQPs in the regulation of inflammatory responses in mammals and discusses the broad spectrum of options that can be tailored for different diseases and their pharmacological treatment.

  5. Expression, localization and possible functions of aquaporins 3 and 8 in rat digestive system.

    Science.gov (United States)

    Zhao, G X; Dong, P P; Peng, R; Li, J; Zhang, D Y; Wang, J Y; Shen, X Z; Dong, L; Sun, J Y

    2016-01-01

    Although aquaporins (AQPs) play important roles in transcellular water movement, their precise quantification and localization remains controversial. We investigated expression levels and localizations of AQP3 and AQP8 and their possible functions in the rat digestive system using real-time polymerase chain reactions, western blot analysis and immunohistochemistry. We investigated the expression levels and localizations of AQP3 and AQP8 in esophagus, forestomach, glandular stomach, duodenum, jejunum, ileum, proximal and distal colon, and liver. AQP3 was expressed in the basolateral membranes of stratified epithelia (esophagus and forestomach) and simple columnar epithelia (glandular stomach, ileum, and proximal and distal colon). Expression was particularly abundant in the esophagus, and proximal and distal colon. AQP8 was found in the subapical compartment of columnar epithelial cells of the jejunum, ileum, proximal colon and liver; the most intense staining occurred in the jejunum. Our results suggest that AQP3 and AQP8 play significant roles in intestinal function and/or fluid homeostasis and may be an important subject for future investigation of disorders that involve disruption of intestinal fluid homeostasis, such as inflammatory bowel disease and irritable bowel syndrome.

  6. [Expression of aquaporin-4 during brain edema in rats with thioacetamide-induced acute encephalopathy].

    Science.gov (United States)

    Wang, Li-Qing; Zhu, Sheng-Mei; Zhou, Heng-Jun; Pan, Cai-Fei

    2011-09-27

    To investigate the expression of aquaporin-4 (AQP4) during brain edema in rats with thioacetamide-induced acute liver failure and encephalopathy. The rat model of acute hepatic failure and encephalopathy was induced by intraperitoneal injection of thioacetamide (TAA) at a 24-hour interval for 2 consecutive days. Thirty-two SD rats were randomly divided into the model group (n = 24) and the control group (normal saline, n = 8). And then the model group was further divided into 3 subgroups by the timepoint of decapitation: 24 h (n = 8), 48 h (n = 8) and 60 h (n = 8). Then we observed their clinical symptoms and stages of HE, indices of liver function and ammonia, liver histology and brain water content. The expression of AQP4 protein in brain tissues was measured with Western blot and the expression of AQP4mRNA with RT-PCR (reverse transcription-polymerase chain reaction). Typical clinical manifestations of hepatic encephalopathy occurred in all TAA-administrated rats. The model rats showed the higher indices of ALT (alanine aminotransferase), AST (aspartate aminotransferase), TBIL (total bilirubin) and ammonia than the control rats (P liver failure and encephalopathy plays a significant role during brain edema. AQP4 is one of the molecular mechanisms for the occurrence of brain edema in hepatic encephalopathy.

  7. Gender effect on neuromyelitis optica spectrum disorder with aquaporin4-immunoglobulin G.

    Science.gov (United States)

    Kim, Sung-Min; Waters, Patrick; Woodhall, Mark; Kim, Yoo-Jin; Kim, Jin-Ah; Cheon, So Young; Lee, Sehoon; Jo, Seong Rae; Kim, Dong Gun; Jung, Kyeong Cheon; Lee, Kwang-Woo; Sung, Jung-Joon; Park, Kyung Seok

    2017-07-01

    Neuromyelitis optica spectrum disorder with aquaporin4-immunoglobulin G (NMOSD-AQP4) is an inflammatory disease characterised by a high female predominance. However, the effect of gender in patients with NMOSD-AQP4 has not been fully evaluated. The aim of this study was to determine the effect of gender in clinical manifestations and prognosis of patients with NMOSD-AQP4. The demographics, clinical and radiological characteristics, pattern reversal visual evoked potential (VEP) test results, and prognosis of 102 patients (18 males) with NMOSD-AQP4 were assessed. Male patients had a higher age at onset (48.7 vs 41 years, p = 0.037) and less optic neuritis as the onset attack (17% vs 44%, p = 0.026), higher tendency to manifest as isolated myelitis over the follow-up period (67% vs 28%, p = 0.005), fewer optic neuritis attacks per year (0.08 vs 0.27, p gender was significantly associated with the absence of optic neuritis attacks over the follow-up period independent of their age of onset. In NMOSD-AQP4 patients, gender impacts on disease onset age and site of attack. This may be an important clue in identifying NMOSD-AQP4 patients with limited manifestations as well as in predicting their clinical courses.

  8. Hyperglycemia Induces Cellular Hypoxia through Production of Mitochondrial ROS Followed by Suppression of Aquaporin-1.

    Directory of Open Access Journals (Sweden)

    Kiminori Sada

    Full Text Available We previously proposed that hyperglycemia-induced mitochondrial reactive oxygen species (mtROS generation is a key event in the development of diabetic complications. Interestingly, some common aspects exist between hyperglycemia and hypoxia-induced phenomena. Thus, hyperglycemia may induce cellular hypoxia, and this phenomenon may also be involved in the pathogenesis of diabetic complications. In endothelial cells (ECs, cellular hypoxia increased after incubation with high glucose (HG. A similar phenomenon was observed in glomeruli of diabetic mice. HG-induced cellular hypoxia was suppressed by mitochondria blockades or manganese superoxide dismutase (MnSOD overexpression, which is a specific SOD for mtROS. Overexpression of MnSOD also increased the expression of aquaporin-1 (AQP1, a water and oxygen channel. AQP1 overexpression in ECs suppressed hyperglycemia-induced cellular hypoxia, endothelin-1 and fibronectin overproduction, and apoptosis. Therefore, hyperglycemia-induced cellular hypoxia and mtROS generation may promote hyperglycemic damage in a coordinated manner.

  9. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z

    Science.gov (United States)

    Kumar, Manish; Grzelakowski, Mariusz; Zilles, Julie; Clark, Mark; Meier, Wolfgang

    2007-01-01

    The permeability and solute transport characteristics of amphiphilic triblock-polymer vesicles containing the bacterial water-channel protein Aquaporin Z (AqpZ) were investigated. The vesicles were made of a block copolymer with symmetric poly-(2-methyloxazoline)-poly-(dimethylsiloxane)-poly-(2-methyloxazoline) (PMOXA15-PDMS110-PMOXA15) repeat units. Light-scattering measurements on pure polymer vesicles subject to an outwardly directed salt gradient in a stopped-flow apparatus indicated that the polymer vesicles were highly impermeable. However, a large enhancement in water productivity (permeability per unit driving force) of up to ≈800 times that of pure polymer was observed when AqpZ was incorporated. The activation energy (Ea) of water transport for the protein-polymer vesicles (3.4 kcal/mol) corresponded to that reported for water-channel-mediated water transport in lipid membranes. The solute reflection coefficients of glucose, glycerol, salt, and urea were also calculated, and indicated that these solutes are completely rejected. The productivity of AqpZ-incorporated polymer membranes was at least an order of magnitude larger than values for existing salt-rejecting polymeric membranes. The approach followed here may lead to more productive and sustainable water treatment membranes, whereas the variable levels of permeability obtained with different concentrations of AqpZ may provide a key property for drug delivery applications. PMID:18077364

  10. Emerging roles of aquaporins in relation to the physiology of blood-feeding arthropods.

    Science.gov (United States)

    Benoit, Joshua B; Hansen, Immo A; Szuter, Elise M; Drake, Lisa L; Burnett, Denielle L; Attardo, Geoffrey M

    2014-10-01

    Aquaporins (AQPs) are proteins that span plasma membranes allowing the movement of water and small solutes into or out of cells. The type, expression levels and activity of AQPs play a major role in the relative permeability of each cell to water or other solutes. Research on arthropod AQPs has expanded in the last 10 years due to the completion of several arthropod genome projects and the increased availability of genetic information accessible through other resources such as de novo transcriptome assemblies. In particular, there has been significant advancement in elucidating the roles that AQPs serve in relation to the physiology of blood-feeding arthropods of medical importance. The focus of this review is upon the significance of AQPs in relation to hematophagy in arthropods. This will be accomplished via a narrative describing AQP functions during the life history of hematophagic arthropods that includes the following critical phases: (1) Saliva production necessary to blood feeding, (2) Intake and excretion of water during blood digestion, (3) Reproduction and egg development and (4) Off-host environmental stress tolerance. The concentration on these phases will highlight known vulnerabilities in the biology of hematophagic arthropods that could be used to develop novel control strategies as well as research topics that have yet to be examined.

  11. Inhibition of Aquaporin-4 Improves the Outcome of Ischaemic Stroke and Modulates Brain Paravascular Drainage Pathways.

    Science.gov (United States)

    Pirici, Ionica; Balsanu, Tudor Adrian; Bogdan, Catalin; Margaritescu, Claudiu; Divan, Tamir; Vitalie, Vacaras; Mogoanta, Laurentiu; Pirici, Daniel; Carare, Roxana Octavia; Muresanu, Dafin Fior

    2017-12-23

    Aquaporin-4 (AQP4) is the most abundant water channel in the brain, and its inhibition before inducing focal ischemia, using the AQP4 inhibitor TGN-020, has been showed to reduce oedema in imaging studies. Here, we aimed to evaluate, for the first time, the histopathological effects of a single dose of TGN-020 administered after the occlusion of the medial cerebral artery (MCAO). On a rat model of non-reperfusion ischemia, we have assessed vascular densities, albumin extravasation, gliosis, and apoptosis at 3 and 7 days after MCAO. TGN-020 significantly reduced oedema, glial scar, albumin effusion, and apoptosis, at both 3 and 7 days after MCAO. The area of GFAP-positive gliotic rim decreased, and 3D fractal analysis of astrocytic processes revealed a less complex architecture, possibly indicating water accumulating in the cytoplasm. Evaluation of the blood vessels revealed thicker basement membranes colocalizing with exudated albumin in the treated animals, suggesting that inhibition of AQP4 blocks fluid flow towards the parenchyma in the paravascular drainage pathways of the interstitial fluid. These findings suggest that a single dose of an AQP4 inhibitor can reduce brain oedema, even if administered after the onset of ischemia, and AQP4 agonists/antagonists might be effective modulators of the paravascular drainage flow.

  12. Aquaporin 4 in Astrocytes is a Target for Therapy in Alzheimer's Disease.

    Science.gov (United States)

    Lan, Yu-Long; Chen, Jian-Jiao; Hu, Gang; Xu, Jun; Xiao, Ming; Li, Shao

    2017-01-01

    Current experimental evidence points to the conclusion that aquaporin 4 (AQP4), which is an important water-channel membrane protein found in the brain, could play major roles in various brain conditions pathologically including pathogenesis of Alzheimer's disease (AD). In this paper, we review how AQP4 and altered astrocyte functions interact in AD, and provide experimental evidence highlighting the importance of this topic for the future investigations. The interactions of AQP4 are as follows: (i) AQP4 could influence astrocytic calcium signaling and potassium homeostasis. (ii) AQP4 is linked with the removal of interstitial β-amyloid and glutamate transmission. (iii) Furthermore, AQP4 modulates the reactive astrogliosis and neuroinflammation mechanisms. (iv) To add to this, AQP4 could participate in the AD pathogenesis through affecting neurotrophic factor production. It is therefore possible to identify certain functional molecules that regulate astrocyte make-up and functions. However, making crucial efforts to develop specific agents or drugs that target AQP4 function and test their therapeutic efficiency will be a breakthrough for addressing AD in that AQP4 controls the various physiological as well as pathophysiological features of astrocytes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Changes in Transepidermal Water Loss and Skin Hydration according to Expression of Aquaporin-3 in Psoriasis

    Science.gov (United States)

    Lee, Young; Je, Young-Jin; Lee, Sang-Sin; Li, Zheng Jun; Choi, Dae-Kyoung; Kwon, Yoo-Bin; Sohn, Kyung-Cheol; Im, Myung; Seo, Young Joon

    2012-01-01

    Background Aquaporins (AQPs) are a family of water transporting proteins present in many mammalian epithelial and endothelial cell types. Among the AQPs, AQP3 is known to be a water/glycerol transporter expressed in human skin. Objective The relationship between the expression level of AQP3 and transpidermal water loss (TEWL) in the lesional and peri-lesional skin of psoriasis-affected patients, and skin hydration in the lesional and peri-lesional skin of psoriasis patients, was investigated. Methods The expression of AQP3 in psoriasis-affected and healthy control skin was determined using immunohistochemical and immunofluroscence staining. TEWL and skin hydration were measured using a Tewameter® TM210 (Courage & Khazaka, Cologne, Germany) and a Corneometer® CM 820 (Courage & Khazaka), respectively. Results AQP3 was mainly expressed in the plasma membrane of stratum corneum and the stratum spinosum in normal epidermis. Unlike the normal epidermis, AQP3 showed decreased expression in the lesional and peri-lesional epidermis of psoriasis. TEWL was increased, and skin hydration was decreased, in the lesional and peri-lesional skin of psoriasis patients, compared with the healthy control sample. Conclusion Although various factors contribute to reduced skin hydration in the lesional and peri-lesional skin of psoriasis, AQP3 appears to be a key factor in the skin dehydration of psoriasis-affected skin. PMID:22577267

  14. In vivo studies of aquaporins 3 and 10 in human stratum corneum

    DEFF Research Database (Denmark)

    Jungersted, Jakob Mutanu; Bomholt, Julie; Bajraktari, Niada

    2013-01-01

    migration and proliferation with consequences for the antimicrobial defense of the skin. AQP3 and AQP10 are aqua-glyceroporins, known to transport glycerol as well as water. AQP3 is the predominant AQP in human skin and has previously been demonstrated in the basal layer of epidermis in normal human skin......, but not in stratum corneum (SC). AQP10 has not previously been identified in human skin. Previous studies have demonstrated the presence of AQP3 and AQP10 mRNA in keratinocytes. In this study, our aim was to investigate if these aquaporin proteins were actually present in human SC cells. This can be seen as a first...... step toward elucidating the possible functional role of AQP3 and AQP10 in SC hydration. Specifically we investigate the presence of AQP3 and AQP10 in vivo in human SC using “minimal-invasive” technique for obtaining SC samples. SC samples were obtained from six healthy volunteers. Western blotting...

  15. Aquaporin-4 mediates communication between astrocyte and microglia: Implications of neuroinflammation in experimental Parkinson's disease.

    Science.gov (United States)

    Sun, H; Liang, R; Yang, B; Zhou, Y; Liu, M; Fang, F; Ding, J; Fan, Y; Hu, G

    2016-03-11

    Aquaporin-4 (AQP4), a water-selective membrane transport protein, is up-regulated in astrocytes in various inflammatory lesions, including Parkinson disease (PD). However, the exact functional roles of AQP4 in neuroinflammation remain unknown. In the present study, we investigated how AQP4 participates in the neuroinflammation of PD using AQP4 knockout (KO) mice and astrocyte-microglial co-cultures. We found that AQP4 KO mice exhibited increased basal and inducible canonical NF-κB activity, and showed significantly enhanced gliosis (astrocytosis and microgliosis) in chronic MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)/probenecid PD models, companying with the increase in the production of IL-1β and TNF-α in the midbrain. Similarly, AQP4 deficiency augmented the activation of the NF-κB pathway and the production of IL-1β and TNF-α in midbrain astrocyte cultures treated with MPP(+) (1-methyl-4-phenylpyridinium). Furthermore, AQP4 deficiency promoted activation of microglial cells in the co-cultured system. Our data provide the first evidence that AQP4 modulates astrocyte-to-microglia communication in neuroinflammation, although its effect on astrocyte inflammatory activation remains to be explored. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines

    Directory of Open Access Journals (Sweden)

    Cui Zhu

    2016-08-01

    Full Text Available Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1–11 have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes, goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines.

  17. [Peritoneal dialysis adequacy in pediatrics. From the peritoneal equilibration test to the aquaporins].

    Science.gov (United States)

    Bolte, Lillian; Cano, Francisco

    2015-01-01

    An evaluation of the characteristics of peritoneal solute and water transport is essential to assess the suitability of prescribing dialysis in patients suffering from chronic renal disease. There are currently a series of models to perform this evaluation. The peritoneal equilibration test (PET) evaluates the peritoneal transport capacity, classifying the patients into four transport categories: high, high-average, low-average, and low. The short PET enables the same evaluation to be made in only 2hours, and has been validated in paediatric patients. On the other hand, the MiniPET provides additional information by evaluating the free water transport capacity by the ultra-small pores, and the Accelerated Peritoneal Examination Time (APEX) evaluates the time when the glucose and urea equilibration curves cross, and has been proposed as the optimum dwell time to achieve adequate ultrafiltration. An analysis is presented on the current information on these diagnostic methods as regards free water transport via aquaporins, which could be an important tool in optimising solute and water transport in patients on chronic peritoneal dialysis, particularly as regards the cardiovascular prognosis. Copyright © 2015 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Immunodetection of aquaporin 5 in sheep salivary glands related to pasture vegetative cycle

    Directory of Open Access Journals (Sweden)

    Silvana Arrighi

    2011-10-01

    Full Text Available Mammalian aquaporins (AQPs are a family of at least 13 integral membrane proteins expressed in various epithelia, where they function as channels to permeate water and small solutes. AQP5 is widely expressed in the exocrine gland where it is likely involved in providing an appropriate amount of fluid to be secreted with granular contents. As regards AQP5 expression in the salivary glands, literature is lacking concerning domestic animal species. This study was chiefly aimed at immunohistochemically investigating the presence and localization of AQP5 in sheep mandibular and parotid glands. In addition, AQP5 immunoreactivity was comparatively evaluated in animals fed with forage containing different amounts of water related to the pasture vegetative cycle, in order to shed light on the possible response of the gland to environmental modifications. Moderate AQP5-immunoreactivity was shown at the level of the lateral surface of mandibular serous demilune cells, not affected by the pasture vegetative cycle or water content. On the contrary, the parotid gland arcinar cells showed AQP5-immunoreactivity at the level of apical and lateral plasma membrane, which was slight to very strong, according to the pasture vegetative development and interannual climatic variations. AQP5 expression is likely due to its involvement in providing appropriate saliva fluidity. Indeed, the lowest AQP5 immunoreactivity was noticed when food water content increased. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 3, pp. 458–464

  19. Phosphorylation of plasma membrane aquaporin regulates temperature-dependent opening of tulip petals.

    Science.gov (United States)

    Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2004-05-01

    The opening and closing of tulip petals was reproduced in the dark by changing the temperature from 5 degrees C to 20 degrees C for opening and 20 degrees C to 5 degrees C for closing. The opening process was accompanied by (3)H(2)O transport through the stem from the incubation medium to the petals. A Ca(2+)-channel blocker and a Ca(2+)-chelator inhibited petal opening and (3)H(2)O transport. Several proteins in the isolated plasma membrane fraction were phosphorylated in the presence of 25 micro M Ca(2+) at 20 degrees C. The 31-kDa protein that was phosphorylated, was suggested immunologically as the putative plasma membrane aquaporin (PM-AQP). This phosphorylated PM-AQP clearly reacted with the anti-phospho-Ser. In-gel assay revealed the presence of a 45-kDa Ca(2+)-dependent protein kinase in the isolated plasma membrane. Phosphorylation of the putative PM-AQP was thought to activate the water channel composed of PM-AQP. Dephosphorylation of the phosphorylated PM-AQP was also observed during petal closing at 5 degrees C, suggesting the inactivation of the water channel.

  20. Age-related hearing loss: Aquaporin 4 gene expression changes in the mouse cochlea and auditory midbrain

    Science.gov (United States)

    Christensen, Nathan; D'Souza, Mary; Zhu, Xiaoxia; Frisina, Robert D.

    2009-01-01

    Presbycusis – age-related hearing loss, is the number one communication disorder, and one of the top three chronic medical conditions of our aged population. Aquaporins, particularly aquaporin 4 (Aqp4), are membrane proteins with important roles in water and ion flux across cell membranes, including cells of the inner ear and pathways of the brain used for hearing. To more fully understand the biological bases of presbycusis, 39 CBA mice, a well-studied animal model of presbycusis, underwent non-invasive hearing testing as a function of sound frequency (auditory brainstem response – ABR thresholds, and distortion-product otoacoustic emission – DPOAE magnitudes), and were clustered into four groups based on age and hearing ability. Aqp4 gene expression, as determined by genechip microarray analysis and quantitative real-time PCR, was compared to the young adult control group in the three older groups: middle aged with good hearing, old age with mild presbycusis, and old age with severe presbycusis. Linear regression and ANOVA showed statistically significant changes in Aqp4 gene expression and ABR and DPOAE hearing status in the cochlea and auditory midbrain – inferior colliculus. Down-regulation in the cochlea was seen, and an initial down-, then up-regulation was discovered for the inferior colliculus Aqp4 expression. It is theorized that these changes in Aqp4 gene expression represent an age-related disruption of ion flux in the fluids of the cochlea that are responsible for ionic gradients underlying sound transduction in cochlear hair cells necessary for hearing. In regard to central auditory processing at the level of the auditory midbrain, aquaporin gene expression changes may affect neurotransmitter cycling involving supporting cells, thus impairing complex sound neural processing with age. PMID:19070604

  1. Coal export facilitation

    International Nuclear Information System (INIS)

    Eeles, L.

    1998-01-01

    There is a wide range of trade barriers, particularly tariffs, in current and potential coal market. Commonwealth departments in Australia play a crucial role in supporting government industry policies. This article summarises some of more recent activities of the Department of Primary Industries and Energy (DPIE) in facilitating the export of Australian Coals. Coal export facilitation activities are designed to assist the Australian coal industry by directing Commonwealth Government resources towards issues which would be inappropriate or difficult for the industry to address itself

  2. Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra

    International Nuclear Information System (INIS)

    Emami, Sanaz; Fan Ying; Munro, Rachel; Ladizhansky, Vladimir; Brown, Leonid S.

    2013-01-01

    One of the biggest challenges in solid-state NMR studies of membrane proteins is to obtain a homogeneous natively folded sample giving high spectral resolution sufficient for structural studies. Eukaryotic membrane proteins are especially difficult and expensive targets in this respect. Methylotrophic yeast Pichia pastoris is a reliable producer of eukaryotic membrane proteins for crystallography and a promising economical source of isotopically labeled proteins for NMR. We show that eukaryotic membrane protein human aquaporin 1 can be doubly ( 13 C/ 15 N) isotopically labeled in this system and functionally reconstituted into phospholipids, giving excellent resolution of solid-state magic angle spinning NMR spectra.

  3. Expression of aquaporin 9 in rat liver and efferent ducts of the male reproductive system after neonatal diethylstilbestrol exposure

    DEFF Research Database (Denmark)

    Wellejus, Anja; Jensen, Henrik E; Loft, Steffen

    2008-01-01

    Aquaporins (AQP) have important solute transport functions in many tissues including the epididymal efferent ducts (ED) and in the liver. We investigated the effect of neonatal exposure to diethylstilbestrol (DES) on AQP9 expressions in the ED and in the liver of rats. DES was administered from d...... to the epithelial cells of the ED. In conclusion, neonatal DES exposure appears to upregulate AQP9 channels in the ED in male rats, whereas a downregulation in the hepatic expression was observed, particularly in the periacinous area....

  4. Aquaporins 1, 3 and 8 expression in irritable bowel syndrome rats' colon via NF-κB pathway.

    Science.gov (United States)

    Chao, Guanqun; Zhang, Shuo

    2017-07-18

    Our research was to detect the expression of aquaporins. NF-κB in Irritable bowel syndrome (IBS) rat models' colon so as to find novel pathogenesisof IBS. The expression of AQP1, AQP3, and AQP8 of IBS model group was down-regulated while NF-κB p65 was up-regulated comparing with control group (p intestine permeability alteration might be the mechanism of IBS by down-regulating AQP1, AQP3 and AQP8 via NF-κB pathway.

  5. Brain expression of the water channels Aquaporin-1 and -4 in mice with acute liver injury, hyperammonemia and brain edema

    DEFF Research Database (Denmark)

    Eefsen, Martin; Jelnes, Peter; Schmidt, Lars E

    2010-01-01

    Cerebral edema is a feared complication to acute liver failure (ALF), but the pathogenesis is still poorly understood. The water channels Aquaporin-1 (Aqp1) and -4 (Aqp4) has been associated with brain edema formation in several neuropathological conditions, indicating a possible role of Aqp1 and....../or Aqp4 in ALF mediated brain edema. We induced acute liver injury and hyperammonemia in mice, to evaluate brain edema formation and the parallel expression of Aqp1 and Aqp4 in ALF. Liver injury and hyperammonemia were induced by +D-galactosamine (GLN) plus lipopolysaccharide (LPS) intraperitoneally......(6266) (p edema in mice with ALF....

  6. Asexual sporulation facilitates adaptation

    NARCIS (Netherlands)

    Zhang, Jianhua; Debets, A.J.M.; Verweij, P.E.; Melchers, W.J.G.; Zwaan, B.J.; Schoustra, S.E.

    2015-01-01

    Understanding the occurrence and spread of azole resistance in Aspergillus fumigatus is crucial for public health. It has been hypothesized that asexual sporulation, which is abundant in nature, is essential for phenotypic expression of azole resistance mutations in A. fumigatus facilitating

  7. Facilitators in Ambivalence

    Science.gov (United States)

    Karlsson, Mikael R.; Erlandson, Peter

    2018-01-01

    This is part of a larger ethnographical study concerning how school development in a local educational context sets cultural and social life in motion. The main data "in this article" consists of semi-structural interviews with teachers (facilitators) who have the responsibility of carrying out a project about formative assessment in…

  8. Facilitation of Adult Development

    Science.gov (United States)

    Boydell, Tom

    2016-01-01

    Taking an autobiographical approach, I tell the story of my experiences facilitating adult development, in a polytechnic and as a management consultant. I relate these to a developmental framework of Modes of Being and Learning that I created and elaborated with colleagues. I connect this picture with a number of related models, theories,…

  9. From Teaching to Facilitation

    DEFF Research Database (Denmark)

    de Graaff, Erik

    2013-01-01

    A shift from teaching to learning is characteristic of the introduction of Problem Based Learning (PBL) in an existing school. As a consequence the teaching staff has to be trained in skills like facilitating group work and writing cases. Most importantly a change in thinking about teaching...

  10. Trade Facilitation in Ethiopia:

    African Journals Online (AJOL)

    Tilahun_EK

    so doing, it attempts to examine how Ethiopia's WTO Accession and trade facilitation ... the more expensive imports, exports and production becomes rendering. Ethiopian ..... can reserve the right to refuse requests of importers for the fifth valuation method to ..... units may find it easier to deal with post clearance audit. In the ...

  11. Astrogliosis and impaired aquaporin-4 and dystrophin systems in idiopathic normal pressure hydrocephalus.

    Science.gov (United States)

    Eide, P K; Hansson, H-A

    2017-06-19

    Idiopathic normal pressure hydrocephalus (iNPH) is one subtype of dementia that may improve following drainage of cerebrospinal fluid (CSF). This prospective observational study explored whether expression of the water channel aquaporin-4 (AQP4) and the anchoring molecule dystrophin 71 (Dp71) are altered at astrocytic perivascular endfeet and in adjacent neuropil of iNPH patient. Observations were related to measurements of pulsatile and static intracranial pressure (ICP). The study included iNPH patients undergoing overnight monitoring of the pulsatile/static ICP in whom a biopsy was taken from the frontal cerebral cortex during placement of the ICP sensor. Reference (Ref) biopsies were sampled from 13 patients who underwent brain surgery for epilepsy, tumours or cerebral aneurysms. The brain tissue specimens were examined by light microscopy, immunohistochemistry, densitometry and morphometry. iNPH patients responding to surgery (n = 44) had elevated pulsatile ICP, indicative of impaired intracranial compliance. As compared to the Ref patients, the cortical biopsies of iNPH patients revealed prominent astrogliosis and reduced expression of AQP4 and Dp71 immunoreactivities in the astrocytic perivascular endfeet and in parts of the adjacent neuropil. There was a significant correlation between degree of astrogliosis and reduction of AQP4 and Dp71 at astrocytic perivascular endfeet. Idiopathic normal pressure hydrocephalus patients responding to CSF diversion present with abnormal pulsatile ICP, indicative of impaired intracranial compliance. A main histopathological finding was astrogliosis and reduction of AQP4 and of Dp71 in astrocytic perivascular endfeet. We propose that the altered AQP4 and Dp71 complex contributes to the subischaemia prevalent in the brain tissue of iNPH. © 2017 British Neuropathological Society.

  12. Autoantibodies against Muscarinic Type 3 Receptor in Sjögren's Syndrome Inhibit Aquaporin 5 Trafficking

    Science.gov (United States)

    Lee, Byung Ha; Gauna, Adrienne E.; Perez, Geidys; Park, Yun-jong; Pauley, Kaleb M.; Kawai, Toshihisa; Cha, Seunghee

    2013-01-01

    Sjögren's syndrome (SjS) is a chronic autoimmune disease that mainly targets the salivary and lacrimal glands. It has been controversial whether anti-muscarinic type 3 receptor (α-M3R) autoantibodies in patients with SjS inhibit intracellular trafficking of aquaporin-5 (AQP5), water transport protein, leading to secretory dysfunction. To address this issue, GFP-tagged human AQP5 was overexpressed in human salivary gland cells (HSG-hAQP5) and monitored AQP5 trafficking to the plasma membrane following carbachol (CCh, M3R agonist) stimulation. AQP5 trafficking was indeed mediated by M3R stimulation, shown in partial blockage of trafficking by M3R-antagonist 4-DAMP. HSG-hAQP5 pre-incubated with SjS plasma for 24 hours significantly reduced AQP5 trafficking with CCh, compared with HSG-hAQP5 pre-incubated with healthy control (HC) plasma. This inhibition was confirmed by monoclonal α-M3R antibody and pre-absorbed plasma. Interestingly, HSG-hAQP5 pre-incubated with SjS plasma showed no change in cell volume, compared to the cells incubated with HC plasma showing shrinkage by twenty percent after CCh-stimulation. Our findings clearly indicate that binding of anti-M3R autoantibodies to the receptor, which was verified by immunoprecipitation, suppresses AQP5 trafficking to the membrane and contribute to impaired fluid secretion in SjS. Our current study urges further investigations of clinical associations between SjS symptoms, such as degree of secretory dysfunction, cognitive impairment, and/or bladder irritation, and different profiles (titers, isotypes, and/or specificity) of anti-M3R autoantibodies in individuals with SjS. PMID:23382834

  13. Intestinal fluid absorption in anadromous salmonids: importance of tight junctions and aquaporins

    Directory of Open Access Journals (Sweden)

    Kristina eSundell

    2012-09-01

    Full Text Available The anadromous salmonid life cycle includes both fresh water (FW and seawater (SW stages. The parr-smolt transformation (smoltification pre–adapt the fish to SW while still in FW. The osmoregulatory organs change their mode of action from a role of preventing water inflow in FW, to absorb ions to replace water lost by osmosis in SW. During smoltification, the drinking rate increases, in the intestine the ion and fluid transport increases and is further elevated after SW entry. In SW, the intestine absorbs ions to create an inwardly directed water flow which is accomplished by increased Na+,K+-ATPase (NKA activity in the basolateral membrane, driving ion absorption via ion channels and/or co-transporters. This review will aim at discussing the expression patterns of the ion transporting proteins involved in intestinal fluid absorption in the FW stage, during smoltification and after SW entry. Of equal importance for intestinal fluid absorption as the active absorption of ions, is the permeability of the epithelium to ions and water. During the smoltification the increase in NKA activity and water uptake in SW is accompanied by decreased paracellular permeability suggesting a redirection of the fluid movement from a paracellular route in FW, to a transcellular route in SW. Increased transcellular fluid absorption could be achieved by incorporation of aquaporins (AQPs into the enterocyte membranes and/or by a change in fatty acid profile of the enterocyte lipid bilayer. An increased incorporation of unsaturated fatty acids into the membrane phospholipids will increase water permeability by enhancing the fluidity of the membrane. A second aim of the present review is therefore to discuss the presence and regulation of expression of AQPs in the enterocyte membrane as well as to discuss the profile of fatty acids present in the membrane phospholipids during different stages of the salmonid lifecycle.

  14. [Effects of electroacupuncture on cochlea morphology and expression of aquaporins in guinea pigs with endolymphatic hydrops].

    Science.gov (United States)

    Jiang, Liyuan; Wang, Canjun; Ni, Fangying; Chen, Huade

    2015-06-01

    To observe the effects of electroacupuncture (EA) on cochlea morphology and expression of aquaporin 1 (AQP1) in guinea pigs with endolymphatic hydrops, so as to explore the possible mechanism of EA on endolymphatic hydrops. Forty guinea pigs were randomly divided into a blank group, a model group, a medication group and an EA group, 10 guinea pigs in each one. Model of endolymphatic hydrops was established by using intraperitoneal injection of aldosterone. Guinea pigs in the blank group and model group were treated with identical immobilization as EA group but no treatment was given; guinea pigs in the medication group were treated with intragastric administration of hydrochlorothiazide at a dose of 5 mg/kg, once a day for consecutive 10 days; guinea pigs in the EA group were treated with' EA at "Baihui" (GV 20) and "Tinggong"(SI 19), once a day for consecutive 10 days. The serum ionic concentration in each group was tested by turbidimetric method; hematoxylin-eosin staining was used to measure the severity of cochlea hydrops; immunohistochemical method was used to observe the expression of AQP1 in the cochlea. (1) There was no endolymphatic hydrops in the blank group, moderate-severe endolymphatic hydrops in the model group and slight endolymphatic hydrops in the EA group and medication group. (2) The concentration of K+ and Ca2+ in the EA group was higher than that in the model group and medication group (all P0. 05). (3) The ratio of expression area of AQP1 in the model group was lower than that in the blank group (P0. 05). EA could relieve the endolymphatic hydrops in guinea pigs; the mechanism is likely to be related with up-regulating the expression of AQP1 in cochlea and ion concentration might be an important factor involved.

  15. Expression profiles of aquaporins in rat conjunctiva, cornea, lacrimal gland and Meibomian gland.

    Science.gov (United States)

    Yu, Dongfang; Thelin, William R; Randell, Scott H; Boucher, Richard C

    2012-10-01

    The aim of the study was to elucidate aquaporin (AQP) family member mRNA expression and protein expression/localization in the rat lacrimal functional unit. The mRNA expression of all rat AQPs (AQP0-9, 11-12) in palpebral, fornical, and bulbar conjunctiva, cornea, lacrimal gland, and Meibomian gland was measured by Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) and real time RT-PCR. Antibodies against AQP1, 3, 4, 5, 9, and 11 were used in Western blotting and immunohistochemistry to determine protein expression and distribution. Our study demonstrated characteristic AQP expression profiles in rat ocular tissues. AQP1, 3, 4, 5, 8, 9, 11, and 12 mRNA were detected in conjunctiva. AQP0, 1, 2, 3, 4, 5, 6, 11, and 12 mRNA were expressed in cornea. AQP0, 1, 2, 3, 4, 5, 7, 8, and 11 mRNA were detected in lacrimal gland. AQP1, 3, 4, 5, 7, 8, 9, 11, and 12 mRNA were identified in Meibomian gland. By Western blot, AQP1, 3, 5, and 11 were detected in conjunctiva; AQP1, 3, 5, and 11 were identified in cornea; AQP1, 3, 4, 5, and 11 were detected in lacrimal gland; and AQP1, 3, 4, 5, 9, and 11 were present in Meibomian gland. Immunohistochemistry localized AQPs to distinct sites in the various tissues. This study rigorously analyzed AQPs expression and localization in rat conjunctiva, cornea, lacrimal gland, and Meibomian gland tissues. Our findings provide a comprehensive platform for further investigation into the physiological or pathophysiological relevance of AQPs in ocular surface. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Aquaporin 4 is a Ubiquitously Expressed Isoform in the Dogfish (Squalus acanthias) Shark.

    Science.gov (United States)

    Cutler, Christopher P; Maciver, Bryce; Cramb, Gordon; Zeidel, Mark

    2011-01-01

    The dogfish ortholog of aquaporin 4 (AQP4) was amplified from cDNA using degenerate PCR followed by cloning and sequencing. The complete coding region was then obtained using 5' and 3' RACE techniques. Alignment of the sequence with AQP4 amino acid sequences from other species showed that dogfish AQP4 has high levels (up to 65.3%) of homology with higher vertebrate sequences but lower levels of homology to Agnathan (38.2%) or teleost (57.5%) fish sequences. Northern blotting indicated that the dogfish mRNA was approximately 3.2 kb and was highly expressed in the rectal gland (a shark fluid secretory organ). Semi-quantitative PCR further indicates that AQP4 is ubiquitous, being expressed in all tissues measured but at low levels in certain tissues, where the level in liver > gill >  intestine. Manipulation of the external environmental salinity of groups of dogfish showed that when fish were acclimated in stages to 120% seawater (SW) or 75% SW, there was no change in AQP4 mRNA expression in either rectal gland, kidney, or esophagus/cardiac stomach. Whereas quantitative PCR experiments using the RNA samples from the same experiment, showed a significant 63.1% lower abundance of gill AQP4 mRNA expression in 120% SW-acclimated dogfish. The function of dogfish AQP4 was also determined by measuring the effect of the AQP4 expression in Xenopus laevis oocytes. Dogfish AQP4 expressing-oocytes, exhibited significantly increased osmotic water permeability (P(f)) compared to controls, and this was invariant with pH. Permeability was not significantly reduced by treatment of oocytes with mercury chloride, as is also the case with AQP4 in other species. Similarly AQP4 expressing-oocytes did not exhibit enhanced urea or glycerol permeability, which is also consistent with the water-selective property of AQP4 in other species.

  17. Aquaporin 4 is a ubiquitously expressed isoform in the dogfish (Squalus acanthias shark.

    Directory of Open Access Journals (Sweden)

    Christopher P Cutler

    2012-01-01

    Full Text Available The dogfish orthologue of aquaporin 4 (AQP4 was amplified from cDNA using degenerate PCR followed by cloning and sequencing. The complete coding region was then obtained using 5’ and 3’ RACE techniques. Alignment of the sequence with AQP4 amino acid sequences from other species showed that dogfish AQP4 has high levels (up to 65.3% of homology with higher vertebrate sequences but lower levels of homology to agnathan (38.2% or teleost (57.5% fish sequences. Northern blotting indicated that the dogfish mRNA was approximately 3.2 kb and was highly expressed in the rectal gland (a shark fluid secretory organ. Semi-quantitative PCR further indicates that AQP4 is ubiquitous, being expressed in all tissues measured but at low levels in certain tissues, where the level in liver>gill> intestine. Manipulation of the external environmental salinity of groups of dogfish showed that when fish were acclimated in stages to 120% seawater (SW or 75% SW, there was no change in AQP4 mRNA expression in either rectal gland, kidney or esophagus/cardiac stomach. Whereas quantitative PCR experiments using the RNA samples from the same experiment, showed a significant 63.1% lower abundance of gill AQP4 mRNA expression in 120% SW-acclimated dogfish. The function of dogfish AQP4 was also determined by measuring the effect of the AQP4 expression in Xenopus laevis oocytes. Dogfish AQP4 expressingoocytes, exhibited significantly increased osmotic water permeability (Pf compared to controls, and this was invariant with pH. Permeability was not significantly reduced by treatment of oocytes with mercury chloride, as is also the case with AQP4 in other species. Similarly AQP4 expressing oocytes did not exhibit enhanced urea or glycerol permeability, which is also consistent with the water-selective property of AQP4 in other species.

  18. Aquaporin 5 polymorphisms and rate of lung function decline in chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Nadia N Hansel

    Full Text Available RATIONALE: Aquaporin-5 (AQP5 can cause mucus overproduction and lower lung function. Genetic variants in the AQP5 gene might be associated with rate of lung function decline in chronic obstructive pulmonary disease (COPD. METHODS: Five single nucleotide polymorphisms (SNPs in AQP5 were genotyped in 429 European American individuals with COPD randomly selected from the NHLBI Lung Health Study. Mean annual decline in FEV(1 % predicted, assessed over five years, was calculated as a linear regression slope, adjusting for potential covariates and stratified by smoking status. Constructs containing the wildtype allele and risk allele of the coding SNP N228K were generated using site-directed mutagenesis, and transfected into HBE-16 (human bronchial epithelial cell line. AQP5 abundance and localization were assessed by immunoblots and confocal immunofluorescence under control, shear stress and cigarette smoke extract (CSE 10% exposed conditions to test for differential expression or localization. RESULTS: Among continuous smokers, three of the five SNPs tested showed significant associations (0.02>P>0.004 with rate of lung function decline; no associations were observed among the group of intermittent or former smokers. Haplotype tests revealed multiple association signals (0.012>P>0.0008 consistent with the single-SNP results. In HBE16 cells, shear stress and CSE led to a decrease in AQP5 abundance in the wild-type, but not in the N228K AQP5 plasmid. CONCLUSIONS: Polymorphisms in AQP5 were associated with rate of lung function decline in continuous smokers with COPD. A missense mutation modulates AQP-5 expression in response to cigarette smoke extract and shear stress. These results suggest that AQP5 may be an important candidate gene for COPD.

  19. The 'selfish brain' is regulated by aquaporins and autophagy under nutrient deprivation.

    Science.gov (United States)

    Ye, Qiao; Wu, Yonghong; Gao, Yan; Li, Zhihui; Li, Weiguang; Zhang, Chenggang

    2016-05-01

    The brain maintains its mass and physiological functional capacity compared with other organs under harsh conditions such as starvation, a mechanism termed the 'selfish brain' theory. To further investigate this phenomenon, mice were examined following water and/or food deprivation. Although the body weights of the mice, the weight of the organs except the brain and blood glucose levels were significantly reduced in the absence of water and/or food, the brain weight maintained its original state. Furthermore, no significant differences in the water content of the brain or its energy balance were observed when the mice were subjected to water and/or food deprivation. To further investigate the mechanism underlying the brain maintenance of water and substance homeostasis, the expression levels of aquaporins (AQPs) and autophagy‑specific protein long‑chain protein 3 (LC3) were examined. During the process of water and food deprivation, no significant differences in the transcriptional levels of AQPs were observed. However, autophagy activity levels were initially stimulated, then suppressed in a time‑dependent manner. LC3 and AQPs have important roles for the survival of the brain under conditions of food and water deprivation, which provided further understanding of the mechanism underlying the 'selfish brain' phenomenon. Although not involved in the energy regulation of the 'selfish brain', AQPs were observed to have important roles in water and food deprivation, specifically with regards to the control of water content. Additionally, the brain exhibits an 'unselfish strategy' using autophagy during water and/or food deprivation. The present study furthered current understanding of the 'selfish brain' theory, and identified additional regulating target genes of AQPs and autophagy, with the aim of providing a basis for the prevention of nutrient shortage in humans and animals.

  20. Aquaporin-4 antibody in neuromyelitis optica: re-testing study in a large population from China.

    Science.gov (United States)

    Long, Youming; Liang, Junyan; Zhong, Rong; Wu, Linzhan; Qiu, Wei; Lin, Shaopeng; Gao, Cong; Chen, Xiaohui; Zheng, Xueping; Yang, Ning; Gao, Min; Wang, Zhanhang

    2017-09-01

    Aquaporin-4 (AQP4) antibody sero-positivity is critically important in neuromyelitis optica (NMO). However, the sensitivity of different assays is highly variable. Repeating detection with a highly sensitive assay in a large population is necessary in the case of so-called negative NMO. Retrospective analysis where AQP4 antibodies were detected by commercial cell-based assay (CBA), in-house M23-CBA and in-house M1-CBA. Of the 1011 serum samples, 206 (20.4%) were sero-positive by primary commercial CBA. In the retest, all 206 participants positive by primary commercial CBA also yielded positive results by in-house M23-CBA and the second commercial CBA again, but only 124 positive in in-house M1-CBA. Among the 805 participants negative by primary commercial CBA, 71 participants were positive for in-house M23-CBA, of which 20 participants were positive for the second commercial CBA, and none were positive by in-house M1-CBA. Of the 171 cerebral spinal fluid samples, 75 (43.9%) were positive by primary commercial CBA. All 75 participants positive by primary commercial CBA also yielded positive results by in-house M23-CBA and the second commercial CBA. Forty-nine (65.3%) of these 75 participants were positive by in-house M1-CBA. Among the 96 participants negative by primary commercial CBA, 15 participants were positive for in-house M23-CBA and none were positive by in-house M1-CBA and the second commercial CBA. Different AQP4 isoforms in CBA result in different detection effects, and in-house M23-CBA is the most sensitive method. Some AQP4 antibody-negative NMO may be subject to diagnostic uncertainty due to limitations of the assays.

  1. Aquaporin-4 deletion in mice reduces encephalopathy and brain edema in experimental acute liver failure.

    Science.gov (United States)

    Rama Rao, Kakulavarapu V; Verkman, A S; Curtis, Kevin M; Norenberg, Michael D

    2014-03-01

    Brain edema and associated astrocyte swelling leading to increased intracranial pressure are hallmarks of acute liver failure (ALF). Elevated blood and brain levels of ammonia have been implicated in the development of brain edema in ALF. Cultured astrocytes treated with ammonia have been shown to undergo cell swelling and such swelling was associated with an increase in the plasma membrane expression of aquaporin-4 (AQP4) protein. Further, silencing the AQP4 gene in cultured astrocytes was shown to prevent the ammonia-induced cell swelling. Here, we examined the evolution of brain edema in AQP4-null mice and their wild type counterparts (WT-mice) in different models of ALF induced by thioacetamide (TAA) or acetaminophen (APAP). Induction of ALF with TAA or APAP significantly increased brain water content in WT mice (by 1.6% ± 0.3 and 2.3 ± 0.4%, respectively). AQP4 protein was significantly increased in brain plasma membranes of WT mice with ALF induced by either TAA or APAP. In contrast to WT-mice, brain water content did not increase in AQP4-null mice. Additionally, AQP4-null mice treated with either TAA or APAP showed a remarkably lesser degree of neurological deficits as compared to WT mice; the latter displayed an inability to maintain proper gait, and demonstrated a markedly reduced exploratory behavior, with the mice remaining in one corner of the cage with its head tilted downwards. These results support a central role of AQP4 in the brain edema associated with ALF. Published by Elsevier Inc.

  2. Aquaporins in Spinal Cord Injury: The Janus Face of AQP4

    Science.gov (United States)

    Nesic, Olivera; Guest, James D.; Zivadinovic, Dragoslava; Narayana, Ponnada A.; Herrera, Juan J.; Grill, Raymond J.; Mokkapati, Venkata U.L.; Gelman, Benjamin B.; Lee, Julieann

    2010-01-01

    Although malfunction of spinal cord water channels (aquaporins, AQP) likely contributes to severe disturbances in ion/water homeostasis after spinal cord injury (SCI), their roles are still poorly understood. Here we report and discuss the potential significance of changes in the AQP4 expression in human SCI that generates GFAP-labeled astrocytes devoid of AQP4, and GFAP-labeled astroglia that overexpress AQP4. We used a rat model of contusion SCI to study observed changes in human SCI. AQP4-negative astrocytes are likely generated during the process of SCI-induced replacement of lost astrocytes, but their origin and role in SCI remains to be investigated. We found that AQP4-overexpression is likely triggered by hypoxia. Our transcriptional profiling of injured rat cords suggests that elevated AQP4-mediated water influx accompanies increased uptake of chloride and potassium ions which represents a protective astrocytic reaction to hypoxia. However, unbalanced water intake also results in astrocytic swelling that can contribute to motor impairment, but likely only in milder injuries. In severe rat SCI, a low abundance of AQP4-overexpressing astrocytes was found during the motor recovery phase. Our results suggest that severe rat contusion SCI is a better model to analyze AQP4 functions after SCI. We found that AQP4 increases in the chronic post-injury phase are associated with the development of pain-like behavior in SCI rats, while possible mechanisms underlying pain development may involve astrocytic swelling-induced glutamate release. In contrast, the formation and size of fluid-filled cavities occurring later after SCI does not appear to be affected by the extent of increased AQP4 levels. Therefore, the effect of therapeutic interventions targeting AQP4 will depend not only on the time interval after SCI or animal models, but also on the balance between protective role of increased AQP4 in hypoxia and deleterious effects of ongoing astrocytic swelling. PMID

  3. Cerebrolysin and aquaporin 4 inhibition improve pathological and motor recovery after ischemic stroke.

    Science.gov (United States)

    Catalin, Bogdan; Rogoveanu, O C; Pirici, Ionica; Balseanu, Tudor Adrian; Stan, Adina; Tudorica, Valerica; Balea, Maria; Mindrila, Ion; Albu, Carmen Valeria; Mohamed, Guleed; Pirici, Daniel; Muresanu, Dafin Fior

    2018-04-25

    Edema represents one of the earliest negative markers of survival and consecutive neurological deficit following stroke. The mixture of cellular and vasogenic edema makes treating this condition complicated, and to date, there is no pathogenically oriented drug treatment for edema, which leaves parenteral administration of a hypertonic solution as the only non-surgical alternative. New insights into water metabolism in the brain have opened the way for molecular targeted treatment, with aquaporin 4 channels (AQP4) taking center stage. We aimed here to assess the effect of inhibiting AQP4 together with the administration of a neurotropic factor (Cerebrolysin) in ischemic stroke. Using a permanent medial cerebral artery occlusion rat model, we administrated a single dose of the AQP4 inhibitor TGN-020 (100 mg/kg) at 15 minutes after ischemia followed by daily Cerebrolysin dosing (5ml/kg) for seven days. Rotarod motor testing and neuropathology examinations were next performed. We showed first that the combination treatment animals have a better motor function preservation at seven days after permanent ischemia. We have also identified distinct cellular contributions that represent the bases of behavior testing, such as less astrocyte scarring and a larger neuronal-survival phenotype rate in animals treated with both compounds than in animals treated with Cerebrolysin alone or untreated animals. Our data shows that water diffusion inhibition and Cerebrolysin administration after focal ischemic stroke reduces infarct size, leading to a higher neuronal survival in the peri-core glial scar region. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Aquaporin-1-Mediated Effects of Low Level He-Ne Laser Irradiation on Human Erythrocytes

    Directory of Open Access Journals (Sweden)

    Gang-Yue Luo

    2012-01-01

    Full Text Available The role of membrane aquaporin-1 (APQ-1 in the photobiomodulation (PBM on erythrocyte deformability will be studied in this paper with human dehydrated erythrocytes as echinocytic shape alterations lead to decreased cellular deformability. Human dehydrated erythrocytes were irradiated with low intensity He-Ne laser irradiation (LHNL at 0.9, 1.8, 2.7, and 4.4 mW/cm2 for 5, 15, and 30 min, respectively, and APQ-1 inhibitor, 0.2 μmol/L HgCl2, was used to study the role of APQ-1 in mediating PBM with LHNL at 4.4 mW/cm2 for 5 min. Comprehensive morphological parameters of an intact cell such as contact area, perimeter, roundness and erythrocyte elongation index (EEI were measured to characterize erythrocyte deformability with fast micro multi-channel spectrophotometer. It was observed that the dosage of LHNL improvement of the morphological parameters of dehydrated erythrocytes was morphological-parameter-dependent, but the Bunsen-Roscoe rule did not hold for roundness. The LHNL at 4.4 mW/cm2 for 5 min significantly improved the contact area (P<0.05 and EEI (P<0.05 of the dehydrated erythrocytes, but the improvement was significantly inhibited by 0.2 μmol/L HgCl2 (P<0.05. It was concluded that AQP-1 might mediate the effects of LHNL on erythrocyte deformability, which supports the membranotropic mechanism of PBM.

  5. Hormonal regulation of aquaporin 3: opposing actions of prolactin and cortisol in tilapia gill.

    Science.gov (United States)

    Breves, Jason P; Inokuchi, Mayu; Yamaguchi, Yoko; Seale, Andre P; Hunt, Bethany L; Watanabe, Soichi; Lerner, Darren T; Kaneko, Toyoji; Grau, E Gordon

    2016-09-01

    Aquaporins (Aqps) are expressed within key osmoregulatory tissues where they mediate the movement of water and selected solutes across cell membranes. We leveraged the functional plasticity of Mozambique tilapia (Oreochromis mossambicus) gill epithelium to examine how Aqp3, an aquaglyceroporin, is regulated in response to osmoregulatory demands. Particular attention was paid to the actions of critical osmoregulatory hormones, namely, prolactin (Prl), growth hormone and cortisol. Branchial aqp3 mRNA levels were modulated following changes in environmental salinity, with enhanced aqp3 mRNA expression upon transfer from seawater to freshwater (FW). Accordingly, extensive Aqp3 immunoreactivity was localized to cell membranes of branchial epithelium in FW-acclimated animals. Upon transferring hypophysectomized tilapia to FW, we identified that a pituitary factor(s) is required for Aqp3 expression in FW. Replacement with ovine Prl (oPrl) was sufficient to stimulate Aqp3 expression in hypophysectomized animals held in FW, an effect blocked by coinjection with cortisol. Both oPrl and native tilapia Prls (tPrl177 and tPrl188) stimulated aqp3 in incubated gill filaments in a concentration-related manner. Consistent with in vivo responses, coincubation with cortisol blocked oPrl-stimulated aqp3 expression in vitro Our data indicate that Prl and cortisol act directly upon branchial epithelium to regulate Aqp3 in tilapia. Thus, within the context of the diverse actions of Prl on hydromineral balance in vertebrates, we define a new role for Prl as a regulator of Aqp expression. © 2016 Society for Endocrinology.

  6. Atomic force microscopy on plasma membranes from Xenopus laevis oocytes containing human aquaporin 4.

    Science.gov (United States)

    Orsini, Francesco; Santacroce, Massimo; Cremona, Andrea; Gosvami, Nitya N; Lascialfari, Alessandro; Hoogenboom, Bart W

    2014-11-01

    Atomic force microscopy (AFM) is a unique tool for imaging membrane proteins in near-native environment (embedded in a membrane and in buffer solution) at ~1 nm spatial resolution. It has been most successful on membrane proteins reconstituted in 2D crystals and on some specialized and densely packed native membranes. Here, we report on AFM imaging of purified plasma membranes from Xenopus laevis oocytes, a commonly used system for the heterologous expression of membrane proteins. Isoform M23 of human aquaporin 4 (AQP4-M23) was expressed in the X. laevis oocytes following their injection with AQP4-M23 cRNA. AQP4-M23 expression and incorporation in the plasma membrane were confirmed by the changes in oocyte volume in response to applied osmotic gradients. Oocyte plasma membranes were then purified by ultracentrifugation on a discontinuous sucrose gradient, and the presence of AQP4-M23 proteins in the purified membranes was established by Western blotting analysis. Compared with membranes without over-expressed AQP4-M23, the membranes from AQP4-M23 cRNA injected oocytes showed clusters of structures with lateral size of about 10 nm in the AFM topography images, with a tendency to a fourfold symmetry as may be expected for higher-order arrays of AQP4-M23. In addition, but only infrequently, AQP4-M23 tetramers could be resolved in 2D arrays on top of the plasma membrane, in good quantitative agreement with transmission electron microscopy analysis and the current model of AQP4. Our results show the potential and the difficulties of AFM studies on cloned membrane proteins in native eukaryotic membranes. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Expression and localization of Aquaporin 1a in the sea-bass (Dicentrarchus labrax during ontogeny

    Directory of Open Access Journals (Sweden)

    Ivone eGiffard-Mena

    2011-07-01

    Full Text Available The successful establishment of a species in a given habitat depends on the ability of each of its developing stages to adapt to the environment. In order to understand this process we have studied the adaptation of a euryhaline fish, the sea-bass Dicentrarchus labrax, to various salinities during its ontogeny. The expression and localization of Aquaporin 1a (AQP1a mRNA and protein were determined in different osmoregulatory tissues. In larvae, the sites of AQP1a expression are variable and they shift according to age, implying functional changes. In juveniles after metamorphosis (D32-48 post hatch, 15 - 25 mm and in pre-adults, an increase in AQP1a transcript abundance was noted in the digestive tract, and the AQP1a location was observed in the intestine. In juveniles (D87-100 post hatch, 38 - 48 mm, the transcript levels of AQP1a in the digestive tract and in the kidney were higher in sea water than at lower salinity. These observations, in agreement with existing models, suggest that in sea water-acclimated fish, the imbibed water is absorbed via AQP1a through the digestive tract, particularly the intestine and the rectum. In addition, AQP1a may play a role in water reabsorption in the kidney. These mechanisms compensate dehydratation in sea water, and they contribute to the adaptation of juveniles to salinity changes during sea-lagoon migrations. These results contribute to the interpretation of the adaptation of populations to habitats where salinity varies.

  8. Hydrocephalus induces dynamic spatiotemporal regulation of aquaporin-4 expression in the rat brain

    Directory of Open Access Journals (Sweden)

    Praetorius Jeppe

    2010-11-01

    Full Text Available Abstract Background The water channel protein aquaporin-4 (AQP4 is reported to be of possible major importance for accessory cerebrospinal fluid (CSF circulation pathways. We hypothesized that changes in AQP4 expression in specific brain regions correspond to the severity and duration of hydrocephalus. Methods Hydrocephalus was induced in adult rats (~8 weeks by intracisternal kaolin injection and evaluated after two days, one week and two weeks. Using magnetic resonance imaging (MRI we quantified lateral ventricular volume, water diffusion and blood-brain barrier properties in hydrocephalic and control animals. The brains were analysed for AQP4 density by western blotting and localisation by immunohistochemistry. Double fluorescence labelling was used to study cell specific origin of AQP4. Results Lateral ventricular volume was significantly increased over control at all time points after induction and the periventricular apparent diffusion coefficient (ADC value significantly increased after one and two weeks of hydrocephalus. Relative AQP4 density was significantly decreased in both cortex and periventricular region after two days and normalized after one week. After two weeks, periventricular AQP4 expression was significantly increased. Relative periventricular AQP4 density was significantly correlated to lateral ventricular volume. AQP4 immunohistochemical analysis demonstrated the morphological expression pattern of AQP4 in hydrocephalus in astrocytes and ventricular ependyma. AQP4 co-localized with astrocytic glial fibrillary acidic protein (GFAP in glia limitans. In vascular structures, AQP4 co-localized to astroglia but not to microglia or endothelial cells. Conclusions AQP4 levels are significantly altered in a time and region dependent manner in kaolin-induced hydrocephalus. The presented data suggest that AQP4 could play an important neurodefensive role, and may be a promising future pharmaceutical target in hydrocephalus and CSF

  9. Superresolution Imaging of Aquaporin-4 Cluster Size in Antibody-Stained Paraffin Brain Sections.

    Science.gov (United States)

    Smith, Alex J; Verkman, Alan S

    2015-12-15

    The water channel aquaporin-4 (AQP4) forms supramolecular clusters whose size is determined by the ratio of M1- and M23-AQP4 isoforms. In cultured astrocytes, differences in the subcellular localization and macromolecular interactions of small and large AQP4 clusters results in distinct physiological roles for M1- and M23-AQP4. Here, we developed quantitative superresolution optical imaging methodology to measure AQP4 cluster size in antibody-stained paraffin sections of mouse cerebral cortex and spinal cord, human postmortem brain, and glioma biopsy specimens. This methodology was used to demonstrate that large AQP4 clusters are formed in AQP4(-/-) astrocytes transfected with only M23-AQP4, but not in those expressing only M1-AQP4, both in vitro and in vivo. Native AQP4 in mouse cortex, where both isoforms are expressed, was enriched in astrocyte foot-processes adjacent to microcapillaries; clusters in perivascular regions of the cortex were larger than in parenchymal regions, demonstrating size-dependent subcellular segregation of AQP4 clusters. Two-color superresolution imaging demonstrated colocalization of Kir4.1 with AQP4 clusters in perivascular areas but not in parenchyma. Surprisingly, the subcellular distribution of AQP4 clusters was different between gray and white matter astrocytes in spinal cord, demonstrating regional specificity in cluster polarization. Changes in AQP4 subcellular distribution are associated with several neurological diseases and we demonstrate that AQP4 clustering was preserved in a postmortem human cortical brain tissue specimen, but that AQP4 was not substantially clustered in a human glioblastoma specimen despite high-level expression. Our results demonstrate the utility of superresolution optical imaging for measuring the size of AQP4 supramolecular clusters in paraffin sections of brain tissue and support AQP4 cluster size as a primary determinant of its subcellular distribution. Copyright © 2015 Biophysical Society

  10. Expression patterns of the aquaporin gene family during renal development: influence of genetic variability.

    Science.gov (United States)

    Parreira, Kleber S; Debaix, Huguette; Cnops, Yvette; Geffers, Lars; Devuyst, Olivier

    2009-08-01

    High-throughput analyses have shown that aquaporins (AQPs) belong to a cluster of genes that are differentially expressed during kidney organogenesis. However, the spatiotemporal expression patterns of the AQP gene family during tubular maturation and the potential influence of genetic variation on these patterns and on water handling remain unknown. We investigated the expression patterns of all AQP isoforms in fetal (E13.5 to E18.5), postnatal (P1 to P28), and adult (9 weeks) kidneys of inbred (C57BL/6J) and outbred (CD-1) mice. Using quantitative polymerase chain reaction (PCR), we evidenced two mRNA patterns during tubular maturation in C57 mice. The AQPs 1-7-11 showed an early (from E14.5) and progressive increase to adult levels, similar to the mRNA pattern observed for proximal tubule markers (Megalin, NaPi-IIa, OAT1) and reflecting the continuous increase in renal cortical structures during development. By contrast, AQPs 2-3-4 showed a later (E15.5) and more abrupt increase, with transient postnatal overexpression. Most AQP genes were expressed earlier and/or stronger in maturing CD-1 kidneys. Furthermore, adult CD-1 kidneys expressed more AQP2 in the collecting ducts, which was reflected by a significant delay in excreting a water load. The expression patterns of proximal vs. distal AQPs and the earlier expression in the CD-1 strain were confirmed by immunoblotting and immunostaining. These data (1) substantiate the clustering of important genes during tubular maturation and (2) demonstrate that genetic variability influences the regulation of the AQP gene family during tubular maturation and water handling by the mature kidney.

  11. Laser facilitates vaccination

    Directory of Open Access Journals (Sweden)

    Ji Wang

    2016-01-01

    Full Text Available Development of novel vaccine deliveries and vaccine adjuvants is of great importance to address the dilemma that the vaccine field faces: to improve vaccine efficacy without compromising safety. Harnessing the specific effects of laser on biological systems, a number of novel concepts have been proposed and proved in recent years to facilitate vaccination in a safer and more efficient way. The key advantage of using laser technology in vaccine delivery and adjuvantation is that all processes are initiated by physical effects with no foreign chemicals administered into the body. Here, we review the recent advances in using laser technology to facilitate vaccine delivery and augment vaccine efficacy as well as the underlying mechanisms.

  12. Facilitating Learning at Conferences

    DEFF Research Database (Denmark)

    Ravn, Ib; Elsborg, Steen

    2011-01-01

    The typical conference consists of a series of PowerPoint presentations that tend to render participants passive. Students of learning have long abandoned the transfer model that underlies such one-way communication. We propose an al-ternative theory of conferences that sees them as a forum...... for learning, mutual inspiration and human flourishing. We offer five design principles that specify how conferences may engage participants more and hence increase their learning. In the research-and-development effort reported here, our team collaborated with conference organizers in Denmark to introduce...... and facilitate a variety of simple learning techniques at thirty one- and two-day conferences of up to 300 participants each. We present ten of these techniques and data evaluating them. We conclude that if conference organizers allocate a fraction of the total conference time to facilitated processes...

  13. Mindfulness for group facilitation

    DEFF Research Database (Denmark)

    Adriansen, Hanne Kirstine; Krohn, Simon

    2014-01-01

    In this paper, we argue that mindfulness techniques can be used for enhancing the outcome of group performance. The word mindfulness has different connotations in the academic literature. Broadly speaking there is ‘mindfulness without meditation’ or ‘Western’ mindfulness which involves active...... thinking and ‘Eastern’ mindfulness which refers to an open, accepting state of mind, as intended with Buddhist-inspired techniques such as meditation. In this paper, we are interested in the latter type of mindfulness and demonstrate how Eastern mindfulness techniques can be used as a tool for facilitation....... A brief introduction to the physiology and philosophy of Eastern mindfulness constitutes the basis for the arguments of the effect of mindfulness techniques. The use of mindfulness techniques for group facilitation is novel as it changes the focus from individuals’ mindfulness practice...

  14. Ixeris dentata extract regulates salivary secretion through the activation of aquaporin-5 and prevents diabetes-induced xerostomia.

    Science.gov (United States)

    Bhattarai, Kashi Raj; Lee, Sang-Won; Kim, Seung Hyun; Kim, Hyung-Ryong; Chae, Han-Jung

    2017-01-01

    The aim of this study was to investigate the effects of Ixeris dentata (IXD) extract to improve the salivation rate in dry mouth induced by diabetes. Both control and diabetic rats were treated with a sublingual spray of either water or IXD extract to determine the effects of IXD on salivation. During the study, we observed that IXD extract treatment increased the salivary flow rate in diabetic rats. The expression of α-amylase was increased significantly in both saliva and glandular tissue lysates of IXD-treated diabetic rats. Aquaporin-5 protein expression was abnormally low in the salivary glands of diabetic rats, which increased hyposalivation and led to salivary dysfunction. However, a single oral spray of IXD extract drastically increased the expression of aquaporin-5 in salivary gland acinar and ductal cells in diabetic rats. Moreover, IXD extract induced expression of Na + /H + exchangers in the salivary gland, which suggests that Na + /H + exchangers modulate salivary secretions and aid in the fluid-secretion mechanism. Furthermore, transient treatment with IXD extract increased the intracellular calcium in human salivary gland cells. Taken together, these results suggest the potential value of an IXD extract for the treatment of diabetes-induced hyposalivation and xerostomia.

  15. Aquaporin-4 Immuneglobulin G testing in 36 consecutive Jamaican patients with inflammatory central nervous system demyelinating disease

    Directory of Open Access Journals (Sweden)

    Sherri Sandy

    2014-08-01

    Full Text Available Epidemiological studies of neuromyelitis optica (NMO in Jamaica are lacking. Here we reviewed the clinical records of 700 patients undergoing neurological evaluation at the Kingston Public Hospital, the largest tertiary institution in Jamaica over a 4 month period. We investigated the diagnostic utility of Aquaporin-4 ImmuneglobulinG (AQP4-IgG testing in 36 consecutive patients with a diagnosis of an inflammatory demyelinating disorder (IDD of the central nervous system (CNS. Patients were classified into 3 categories: i NMO, n=10; ii multiple sclerosis (MS, n=14 and iii unclassified IDD (n=12. All sera were tested for AQP-IgG status by cell binding assay (Euroimmun. No MS cases were positive. Ninety per cent of NMO cases were positive. Four of 12 patients with unclassified IDD tested positive for AQP4-IgG. AQP4-IgG seropositivity was associated with a lower socioeconomic status, higher EDSS (P=0.04 and lower pulmonary function than the seronegative cases (P=0.007. Aquaporin-4 autoimmunity may account for a significant proportion of Jamaican CNS IDDs.

  16. Expression of Aquaporins in Human Embryos and Potential Role of AQP3 and AQP7 in Preimplantation Mouse Embryo Development

    Directory of Open Access Journals (Sweden)

    Yun Xiong

    2013-05-01

    Full Text Available Background/Aims: Water channels, also named aquaporins (AQPs, play crucial roles in cellular water homeostasis. Methods: RT-PCR indicated the mRNA expression of AQPs 1-5, 7, 9, and 11-12, but not AQPs 0, 6, 8, and 10 in the 2∼8-cell stage human embryos. AQP3 and AQP7 were further analyzed for their mRNA expression and protein expression in the oocyte, zygote, 2-cell embryo, 4-cell embryo, 8-cell embryo, morula, and blastocyst from both human and mouse using RT-PCR and immunofluorescence, respectively. Results: AQP3 and AQP7 were detected in all these stages. Knockdown of either AQP3 or AQP7 by targeted siRNA injection into 2-cell mouse embryos significantly inhibited preimplantation embryo development. However, knockdown of AQP3 in JAr spheroid did not affect its attachment to Ishikawa cells. Conclusion: These data demonstrate that multiple aquaporins are expressed in the early stage human embryos and that AQP3 and AQP7 may play a role in preimplantation mouse embryo development.

  17. Differential down-regulation of aquaporin-2 in rat kidney zones by peripheral nociceptin/orphanin FQ receptor agonism and vasopressin type-2 receptor antagonism

    DEFF Research Database (Denmark)

    Hadrup, Niels; Petersen, Jørgen S; Windfeld, Søren

    2007-01-01

    ) of the vasopressin type-2 receptor antagonist 5-dimethylamine-1-[4-(2-methylbenzoylamino)benzoyl]-2,3,4,5-tetrahydro-1H-benzapine (OPC31260) (32 nmol/kg/min). ZP120 decreased the aquaporin-2 protein level in the rat cortex/outer stripe of outer medulla and decreased apical plasma membrane localization of aquaporin-2......We previously showed that aquaresis induced by the peripherally acting nociceptin/orphanin FQ receptor agonist ZP120 is associated with a decreased protein level of aquaporin-2 (AQP2) in whole-kidney homogenates. We now examined the effects of Ac-RYYRWKKKKKKK-NH(2) (ZP120) (1 nmol/kg/min i.v. for 4...... h) on renal regional expression (cortex/outer stripe of outer medulla, inner stripe of outer medulla, and inner medulla) and subcellular localization of aquaporin-2. Responses to ZP120 were compared to the effects of an equi-aquaretic dose ( approximately 40% inhibition of distal water reabsorption...

  18. Lack of arginine vasopressin-induced phosphorylation of aquaporin-2 mutant AQP2-R254L explains dominant nephrogenic diabetes insipidus.

    NARCIS (Netherlands)

    Mattia, F.P. de; Savelkoul, P.J.M.; Kamsteeg, E.J.; Konings, I.B.M.; Sluijs, P. van der; Mallmann, R.; Oksche, A.; Deen, P.M.T.

    2005-01-01

    Water homeostasis in humans is regulated by vasopressin, which induces the translocation of homotetrameric aquaporin-2 (AQP2) water channels from intracellular vesicles to the apical membrane of renal principal cells. For this process, phosphorylation of AQP2 at S256 by cAMP-dependent protein kinase

  19. Cardioprotective effect of valsartan in mice with short-term high-salt diet by regulating cardiac aquaporin 1 and angiogenic factor expression.

    Science.gov (United States)

    Jiang, Yong; Wang, Hui-Yan; Zheng, Sheng; Mu, Shang-Qiang; Ma, Meng-Ni; Xie, Xin; Zhang, Yang-Yang; Zhang, Chun-Xue; Cai, Jian-Hui

    2015-01-01

    Hypertension is the most common risk factor for various cardiovascular and cerebrovascular diseases that affects approximately 61 million, or 25% of the population in United States. The dietary salt intake is one of the most important but modifiable factors for hypertension. In the current study, we aim to elucidate the role of aquaporin 1 in high-salt-induced hypertension and cardiac injuries and whether angiotensin II receptor blocker valsartan could ameliorate the effect of high salt on blood pressure. Mice were fed with normal diet, high-salt diet in the presence or absence of valsartan for 4 weeks. The body weight gain, feeding behavior, blood pressure, and cardiac pathology changes were monitored after 4 weeks. The expression of aquaporin 1, vascular endothelial growth factor, transforming growth factor β1, and basic fibroblast growth factor were analyzed using quantitative real-time polymerase chain reaction, Western blot, and immunohistochemical staining. Valsartan partially reversed the effects of high-salt diet on hypertension, cardiac injuries such as fibrosis and inflammatory cell infiltration, and inhibition of aquaporin 1 and angiogenic factors; valsartan alone did not exert such effects. The current data demonstrated that the reduction of cardiac aquaporin 1 and angiogenic factor expression level might be associated with high-salt-induced hypertension and cardiac injuries in mice, which could be ameliorated by angiotensin II receptor blocker treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. In mpkCCD cells, long-term regulation of aquaporin-2 by vasopressin occurs independent of protein kinase A and CREB but may involve Epac.

    NARCIS (Netherlands)

    Kortenoeven, M.L.A.; Trimpert, C.; Brand, M. van den; Li, Y.; Wetzels, J.F.M.; Deen, P.M.T.

    2012-01-01

    Urine concentration involves the hormone vasopressin (AVP), which stimulates cAMP production in renal principal cells, resulting in translocation and transcription of aquaporin-2 (AQP2) water channels, greatly increasing the water permeability, leading to a concentrated urine. As cAMP levels

  1. Highly encephalitogenic aquaporin 4-specific T cells and NMO-IgG jointly orchestrate lesion location and tissue damage in the CNS

    DEFF Research Database (Denmark)

    Zeka, Bleranda; Hastermann, Maria; Hochmeister, Sonja

    2015-01-01

    In neuromyelitis optica (NMO), astrocytes become targets for pathogenic aquaporin 4 (AQP4)-specific antibodies which gain access to the central nervous system (CNS) in the course of inflammatory processes. Since these antibodies belong to a T cell-dependent subgroup of immunoglobulins, and since...

  2. A DEFICIENCY OF ALPHA-SYNTROPHIN, THE ANCHORING PROTEIN OF AQUAPORIN-4 CHANNELS, AFFECTS CELL SWELLING IN CORTICAL TISSUE DURING HYPOOSMOTIC AND HYPERKALEMIC STRESS

    Czech Academy of Sciences Publication Activity Database

    Cicanič, Michal; Vargová, Lýdia; Syková, Eva

    2011-01-01

    Roč. 59, Supplement: 1 (2011), S102-S103 ISSN 0894-1491. [European meeting on Glia l Cells in Health and Disease /10./. 13.09.2011-17.09.2011, Prague] Institutional research plan: CEZ:AV0Z50390703 Keywords : cell swelling * aquaporin-4 * diffusion Subject RIV: FH - Neurology

  3. The Vasopressin Type-2 Receptor and Prostaglandin Receptors EP2 and EP4 can Increase Aquaporin-2 Plasma Membrane Targeting Through a cAMP Independent Pathway

    DEFF Research Database (Denmark)

    Olesen, Emma Tina Bisgaard; Moeller, Hanne Bjerregaard; Assentoft, Mette

    2016-01-01

    Apical membrane targeting of the collecting duct water channel aquaporin-2 (AQP2) is essential for body water balance. As this event is regulated by Gs coupled 7-transmembrane receptors such as the vasopressin type 2 receptor (V2R) and the prostanoid receptors EP2 and EP4, it is believed to be c...

  4. A de novo Ser111Thr variant in aquaporin-4 in a patient with intellectual disability, transient signs of brain ischemia, transient cardiac hypertrophy, and progressive gait disturbance

    DEFF Research Database (Denmark)

    Berland, Siren; Toft-Bertelsen, Trine L; Aukrust, Ingvild

    2018-01-01

    Aquaporin-4, encoded by AQP4, is the major water channel in the central nervous system and plays an important role in the brain's water balance, including edema formation and clearance. Using genomic copy-number analysis and trio-exome sequencing, we investigated a male patient with intellectual...

  5. How Facilitation May Interfere with Ecological Speciation

    Directory of Open Access Journals (Sweden)

    P. Liancourt

    2012-01-01

    Full Text Available Compared to the vast literature linking competitive interactions and speciation, attempts to understand the role of facilitation for evolutionary diversification remain scarce. Yet, community ecologists now recognize the importance of positive interactions within plant communities. Here, we examine how facilitation may interfere with the mechanisms of ecological speciation. We argue that facilitation is likely to (1 maintain gene flow among incipient species by enabling cooccurrence of adapted and maladapted forms in marginal habitats and (2 increase fitness of introgressed forms and limit reinforcement in secondary contact zones. Alternatively, we present how facilitation may favour colonization of marginal habitats and thus enhance local adaptation and ecological speciation. Therefore, facilitation may impede or pave the way for ecological speciation. Using a simple spatially and genetically explicit modelling framework, we illustrate and propose some first testable ideas about how, when, and where facilitation may act as a cohesive force for ecological speciation. These hypotheses and the modelling framework proposed should stimulate further empirical and theoretical research examining the role of both competitive and positive interactions in the formation of incipient species.

  6. Water in the physiology of plant: thermodynamics and kinetic

    Directory of Open Access Journals (Sweden)

    Maurizio Cocucci

    2011-02-01

    Full Text Available Molecular properties of water molecule determine its role in plant physiology. At molecular level the properties of water molecules determine the behaviour of other plant molecules; in particular its physic characteristics are important in the operativeness of macromolecules and in plant thermoregulation. Plant water supply primarily dependent on thermodynamics properties in particular water chemical potential and its components, more recently there are evidences that suggest an important role in the water kinetic characteristics, depending, at cell membrane level, in particular plasmalemma, on the presence of specific water channel, the aquaporines controlled in its activity by a number of physiological and biochemical factors. Thermodynamics and kinetic factors controlled by physiological, biochemical properties and molecular effectors, control water supply and level in plants to realize their survival, growth and differentiation and the consequent plant production.

  7. Molecular characterization of branchial aquaporin 1aa and effects of seawater acclimation, emersion or ammonia exposure on its mRNA expression in the gills, gut, kidney and skin of the freshwater climbing perch, Anabas testudineus.

    Directory of Open Access Journals (Sweden)

    Yuen K Ip

    Full Text Available We obtained a full cDNA coding sequence of aquaporin 1aa (aqp1aa from the gills of the freshwater climbing perch, Anabas testudineus, which had the highest expression in the gills and skin, suggesting an important role of Aqp1aa in these organs. Since seawater acclimation had no significant effects on the branchial and intestinal aqp1aa mRNA expression, and since the mRNA expression of aqp1aa in the gut was extremely low, it can be deduced that Aqp1aa, despite being a water channel, did not play a significant osmoregulatory role in A. testudineus. However, terrestrial exposure led to significant increases in the mRNA expression of aqp1aa in the gills and skin of A. testudineus. Since terrestrial exposure would lead to evaporative water loss, these results further support the proposition that Aqp1aa did not function predominantly for the permeation of water through the gills and skin. Rather, increased aqp1aa mRNA expression might be necessary to facilitate increased ammonia excretion during emersion, because A. testudineus is known to utilize amino acids as energy sources for locomotor activity with increased ammonia production on land. Furthermore, ammonia exposure resulted in significant decreases in mRNA expression of aqp1aa in the gills and skin of A. testudineus, presumably to reduce ammonia influx during ammonia loading. This corroborates previous reports on AQP1 being able to facilitate ammonia permeation. However, a molecular characterization of Aqp1aa from A. testudineus revealed that its intrinsic aquapore might not facilitate NH3 transport. Hence, ammonia probably permeated the central fifth pore of the Aqp1aa tetramer as suggested previously. Taken together, our results indicate that Aqp1aa might have a greater physiological role in ammonia excretion than in osmoregulation in A. testudineus.

  8. Changes in Air CO2 Concentration Differentially Alter Transcript Levels of NtAQP1 and NtPIP2;1 Aquaporin Genes in Tobacco Leaves

    Directory of Open Access Journals (Sweden)

    Francesca Secchi

    2016-04-01

    Full Text Available The aquaporin specific control on water versus carbon pathways in leaves is pivotal in controlling gas exchange and leaf hydraulics. We investigated whether Nicotiana tabacum aquaporin 1 (NtAQP1 and Nicotiana tabacum plasma membrane intrinsic protein 2;1 (NtPIP2;1 gene expression varies in tobacco leaves subjected to treatments with different CO2 concentrations (ranging from 0 to 800 ppm, inducing changes in photosynthesis, stomatal regulation and water evaporation from the leaf. Changes in air CO2 concentration ([CO2] affected net photosynthesis (Pn and leaf substomatal [CO2] (Ci. Pn was slightly negative at 0 ppm air CO2; it was one-third that of ambient controls at 200 ppm, and not different from controls at 800 ppm. Leaves fed with 800 ppm [CO2] showed one-third reduced stomatal conductance (gs and transpiration (E, and their gs was in turn slightly lower than in 200 ppm– and in 0 ppm–treated leaves. The 800 ppm air [CO2] strongly impaired both NtAQP1 and NtPIP2;1 gene expression, whereas 0 ppm air [CO2], a concentration below any in vivo possible conditions and specifically chosen to maximize the gene expression alteration, increased only the NtAQP1 transcript level. We propose that NtAQP1 expression, an aquaporin devoted to CO2 transport, positively responds to CO2 scarcity in the air in the whole range 0–800 ppm. On the contrary, expression of NtPIP2;1, an aquaporin not devoted to CO2 transport, is related to water balance in the leaf, and changes in parallel with gs. These observations fit in a model where upregulation of leaf aquaporins is activated at low Ci, while downregulation occurs when high Ci saturates photosynthesis and causes stomatal closure.

  9. Facilitation as a teaching strategy : experiences of facilitators

    Directory of Open Access Journals (Sweden)

    E Lekalakala-Mokgele

    2006-09-01

    Full Text Available Changes in nursing education involve the move from traditional teaching approaches that are teacher-centred to facilitation, a student centred approach. The studentcentred approach is based on a philosophy of teaching and learning that puts the learner on centre-stage. The aim of this study was to identify the challenges of facilitators of learning using facilitation as a teaching method and recommend strategies for their (facilitators development and support. A qualitative, explorative and contextual design was used. Four (4 universities in South Africa which utilize facilitation as a teaching/ learning process were identified and the facilitators were selected to be the sample of the study. The main question posed during in-depth group interviews was: How do you experience facilitation as a teaching/learning method?. Facilitators indicated different experiences and emotions when they first had to facilitate learning. All of them indicated that it was difficult to facilitate at the beginning as they were trained to lecture and that no format for facilitation was available. They experienced frustrations and anxieties as a result. The lack of knowledge of facilitation instilled fear in them. However they indicated that facilitation had many benefits for them and for the students. Amongst the ones mentioned were personal and professional growth. Challenges mentioned were the fear that they waste time and that they do not cover the content. It is therefore important that facilitation be included in the training of nurse educators.

  10. Essence: Facilitating Software Innovation

    DEFF Research Database (Denmark)

    Aaen, Ivan

    2008-01-01

      This paper suggests ways to facilitate creativity and innovation in software development. The paper applies four perspectives – Product, Project, Process, and People –to identify an outlook for software innovation. The paper then describes a new facility–Software Innovation Research Lab (SIRL......) – and a new method concept for software innovation – Essence – based on views, modes, and team roles. Finally, the paper reports from an early experiment using SIRL and Essence and identifies further research....

  11. Characterization of aquaporin 4 protein expression and localization in tissues of the dogfish (Squalus acanthias.

    Directory of Open Access Journals (Sweden)

    Christopher P Cutler

    2012-02-01

    Full Text Available The role of aquaporin water channels in Elasmobanchs such as the dogfish Squalus acanthias is completely unknown. This investigation determines the expression and cellular and sub-cellular localization of AQP4 protein in dogfish tissues. Two polyclonal antibodies were generated (AQP4/1 and AQP4/2. Western blots using the AQP4/1 antibody showed two bands (35.5kDa and 49.5kDa in most tissues similar to mammals. Liver and rectal gland showed further bands. However, unlike in mammals, AQP4 protein was expressed in all tissues including respiratory tract and liver. The AQP4/2 antibody appeared much less specific in blots. Both antibodies were used in immunohistochemistry and showed similar cellular localizations, although the AQP4/2 antibody had a more restricted sub-cellular distribution compared to AQP4/1 and therefore appeared to be more specific. In kidney a sub-set of tubules were stained which may represent intermediate tubule segments. AQP4/1 and AQP4/2 antibodies localized to the same tubules segments in serial sections although the intensity and sub-cellular distribution were different. AQP4/2 showed a basal or basolateral membrane distribution whereas AQP4/1 was often distributed throughout the cell including the nucleus. In rectal gland and cardiac stomach AQP4 was localized to secretary tubules but again AQP/1 and AQP/2 showed different sub-cellular distributions. In gill, both antibodies stained large cells in the primary filament and secondary lamellae. Again AQP4/1 antibody stained most or all the cell including the nucleus, whereas AQP4/2 had a plasma membrane and sometimes cytoplasmic distribution. Two types of large mitochondria-rich cells are known to exist in elasmobranches, that express either Na,K ATPase or V-type ATPase. Using Na,K-ATPase and V-type ATPase antibodies, AQP4 was colocalized with these proteins using the AQP4/1 antibody. Results show AQP4 is expressed in both (and all branchial Na,K ATPase and V-type ATPase

  12. The Arg233Lys AQP0 mutation disturbs aquaporin0-calmodulin interaction causing polymorphic congenital cataract.

    Directory of Open Access Journals (Sweden)

    Shanshan Hu

    Full Text Available Calmodulin (CaM directly interacts with the aquaporin 0 (AQP0 C-terminus in a calcium dependent manner to regulate the water permeability of AQP0. We previously identified a missense mutation (p.R233K in the putative CaM binding domain of AQP0 C-terminus in a congenital cataract family. This study was aimed at exploring the potential pathogenesis of this mutation causative of cataract and mainly identifying how it influenced the binding of AQP0 to CaM. Wild type and R233K mutant AQP0 with EGFP-tag were transfected separately into Hela cells to determine the expression and subcellular localizations. The co-immunoprecipitation (CoIP assay was used to detect the interaction between AQP0 and CaM. AQP0 C-terminus peptides were synthesized with and without R233K, and the binding abilities of these peptides to CaM were assessed using a fluorescence binding assay. Localizations of wild type and R233K mutant AQP0 were determined from EGFP fluorescence, and the chimeric proteins were both localized abundantly in the plasma membrane. Protein expression levels of the culture cells showed no significant difference between them. The results from CoIP assay implied that R233K mutant presented more weakly in association with CaM than wild type AQP0. The AQP0 C-terminal mutant peptide was found to have 2.5-fold lower binding affinity to CaM than wild type peptide. These results suggested that R233K mutation did not affect the expression, location and trafficking of the protein but did influence the interaction between AQP0 and CaM. The binding affinity of AQP0 C-terminus to CaM was significantly reduced. Due to lack of the modulation of the Ca2+-calmodulin complex, the water permeability of AQP0 was subsequently augmented, which might lead to the development of this cataract.

  13. [Effects of aquaporin-4 gene knockout on behavior changes and cerebral morphology during aging in mice].

    Science.gov (United States)

    Su, Shengan; Lu, Yunbi; Zhang, Weiping

    2013-05-01

    To investigate the effects of aquaporin-4 (AQP4) gene knockout on the behavior changes and cerebral morphology during aging in mice,and to compare that of young and aged mice between AQP4 knockout mice (AQP4(-/-)) and wild type mice (AQP4(+/+)). Fifty-eight CD-1 mice were divided into four groups: young (2-3 months old) AQP4(-/-), aged (17-19 months old) AQP4(-/-), young AQP4(+/+) and aged AQP4(+/+). The activity levels and exploring behavior of mice were tested in open field. The neurons were stained with toluidine blue and NeuN, the astrocytes and microglia were stained with GFAP and Iba-1, respectively. The morphological changes of neuron, astrocyte and microglia were then analyzed. Compared with young mice, the total walking distance in open field of aged AQP4(+/+) mice and aged AQP4(-/-) mice decreased 41.2% and 44.1%, respectively (Ptime in the central area of open field. The density of neuron in cortex of aged AQP4(+/+) mice and aged AQP4(-/-) mice decreased 19.6% and 15.8%, respectively (P<0.05), while there was no difference in the thickness of neuron cell body in hippocampus CA1 region. The density of astrocyte in hippocampus CA3 region of aged AQP4(+/+) mice and aged AQP4(-/-) mice increased 57.7% and 64.3%, respectively (P<0.001), while there was no difference in the area of astrocyte. The area of microglia in hippocampus CA3 region of aged AQP4(+/+) mice and aged AQP4(-/-) mice increased 46.9% and 52.0%, respectively (P<0.01), while there was no difference in the density of microglia. Compared with AQP4(+/+) mice, the young and aged AQP4(-/-) mice showed smaller area of astrocyte in hippocampus CA3 region, reduced 18.0% in young mice and 23.6% in aged mice. There was no difference between AQP4(+/+) mice and AQP4(-/-) mice for other observed indexes. AQP4 may be involved in change of astrocyte and astrocyte-related behaviors during aging. AQP4 gene knockout may have limited effects on the change of neuron, microglia and most neuronal behaviors in aging

  14. Fluoxetine requires the endfeet protein aquaporin-4 to enhance plasticity of astrocyte processes

    Directory of Open Access Journals (Sweden)

    Barbara eDi Benedetto

    2016-02-01

    Full Text Available Morphological alterations in astrocytes are characteristic for post mortem brains of patients affected by major depressive disorder (MDD. Recently, a significant reduction in the coverage of blood vessels (BVs by aquaporin-4 (AQP-4-positive astrocyte endfeet has been shown in the prefrontal cortex (PFC of MDD patients, suggesting that either alterations in the morphology of endfeet or in AQP-4 distribution might be responsible for the disease phenotype or constitute a consequence of its progress. Antidepressant drugs (ADs regulate the expression of several proteins, including astrocyte-specific ones. Thus, they may target AQP-4 to induce morphological changes in astrocytes and restore their proper shape or relocate AQP-4 to endfeet. Using an animal model of depression, rats selectively bred for high anxiety-like behavior (HAB, we confirmed a reduced coverage of BVs in the adult PFC by AQP-4-immunoreactive (AQP-4-IR astrocyte processes with respect to nonselected Wistar rats (NAB, thereby validating it for our study. A further evaluation of the morphology of astrocyte in brain slices (ex vivo and in vitro using an antibody against the astrocyte-specific cytoskeletal protein glial fibrillary acidic protein (GFAP revealed that HAB astrocytes extended less processes than NAB cells. Furthermore, short-term drug treatment in vitro with the AD fluoxetine (FLX was sufficient to increase the plasticity of astrocyte processes, enhancing their number in NAB-derived cells and recovering their basal number in HAB-derived cells. This enhanced FLX-dependent plasticity occurred, however, only in the presence of intact AQP-4, as demonstrated by the lack of effect after the downregulation of AQP-4 with RNAi in both NAB and HAB cells. Nonetheless, a similar short-term treatment did neither modulate the coverage of BVs with AQP-4-positive astrocyte endfeet in NAB nor in HAB rats, although dosage and time of treatment were sufficient to fully recover GFAP expression

  15. Genome-Wide Analysis of the Aquaporin Gene Family in Chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Deokar, Amit A; Tar'an, Bunyamin

    2016-01-01

    Aquaporins (AQPs) are essential membrane proteins that play critical role in the transport of water and many other solutes across cell membranes. In this study, a comprehensive genome-wide analysis identified 40 AQP genes in chickpea ( Cicer arietinum L.). A complete overview of the chickpea AQP (CaAQP) gene family is presented, including their chromosomal locations, gene structure, phylogeny, gene duplication, conserved functional motifs, gene expression, and conserved promoter motifs. To understand AQP's evolution, a comparative analysis of chickpea AQPs with AQP orthologs from soybean, Medicago, common bean, and Arabidopsis was performed. The chickpea AQP genes were found on all of the chickpea chromosomes, except chromosome 7, with a maximum of six genes on chromosome 6, and a minimum of one gene on chromosome 5. Gene duplication analysis indicated that the expansion of chickpea AQP gene family might have been due to segmental and tandem duplications. CaAQPs were grouped into four subfamilies including 15 NOD26-like intrinsic proteins (NIPs), 13 tonoplast intrinsic proteins (TIPs), eight plasma membrane intrinsic proteins (PIPs), and four small basic intrinsic proteins (SIPs) based on sequence similarities and phylogenetic position. Gene structure analysis revealed a highly conserved exon-intron pattern within CaAQP subfamilies supporting the CaAQP family classification. Functional prediction based on conserved Ar/R selectivity filters, Froger's residues, and specificity-determining positions suggested wide differences in substrate specificity among the subfamilies of CaAQPs. Expression analysis of the AQP genes indicated that some of the genes are tissue-specific, whereas few other AQP genes showed differential expression in response to biotic and abiotic stresses. Promoter profiling of CaAQP genes for conserved cis -acting regulatory elements revealed enrichment of cis -elements involved in circadian control, light response, defense and stress responsiveness

  16. The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants.

    Science.gov (United States)

    Calvo-Polanco, Monica; Molina, Sonia; Zamarreño, Angel María; García-Mina, Jose María; Aroca, Ricardo

    2014-05-01

    It is known that the presence of arbuscular mycorrhizal fungi within the plant roots enhances the tolerance of the host plant to different environmental stresses, although the positive effect of the fungi in plants under waterlogged conditions has not been well studied. Tolerance of plants to flooding can be achieved through different molecular, physiological and anatomical adaptations, which will affect their water uptake capacity and therefore their root hydraulic properties. Here, we investigated the root hydraulic properties under non-flooded and flooded conditions in non-mycorrhizal tomato plants and plants inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis. Only flooded mycorrhizal plants increased their root hydraulic conductivity, and this effect was correlated with a higher expression of the plant aquaporin SlPIP1;7 and the fungal aquaporin GintAQP1. There was also a higher abundance of the PIP2 protein phoshorylated at Ser280 in mycorrhizal flooded plants. The role of plant hormones (ethylene, ABA and IAA) in root hydraulic properties was also taken into consideration, and it was concluded that, in mycorrhizal flooded plants, ethylene has a secondary role regulating root hydraulic conductivity whereas IAA may be the key hormone that allows the enhancement of root hydraulic conductivity in mycorrhizal plants under low oxygen conditions.

  17. Distribution and quantitative changes in amounts of aquaporin 1, 5 and 9 in the pig uterus during the estrous cycle and early pregnancy

    Directory of Open Access Journals (Sweden)

    Skowronski Mariusz T

    2010-09-01

    Full Text Available Abstract Background Aquaporins (AQPs are a family of membrane channel proteins that facilitate bulk water transport. To date, 11 isoforms of AQPs have been reported to be expressed in the female and male reproductive systems. The purpose of our study was to determine the localization and quantitative changes in the expression of AQP1, 5 and 9 within the pig uterus during different stages of the estrous cycle and early pregnancy. Methods Immunoperoxidase and semi-quantitative immunoblotting techniques were used to examine the distribution and changes in amounts of AQP1, AQP5 and AQP9 in uteral cells of pigs at the early (Days 2-4, middle (10-12, late (14-16 stage of the luteal phase and late (18-20 stage of the follicular phase of the estrous cycle as well as on Days 14-16 and 30-32 of gestation (the onset and the end of implantation process. Results The results demonstrated that AQP1, 5, and 9 were clearly detected in all studied stages of the estrous cycle and pregnancy. AQP1 was localized within uterine blood vessels. In cyclic gilts, endometrial and myometrial expression of AQP1 protein did not change significantly but increased during gestation. AQP5 was localized in smooth muscle cells and uterine epithelial cells. Endometrial expression of AQP5 protein did not change significantly between Days 2-4 and 10-12 of the estrous cycle but increased on Days 14-16 and 18-20 as well as during early pregnancy. Myometrial expression of AQP5 did not differ significantly during the estrous cycle but increased in the pregnancy. The anti-AQP9 antibody labeled uterine epithelial cells of uterus. Endometrial expression of AQP9 did not change significantly between Days 2-4 and 10-12 of the estrous cycle but increased on Days 14-16 and 18-20 as well as during early pregnancy. Conclusions The results suggest that a functional and distinctive collaboration exists among diverse AQPs in water handling during the different uterine phases in the estrous cycle and

  18. Facilitating Knowledge Sharing

    DEFF Research Database (Denmark)

    Holdt Christensen, Peter

    knowledge sharing is to ensure that the exchange is seen as equitable for the parties involved, and by viewing the problems of knowledge sharing as motivational problems situated in different organizational settings, the paper explores how knowledge exchange can be conceptualized as going on in four...... distinct situations of exchange denominated organizational exchange yielding extrinsic rewards, organizational exchange yielding intrinsic rewards, financial exchange, and social exchange. The paper argues that each situation of exchange has distinct assumptions about individual behaviour...... and the intermediaries regulating the exchange, and facilitating knowledge sharing should therefore be viewed as a continuum of practices under the influence of opportunistic behaviour, obedience or organizational citizenship behaviour. Keywords: Knowledge sharing, motivation, organizational settings, situations...

  19. Genome-Wide Characterization of Major Intrinsic Proteins in Four Grass Plants and Their Non-Aqua Transport Selectivity Profiles with Comparative Perspective.

    Directory of Open Access Journals (Sweden)

    Abul Kalam Azad

    Full Text Available Major intrinsic proteins (MIPs, commonly known as aquaporins, transport not only water in plants but also other substrates of physiological significance and heavy metals. In most of the higher plants, MIPs are divided into five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs. Herein, we identified 68, 42, 38 and 28 full-length MIPs, respectively in the genomes of four monocot grass plants, specifically Panicum virgatum, Setaria italica, Sorghum bicolor and Brachypodium distachyon. Phylogenetic analysis showed that the grass plants had only four MIP subfamilies including PIPs, TIPs, NIPs and SIPs without XIPs. Based on structural analysis of the homology models and comparing the primary selectivity-related motifs [two NPA regions, aromatic/arginine (ar/R selectivity filter and Froger's positions (FPs] of all plant MIPs that have been experimentally proven to transport non-aqua substrates, we predicted the transport profiles of all MIPs in the four grass plants and also in eight other plants. Groups of MIP subfamilies based on ar/R selectivity filter and FPs were linked to the non-aqua transport profiles. We further deciphered the substrate selectivity profiles of the MIPs in the four grass plants and compared them with their counterparts in rice, maize, soybean, poplar, cotton, Arabidopsis thaliana, Physcomitrella patens and Selaginella moellendorffii. In addition to two NPA regions, ar/R filter and FPs, certain residues, especially in loops B and C, contribute to the functional distinctiveness of MIP groups. Expression analysis of transcripts in different organs indicated that non-aqua transport was related to expression of MIPs since most of the unexpressed MIPs were not predicted to facilitate the transport of non-aqua molecules. Among all MIPs in every plant, TIP (BdTIP1;1, SiTIP1;2, SbTIP2;1 and PvTIP1;2 had the overall highest mean expression. Our study generates significant information for understanding the diversity, evolution, non

  20. Arbuscular mycorrhizal fungi and tolerance of temperature stress in plants

    DEFF Research Database (Denmark)

    Zhu, Xiancan; Song, Fengbin; Liu, Fulai

    2017-01-01

    Temperature is one of the most important environmental factors that determine the growth and productivity of plants across the globe. Many physiological and biochemical processes and functions are affected by low and high temperature stresses. Arbuscular mycorrhizal (AM) symbiosis has been shown...... to improve tolerance to temperature stress in plants. This chapter addresses the effect of AM symbiosis on plant growth and biomass production, water relations (water potential, stomatal conductance, and aquaporins), photosynthesis (photosynthetic rate, chlorophyll, and chlorophyll fluorescence), plasma...... tolerance of the host plants via enhancing water and nutrient uptake, improving photosynthetic capacity and efficiency, protecting plant against oxidative damage, and increasing accumulation of osmolytes are discussed. This chapter also provides some future perspectives for better understanding...

  1. Germination phenology determines the propensity for facilitation and competition.

    Science.gov (United States)

    Leverett, Lindsay D

    2017-09-01

    A single plant can interact both positively and negatively with its neighbors through the processes of facilitation and competition, respectively. Much of the variation in the balance of facilitation and competition that individuals experience can be explained by the degree of physical stress and the sizes or ages of plants during the interaction. Germination phenology partly controls both of these factors, but its role in defining the facilitation-competition balance has not been explicitly considered. I performed an experiment in a population of the winter annual Arabidopsis thaliana (Brassicaceae) to test whether germinating during physically stressful periods leads to facilitation while germinating during periods that promote growth and reproduction leads to competition. I manipulated germination and neighbor presence across two years in order to quantify the effects of the local plant community on survival, fecundity, and total fitness as a function of germination phenology. Neighbors increased survival when germination occurred under conditions that were unsuitable for survival, but they reduced fecundity in germinants that were otherwise the most fecund. Later germination was associated with facilitation in the first year but competition in the second year. These episodes of facilitation and competition opposed each other, leading to no net effect of neighbors when averaged over all cohorts. These results indicate that variation in germination timing can explain some of the variation in the facilitation-competition balance in plant communities. © 2017 by the Ecological Society of America.

  2. Structure and Stability of the Spinach Aquaporin SoPIP2;1 in Detergent Micelles and Lipid Membranes

    DEFF Research Database (Denmark)

    Plasencia, Ines; Survery, Sabeen; Ibragimova, Sania

    2011-01-01

    Background: SoPIP2;1 constitutes one of the major integral proteins in spinach leaf plasma membranes and belongs to the aquaporin family. SoPIP2;1 is a highly permeable and selective water channel that has been successfully overexpressed and purified with high yields. In order to optimize...... reconstitution of the purified protein into biomimetic systems, we have here for the first time characterized the structural stability of SoPIP2;1. Methodology/Principal Finding: We have characterized the protein structural stability after purification and after reconstitution into detergent micelles...... and proteoliposomes using circular dichroism and fluorescence spectroscopy techniques. The structure of SoPIP2;1 was analyzed either with the protein solubilized with octyl-beta-D-glucopyranoside (OG) or reconstituted into lipid membranes formed by E. coli lipids, diphytanoylphosphatidylcholine (DPh...

  3. Features of anti-aquaporin 4 antibody-seropositive Chinese patients with neuromyelitis optica spectrum optic neuritis.

    Science.gov (United States)

    Li, Hongyang; Wang, Yanling; Xu, Quangang; Zhang, Aidi; Zhou, Huanfen; Zhao, Shuo; Kang, Hao; Peng, Chunxia; Cao, Shanshan; Wei, Shihui

    2015-10-01

    The detection of anti-aquaporin-4 autoantibody (AQP-4 Ab) is crucial to detect patients who will develop neuromyelitis optica (NMO); however, there are few studies on the AQP-4 Ab serostatus of patients with neuromyelitis optica spectrum ON. We analyzed the clinical and paraclinical features of neuromyelitis optica spectrum ON patients in China according to the patients' AQP4-Ab serostatus. 125 patients with recurrent and bilateral ON with simultaneous attacks were divided into AQP-4 Ab-seropositive and -seronegative groups. Demographic, clinical, serum autoantibody data, connective tissue disorders (CTDs), visual performance were compared. A Visual Acuity (VA) of less than 0.1 during acute ON attacks occurred more frequently in the seropositive group (p = 0.023); however, there was not a significant difference between groups on VA recovery after the first attack. The seropositive group experienced the worst outcome during the last attack (p = 0.017). Other co-existing autoimmunity antibodies (p optica spectrum ON.

  4. Aquaporin-4 Functionality and Virchow-Robin Space Water Dynamics: Physiological Model for Neurovascular Coupling and Glymphatic Flow.

    Science.gov (United States)

    Nakada, Tsutomu; Kwee, Ingrid L; Igarashi, Hironaka; Suzuki, Yuji

    2017-08-18

    The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics.

  5. Associations of hypoosmotic swelling test, relative sperm volume shift, aquaporin7 mRNA abundance and bull fertility estimates.

    Science.gov (United States)

    Kasimanickam, R K; Kasimanickam, V R; Arangasamy, A; Kastelic, J P

    2017-02-01

    Mammalian sperm are exposed to a natural hypoosmotic environment during male-to-female reproductive tract transition; although this activates sperm motility in vivo, excessive swelling can harm sperm structure and function. Aquaporins (AQPs) is a family of membrane-channel proteins implicated in sperm osmoregulation. The objective was to determine associations among relative sperm volume shift, hypoosmotic swelling test (HOST), sperm aquaporin (AQP) 7 mRNA abundances, and sire conception rate (SCR; fertility estimate) in Holstein bulls at a commercial artificial insemination center. Three or four sires for each full point SCR score from -4 to +4 were included. Each SCR estimate for study bulls (N = 30) was based on > 500 services (mean ± SEM) of 725 ± 13 services/sire). Sperm from a single collection day (two ejaculates) from these commercial Holstein bulls were used. Relative mRNA expression of AQP7 in sperm was determined by polymerase chain reaction. Mean relative sperm volume shift and percentage of sperm reacted in a HOST (% HOST) were determined (400 sperm per bull) after incubating in isoosmotic (300 mOsm/kg) and hypoosmotic (100 mOsm/kg) solutions for 30 min. There was no correlation between %HOST and SCR (r = 0.28 P > 0.1). However, there was a positive correlation between relative sperm volume shift and SCR (r = 0.65, P 2) fertility sire groups. In conclusion, bulls with higher SCR had significantly greater AQP7 mRNA abundance in frozen-thawed sperm. This plausibly contributed to greater regulation of sperm volume shift, which apparently conferred protection from detrimental swelling and impaired functions. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Expert and novice facilitated modelling

    DEFF Research Database (Denmark)

    Tavella, Elena; Papadopoulos, Thanos

    2015-01-01

    , and empirically supports the claim that facilitation skills can be taught to participants to enable them to self-facilitate workshops. Differences were also found, which led to the introduction of a new dimension—‘internal versus external’ facilitation. The implications of our findings for effective training...

  7. Intermittent Fasting Protects against Alzheimer's Disease Possible through Restoring Aquaporin-4 Polarity.

    Science.gov (United States)

    Zhang, Jingzhu; Zhan, Zhipeng; Li, Xinhui; Xing, Aiping; Jiang, Congmin; Chen, Yanqiu; Shi, Wanying; An, Li

    2017-01-01

    The impairment of amyloid-β (Aβ) clearance in the brain plays a causative role in Alzheimer's disease (AD). Polarity distribution of aquaporin-4 (AQP4) is important to remove Aβ from brain. AQP4 polarity can be influenced by the ratio of two AQP4 isoforms M1 and M23 (AQP4-M1/M23), however, it is unknown whether the ratio of AQP4-M1/M23 changes in AD. Histone deacetylase 3 has been reported to be significantly increased in AD brain. Moreover, evidence indicated that microRNA-130a (miR-130a) possibly mediates the regulation of histone deacetylase 3 on AQP4-M1/M23 ratio by repressing the transcriptional activity of AQP4-M1 in AD. This study aimed to investigate whether intermittent fasting (IF), increasing the level of an endogenous histone deacetylases inhibitor β-hydroxybutyrate, restores AQP4 polarity via miR-130a mediated reduction of AQP4-M1/M23 ratio in protection against AD. The results showed that IF ameliorated cognitive dysfunction, prevented brain from Aβ deposition, and restored the AQP4 polarity in a mouse model of AD (APP/PS1 double-transgenic mice). Additionally, IF down-regulated the expression of AQP4-M1 and histone deacetylase 3, reduced AQP4-M1/M23 ratio, and increased miR-130a expression in the cerebral cortex of APP/PS1 mice. In vitro , β-hydroxybutyrate was found to down-regulate the expression of AQP4-M1 and histone deacetylase 3, reduce AQP4-M1/M23 ratio, and increase AQP4-M23 and miR-130a expression in 2 μM Aβ-treated U251 cells. Interestingly, on the contrary to the result observed in 2 μM Aβ-treated cells, AQP4 expression was obviously decreased in cells exposed to 10 μM Aβ. miR-130a mimic decreased the expression of AQP4-M1 and the ratio of AQP4-M1/M23, as well as silencing histone deacetylase 3 caused the up-regulation of AQP4 and miR-130a, and the reduction of AQP4-M1/M23 ratio in U251 cells. In conclusion, IF exhibits beneficial effects against AD. The mechanism may be associated with recovery of AQP4 polarity, resulting from

  8. Intermittent Fasting Protects against Alzheimer’s Disease Possible through Restoring Aquaporin-4 Polarity

    Directory of Open Access Journals (Sweden)

    Jingzhu Zhang

    2017-11-01

    Full Text Available The impairment of amyloid-β (Aβ clearance in the brain plays a causative role in Alzheimer’s disease (AD. Polarity distribution of aquaporin-4 (AQP4 is important to remove Aβ from brain. AQP4 polarity can be influenced by the ratio of two AQP4 isoforms M1 and M23 (AQP4-M1/M23, however, it is unknown whether the ratio of AQP4-M1/M23 changes in AD. Histone deacetylase 3 has been reported to be significantly increased in AD brain. Moreover, evidence indicated that microRNA-130a (miR-130a possibly mediates the regulation of histone deacetylase 3 on AQP4-M1/M23 ratio by repressing the transcriptional activity of AQP4-M1 in AD. This study aimed to investigate whether intermittent fasting (IF, increasing the level of an endogenous histone deacetylases inhibitor β-hydroxybutyrate, restores AQP4 polarity via miR-130a mediated reduction of AQP4-M1/M23 ratio in protection against AD. The results showed that IF ameliorated cognitive dysfunction, prevented brain from Aβ deposition, and restored the AQP4 polarity in a mouse model of AD (APP/PS1 double-transgenic mice. Additionally, IF down-regulated the expression of AQP4-M1 and histone deacetylase 3, reduced AQP4-M1/M23 ratio, and increased miR-130a expression in the cerebral cortex of APP/PS1 mice. In vitro, β-hydroxybutyrate was found to down-regulate the expression of AQP4-M1 and histone deacetylase 3, reduce AQP4-M1/M23 ratio, and increase AQP4-M23 and miR-130a expression in 2 μM Aβ-treated U251 cells. Interestingly, on the contrary to the result observed in 2 μM Aβ-treated cells, AQP4 expression was obviously decreased in cells exposed to 10 μM Aβ. miR-130a mimic decreased the expression of AQP4-M1 and the ratio of AQP4-M1/M23, as well as silencing histone deacetylase 3 caused the up-regulation of AQP4 and miR-130a, and the reduction of AQP4-M1/M23 ratio in U251 cells. In conclusion, IF exhibits beneficial effects against AD. The mechanism may be associated with recovery of AQP4 polarity

  9. Facilitating post traumatic growth

    Directory of Open Access Journals (Sweden)

    Cox Helen

    2004-07-01

    Full Text Available Abstract Background Whilst negative responses to traumatic injury have been well documented in the literature, there is a small but growing body of work that identifies posttraumatic growth as a salient feature of this experience. We contribute to this discourse by reporting on the experiences of 13 individuals who were traumatically injured, had undergone extensive rehabilitation and were discharged from formal care. All participants were injured through involvement in a motor vehicle accident, with the exception of one, who was injured through falling off the roof of a house. Methods In this qualitative study, we used an audio-taped in-depth interview with each participant as the means of data collection. Interviews were transcribed verbatim and analysed thematically to determine the participants' unique perspectives on the experience of recovery from traumatic injury. In reporting the findings, all participants' were given a pseudonym to assure their anonymity. Results Most participants indicated that their involvement in a traumatic occurrence was a springboard for growth that enabled them to develop new perspectives on life and living. Conclusion There are a number of contributions that health providers may make to the recovery of individuals who have been traumatically injured to assist them to develop new views of vulnerability and strength, make changes in relationships, and facilitate philosophical, physical and spiritual growth.

  10. SSRI Facilitated Crack Dancing

    Directory of Open Access Journals (Sweden)

    Ravi Doobay

    2017-01-01

    Full Text Available Choreoathetoid movement secondary to cocaine use is a well-documented phenomenon better known as “crack dancing.” It consists of uncontrolled writhing movements secondary to excess dopamine from cocaine use. We present a 32-year-old male who had been using cocaine for many years and was recently started on paroxetine, a selective serotonin reuptake inhibitor (SSRI for worsening depression four weeks before presentation. He had been doing cocaine every 2 weeks for the last three years and had never “crack danced” before this episode. The authors have conducted a thorough literature review and cited studies that suggest “crack dancing” is associated with excess dopamine. There has never been a documented case report of an SSRI being linked with “crack dancing.” The authors propose that the excess dopaminergic effect of the SSRI lowered the dopamine threshold for “crack dancing.” There is a communication with the Raphe Nucleus and the Substantia Nigra, which explains how the SSRI increases dopamine levels. This is the first documented case of an SSRI facilitating the “crack dance.”

  11. How Does Silicon Mediate Plant Water Uptake and Loss Under Water Deficiency?

    Directory of Open Access Journals (Sweden)

    Daoqian Chen

    2018-03-01

    Full Text Available In plants, water deficiency can result from a deficit of water from the soil, an obstacle to the uptake of water or the excess water loss; in these cases, the similar consequence is the limitation of plant growth and crop yield. Silicon (Si has been widely reported to alleviate the plant water status and water balance under variant stress conditions in both monocot and dicot plants, especially under drought and salt stresses. However, the underlying mechanism is unclear. In addition to the regulation of leaf transpiration, recently, Si application was found to be involved in the adjustment of root hydraulic conductance by up-regulating aquaporin gene expression and concentrating K in the xylem sap. Therefore, this review discusses the potential effects of Si on both leaf transpiration and root water absorption, especially focusing on how Si modulates the root hydraulic conductance. A growing number of studies support the conclusion that Si application improves plant water status by increasing root water uptake, rather than by decreasing their water loss under conditions of water deficiency. The enhancement of plant water uptake by Si is achievable through the activation of osmotic adjustment, improving aquaporin activity and increasing the root/shoot ratio. The underlying mechanisms of the Si on improving plant water uptake under water deficiency conditions are discussed.

  12. Growing Plants and Minds

    Science.gov (United States)

    Presser, Ashley Lewis; Kamdar, Danae; Vidiksis, Regan; Goldstein, Marion; Dominguez, Ximena; Orr, Jillian

    2017-01-01

    Many preschool classrooms explore plant growth. However, because many plants take a long time to grow, it is often hard to facilitate engagement in some practices (i.e., since change is typically not observable from one day to another, children often forget their prior predictions or cannot recall what plants looked like days or weeks earlier).…

  13. Fundaments of plant cybernetics.

    Science.gov (United States)

    Zucconi, F

    2001-01-01

    A systemic approach is proposed for analyzing plants' physiological organization and cybernesis. To this end, the plant is inspected as a system, starting from the integration of crown and root systems, and its impact on a number of basic epigenetic events. The approach proves to be axiomatic and facilitates the definition of the principles behind the plant's autonomous control of growth and reproduction.

  14. FeEDDHA-facilitated Fe uptake in relation to the behaviour of FeEDDHA components in the soil-plant system as a function of time and dosage.

    OpenAIRE

    Schenkeveld, W.D.C.; Temminghoff, E.J.M.; Reichwein, A.M.; Riemsdijk, van, W.H.

    2010-01-01

    FeEDDHA products are widely used to prevent and remedy Fe chlorosis in crops grown on calcareous soils. These products consist of a mixture of FeEDDHA components: racemic o,o-FeEDDHA, meso o,o-FeEDDHA, o,p-FeEDDHA and rest-FeEDDHA. The FeEDDHA components differ in physical and chemical properties, and as a consequence also in effectiveness as Fe fertilizer. In order to efficiently match dose, frequency and moment of FeEDDHA application with the Fe requirements of plants, it is important to un...

  15. The impact of maternal protein restriction during rat pregnancy upon renal expression of angiotensin receptors and vasopressin-related aquaporins

    Directory of Open Access Journals (Sweden)

    Cornock Ruth

    2010-08-01

    Full Text Available Abstract Background Maternal protein restriction during rat pregnancy is known to impact upon fetal development, growth and risk of disease in later life. It is of interest to understand how protein undernutrition influences the normal maternal adaptation to pregnancy. Here we investigated the mechanisms regulating renal haemodynamics and plasma volume during pregnancy, in the context of both normal and reduced plasma volume expansion. The study focused on expression of renal angiotensin receptors (ATR and vasopressin-related aquaporins (AQP, hypothesising that an alteration in the balance of these proteins would be associated with pregnancy per se and with compromised plasma volume expansion in rats fed a low-protein diet. Methods Female Wistar rats were mated and fed a control (18% casein or low-protein (9% casein diet during pregnancy. Animals were anaesthetised on days 5, 10, 15 and 20 of gestation (n = 8/group/time-point for determination of plasma volume using Evans Blue dye, prior to euthanasia and collection of tissues. Expression of the ATR subtypes and AQP2, 3 and 4 were assessed in maternal kidneys by PCR and western blotting. 24 non-pregnant Wistar rats underwent the same procedure at defined points of the oestrous cycle. Results As expected, pregnancy was associated with an increase in blood volume and haemodilution impacted upon red blood cell counts and haemoglobin concentrations. Expression of angiotensin II receptors and aquaporins 2, 3 and 4 was stable across all stages of the oestrus cycle. Interesting patterns of intra-renal protein expression were observed in response to pregnancy, including a significant down-regulation of AQP2. In contrast to previous literature and despite an apparent delay in blood volume expansion in low-protein fed rats, blood volume did not differ significantly between groups of pregnant animals. However, a significant down-regulation of AT2R protein expression was observed in low-protein fed animals

  16. Homozygosity for aquaporin 7 G264V in three unrelated children with hyperglyceroluria and a mild platelet secretion defect.

    Science.gov (United States)

    Goubau, Christophe; Jaeken, Jaak; Levtchenko, Elena N; Thys, Chantal; Di Michele, Michela; Martens, Geert A; Gerlo, Erik; De Vos, Rita; Buyse, Gunnar M; Goemans, Nathalie; Van Geet, Chris; Freson, Kathleen

    2013-01-01

    Aquaporin 7 (AQP7) belongs to the aquaglyceroporin family, which transports glycerol and water. AQP7-deficient mice develop obesity, insulin resistance, and hyperglyceroluria. However, AQP7's pathophysiologic role in humans is not yet known. Three children with psychomotor retardation and hyperglyceroluria were screened for AQP7 mutations. The children were from unrelated families. Urine and plasma glycerol levels were measured using a three-step enzymatic approach. Platelet morphology and function were studied using electron microscopy, aggregations, and adenosine triphosphate (ATP) secretion tests. The index patients were homozygous for AQP7 G264V, which has previously been shown to inhibit transport of glycerol in Xenopus oocytes. We also detected a subclinical platelet secretion defect with reduced ATP secretion, and the absence of a secondary aggregation wave after epinephrine stimulation. Electron microscopy revealed round platelets with centrally located granules. Immunostaining showed AQP7 colocalization, with dense granules that seemed to be released after strong platelet activation. Healthy relatives of these patients, who were homozygous (not heterozygous) for G264V, also had hyperglyceroluria and platelet granule abnormalities. The discovery of an association between urine glycerol loss and a platelet secretion defect is a novel one, and our findings imply the involvement of AQPs in platelet secretion. Additional studies are needed to define whether AQP7 G264V is also a risk factor for mental disability.

  17. Central diabetes insipidus associated with impaired renal aquaporin-1 expression in mice lacking liver X receptor β.

    Science.gov (United States)

    Gabbi, Chiara; Kong, Xiaomu; Suzuki, Hitoshi; Kim, Hyun-Jin; Gao, Min; Jia, Xiao; Ohnishi, Hideo; Ueta, Yoichi; Warner, Margaret; Guan, Youfei; Gustafsson, Jan-Åke

    2012-02-21

    The present study demonstrates a key role for the oxysterol receptor liver X receptor β (LXRβ) in the etiology of diabetes insipidus (DI). Given free access to water, LXRβ(-/-) but not LXRα(-/-) mice exhibited polyuria (abnormal daily excretion of highly diluted urine) and polydipsia (increased water intake), both features of diabetes insipidus. LXRβ(-/-) mice responded to 24-h dehydration with a decreased urine volume and increased urine osmolality. To determine whether the DI was of central or nephrogenic origin, we examined the responsiveness of the kidney to arginine vasopressin (AVP). An i.p. injection of AVP to LXRβ(-/-) mice revealed a partial kidney response: There was no effect on urine volume, but there was a significant increase of urine osmolality, suggesting that DI may be caused by a defect in central production of AVP. In the brain of WT mice LXRβ was expressed in the nuclei of magnocellular neurons in the supraoptic and paraventricular nuclei of the hypothalamus. In LXRβ(-/-) mice the expression of AVP was markedly decreased in the magnocellular neurons as well as in urine collected over a 24-h period. The persistent high urine volume after AVP administration was traced to a reduction in aquaporin-1 expression in the kidney of LXRβ(-/-) mice. The LXR agonist (GW3965) in WT mice elicited an increase in urine osmolality, suggesting that LXRβ is a key receptor in controlling water balance with targets in both the brain and kidney, and it could be a therapeutic target in disorders of water balance.

  18. Induction stage-dependent expression of vascular endothelial growth factor and aquaporin-1 in diethylstilbestrol-treated rat pituitary

    Directory of Open Access Journals (Sweden)

    W Zhao

    2009-03-01

    Full Text Available The anterior pituitary gland undergoes tumourigenic changes in response to oestrogen treatment in several breeds of rats. We administered diethylstilbestrol (DES to female Wistar rats and assessed whether the expression of vascular endothelial growth factor (VEGF and aquaporin-1 (AQP-1 was altered at different time points following DES administration. In vivo magnetic resonance imaging (MRI scans showed that the mass index corresponding to the mid-sagittal area of DES-treated pituitary was significantly higher than the vehicle-controlled pituitary (p less than 0.01 at three specific time points, accompanied by a significant reduction in body weight. Haematoxylin and eosin (HE staining and immunohistochemical analysis demonstrated that during early stages of induction, DES increased cell proliferation and sprouting of endothelial cells, and VEGF expression transitioned from a vessel-surrounding pattern to a diffuse pattern. During later stages, angiogenesis was predominant, and VEGF expression decreased. In contrast to the early abundant expression of VEGF, endothelial expression of AQP- 1 increased during later stages. Our data indicated a dynamic scenario of biological alterations in DES-treated pituitary tissue, in which VEGF and AQP-1 exert their functions at different stages of induction, and we provide novel insights into understanding oestrogen-related tumourigenesis in the anterior pituitary gland.

  19. Induction stage-dependent expression of vascular endothelial growth factor and aquaporin-1 in diethylstilbestrol-treated rat pituitary

    Directory of Open Access Journals (Sweden)

    Z Wang

    2009-03-01

    Full Text Available The anterior pituitary gland undergoes tumourigenic changes in response to oestrogen treatment in several breeds of rats. We administered diethylstilbestrol (DES to female Wistar rats and assessed whether the expression of vascular endothelial growth factor (VEGF and aquaporin-1 (AQP-1 was altered at different time points following DES administration. In vivo magnetic resonance imaging (MRI scans showed that the mass index corresponding to the mid-sagittal area of DES-treated pituitary was significantly higher than the vehicle-controlled pituitary (p<0.01 at three specific time points, accompanied by a significant reduction in body weight. Haematoxylin and eosin (HE staining and immunohistochemical analysis demonstrated that during early stages of induction, DES increased cell proliferation and sprouting of endothelial cells, and VEGF expression transitioned from a vessel-surrounding pattern to a diffuse pattern. During later stages, angiogenesis was predominant, and VEGF expression decreased. In contrast to the early abundant expression of VEGF, endothelial expression of AQP- 1 increased during later stages. Our data indicated a dynamic scenario of biological alterations in DES-treated pituitary tissue, in which VEGF and AQP-1 exert their functions at different stages of induction, and we provide novel insights into understanding oestrogen-related tumourigenesis in the anterior pituitary gland.

  20. Atomic scale simulation of H2O2 permeation through aquaporin: toward the understanding of plasma cancer treatment

    Science.gov (United States)

    Yusupov, Maksudbek; Yan, Dayun; Cordeiro, Rodrigo M.; Bogaerts, Annemie

    2018-03-01

    Experiments have demonstrated the potential selective anticancer capacity of cold atmospheric plasmas (CAPs), but the underlying mechanisms remain unclear. Using computer simulations, we try to shed light on the mechanism of selectivity, based on aquaporins (AQPs), i.e. transmembrane protein channels transferring external H2O2 and other reactive oxygen species, created e.g. by CAPs, to the cell interior. Specifically, we perform molecular dynamics simulations for the permeation of H2O2 through AQP1 (one of the members of the AQP family) and the palmitoyl-oleoyl-phosphatidylcholine (POPC) phospholipid bilayer (PLB). The free energy barrier of H2O2 across AQP1 is lower than for the POPC PLB, while the permeability coefficient, calculated using the free energy and diffusion rate profiles, is two orders of magnitude higher. This indicates that the delivery of H2O2 into the cell interior should be through AQP. Our study gives a better insight into the role of AQPs in the selectivity of CAPs for treating cancer cells.

  1. Efficacy of Polyvalent Human Immunoglobulins in an Animal Model of Neuromyelitis Optica Evoked by Intrathecal Anti-Aquaporin 4 Antibodies

    Directory of Open Access Journals (Sweden)

    Benedikt Grünewald

    2016-08-01

    Full Text Available Neuromyelitis Optica Spectrum Disorders (NMOSD are associated with autoantibodies (ABs targeting the astrocytic aquaporin-4 water channels (AQP4-ABs. These ABs have a direct pathogenic role by initiating a variety of immunological and inflammatory processes in the course of disease. In a recently-established animal model, chronic intrathecal passive-transfer of immunoglobulin G from NMOSD patients (NMO-IgG, or of recombinant human AQP4-ABs (rAB-AQP4, provided evidence for complementary and immune-cell independent effects of AQP4-ABs. Utilizing this animal model, we here tested the effects of systemically and intrathecally applied pooled human immunoglobulins (IVIg using a preventive and a therapeutic paradigm. In NMO-IgG animals, prophylactic application of systemic IVIg led to a reduced median disease score of 2.4 on a 0–10 scale, in comparison to 4.1 with sham treatment. Therapeutic IVIg, applied systemically after the 10th intrathecal NMO-IgG injection, significantly reduced the disease score by 0.8. Intrathecal IVIg application induced a beneficial effect in animals with NMO-IgG (median score IVIg 1.6 vs. sham 3.7 or with rAB-AQP4 (median score IVIg 2.0 vs. sham 3.7. We here provide evidence that treatment with IVIg ameliorates disease symptoms in this passive-transfer model, in analogy to former studies investigating passive-transfer animal models of other antibody-mediated disorders.

  2. Genome-Wide Identification and Expression Analyses of Aquaporin Gene Family during Development and Abiotic Stress in Banana

    Science.gov (United States)

    Hu, Wei; Hou, Xiaowan; Huang, Chao; Yan, Yan; Tie, Weiwei; Ding, Zehong; Wei, Yunxie; Liu, Juhua; Miao, Hongxia; Lu, Zhiwei; Li, Meiying; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Aquaporins (AQPs) function to selectively control the flow of water and other small molecules through biological membranes, playing crucial roles in various biological processes. However, little information is available on the AQP gene family in bananas. In this study, we identified 47 banana AQP genes based on the banana genome sequence. Evolutionary analysis of AQPs from banana, Arabidopsis, poplar, and rice indicated that banana AQPs (MaAQPs) were clustered into four subfamilies. Conserved motif analysis showed that all banana AQPs contained the typical AQP-like or major intrinsic protein (MIP) domain. Gene structure analysis suggested the majority of MaAQPs had two to four introns with a highly specific number and length for each subfamily. Expression analysis of MaAQP genes during fruit development and postharvest ripening showed that some MaAQP genes exhibited high expression levels during these stages, indicating the involvement of MaAQP genes in banana fruit development and ripening. Additionally, some MaAQP genes showed strong induction after stress treatment and therefore, may represent potential candidates for improving banana resistance to abiotic stress. Taken together, this study identified some excellent tissue-specific, fruit development- and ripening-dependent, and abiotic stress-responsive candidate MaAQP genes, which could lay a solid foundation for genetic improvement of banana cultivars. PMID:26307965

  3. Fluxes of water through aquaporin 9 weaken membrane-cytoskeleton anchorage and promote formation of membrane protrusions.

    Directory of Open Access Journals (Sweden)

    Thommie Karlsson

    Full Text Available All modes of cell migration require rapid rearrangements of cell shape, allowing the cell to navigate within narrow spaces in an extracellular matrix. Thus, a highly flexible membrane and a dynamic cytoskeleton are crucial for rapid cell migration. Cytoskeleton dynamics and tension also play instrumental roles in the formation of different specialized cell membrane protrusions, viz. lamellipodia, filopodia, and membrane blebs. The flux of water through membrane-anchored water channels, known as aquaporins (AQPs has recently been implicated in the regulation of cell motility, and here we provide novel evidence for the role of AQP9 in the development of various forms of membrane protrusion. Using multiple imaging techniques and cellular models we show that: (i AQP9 induced and accumulated in filopodia, (ii AQP9-associated filopodial extensions preceded actin polymerization, which was in turn crucial for their stability and dynamics, and (iii minute, local reductions in osmolarity immediately initiated small dynamic bleb-like protrusions, the size of which correlated with the reduction in osmotic pressure. Based on this, we present a model for AQP9-induced membrane protrusion, where the interplay of water fluxes through AQP9 and actin dynamics regulate the cellular protrusive and motile activity of cells.

  4. Genetic forms of nephrogenic diabetes insipidus (NDI): Vasopressin receptor defect (X-linked) and aquaporin defect (autosomal recessive and dominant).

    Science.gov (United States)

    Bichet, Daniel G; Bockenhauer, Detlef

    2016-03-01

    Nephrogenic diabetes insipidus (NDI), which can be inherited or acquired, is characterized by an inability to concentrate urine despite normal or elevated plasma concentrations of the antidiuretic hormone, arginine vasopressin (AVP). Polyuria with hyposthenuria and polydipsia are the cardinal clinical manifestations of the disease. About 90% of patients with congenital NDI are males with X-linked NDI who have mutations in the vasopressin V2 receptor (AVPR2) gene encoding the vasopressin V2 receptor. In less than 10% of the families studied, congenital NDI has an autosomal recessive or autosomal dominant mode of inheritance with mutations in the aquaporin-2 (AQP2) gene. When studied in vitro, most AVPR2 and AQP2 mutations lead to proteins trapped in the endoplasmic reticulum and are unable to reach the plasma membrane. Prior knowledge of AVPR2 or AQP2 mutations in NDI families and perinatal mutation testing is of direct clinical value and can avert the physical and mental retardation associated with repeated episodes of dehydration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Phosphorylation in the C-terminal domain of Aquaporin-4 is required for Golgi transition in primary cultured astrocytes

    International Nuclear Information System (INIS)

    Kadohira, Ikuko; Abe, Yoichiro; Nuriya, Mutsuo; Sano, Kazumi; Tsuji, Shoji; Arimitsu, Takeshi; Yoshimura, Yasunori; Yasui, Masato

    2008-01-01

    Aquaporin-4 (AQP4) is expressed in the perivascular and subpial astrocytes end-feet in mammalian brain, and plays a critical component of an integrated water and potassium homeostasis. Here we examine whether AQP4 is phosphorylated in primary cultured mouse astrocytes. Astrocytes were metabolically labeled with [ 32 P]phosphoric acid, then AQP4 was immunoprecipitated with anti-AQP4 antibody. We observed that AQP4 was constitutively phosphorylated, which is reduced by treatment with protein kinase CK2 inhibitors. To elucidate the phosphorylation of AQP4 by CK2, myc-tagged wild-type or mutant AQP4 was transiently transfected in primary cultured astrocytes. Substitution of Ala residues for four putative CK2 phosphorylation sites in the C terminus abolished the phosphorylation of AQP4. Immunofluorescent microscopy revealed that the quadruple mutant was localized in the Golgi apparatus. These observations indicate that the C-terminal domain of AQP4 is constitutively phosphorylated at least in part by protein kinase CK2 and it is required for Golgi transition.

  6. Fine-scale mapping of natural variation in fly fecundity identifies neuronal domain of expression and function of an aquaporin.

    Directory of Open Access Journals (Sweden)

    Alan O Bergland

    Full Text Available To gain insight into the molecular genetic basis of standing variation in fitness related traits, we identify a novel factor that regulates the molecular and physiological basis of natural variation in female Drosophila melanogaster fecundity. Genetic variation in female fecundity in flies derived from a wild orchard population is heritable and largely independent of other measured life history traits. We map a portion of this variation to a single QTL and then use deficiency mapping to further refine this QTL to 5 candidate genes. Ubiquitous expression of RNAi against only one of these genes, an aquaporin encoded by Drip, reduces fecundity. Within our mapping population Drip mRNA level in the head, but not other tissues, is positively correlated with fecundity. We localize Drip expression to a small population of corazonin producing neurons located in the dorsolateral posterior compartments of the protocerebrum. Expression of Drip-RNAi using both the pan-neuronal ELAV-Gal4 and the Crz-Gal4 drivers reduces fecundity. Low-fecundity RILs have decreased Crz expression and increased expression of pale, the enzyme encoding the rate-limiting step in the production of dopamine, a modulator of insect life histories. Taken together these data suggest that natural variation in Drip expression in the corazonin producing neurons contributes to standing variation in fitness by altering the concentration of two neurohormones.

  7. Single amino acids in the carboxyl terminal domain of aquaporin-1 contribute to cGMP-dependent ion channel activation

    Directory of Open Access Journals (Sweden)

    Yool Andrea J

    2003-10-01

    Full Text Available Abstract Background Aquaporin-1 (AQP1 functions as an osmotic water channel and a gated cation channel. Activation of the AQP1 ion conductance by intracellular cGMP was hypothesized to involve the carboxyl (C- terminus, based on amino acid sequence alignments with cyclic-nucleotide-gated channels and cGMP-selective phosphodiesterases. Results Voltage clamp analyses of human AQP1 channels expressed in Xenopus oocytes demonstrated that the nitric oxide donor, sodium nitroprusside (SNP; 3–14 mM activated the ionic conductance response in a dose-dependent manner. Block of soluble guanylate cyclase prevented the response. Enzyme immunoassays confirmed a linear dose-dependent relationship between SNP and the resulting intracellular cGMP levels (up to 1700 fmol cGMP /oocyte at 14 mM SNP. Results here are the first to show that the efficacy of ion channel activation is decreased by mutations of AQP1 at conserved residues in the C-terminal domain (aspartate D237 and lysine K243. Conclusions These data support the idea that the limited amino acid sequence similarities found between three diverse classes of cGMP-binding proteins are significant to the function of AQP1 as a cGMP-gated ion channel, and provide direct evidence for the involvement of the AQP1 C-terminal domain in cGMP-mediated ion channel activation.

  8. Association of Gel-Forming Mucins and Aquaporin Gene Expression With Hearing Loss, Effusion Viscosity, and Inflammation in Otitis Media With Effusion.

    Science.gov (United States)

    Samuels, Tina L; Yan, Justin C; Khampang, Pawjai; Dettmar, Peter W; MacKinnon, Alexander; Hong, Wenzhou; Johnston, Nikki; Papsin, Blake C; Chun, Robert H; McCormick, Michael E; Kerschner, Joseph E

    2017-08-01

    Persistent, viscous middle ear effusion in pediatric otitis media (OM) contributes to increased likelihood of anesthesia and surgery, conductive hearing loss, and subsequent developmental delays. Biomarkers of effusion viscosity and hearing loss have not yet been identified despite the potential that such markers hold for targeted therapy and screening. To investigate the association of gel-forming mucins and aquaporin 5 (AQP5) gene expression with inflammation, effusion viscosity, and hearing loss in pediatric OM with effusion (OME). Case-control study of 31 pediatric patients (aged 6 months to 12 years) with OME undergoing tympanostomy tube placement and control individuals (aged 1 to 10 years) undergoing surgery for cochlear implantation from February 1, 2013, through November 30, 2014. Those with 1 or more episodes of OM in the previous 12 months, immunologic abnormality, anatomical or physiologic ear defect, OM-associated syndrome (ie, Down syndrome, cleft palate), chronic mastoiditis, or history of cholesteatoma were excluded from the study. All patients with OME and 1 control were recruited from Children's Hospital of Wisconsin, Milwaukee. The remainder of the controls were recruited from Sick Kids Hospital in Toronto, Ontario, Canada. Two to 3 middle ear biopsy specimens, effusions, and preoperative audiometric data (obtained effusions was assayed using rheometry. Of the 31 study participants, 24 patients had OME (mean [SD] age, 50.4 [31.9] months; 15 [62.5%] male; 16 [66.7%] white) and 7 acted as controls (mean [SD] age, 32.6 [24.4] months; 2 [26.6%] male; 6 [85.7%] white). Mucins and AQP5 gene expression were significantly higher in patients with OME relative to controls (MUC2: ratio, 127.6 [95% CI, 33.7-482.7]; MUC5AC: ratio, 3748.8 [95% CI, 558.1-25 178.4]; MUC5B: ratio, 471.1 [95% CI, 130.7-1697.4]; AQP5: ratio, 2.4 [95% CI, 1.1-5.6]). A 2-fold increase in MUC5B correlated with increased hearing loss (air-bone gap: 7.45 dB [95% CI, 2.65-12.24 d

  9. Learning to Facilitate (Online) Meetings

    DEFF Research Database (Denmark)

    Reimann, Peter; Bull, Susan; Vatrapu, Ravi

    2013-01-01

    We describe an approach to teaching collaboration skills directly by building on competences for meeting facilitation. (Online) meetings provide a rich arena to practice collaboration since they can serve multiple purposes: learning, problem solving, decision making, idea generation and advancement...

  10. On novice facilitators doing research

    DEFF Research Database (Denmark)

    Tavella, Elena

    2018-01-01

    Opportunities for novices to facilitate Problem Structuring Methods (PSMs) workshops are limited, especially because of a lack of access to real-world interventions and confidence in their capabilities. Novices are usually young academics building their careers through publishing. Publishing...... is challenging if facilitation and opportunities for data collection are limited. To address this challenge, this paper suggests autoethnography as a framework for addressing difficulties that novices face in conducting research and publishing on PSMs. This suggestion grows out of a literature study...

  11. Facilitation Skills for Library Professionals

    OpenAIRE

    O'Shea, Anne; Matheson, Laura

    2010-01-01

    Session summary: Brainstorming, problem-solving, team-building and group communication – all of these things can be made easier through facilitation! Come to this fun, interactive workshop to learn techniques and exercises to boost your group meetings. Taught by two information professionals with formal facilitation training and experience, this workshop will give you theory, hands-on practice time and feedback. What participants will learn: Participants will learn techniques to he...

  12. L-type calcium channels play a critical role in maintaining lens transparency by regulating phosphorylation of aquaporin-0 and myosin light chain and expression of connexins.

    Science.gov (United States)

    Maddala, Rupalatha; Nagendran, Tharkika; de Ridder, Gustaaf G; Schey, Kevin L; Rao, Ponugoti Vasantha

    2013-01-01

    Homeostasis of intracellular calcium is crucial for lens cytoarchitecture and transparency, however, the identity of specific channel proteins regulating calcium influx within the lens is not completely understood. Here we examined the expression and distribution profiles of L-type calcium channels (LTCCs) and explored their role in morphological integrity and transparency of the mouse lens, using cDNA microarray, RT-PCR, immunoblot, pharmacological inhibitors and immunofluorescence analyses. The results revealed that Ca (V) 1.2 and 1.3 channels are expressed and distributed in both the epithelium and cortical fiber cells in mouse lens. Inhibition of LTCCs with felodipine or nifedipine induces progressive cortical cataract formation with time, in association with decreased lens weight in ex-vivo mouse lenses. Histological analyses of felodipine treated lenses revealed extensive disorganization and swelling of cortical fiber cells resembling the phenotype reported for altered aquaporin-0 activity without detectable cytotoxic effects. Analysis of both soluble and membrane rich fractions from felodipine treated lenses by SDS-PAGE in conjunction with mass spectrometry and immunoblot analyses revealed decreases in β-B1-crystallin, Hsp-90, spectrin and filensin. Significantly, loss of transparency in the felodipine treated lenses was preceded by an increase in aquaporin-0 serine-235 phosphorylation and levels of connexin-50, together with decreases in myosin light chain phosphorylation and the levels of 14-3-3ε, a phosphoprotein-binding regulatory protein. Felodipine treatment led to a significant increase in gene expression of connexin-50 and 46 in the mouse lens. Additionally, felodipine inhibition of LTCCs in primary cultures of mouse lens epithelial cells resulted in decreased intracellular calcium, and decreased actin stress fibers and myosin light chain phosphorylation, without detectable cytotoxic response. Taken together, these observations reveal a crucial

  13. N-Acetylglutaminoyl-S-farnesyl-L-cysteine (SIG-1191): an anti-inflammatory molecule that increases the expression of the aquaglyceroporin, aquaporin-3, in human keratinocytes.

    Science.gov (United States)

    Fernández, José R; Webb, Corey; Rouzard, Karl; Voronkov, Michael; Huber, Kristen L; Stock, Jeffry B; Stock, Maxwell; Gordon, Joel S; Perez, Eduardo

    2017-03-01

    Isoprenylcysteine (IPC) small molecules were discovered as signal transduction modulating compounds ~25 years ago. More recently, IPC molecules have demonstrated antioxidant and anti-inflammatory properties in a variety of dermal cells as well as antimicrobial activity, representing a novel class of compounds to ameliorate skin conditions and disease. Here, we demonstrate a new IPC compound, N-acetylglutaminoyl-S-farnesyl-L-cysteine (SIG-1191), which inhibits UVB-induced inflammation blocking pro-inflammatory cytokine interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) production. To investigate further the previously reported hydrating potential of IPC compounds, SIG-1191 was tested for its ability to modulate aquaporin expression. Specifically, aquaporin 3 (AQP3) the most abundant aquaporin found in skin has been reported to play a key role in skin hydration, elasticity and barrier repair. Results show here for the first time that SIG-1191 increases AQP3 expression in both cultured normal human epidermal keratinocytes as well as when applied topically in a three-dimensional (3D) reconstructed human skin equivalent. Additionally, SIG-1191 dose dependently increased AQP3 protein levels, as determined by specific antibody staining, in the epidermis of the 3D skin equivalents. To begin to elucidate which signaling pathways SIG-1191 may be modulating to increase AQP3 levels, we used several pharmacological pathway inhibitors and determined that AQP3 expression is mediated by the Mitogen-activated protein kinase/Extracellular signal-regulated kinase kinase (MEK) pathway. Altogether, these data suggest SIG-1191 represents a new IPC derivative with anti-inflammatory activity that may also promote increased skin hydration based on its ability to increase AQP3 levels.

  14. Neuromielitis óptica con alta expresión de acuaporina-4 y anticuerpos anti-acuaporina-4 positivos en suero Neuromyelitis optica with high aquaporin-4 expression and positive serum aquaporin-4 autoantibodies

    Directory of Open Access Journals (Sweden)

    Alejandra Báez

    2012-04-01

    Full Text Available La presencia de anticuerpos IgG en suero, con blanco en los canales de acuaporina-4, es específica de la neuromielitis óptica (NMO. El 60% de los pacientes con NMO presentan lesiones cerebrales en la resonancia magnética (RM; en un 8% (mayoría niños estas lesiones se consideraron "atípicas". Presentamos dos pacientes con NMO y lesiones en el SNC de alta expresión de acuaporina-4. Caso 1: varón de 50 años, que comenzó con pérdida de visión en ojo derecho (OD. Recibió tratamiento empírico con metilprednisolona 1 g/d x 3 días. Al mes presentó dolor generalizado y hemiparesia derecha; nuevamente recibió metilprednisolona 1 g/d x 5 días e IgG IV 400 mg/kg/d × 5 días. Recuperó la deambulación persistiendo el dolor y fenómenos paroxísticos en los 4 miembros. Potenciales evocados visuales: P100, ojo izquierdo (OI 123 mseg. OD sin respuesta. La RM de cerebro (FLAIR mostró hiperintensidad en nervio óptico derecho, hipotálamo y comisura blanca anterior. RM cervical: lesión medular extensa (5 cuerpos vertebrales. Caso 2: mujer de 53 años, con disminución de la agudeza visual en ambos ojos y parestesias en miembros inferiores que remitieron espontáneamente. Evolucionó al mes con cuadriparesia e incontinencia esfinteriana. Recibió metilprednisolona 1 g/d x 5 días, sin mejoría. Potenciales evocados visuales: P100 OI 124 mseg. OD 128 mseg. RM cerebro: (FLAIR hiperintensidad hipotalámica y periacueductal. RM cervical: lesión medular extensa (7 cuerpos vertebrales. Anticuerpos anti-acuaporina-4 positivos en ambos pacientes (inmunofluorescencia indirecta. Las lesiones consideradas "atípicas", como aquí, en sitios con alta densidad de proteínas canales de agua AQP4 deberán considerarse para el diagnóstico diferencial.Disease-specific aquaporin-4 antibodies (NMO-IgG are the main effector of lesions in neuromyelitis optica (NMO patients. Brain MRI lesions are detected in 60% of them, with 8% (almost infants at sites of high

  15. A novel mutation affecting the arginine-137 residue of AVPR2 in dizygous twins leads to nephrogenic diabetes insipidus and attenuated urine exosome aquaporin-2

    DEFF Research Database (Denmark)

    Hinrichs, Gitte R; Hansen, Louise H; Nielsen, Maria R

    2016-01-01

    Mutations in the vasopressin V2 receptor gene AVPR2 may cause X-linked nephrogenic diabetes insipidus by defective apical insertion of aquaporin-2 in the renal collecting duct principal cell. Substitution mutations with exchange of arginine at codon 137 can cause nephrogenic syndrome...... of inappropriate antidiuresis or congenital X-linked nephrogenic diabetes insipidus. We present a novel mutation in codon 137 within AVPR2 with substitution of glycine for arginine in male dizygotic twins. Nephrogenic diabetes insipidus was demonstrated by water deprivation test and resistance to vasopressin...

  16. Structure and stability of the spinach aquaporin SoPIP2;1 in detergent micelles and lipid membranes.

    Directory of Open Access Journals (Sweden)

    Inés Plasencia

    Full Text Available BACKGROUND: SoPIP2;1 constitutes one of the major integral proteins in spinach leaf plasma membranes and belongs to the aquaporin family. SoPIP2;1 is a highly permeable and selective water channel that has been successfully overexpressed and purified with high yields. In order to optimize reconstitution of the purified protein into biomimetic systems, we have here for the first time characterized the structural stability of SoPIP2;1. METHODOLOGY/PRINCIPAL FINDING: We have characterized the protein structural stability after purification and after reconstitution into detergent micelles and proteoliposomes using circular dichroism and fluorescence spectroscopy techniques. The structure of SoPIP2;1 was analyzed either with the protein solubilized with octyl-β-D-glucopyranoside (OG or reconstituted into lipid membranes formed by E. coli lipids, diphytanoylphosphatidylcholine (DPhPC, or reconstituted into lipid membranes formed from mixtures of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPE, 1-palmitoyl-2oleoyl-phosphatidylethanolamine (POPE, 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS, and ergosterol. Generally, SoPIP2;1 secondary structure was found to be predominantly α-helical in accordance with crystallographic data. The protein has a high thermal structural stability in detergent solutions, with an irreversible thermal unfolding occurring at a melting temperature of 58°C. Incorporation of the protein into lipid membranes increases the structural stability as evidenced by an increased melting temperature of up to 70°C. CONCLUSION/SIGNIFICANCE: The results of this study provide insights into SoPIP2;1 stability in various host membranes and suggest suitable choices of detergent and lipid composition for reconstitution of SoPIP2;1 into biomimetic membranes for biotechnological applications.

  17. Development of an Aquaporin-4 Orthogonal Array of Particle-Based ELISA for Neuromyelitis Optica Autoantibodies Detection.

    Directory of Open Access Journals (Sweden)

    Francesco Pisani

    Full Text Available Serological markers of Nuromyelitis Optica (NMO, an autoimmune disorder of the central nervous system, are autoantibodies targeting the astrocytic water channel aquaporin-4 (AQP4. We have previously demonstrated that the main epitopes for these autoantibodies (AQP4-IgG are generated by the supramolecular arrangement of AQP4 tetramers into an Orthogonal Array of Particles (OAPs. Many tests have been developed to detect AQP4-IgG in patient sera but several procedural issues affect OAP assembly and consequently test sensitivity. To date, the protein based ELISA test shows the lowest sensitivity while representing a valid alternative to the more sensitive cell based assay (CBA, which, however, shows economic, technical and interpretation problems. Here we have developed a high perfomance ELISA in which native OAPs are used as the molecular target. To this aim a native size exclusion chromatography method has been developed to isolate integral, highly pure and AQP4-IgG-recognized OAPs from rat brain. These OAPs were immobilized and oriented on a plastic plate by a sandwich approach and 139 human sera were tested, including 67 sera from NMO patients. The OAP-ELISA showed a 99% specificity and a higher sensitivity (91% compared to the CBA test. A comparative analysis revealed an end-point titer three orders of magnitude higher than the commercial ELISA and six times higher than our in-house CBA test. We show that CNS-extracted OAPs are crucial elements in order to perform an efficient AQP4-IgG test and the OAP-ELISA developed represents a valid alternative to the CBA currently used.

  18. Renal response to L-arginine in diabetic rats. A possible link between nitric oxide system and aquaporin-2.

    Directory of Open Access Journals (Sweden)

    María C Ortiz

    Full Text Available The aim of this study was to evaluate whether L-Arginine (L-Arg supplementation modifies nitric oxide (NO system and consequently aquaporin-2 (AQP2 expression in the renal outer medulla of streptozotocin-diabetic rats at an early time point after induction of diabetes. Male Wistar rats were divided in four groups: Control, Diabetic, Diabetic treated with L-Arginine and Control treated with L-Arginine. Nitric oxide synthase (NOS activity was estimated by [14C] L-citrulline production in homogenates of the renal outer medulla and by NADPH-diaphorase staining in renal outer medullary tubules. Western blot was used to detect the expression of AQP2 and NOS types I and III; real time PCR was used to quantify AQP2 mRNA. The expression of both NOS isoforms, NOS I and NOS III, was decreased in the renal outer medulla of diabetic rats and L-Arg failed to prevent these decreases. However, L-Arg improved NO production, NADPH-diaphorase activity in collecting ducts and other tubular structures, and NOS activity in renal homogenates from diabetic rats. AQP2 protein and mRNA were decreased in the renal outer medulla of diabetic rats and L-Arg administration prevented these decreases. These results suggest that the decreased NOS activity in collecting ducts of the renal outer medulla may cause, at least in part, the decreased expression of AQP2 in this model of diabetes and constitute additional evidence supporting a role for NO in contributing to renal water reabsorption through the modulation of AQP2 expression in this pathological condition. However, we cannot discard that another pathway different from NOS also exists that links L-Arg to AQP2 expression.

  19. The pathway of subarachnoid CSF moving into the spinal parenchyma and the role of astrocytic aquaporin-4 in this process.

    Science.gov (United States)

    Wei, Fang; Zhang, Cui; Xue, Rong; Shan, Lidong; Gong, Shan; Wang, Guoqing; Tao, Jin; Xu, Guangyin; Zhang, Guoxing; Wang, Linhui

    2017-08-01

    It has been proved that cerebrospinal fluid (CSF) in the subarachnoid space could reenter the brain parenchyma via the perivascular space. The present study was designed to explore the pathway of subarachnoid CSF flux into the spinal cord and the potential role of aquaporin-4 (AQP4) in this process. Fluorescently tagged cadaverine, for the first time, was used to study CSF movement in mice. Following intracisternal infusion of CSF tracers, the cervical spinal cord was sliced and prepared for fluorescence imaging. Some sections were subject with immunostaining in order to observe tracer distribution and AQP4 expression. Fluorescently tagged cadaverine rapidly entered the spinal cord. Tracer influx into the spinal parenchyma was time dependent. At 10min post-infusion, cadaverine was largely distributed in the superficial tissue adjacent to the pial surface. At 70min post-infusion, cadaverine was distributed in the whole cord and especially concentrated in the gray matter. Furthermore, fluorescent tracer could enter the spinal parenchyma either along the perivascular space or across the pial surface. AQP4 was observed highly expressed in the astrocytic endfeet surrounding blood vessels and the pial surface. Blocking AQP4 by its specific inhibitor TGN-020 strikingly reduced the inflow of CSF tracers into the spinal cord. Subarachnoid CSF could flow into the spinal cord along the perivascular space or across the pial surface, in which AQP4 is involved. Our observation provides a basis for the study on CSF movement in the spinal cord when some neurological diseases occur. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Aquaporin-4 inhibition mediates piroxicam-induced neuroprotection against focal cerebral ischemia/reperfusion injury in rodents.

    Science.gov (United States)

    Bhattacharya, Pallab; Pandey, Anand Kumar; Paul, Sudip; Patnaik, Ranjana; Yavagal, Dileep R

    2013-01-01

    Aquaporin-4(AQP4) is an abundant water channel protein in brain that regulates water transport to maintain homeostasis. Cerebral edema resulting from AQP4 over expression is considered to be one of the major determinants for progressive neuronal insult during cerebral ischemia. Although, both upregulation and downregulation of AQP4 expression is associated with brain pathology, over expression of AQP4 is one of the chief contributors of water imbalance in brain during ischemic pathology. We have found that Piroxicam binds to AQP4 with optimal binding energy value. Thus, we hypothesized that Piroxicam is neuroprotective in the rodent cerebral ischemic model by mitigating cerebral edema via AQP4 regulation. Rats were treated with Piroxicam OR placebo at 30 min prior, 2 h post and 4 h post 60 minutes of MCAO followed by 24 hour reperfusion. Rats were evaluated for neurological deficits and motor function just before sacrifice. Brains were harvested for infarct size estimation, water content measurement, biochemical analysis, RT-PCR and western blot experiments. Piroxicam pretreatment thirty minutes prior to ischemia and four hour post reperfusion afforded neuroprotection as evident through significant reduction in cerebral infarct volume, improvement in motor behavior, neurological deficit and reduction in brain edema. Furthermore, ischemia induced surge in levels of nitrite and malondialdehyde were also found to be significantly reduced in ischemic brain regions in treated animals. This neuroprotection was found to be associated with inhibition of acid mediated rise in intracellular calcium levels and also downregulated AQP4 expression. Findings of the present study provide significant evidence that Piroxicam acts as a potent AQP4 regulator and renders neuroprotection in focal cerebral ischemia. Piroxicam could be clinically exploited for the treatment of brain stroke along with other anti-stroke therapeutics in future.

  1. Overexpression of Aquaporin-1 and Caveolin-1 in the Rat Urinary Bladder Urothelium Following Bladder Outlet Obstruction

    Directory of Open Access Journals (Sweden)

    Sun-Ouck Kim

    2013-12-01

    Full Text Available Purpose This study was designed to investigate the effect of detrusor overactivity induced by partial bladder outlet obstruction (BOO on the expression of aquaporin 1 (AQP1 and caveolin 1 (CAV1 in the rat urinary bladder, and to determine the role of these molecules in detrusor overactivity. Methods Female Sprague-Dawley rats were divided into control (n=30 and experimental (n=30 groups. The BOO group underwent partial BOO, and the control group underwent a sham operation. After 4 weeks, an urodynamic study was performed to measure the contraction interval and contraction pressure. The expression and cellular localization of AQP1 and CAV1 were determined by western blot and immunofluorescence experiments in the rat urinary bladder. Results In cystometrograms, the contraction interval was significantly lower in the BOO group (2.9±1.5 minutes than in the control group (6.7±1.0 minutes (P<0.05. Conversely, the average contraction pressure was significantly higher in the BOO group (21.2±3.3 mmHg than in the control group (13.0±2.5 mmHg (P<0.05. AQP1 and CAV1 were coexpressed in the capillaries, arterioles, and venules of the suburothelial layer. AQP1 and CAV1 protein expression was significantly increased in the BOO rats compared to the control rats (P<0.05. Conclusions Detrusor overactivity induced by BOO causes a significant increase in the expression of AQP1 and CAV1, which were coexpressed in the suburothelial microvasculature. This finding suggests that AQP1 and CAV1 might be closely related to bladder signal activity and may have a functional role in BOO-associated detrusor overactivity.

  2. The role of renal aquaporin 2 in the alleviation of dehydration associated with diabetic polyuria in KKAy mice.

    Science.gov (United States)

    Satake, Masako; Ikarashi, Nobutomo; Ichikawa, Yuhei; Maniwa, Ayaka; Toda, Takahiro; Ito, Kiyomi; Ochiai, Wataru; Sugiyama, Kiyoshi

    2010-10-09

    Polyuria is a symptom that appears in association with diabetes mellitus. Because sustained polyuria causes serious dehydration, it is believed that the body has a compensating mechanism to alleviate dehydration. In the present study, the role of renal aquaporin 2 (AQP2) in the compensating mechanism was investigated in KKAy mice, a type 2 diabetes model. The renal AQP2 expression levels in KKAy mice aged between 5 and 24 weeks were determined using Western blotting. The hypothalamic vasopressin mRNA expression levels also were measured by real-time RT-PCR. Insulin was subcutaneously administered to 11-week-old KKAy mice twice a day for 7 days. After insulin treatment, the renal AQP2 protein expression and the hypothalamic vasopressin mRNA expression were measured. The urinary volumes of 5- and 12-week-old KKAy mice were 1.5 ± 0.3 mL and 9.5 ± 1.2 mL, respectively. The inner medullary AQP2 protein expression of 12-week-old KKAy mice was approximately 2.5-fold higher than that of 5-week-old KKAy mice. The hypothalamic vasopressin mRNA expression of 12-week-old KKAy mice was approximately twice that of 5-week-old KKAy mice. Insulin treatment in KKAy mice resulted in a significant reduction in the plasma glucose level, urinary volume, and inner medullary AQP2 protein and hypothalamic vasopressin mRNA expression. The present study demonstrated that AQP2 is a renal functional molecule of vasopressin that controls urinary volume and that AQP2 in the kidney increases to alleviate dehydration due to type 2 diabetes with polyuria. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Facilitation of learning: part 1.

    Science.gov (United States)

    Warburton, Tyler; Trish, Houghton; Barry, Debbie

    2016-04-06

    This article, the fourth in a series of 11, discusses the context for the facilitation of learning. It outlines the main principles and theories for understanding the process of learning, including examples which link these concepts to practice. The practical aspects of using these theories in a practice setting will be discussed in the fifth article of this series. Together, these two articles will provide mentors and practice teachers with knowledge of the learning process, which will enable them to meet the second domain of the Nursing and Midwifery Council's Standards to Support Learning and Assessment in Practice on facilitation of learning.

  4. Facilitation of Mourning During Childhood.

    Science.gov (United States)

    Kliman, Gilbert; And Others

    This paper discusses case studies of children psychologically disturbed by the death of parents or siblings. Illustrations of mourning facilitation were mainly gathered from 16 orphaned children, ages 3-14. Some techniques used in helping children mourn include: discussing physical details of the illness, discussing previous deaths of animals and…

  5. Brug af mindfulness til facilitering

    DEFF Research Database (Denmark)

    Adriansen, Hanne Kirstine; Krohn, Simon

    2011-01-01

    Gennem de senere år er mindfulness gået fra udelukkende at være en eksistentiel praksis til også at være en behandlingsform og senest til også at blive brugt som et praktisk redskab i erhvervslivet. Denne artikel viser, at mindfulness også kan anvendes i forbindelse med facilitering. Facilitering...... er et værktøj, som bruges i arbejdslivet fx til møder og konferencer, hvor en gruppe mennesker er samlet for at lære eller udrette noget sammen. Det nye ved at kombinere mindfulness med facilitering er, at fokus hermed ændres fra individet, som er centrum for den eksistentielle fordybelse eller det...... terapeutiske forløb, til gruppen, som er udgangspunktet i facilitering. Artiklen viser, hvordan mindfulness konkret kan bruges på gruppeniveau og diskuterer samtidig hvilke problemer, der kan være forbundet hermed. Baseret på vores egne erfaringer, diskuterer vi, hvordan mindfulness kan påvirke en gruppes...

  6. Facilitating Conversations about Managerial Identities

    DEFF Research Database (Denmark)

    Madsen, Mona Toft

    -based organization in the engineering consulting sector b) a reflection meeting, where the same three managers were gathered, and conversations were facilitated based on identity work in the context of earlier interviews. More specifically, three themes were discussed; flat organizational structure, tensions between...

  7. Effects of aquaporin 4 and inward rectifier potassium channel 4.1 on medullospinal edema after methylprednisolone treatment to suppress acute spinal cord injury in rats.

    Science.gov (United States)

    Li, Ye; Hu, Haifeng; Liu, Jingchen; Zhu, Qingsan; Gu, Rui

    2018-02-01

    To investigate the effects of aquaporin 4 (AQP4) and inward rectifier potassium channel 4.1 (Kir4.1) on medullospinal edema after treatment with methylprednisolone (MP) to suppress acute spinal cord injury (ASCI) in rats. Sprague Dawley rats were randomly divided into control, sham, ASCI, and MP-treated ASCI groups. After the induction of ASCI, we injected 30 mg/kg MP via the tail vein at various time points. The Tarlov scoring method was applied to evaluate neurological symptoms, and the wet-dry weights method was applied to measure the water content of the spinal cord. The motor function score of the ASCI group was significantly lower than that of the sham group, and the spinal water content was significantly increased. In addition, the levels of AQP4 and Kir4.1 were significantly increased, as was their degree of coexpression. Compared with that in the ASCI group, the motor function score and the water content were significantly increased in the MP group; in addition, the expression and coexpression of AQP4 and Kir4.1 were significantly reduced. Methylprednisolone inhibited medullospinal edema in rats with acute spinal cord injury, possibly by reducing the coexpression of aquaporin 4 and Kir4.1 in medullospinal tissues.

  8. Unpalatable plants facilitate tree sapling survival in wooded pastures

    NARCIS (Netherlands)

    Smit, C.; Ouden, den J.; Müller-Schärer, H.

    2006-01-01

    Summary 1. In endangered wooded pasture ecosystems established tree saplings are frequently found in spatial association with protective structures, suggesting nurse effects. This associational resistance is thought to be a driving force behind tree regeneration in wooded pastures. Experimental

  9. Characterization of an aquaporin-2 water channel gene mutation causing partial nephrogenic diabetes insipidus in a Mexican family: evidence of increased frequency of the mutation in the town of origin.

    NARCIS (Netherlands)

    Boccalandro, C.; Mattia, F.P. de; Guo, D.C.; Xue, L.; Orlander, P.; King, T.M.; Gupta, P.; Deen, P.M.T.; Lavis, V.R.; Milewicz, D.M.

    2004-01-01

    A Mexican family with partial congenital nephrogenic diabetes insipidus (NDI) that resulted from a mutation in the aquaporin-2 water channel (AQP2) was characterized, and the source of this rare mutation was traced to the family's town of origin in Mexico. Affected individuals with profound polyuria

  10. Effects of acupuncture at GV20 and ST36 on the expression of matrix metalloproteinase 2, aquaporin 4, and aquaporin 9 in rats subjected to cerebral ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Hong Xu

    Full Text Available BACKGROUND/PURPOSE: Ischemic stroke is characterized by high morbidity and mortality worldwide. Matrix metalloproteinase 2 (MMP2, aquaporin (AQP 4, and AQP9 are linked to permeabilization of the blood-brain barrier (BBB in cerebral ischemia/reperfusion injury (CIRI. BBB disruption, tissue inflammation, and MMP/AQP upregulation jointly provoke brain edema/swelling after CIRI, while acupuncture and electroacupuncture can alleviate CIRI symptoms. This study evaluated the hypothesis that acupuncture and electroacupuncture can similarly exert neuroprotective actions in a rat model of middle cerebral artery occlusion (MCAO by modulating MMP2/AQP4/APQ9 expression and inflammatory cell infiltration. METHODS: Eighty 8-week-old Sprague-Dawley rats were randomly divided into sham group S, MCAO model group M, acupuncture group A, electroacupuncture group EA, and edaravone group ED. The MCAO model was established by placement of a suture to block the middle carotid artery, and reperfusion was triggered by suture removal in all groups except group S. Acupuncture and electroacupuncture were administered at acupoints GV20 (governing vessel-20 and ST36 (stomach-36. Rats in groups A, EA, and ED received acupuncture, electroacupuncture, or edaravone, respectively, immediately after MCAO. Neurological function (assessed using the Modified Neurological Severity Score, infarct volume, MMP2/AQP4/AQP9 mRNA and protein expression, and inflammatory cell infiltration were all evaluated at 24 h post-reperfusion. RESULTS: Acupuncture and electroacupuncture significantly decreased infarct size and improved neurological function. Furthermore, target mRNA and protein levels and inflammatory cell infiltration were significantly reduced in groups A, EA, and ED vs. group M. However, MMP2/AQP levels and inflammatory cell infiltration were generally higher in groups A and EA than in group ED except MMP2 mRNA levels. CONCLUSIONS: Acupuncture and electroacupuncture at GV20 and ST36

  11. Overexpression of MfPIP2-7 from Medicago falcata promotes cold tolerance and growth under NO3 (-) deficiency in transgenic tobacco plants.

    Science.gov (United States)

    Zhuo, Chunliu; Wang, Ting; Guo, Zhenfei; Lu, Shaoyun

    2016-06-14

    Plasma membrane intrinsic proteins (PIPs), which belong to aquaporins (AQPs) superfamily, are subdivided into two groups, PIP1 and PIP2, based on sequence similarity. Several PIP2s function as water channels, while PIP1s have low or no water channel activity, but have a role in water permeability through interacting with PIP2. A cold responsive PIP2 named as MfPIP2-7 was isolated from Medicago falcata (hereafter falcata), a forage legume with great cold tolerance, and transgenic tobacco plants overexpressing MfPIP2-7 were analyzed in tolerance to multiple stresses including freezing, chilling, and nitrate reduction in this study. MfPIP2-7 transcript was induced by 4 to 12 h of cold treatment and 2 h of abscisic acid (ABA) treatment. Pretreatment with inhibitor of ABA synthesis blocked the cold induced MfPIP2-7 transcript, indicating that ABA was involved in cold induced transcription of MfPIP2-7 in falcata. Overexpression of MfPIP2-7 resulted in enhanced tolerance to freezing, chilling and NO3 (-) deficiency in transgenic tobacco (Nicotiana tabacum L.) plants as compared with the wild type. Moreover, MfPIP2-7 was demonstrated to facilitate H2O2 diffusion in yeast. Higher transcript levels of several stress responsive genes, such as NtERD10B, NtERD10C, NtDREB1, and 2, and nitrate reductase (NR) encoding genes (NtNIA1, and NtNIA2) were observed in transgenic plants as compared with the wild type with dependence upon H2O2. In addition, NR activity was increased in transgenic plants, which led to alterations in free amino acid components and concentrations. The results suggest that MfPIP2-7 plays an important role in plant tolerance to freezing, chilling, and NO3 (-) deficiency by promoted H2O2 diffusion that in turn up-regulates expression of NIAs and multiple stress responsive genes.

  12. Semantic Coherence Facilitates Distributional Learning.

    Science.gov (United States)

    Ouyang, Long; Boroditsky, Lera; Frank, Michael C

    2017-04-01

    Computational models have shown that purely statistical knowledge about words' linguistic contexts is sufficient to learn many properties of words, including syntactic and semantic category. For example, models can infer that "postman" and "mailman" are semantically similar because they have quantitatively similar patterns of association with other words (e.g., they both tend to occur with words like "deliver," "truck," "package"). In contrast to these computational results, artificial language learning experiments suggest that distributional statistics alone do not facilitate learning of linguistic categories. However, experiments in this paradigm expose participants to entirely novel words, whereas real language learners encounter input that contains some known words that are semantically organized. In three experiments, we show that (a) the presence of familiar semantic reference points facilitates distributional learning and (b) this effect crucially depends both on the presence of known words and the adherence of these known words to some semantic organization. Copyright © 2016 Cognitive Science Society, Inc.

  13. Characteristic sounds facilitate visual search.

    Science.gov (United States)

    Iordanescu, Lucica; Guzman-Martinez, Emmanuel; Grabowecky, Marcia; Suzuki, Satoru

    2008-06-01

    In a natural environment, objects that we look for often make characteristic sounds. A hiding cat may meow, or the keys in the cluttered drawer may jingle when moved. Using a visual search paradigm, we demonstrated that characteristic sounds facilitated visual localization of objects, even when the sounds carried no location information. For example, finding a cat was faster when participants heard a meow sound. In contrast, sounds had no effect when participants searched for names rather than pictures of objects. For example, hearing "meow" did not facilitate localization of the word cat. These results suggest that characteristic sounds cross-modally enhance visual (rather than conceptual) processing of the corresponding objects. Our behavioral demonstration of object-based cross-modal enhancement complements the extensive literature on space-based cross-modal interactions. When looking for your keys next time, you might want to play jingling sounds.

  14. Facilitating the afforestation of Mediterranean polluted soils by nurse shrubs.

    Science.gov (United States)

    Domínguez, María T; Pérez-Ramos, Ignacio M; Murillo, José M; Marañón, Teodoro

    2015-09-15

    The revegetation of polluted sites and abandoned agricultural soils is critical to reduce soil losses and to control the spread of soil pollution in the Mediterranean region, which is currently exposed to the greatest soil erosion risk in Europe. However, events of massive plant mortality usually occur during the first years after planting, mainly due to the adverse conditions of high irradiance and drought stress. Here, we evaluated the usefulness of considering the positive plant-plant interactions (facilitation effect) in the afforestation of polluted agricultural sites, using pre-existing shrubs as nurse plants. We used nurse shrubs as planting microsites for acorns of Quercus ilex (Holm oak) along a gradient of soil pollution in southwestern Spain, and monitored seedling growth, survival, and chemical composition during three consecutive years. Seedling survival greatly increased (from 20% to more than 50%) when acorns were sown under shrub, in comparison to the open, unprotected matrix. Facilitation of seedling growth by shrubs increased along the gradient of soil pollution, in agreement with the stress gradient hypothesis that predicts higher intensity of the facilitation effects with increasing abiotic stress. Although the accumulation of trace elements in seedling leaves was higher underneath shrub, the shading conditions provided by the shrub canopy allowed seedlings to cope with the toxicity provoked by the concurrence of low pH and high trace element concentrations in the most polluted sites. Our results show that the use of shrubs as nurse plants is a promising tool for the cost-effective afforestation of polluted lands under Mediterranean conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Aquaporin-4 autoantibodies in neuromyelitis optica spectrum disorders: comparison between tissue-based and cell-based indirect immunofluorescence assays

    Directory of Open Access Journals (Sweden)

    Chan Koon H

    2010-09-01

    Full Text Available Abstract Background Neuromyelitis optica spectrum disorders (NMOSD are severe central nervous system inflammatory demyelinating disorders (CNS IDD characterized by monophasic or relapsing, longitudinally extensive transverse myelitis (LETM and/or optic neuritis (ON. A significant proportion of NMOSD patients are seropositive for aquaporin-4 (AQP4 autoantibodies. We compared the AQP4 autoantibody detection rates of tissue-based indirect immunofluorescence assay (IIFA and cell-based IIFA. Methods Serum of Chinese CNS IDD patients were assayed for AQP4 autoantibodies by tissue-based IIFA using monkey cerebellum and cell-based IIFA using transfected HEK293 cells which express human AQP4 on their cell membranes. Results In total, 128 CNS IDD patients were studied. We found that 78% of NMO patients were seropositive for AQP4 autoantibodies by cell-based IIFA versus 61% by tissue-based IFA (p = 0.250, 75% of patients having relapsing myelitis (RM with LETM were seropositive by cell-based IIFA versus 50% by tissue-based IIFA (p = 0.250, and 33% of relapsing ON patients were seropositive by cell-based IIFA versus 22% by tissue-based IIFA (p = 1.000; however the differences were not statistically significant. All patients seropositive by tissue-based IIFA were also seropositive for AQP4 autoantibodies by cell-based IIFA. Among 29 NMOSD patients seropositive for AQP4 autoantibodies by cell-based IIFA, 20 (69% were seropositive by tissue-based IIFA. The 9 patients seropositive by cell-based IIFA while seronegative by tissue-based IIFA had NMO (3, RM with LETM (3, a single attack of LETM (1, relapsing ON (1 and a single ON attack (1. Among 23 NMO or RM patients seropositive for AQP4 autoantibodies by cell-based IIFA, comparison between those seropositive (n = 17 and seronegative (n = 6 by tissue-based IIFA revealed no differences in clinical and neuroradiological characteristics between the two groups. Conclusion Cell-based IIFA is slightly more sensitive

  16. Cloning of aquaporin-1 of the blue crab, Callinectes sapidus: its expression during the larval development in hyposalinity.

    Science.gov (United States)

    Chung, J Sook; Maurer, Leah; Bratcher, Meagan; Pitula, Joseph S; Ogburn, Matthew B

    2012-09-03

    Ontogenetic variation in salinity adaptation has been noted for the blue crab, Callinectes sapidus, which uses the export strategy for larval development: females migrate from the estuaries to the coast to spawn, larvae develop in the ocean, and postlarvae (megalopae) colonize estuarine areas. We hypothesized that C. sapidus larvae may be stenohaline and have limited osmoregulatory capacity which compromises their ability to survive in lower salinity waters. We tested this hypothesis using hatchery-raised larvae that were traceable to specific life stages. In addition, we aimed to understand the possible involvement of AQP-1 in salinity adaptation during larval development and during exposure to hyposalinity. A full-length cDNA sequence of aquaporin (GenBank JQ970426) was isolated from the hypodermis of the blue crab, C. sapidus, using PCR with degenerate primers and 5' and 3' RACE. The open reading frame of CasAQP-1 consists of 238 amino acids containing six helical structures and two NPA motifs for the water pore. The expression pattern of CasAQP-1 was ubiquitous in cDNAs from all tissues examined, although higher in the hepatopancreas, thoracic ganglia, abdominal muscle, and hypodermis and lower in the antennal gland, heart, hemocytes, ovary, eyestalk, brain, hindgut, Y-organs, and gill. Callinectes larvae differed in their capacity to molt in hyposalinity, as those at earlier stages from Zoea (Z) 1 to Z4 had lower molting rates than those from Z5 onwards, as compared to controls kept in 30 ppt water. No difference was found in the survival of larvae held at 15 and 30 ppt. CasAQP-1 expression differed with ontogeny during larval development, with significantly higher expression at Z1-2, compared to other larval stages. The exposure to 15 ppt affected larval-stage dependent CasAQP-1 expression which was significantly higher in Z2- 6 stages than the other larval stages. We report the ontogenetic variation in CasAQP-1 expression during the larval development

  17. Protection of Vascular Endothelial Growth Factor to Brain Edema Following Intracerebral Hemorrhage and Its Involved Mechanisms: Effect of Aquaporin-4.

    Directory of Open Access Journals (Sweden)

    Heling Chu

    Full Text Available Vascular endothelial growth factor (VEGF has protective effects on many neurological diseases. However, whether VEGF acts on brain edema following intracerebral hemorrhage (ICH is largely unknown. Our previous study has shown aquaporin-4 (AQP4 plays an important role in brain edema elimination following ICH. Meanwhile, there is close relationship between VEGF and AQP4. In this study, we aimed to test effects of VEGF on brain edema following ICH and examine whether they were AQP4 dependent. Recombinant human VEGF165 (rhVEGF165 was injected intracerebroventricularly 1 d after ICH induced by microinjecting autologous whole blood into striatum. We detected perihemotomal AQP4 protein expression, then examined the effects of rhVEGF165 on perihemotomal brain edema at 1 d, 3 d, and 7 d after injection in wild type (AQP4(+/+ and AQP4 knock-out (AQP4(-/- mice. Furthermore, we assessed the possible signal transduction pathways activated by VEGF to regulate AQP4 expression via astrocyte cultures. We found perihemotomal AQP4 protein expression was highly increased by rhVEGF165. RhVEGF165 alleviated perihemotomal brain edema in AQP4(+/+ mice at each time point, but had no effect on AQP4(-/- mice. Perihemotomal EB extravasation was increased by rhVEGF165 in AQP4(-/- mice, but not AQP4(+/+ mice. RhVEGF165 reduced neurological deficits and increased Nissl's staining cells surrounding hemotoma in both types of mice and these effects were related to AQP4. RhVEGF165 up-regulated phospharylation of C-Jun amino-terminal kinase (p-JNK and extracellular signal-regulated kinase (p-ERK and AQP4 protein in cultured astrocytes. The latter was inhibited by JNK and ERK inhibitors. In conclusion, VEGF reduces neurological deficits, brain edema, and neuronal death surrounding hemotoma but has no influence on BBB permeability. These effects are closely related to AQP4 up-regulation, possibly through activating JNK and ERK pathways. The current study may present new insights to

  18. Shielding design for better plant availability

    International Nuclear Information System (INIS)

    Biro, G.G.

    1975-01-01

    Design methods are described for providing a shield system for nuclear power plants that will facilitate maintenance and inspection, increase overall plant availability, and ensure that man-rem exposures are as low as practicable

  19. Role enactment of facilitation in primary care

    DEFF Research Database (Denmark)

    Due, Tina Drud; Thorsen, Thorkil; Waldorff, Frans Boch

    2017-01-01

    facilitation visits in 13 practice settings and had interviews and focus groups with facilitators. We applied an explorative approach in data collection and analysis, and conducted an inductive thematic analysis. RESULTS: The facilitators mainly enacted four facilitator roles: teacher, super user, peer...

  20. Role enactment of facilitation in primary care

    DEFF Research Database (Denmark)

    Due, Tina Drud; Thorsen, Thorkil; Waldorff, Frans Boch

    2017-01-01

    facilitation visits in 13 practice settings and had interviews and focus groups with facilitators. We applied an explorative approach in data collection and analysis, and conducted an inductive thematic analysis. Results: The facilitators mainly enacted four facilitator roles: teacher, super user, peer...

  1. GIS-facilitated spatial narratives

    DEFF Research Database (Denmark)

    Møller-Jensen, Lasse; Jeppesen, Henrik; Kofie, Richard Y.

    2008-01-01

    on the thematically and narrative linking of a set of locations within an area. A spatial narrative that describes the - largely unsuccessful - history of Danish plantations on the Gold Coast (1788-1850) is implemented through the Google Earth client. This client is seen both as a type of media in itself for ‘home......-based' exploration of sites related to the narrative and as a tool that facilitates the design of spatial narratives before implementation within portable GIS devices. The Google Earth-based visualization of the spatial narrative is created by a Python script that outputs a web-accessible KML format file. The KML...

  2. Effect of ketamine on aquaporin-4 expression and neuronal apoptosis in brain tissues following brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Zangong Zhou; Xiangyu Ji; Li Song; Jianfang Song; Shiduan Wang; Yanwei Yin

    2006-01-01

    BACKGROUND: Aquaporin-4 (AQP-4) is closely related to the formation of brain edema. Neuronal apoptosis plays an important part in the conversion of swelled neuron following traumatic brain injury. At present, the studies on the protective effect of ketamine on brain have involved in its effect on aquaporin-4 expression and neuronal apoptosis in the brain tissues following brain injury in rats.OBJECTIVE: To observe the effect of ketamine on AQP-4 expression and neuronal apoptosis in the brain tissue following rat brain injury, and analyze the time-dependence of ketamine in the treatment of brain injury.DESIGN: Randomized grouping design, controlled animal trial.SETTING: Department of Anesthesiology, the Medical School Hospital of Qingdao University.MATERIALS: Totally 150 rats of clean grade, aged 3 months, were involved and randomized into control group and ketamine-treated group, with 75 rats in each. Each group was divided into 5 subgroups separately at 6,12, 24, 48 and 72 hours after injury, with 15 rats at each time point. Main instruments and reagents:homemade beat machine, ketamine hydrochloride (Hengrui Pharmaceutical Factory, Jiangsu), rabbit anti-rat AQP-4 polyclonal antibody, SABC immunohistochemical reagent kit and TUNEL reagent kit (Boster Co.,Ltd.,Wuhan).METHODS: This trial was carried out in the Institute of Cerebrovascular Disease, Medical College of Qingdao University during March 2005 to February 2006. A weight-dropping rat model of brain injury was created with Feeney method. The rats in the ketamine-treated group were intraperitoneally administered with 50 g/L ketamine (120 mg/kg) one hour after injury, but ketamine was replaced by normal saline in the control group. In each subgroup, the water content of cerebral hemisphere was measured in 5 rats chosen randomly. The left 10 rats in each subgroup were transcardiacally perfused with ketamine, then the brain tissue was made into paraffin sections and stained by haematoxylin and eosin. Neuronal

  3. A Comparison of Petiole Hydraulics and Aquaporin Expression in an Anisohydric and Isohydric Cultivar of Grapevine in Response to Water-Stress Induced Cavitation.

    Science.gov (United States)

    Shelden, Megan C; Vandeleur, Rebecca; Kaiser, Brent N; Tyerman, Stephen D

    2017-01-01

    We report physiological, anatomical and molecular differences in two economically important grapevine ( Vitis vinifera L.) cultivars cv. Grenache (near-isohydric) and Chardonnay (anisohydric) in their response to water-stress induced cavitation. The aim of the study was to compare organ vulnerability (petiole and stem) to cavitation by measuring ultrasonic acoustic emissions (UAE) and percent loss of conductance of potted grapevines subject to the onset of water-stress. Leaf (ψ L ) and stem water potential (ψ S ), stomatal conductance ( g s ), transpiration ( E ), petiole hydraulics ( K Pet ), and xylem diameter were also measured. Chardonnay displayed hydraulic segmentation based on UAE, with cavitation occurring at a less negative ψ L in the petiole than in the stem. Vulnerability segmentation was not observed in Grenache, with both petioles and stems equally vulnerable to cavitation. Leaf water potential that induced 50% of maximum UAE was significantly different between petioles and stems in Chardonnay (ψ 50Petiole = -1.14 and ψ 50Stem = -2.24 MPa) but not in Grenache (ψ 50Petiole = -0.73 and ψ 50Stem = -0.78 MPa). Grenache stems appeared more susceptible to water-stress induced cavitation than Chardonnay stems. Grenache displayed (on average) a higher K Pet likely due to the presence of larger xylem vessels. A close relationship between petiole hydraulic properties and vine water status was observed in Chardonnay but not in Grenache. Transcriptional analysis of aquaporins in the petioles and leaves ( VvPIP1;1, VvPIP2;1, VvPIP2;2 VvPIP2;3, VvTIP1;1 , and VvTIP2;1 ) showed differential regulation diurnally and in response to water-stress. VvPIP2;1 showed strong diurnal regulation in the petioles and leaves of both cultivars with expression highest predawn. Expression of VvPIP2;1 and VvPIP2;2 responded to ψ L and ψ S in both cultivars indicating the expression of these two genes are closely linked to vine water status. Expression of several aquaporin

  4. Voice congruency facilitates word recognition.

    Directory of Open Access Journals (Sweden)

    Sandra Campeanu

    Full Text Available Behavioral studies of spoken word memory have shown that context congruency facilitates both word and source recognition, though the level at which context exerts its influence remains equivocal. We measured event-related potentials (ERPs while participants performed both types of recognition task with words spoken in four voices. Two voice parameters (i.e., gender and accent varied between speakers, with the possibility that none, one or two of these parameters was congruent between study and test. Results indicated that reinstating the study voice at test facilitated both word and source recognition, compared to similar or no context congruency at test. Behavioral effects were paralleled by two ERP modulations. First, in the word recognition test, the left parietal old/new effect showed a positive deflection reflective of context congruency between study and test words. Namely, the same speaker condition provided the most positive deflection of all correctly identified old words. In the source recognition test, a right frontal positivity was found for the same speaker condition compared to the different speaker conditions, regardless of response success. Taken together, the results of this study suggest that the benefit of context congruency is reflected behaviorally and in ERP modulations traditionally associated with r