WorldWideScience

Sample records for plant analysis development

  1. Nuclear plant analyzer development and analysis applications

    International Nuclear Information System (INIS)

    Laats, E.T.

    1984-10-01

    The Nuclear Plant Analyzer (NPA) is being developed as the US Nuclear Regulatory Commission's (NRC's) state of the art safety analysis and engineering tool to address key nuclear plant safety issues. This paper describes four applications of the NPA in assisting reactor safety analyses. Two analyses evaluated reactor operating procedures, during off-normal operation, for a pressurized water reactor (PWR) and a boiling water reactor (BWR), respectively. The third analysis was performed in support of a reactor safety experiment conducted in the Semiscale facility. The final application demonstrated the usefulness of atmospheric dispersion computer codes for site emergency planning purposes. An overview of the NPA and how it supported these analyses are the topics of this paper

  2. Nuclear plant analyzer development and analysis applications

    International Nuclear Information System (INIS)

    Laats, E.T.

    1984-01-01

    The Nuclear Plant Analyzer (NPA) is being developed as the U.S. Nuclear Regulatory Commission's (NRC's) state of the art safety analysis and engineering tool to address key nuclear plant safety issues. The NPA integrates the NRC's computerized reactor behavior simulation codes such as RELAP5 and TRAC-BWR, both of which are well-developed computer graphics programs, and large repositories of reactor design and experimental data. Utilizing the complex reactor behavior codes as well as the experiment data repositories enables simulation applications of the NPA that are generally not possible with more simplistic, less mechanistic reactor behavior codes. These latter codes are used in training simulators or with other NPA-type software packages and are limited to displaying calculated data only. This paper describes four applications of the NPA in assisting reactor safety analyses. Two analyses evaluated reactor operating procedures, during off-normal operation, for a pressurized water reactor (PWR) and a boiling water reactor (BWR), respectively. The third analysis was performed in support of a reactor safety experiment conducted in the Semiscale facility. The final application demonstrated the usefulness of atmospheric dispersion computer codes for site emergency planning purposes. An overview of the NPA and how it supported these analyses are the topics of this paper

  3. Development of web based performance analysis program for nuclear power plant turbine cycle

    International Nuclear Information System (INIS)

    Park, Hoon; Yu, Seung Kyu; Kim, Seong Kun; Ji, Moon Hak; Choi, Kwang Hee; Hong, Seong Ryeol

    2002-01-01

    Performance improvement of turbine cycle affects economic operation of nuclear power plant. We developed performance analysis system for nuclear power plant turbine cycle. The system is based on PTC (Performance Test Code), that is estimation standard of nuclear power plant performance. The system is developed using Java Web-Start and JSP(Java Server Page)

  4. Development of Nuclear Plant Specific Analysis Simulators with ATLAS

    International Nuclear Information System (INIS)

    Jakubowski, Z.; Draeger, P.; Horche, W.; Pointner, W.

    2006-01-01

    The simulation software ATLAS, based on the best-estimate code ATHLET, has been developed by the GRS for a range of applications in the field of nuclear plant safety analysis. Through application of versatile simulation tools and graphical interfaces the user should be able to analyse with ATLAS all essential accident scenarios. Detailed analysis simulators for several German and Russian NPPs are being constructed on the basis of ATLAS. An overview of the ATLAS is presented in the paper, describing its configuration, functions performed by main components and relationships among them. A significant part of any power plant simulator are the balance-of-plant (BOP) models, not only because all the plant transients and non-LOCA accidents can be initiated by operation of BOP systems, but also because the response of the plant to transients or accidents is strongly influenced by the automatic operation of BOP systems. Modelling aspects of BOP systems are shown in detail, also the interface between the process model and BOP systems. Special emphasis has been put on the BOP model builder based on the methodology developed in the GRS. The BOP modeler called GCSM-Generator is an object oriented tool which runs on the online expert system G2. It is equipped with utilities to edit the BOP models, to verification them and to generate a GCSM code, specific for the ATLAS. The communication system of ATLAS presents graphically the results of the simulation and allows interactively influencing the execution of the simulation process (malfunctions, manual control). Displays for communications with simulated processes and presentation of calculations results are also presented. In the framework of the verification of simulation models different tools are used e.g. the PC-codes MATHCAD for the calculation and documentation, ATLET-Input-Graphic for control of geometry data and the expert system G2 for development of BOP-Models. The validation procedure and selected analyses results

  5. Recent development in mass spectrometry and its hyphenated techniques for the analysis of medicinal plants.

    Science.gov (United States)

    Zhu, Ming-Zhi; Chen, Gui-Lin; Wu, Jian-Lin; Li, Na; Liu, Zhong-Hua; Guo, Ming-Quan

    2018-04-23

    Medicinal plants are gaining increasing attention worldwide due to their empirical therapeutic efficacy and being a huge natural compound pool for new drug discovery and development. The efficacy, safety and quality of medicinal plants are the main concerns, which are highly dependent on the comprehensive analysis of chemical components in the medicinal plants. With the advances in mass spectrometry (MS) techniques, comprehensive analysis and fast identification of complex phytochemical components have become feasible, and may meet the needs, for the analysis of medicinal plants. Our aim is to provide an overview on the latest developments in MS and its hyphenated technique and their applications for the comprehensive analysis of medicinal plants. Application of various MS and its hyphenated techniques for the analysis of medicinal plants, including but not limited to one-dimensional chromatography, multiple-dimensional chromatography coupled to MS, ambient ionisation MS, and mass spectral database, have been reviewed and compared in this work. Recent advancs in MS and its hyphenated techniques have made MS one of the most powerful tools for the analysis of complex extracts from medicinal plants due to its excellent separation and identification ability, high sensitivity and resolution, and wide detection dynamic range. To achieve high-throughput or multi-dimensional analysis of medicinal plants, the state-of-the-art MS and its hyphenated techniques have played, and will continue to play a great role in being the major platform for their further research in order to obtain insight into both their empirical therapeutic efficacy and quality control. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Development of a nuclear power plant system analysis code

    International Nuclear Information System (INIS)

    Sim, Suk K.; Jeong, J. J.; Ha, K. S.; Moon, S. K.; Park, J. W.; Yang, S. K.; Song, C. H.; Chun, S. Y.; Kim, H. C.; Chung, B. D.; Lee, W. J.; Kwon, T. S.

    1997-07-01

    During the period of this study, TASS 1.0 code has been prepared for the non-LOCA licensing and reload safety analyses of the Westinghouse and the Korean Standard Nuclear Power Plants (KSNPP) type reactors operating in Korea. TASS-NPA also has been developed for a real time simulation of the Kori-3/4 transients using on-line graphical interactions. TASS 2.0 code has been further developed to timely apply the TASS 2.0 code for the design certification of the KNGR. The COBRA/RELAP5 code, a multi-dimensional best estimate system code, has been developed by integrating the realistic three-dimensional reactor vessel model with the RELAP5 /MOD3.2 code, a one-dimensional system code. Also, a 3D turbulent two-phase flow analysis code, FEMOTH-TF, has been developed using finite element technique to analyze local thermal hydraulic phenomena in support of the detailed design analysis for the development of the advanced reactors. (author). 84 refs., 27 tabs., 83 figs

  7. Development of vendor independent safety analysis capability for nuclear power plants in Taiwan

    International Nuclear Information System (INIS)

    Tang, J.-R.

    2001-01-01

    The Institute of Nuclear Energy Research (INER) and the Taiwan Power Company (TPC) have long-term cooperation to develop vendor independent safety analysis capability to provide support to nuclear power plants in Taiwan in many aspects. This paper presents some applications of this analysis capability, introduces the analysis methodology, and discusses the significance of vendor independent analysis capability now and future. The applications include a safety analysis of core shroud crack for Chinshan BWR/4 Unit 2, a parallel reload safety analysis of the first 18-month extended fuel cycle for Kuosheng BWR/6 Unit 2 Cycle 13, an analysis to support Technical Specification change for Maanshan three-loop PWR, and a design analysis to support the review of Preliminary Safety Analysis Report of Lungmen ABWR. In addition, some recent applications such as an analysis to support the review of BWR fuel bid for Chinshan and Kuosheng demonstrates the needs of further development of the analysis capability to support nuclear power plants in the 21 st century. (authors)

  8. B plant mission analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-01-01

    This report further develops the mission for B Plant originally defined in WHC-EP-0722, ''System Engineering Functions and Requirements for the Hanford Cleanup Mission: First Issue.'' The B Plant mission analysis will be the basis for a functional analysis that breaks down the B Plant mission statement into the necessary activities to accomplish the mission. These activities are the product of the functional analysis and will then be used in subsequent steps of the systems engineering process, such as identifying requirements and allocating those requirements to B Plant functions. The information in this mission analysis and the functional and requirements analysis are a part of the B Plant technical baseline

  9. Developments of HTGR thermofluid dynamic analysis codes and HTGR plant dynamic simulation code

    International Nuclear Information System (INIS)

    Tanaka, Mitsuhiro; Izaki, Makoto; Koike, Hiroyuki; Tokumitsu, Masashi

    1983-01-01

    In nuclear power plants as well as high temperature gas-cooled reactor plants, the design is mostly performed on the basis of the results after their characteristics have been grasped by carrying out the numerical simulation using the analysis code. Also in Kawasaki Heavy Industries Ltd., on the basis of the system engineering accumulated with gas-cooled reactors since several years ago, the preparation and systematization of analysis codes have been advanced, aiming at lining up the analysis codes for heat transferring flow and control characteristics, taking up HTGR plants as the main object. In this report, a part of the results is described. The example of the analysis applying the two-dimensional compressible flow analysis codes SOLA-VOF and SALE-2D, which were developed by Los Alamos National Laboratory in USA and modified for use in Kawasaki, to HTGR system is reported. Besides, Kawasaki has developed the control characteristics analyzing code DYSCO by which the change of system composition is easy and high versatility is available. The outline, fundamental equations, fundamental algorithms and examples of application of the SOLA-VOF and SALE-2D, the present status of system characteristic simulation codes and the outline of the DYSCO are described. (Kako, I.)

  10. Recent developments in fast spectroscopy for plant mineral analysis

    Directory of Open Access Journals (Sweden)

    Marie evan Maarschalkerweerd

    2015-03-01

    Full Text Available Ideal fertilizer management to optimize plant productivity and quality is more relevant than ever, as global food demands increase along with the rapidly growing world population. At the same time, sub-optimal or excessive use of fertilizers leads to severe environmental damage in areas of intensive crop production. The approaches of soil and plant mineral analysis are briefly compared and discussed here, and the new techniques using fast spectroscopy that offer cheap, rapid and easy-to-use analysis of plant nutritional status are reviewed. The majority of these methods use vibrational spectroscopy, such as Visual-Near Infrared (Vis-NIR and to a lesser extent Ultraviolet (UV and Mid-Infrared (MIR spectroscopy. Advantages of and problems with application of these techniques are thoroughly discussed. Spectroscopic techniques considered having major potential for plant mineral analysis, such as chlorophyll a fluorescence, X-ray fluorescence (XRF and Laser-Induced Breakdown Spectroscopy (LIBS are also described.

  11. Advanced phenotyping and phenotype data analysis for the plant growth and development study

    Directory of Open Access Journals (Sweden)

    Md. Matiur eRahaman

    2015-08-01

    Full Text Available Due to increase in the consumption of food, feed, fuel and to ensure global food security for rapidly growing human population, there is need to breed high yielding crops that can adapt to future climate. To solve these global issues, novel approaches are required to provide quantitative phenotypes to elucidate the genetic basis of agriculturally import traits and to screen germplasm with super performance in function under resource-limited environment. At present, plant phenomics has offered and integrated suite technologies for understanding the complete set of phenotypes of plants, towards the progression of the full characteristics of plants with whole sequenced genomes. In this aspect, high-throughput phenotyping platforms have been developed that enables to capture extensive and intensive phenotype data from non-destructive imaging over time. These developments advance our view on plant growth and performance with responses to the changing climate and environment. In this paper, we present a brief review on currently developed high-throughput plant phenotyping infrastructures based on imaging techniques and corresponding principles for phenotype data analysis.

  12. Function analysis of nuclear power plants for developing of man-machine interface system for Korean next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Goo, In Soo; Kim, Jang Yyul; Kim, Jung Soo; Kim, Chang Hoi; Na, Nan Joo; Park, Keun Ok; Park, Won Man; Park, Jae Chang; Suh, Sang Moon; Oh, In Suk; Lee, Dong Young; Lee, Yong Hee; Cha, Kyung Ho; Chun, Se Woo; Hur, Sup [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Jung, Kyung Hoon [Korea Electric Power Co., Seoul (Korea, Republic of); Park, Yeon Sik; Lee, Bum Joo [Korea Power Engineering Company, Inc., Seoul (Korea, Republic of)

    1995-02-01

    In this study, we developed the methodology and implementation plant of function analysis and performed function analysis, which is one of the major activities for the development of Man-Machine Interface System of the KNGR. Identifying the functions of existing plants followed by structuring the functions, we established functions structured at the conceptual and middle levels. This structure was further checked if it would satisfy regulatory requirements and developed to include the aspects of plant performance and other plant features to emphasize its practicality for the application to the design. (Author) 13 refs., 8 figs., 4 tabs.

  13. Function analysis of nuclear power plants for developing of man-machine interface system for Korean next generation reactor

    International Nuclear Information System (INIS)

    Goo, In Soo; Kim, Jang Yyul; Kim, Jung Soo; Kim, Chang Hoi; Na, Nan Joo; Park, Keun Ok; Park, Won Man; Park, Jae Chang; Suh, Sang Moon; Oh, In Suk; Lee, Dong Young; Lee, Yong Hee; Cha, Kyung Ho; Chun, Se Woo; Hur, Sup; Jung, Kyung Hoon; Park, Yeon Sik; Lee, Bum Joo

    1995-02-01

    In this study, we developed the methodology and implementation plant of function analysis and performed function analysis, which is one of the major activities for the development of Man-Machine Interface System of the KNGR. Identifying the functions of existing plants followed by structuring the functions, we established functions structured at the conceptual and middle levels. This structure was further checked if it would satisfy regulatory requirements and developed to include the aspects of plant performance and other plant features to emphasize its practicality for the application to the design. (Author) 13 refs., 8 figs., 4 tabs

  14. PlantCV v2: Image analysis software for high-throughput plant phenotyping

    Directory of Open Access Journals (Sweden)

    Malia A. Gehan

    2017-12-01

    Full Text Available Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.

  15. Development of HTGR plant dynamics simulation code

    International Nuclear Information System (INIS)

    Ohashi, Kazutaka; Tazawa, Yujiro; Mitake, Susumu; Suzuki, Katsuo.

    1987-01-01

    Plant dynamics simulation analysis plays an important role in the design work of nuclear power plant especially in the plant safety analysis, control system analysis, and transient condition analysis. The authors have developed the plant dynamics simulation code named VESPER, which is applicable to the design work of High Temperature Engineering Test Reactor, and have been improving the code corresponding to the design changes made in the subsequent design works. This paper describes the outline of VESPER code and shows its sample calculation results selected from the recent design work. (author)

  16. The Analysis of Sustainable Development Content in the Syllabus of Environmental Knowledge and Plants Ecology Lecture

    Science.gov (United States)

    Putra, A.; Rahmat, A.; Redjeki, S.

    2017-09-01

    This research aims to find out how much the content of sustainable development exist in the content of environmental knowledge and plant ecology courses. The focus indicators of sustainable development indicators is the environment. This research is a qualitative research type with qualitative descriptive approach. The analyzed variables are only 2 courses, which are environmental knowledge and plants ecology. The results showed that the syllabus contents analysis of environmental knowledge and plants ecology courses in private Lembaga Pendidikan Tenaga Kependidikan (LPTK) in the province of Nusa Tenggara Barat is already good enough and the sustainable development contents is very large, almost all syllabus contents has already prioritize the sustainable development load of both the subject of environmental knowledge and plants ecology, although there are still some syllabus contents that was not includes sustainable development load, but the percentage is quite small, especially in the course of Plant Ecology.

  17. Development of radiation indicator plants by molecular breeding

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jang-Ryol; Min, Sung-Ran; Jeong, Won-Joong; Kwak, Sang-Soo; Lee, Haeng-Soon; Kwon, Seok-Yoon; Pai, Hyun-Sook; Cho, Hye-Sun; In, Dong-Su; Oh, Seung-Chol; Park, Sang- Gyu; Woo, Je-Wook; Kin, Tae-Hwan; Park, Ju-Hyun; Kim, Chang-Sook [Korea Research Institute of Bioscience and Biotechnology, Taejeon (Korea)

    2001-04-01

    To develop the transgenic plants with low level of antioxidant enzyme, transgenic tobacco plants (157 plants) using 8 different plant expression vectors which have APX genes in sense or antisense orientation under the control of CaMV 35S promoter or stress-inducible SWPA2 promoter were developed. The insertion of transgene in transgenic plants was confirmed by PCR analysis. The total APX activities of transgenic plants were enhanced or reduced by introduction of APX gene in plants. To clone the radiation-responsive genes and their promoter from plants, the NeIF2Bb, one of radiation-responsive genes from tobacco plant was characterized using molecular and cell biological tools. Promoter of GST6, a radiation-responsive gene, was cloned using RT-PCR. The GST6 promoter sequence was analyzed, and known sequence motif was searched. To develop the remediation technology of radioactively contaminated soil using transgenic plants uranium reductase and radiation resistance genes have been introduced in tobacco and indian mustard plans. The uranium reductase and radiation resistance (RecA) genes were confirmed in transgenic tobacco and indian mustard plants by PCR analysis. Also, Gene expression of uranium reductase and radiation resistance were confirmed in transgenic indian mustard plants by northern blot analysis. 42 refs., 12 figs. (Author)

  18. Operating plant safety analysis needs

    International Nuclear Information System (INIS)

    Young, M.Y.; Love, D.S.

    1992-01-01

    The primary objective for nuclear power station owners is to operate and manage their plants safely. However, there is also a need to provide economical electric power, which requires that the unit be operated as efficiently as possible, consistent with the safety requirements. The objectives cited above can be achieved through the identification and use of available margins inherent in the plant design. As a result of conservative licensing and analytical approaches taken in the past, many of these margins may be found in the safety analysis limits within which plants currently operate. Improvements in the accuracy of the safety analysis, and a more realistic treatment of plant initial and boundary conditions, can make this margin available for a variety of uses which enhance plant performance, help to reduce O and M costs, and may help to extend licensed operation. Opportunities for improvement exist in several areas in the accident analysis normally performed for Chapter 15 of the FSAR. For example, recent modifications to the ECCS rule, 10CFR50.46 and Appendix K, allow use of margins previously unavailable in the analysis of the Loss of Coolant Accident (LOCA). To take advantage of this regulatory change, new methods are being developed to analyze both the large and small break loss of coolant accident (LOCA). As this margin is used, enhancements in the analysis of other transients will become necessary. The paper discusses accident analysis methods, future development needs, and analysis margin utilization in specific accident scenarios

  19. Fire risk analysis for nuclear power plants: Methodological developments and applications

    International Nuclear Information System (INIS)

    Kazarians, M.; Apostolakis, G.; Siv, N.O.

    1985-01-01

    A methodology to quantify the risk from fires in nuclear power plants is described. This methodology combines engineering judgment, statistical evidence, fire phenomenology, and plant system analysis. It can be divided into two major parts: (1) fire scenario identification and quantification, and (2) analysis of the impact on plant safety. This article primarily concentrates on the first part. Statistical analysis of fire occurrence data is used to establish the likelihood of ignition. The temporal behaviors of the two competing phenomena, fire propagation and fire detection and suppression, are studied and their characteristic times are compared. Severity measures are used to further specialize the frequency of the fire scenario. The methodology is applied to a switchgear room of a nuclear power plant

  20. Development of specific data of plant for a safety probabilistic analysis

    International Nuclear Information System (INIS)

    Gonzalez C, M.; Nelson E, P.

    2004-01-01

    In this work the development of specific data of plant is described for the Safety Probabilistic Analysis (APS) of the Laguna Verde Central. The description of those used methods concentrate on the obtention of rates of failure of the equipment and frequencies of initiator events modeled in the APS, making mention to other types of data that also appeal to specific sources of the plant. The method to obtain the rates of failure of the equipment takes advantage the information of failures of components and unavailability of systems obtained entreaty in execution with the Maintenance Rule (1OCFR50.65). The method to develop the frequencies of initiators take in account the registered operational experience as reportable events. In both cases the own experience is combined with published generic data using Bayesian realized techniques. Details are provided about the gathering of information, the confirmations of consistency and adjustment necessities, presenting examples of the obtained results. (Author)

  1. Technology development of maintenance optimization and reliability analysis for safety features in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Woon; Choi, Seong Soo; Lee, Dong Gue; Kim, Young Il

    1999-12-01

    The reliability data management system (RDMS) for safety systems of PHWR type plants has been developed and utilized in the reliability analysis of the special safety systems of Wolsong Unit 1,2 with plant overhaul period lengthened. The RDMS is developed for the periodic efficient reliability analysis of the safety systems of Wolsong Unit 1,2. In addition, this system provides the function of analyzing the effects on safety system unavailability if the test period of a test procedure changes as well as the function of optimizing the test periods of safety-related test procedures. The RDMS can be utilized in handling the requests of the regulatory institute actively with regard to the reliability validation of safety systems. (author)

  2. Engineered nanomaterials for plant growth and development: A perspective analysis.

    Science.gov (United States)

    Verma, Sandeep Kumar; Das, Ashok Kumar; Patel, Manoj Kumar; Shah, Ashish; Kumar, Vinay; Gantait, Saikat

    2018-07-15

    With the overwhelmingly rapid advancement in the field of nanotechnology, the engineered nanomaterials (ENMs) have been extensively used in various areas of the plant system, including quality improvement, growth and nutritional value enhancement, gene preservation etc. There are several recent reports on the ENMs' influence on growth enhancements, growth inhibition as well as certain toxic impacts on plant. However, translocation, growth responses and stress modulation mechanisms of ENMs in the plant systems call for better and in-depth understanding. Herein, we are presenting a comprehensive and critical account of different types of ENMs, their applications and their positive, negative and null impacts on physiological and molecular aspects of plant growth, development and stress responses. Recent reports revealed mixed effects on plants, ranging from enhanced crop yield, epi/genetic alterations, and phytotoxicity, resulting from the ENMs' exposure. Creditable research in recent years has revealed that the effects of ENMs on plants are species specific and are variable among plant species. ENM exposures are reported to trigger free radical formation, responsive scavenging, and antioxidant armories in the exposed plants. The ENMs are also reported to induce aberrant expressions of microRNAs, the key post-transcriptional regulators of plant growth, development and stress-responses of plants. However, these modulations, if judiciously done, may lead to improved plant growth and yield. A better understanding of the interactions between ENMs and plant responses, including their uptake transport, internalization, and activity, could revolutionize crop production through increased disease resistance, nutrient utilization, and crop yield. Therefore, in this review, we are presenting a critical account of the different selected ENMs, their uptake by the plants, their positive/negative impacts on plant growth and development, along with the resultant ENM-responsive post

  3. Development of RCM analysis software for Korean nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ho; Choi, Kwang Hee; Jeong, Hyeong Jong [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    A software called KEPCO RCM workstation (KRCM) has been developed to optimize the maintenance strategies of Korean nuclear power plants. The program modules of the KRCM were designed in a manner that combines EPRI methodologies and KEPRI analysis technique. The KRCM is being applied to the three pilot system, chemical and volume control system, main steam system, and compressed air system of Yonggwang Units 1 and 2. In addition, the KRCM can be utilized as a tool to meet a part of the requirements of maintenance rule (MR) imposed by U.S. NRC. 3 refs., 4 figs. (Author)

  4. Development of RCM analysis software for Korean nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ho; Choi, Kwang Hee; Jeong, Hyeong Jong [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A software called KEPCO RCM workstation (KRCM) has been developed to optimize the maintenance strategies of Korean nuclear power plants. The program modules of the KRCM were designed in a manner that combines EPRI methodologies and KEPRI analysis technique. The KRCM is being applied to the three pilot system, chemical and volume control system, main steam system, and compressed air system of Yonggwang Units 1 and 2. In addition, the KRCM can be utilized as a tool to meet a part of the requirements of maintenance rule (MR) imposed by U.S. NRC. 3 refs., 4 figs. (Author)

  5. Disturbance analysis in nuclear power plants

    International Nuclear Information System (INIS)

    Sillamaa, M.A.

    Disturbance analysis is any systematic procedure that helps an operator determine what has failed. This paper describes the typical information currently provided in CANDU power plants to help the operator respond to a disturbance. It presents a simplified model of how an operator could get into trouble, and briefly reviews development work on computerized disturbance analysis systems for nuclear power plants being done in various countries including Canada. Disturbance analysis systems promise to be useful tools in helping operators improve their response to complex situations. However, the originality and complexity of the work for a disturbance analysis system and the need to develop operator confidence and management support require a 'walk before you run' approach

  6. Support analysis for safety analysis development for CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Bedreaga, L.; Florescu, Gh.; Apostol, M.; Nitoi, M.

    2004-01-01

    Probabilistic Safety Assessment analysis (PSA) is a technique used to assess the safety of a nuclear power plant. Assessments of the nuclear plant systems/components from safety point of view consist in accomplishment of a lot of support analyses that are the base for the main analysis, in order to evaluate the impact of occurrences of abnormal states for these systems. Evaluation of initiating events frequency and components failure rate is based on underlying probabilistic theory and mathematic statistics. Some of these analyses are detailed analyses and are known very well in PSA. There are also some analyses, named support analyses for PSA, which are very important but less applicable because they involve a huge human effort and hardware facilities to accomplish. The usual methods applicable in PSA such as input data extracted from the specific documentation (operation procedures, testing procedures, maintenance procedures and so on) or conservative evaluation provide a high level of uncertainty for both input and output data. The paper describes support analysis required to improve the certainty level in evaluation of reliability parameters and also in the final results (either risk, reliability or safety assessment). (author)

  7. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis.

    Science.gov (United States)

    Lee, Unseok; Chang, Sungyul; Putra, Gian Anantrio; Kim, Hyoungseok; Kim, Dong Hwan

    2018-01-01

    A high-throughput plant phenotyping system automatically observes and grows many plant samples. Many plant sample images are acquired by the system to determine the characteristics of the plants (populations). Stable image acquisition and processing is very important to accurately determine the characteristics. However, hardware for acquiring plant images rapidly and stably, while minimizing plant stress, is lacking. Moreover, most software cannot adequately handle large-scale plant imaging. To address these problems, we developed a new, automated, high-throughput plant phenotyping system using simple and robust hardware, and an automated plant-imaging-analysis pipeline consisting of machine-learning-based plant segmentation. Our hardware acquires images reliably and quickly and minimizes plant stress. Furthermore, the images are processed automatically. In particular, large-scale plant-image datasets can be segmented precisely using a classifier developed using a superpixel-based machine-learning algorithm (Random Forest), and variations in plant parameters (such as area) over time can be assessed using the segmented images. We performed comparative evaluations to identify an appropriate learning algorithm for our proposed system, and tested three robust learning algorithms. We developed not only an automatic analysis pipeline but also a convenient means of plant-growth analysis that provides a learning data interface and visualization of plant growth trends. Thus, our system allows end-users such as plant biologists to analyze plant growth via large-scale plant image data easily.

  8. Advanced Power Plant Development and Analysis Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

    2006-06-30

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  9. High-throughput identification of ionizing radiation-sensitive plant genes and development of radiation indicator plant and radiation sensing Genechip

    International Nuclear Information System (INIS)

    Kim, Dong Sub; Kim, Jinbaek; Ha, Bokeun; Kim, Sang Hoon; Kim, Sunhee

    2013-05-01

    Physiological analysis of monocot model plant (rice) in response to ionizing radiation (cosmic-ray, gamma-ray, Ion beam). - Identification of antioxidant characters through cytochemical analysis. - Comparison of antioxidant activities in response to ionizing irradiation. - Evaluation of anthocyanin quantity in response to ionizing irradiation. Ionization energy response gene family analysis via bioinformatic validation. - Expression analysis of monocot and dicot gene families. - In silico and bioinformatic approach to elucidate gene function. Characterization and functional analysis of genes specifically expressed in response to ionizing irradiation (cosmic-ray, gamma-ray, Ion beam). - High throughput trancriptomic analysis of plants under ionizing radiation using microarray. - Promotor and cis-element analysis of genes specifically expressed in response to ionizing radiation. - Validation and function analysis of candidate genes. - Elucidation of plant mechanism of sensing and response to ionization energy. Development of bioindicator plants detecting ionization energy. - Cloning and identification of 'Radio marker genes (RMG)'. - Development of Over-expression (O/E) or Knock-out (K/O) plant using RMG. Development of Genechip as an ionization energy detector. - Expression profiling analysis of genes specifically expression in response to ionization energy. - Prepare high-conserved gene specific oligomer. - Development of ionization energy monitoring Genechip and application

  10. High-throughput identification of ionizing radiation-sensitive plant genes and development of radiation indicator plant and radiation sensing Genechip

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sub; Kim, Jinbaek; Ha, Bokeun; Kim, Sang Hoon; Kim, Sunhee

    2013-05-15

    Physiological analysis of monocot model plant (rice) in response to ionizing radiation (cosmic-ray, gamma-ray, Ion beam). - Identification of antioxidant characters through cytochemical analysis. - Comparison of antioxidant activities in response to ionizing irradiation. - Evaluation of anthocyanin quantity in response to ionizing irradiation. Ionization energy response gene family analysis via bioinformatic validation. - Expression analysis of monocot and dicot gene families. - In silico and bioinformatic approach to elucidate gene function. Characterization and functional analysis of genes specifically expressed in response to ionizing irradiation (cosmic-ray, gamma-ray, Ion beam). - High throughput trancriptomic analysis of plants under ionizing radiation using microarray. - Promotor and cis-element analysis of genes specifically expressed in response to ionizing radiation. - Validation and function analysis of candidate genes. - Elucidation of plant mechanism of sensing and response to ionization energy. Development of bioindicator plants detecting ionization energy. - Cloning and identification of 'Radio marker genes (RMG)'. - Development of Over-expression (O/E) or Knock-out (K/O) plant using RMG. Development of Genechip as an ionization energy detector. - Expression profiling analysis of genes specifically expression in response to ionization energy. - Prepare high-conserved gene specific oligomer. - Development of ionization energy monitoring Genechip and application.

  11. LISSAT Analysis of a Generic Centrifuge Enrichment Plant

    International Nuclear Information System (INIS)

    Lambert, H; Elayat, H A; O'Connell, W J; Szytel, L; Dreicer, M

    2007-01-01

    The U.S. Department of Energy (DOE) is interested in developing tools and methods for use in designing and evaluating safeguards systems for current and future plants in the nuclear power fuel cycle. The DOE is engaging several DOE National Laboratories in efforts applied to safeguards for chemical conversion plants and gaseous centrifuge enrichment plants. As part of the development, Lawrence Livermore National Laboratory has developed an integrated safeguards system analysis tool (LISSAT). This tool provides modeling and analysis of facility and safeguards operations, generation of diversion paths, and evaluation of safeguards system effectiveness. The constituent elements of diversion scenarios, including material extraction and concealment measures, are structured using directed graphs (digraphs) and fault trees. Statistical analysis evaluates the effectiveness of measurement verification plans and randomly timed inspections. Time domain simulations analyze significant scenarios, especially those involving alternate time ordering of events or issues of timeliness. Such simulations can provide additional information to the fault tree analysis and can help identify the range of normal operations and, by extension, identify additional plant operational signatures of diversions. LISSAT analyses can be used to compare the diversion-detection probabilities for individual safeguards technologies and to inform overall strategy implementations for present and future plants. Additionally, LISSAT can be the basis for a rigorous cost-effectiveness analysis of safeguards and design options. This paper will describe the results of a LISSAT analysis of a generic centrifuge enrichment plant. The paper will describe the diversion scenarios analyzed and the effectiveness of various safeguards systems alternatives

  12. Exergy analysis of an IGCC design configuration for Plant Wansley

    International Nuclear Information System (INIS)

    Tsatsaronis, G.; Tawfik, T.; Lin, L.; Gallaspy, D.T.

    1989-01-01

    An integrated gasification-combined-cycle power plant design was developed for Georgia Power Company's Plant Wansley. This paper discusses the plant configuration and presents the most important results obtained from a detailed exergy analysis of the plant design. This analysis will be completed in a subsequent paper through an exergoeconomic analysis to identify design improvements for reducing the electricity cost

  13. Analysis and development of a lamp using light emitting diodes, in order to accelerate the process of photosynthesis in plants

    International Nuclear Information System (INIS)

    Salas Araya, Keyrent

    2012-01-01

    A prototype lamp has been created in order to promote accelerated development of the plant under artificial lighting. The lamp has been constructed using light-emitting diodes; its efficiency has been proven by comparing the performance with other existing commercial lamps. The study has considered mainly the emission spectrum analysis, power consumption, longevity and experimental development of each lamp. Tests are performed with different types of plantations in short periods, between one and two weeks of exposure to artificial lighting, compared to the development of a plantation illuminated with natural sunlight. The importance that meets the illumination and variation of the emitted wavelengths to a plant have been shown in the development and morphological change of the plant. None of the lamps used were able to approach the natural development that the plant should have, and although height growth has exceeded the reference plant has not obtained a proper plant growth. Researches and tests have been a basis for further studies on the changes experienced by plants exposed to artificial lighting. (author) [es

  14. Development of the nuclear plant analyzer for Korean standard Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Shin Hwan; Kim, Hyeong Heon; Song, In Ho; Hong, Eon Yeong; Oh, Yeong Taek [Korea Power Engineering Company Inc., Yongin (Korea, Republic of)

    2000-12-15

    The purpose of this study is to develop an NPA for the Ulchin Nuclear Power Plant Unit 3 and 4, the first KSNP type plant. In this study, the process model simulating the overall plant systems, GUI and simulation executive which provide the functions of an engineering simulator were developed, and the NPA was completed by integrating them. The contents and the scope of this study are as follows : main feedwater system, auxiliary feedwater system, Chemical and Volume Control System(CVCS), Safety Injection System(SIS), Shutdown Cooling System(SCS), electric power supply system, Core Protection Calculator(CPC), various plant control system, development of the graphics screens for each system, real-time simulation, simulation control for the enhancement of functional capabilities, user friendly GUI, collection of the design and operating data, establishment of the NPA database, integration of the GUI and simulation control program with process model, collection of the data for the verification and validation of the developed NPA, collection of the plant test data, collection and review of the results of other computer codes, verification of the simulation accuracy by comparing the NPA results with the actual plant data, validation of the simulation capability of the NPA, comparison against available data from other analysis suing different computer codes.

  15. Vulnerability analysis of process plants subject to domino effects

    International Nuclear Information System (INIS)

    Khakzad, Nima; Reniers, Genserik; Abbassi, Rouzbeh; Khan, Faisal

    2016-01-01

    In the context of domino effects, vulnerability analysis of chemical and process plants aims to identify and protect installations which are relatively more susceptible to damage and thus contribute more to the initiation or propagation of domino effects. In the present study, we have developed a methodology based on graph theory for domino vulnerability analysis of hazardous installations within process plants, where owning to the large number of installations or complex interdependencies, the application of sophisticated reasoning approaches such as Bayesian network is limited. We have taken advantage of a hypothetical chemical storage plant to develop the methodology and validated the results using a dynamic Bayesian network approach. The efficacy and out-performance of the developed methodology have been demonstrated via a real-life complex case study. - Highlights: • Graph theory is a reliable tool for vulnerability analysis of chemical plants as to domino effects. • All-closeness centrality score can be used to identify most vulnerable installations. • As for complex chemical plants, the methodology outperforms Bayesian network.

  16. Development of the simulation system IMPACT for analysis of nuclear power plant severe accidents

    International Nuclear Information System (INIS)

    Naitoh, Masanori; Ujita, Hiroshi; Nagumo, Hiroichi

    1997-01-01

    The Nuclear Power Engineering Corporation (NUPEC) has initiated a long-term program to develop the simulation system IMPACT for analysis of hypothetical severe accidents in nuclear power plants. IMPACT employs advanced methods of physical modeling and numerical computation, and can simulate a wide spectrum of senarios ranging from normal operation to hypothetical, beyond-design-basis-accident events. Designed as a large-scale system of interconnected, hierarchical modules, IMPACT's distinguishing features include mechanistic models based on first principles and high speed simulation on parallel processing computers. The present plan is a ten-year program starting from 1993, consisting of the initial one-year of preparatory work followed by three technical phases: Phase-1 for development of a prototype system; Phase-2 for completion of the simulation system, incorporating new achievements from basic studies; and Phase-3 for refinement through extensive verification and validation against test results and available real plant data

  17. Energy analysis and projecting of power plants

    International Nuclear Information System (INIS)

    Jirlow, K.

    1975-01-01

    Energy analysis aims at a better explanation of energy flow and energy exchange at different production processes. In this report the energy budget is analysed for separate nuclear power plants and for expanding systems of power plants. A mathematical model is developed for linear and exponential expanding of nuclear power. The profitableness for nuclear power plants in Sweden is considered to be good. (K.K.)

  18. Latest developments on safety analysis methodologies at the Juzbado plant

    International Nuclear Information System (INIS)

    Zurron-Cifuentes, Oscar; Ortiz-Trujillo, Diego; Blanco-Fernandez, Luis A.

    2010-01-01

    Over the last few years the Juzbado Plant has developed and implemented several analysis methodologies to cope with specific issues regarding safety management. This paper describes the three most outstanding of them, so as to say, the Integrated Safety Analysis (ISA) project, the adaptation of the MARSSIM methodology for characterization surveys of radioactive contamination spots, and the programme for the Systematic Review of the Operational Conditions of the Safety Systems (SROCSS). Several reasons motivated the decision to implement such methodologies, such as Regulator requirements, operational experience and of course, the strong commitment of ENUSA to maintain the highest standards of nuclear industry on all the safety relevant activities. In this context, since 2004 ENUSA is undertaking the ISA project, which consists on a systematic examination of plant's processes, equipment, structures and personnel activities to ensure that all relevant hazards that could result in unacceptable consequences have been adequately evaluated and the appropriate protective measures have been identified. On the other hand and within the framework of a current programme to ensure the absence of radioactive contamination spots on unintended areas, the MARSSIM methodology is being applied as a tool to conduct the radiation surveys and investigation of potentially contaminated areas. Finally, the SROCSS programme was initiated earlier this year 2009 to assess the actual operating conditions of all the systems with safety relevance, aiming to identify either potential non-conformities or areas for improvement in order to ensure their high performance after years of operation. The following paragraphs describe the key points related to these three methodologies as well as an outline of the results obtained so far. (authors)

  19. Development of life evaluation technology for nuclear power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin [Sungkyunkwan Univ., Seoul (Korea, Republic of); Kwon, J. D. [Yeungnam Univ., Gyeongsan (Korea, Republic of); Kang, K. J. [Chonnam National Univ., Gwangju (Korea, Republic of)] (and others)

    2001-03-15

    This research focuses on development of reliable life evaluation technology for nuclear power plant (NPP) components, and is divided into two parts, development of life evaluation systems for pressurized components and evaluation of applicability of emerging technology to operating plants. For the development of life evaluation system for nuclear pressure vessels, the following seven topics are covered: development of expert systems for integrity assessment of pressurized components, development of integrity evaluation systems of steam generator tubes, prediction of failure probability for NPP components based on probabilistic fracture mechanics, development of fatigue damage evaluation technique for plant life extension, domestic round robin analysis for pressurized thermal shock of reactor vessels, domestic round robin analysis of constructing P--T limit curves for reactor vessels, and development of data base for integrity assessment. For evaluation of applicability of emerging technology to operating plants, on the other hand, the following eight topics are covered: applicability of the Leak-Before-Break analysis to Cast S/S piping, collection of aged material tensile and toughness data for aged Cast S/S piping, finite element analyses for load carrying capacity of corroded pipes, development of Risk-based ISI methodology for nuclear piping, collection of toughness data for integrity assessment of bi-metallic joints, applicability of the Master curve concept to reactor vessel integrity assessment, measurement of dynamic fracture toughness, and provision of information related to regulation and plant life extension issues.

  20. Development of a nuclear plant analyzer (NPA)

    International Nuclear Information System (INIS)

    De Vlaminck, M.; Mampaey, L.; Vanhoenacker, L.; Bastenaire, F.

    1990-01-01

    A Nuclear Plant Analyzer has been developed by TRACTABEL. Three distinct functional units make up the Nuclear Plant Analyser, a model builder, a run time unit and an analysis unit. The model builder is intended to build simulation models which describe on the one hand the geometric structure and initial conditions of a given plant and on the other hand command control logics and reactor protection systems. The run time unit carries out dialog between the user and the thermal-hydraulic code. The analysis unit is aimed at deep analyzing of the transient results. The model builder is being tested in the framework of the International Standard Problem ISP-26, which is the simulation of a LOCA on the Japanese ROSA facility

  1. PGSB/MIPS PlantsDB Database Framework for the Integration and Analysis of Plant Genome Data.

    Science.gov (United States)

    Spannagl, Manuel; Nussbaumer, Thomas; Bader, Kai; Gundlach, Heidrun; Mayer, Klaus F X

    2017-01-01

    Plant Genome and Systems Biology (PGSB), formerly Munich Institute for Protein Sequences (MIPS) PlantsDB, is a database framework for the integration and analysis of plant genome data, developed and maintained for more than a decade now. Major components of that framework are genome databases and analysis resources focusing on individual (reference) genomes providing flexible and intuitive access to data. Another main focus is the integration of genomes from both model and crop plants to form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny). Data exchange and integrated search functionality with/over many plant genome databases is provided within the transPLANT project.

  2. Development of the Risk-Based Inspection Techniques and Pilot Plant Activities

    International Nuclear Information System (INIS)

    Phillips, J.H.

    1997-01-01

    Risk-based techniques have been developed for commercial nuclear power plants. System boundaries and success criteria is defined using the probabilistic risk analysis or probabilistic safety analysis developed to meet the individual plant evaluation. Final ranking of components is by a plant expert panel similar to the one developed for maintenance rule. Components are identified as being high risk-significant or low-risk significant. Maintenance and resources are focused on those components that have the highest risk-significance. The techniques have been developed and applied at a number of pilot plants. Results from the first risk-based inspection pilot plant indicates that safety due to pipe failure can be doubled while the inspection reduced to about 80% when compared with current inspection programs. The reduction in inspection reduces the person-rem exposure resulting in further increases in safety. These techniques have been documented in publication by the ASME CRTD

  3. Application and development analysis of nuclear power plant modular construction

    International Nuclear Information System (INIS)

    Fang Xiaopeng

    2015-01-01

    Modular Construction is currently one of the major development trends for the nuclear power plant construction technology worldwide. In the first-of-a-kind AP1000 Nuclear Power Project practiced in China, the large-scale structural modules and mechanical modules have been successfully fabricated, assembled and installed. However, in the construction practice of the project, some quality issues are identified with the assembly and installation process of large-scale structural modules in addition to the issue of incomplete supply of mechanical modules, which has failed to fully demonstrate the features and merits of modular construction. This paper collects and consolidates the issues of modular construction of AP1000 first of a kind reactor, providing root cause analysis in the aspects of process design, quality control, site construction logic, interface management in the process of module fabrication, assembly and installation; modular construction feasibility assessment index is proved based on the quantification and qualitative analysis of the impact element. Based on the modular construction feasibility, NPP modular construction improvement suggestions are provided in the aspect of modular assembly optimization definition, tolerance control during the fitting process and the construction logic adjustment. (author)

  4. Plant breeding by using radiation mutation - Development of radiation indicator plants by molecular breeding

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jang Ryol; Kwak, Sang Soo; Kwon, Seok Yoon [Korea Research Institute of Bioscience and Biotechnology, Taejon (Korea)

    2000-04-01

    - tSOD1, cytosolic CuZnSOD cDNA was cloned from tobacco cDNA library by PCR. To develop the under-producing the transgenic plants, the vectors were constructed using by antisense and co-supressing technology. The transgenic tobacco plants were confirmed that over 60% of kanamycin-resistant plants were introduced the foreign gene by PCR and transformed one copy through Southern blot analysis. - In an attempt to identify marker genes for gamma irradiation of plants, expression patterns of diverse genes upon gamma irradiation of young tobacco plants were investigated. With the knowledge of distinctive expression patterns of diverse genes, irradiation-indicating marker plants could be developed by engineering and monitoring multiple radiation-responsive genes. Additionally, a gamma irradiation-responsive NtTMK1 receptor-like kinase gene was molecular biologically characterized. -Uranium reductase gene (Cytochrome C3) and radiation resistance gene (recA) have been cloned from Desulfovibrio and Deinococcus radiodurans. -Two plant transformation vectors (pCYC3 and pDrecA) have been constructed. - Tobacco transgenic plants of have been obtained. 52 refs., 5 figs. (Author)

  5. Thermal Power Plant Performance Analysis

    CERN Document Server

    2012-01-01

    The analysis of the reliability and availability of power plants is frequently based on simple indexes that do not take into account the criticality of some failures used for availability analysis. This criticality should be evaluated based on concepts of reliability which consider the effect of a component failure on the performance of the entire plant. System reliability analysis tools provide a root-cause analysis leading to the improvement of the plant maintenance plan.   Taking in view that the power plant performance can be evaluated not only based on  thermodynamic related indexes, such as heat-rate, Thermal Power Plant Performance Analysis focuses on the presentation of reliability-based tools used to define performance of complex systems and introduces the basic concepts of reliability, maintainability and risk analysis aiming at their application as tools for power plant performance improvement, including: ·         selection of critical equipment and components, ·         defini...

  6. Track 6: safety and risk management. Plant operational risk management. Plant Configuration Risk Assessment Methodology Development for Periodic Maintenance

    International Nuclear Information System (INIS)

    Yang, Huichang; Chung, Chang Hyun; Sung, Key Yong

    2001-01-01

    plant risk level. Such a change in the arrangement of the plant equipment and system at a given time period can be represented as the plant configuration. The plant configuration risk assessment methodology that was developed during this study consists of six steps, as follows: 1. Identification of plant configuration: In this step, various events that occurred in the plant should be identified through a review of the plant operation records such as the periodic maintenance and inspection schedules, maintenance or repair request logs, trouble reports, and other documents related to operational activity. 2. Evaluation of probabilistic risk assessment (PRA) model and computer codes: For the effective evaluation of plant risk during normal operation, an appropriate plant risk model should 273 be used, and the capability of computer codes should be evaluated. There might be numerous events that require the maintenance activity during normal operation. To handle these events during the risk calculation, an optimized plant PRA model and a risk analysis tool of fast calculation capacity are needed. 3. Development of baseline risk model and evaluation of baseline risk: The baseline risk model is a risk model similar to that used for the level 1 PRA, but the maintenance-related events are excluded. This methodology focuses on the relative risk change caused by the usual plant events. For this purpose, the baseline risk that will be the reference of risk variation should be evaluated as reasonably as possible. 4. Analysis of components and systems: For the detailed risk analysis, it is useful to perform the importance analysis for the target components or systems before calculating the plant risks. In terms of system unavailability analysis and importance analysis, information of specific components and systems should be performed for the detailed risk analysis 5. Evaluation of configuration risks and sensitivity analysis: Using the configuration and the system information from

  7. Development of a dynamical systems model of plant programmatic performance on nuclear power plant safety risk

    International Nuclear Information System (INIS)

    Hess, Stephen M.; Albano, Alfonso M.; Gaertner, John P.

    2005-01-01

    Application of probabilistic risk assessment (PRA) techniques to model nuclear power plant accident sequences has provided a significant contribution to understanding the potential initiating events, equipment failures and operator errors that can lead to core damage accidents. Application of the lessons learned from these analyses has resulted in significant improvements in plant operation and safety. However, this approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. The research described in this paper presents an alternative approach to addressing this issue. In this paper we propose a dynamical systems model that describes the interaction of important plant processes on nuclear safety risk. We discuss development of the mathematical model including the identification and interpretation of significant inter-process interactions. Next, we review the techniques applicable to analysis of nonlinear dynamical systems that are utilized in the characterization of the model. This is followed by a preliminary analysis of the model that demonstrates that its dynamical evolution displays features that have been observed at commercially operating plants. From this analysis, several significant insights are presented with respect to the effective control of nuclear safety risk. As an important example, analysis of the model dynamics indicates that significant benefits in effectively managing risk are obtained by integrating the plant operation and work management processes such that decisions are made utilizing a multidisciplinary and collaborative approach. We note that although the model was developed specifically to be applicable to nuclear power plants, many of the insights and conclusions obtained are likely applicable to other process industries

  8. Accident analysis for nuclear power plants

    International Nuclear Information System (INIS)

    2002-01-01

    Deterministic safety analysis (frequently referred to as accident analysis) is an important tool for confirming the adequacy and efficiency of provisions within the defence in depth concept for the safety of nuclear power plants (NPPs). Owing to the close interrelation between accident analysis and safety, an analysis that lacks consistency, is incomplete or is of poor quality is considered a safety issue for a given NPP. Developing IAEA guidance documents for accident analysis is thus an important step towards resolving this issue. Requirements and guidelines pertaining to the scope and content of accident analysis have, in the past, been partially described in various IAEA documents. Several guidelines relevant to WWER and RBMK type reactors have been developed within the IAEA Extrabudgetary Programme on the Safety of WWER and RBMK NPPs. To a certain extent, accident analysis is also covered in several documents of the revised NUSS series, for example, in the Safety Requirements on Safety of Nuclear Power Plants: Design (NS-R-1) and in the Safety Guide on Safety Assessment and Verification for Nuclear Power Plants (NS-G-1.2). Consistent with these documents, the IAEA has developed the present Safety Report on Accident Analysis for Nuclear Power Plants. Many experts have contributed to the development of this Safety Report. Besides several consultants meetings, comments were collected from more than fifty selected organizations. The report was also reviewed at the IAEA Technical Committee Meeting on Accident Analysis held in Vienna from 30 August to 3 September 1999. The present IAEA Safety Report is aimed at providing practical guidance for performing accident analyses. The guidance is based on present good practice worldwide. The report covers all the steps required to perform accident analyses, i.e. selection of initiating events and acceptance criteria, selection of computer codes and modelling assumptions, preparation of input data and presentation of the

  9. Plant operational states analysis in low power and shutdown PSA

    International Nuclear Information System (INIS)

    He Jiandong; Qiu Yongping; Zhang Qinfang; An Hongzhen; Li Maolin

    2013-01-01

    The purpose of Plant Operational States (POS) analysis is to disperse the continuous and dynamic process of low power and shutdown operation, which is the basis of developing event tree models for accident sequence analysis. According to the design of a 300 MW Nuclear Power Plant Project, operating experience and procedures of the reference plant, a detailed POS analysis is carried out based on relative criteria. Then, several kinds of POS are obtained, and the duration of each POS is calculated according to the operation records of the reference plant. The POS analysis is an important element in low power and shutdown PSA. The methodology and contents provide reference for POS analysis. (authors)

  10. Development of a simple method for classifying the degree of importance of components in nuclear power plants using probabilistic analysis technique

    International Nuclear Information System (INIS)

    Shimada, Yoshio; Miyazaki, Takamasa

    2006-01-01

    In order to analyze large amounts of trouble information of overseas nuclear power plants, it is necessary to select information that is significant in terms of both safety and reliability. In this research, a method of efficiently and simply classifying degrees of importance of components in terms of safety and reliability while paying attention to root-cause components appearing in the information was developed. Regarding safety, the reactor core damage frequency (CDF), which is used in the probabilistic analysis of a reactor, was used. Regarding reliability, the automatic plant trip probability (APTP), which is used in the probabilistic analysis of automatic reactor trips, was used. These two aspects were reflected in the development of criteria for classifying degrees of importance of components. By applying these criteria, a method of quantitatively and simply judging the significance of trouble information of overseas nuclear power plants was developed. (author)

  11. Methodology and application of surrogate plant PRA analysis to the Rancho Seco Power Plant: Final report

    International Nuclear Information System (INIS)

    Gore, B.F.; Huenefeld, J.C.

    1987-07-01

    This report presents the development and the first application of generic probabilistic risk assessment (PRA) information for identifying systems and components important to public risk at nuclear power plants lacking plant-specific PRAs. A methodology is presented for using the results of PRAs for similar (surrogate) plants, along with plant-specific information about the plant of interest and the surrogate plants, to infer important failure modes for systems of the plant of interest. This methodology, and the rationale on which it is based, is presented in the context of its application to the Rancho Seco plant. The Rancho Seco plant has been analyzed using PRA information from two surrogate plants. This analysis has been used to guide development of considerable plant-specific information about Rancho Seco systems and components important to minimizing public risk, which is also presented herein

  12. Probability analysis of nuclear power plant hazards

    International Nuclear Information System (INIS)

    Kovacs, Z.

    1985-01-01

    The probability analysis of risk is described used for quantifying the risk of complex technological systems, especially of nuclear power plants. Risk is defined as the product of the probability of the occurrence of a dangerous event and the significance of its consequences. The process of the analysis may be divided into the stage of power plant analysis to the point of release of harmful material into the environment (reliability analysis) and the stage of the analysis of the consequences of this release and the assessment of the risk. The sequence of operations is characterized in the individual stages. The tasks are listed which Czechoslovakia faces in the development of the probability analysis of risk, and the composition is recommended of the work team for coping with the task. (J.C.)

  13. Plant Physiology and Development

    DEFF Research Database (Denmark)

    Taiz, Lincoln; Zeiger, Eduardo; Møller, Ian Max

    Throughout its twenty-two year history, the authors of Plant Physiology have continually updated the book to incorporate the latest advances in plant biology and implement pedagogical improvements requested by adopters. This has made Plant Physiology the most authoritative, comprehensive......, and widely used upper-division plant biology textbook. In the Sixth Edition, the Growth and Development section (Unit III) has been reorganized and expanded to present the complete life cycle of seed plants from germination to senescence. In recognition of this enhancement, the text has been renamed Plant...... Physiology and Development. As before, Unit III begins with updated chapters on Cell Walls and Signals and Signal Transduction. The latter chapter has been expanded to include a discussion of major signaling molecules, such as calcium ions and plant hormones. A new, unified chapter entitled Signals from...

  14. Materials integrity analysis for application of POSCO developed STS to Korean Nuclear Power Plants

    International Nuclear Information System (INIS)

    Hyun-Young, Ch.; Tae-Eun, J.; Young-Sik, K.

    2009-01-01

    Full text of publication follows: POSCO has developed duplex stainless steel (S32750) and hyper super duplex stainless steels for the purpose of using them in the secondary circulation cooling water system in Korean nuclear power plants. This system supplies seawater to cooling water heat exchanger tubes, related pipes and chlorine injection system. In normal operation, seawater is supplied to heat exchanger through the exit of circulation pump headers and the heat exchanged sea water is extracted to the discharge pipes in circulation cooling water system connected to the circulation water discharge lines. The flow velocity of circulation cooling water system in nuclear power plants is high and damages of components from corrosion are severe. Therefore, this environment makes requiring of using high strength and high corrosion resistant steels. Hyper duplex stainless steel (27Cr-7.0Ni-2.5Mo-3.2W-0.35N) has been newly developed in Korea and is being improved for applying to nuclear power plants. In this study, the physical and mechanical properties and corrosion resistance of currently producing stainless steels and newly developed materials are qualitatively evaluated in comparative to commercial stainless steels in other countries. The properties of weld are analyzed and the best compositions of welding rod are suggested. The optimum weld condition is derived for ensuring HAZ phase ratios and controlling weld cracks. For applying these materials to the seawater heat exchanger, CCT and CPT in weldments are measured using mock-up tube testers that are newly designed for this study. Coupons of candidate materials are introduced in the real system and corrosion resistance of them are analyzed. As results of all experiments, the current CCT and CPT criteria in Korean nuclear power plants are reviewed, and the more actual and strengthened criteria will be suggested. The real scale components made of newly developed hyper super duplex stainless steel will be applied to

  15. Development and application of a methodology for the analysis of significant human related event trends in nuclear power plants

    International Nuclear Information System (INIS)

    Cho, H.Y.

    1981-01-01

    A methodology is developed to identify and flag significant trends related to the safety and availability of U.S. commercial nuclear power plants. The development is intended to aid in reducing likelihood of human errors. To assure that the methodology can be easily adapted to various types of classification schemes of operation data, a data bank classified by the Transient Analysis Classification and Evaluation (TRACE) scheme is selected for the methodology. The significance criteria for human-initiated events affecting the systems and for events caused by human deficiencies were developed. Clustering analysis was used to verify the learning trend in multidimensional histograms. A computer code is developed based on the K-Means algorithm and applied to find the learning period in which error rates are monotonously decreasing with plant age. The Freeman-Tukey (F-T) deviates are used to select generic problems identified by a large positive value (here approximately over 2.0) for the deviate. The identified generic problems are: decision errors which are highly associated with reactor startup operations in the learning period of PWR plants (PWRs), response errors which are highly associated with Secondary Non-Nuclear Systems (SNS) in PWRs, and significant errors affecting systems and which are caused by response action are highly associated with startup reactor mode in BWRS

  16. CANDU plant maintenance: Recent developments

    International Nuclear Information System (INIS)

    Charlebois, P.

    2000-01-01

    CANDU units have long been recognized for their exceptional safety and reliability. Continuing development in the maintenance area has played a key role in achieving this performance level. For over two decades, safety system availability has been monitored closely and system maintenance programs adjusted accordingly to maintain high levels of performance. But as the plants approach mid life in a more competitive environment and component aging becomes a concern, new methods and techniques are necessary. As a result, recent developments are moving the maintenance program largely from a corrective and preventive approach to predictive and condition based maintenance. The application of these techniques is also being extended to safety related systems. These recent developments include use of reliability centred methods to define system maintenance requirements and strategies. This approach has been implemented on a number of systems at Canadian CANDU plants with positive results. The pilot projects demonstrated that the overall maintenance effort remained relatively constant while the system performance improved. It was also possible to schedule some of the redundant component maintenance during plant operation without adverse impact on system availability. The probabilistic safety assessment was found to be useful in determining the safety implications of component outages. These new maintenance strategies are now making use of predictive and condition based maintenance techniques to anticipate equipment breakdown and schedule preventive maintenance as the need arises rather than time based. Some of these techniques include valve diagnostics, vibration monitoring, oil analysis, thermography. Of course, these tools and techniques must form part of an overall maintenance management system to ensure that maintenance becomes a living program. To facilitate this process and contain costs, new information technology tools are being introduced to provide system engineers

  17. Environmental analysis for pipeline gas demonstration plants

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, L.H.

    1978-09-01

    The Department of Energy (DOE) has implemented programs for encouraging the development and commercialization of coal-related technologies, which include coal gasification demonstration-scale activities. In support of commercialization activities the Environmental Analysis for Pipeline Gas Demonstration Plants has been prepared as a reference document to be used in evaluating potential environmental and socioeconomic effects from construction and operation of site- and process-specific projects. Effluents and associated impacts are identified for six coal gasification processes at three contrasting settings. In general, impacts from construction of a high-Btu gas demonstration plant are similar to those caused by the construction of any chemical plant of similar size. The operation of a high-Btu gas demonstration plant, however, has several unique aspects that differentiate it from other chemical plants. Offsite development (surface mining) and disposal of large quantities of waste solids constitute important sources of potential impact. In addition, air emissions require monitoring for trace metals, polycyclic aromatic hydrocarbons, phenols, and other emissions. Potential biological impacts from long-term exposure to these emissions are unknown, and additional research and data analysis may be necessary to determine such effects. Possible effects of pollutants on vegetation and human populations are discussed. The occurrence of chemical contaminants in liquid effluents and the bioaccumulation of these contaminants in aquatic organisms may lead to adverse ecological impact. Socioeconomic impacts are similar to those from a chemical plant of equivalent size and are summarized and contrasted for the three surrogate sites.

  18. State-of-the-art report on accident analysis and risk analysis of reprocessing plants in European countries

    International Nuclear Information System (INIS)

    Nomura, Yasushi

    1985-12-01

    This report summarizes informations obtained from America, England, France and FRG concerning methodology, computer code, fundamental data and calculational model on accident/risk analyses of spent fuel reprocessing plants. As a result, the followings are revealed. (1) The system analysis codes developed for reactor plants can be used for reprocessing plants with some code modification. (2) Calculational models and programs have been developed for accidental phenomenological analyses in FRG, but with insufficient data to prove them. (3) The release tree analysis codes developed in FRG are available to estimate radioactivity release amount/probability via off-gas/exhaustair lines in the case of accidents. (4) The computer codes developed in America for reactor-plant environmental transport/safety analyses of released radioactivity can be applied to reprocessing facilities. (author)

  19. Diversification of Root Hair Development Genes in Vascular Plants.

    Science.gov (United States)

    Huang, Ling; Shi, Xinhui; Wang, Wenjia; Ryu, Kook Hui; Schiefelbein, John

    2017-07-01

    The molecular genetic program for root hair development has been studied intensively in Arabidopsis ( Arabidopsis thaliana ). To understand the extent to which this program might operate in other plants, we conducted a large-scale comparative analysis of root hair development genes from diverse vascular plants, including eudicots, monocots, and a lycophyte. Combining phylogenetics and transcriptomics, we discovered conservation of a core set of root hair genes across all vascular plants, which may derive from an ancient program for unidirectional cell growth coopted for root hair development during vascular plant evolution. Interestingly, we also discovered preferential diversification in the structure and expression of root hair development genes, relative to other root hair- and root-expressed genes, among these species. These differences enabled the definition of sets of genes and gene functions that were acquired or lost in specific lineages during vascular plant evolution. In particular, we found substantial divergence in the structure and expression of genes used for root hair patterning, suggesting that the Arabidopsis transcriptional regulatory mechanism is not shared by other species. To our knowledge, this study provides the first comprehensive view of gene expression in a single plant cell type across multiple species. © 2017 American Society of Plant Biologists. All Rights Reserved.

  20. UPVapor: Cofrentes nuclear power plant production results analysis software

    International Nuclear Information System (INIS)

    Curiel, M.; Palomo, M. J.; Baraza, A.; Vaquer, J.

    2010-10-01

    UPVapor software version 02 has been developed for the Cofrentes nuclear power plant Data Analysis Department (Spain). It is an analysis graphical environment in which users have available all the plant variables registered in the process computer system (SIEC). In order to perform this, UPVapor software has many advanced graphic tools for work simplicity, as well as a friendly environment easy to use and with many configuration possibilities. Plant variables are classified in the same way that they are in SIEC computer and these values are taken from it through the network of Iberdrola. UPVapor can generate two different types of graphics: evolution graphs and X Y graphs. The first ones analyse the evolution up to twenty plant variables in a user's defined time period and according to historic plant files. Many tools are available: cursors, graphic configuration, mobile means, non valid data visualization ... Moreover, a particular analysis configuration can be saved, as a pre selection, giving the possibility of charging pre selection directly and developing quick monitoring of a group of preselected plant variables. In X Y graphs, it is possible to analyse a variable value against another variable in a defined time. As an option, users can filter previous data depending on a variable certain range, with the possibility of programming up to five filters. As well as the other graph, X Y graph has many configurations, saving and printing options. With UPVapor software, data analysts can save a valuable time during daily work and, as it is of easy utilization, it permits to other users to perform their own analysis without ask the analysts to develop. Besides, it can be used from any work centre with access to network framework. (Author)

  1. UPVapor: Cofrentes nuclear power plant production results analysis software

    Energy Technology Data Exchange (ETDEWEB)

    Curiel, M. [Logistica y Acondicionamientos Industriales SAU, Sorolla Center, local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain); Palomo, M. J. [ISIRYM, Universidad Politecnica de Valencia, Camino de Vera s/n, Valencia (Spain); Baraza, A. [Iberdrola Generacion S. A., Central Nuclear Cofrentes, Carretera Almansa Requena s/n, 04662 Cofrentes, Valencia (Spain); Vaquer, J., E-mail: m.curiel@lainsa.co [TITANIA Servicios Tecnologicos SL, Sorolla Center, local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain)

    2010-10-15

    UPVapor software version 02 has been developed for the Cofrentes nuclear power plant Data Analysis Department (Spain). It is an analysis graphical environment in which users have available all the plant variables registered in the process computer system (SIEC). In order to perform this, UPVapor software has many advanced graphic tools for work simplicity, as well as a friendly environment easy to use and with many configuration possibilities. Plant variables are classified in the same way that they are in SIEC computer and these values are taken from it through the network of Iberdrola. UPVapor can generate two different types of graphics: evolution graphs and X Y graphs. The first ones analyse the evolution up to twenty plant variables in a user's defined time period and according to historic plant files. Many tools are available: cursors, graphic configuration, mobile means, non valid data visualization ... Moreover, a particular analysis configuration can be saved, as a pre selection, giving the possibility of charging pre selection directly and developing quick monitoring of a group of preselected plant variables. In X Y graphs, it is possible to analyse a variable value against another variable in a defined time. As an option, users can filter previous data depending on a variable certain range, with the possibility of programming up to five filters. As well as the other graph, X Y graph has many configurations, saving and printing options. With UPVapor software, data analysts can save a valuable time during daily work and, as it is of easy utilization, it permits to other users to perform their own analysis without ask the analysts to develop. Besides, it can be used from any work centre with access to network framework. (Author)

  2. Development of Draft Regulatory Guide on Accident Analysis for Nuclear Power Plants with New Safety Design Features

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Young Seok; Woo, Sweng Woong; Hwang, Tae Suk [KINS, Daejeon (Korea, Republic of); Sim, Suk K; Hwang, Min Jeong [Environment and Energy Technology, Daejeon (Korea, Republic of)

    2016-05-15

    The present paper discusses the development process of the draft version of regulatory guide (DRG) on accident analysis of the NPP having the NSFD and its result. Based on the consideration on the lesson learned from the previous licensing review, a draft regulatory guide (DRG) on accident analysis for NPP with new safety design features (NSDF) was developed. New safety design features (NSDF) have been introduced to the new constructing nuclear power plants (NPP) since the early 2000 and the issuance of construction permit of SKN Units 3 and 4. Typical examples of the new safety features includes Fluidic Device (FD) within Safety Injection Tanks (SIT), Passive Auxiliary Feedwater System (PAFS), ECCS Core Barrel Duct (ECBD) which were adopted in APR1400 design and/or APR+ design to improve the safety margin of the plants for the postulated accidents of interest. Also several studies of new concept of the safety system such as Hybrid ECCS design have been reported. General and/or specific guideline of accident analysis considering the NSDF has been requested. Realistic evaluation of the impact of NSDF on accident with uncertainty and separated accident analysis accounting the NSDF impact were specified in the DRG. Per the developmental process, identification of key issues, demonstration of the DRG with specific accident with specific NSDF, and improvement of DGR for the key issues and their resolution will be conducted.

  3. Technology development on the assessment of structural integrity of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong Moon; Choun, Y. S.; Choi, I. K. and others

    1999-04-01

    Nuclear power plants in Korea show drop off in their performance and safety margin as the age of plants increase. The reevaluation of Kori-1 Unit on its performance and safety for life extension is expected in the near future. However, technologies and information related are insufficient to quantitatively estimate them. The final goal of this study is to develop the basic testing and evaluation techniques related with structural integrity of important nuclear equipment and structures. A part of the study includes development of equipment qualification technique. To ensure the structural integrity of structures, systems, and equipment in nuclear power plants, the following 5 research tasks were performed in the first year. - Analysis of dynamic characteristics of reactor internals - Analysis of engineering characteristics of instrumental earthquakes recorded in Korea - Analysis of ultimate pressure capacity and failure mode of containments building - Development of advanced NDE techniques using ultrasonic resonance scattering - Development of equipment qualification technique against vibration aging. These technologies developed in this study can be used to ensure the structural safety of operational nuclear power plants, and for the long-term life management. (author)

  4. [Development of Plant Metabolomics and Medicinal Plant Genomics].

    Science.gov (United States)

    Saito, Kazuki

    2018-01-01

     A variety of chemicals produced by plants, often referred to as 'phytochemicals', have been used as medicines, food, fuels and industrial raw materials. Recent advances in the study of genomics and metabolomics in plant science have accelerated our understanding of the mechanisms, regulation and evolution of the biosynthesis of specialized plant products. We can now address such questions as how the metabolomic diversity of plants is originated at the levels of genome, and how we should apply this knowledge to drug discovery, industry and agriculture. Our research group has focused on metabolomics-based functional genomics over the last 15 years and we have developed a new research area called 'Phytochemical Genomics'. In this review, the development of a research platform for plant metabolomics is discussed first, to provide a better understanding of the chemical diversity of plants. Then, representative applications of metabolomics to functional genomics in a model plant, Arabidopsis thaliana, are described. The extension of integrated multi-omics analyses to non-model specialized plants, e.g., medicinal plants, is presented, including the identification of novel genes, metabolites and networks for the biosynthesis of flavonoids, alkaloids, sulfur-containing metabolites and terpenoids. Further, functional genomics studies on a variety of medicinal plants is presented. I also discuss future trends in pharmacognosy and related sciences.

  5. Thermodynamic and exergoeconomic analysis of a cement plant: Part I – Methodology

    International Nuclear Information System (INIS)

    Atmaca, Adem; Yumrutaş, Recep

    2014-01-01

    Highlights: • Energy, exergy and exergoeconomic analysis of a complete cement plant have been investigated. • The first and second law efficiencies based on the energy and exergy analysis are defined for the entire cement plant. • The specific energy consumption of the whole sections of the cement plant have been analyzed. • The specific manufacturing costs of farine, clinker and cement have been determined by the cost analysis. - Abstract: The energy, exergy and exergoeconomic analysis of a cement factory has been studied within two parts. This paper is the first part of the study which includes the thermodynamic and exergoeconomic methodology and formulations developed for such a comprehensive and detailed analysis. The second part of this study is about the application of the developed formulation which considers an actual cement plant located in Gaziantep, Turkey. The energy consumption by the cement industry is about 5% of the total global industrial energy consumption. It is also one of the world’s largest industrial sources of CO 2 emissions. In this paper, a cement plant is considered with all main manufacturing units. Mass, energy, and exergy balances are applied to each system. The first and second law efficiencies based on the energy and exergy analysis and performance assessment parameters are defined for the entire cement plant. The formulations for the cost of products, and cost formation and allocation within the system are developed based on exergoeconomic analysis. In order to obtain the optimal marketing price of cement and to decrease specific energy consumption of the whole plant, the cost analysis formulated here have substantial importance

  6. Improved sample preparation for CE-LIF analysis of plant N-glycans.

    Science.gov (United States)

    Nagels, Bieke; Santens, Francis; Weterings, Koen; Van Damme, Els J M; Callewaert, Nico

    2011-12-01

    In view of glycomics studies in plants, it is important to have sensitive tools that allow one to analyze and characterize the N-glycans present on plant proteins in different species. Earlier methods combined plant-based sample preparations with CE-LIF N-glycan analysis but suffered from background contaminations, often resulting in non-reproducible results. This publication describes a reproducible and sensitive protocol for the preparation and analysis of plant N-glycans, based on a combination of the 'in-gel release method' and N-glycan analysis on a multicapillary DNA sequencer. Our protocol makes it possible to analyze plant N-glycans starting from low amounts of plant material with highly reproducible results. The developed protocol was validated for different plant species and plant cells. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Development and Implementation of a Condition Based Maintenance Program for Geothermal Power Plants; FINAL

    International Nuclear Information System (INIS)

    Steve Miller; Jim Eddy; Murray Grande; Shawn Bratt; Manuchehr Shirmohamadi

    2002-01-01

    This report describes the development of the RCM team, identifying plant assets and developing an asset hierarchy, the development of sample Failure Mode Effects Analysis (FMEAs), identifying and prioritizing plant systems and components for RCM analysis, and identifying RCM/CBM software/hardware vendors. It also includes the Failure Mode Effects Analysis (FMEA) for all Class I Systems, Maintenance Task Assignments, use of Conditioned Based Maintenance (CBM) Tools and Displays of the RCM software System Development to date

  8. Development of user interface to support automatic program generation of nuclear power plant analysis by module-based simulation system

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Mizutani, Naoki; Nakaya, Ken-ichiro; Wakabayashi, Jiro

    1988-01-01

    Module-based Simulation System (MSS) has been developed to realize a new software work environment enabling versatile dynamic simulation of a complex nuclear power system flexibly. The MSS makes full use of modern software technology to replace a large fraction of human software works in complex, large-scale program development by computer automation. Fundamental methods utilized in MSS and developmental study on human interface system SESS-1 to help users in generating integrated simulation programs automatically are summarized as follows: (1) To enhance usability and 'communality' of program resources, the basic mathematical models of common usage in nuclear power plant analysis are programed as 'modules' and stored in a module library. The information on usage of individual modules are stored in module database with easy registration, update and retrieval by the interactive management system. (2) Target simulation programs and the input/output files are automatically generated with simple block-wise languages by a precompiler system for module integration purpose. (3) Working time for program development and analysis in an example study of an LMFBR plant thermal-hydraulic transient analysis was demonstrated to be remarkably shortened, with the introduction of an interface system SESS-1 developed as an automatic program generation environment. (author)

  9. Web-based turbine cycle performance analysis for nuclear power plants

    International Nuclear Information System (INIS)

    Heo, Gyun Young; Lee, Sung Jin; Chang, Soon Heung; Choi, Seong Soo

    2000-01-01

    As an approach to improve the economical efficiency of operating nuclear power plants, a thermal performance analysis tool for steam turbine cycle has been developed. For the validation and the prediction of the signals used in thermal performance analysis, a few statistical signal processing techniques are integrated. The developed tool provides predicted performance calculation capability that is steady-state wet steam turbine cycle simulation, and measurement performance calculation capability which determines component- and cycle-level performance indexes. Web-based interface with all performance analysis is implemented, so even remote users can achieve performance analysis. Comparing to ASME PTC6 (Performance Test Code 6), the focusing point of the developed tool is historical performance analysis rather than single accurate performance test. The proposed signal processing techniques are validated using actual plant signals, and turbine cycle models are tested by benchmarking with a commercial thermal analysis tool

  10. Comparative risk analysis for the Rocky Flats Plant integrated project planning

    International Nuclear Information System (INIS)

    Jones, M.E.; Shain, D.I.

    1994-01-01

    The Rocky Flats Plant is developing, with active stakeholder a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs relative risks to workers and the public, and waste disposition. Comparative Risk Analysis employs both incremental risk and cumulative risk evaluations to compare risks from postulated options or endstates. These postulated options or endstates can be various remedial alternatives, or future endstate uses of federal agency land. Currently, there does not exist any approved methodology that aggregates various incremental risk estimates. Comparative Risk Analysis has been developed to aggregate various incremental risk estimates to develop a site cumulative risk estimate. This paper discusses development of the Comparative Risk Analysis methodology, stakeholder participation and lessons learned from these challenges

  11. Preliminary Hazard Analysis applied to Uranium Hexafluoride - UF6 production plant

    International Nuclear Information System (INIS)

    Tomzhinsky, David; Bichmacher, Ricardo; Braganca Junior, Alvaro; Peixoto, Orpet Jose

    1996-01-01

    The purpose of this paper is to present the results of the Preliminary hazard Analysis applied to the UF 6 Production Process, which is part of the UF 6 Conversion Plant. The Conversion Plant has designed to produce a high purified UF 6 in accordance with the nuclear grade standards. This Preliminary Hazard Analysis is the first step in the Risk Management Studies, which are under current development. The analysis evaluated the impact originated from the production process in the plant operators, members of public, equipment, systems and installations as well as the environment. (author)

  12. Advanced development in phytochemicals analysis of medicine and food dual purposes plants used in China (2011-2014).

    Science.gov (United States)

    Zhao, Jing; Ge, Li-Ya; Xiong, Wei; Leong, Fong; Huang, Lu-Qi; Li, Shao-Ping

    2016-01-08

    In 2011, we wrote a review for summarizing the phytochemical analysis (2006-2010) of medicine and food dual purposes plants used in China (Zhao et al., J. Chromatogr. A 1218 (2011) 7453-7475). Since then, more than 750 articles related to their phytochemical analysis have been published. Therefore, an updated review for the advanced development (2011-2014) in this topic is necessary for well understanding the quality control and health beneficial phytochemicals in these materials, as well as their research trends. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Unconventional gas development facilitates plant invasions.

    Science.gov (United States)

    Barlow, Kathryn M; Mortensen, David A; Drohan, Patrick J; Averill, Kristine M

    2017-11-01

    Vegetation removal and soil disturbance from natural resource development, combined with invasive plant propagule pressure, can increase vulnerability to plant invasions. Unconventional oil and gas development produces surface disturbance by way of well pad, road, and pipeline construction, and increased traffic. Little is known about the resulting impacts on plant community assembly, including the spread of invasive plants. Our work was conducted in Pennsylvania forests that overlay the Marcellus and Utica shale formations to determine if invasive plants have spread to edge habitat created by unconventional gas development and to investigate factors associated with their presence. A piecewise structural equation model was used to determine the direct and indirect factors associated with invasive plant establishment on well pads. The model included the following measured or calculated variables: current propagule pressure on local access roads, the spatial extent of the pre-development road network (potential source of invasive propagules), the number of wells per pad (indicator of traffic density), and pad age. Sixty-one percent of the 127 well pads surveyed had at least one invasive plant species present. Invasive plant presence on well pads was positively correlated with local propagule pressure on access roads and indirectly with road density pre-development, the number of wells, and age of the well pad. The vast reserves of unconventional oil and gas are in the early stages of development in the US. Continued development of this underground resource must be paired with careful monitoring and management of surface ecological impacts, including the spread of invasive plants. Prioritizing invasive plant monitoring in unconventional oil and gas development areas with existing roads and multi-well pads could improve early detection and control of invasive plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Large-scale proteome comparative analysis of developing rhizomes of the ancient vascular plant Equisetum hyemale.

    Directory of Open Access Journals (Sweden)

    Tiago Santana Balbuena

    2012-06-01

    Full Text Available Equisetum hyemale is a widespread vascular plant species, whose reproduction is mainly dependent on the growth and development of the rhizomes. Due to its key evolutionary position, the identification of factors that could be involved in the existence of the rhizomatous trait may contribute to a better understanding of the role of this underground organ for the successful propagation of this and other plant species. In the present work, we characterized the proteome of E. hyemale rhizomes using a GeLC-MS spectral-counting proteomics strategy. A total of 1,911 and 1,860 non-redundant proteins were identified in the rhizomes apical tip and elongation zone, respectively. Rhizome- characteristic proteins were determined by comparisons of the developing rhizome tissues to developing roots. A total of 87 proteins were found to be up-regulated in both E. hyemale rhizome tissues in relation to developing roots. Hierarchical clustering indicated a vast dynamic range in the expression of the 87 characteristic proteins and revealed, based on the expression profile, the existence of 9 major protein groups. Gene ontology analyses suggested an over-representation of the terms involved in macromolecular and protein biosynthetic processes, gene expression and nucleotide and protein binding functions. Spatial differences analysis between the rhizome apical tip and the elongation zone revealed that only eight proteins were up-regulated in the apical tip including RNA-binding proteins and an acyl carrier protein, as well as a KH-domain protein and a T-complex subunit; while only seven proteins were up-regulated in the elongation zone including phosphomannomutase, galactomannan galactosyltransferase, endoglucanase 10 and 25 and mannose-1-phosphate guanyltransferase subunits alpha and beta. This is the first large scale characterization of the proteome of a plant rhizome. Implications of the findings were discussed in relation to other underground organs and related

  15. Thermo-economic analysis of Shiraz solar thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Yaghoubi, M. [Academy of Science, Tehran (Iran, Islamic Republic of); Mokhtari, A.; Hesami, R. [Shiraz Univ., Shiraz (Iran, Islamic Republic of). School of Engineering

    2007-07-01

    The Shiraz solar thermal power plant in Iran has 48 parabolic trough collectors (PTCs) which are used to heat the working oil. There is potential to significantly increase the performance and reduce the cost of PTC solar thermal electric technologies. Conventional energy analysis based on the first law of thermodynamics does qualitatively assess the various losses occurring in the components. Therefore, exergy analysis, based on the second law of thermodynamics, can be applied to better assess various losses quantitatively as well as qualitatively. This paper presented a newly developed exergy-economic model for the Shiraz solar thermal power plant. The objective was to find the minimum exergetic production cost (EPC), based on the second law of thermodynamics. The application of exergy-economic analysis includes the evaluation of utility supply costs for production plants, and the energy costs for process operations. The purpose of the analysis was to minimize the total operating costs of the solar thermal power plant by assuming a fixed rate of electricity production and process steam. 21 refs., 3 tabs., 8 figs.

  16. Safety analysis code input automation using the Nuclear Plant Data Bank

    International Nuclear Information System (INIS)

    Kopp, H.; Leung, J.; Tajbakhsh, A.; Viles, F.

    1985-01-01

    The Nuclear Plant Data Bank (NPDB) is a computer-based system that organizes a nuclear power plant's technical data, providing mechanisms for data storage, retrieval, and computer-aided engineering analysis. It has the specific objective to describe thermohydraulic systems in order to support: rapid information retrieval and display, and thermohydraulic analysis modeling. The Nuclear Plant Data Bank (NPBD) system fully automates the storage and analysis based on this data. The system combines the benefits of a structured data base system and computer-aided modeling with links to large scale codes for engineering analysis. Emphasis on a friendly and very graphically oriented user interface facilitates both initial use and longer term efficiency. Specific features are: organization and storage of thermohydraulic data items, ease in locating specific data items, graphical and tabular display capabilities, interactive model construction, organization and display of model input parameters, input deck construction for TRAC and RELAP analysis programs, and traceability of plant data, user model assumptions, and codes used in the input deck construction process. The major accomplishments of this past year were the development of a RELAP model generation capability and the development of a CRAY version of the code

  17. Homogalacturonan methyl-esterification and plant development.

    Science.gov (United States)

    Wolf, Sebastian; Mouille, Grégory; Pelloux, Jérome

    2009-09-01

    The ability of a plant cell to expand is largely defined by the physical constraints imposed by its cell wall. Accordingly, cell wall properties have to be regulated during development. The pectic polysaccharide homogalacturonan is a major component of the plant primary walls. Biosynthesis and in muro modification of homogalacturonan have recently emerged as key determinants of plant development, controlling cell adhesion, organ development, and phyllotactic patterning. This review will focus on recent findings regarding impact of homogalacturonan content and methyl-esterification status of this polymer on plant life. De-methyl-esterification of homogalacturonan occurs through the action of the ubiquitous enzyme 'pectin methyl-esterase'. We here describe various strategies developed by the plant to finely tune the methyl-esterification status of homogalacturonan along key events of the plant lifecycle.

  18. An analysis of the development and application of plant protection UAV based on advanced materials

    Science.gov (United States)

    Huang, Yuan-hui; Wei, Neng; Quan, Zhi-cheng; Huang, Yu-rong

    2018-06-01

    The development and application of a number of advanced materials plant protection unmanned aerial vehicle (UAV) is an important part of the comprehensive production of agricultural modernization. The paper is taken as an example of Guangxi No. 1 agricultural service aviation science and Technology Co., Ltd. This paper introduces the internal and external environment of the research and development of the plant protection UAV for the advanced materials of the company. The external environment focuses on the role of the plant protection UAV on the development of the agricultural mechanization; the internal environment focuses on the advantages of the UAV in technology research, market promotion and application, which is imperative. Finally, according to the background of the whole industry, we put forward some suggestions for the developing opportunities and challenges faced by plant protection UAV, hoping to proving some ideas for operators, experts and scholars engaged in agricultural industry.

  19. Techniques for Analysis of Plant Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Thomas H. Roberts

    2013-02-01

    Full Text Available Phenolic compounds are well-known phytochemicals found in all plants. They consist of simple phenols, benzoic and cinnamic acid, coumarins, tannins, lignins, lignans and flavonoids. Substantial developments in research focused on the extraction, identification and quantification of phenolic compounds as medicinal and/or dietary molecules have occurred over the last 25 years. Organic solvent extraction is the main method used to extract phenolics. Chemical procedures are used to detect the presence of total phenolics, while spectrophotometric and chromatographic techniques are utilized to identify and quantify individual phenolic compounds. This review addresses the application of different methodologies utilized in the analysis of phenolic compounds in plant-based products, including recent technical developments in the quantification of phenolics.

  20. Development of Web-Based Common Cause Failure (CCF) Database Module for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun-Gyo; Hwang, Seok-Won; Shin, Tae-young [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2015-05-15

    Probabilistic safety assessment (PSA) has been used to identify risk vulnerabilities and derive the safety improvement measures from construction to operation stages of nuclear power plants. In addition, risk insights from PSA can be applied to improve the designs and operation requirements of plants. However, reliability analysis methods for quantitative PSA evaluation have essentially inherent uncertainties, and it may create a distorted risk profiles because of the differences among the PSA models, plant designs, and operation status. Therefore, it is important to ensure the quality of the PSA model so that analysts identify design vulnerabilities and utilize risk information. Especially, the common cause failure (CCF) has been pointed out as one of major issues to be able to cause the uncertainty related to the PSA analysis methods and data because CCF has a large influence on the PSA results. Organization for economic cooperation and development /nuclear energy agent (OECD/NEA) has implemented an international common cause failure data exchange (ICDE) project for the CCF quality assurance through the development of the detailed analysis methodologies and data sharing. However, Korea Hydro and Nuclear Power company (KHNP) does not have the basis for the data gathering and analysis for CCF analyses. In case of methodology, the Alpha Factor parameter estimation, which can analyze uncertainties and estimate an interface factor (Impact Vector) with an ease, is ready to be applied rather than the Multi Greek Letter (MGL) method. This article summarizes the development of the plant-specific CCF database (DB) module considering the raw data collection and the analysis procedure based on the CCF parameter calculation method of ICDE. Although the portion affected by CCF in the PSA model is quite a large, the development efforts of the tools to collect and analyze data were insufficient. Currently, KHNP intends to improve PSA quality and ensure CCF data reliability by

  1. Development of Web-Based Common Cause Failure (CCF) Database Module for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Hyun-Gyo; Hwang, Seok-Won; Shin, Tae-young

    2015-01-01

    Probabilistic safety assessment (PSA) has been used to identify risk vulnerabilities and derive the safety improvement measures from construction to operation stages of nuclear power plants. In addition, risk insights from PSA can be applied to improve the designs and operation requirements of plants. However, reliability analysis methods for quantitative PSA evaluation have essentially inherent uncertainties, and it may create a distorted risk profiles because of the differences among the PSA models, plant designs, and operation status. Therefore, it is important to ensure the quality of the PSA model so that analysts identify design vulnerabilities and utilize risk information. Especially, the common cause failure (CCF) has been pointed out as one of major issues to be able to cause the uncertainty related to the PSA analysis methods and data because CCF has a large influence on the PSA results. Organization for economic cooperation and development /nuclear energy agent (OECD/NEA) has implemented an international common cause failure data exchange (ICDE) project for the CCF quality assurance through the development of the detailed analysis methodologies and data sharing. However, Korea Hydro and Nuclear Power company (KHNP) does not have the basis for the data gathering and analysis for CCF analyses. In case of methodology, the Alpha Factor parameter estimation, which can analyze uncertainties and estimate an interface factor (Impact Vector) with an ease, is ready to be applied rather than the Multi Greek Letter (MGL) method. This article summarizes the development of the plant-specific CCF database (DB) module considering the raw data collection and the analysis procedure based on the CCF parameter calculation method of ICDE. Although the portion affected by CCF in the PSA model is quite a large, the development efforts of the tools to collect and analyze data were insufficient. Currently, KHNP intends to improve PSA quality and ensure CCF data reliability by

  2. Analysis of future nuclear power plants competitiveness with stochastic methods

    International Nuclear Information System (INIS)

    Feretic, D.; Tomsic, Z.

    2004-01-01

    operation and maintenance cost , variable maintenance and operational cost (no fuel), load factor, plant efficiency, years of credit repayment, years of plant life time. The input data for the analysis are given within best estimated or optimistically predicted ranges with a probability distribution of each within range. By applying the STATS computer which by using the Monte Carlo method selects randomly value of a parameter in predicted range and performs a calculation of required output. By repeating this process several thousand times a distribution of output values is obtained and also corresponding most probable value. The Probabilistic Analysis is performed in three steps: The analysis determines the expected range of uncertainty for key design and economic variables that make the greatest impact on the levelized cost of electricity; Developing a probability distribution for each key input variable; Monte Carlo analysis generates a probability distribution for each key performance and cost parameter using developed probability distributions. The results of analysis showed that under given assumptions future competitive nuclear power plant specific investment cost would be not considerably different from presently expected values. It amounts to a value between 1700 USD/kW and 1900 USD/kW depending if the nuclear plant is compared with gas plants working jointly with wind power units or without such units. The results show that economic competitiveness of future nuclear units relative to its main competitors will probably be not difficult to achieve.(author)

  3. Computer-aided stress analysis system for nuclear plant primary components

    International Nuclear Information System (INIS)

    Murai, Tsutomu; Tokumaru, Yoshio; Yamazaki, Junko.

    1980-06-01

    Generally it needs a vast quantity of calculation to make the stress analysis reports of nuclear plant primary components. In Japan, especially, stress analysis reports are under obligation to make for each plant. In Mitsubishi Heavy Industries, Ltd., We have been making great efforts to rationalize the process of analysis for about these ten years. As the result of rationalization up to now, a computer-aided stress analysis system using graphic display, graphic tablet, data file, etc. was accomplished and it needs us only the least hand work. In addition we developed a fracture safety analysis system. And we are going to develop the input generator system for 3-dimensional FEM analysis by graphics terminals in the near future. We expect that when the above-mentioned input generator system is accomplished, it will be possible for us to solve instantly any case of problem. (author)

  4. Modular Trough Power Plant Cycle and Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Price, H.; Hassani, V.

    2002-01-01

    This report summarizes an analysis to reduce the cost of power production from modular concentrating solar power plants through a relatively new and exciting concept that merges two mature technologies to produce distributed modular electric power in the range of 500 to 1,500 kWe. These are the organic Rankine cycle (ORC) power plant and the concentrating solar parabolic (CSP) trough technologies that have been developed independent of each other over many years.

  5. Development of life evaluation technology for nuclear power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Kim, Yun Jae; Choi, Jae Boong [Sungkyunkwan Univ., Seoul (Korea, Republic of)] (and others)

    2002-03-15

    This project focuses on developing reliable life evaluation technology for nuclear power plant components, and is divided into two parts, development of a life evaluation system for nuclear pressure vessels and evaluation of applicability of emerging technology to operating plants. For the development of life evaluation system for nuclear pressure vessels, the following seven topics are covered in this project: defect assessment method for steam generator tubes, development of fatigue monitoring system, assessment of corroded pipes, domestic round robin analysis for constructing P-T limit curve for RPV, development of probabilistic integrity assessment technique, effect of aging on strength of dissimilar welds, applicability of LBB to cast stainless steel, and development of probabilistic piping fracture mechanics.

  6. Plant surface cues prime Ustilago maydis for biotrophic development.

    Directory of Open Access Journals (Sweden)

    Daniel Lanver

    2014-07-01

    Full Text Available Infection-related development of phytopathogenic fungi is initiated by sensing and responding to plant surface cues. This response can result in the formation of specialized infection structures, so-called appressoria. To unravel the program inducing filaments and appressoria in the biotrophic smut fungus Ustilago maydis, we exposed cells to a hydrophobic surface and the cutin monomer 16-hydroxy hexadecanoic acid. Genome-wide transcriptional profiling at the pre-penetration stage documented dramatic transcriptional changes in almost 20% of the genes. Comparisons with the U. maydis sho1 msb2 double mutant, lacking two putative sensors for plant surface cues, revealed that these plasma membrane receptors regulate a small subset of the surface cue-induced genes comprising mainly secreted proteins including potential plant cell wall degrading enzymes. Targeted gene deletion analysis ascribed a role to up-regulated GH51 and GH62 arabinofuranosidases during plant penetration. Among the sho1/msb2-dependently expressed genes were several secreted effectors that are essential for virulence. Our data also demonstrate specific effects on two transcription factors that redirect the transcriptional regulatory network towards appressorium formation and plant penetration. This shows that plant surface cues prime U. maydis for biotrophic development.

  7. BWR plant dynamic analysis code BWRDYN user's manual

    International Nuclear Information System (INIS)

    Yokobayashi, Masao; Yoshida, Kazuo; Fujiki, Kazuo

    1989-06-01

    Computer code BWRDYN has been developed for thermal-hydraulic analysis of a BWR plant. It can analyze the various types of transient caused by not only small but also large disturbances such as operating mode changes and/or system malfunctions. The verification of main analytical models of the BWRDYN code has been performed with measured data of actual BWR plant. Furthermore, the installation of BOP (Balance of Plant) model has made it possible to analyze the effect of BOP on reactor system. This report describes on analytical models and instructions for user of the BWRDYN code. (author)

  8. Comparative risk analysis for the Rocky Flats Plant integrated project planning

    International Nuclear Information System (INIS)

    Jones, M.E.; Shain, D.I.

    1994-01-01

    The Rocky Flats Plant is developing, with active stakeholder participation, a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs, relative risks to workers and the public, and waste disposition are all needed. Comparative Risk Analysis employs both incremental risk and cumulative risk evaluations to compare risks from postulated options or endstates and is an analytical tool for the Rocky Flats Plant Integrated Project Planning which can assist a decision-maker in evaluating relative risks among proposed remediation activity. However, risks from all of the remediation activities, decontamination and decommissioning activities, and normal ongoing operations are imposed upon the Rocky Flats workers, the surrounding public, and the environment. Comparative Risk Analysis will provide risk information, both human health and ecological, to aid in reducing unnecessary resource and monetary expenditures by focusing these resources on the largest risks first. Comparative Risk Analysis has been developed to aggregate various incremental risk estimates to develop a site cumulative risk estimate. The Comparative Risk Analysis methodology Group, consisting of community stakeholders, was established. Early stakeholder involvement in the risk analysis methodology development provides an opportunity for stakeholders to influence the risk information delivered to a decision-maker. This paper discusses development of the Comparative Risk Analysis methodology, stakeholder participation and lessons learned from these challenges

  9. SWOT of nuclear power plant sustainable development

    International Nuclear Information System (INIS)

    Abbaspour, M.; Ghazi, S.

    2008-01-01

    SWOT Analysis is a Useful tool that can he applied to most projects or business ventures. In this article we are going to examine major strengths, weaknesses, opportunities and threats of nuclear power plants in view of sustainable development. Nuclear power plants have already attained widespread recognition for its benefits in fossil pollution abatement, near-zero green house gas emission, price stability and security of energy supply. The impressive new development is that these virtues are now a cost -free bonus, because, in long run, nuclear energy has become an inexpensive way to generate electricity. Nuclear energy's pre-eminence economically and environmentally has two implications for government policy. First, governments should ensure that nuclear licensing and safety oversight arc not only rigorous but also efficient in facilitating timely development of advanced power plants. Second, governments should be bold incentivizing the transformation to clean energy economics, recognizing that such short-term stimulus will, in the case of nuclear plants, simply accelerate desirable changes that now have their own long-term momentum. The increased competitiveness of nuclear power plant is the result of cost reductions in all aspects of nuclear economics: Construction, financing, operations, waste management and decommissioning. Among the cost-lowering factors are the evolution to standardized reactor designs, shorter construction periods, new financing techniques, more efficient generation technologies, higher rates of reactor utilization, and longer plant lifetimes. U.S World Nuclear Association report shows that total electricity costs for power plant construction and operation were calculated at two interest rates. At 10%, midrange generating costs per kilowatt-hour are nuclear at 4 cents, coal at 4.7 cents and natural gas at 5.1 cent. At a 5% interest rate, mid-range costs per KWh fall to nuclear at 2.6 cents, coal at 3.7 cents and natural gas at 4.3 cents

  10. Development of hydrogen combustion analysis model

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Tae Jin; Lee, K. D.; Kim, S. N. [Soongsil University, Seoul (Korea, Republic of); Hong, J. S.; Kwon, H. Y. [Seoul National Polytechnic University, Seoul (Korea, Republic of); Kim, Y. B.; Kim, J. S. [Seoul National University, Seoul (Korea, Republic of)

    1997-07-01

    The objectives of this project is to construct a credible DB for component reliability by developing methodologies and computer codes for assessing component independent failure and common cause failure probability, incorporating applicability and dependency of the data. In addition to this, the ultimate goal is to systematize all the analysis procedures so as to provide plans for preventing component failures by employing flexible tools for the change of specific plant or data sources. For the first subject, we construct a DB for similarity index and dependence matrix and propose a systematic procedure for data analysis by investigating the similarity and redundancy of the generic data sources. Next, we develop a computer code for this procedure and construct reliability data base for major components. The second subject is focused on developing CCF procedure for assessing the plant specific defense ability, rather than developing another CCF model. We propose a procedure and computer code for estimating CCF event probability by incorporating plant specific defensive measure. 116 refs., 25 tabs., 24 figs. (author)

  11. The development of plant food processing in the Levant: insights from use-wear analysis of Early Epipalaeolithic ground stone tools.

    Science.gov (United States)

    Dubreuil, Laure; Nadel, Dani

    2015-11-19

    In recent years, the study of percussive, pounding and grinding tools has provided new insights into human evolution, more particularly regarding the development of technology enabling the processing and exploitation of plant resources. Some of these studies focus on early evidence for flour production, an activity frequently perceived as an important step in the evolution of plant exploitation. The present paper investigates plant food preparation in mobile hunter-gatherer societies from the Southern Levant. The analysis consists of a use-wear study of 18 tools recovered from Ohalo II, a 23 000-year-old site in Israel showing an exceptional level of preservation. Our sample includes a slab previously interpreted as a lower implement used for producing flour, based on the presence of cereal starch residues. The use-wear data we have obtained provide crucial information about the function of this and other percussive tools at Ohalo II, as well as on investment in tool manufacture, discard strategies and evidence for plant processing in the Late Pleistocene. The use-wear analysis indicates that the production of flour was a sporadic activity at Ohalo II, predating by thousands of years the onset of routine processing of plant foods. © 2015 The Author(s).

  12. Integrated omics analysis of specialized metabolism in medicinal plants.

    Science.gov (United States)

    Rai, Amit; Saito, Kazuki; Yamazaki, Mami

    2017-05-01

    Medicinal plants are a rich source of highly diverse specialized metabolites with important pharmacological properties. Until recently, plant biologists were limited in their ability to explore the biosynthetic pathways of these metabolites, mainly due to the scarcity of plant genomics resources. However, recent advances in high-throughput large-scale analytical methods have enabled plant biologists to discover biosynthetic pathways for important plant-based medicinal metabolites. The reduced cost of generating omics datasets and the development of computational tools for their analysis and integration have led to the elucidation of biosynthetic pathways of several bioactive metabolites of plant origin. These discoveries have inspired synthetic biology approaches to develop microbial systems to produce bioactive metabolites originating from plants, an alternative sustainable source of medicinally important chemicals. Since the demand for medicinal compounds are increasing with the world's population, understanding the complete biosynthesis of specialized metabolites becomes important to identify or develop reliable sources in the future. Here, we review the contributions of major omics approaches and their integration to our understanding of the biosynthetic pathways of bioactive metabolites. We briefly discuss different approaches for integrating omics datasets to extract biologically relevant knowledge and the application of omics datasets in the construction and reconstruction of metabolic models. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  13. Development of plant maintenance systems

    International Nuclear Information System (INIS)

    Tomita, Jinji; Ike, Masae; Nakayama, Kenji; Kato, Hisatomo

    1989-01-01

    Toshiba is making active efforts for the continuing improvement of reliability and maintainability of operating nuclear power plants. As a part of these efforts, the company has developed new maintenance administration systems, diagnostic monitoring facilities for plant equipments, computer-aided expert systems, and remote-controlled machines for maintenance work. The maintenance administration systems provide efficient work plans and data acquisition capabilities for the management of personnel and equipments involved in nuclear power plant maintenance. The plant diagnostic facilities monitor and diagnose plant conditions for preventive maintenance, as well as enabling rapid countermeasures to be carried out should they be required. Expert systems utilizing artificial intelligence (AI) technology are also employed. The newly developed remote-controlled machines are useful tools for the maintenance inspection of equipment which can not be easily accessed. (author)

  14. PlantPAN: Plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups

    Directory of Open Access Journals (Sweden)

    Huang Hsien-Da

    2008-11-01

    Full Text Available Abstract Background The elucidation of transcriptional regulation in plant genes is important area of research for plant scientists, following the mapping of various plant genomes, such as A. thaliana, O. sativa and Z. mays. A variety of bioinformatic servers or databases of plant promoters have been established, although most have been focused only on annotating transcription factor binding sites in a single gene and have neglected some important regulatory elements (tandem repeats and CpG/CpNpG islands in promoter regions. Additionally, the combinatorial interaction of transcription factors (TFs is important in regulating the gene group that is associated with the same expression pattern. Therefore, a tool for detecting the co-regulation of transcription factors in a group of gene promoters is required. Results This study develops a database-assisted system, PlantPAN (Plant Promoter Analysis Navigator, for recognizing combinatorial cis-regulatory elements with a distance constraint in sets of plant genes. The system collects the plant transcription factor binding profiles from PLACE, TRANSFAC (public release 7.0, AGRIS, and JASPER databases and allows users to input a group of gene IDs or promoter sequences, enabling the co-occurrence of combinatorial transcription factor binding sites (TFBSs within a defined distance (20 bp to 200 bp to be identified. Furthermore, the new resource enables other regulatory features in a plant promoter, such as CpG/CpNpG islands and tandem repeats, to be displayed. The regulatory elements in the conserved regions of the promoters across homologous genes are detected and presented. Conclusion In addition to providing a user-friendly input/output interface, PlantPAN has numerous advantages in the analysis of a plant promoter. Several case studies have established the effectiveness of PlantPAN. This novel analytical resource is now freely available at http://PlantPAN.mbc.nctu.edu.tw.

  15. An artificial intelligence approach towards disturbance analysis in nuclear power plants

    International Nuclear Information System (INIS)

    Lindner, A.; Klebau, J.; Fielder, U.; Baldeweg, F.

    1987-01-01

    The scale and degree of sophistication of technological plants, e.g. nuclear power plants, have been essentially increased during the last decades. Conventional disturbance analysis systems have proved to work successfully in wellknown situations. But in cases of emergencies, the operator staff needs a more advanced assistance in realizing diagnosis and therapy control. The significance of introducing artificial intelligence methods in nuclear power technology is emphasized. Main features of the on-line disturbance analysis system SAAP-2 are reported about. It is being developed for application in nuclear power plants. 9 refs. (author)

  16. Development of CATHENA Plant Model for Wolsong 1 (Rev.0)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.H.; Lee, K.H.; Choi, H. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    This document includes CATHENA model development of plant controls, steam generator, feedwater and steam piping for wolsong 1 trip coverage analysis in the project of ''Development of Assessment Technologies for CANDU Reactor Power and Trip Effectiveness''. (author). 11 refs., 2 figs., 3 tabs.

  17. A new tool for risk analysis and assessment in petrochemical plants

    Directory of Open Access Journals (Sweden)

    El-Arkam Mechhoud

    2016-09-01

    Full Text Available The aim of our work was the implementation of a new automated tool dedicated to risk analysis and assessment in petrochemical plants, based on a combination of two analysis methods: HAZOP (HAZard and OPerability and FMEA (Failure Mode and Effect Analysis. Assessment of accident scenarios is also considered. The principal advantage of the two analysis methods is to speed-up hazard identification and risk assessment and forecast the nature and impact of such accidents. Plant parameters are analyzed under a graphical interface to facilitate the exploitation of our developed approach. This automated analysis brings out the different deviations of the operating parameters of any system in the plant. Possible causes of these deviations, their consequences and preventive actions are identified. The result is risk minimization and dependability enhancement of the considered system.

  18. Development of chemistry management for Onagawa Nuclear Power Plant

    International Nuclear Information System (INIS)

    Honda, Kazuaki; Sato, Junichi; Maeda, Katsuji; Nagasawa Katsumi; Hashiura, Sintaro

    2000-01-01

    Onagawa nuclear power plant developed a system for chemistry management of prevention and preservation of power plant. It is able to early detection of data change for prevention of plant. The system supports management of chemical custodian and consists of four parts such as management of water quality of plant , management of liquid waste, management of vapor waste and estimation of performance of chemical equipment. The system has three functions: management of operation, estimation of omen and examination of origin. The function of management of operation supports the routine inspection of chemical custodian by increasing efficiency of analytical and process data collection, practical use of data,, accuracy of data and rapid analysis. Estimation function of omen observes data fetched via online during 24 hr, indicates the small primary change and determines the origins. Examination function of origin supports their quick correspondences at accident and certificates the detailed origins. Histories of development of the system, business systemization, system construction, system functions are explained.The diagram of background of system development, system construction, management functions, verification of analytical data, automatic continuos monitoring diagram, screen of detection of abnormal phenomena, classified diagram of origins for change of water quality in reactor were developed. (S.Y.)

  19. Multielement neutron-activation analysis of plants and fertilizers

    International Nuclear Information System (INIS)

    Srapenyants, R.A.; Saveliev, I.B.

    1977-01-01

    The development of an automated technique for simultaneous multielement activation analysis of plants and fertilizers for the macronutrient elements N, P, K, Ca, Mg, Cl, and Si is presented. The developed universal NAA is based on the installation manufactured and supplied by Sames, France. The components of the automatic installation for neutron activation analysis are: neutron generator; a pneumatic transfer system; a scintillation crystal detector; a spectrometer rack including a basic multichannel analyser; a control panel for the neutron generator and pneumatic transfer system; a computer and teletype. On the basis of analytical procedures, algorithms and software, the first automatic (computer based) installation for multielement analyses of plants and fertilizers has been completed and is in routine use in the agrochemical and plant breeding research program in the Soviet Union. The proposed technique together with the full automatic real-time process of measurement and processing of data by computer, provides a throughput of 250-500 samples (1250-2500 elements determinations) per 8-hour shift, with the accuracy of +-3%; for N and +-5%; for P, K, Mg, Cl and +-15% for Ca. (T.G.)

  20. Reliability analysis techniques in power plant design

    International Nuclear Information System (INIS)

    Chang, N.E.

    1981-01-01

    An overview of reliability analysis techniques is presented as applied to power plant design. The key terms, power plant performance, reliability, availability and maintainability are defined. Reliability modeling, methods of analysis and component reliability data are briefly reviewed. Application of reliability analysis techniques from a design engineering approach to improving power plant productivity is discussed. (author)

  1. Scaling laws and technology development strategies for biorefineries and bioenergy plants.

    Science.gov (United States)

    Jack, Michael W

    2009-12-01

    The economies of scale of larger biorefineries or bioenergy plants compete with the diseconomies of scale of transporting geographically distributed biomass to a central location. This results in an optimum plant size that depends on the scaling parameters of the two contributions. This is a fundamental aspect of biorefineries and bioenergy plants and has important consequences for technology development as "bigger is better" is not necessarily true. In this paper we explore the consequences of these scaling effects via a simplified model of biomass transportation and plant costs. Analysis of this model suggests that there is a need for much more sophisticated technology development strategies to exploit the consequences of these scaling effects. We suggest three potential strategies in terms of the scaling parameters of the system.

  2. Development of nuclear power plant diagnosis technique using neural networks

    International Nuclear Information System (INIS)

    Horiguchi, Masahiro; Fukawa, Naohiro; Nishimura, Kazuo

    1991-01-01

    A nuclear power plant diagnosis technique has been developed, called transient phenomena analysis, which employs neural network. The neural networks identify malfunctioning equipment by recognizing the pattern of main plant parameters, making it possible to locate the cause of an abnormality when a plant is in a transient state. In a case where some piece of equipment shows abnormal behavior, many plant parameters either directly or indirectly related to that equipment change simultaneously. When an abrupt change in a plant parameter is detected, changes in the 49 main plant parameters are classified into three types and a characteristic change pattern consisting of 49 data is defined. The neural networks then judge the cause of the abnormality from this pattern. This neural-network-based technique can recognize 100 patterns that are characterized by the causes of plant abnormality. (author)

  3. Plant Science View on Biohybrid Development

    Directory of Open Access Journals (Sweden)

    Tomasz Skrzypczak

    2017-08-01

    Full Text Available Biohybrid consists of a living organism or cell and at least one engineered component. Designing robot–plant biohybrids is a great challenge: it requires interdisciplinary reconsideration of capabilities intimate specific to the biology of plants. Envisioned advances should improve agricultural/horticultural/social practice and could open new directions in utilization of plants by humans. Proper biohybrid cooperation depends upon effective communication. During evolution, plants developed many ways to communicate with each other, with animals, and with microorganisms. The most notable examples are: the use of phytohormones, rapid long-distance signaling, gravity, and light perception. These processes can now be intentionally re-shaped to establish plant–robot communication. In this article, we focus on plants physiological and molecular processes that could be used in bio-hybrids. We show phototropism and biomechanics as promising ways of effective communication, resulting in an alteration in plant architecture, and discuss the specifics of plants anatomy, physiology and development with regards to the bio-hybrids. Moreover, we discuss ways how robots could influence plants growth and development and present aims, ideas, and realized projects of plant–robot biohybrids.

  4. Nuclear Plant Analyzer development at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Laats, E.T.; Beelman, R.J.; Charlton, T.R.; Hampton, N.L.; Burtt, J.D.

    1985-01-01

    The Nuclear Plant Analyzer (NPA) is a state-of-the-art safety analysis and engineering tool being used to address key nuclear power plant safety issues. The NPA has been developed to integrate the NRC's computerized reactor behavior simulation codes such as RELAP5, TRAC-BWR, and TRAC-PWR, with well-developed computer graphics programs and large repositories of reactor design and experimental data. An important feature of the NAP is the capability to allow an analyst to redirect a RELAP5 or TRAC calculation as it progresses through its simulated scenario. The analyst can have the same power plant control capabilities as the operator of an actual plant. The NPA resides on the dual CDS Cyber-176 mainframe computers at the INEL and is being converted to operate on a Cray-1S computer at the LANL. The subject of this paper is the program conducted at the INEL

  5. Analysis of requirements for teaching materials based on the course bioinformatics for plant metabolism

    Science.gov (United States)

    Balqis, Widodo, Lukiati, Betty; Amin, Mohamad

    2017-05-01

    A way to improve the quality of learning in the course of Plant Metabolism in the Department of Biology, State University of Malang, is to develop teaching materials. This research evaluates the needs of bioinformatics-based teaching material in the course Plant Metabolism by the Analyze, Design, Develop, Implement, and Evaluate (ADDIE) development model. Data were collected through questionnaires distributed to the students in the Plant Metabolism course of the Department of Biology, University of Malang, and analysis of the plan of lectures semester (RPS). Learning gains of this course show that it is not yet integrated into the field of bioinformatics. All respondents stated that plant metabolism books do not include bioinformatics and fail to explain the metabolism of a chemical compound of a local plant in Indonesia. Respondents thought that bioinformatics can explain examples and metabolism of a secondary metabolite analysis techniques and discuss potential medicinal compounds from local plants. As many as 65% of the respondents said that the existing metabolism book could not be used to understand secondary metabolism in lectures of plant metabolism. Therefore, the development of teaching materials including plant metabolism-based bioinformatics is important to improve the understanding of the lecture material in plant metabolism.

  6. Development of a computerized operator support system for BWR power plant

    International Nuclear Information System (INIS)

    Monta, K.; Sekimizu, K.; Sato, N.; Araki, T.; Mori, N.

    1985-01-01

    A computerized operator support system for BWR power plant has been developed since 1980 supported by the Japanese government. The main functions of the systems are post trip operational guidance, disturbance analysis, standby system management, operational margin monitoring and control rod operational guidance. The former two functions aim at protection against incidents during operation of nuclear power plants and the latter three functions aim at their prevention. As the final stage of the development, these functions are combined with the plant supervision function and are organized as an advanced man-machine interface for BWR power plant. During the above process, operator task analyses are performed to enable synthesis of these support functions for right fit to operator tasks and to realize a hierarchical structure for CRT displays for right fit to operators cognitive needs. (author)

  7. Development of the simulation system {open_quotes}IMPACT{close_quotes} for analysis of nuclear power plant severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Naitoh, Masanori; Ujita, Hiroshi; Nagumo, Hiroichi [Nuclear Power Corp. (Japan)] [and others

    1997-07-01

    The Nuclear Power Engineering Corporation (NUPEC) has initiated a long-term program to develop the simulation system {open_quotes}IMPACT{close_quotes} for analysis of hypothetical severe accidents in nuclear power plants. IMPACT employs advanced methods of physical modeling and numerical computation, and can simulate a wide spectrum of senarios ranging from normal operation to hypothetical, beyond-design-basis-accident events. Designed as a large-scale system of interconnected, hierarchical modules, IMPACT`s distinguishing features include mechanistic models based on first principles and high speed simulation on parallel processing computers. The present plan is a ten-year program starting from 1993, consisting of the initial one-year of preparatory work followed by three technical phases: Phase-1 for development of a prototype system; Phase-2 for completion of the simulation system, incorporating new achievements from basic studies; and Phase-3 for refinement through extensive verification and validation against test results and available real plant data.

  8. Development of fault diagnostic technique using reactor noise analysis

    International Nuclear Information System (INIS)

    Park, Jin Ho; Kim, J. S.; Oh, I. S.; Ryu, J. S.; Joo, Y. S.; Choi, S.; Yoon, D. B.

    1999-04-01

    The ultimate goal of this project is to establish the analysis technique to diagnose the integrity of reactor internals using reactor noise. The reactor noise analyses techniques for the PWR and CANDU NPP(Nuclear Power Plants) were established by which the dynamic characteristics of reactor internals and SPND instrumentations could be identified, and the noise database corresponding to each plant(both Korean and foreign one) was constructed and compared. Also the change of dynamic characteristics of the Ulchin 1 and 2 reactor internals were simulated under presumed fault conditions. Additionally portable reactor noise analysis system was developed so that real time noise analysis could directly be able to be performed at plant site. The reactor noise analyses techniques developed and the database obtained from the fault simulation, can be used to establish a knowledge based expert system to diagnose the NPP's abnormal conditions. And the portable reactor noise analysis system may be utilized as a substitute for plant IVMS(Internal Vibration Monitoring System). (author)

  9. Development of fault diagnostic technique using reactor noise analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Kim, J. S.; Oh, I. S.; Ryu, J. S.; Joo, Y. S.; Choi, S.; Yoon, D. B

    1999-04-01

    The ultimate goal of this project is to establish the analysis technique to diagnose the integrity of reactor internals using reactor noise. The reactor noise analyses techniques for the PWR and CANDU NPP(Nuclear Power Plants) were established by which the dynamic characteristics of reactor internals and SPND instrumentations could be identified, and the noise database corresponding to each plant(both Korean and foreign one) was constructed and compared. Also the change of dynamic characteristics of the Ulchin 1 and 2 reactor internals were simulated under presumed fault conditions. Additionally portable reactor noise analysis system was developed so that real time noise analysis could directly be able to be performed at plant site. The reactor noise analyses techniques developed and the database obtained from the fault simulation, can be used to establish a knowledge based expert system to diagnose the NPP's abnormal conditions. And the portable reactor noise analysis system may be utilized as a substitute for plant IVMS(Internal Vibration Monitoring System). (author)

  10. Internal event analysis of Laguna Verde Unit 1 Nuclear Power Plant. System Analysis

    International Nuclear Information System (INIS)

    Huerta B, A.; Aguilar T, O.; Nunez C, A.; Lopez M, R.

    1993-01-01

    The Level 1 results of Laguna Verde Nuclear Power Plant PRA are presented in the I nternal Event Analysis of Laguna Verde Unit 1 Nuclear Power Plant , CNSNS-TR-004, in five volumes. The reports are organized as follows: CNSNS-TR-004 Volume 1: Introduction and Methodology. CNSNS-TR-004 Volume 2: Initiating Event and Accident Sequences. CNSNS-TR-004 Volume 3: System Analysis. CNSNS-TR-004 Volume 4: Accident Sequence Quantification and Results. CNSNS-TR-004 Volume 5: Appendices A, B and C. This volume presents the results of the system analysis for the Laguna Verde Unit 1 Nuclear Power Plant. The system analysis involved the development of logical models for all the systems included in the accident sequence event tree headings, and for all the support systems required to operate the front line systems. For the Internal Event analysis for Laguna Verde, 16 front line systems and 5 support systems were included. Detailed fault trees were developed for most of the important systems. Simplified fault trees focusing on major faults were constructed for those systems that can be adequately represent,ed using this kind of modeling. For those systems where fault tree models were not constructed, actual data were used to represent the dominant failures of the systems. The main failures included in the fault trees are hardware failures, test and maintenance unavailabilities, common cause failures, and human errors. The SETS and TEMAC codes were used to perform the qualitative and quantitative fault tree analyses. (Author)

  11. Advanced methods for a probabilistic safety analysis of fires. Development of advanced methods for performing as far as possible realistic plant specific fire risk analysis (fire PSA)

    International Nuclear Information System (INIS)

    Hofer, E.; Roewekamp, M.; Tuerschmann, M.

    2003-07-01

    In the frame of the research project RS 1112 'Development of Methods for a Recent Probabilistic Safety Analysis, Particularly Level 2' funded by the German Federal Ministry of Economics and Technology (BMWi), advanced methods, in particular for performing as far as possible realistic plant specific fire risk analyses (fire PSA), should be developed. The present Technical Report gives an overview on the methodologies developed in this context for assessing the fire hazard. In the context of developing advanced methodologies for fire PSA, a probabilistic dynamics analysis with a fire simulation code including an uncertainty and sensitivity study has been performed for an exemplary scenario of a cable fire induced by an electric cabinet inside the containment of a modern Konvoi type German nuclear power plant taking into consideration the effects of fire detection and fire extinguishing means. With the present study, it was possible for the first time to determine the probabilities of specified fire effects from a class of fire events by means of probabilistic dynamics supplemented by uncertainty and sensitivity analyses. The analysis applies a deterministic dynamics model, consisting of a dynamic fire simulation code and a model of countermeasures, considering effects of the stochastics (so-called aleatory uncertainties) as well as uncertainties in the state of knowledge (so-called epistemic uncertainties). By this means, probability assessments including uncertainties are provided to be used within the PSA. (orig.) [de

  12. Cost-benefit analysis for combined heat and power plant

    International Nuclear Information System (INIS)

    Sazdovski, Ace; Fushtikj, Vangel

    2004-01-01

    The paper presents a methodology and practical application of Cost-Benefit Analysis for Combined Heat and Power Plant (Cogeneration facility). Methodology include up-to-date and real data for cogeneration plant in accordance with the trends ill development of the CHP technology. As a case study a CHP plant that could be built-up in Republic of Macedonia is analyzed. The main economic parameters for project evaluation, such as NPV and IRR are calculated for a number of possible scenarios. The analyze present the economic outputs that could be used as a decision for CHP project acceptance for investment. (Author)

  13. Development and demonstration of near-real-time accounting systems for reprocessing plants

    International Nuclear Information System (INIS)

    Cobb, D.D.; Hakkila, E.A.; Dayem, H.A.; Shipley, J.P.; Baker, A.L.

    1981-01-01

    A program to develop and demonstrate near-real-time accounting systems for reprocessing plants has been active at Los Alamos since 1976. The technology has been developed through modeling and simulation of process operation and measurement systems and evaluation of these data using decision analysis techniques. Aspects of near-real-time systems have been demonstrated successfully at the AGNS reprocessng plant as part of a joint study of near-real-time accounting

  14. Nuclear Plant Analyzer development at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Laats, E.T.

    1986-10-01

    The Nuclear Plant Analyzer (NPA) is a state-of-the-art safety analysis and engineering tool being used to address key nuclear power plant safety issues. Under the sponsorship of the US Nuclear Regulatory Commission (NRC), the NPA has been developed to integrate the NRC's computerized reactor behavior simulation codes such as RELAP5, TRAC-BWR and TRAC-PWR, with well-developed computer color graphics programs and large repositories of reactor design and experimental data. An important feature of the NPA is the capability to allow an analyst to redirect a RELAP5 or TRAC calculation as it progresses through its simulated scenario. The analyst can have the same power plant control capabilities as the operator of an actual plant. The NPA resides on the dual Control Data Corporation Cyber 176 mainframe computers at the Idaho National Engineering Laboratory and Cray-1S computers at the Los Alamos National Laboratory (LANL) and Kirtland Air Force Weapons Laboratory (KAFWL)

  15. The development of a task analysis method applicable to the tasks of nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Wan Chul; Park, Ji Soo; Baek, Dong Hyeon; Ham, Dong Han; Kim, Huhn [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-07-01

    While task analysis is one of the essential processes for human factors studies, traditional methods reveal weaknesses in dealing with the cognitive aspects, which become more critical in modern complex system. This report proposes a cognitive task analysis (CTA) method for identifying cognitive requirements of operators' tasks in nuclear power plants. The proposed CTA method is characterized by the information-oriented concept and procedure-based approach. The task prescription identifies the information requirements and trace the information flow to reveal the cognitive organization of task procedure with emphasis to the relations among the information requirements. The cognitive requirements are then analyzed in terms of cognitive span of task information, cognitive envelope and working memory relief point of t procedures, and working memory load. The proposed method is relatively simple and, possibly being incorporated in a full task analysis scheme, directly applicable to the design/evaluation of human-machine interfaces and operating procedures. A prototype of a computerized support system is developed for supporting the practicality of the proposed method. (Author) 104 refs., 8 tabs., 7 figs.

  16. The development of a task analysis method applicable to the tasks of nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Wan Chul; Park, Ji Soo; Baek, Dong Hyeon; Ham, Dong Han; Kim, Huhn [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-07-01

    While task analysis is one of the essential processes for human factors studies, traditional methods reveal weaknesses in dealing with the cognitive aspects, which become more critical in modern complex system. This report proposes a cognitive task analysis (CTA) method for identifying cognitive requirements of operators' tasks in nuclear power plants. The proposed CTA method is characterized by the information-oriented concept and procedure-based approach. The task prescription identifies the information requirements and trace the information flow to reveal the cognitive organization of task procedure with emphasis to the relations among the information requirements. The cognitive requirements are then analyzed in terms of cognitive span of task information, cognitive envelope and working memory relief point of t procedures, and working memory load. The proposed method is relatively simple and, possibly being incorporated in a full task analysis scheme, directly applicable to the design/evaluation of human-machine interfaces and operating procedures. A prototype of a computerized support system is developed for supporting the practicality of the proposed method. (Author) 104 refs., 8 tabs., 7 figs.

  17. Redox regulation of plant development.

    Science.gov (United States)

    Considine, Michael J; Foyer, Christine H

    2014-09-20

    We provide a conceptual framework for the interactions between the cellular redox signaling hub and the phytohormone signaling network that controls plant growth and development to maximize plant productivity under stress-free situations, while limiting growth and altering development on exposure to stress. Enhanced cellular oxidation plays a key role in the regulation of plant growth and stress responses. Oxidative signals or cycles of oxidation and reduction are crucial for the alleviation of dormancy and quiescence, activating the cell cycle and triggering genetic and epigenetic control that underpin growth and differentiation responses to changing environmental conditions. The redox signaling hub interfaces directly with the phytohormone network in the synergistic control of growth and its modulation in response to environmental stress, but a few components have been identified. Accumulating evidence points to a complex interplay of phytohormone and redox controls that operate at multiple levels. For simplicity, we focus here on redox-dependent processes that control root growth and development and bud burst. The multiple roles of reactive oxygen species in the control of plant growth and development have been identified, but increasing emphasis should now be placed on the functions of redox-regulated proteins, along with the central roles of reductants such as NAD(P)H, thioredoxins, glutathione, glutaredoxins, peroxiredoxins, ascorbate, and reduced ferredoxin in the regulation of the genetic and epigenetic factors that modulate the growth and vigor of crop plants, particularly within an agricultural context.

  18. Development and application of objective uncertainty measures for nuclear power plant transient analysis

    International Nuclear Information System (INIS)

    Vinai, P.

    2007-10-01

    For the development, design and licensing of a nuclear power plant (NPP), a sound safety analysis is necessary to study the diverse physical phenomena involved in the system behaviour under operational and transient conditions. Such studies are based on detailed computer simulations. With the progresses achieved in computer technology and the greater availability of experimental and plant data, the use of best estimate codes for safety evaluations has gained increasing acceptance. The application of best estimate safety analysis has raised new problems that need to be addressed: it has become more crucial to assess as to how reliable code predictions are, especially when they need to be compared against safety limits that must not be crossed. It becomes necessary to identify and quantify the various possible sources of uncertainty that affect the reliability of the results. Currently, such uncertainty evaluations are generally based on experts' opinion. In the present research, a novel methodology based on a non-parametric statistical approach has been developed for objective quantification of best-estimate code uncertainties related to the physical models used in the code. The basis is an evaluation of the accuracy of a given physical model achieved by comparing its predictions with experimental data from an appropriate set of separate-effect tests. The differences between measurements and predictions can be considered stochastically distributed, and thus a statistical approach can be employed. The first step was the development of a procedure for investigating the dependence of a given physical model's accuracy on the experimental conditions. Each separate-effect test effectively provides a random sample of discrepancies between measurements and predictions, corresponding to a location in the state space defined by a certain number of independent system variables. As a consequence, the samples of 'errors', achieved from analysis of the entire database, are

  19. Development of second-generation PFB combustion plants

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, A.; Domeracki, W.; Horazak, D. [and others

    1995-12-31

    Research is being conducted under United States Department of Energy (USDOE) Contract DE-AC21-86MC21023 to develop a new type of coal-fueled plant for electric power generation. This new type of plant--called an Advanced or Second-generation Pressurized Fluidized Bed Combustion (APFBC) plant--offers the promise of efficiencies greater than 45 percent (HHV), with both emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. This paper summarizes the pilot-plant R&D work being conducted to develop this new type of plant and discusses a proposed design that should reduce demonstration-plant risks and costs.

  20. Development of salt tolerant plants through genetic engineering (abstract)

    International Nuclear Information System (INIS)

    Mukhtar, Z.; Khan, S.A.; Zafar, Y.

    2005-01-01

    Salinity stress is one of the most serious factors limiting the productivity of agricultural crops. Genetic engineering provides a useful tool for tailoring plants with enhanced salt tolerance characteristics. Many organisms have evolved mechanisms to survive and grow under such extreme environments. These organisms provide us with a useful source of genes which can be used to improve salt tolerance in plants. The present study aims at identification and cloning of useful halo tolerance conferring genes from fungi and plants and to develop salt tolerant transgenic plants. Here we describe the cloning and use of HSR1 gene (a yeast transcription factor known to confer salt tolerance) and Na/sup +//H/sup +/ antiporter gene AtNHX1 (3016 bp) from Arabidopsis thaliana, and transformation of tobacco with HSR1 and AtNHX1 genes through Agrobacterium method. A number of transgenic tobacco plants were regenerated from leaf explants transformed with Agrobacterium tumefaciens (LBA4404) having HSR1 and AtNHX1 genes by leaf disc method. The putative transgenic plants were analyzed by PCR and dot blot analysis. Screening of these transgenic plants at different salinity levels is in progress which will help identify the suitable plant lines and thus the promising genes which can be further exploited to engineer salt tolerant crop plants. (author)

  1. The Development of Brazilian Municipalities Flooded by Hydropower Plants

    Science.gov (United States)

    Araujo, N.; Moretto, E. M.; Roquetti, D. R.; Beduschi, L. C.; Praia, A.; Pulice, S.; Albiach, E.; Athayde, S.

    2016-12-01

    Hydropower plants cause negative environmental impacts during the phases of construction and operation. On the other hand, there is a general assumption that these projects also induce local development of the affected places, since there is a great influx of social and financial capital brought locally, especially during the construction phase the relationship between hydropower plant implementation s and local development has been controversial in the Environmental Impact Assessment field, and there is no empirical evidence showing how hydroelectric dam construction affects local development. Considering municipal development as a kind of local development and operationalizing the concept of human development by adopting income, longevity and education dimensions defined by Amartya Sen, this study aimed to verify empirical evidences regarding the role of hydropower plants in human development of their flooded municipalities in Brazil. For this, we considered 134 hydroelectric plants and correspondent 641 flooded municipalities, for which 155 human development indicators were obtained for the period of 2000 to 2010. Results obtained from statistical correlation analysis and their assumption tests showed that increases in the municipal flooded area and increases in the period of flooding - to which a given municipality is submitted - were associated with lower performances of human development indicators. Specifically, increases in social inequality, poverty and lower performances of longevity and education were detected for the flooded municipalities. We also found that the financial compensation was associated with better performance of municipal income and lower performances of education and longevity. Finally, approaching the growth poles theory of François Perroux and the productive linkages theory of Albert Hirschman, we suggest that the size of the flooded areas, the flooding period and the financial compensation may lead to an enclave situation in

  2. 76 FR 44572 - Plants for Planting Whose Importation Is Not Authorized Pending Pest Risk Analysis; Notice of...

    Science.gov (United States)

    2011-07-26

    ...] Plants for Planting Whose Importation Is Not Authorized Pending Pest Risk Analysis; Notice of... of taxa of plants for planting whose importation is not authorized pending pest risk analysis. We... plants for planting whose importation is not authorized pending pest risk analysis (NAPPRA) in order to...

  3. Failure analysis and success analysis: roles in plant aging assessments

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1985-06-01

    Component aging investigations are an important element in NRC's Nuclear Plant Aging Research (NPAR) strategy. Potential sources of components include plants in decommissioning and commercial plant, both for in situ tests and for examination of equipment removed from service. Nuclear utilities currently have voluntary programs addressing aspects of equipment reliability, such as root cause analysis for safety-related equipment that malfunctions, and trending analysis to follow the course of both successful and abnormal equipment performance. Properly coordinated, the NPAR and utility programs offer an important approach to establish the data base necessary for life extension of nuclear electrical generating plants

  4. Mechanisms in Plant Development

    Energy Technology Data Exchange (ETDEWEB)

    Hake, Sarah [USDA ARS Plant Gene Expression Center

    2013-08-21

    This meeting has been held every other year for the past twenty-two years and is the only regularly held meeting focused specifically on plant development. Topics covered included: patterning in developing tissues; short and long distance signaling; differentiation of cell types; the role of epigenetics in development; evolution; growth.

  5. Plant cell wall polysaccharide analysis during cell elongation

    DEFF Research Database (Denmark)

    Guo, Xiaoyuan

    Plant cell walls are complex structures whose composition and architecture are important to various cellular activities. Plant cell elongation requires a high level of rearrangement of the cell wall polymers to enable cell expansion. However, the cell wall polysaccharides dynamics during plant cell...... elongation is poorly understood. This PhD project aims to elucidate the cell wall compositional and structural change during cell elongation by using Comprehensive Microarray Polymer Profiling (CoMPP), microscopic techniques and molecular modifications of cell wall polysaccharide. Developing cotton fibre......, pea and Arabidopsis thaliana were selected as research models to investigate different types of cell elongation, developmental elongation and tropism elongation. A set of comprehensive analysis covering 4 cotton species and 11 time points suggests that non-cellulosic polysaccharides contribute...

  6. Analysis of safety information for nuclear power plants and development of source term estimation program

    International Nuclear Information System (INIS)

    Kim, Tae Woon; Choi, Seong Soo; Park, Jin Hee

    1999-12-01

    Current CARE(Computerized Advisory System for Radiological Emergency) in KINS(Korea Institute of Nuclear Safety) has no STES(Source Term Estimation System) which links between SIDS(Safety Information Display System) and FADAS(Following Accident Dose Assessment System). So in this study, STES is under development. STES system is the system that estimates the source term based on the safety information provided by SIDS. Estimated source term is given to FADAS as an input for estimation of environmental effect of radiation. Through this first year project STES for the Kori 3,4 and Younggwang 1,2 has been developed. Since there is no CARE for Wolsong(PHWR) plants yet, CARE for Wolsong is under construction. The safety parameters are selected and the safety information display screens and the alarm logic for plant status change are developed for Wolsong Unit 2 based on the design documents for CANDU plants

  7. Research and development on the human factors technologies for nuclear power plants in Korea

    International Nuclear Information System (INIS)

    Sim, B.S.; Lee, J.W.; Cheon, S.W.

    1996-01-01

    This paper introduces our research project on the development of human factors technologies for nuclear power plants in Korea. The project is divided into two sub-projects. The first sub-project is the development of human factors experimental evaluation techniques, which aims to develop the techniques for experimental design, experimental measurement and data collection/analysis, and to construct an integrated test facility (ITF) suitable for the experimental evaluation of man-machine interfaces (MMIs) at an advanced control room. The second is the development of human behavior analysis techniques, which has two research areas: one is the development of a task simulation analyzer and the other is human error case studies for nuclear power plants. (author)

  8. United States experience in environmental cost-benefit analysis for nuclear power plants with implications for developing countries

    International Nuclear Information System (INIS)

    Spangler, M.B.

    1980-08-01

    Environmental cost-benefit analysis in the United States involves a comparison of diverse societal impacts of the proposed developments and its alternatives. Regarding nuclear power plant licensing actions, such analyses include the need for base-load electrical generating capacity versus the no-action alternative; alternative sources of energy; alternative sites for the proposed nuclear plants; and alternative technologies for mitigating environmental impacts. Many U.S. experiences and environmental assessment practices and comparative resource requirements presented in this report will not provide a wholly reliable reflection of the precise situation of each country. Nevertheless, the procedural and substantive issues encountered by the United States in nuclear power plant licensing may exhibit a number of important, if rough, parallelisms for other countries. Procedural issues dealt with include: the scoping of alternatives and impact issues; the problem of balancing incommensurable impacts; and treating uncertainty in measuring or forecasting certain kinds of environmental impacts. Although substantive environmental impact issues will vary appreciably among nations, it is to be expected that many of the substantive impact issues such as impacts on biota, community-related effects, and aesthetic impacts will also have some measure of universal interest to other countries

  9. Multielemental determination in ten maize plant fragment using neutron activation analysis

    International Nuclear Information System (INIS)

    Spiridon, S.

    1993-01-01

    An instrumental activation technique has been developed for simultaneous analysis in dry ash maize plant samples of 18 elements: Al, Au, Ca, Ce, Co, Cr, Cs, Eu, Fe, La, Lu, K, Mg, Mn, Na, Rb, Sc, and Zn. Ten fragments of maize plants (dry ash) were analysed: leaves sheaths, beads, stumps, peduncles, spikes, unfruitfuls, interknots, knots, and corn husks, with a content distribution of the elements from percent to ppm. A precision of 5-7 % has been achieved on the basis of replicate analysis. The method is relatively simple and suitable for the analysis of biological samples. (Author)

  10. Genetics and plant development.

    Science.gov (United States)

    Prunet, Nathanaël; Meyerowitz, Elliot M

    2016-01-01

    There are only three grand theories in biology: the theory of the cell, the theory of the gene, and the theory of evolution. Two of these, the cell and gene theories, originated in the study of plants, with the third resulting in part from botanical considerations as well. Mendel's elucidation of the rules of inheritance was a result of his experiments on peas. The rediscovery of Mendel's work in 1900 was by the botanists de Vries, Correns, and Tschermak. It was only in subsequent years that animals were also shown to have segregation of genetic elements in the exact same manner as had been shown in plants. The story of developmental biology is different - while the development of plants has long been studied, the experimental and genetic approaches to developmental mechanism were developed via experiments on animals, and the importance of genes in development (e.g., Waddington, 1940) and their use for understanding developmental mechanisms came to botanical science much later - as late as the 1980s. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  11. The biochemical basis of plant development

    NARCIS (Netherlands)

    Weijers, D.

    2013-01-01

    Plants develop highly elaborate structures, ranging from small mosses to large trees. All these structures are made by stem cells and consist of a few basic types of tissue. The field of Biochemistry of Plant Development studies the mechanisms by which regulatory proteins control the formation of

  12. Interface between computational fluid dynamics (CFD) and plant analysis computer codes

    International Nuclear Information System (INIS)

    Coffield, R.D.; Dunckhorst, F.F.; Tomlinson, E.T.; Welch, J.W.

    1993-01-01

    Computational fluid dynamics (CFD) can provide valuable input to the development of advanced plant analysis computer codes. The types of interfacing discussed in this paper will directly contribute to modeling and accuracy improvements throughout the plant system and should result in significant reduction of design conservatisms that have been applied to such analyses in the past

  13. Summary of component reliability data for probabilistic safety analysis of Korean standard nuclear power plant

    International Nuclear Information System (INIS)

    Choi, S. Y.; Han, S. H.

    2004-01-01

    The reliability data of Korean NPP that reflects the plant specific characteristics is necessary for PSA of Korean nuclear power plants. We have performed a study to develop the component reliability DB and S/W for component reliability analysis. Based on the system, we had have collected the component operation data and failure/repair data during plant operation data to 1998/2000 for YGN 3,4/UCN 3,4 respectively. Recently, we have upgraded the database by collecting additional data by 2002 for Korean standard nuclear power plants and performed component reliability analysis and Bayesian analysis again. In this paper, we supply the summary of component reliability data for probabilistic safety analysis of Korean standard nuclear power plant and describe the plant specific characteristics compared to the generic data

  14. GenoCAD Plant Grammar to Design Plant Expression Vectors for Promoter Analysis.

    Science.gov (United States)

    Coll, Anna; Wilson, Mandy L; Gruden, Kristina; Peccoud, Jean

    2016-01-01

    With the rapid advances in prediction tools for discovery of new promoters and their cis-elements, there is a need to improve plant expression methodologies in order to facilitate a high-throughput functional validation of these promoters in planta. The promoter-reporter analysis is an indispensible approach for characterization of plant promoters. It requires the design of complex plant expression vectors, which can be challenging. Here, we describe the use of a plant grammar implemented in GenoCAD that will allow the users to quickly design constructs for promoter analysis experiments but also for other in planta functional studies. The GenoCAD plant grammar includes a library of plant biological parts organized in structural categories to facilitate their use and management and a set of rules that guides the process of assembling these biological parts into large constructs.

  15. Development of fragility descriptions of equipment for seismic risk assessment of nuclear power plants

    International Nuclear Information System (INIS)

    Hardy, G.S.; Campbell, R.D.

    1983-01-01

    Probabilistic risk assessment (PRA) of a nuclear power plant for postulated hazard requires the development of fragility relationships for the plants' safety related equipment. The objective of this paper is to present some general results and conclusions concerning the development of these seismic fragility levels. Participation in fragility-related research and experience gained from the completion of several PRA studies of a variety of nuclear power plants have provided much insight as to the most vulnerable equipment and the most efficient use of resources for development of fragilities. Plants studied had seismic design bases ranging from very simple equivalent static analysis for some of the earlier plants to state-of-the-art complex multimode dyanamic analyses for plants currently under construction. Increased sophistication and rigor in seismic qualification of equipment has resulted for the most part in increased seismic resistance. The majority of equipment has been found, however, to possess more than adequate resistance to seismic loading regardless of the degree of sophistication utilized in design as long as seismic loading was included in the design process. This paper presents conclusions of the authors as to which items of equipment typically require an individual ''plant-specific'' fragility analysis and which can be treated in a generic fashion. In addition, general conclusions on the relative seismic capacity levels and most frequent failure modes are summarized for generic equipment groups

  16. Development and Application of a Plant Code to the Analysis of Transients in Integrated Reactors

    International Nuclear Information System (INIS)

    Rabiti, A.; Gimenez, M.; Delmastro, D.; Zanocco, P.

    2003-01-01

    In this work, a secondary system model for a CAREM-25 type nuclear power plant was developed.A two-phase flow homogenous model was used and found adequate for the scope of the present work.A finite difference scheme was used for the numerical implementation of the model.This model was coupled to the HUARPE code, a primary circuit code, in order to obtain a plant code.This plant code was used to analyze the inherent response of the system, without control feedback loops, for a transient of steam generator feed-water mass flow reduction.The results obtained are satisfactory, but a validation against other plant codes is still necessary

  17. 78 FR 41908 - Plants for Planting Whose Importation Is Not Authorized Pending Pest Risk Analysis; Notice of...

    Science.gov (United States)

    2013-07-12

    ... Pending Pest Risk Analysis; Notice of Availability of Data Sheets for Taxa of Plants for Planting That Are... planting whose importation is not authorized pending pest risk analysis. This action will allow interested... our lists of plants for planting whose importation is not authorized pending pest risk analysis...

  18. Use and development of coupled computer codes for the analysis of accidents at nuclear power plants. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2007-01-01

    Computer codes are widely used in Member States for the analysis of safety at nuclear power plants (NPPs). Coupling of computer codes, a further tool for safety analysis, is especially beneficial to safety analysis. The significantly increased capacity of new computation technology has made it possible to switch to a newer generation of computer codes, which are capable of representing physical phenomena in detail and include a more precise consideration of multidimensional effects. The coupling of advanced, best estimate computer codes is an efficient method of addressing the multidisciplinary nature of reactor accidents with complex interfaces between disciplines. Coupling of computer codes is very advantageous for studies which relate to licensing of new NPPs, safety upgrading programmes for existing plants, periodic safety reviews, renewal of operating licences, use of safety margins for reactor power uprating, better utilization of nuclear fuel and higher operational flexibility, justification for lifetime extensions, development of new emergency operating procedures, analysis of operational events and development of accident management programmes. In this connection, the OECD/NEA Working Group on the Analysis and Management of Accidents (GAMA) recently highlighted the application of coupled computer codes as an area of 'high collective interest'. Coupled computer codes are being developed in many Member States independently or within small groups composed of several technical organizations. These developments revealed that there are many types and methods of code coupling. In this context, it was believed that an exchange of views and experience while addressing these problems at an international meeting could contribute to the more efficient and reliable use of advanced computer codes in nuclear safety applications. The present publication constitutes the report on the Technical Meeting on Progress in the Development and Use of Coupled Codes for Accident

  19. Use and development of coupled computer codes for the analysis of accidents at nuclear power plants. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2007-01-01

    Computer codes are widely used in Member States for the analysis of safety at nuclear power plants (NPPs). Coupling of computer codes, a further tool for safety analysis, is especially beneficial to safety analysis. The significantly increased capacity of new computation technology has made it possible to switch to a newer generation of computer codes, which are capable of representing physical phenomena in detail and include a more precise consideration of multidimensional effects. The coupling of advanced, best estimate computer codes is an efficient method of addressing the multidisciplinary nature of reactor accidents with complex interfaces between disciplines. Coupling of computer codes is very advantageous for studies which relate to licensing of new NPPs, safety upgrading programmes for existing plants, periodic safety reviews, renewal of operating licences, use of safety margins for reactor power uprating, better utilization of nuclear fuel and higher operational flexibility, justification for lifetime extensions, development of new emergency operating procedures, analysis of operational events and development of accident management programmes. In this connection, the OECD/NEA Working Group on the Analysis and Management of Accidents (GAMA) recently highlighted the application of coupled computer codes as an area of 'high collective interest'. Coupled computer codes are being developed in many Member States independently or within small groups composed of several technical organizations. These developments revealed that there are many types and methods of code coupling. In this context, it was believed that an exchange of views and experience while addressing these problems at an international meeting could contribute to the more efficient and reliable use of advanced computer codes in nuclear safety applications. The present publication constitutes the report on the Technical Meeting on Progress in the Development and Use of Coupled Codes for Accident

  20. Concepts in production ecology for analysis and design of animal and plant-animal production systems

    NARCIS (Netherlands)

    Ven, van de G.W.J.; Ridder, de N.; Keulen, van H.; Ittersum, van M.K.

    2003-01-01

    The use of a hierarchy in growth factors (defining, limiting and reducing growth factors), as developed for plant production has shown its usefulness in the analysis and design of plant production systems. This hierarchy presents a theoretical framework for the analysis of biophysical conditions in

  1. Safety analysis of an expert reactor protection system in nuclear power plants

    International Nuclear Information System (INIS)

    El-Kafas, A.A.

    1997-01-01

    The purpose of the dissertation is to develop real time expert reactor protection system (ERPS) for operational safety of pressurized water reactor nuclear power plant. The system is developed to diagnose plant failures and for identification plant transients (with and without scram). For this erps, probabilistic safety analysis techniques are used to check the availability and priority of the recommended safety system in case of plant accidents. The real - time information during transients and accidents can be obtained to assess the operator in his decision - making. Also, the ERPS is able to give advice for the reactor operator to take the appropriate corrective action during abnormal situations. 5-15 figs., 42 refs

  2. Registered plant list - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods ...the Plant DB link list in simple search page) Genome analysis methods Presence or... absence of Genome analysis methods information in this DB (link to the Genome analysis methods information ...base Site Policy | Contact Us Registered plant list - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive ...

  3. Automatic detection and analysis of nuclear plant malfunctions

    International Nuclear Information System (INIS)

    Bruschi, R.; Di Porto, P.; Pallottelli, R.

    1985-01-01

    In this paper a system is proposed, which performs dynamically the detection and analysis of malfunctions in a nuclear plant. The proposed method was developed and implemented on a Reactor Simulator, instead of on a real one, thus allowing a wide range of tests. For all variables under control, a simulation module was identified and implemented on the reactor on-line computer. In the malfunction identification phase all modules run separately, processing plant input variables and producing their output variable in Real-Time; continuous comparison of the computed variables with plant variables allows malfunction's detection. At this moment the second phase can occur: when a malfunction is detected, all modules are connected, except the module simulating the wrong variable, and a fast simulation is carried on, to analyse the consequences. (author)

  4. Methodology and development of instruments for the safety analysis of a nuclear reprocessing plant

    International Nuclear Information System (INIS)

    Markett, J.

    1987-01-01

    Characteristics and overlapping aspects in the elaboration of safety analyses for the nuclear and conventional units are presented. The current methods are presented and their limits of applicability characterized. The transferability of individual methods or their elements to the analysis of the reference plant of Wackersdorf is examined and the procedure for the systems analysis is determined. It is of great importance to prove that the essential kinds of incidents and possibilities of release with potential effects in the environment are completely identified. The incidents are divided into basic incidents, which are characterized by superior physical/chemical release mechanisms. An essential objective is to systematize the safety analysis and to summarize the presentation of results. Selection criteria are presented, which allow a limitation of the analysis to essential influencing parameters without removing aspects from the overall safety-relevant statement. Besides the selection criteria, instruments and mathematical models are explained with the help of which the representative and possible incidents covering all potential risks for all areas of the plant, systems and components can be selected. These design-basis accidents (criticality, self-heating, fire, explosion, leakages, earth quakes) are decisive for the determination of potential damaging effects in the environment and thus for the overall statement on the licensability. (orig./HP) [de

  5. New developments in online plant monitoring

    International Nuclear Information System (INIS)

    Laipple, Bernd; Langenstein, Magnus

    2007-01-01

    The large quantities of information produced within plant processes nearly make the plausibility of data impossible without the help of additional tools. For this reason, a variety of plant monitoring tools has been developed in the past which promise a sensible compression of data. The main problem with the offered tools lies with the omission of procedural plausibility. The newly developed plant monitoring system BTB ProcessPlus is based on the VDI 2048 methodology of process data reconciliation. Plausibility and quality control therefore serve as a basis for the system. With this procedural process image, significant diagnosis and monitoring tools have been developed and now offer a fast and economically optimal support in process optimization. This paper describes the methodology according to VDI 2048. The benefits of the online plant monitoring system are demonstrated by means of examples from day-to-day operations. (author)

  6. Development of life evaluation technology for nuclear power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin; Kim, Young Hwan; Shin, Hyun Jae [Sungkwunkwan Univ., Seoul (Korea, Republic of); Lee, Hyang Beom [Soongsil Univ., Seoul (Korea, Republic of); Shin, Young Kil [Kunsan National Univ., Gunsan (Korea, Republic of); Chung, Hyun Jo [Wonkwang Univ., Iksan (Korea, Republic of); Park, Ik Keun; Park, Eun Soo [Seoul National University of Technology, Seoul (Korea, Republic of)

    2001-03-15

    Retaining reliabilities of nondestructive testing is essential for the life-time maintenance of nuclear power plant. In order to Improve reliabilities of ultrasonic testing and eddy current testing, the following five subjects were carried out in this study: development of BEM analysis technique for ECT of SG tube, development of neural network technique for the intelligent analysis of ECT flaw signals of SG tubes, development of RFECT technology for the inspection of SG tube, FEM analysis of ultrasonic scattering field and evaluation of statistical reliability of PD-RR test of ultrasonic testing. As results, BEM analysis of eddy current signal, intelligent analysis of eddy current signal using neural network, and FEM analysis of remote field eddy current testing have been developed for the inspection of SG tubes. FEM analysis of ultrasonic waves in 2-dimensional media and evaluation of statistical reliability of ultrasonic testing with PD-RR test also have been carried out for the inspection of weldments. Those results can be used to Improve reliability of nondestructive testing.

  7. Development of life evaluation technology for nuclear power plant components

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Young Hwan; Shin, Hyun Jae; Lee, Hyang Beom; Shin, Young Kil; Chung, Hyun Jo; Park, Ik Keun; Park, Eun Soo

    2001-03-01

    Retaining reliabilities of nondestructive testing is essential for the life-time maintenance of nuclear power plant. In order to Improve reliabilities of ultrasonic testing and eddy current testing, the following five subjects were carried out in this study: development of BEM analysis technique for ECT of SG tube, development of neural network technique for the intelligent analysis of ECT flaw signals of SG tubes, development of RFECT technology for the inspection of SG tube, FEM analysis of ultrasonic scattering field and evaluation of statistical reliability of PD-RR test of ultrasonic testing. As results, BEM analysis of eddy current signal, intelligent analysis of eddy current signal using neural network, and FEM analysis of remote field eddy current testing have been developed for the inspection of SG tubes. FEM analysis of ultrasonic waves in 2-dimensional media and evaluation of statistical reliability of ultrasonic testing with PD-RR test also have been carried out for the inspection of weldments. Those results can be used to Improve reliability of nondestructive testing

  8. Development of basic system for sensor calibration support in nuclear power plants

    International Nuclear Information System (INIS)

    Kusumi, Naohiro; Ohga, Yukiharu; Fukuda, Mitsuko; Ishizaki, Yuuichi; Koyama, Mikio; Maeda, Akihiko

    2004-01-01

    It is strongly desirable to reduce maintenance costs and shorten the time of periodic inspections in nuclear power plants. Therefore, it is important to reduce the amount of maintenance work during the inspection. In Japan, sensor calibration is usually performed at every periodic inspection, and the sensor calibration requires a large amount of work. A system for sensor calibration support has been developed to reduce sensor calibration work. The system is composed of two subsystems: a statistical analysis subsystem and a drift detection subsystem, as well as a human-machine interface, which offers support information. The statistical analysis subsystem supports the decision of the sensor calibration intervals based on the statistical analysis of sensor calibration data. There is the possibility that sensor drift increases beyond an allowance value before the sensor calibration intervals determined by the statistical analysis subsystem because of malfunctions, etc. To cope with this, the drift detection subsystem detects the sensor drift online during the plant operation. By combining the statistical analysis subsystem and the drift detection subsystem, a reliable sensor calibration support system is realized. The basic system composed of two subsystems was developed and evaluated using real plant data. The results showed that the sensor calibration intervals can be extended beyond current intervals and that the system is capable of detecting the sensor drift online. (author)

  9. Development of probabilistic methods for safety assessment of nuclear power plants

    International Nuclear Information System (INIS)

    Schott, H.; Berg, H.P.

    1998-01-01

    Since its introduction by the German Risk Study, Probabilistic Safety Assessment (PSA) has developed in Germany to a valuable tool in regulatory decision-making. Plant specific PSAs of Level 1+ are now conducted for all nuclear power plants in the frame of Periodic Safety Reviews. This paper is devoted to the description or key elements set out in the regulatory guidelines for PSA-Level 1+ and the corresponding technical documents and the further development of PSA methodology in the Federal Republic of Germany. In the course of the next years it is intended to make progress in the modeling of common cause failures, human reliability evaluation, reduction of uncertainties in PSA modeling techniques and data estimation, analysis of low power and shut down states as well as in reaching a mature methodology for inclusion of external events into the analysis. (author)

  10. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Research and Development Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brown, E.S.; Homer, G.B.; Shaber, C.R.; Thurow, T.L.

    1981-11-17

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  11. Development of advanced secondary chemistry monitoring system for Korea nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Sang Hak; Kim, Chung Tae

    1997-01-01

    Water chemistry control is one of the most important tasks in order to maintain the reliability of plant equipments and extend the operating life of the plant. KEPCO and KOPEC developed a computerized tool for this purpose -ASCMS (advanced secondary chemistry monitoring system) which is able to monitor and diagnose the secondary water chemistry. A prototype system had been installed at KORI 3 nuclear power plant since April 1993 in order to evaluate the system performance. After the implementation of enhancements identified during the testing of the prototype, we have developed the advanced secondary monitoring system, ASCMS which is installed at 5 nuclear power plants and has been under operations since April 1997. The ASCMS comprises PC subsystem designed for data acquisition, data analysis, and data diagnosis. The ASCMS will provide overall information related to steam generator secondary side water chemistry problems and improve plant availability, reduce radiation exposure to workers, and reduce operating and maintenance costs. 6 figs

  12. Plant specific PTS analysis of Kori Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Sung-Yull, Hong; Changheui, Jang; Ill-Seok, Jeong [Korea Eletric Power Research Inst., Daejon (Korea, Republic of); Tae-Eun, Jin [Korea Power Engineering Company, Yonging (Korea, Republic of)

    1997-09-01

    Currently, a nuclear PLIM (Plant Lifetime Management) program is underway in Korea to extend the operation life of Kori-1 which was originally licensed for 30 years. For the life extension of nuclear power plants, the residual lives of major components should be evaluated for the extended operation period. According to the residual life evaluation of reactor pressure vessel, which was classified as one of the major components crucial to life extension, it was found by screening analysis that reference PTS temperature would exceed screening criteria before the target extended operation years. In order to deal with this problem, a plant-specific PTS analysis for Kori-1 RPV has been initiated. In this paper, the relationship between PTS analysis and Kori-1 PLIM program is briefly described. The plant-specific PTS analysis covers system transient analysis, downcomer mixing analysis, and probabilistic fracture mechanics analysis to check the integrity or RPV during various PTS transients. The step-by-step procedure of the analysis will be described in detail. Finally, various issues regarding RPV materials and its integrity will be briefly mentioned, and their implications on Kori-1 PTS analysis will be discussed. Despite of the screening analysis result concern, it is now expected that Kori-1 PTS issues can be handled through the plant-specific PTS analysis. (author). 14 refs, 4 figs, 2 tabs.

  13. Analysis Of Investment Feasibility Of Batching Plant Development In Tanjung Redeb Talisayan Highway Km 102 In Biatan District Berau Regency

    Directory of Open Access Journals (Sweden)

    Ali Rosit

    2017-12-01

    Full Text Available This research is a feasibility study of Batching Plant development on Tanjung Redeb - Talisayan Highway Km 102 Biatan District Berau Regency which aims to know whether the development project can be built in terms of technical and economic aspects and to analyze the sensitivity with 3 types of economic situation. The data from this field study are analyzed using Present Value Net Present Value NPV Internal Rate of Return IRR Benefit Cost Ratio BCR and Payback Periods PBP. The results of the analysis show that Batching Plant Development on Tanjung Redeb Talisayan Highway Km 102 in Biatan District Berau Regency is quite feasible to be implemented with the assumption of 10 years investment period. Based on the calculation of Net Present Value NPV of IDR 11.499.703.942 positive Internal Rate of Return 1727 12 Benefit Cost Ratio 2309 1 with Payback Period is 5 years 7 months from the sensitivity analysis results the condition of the initial investment cost rate run up reaches to 127 the state of interest rates rose to 1454 due to uncertainty in the national and international economies and the circumstances when cash flows fell as a result of the decrease in revenues to 1684 where the circumstances state that the project which is about to be affected is not feasible or break event.

  14. Transcriptome analysis of Nicotiana tabacum infected by Cucumber mosaic virus during systemic symptom development.

    Directory of Open Access Journals (Sweden)

    Jie Lu

    Full Text Available Virus infection of plants may induce a variety of disease symptoms. However, little is known about the molecular mechanism of systemic symptom development in infected plants. Here we performed the first next-generation sequencing study to identify gene expression changes associated with disease development in tobacco plants (Nicotiana tabacum cv. Xanthi nc induced by infection with the M strain of Cucumber mosaic virus (M-CMV. Analysis of the tobacco transcriptome by RNA-Seq identified 95,916 unigenes, 34,408 of which were new transcripts by database searches. Deep sequencing was subsequently used to compare the digital gene expression (DGE profiles of the healthy plants with the infected plants at six sequential disease development stages, including vein clearing, mosaic, severe chlorosis, partial and complete recovery, and secondary mosaic. Thousands of differentially expressed genes were identified, and KEGG pathway analysis of these genes suggested that many biological processes, such as photosynthesis, pigment metabolism and plant-pathogen interaction, were involved in systemic symptom development. Our systematic analysis provides comprehensive transcriptomic information regarding systemic symptom development in virus-infected plants. This information will help further our understanding of the detailed mechanisms of plant responses to viral infection.

  15. Probabilistic methods in nuclear power plant component ageing analysis

    International Nuclear Information System (INIS)

    Simola, K.

    1992-03-01

    The nuclear power plant ageing research is aimed to ensure that the plant safety and reliability are maintained at a desired level through the designed, and possibly extended lifetime. In ageing studies, the reliability of components, systems and structures is evaluated taking into account the possible time- dependent decrease in reliability. The results of analyses can be used in the evaluation of the remaining lifetime of components and in the development of preventive maintenance, testing and replacement programmes. The report discusses the use of probabilistic models in the evaluations of the ageing of nuclear power plant components. The principles of nuclear power plant ageing studies are described and examples of ageing management programmes in foreign countries are given. The use of time-dependent probabilistic models to evaluate the ageing of various components and structures is described and the application of models is demonstrated with two case studies. In the case study of motor- operated closing valves the analysis are based on failure data obtained from a power plant. In the second example, the environmentally assisted crack growth is modelled with a computer code developed in United States, and the applicability of the model is evaluated on the basis of operating experience

  16. Analysis of the state of posttranslational calmodulin methylation in developing pea plants

    International Nuclear Information System (INIS)

    Oh, Sukheung; Roberts, D.M.

    1990-01-01

    A specific calmodulin-N-methyltransferase was used in a radiometric assay to analyze the degree of methylation of lysine-115 in pea (Pisum sativum) plants. Calmodulin was isolated from dissected segments of developing roots of young etiolated and green pea plants and was tested for its ability to be methylated by incubation with the calmodulin methyltransferase in the presence of [ 3 H]methyl-S-adenosylmethionine. By this approach, the presence of unmethylated calmodulins were demonstrated in pea tissues, and the levels of methylation varied depending on the developmental state of the tissue tested. Calmodulin methylation levels were lower in apical root segments of both etiolated and green plants, and in the young lateral roots compared with the mature, differentiated root tissues. The incorporation of methyl groups into these calmodulin samples appears to be specific for position 115 since site-directed mutants of calmodulin with substitutions at this position competitively inhibited methyl group incorporation. The present findings, combined with previous data showing differences in the ability of methylated and unmethylated calmodulins to activate pea NAD kinase raise the possibility that posttranslational methylation of calmodulin could be another mechanism for regulating calmodulin activity

  17. Application of analysis technology in nuclear plant

    International Nuclear Information System (INIS)

    Takaoka, Keiko; Miura, Hiromi; Umeda, Kenji

    1996-01-01

    Recently, thanks to the rapid improvement of EWS performance, the authors have been able to carry out design evaluation comparatively, easily, utilizing computational fluid dynamics (CFD) technology. The Nuclear Plant Engineering Department has carried out some analyses in the past several years with the main purpose of evaluating the design of nuclear reactor internals. These studies included ''Thermal Hydraulic Analysis for Top Plenum'' and ''Flow Analysis for Lower Plenum''. It is considered to be a special matter in thermal hydraulic analysis of the top plenum that temperature distribution has been estimated with a relatively small number of meshes by means of an imaginary spray nozzle, and in the flow analysis for the lower plenum that flow distribution has been found to change largely, depending on the reactor internals. One of the ways to confirm the safety of nuclear plants, detailed structural analysis, is required for all possible combinations of transient and load conditions during operation. In particular, it is very important to clarify the thermal stress behavior under operating conditions and to evaluate fatigue analysis in accordance with the Code Requirements. However, it is very complicated and it takes a lot of time. A new system was developed which can operate continuously all of the definitions of the analytical model, the analyzation of pressurized thermal and external stress, and editing reports. In this paper, the authors introduce this system and apply it to a pressurized water reactor

  18. Clonal analysis of corn plant development. I. The development of the tassel and the ear shoot

    International Nuclear Information System (INIS)

    Johri, M.M.; Coe, E.H. Jr.

    1983-01-01

    The development of the tassel and the ear shoot has been investigated in corn (Zea mays L.). X irradiation of dry kernels and seedlings heterozygous for anthocyanin markers or for factors altering tassel and ear morphology results in the formation of clones (sectors) from cells of the apical meristem. Most tassels develop from 4 +/- 1 cells of the mature embryo. The expression of ramosa-1, tunicate, tassel seed-6, and vestigial is cell autonomous in the tassel. These genes act late in development and modify the developmental fate or decision of an individual clone and not of the whole group of cells producing a tassel. The ear shoot develops from lineages of one to three cells derived each from the L-I (outmost cell layer) and L-II (second cell layer) of the apical meristem. Typically the clones start in the ear shoot (in the husks and possibly in the cob), extend upward in an internode, continue along the margin of the leaf sheath or leaf blade at the node above, and terminate in this or the next higher leaf. The separation of lineages for ear shoot and internode occurs in the period around 13 days after sowing. The analysis of clonal boundaries shows that a small number of embryonic cells become isolated in their developmental capacity. This commitment process appears to be analogous to the process of compartmentation in the imaginal disks of fruit flies. The extent of proliferation of individual cells within a group of highly flexible and any particular clone does not generate a specific part of a tassel or an ear shoot. There must be cellular communication between various clones so that the overall size and morphology of an organ remain normal and more or less fixed. Thus the process of development in plants is also highly regulative in nature and shares many features in common with development in fruit flies

  19. Development of JOYO plant operation management expert tool

    Energy Technology Data Exchange (ETDEWEB)

    Michino, Masanobu; Sawada, Makoto [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1995-03-01

    Operation and maintenance support systems for JOYO are being developed in order to keep the stable and safe operation of JOYO and to improve operational reliability of future FBR plants. As one of the systems, an operation support system named JOYPET has been developing and applied. The system supports the plant management works of JOYO which are necessary for much manpower and knowledge of the plant. The plant management of JOYO was able to improve its reliability and reduce manpower by using this system. As a final step, a judgment function based on the accumulated plant management rule of JOYO will be developed and applied. The function judges the plant condition which allows to start the maintenance works or not. (author).

  20. The Development of a Fault Tree Model for Balance of Plant System

    International Nuclear Information System (INIS)

    Hwang, Mee Jeong; Park, Jin Hee; Lim, Ho Gon

    2011-01-01

    In this paper, we propose a fault tree modeling method for BOP (balance of plant) system to develop a combined risk model and trip model, and the application plans of the developed model. Where, the trip means the reactor trip and turbine and generator trip. We have usually modeled the safety-related systems and their supporting systems to assess the risk analysis of a nuclear power plant. However, the BOP system.s condition change induces the risk change. That is, the BOP system.s condition is relevant to plants. performance and affects to the plant risk. The existing model for BOP systems is a simplified system model or SPV (Single-point vulnerability) evaluation model. However, these models are not effective enough to use for the plant's performance evaluation. Also, lately an integrated decision-making framework is required for risk-informed applications. The methods for monitoring the performance of a nuclear power plant differ from the purpose. For example, MSPI (mitigating system performance index) and MR (maintenance rule) use different methods and indexes to monitor the performance. Therefore, for consistent decision-making, it is necessary to develop a risk assessment model including a systems model inducing reactor trip. The system.s model inducing reactor trip and turbine/generator trip is defined as the 'trip model'

  1. Development of probabilistic methods for safety assessment of nuclear power plants

    International Nuclear Information System (INIS)

    Balfanz, H.P.; Boehme, E.; Fuhrmann, C.; Musekamp, W.; Neumann, L.; Rumpf, J.

    1997-01-01

    We have worked out a comprehensive analytical concept for CCF event evaluation which is based on the international experience on the analysis of dependent failures and our own experiences from evaluating plant operation. The concept was discussed with utilities in Germany and from abroad. The CCF approach differs from other methods because it is strictly structured according to the CCF events and independent from any CCF model which is used in a PSA. Because of this attribute the concept is due to be used in the operational reviewing process by plant staff. We have an ongoing discussion with utilities on how to integrate this concept in practical plant site use. In addition we have recommended to adapt the main features of this concept in the PSA guideline. Plant management factors: Evaluations in different industries reveal a strong impact of organisational and management factors on the course of severe accidents. Because these factors cannot explicitly be measured they are not treated in a PSA today. Comprehensive development work is under way to gain an improved insight into the influence of these risk relevant factors. These activities are specifically aimed at root cause analyses of accidents, e.g. to uncover hidden organisational and management factors. NPP staff should be integrated in this analysis process. Living PSA application can play an important role in this development process. (orig./DG) [de

  2. Towards the Development of Proteomics Workflows for the Analysis of Samples Derived from Refractory Plant Tissues

    OpenAIRE

    Thannhauser, T.W.

    2011-01-01

    Carrying out proteomic analyses in plant tissues involves dealing with a number of specialized challenges that can make protein extraction and quantification significantly more difficult than in other organisms. In addition to having relatively low protein concentrations, plant tissues are often rich in proteases, protease inhibitors and other materials that impede protein analysis. These compounds include lipids, tannins, polysaccharides, and a large variety of secondary metabolites. The ext...

  3. The development of human behaviour analysis techniques -The development of human factors technologies-

    International Nuclear Information System (INIS)

    Lee, Jung Woon; Cheon, Se Woo; Shu, Sang Moon; Park, Geun Ok; Lee, Yong Hee; Lee, Han Yeong; Park, Jae Chang; Lee, Eu Jin; Lee, Seung Hee

    1994-04-01

    This project has two major areas ; one is the development of an operator task simulation software and another is the development of human error analysis and application technologies. In this year project, the second year, for the development of an operator task simulation software, we studied the followings: - analysis of the characteristics of operator tasks, - development of operator task structures : Macro Structures, - development of an operator task simulation analyzes, - analysis of performance measures. And the followings for the development of human error analysis and application technologies : - analysis of human error mechanisms, - analysis of human error characteristics in tasks, - analysis of human error occurrence in Korean Nuclear Power Plants, - establishment of an experimental environment for human error data collection with Compact Nuclear Simulator, - basic design of a Multimedia-based Human Error Representing System. (Author)

  4. Development of A Plant Navigation System

    International Nuclear Information System (INIS)

    Furuta, Tomihiko; Nakagawa, Tsuneo; Kubota, Ryuji; Ikeda, Kouji

    1998-01-01

    A 'Plant Navigation System (PNS)' is under development to assist nuclear power plant (NPP) operators by automatically displaying the plant situation and plant operational procedures on a CRT screen when abnormalities occur. The operation procedures given in a symptom-oriented manual are expressed in a tree - type flowchart (modified PAD). The optimum operation procedure for an NPP is selected automatically using built-in diagnostic logics based on the current status of the NPP. Concerning the plant situation, the PNS displays important information only on the current status of the NPP. A prototype PNS system is being constructed. (authors)

  5. BWR plant analyzer development at BNL

    International Nuclear Information System (INIS)

    Cheng, H.S.; Wulff, W.; Mallen, A.N.; Lekach, S.V.; Stritar, A.; Cerbone, R.J.

    1985-01-01

    Advanced technology for high-speed interactive nuclear power plant simulations is of great value for timely resolution of safety issues, for plant monitoring, and for computer-aided emergency responses to an accident. Presented is the methodology employed at BNL to develop a BWR plant analyzer capable of simulating severe plant transients at much faster than real-time process speeds. Five modeling principles are established and a criterion is given for selecting numerical procedures and efficient computers to achieve the very high simulation speeds. Typical results are shown to demonstrate the modeling fidelity of the BWR plant analyzer

  6. Germination and early plant development of ten plant species ...

    Science.gov (United States)

    Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol developed for soluble chemicals (OPPTS 850.4200) to determine if such an approach might be useful for screening engineered nanomaterials (ENMs) and whether there were differences in response across a range of commercially important plant species to two common metal oxide ENMs. Eight of 10 species responded to nTiO2, and 5 species responded to nCeO2. Overall, it appeared that early root growth may be a more sensitive indicator of potential effects from ENM exposure than germination. The observed effects did not always relate to the exposure concentration, indicating that mass-based concentration may not fully explain developmental effects of these two ENMs. The results suggest that nTiO2 and nCeO2 have different effects on early plant growth of agronomic species, which may alter the timing of specific developmental events during their life cycle. In addition, standard germination tests, which are commonly used for toxicity screening of new materials, may not detect the subtle but potentially more important changes associated with early growth and development in terrestrial plants. Engineered nanoparticles (ENMs) have been recognized as valuable components of new technologies and are current

  7. Whole-plant mineral partitioning during the reproductive development of rice (Oryza sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Sperotto, R.A.; Vasconcelos, M.W.; Grusak, M.A.; Fett, J.

    2017-07-01

    Minimal information exists on whole-plant dynamics of mineral flow. Understanding these phenomena in a model plant such as rice could help in the development of nutritionally enhanced cultivars. A whole-plant mineral accumulation study was performed in rice (cv. Kitaake), using sequential harvests during reproductive development panicle exertion, grain filling, and full maturity stages in order to characterize mineral accumulation in roots, non-flag leaves, flag leaves, stems/sheaths, and panicles. Partition quotient analysis showed that Fe, Zn, Cu and Ni are preferentially accumulated in roots; Mn and Mg are accumulated in leaves; Mo, Ca, and S in roots and leaves; and K in roots, leaves and stems/sheaths. Correlation analysis indicated that changes in the concentrations of mineral pairs Fe-Mn, K-S, Fe-Ni, Cu-Mg, Mn-Ni, S-Mo, Mn-Ca, and Mn-Mg throughout the reproductive development of rice were positively correlated in all four of the above ground organs evaluated, with Fe-Mn and K-S being positively correlated also in roots, which suggest that root-to-shoot transfer is not driven simply by concentrations in roots. These analyses will serve as a starting point for a more detailed examination of mineral transport and accumulation in rice plants.

  8. Safety analysis of an expert reactor protection system in nuclear power plants

    International Nuclear Information System (INIS)

    EL-Kafas, A.E.A.E.

    1996-01-01

    the purpose of the dissertation is to develop a real time expert reactor protection system (ERPS) for operational safety of pressurized water reactor nuclear power plant. The system is developed to diagnose plant failures and for identification of plant transients (with and without scram). for this ERPS. probabilistic safety analysis techniques are used to check the availability and priority of the recommended safety system in case of plant accidents . the real- time information during transients and accidents can be obtained to asses the operator in his decision - making . Also, the ERPS is able to give advice for the reactor operator to take the appropriate corrective action during abnormal situations. The system model consists of the dynamic differential equations for reactor core, pressurizer, steam generator, turbine and generator, piping and plenums. The system of equations can be solved by appropriate codes also displayed directly from sensors of the plant. All scenarios of transients, accidents and fault tress for plant systems are learned to ERPS

  9. Radiation hormesis in plant - Analysis and utilization of plant antioxidative mechanism by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haeng Soon; Kwon, Seok Yoon; Shin, Seung Yung [Korea Research Institute of Bioscience and Biotechnology, Taejon (Korea)

    2000-04-01

    In the tobacco transgenic plants simultaneously expressing SOD and APX in chloroplast, the specific activities of SOD and APX (CA, AM, C/A, A/C) were much higher than in the transgenic plants expressing SOD (CuZnSOD, MnSOD) or APX alone, respectively. Plant growth was severely inhibited showing a well correlation with the dose of gamma-irradiation. In 70 Gy-irradiation, C/A plants showed a slight resistance to gamma radiation. The stAPX gene in tobacco was not as strongly affected by gamma irradiation. After irradiation, the stAPX transcript level decreased at 2 h, then slightly increased at 6 h and the level was maintained until 48 h. Catalase transcripts level decreased at the early time point but at the late time points the level slightly increased. The gamma radiation-induced changes of proteins in tobacco suspension cells were investigated by two-dimensional gel electrophoresis. In the gamma-irradiated cells, a few polypeptides of were newly synthesized, increased, and decreased by comparing total proteins from gamma-irradiated and non-irradiated tobacco suspension cells. With the isolation and analysis of these polypeptides, irradiation-induced proteins could be developed. 35 refs., 5 figs. (Author)

  10. Metabolomics and Cheminformatics Analysis of Antifungal Function of Plant Metabolites.

    Science.gov (United States)

    Cuperlovic-Culf, Miroslava; Rajagopalan, NandhaKishore; Tulpan, Dan; Loewen, Michele C

    2016-09-30

    Fusarium head blight (FHB), primarily caused by Fusarium graminearum , is a devastating disease of wheat. Partial resistance to FHB of several wheat cultivars includes specific metabolic responses to inoculation. Previously published studies have determined major metabolic changes induced by pathogens in resistant and susceptible plants. Functionality of the majority of these metabolites in resistance remains unknown. In this work we have made a compilation of all metabolites determined as selectively accumulated following FHB inoculation in resistant plants. Characteristics, as well as possible functions and targets of these metabolites, are investigated using cheminformatics approaches with focus on the likelihood of these metabolites acting as drug-like molecules against fungal pathogens. Results of computational analyses of binding properties of several representative metabolites to homology models of fungal proteins are presented. Theoretical analysis highlights the possibility for strong inhibitory activity of several metabolites against some major proteins in Fusarium graminearum , such as carbonic anhydrases and cytochrome P450s. Activity of several of these compounds has been experimentally confirmed in fungal growth inhibition assays. Analysis of anti-fungal properties of plant metabolites can lead to the development of more resistant wheat varieties while showing novel application of cheminformatics approaches in the analysis of plant/pathogen interactions.

  11. Seismic analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Halbritter, A.L.

    1984-01-01

    Nuclear Power Plants require exceptional safety guarantees which are reflected in a rigorous control of the employed materials, advanced construction technology, sophisticated methods of analysis and consideration of non conventional load cases such as the earthquake loading. In this paper, the current procedures used in the seismic analysis of Nuclear Power Plants are presented. The seismic analysis of the structures has two objectives: the determination of forces in the structure in order to design it against earthquakes and the generation of floor response spectra to be used in the design of mechanical and electrical components and piping systems. (Author) [pt

  12. Development of JOYO Plant Operation Management Expert Tool (JOYPET)

    International Nuclear Information System (INIS)

    Michino, Masanobu; Terano, Toshihiro; Hanawa, Mikio; Aoki, Hiroshi; Okubo, Toshiyuki

    2000-03-01

    The Operation and Maintenance Support Systems for JOYO are being developed, with the aim of ensuring the stable and safe operation of JOYO and improving operational reliability of future FBR plants. Plant Operation Management Expert Tool named JOYPET had been developed as one of the Operation and Maintenance Support Systems, which helps plant operation management. The following functions were developed and applied. (1) Papers management (Plant status management) function for maintenance activities, (2) Isolation management support function for plant operation, (3) Automatically drawing function of plant operation schedule, (4) Isolation judgment function for plant operation. By use this system, the plant management of JOYO was able to improved reliability and reduced manpower. (author)

  13. Evaluation of thermal power plant operational performance in Taiwan by data envelopment analysis

    International Nuclear Information System (INIS)

    Liu, C.H.; Lin, Sue J.; Lewis, Charles

    2010-01-01

    Electricity is essential in the economic development of a nation. Due to the rapid growth of economy and industrial development in Taiwan, the demand for use of electricity has increased rapidly. This study evaluates the power-generation efficiency of major thermal power plants in Taiwan during 2004-2006 using the data envelopment analysis (DEA) approach. A stability test was conducted to verify the stability of the DEA model. According to the results, all power plants studied achieved acceptable overall operational efficiencies during 2004-2006, and the combined cycle power plants were the most efficient among all plants. The most important variable in this DEA model is the 'heating value of total fuels'. Findings from this study can be beneficial in improving some of the existing power plants and for more efficient operational strategies and related policy-making for future power plants in Taiwan.

  14. Developments in power plant cooling systems

    International Nuclear Information System (INIS)

    Agarwal, N.K.

    1993-01-01

    A number of cooling systems are used in the power plants. The condenser cooling water system is one of the most important cooling systems in the plant. The system comprises a number of equipment. Plants using sea water for cooling are designed for the very high corrosion effects due to sea water. Developments are taking place in the design, materials of construction as well as protection philosophies for the various equipment. Power optimisation of the cycle needs to be done in order to design an economical system. Environmental (Protection) Act places certain limitations on the effluents from the plant. An attempt has been made in this paper to outline the developing trends in the various equipment in the condenser cooling water systems used at the inland as well as coastal locations. (author). 5 refs., 6 refs

  15. Analysis of the cost for the refurbishment of small hydropower plants

    International Nuclear Information System (INIS)

    Ogayar, B.; Vidal, P.G.; Hernandez, J.C.

    2009-01-01

    In view of all the concerns associated with fossil fuels and energy demand it is appropriate to investigate the large number of abandoned small hydropower plants. In order to solve the difficulty implied, by a viability study on the refurbishment of a small hydropower plant, a series of simple equations has been developed based on the economic optimization of the different elements. These equations can also be used for completely new hydropower plants. The result of this study will allow us to obtain quite approximate costs for the refurbishment of old hydropower plants, or the construction of new ones. These data on costs will act as a reference to examine real possibilities of refurbishment through different tools of financial and economic analysis. Although the equations developed have used unitary prices referring to Spain, they will be applicable to other countries just changing those prices for those of the country, required. (author)

  16. Present and future of probabilistic safety analysis of Juragua Nuclear Power Plant

    International Nuclear Information System (INIS)

    Salomon, J.; Rivero, J.J.

    1993-01-01

    This work present the main conditions of probabilistic safety analysis of Juragua Nuclear Power Plant, which includes the following aspects: Staff preparedness; Creation of ANCON code; Analysis activity; IAEA technical assistance project. The present situation of PSA National Project and its perspectives development are reported

  17. A plant control system development approach for IRIS

    International Nuclear Information System (INIS)

    Wood, R.T.; Brittain, C.R.; March-Leuba, J.A.; Conway, L.E.; Oriani, L.

    2003-01-01

    The plant control system concept for the International Reactor Innovative and Secure (IRIS) will make use of integrated control, diagnostic, and decision modules to provide a highly automated intelligent control capability. The plant control system development approach established for IRIS involves determination and verification of control strategies based on whole-plant simulation; identification of measurement, control, and diagnostic needs; development of an architectural framework in which to integrate an intelligent plant control system; and design of the necessary control and diagnostic elements for implementation and validation. This paper describes key elements of the plant control system development approach established for IRIS and presents some of the strategies and methods investigated to support the desired control capabilities. (author)

  18. Contribution to the studies on the mineral content of plant material through radioactivation analysis

    International Nuclear Information System (INIS)

    Fourcy, A.

    1968-03-01

    Radioactivation analysis is by its great sensibility or its rapidity quite helpful in plant biology and agronomy. Specific composition of plants and results to obtain in biological experimentation have needed a practical research on analytical methods for plant materials, using for radioactivation swimming-pool reactor neutrons and 14 MeV neutrons from a generator. Dosage process for 25 elements is exposed, taking account of the interest of the analysis for each element, the average amount occurring in plants and the result obtained. Many applications are developed, concerning nutrition physiology, genetics, parasitology, toxicology, control of manufactured agricultural and pharmaceutical products industrial and pesticides residues, ecology, radioecology and biochemistry. (author) [fr

  19. Development of support system for nuclear power plant piping

    International Nuclear Information System (INIS)

    Horino, Satoshi

    1987-01-01

    Ishikawajima-Harima Heavy Industries Co., Ltd. has advanced the development of Integrated Nuclear Plant Piping System (INUPPS) for nuclear power plants since 1980, and continued its improvement up to now. This time as its component, a piping support system (PISUP) has been developed. The piping support system deals with the structures such as piping supports and the stands for maintenance and inspection, and as for standard supporting structures, it builds up automatically the structures including the selection of optimum members by utilizing the standard patterns in cooperation with the piping design system including piping stress analysis. As for the supporting structures deviating from the standard, by amending a part of the standard patterns in dialogue from, structures can be built up. By using the data produced in this way, this system draws up consistently a design book, production management data and so on. From the viewpoint of safety, particular consideration is given to the aseismatic capability of nuclear power plants, and piping is fundamentally designed regidly to avoid resonance. It is necessary to make piping supports so as to have sufficient strength and rigidity. The features of the design of piping supports for nuclear power plant, the basic concept of piping support system, the constitution of the software and hardware, the standard patterns and the structural patterns of piping support system and so on are described. (Kako, I.)

  20. Integrated information system for analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Galperin, A.

    1994-01-01

    Performing complicated engineering analyses of a nuclear power plant requires storage and manipulation of a large amount of information, both data and knowledge. This information is characterized by its multidisciplinary nature, complexity, and diversity. The problems caused by inefficient and lengthy manual operations involving the data flow management within the frame-work of the safety-related analysis of a power plant can be solved by applying the computer aided engineering principles. These principles are the basis of the design of an integrated information storage system (IRIS). The basic idea is to create a computerized environment, which includes both database and functional capabilities. Consideration and analysis of the data types and required data manipulation capabilities as well as operational requirements, resulted in the choice of an object-oriented data-base management system (OODBMS) as a development platform for solving the software engineering problems. Several advantages of OODBMSs over conventional relations database systems were found of crucial importance, especially providing the necessary flexibility for different data types and extensibility potential. A detailed design of a data model is produced for the plant technical data and for the storage of analysis results. The overall system architecture was designed to assure the feasibility of integrating database capabilities with procedures and functions written in conventional algorithmic programming languages

  1. Thermodynamic and exergoeconomic analysis of a cement plant: Part II – Application

    International Nuclear Information System (INIS)

    Atmaca, Adem; Yumrutaş, Recep

    2014-01-01

    Highlights: • The overall energy and exergy efficiencies of the plant is found to be 59.37% and 38.99% respectively. • Performance assessment of a cement plant indicates that the calcination process involves the highest portion of energy losses. • The specific exergetic cost cement produced by the cement plant is calculated to be 180.5 USD/GJ. • The specific cement manufacturing cost is found to be 41.84 USD/ton. - Abstract: This paper is Part 2 of the study on the thermodynamic and exergoeconomic analysis of a cement plant. In Part 1, thermodynamic and exergoeconomic formulations and procedure for such a comprehensive analysis are provided while this paper provides an application of the developed formulation that considers an actual cement plant located in Gaziantep, Turkey. The overall energy and exergy efficiencies of the plant is found to be 59.37% and 38.99% respectively. The exergy destructions, exergetic cost allocations, and various exergoeconomic performance parameters are determined by using the exergoeconomic analysis based on specific exergy costing method (SPECO) for the entire plant and its components. The specific unit exergetic cost of the farine, clinker and cement produced by the cement plant are calculated to be 43.77 USD/GJ, 133.72 USD/GJ and 180.5 USD/GJ respectively. The specific manufacturing costs of farine, clinker and cement are found to be 3.8 USD/ton, 33.11 USD/ton and 41.84 USD/ton respectively

  2. In vivo chemical and structural analysis of plant cuticular waxes using stimulated Raman scattering microscopy.

    Science.gov (United States)

    Littlejohn, George R; Mansfield, Jessica C; Parker, David; Lind, Rob; Perfect, Sarah; Seymour, Mark; Smirnoff, Nicholas; Love, John; Moger, Julian

    2015-05-01

    The cuticle is a ubiquitous, predominantly waxy layer on the aerial parts of higher plants that fulfils a number of essential physiological roles, including regulating evapotranspiration, light reflection, and heat tolerance, control of development, and providing an essential barrier between the organism and environmental agents such as chemicals or some pathogens. The structure and composition of the cuticle are closely associated but are typically investigated separately using a combination of structural imaging and biochemical analysis of extracted waxes. Recently, techniques that combine stain-free imaging and biochemical analysis, including Fourier transform infrared spectroscopy microscopy and coherent anti-Stokes Raman spectroscopy microscopy, have been used to investigate the cuticle, but the detection sensitivity is severely limited by the background signals from plant pigments. We present a new method for label-free, in vivo structural and biochemical analysis of plant cuticles based on stimulated Raman scattering (SRS) microscopy. As a proof of principle, we used SRS microscopy to analyze the cuticles from a variety of plants at different times in development. We demonstrate that the SRS virtually eliminates the background interference compared with coherent anti-Stokes Raman spectroscopy imaging and results in label-free, chemically specific confocal images of cuticle architecture with simultaneous characterization of cuticle composition. This innovative use of the SRS spectroscopy may find applications in agrochemical research and development or in studies of wax deposition during leaf development and, as such, represents an important step in the study of higher plant cuticles. © 2015 American Society of Plant Biologists. All Rights Reserved.

  3. Applications of wavelet transforms for nuclear power plant signal analysis

    International Nuclear Information System (INIS)

    Seker, S.; Turkcan, E.; Upadhyaya, B.R.; Erbay, A.S.

    1998-01-01

    The safety of Nuclear Power Plants (NPPs) may be enhanced by the timely processing of information derived from multiple process signals from NPPs. The most widely used technique in signal analysis applications is the Fourier transform in the frequency domain to generate power spectral densities (PSD). However, the Fourier transform is global in nature and will obscure any non-stationary signal feature. Lately, a powerful technique called the Wavelet Transform, has been developed. This transform uses certain basis functions for representing the data in an effective manner, with capability for sub-band analysis and providing time-frequency localization as needed. This paper presents a brief overview of wavelets applied to the nuclear industry for signal processing and plant monitoring. The basic theory of Wavelets is also summarized. In order to illustrate the application of wavelet transforms data were acquired from the operating nuclear power plant Borssele in the Netherlands. The experimental data consist of various signals in the power plant and are selected from a stationary power operation. Their frequency characteristics and the mutual relations were investigated using MATLAB signal processing and wavelet toolbox for computing their PSDs and coherence functions by multi-resolution analysis. The results indicate that the sub-band PSD matches with the original signal PSD and enhances the estimation of coherence functions. The Wavelet analysis demonstrates the feasibility of application to stationary signals to provide better estimates in the frequency band of interest as compared to the classical FFT approach. (author)

  4. GDP-D-mannose epimerase regulates male gametophyte development, plant growth and leaf senescence in Arabidopsis.

    Science.gov (United States)

    Qi, Tiancong; Liu, Zhipeng; Fan, Meng; Chen, Yan; Tian, Haixia; Wu, Dewei; Gao, Hua; Ren, Chunmei; Song, Susheng; Xie, Daoxin

    2017-09-04

    Plant GDP-D-mannose epimerase (GME) converts GDP-D-mannose to GDP-L-galactose, a precursor of both L-ascorbate (vitamin C) and cell wall polysaccharides. However, the genetic functions of GME in Arabidopsis are unclear. In this study, we found that mutations in Arabidopsis GME affect pollen germination, pollen tube elongation, and transmission and development of the male gametophyte through analysis of the heterozygous GME/gme plants and the homozygous gme plants. Arabidopsis gme mutants also exhibit severe growth defects and early leaf senescence. Surprisingly, the defects in male gametophyte in the gme plants are not restored by L-ascorbate, boric acid or GDP-L-galactose, though boric acid rescues the growth defects of the mutants, indicating that GME may regulate male gametophyte development independent of L-ascorbate and GDP-L-galactose. These results reveal key roles for Arabidopsis GME in reproductive development, vegetative growth and leaf senescence, and suggest that GME regulates plant growth and controls male gametophyte development in different manners.

  5. [Emergy analysis on different planting patterns of typical watersheds in Loess Plateau.

    Science.gov (United States)

    Deng, Jian; Zhao, Fa Zhu; Han, Xin Hui; Feng, Yong Zhong; Yang, Gai He

    2016-05-01

    To objectively evaluate and compare the stability and sustainability of different planting patterns of typical watersheds in Loess Plateau of China after the Grain for Green Project, this paper used the emergy analysis method to quantify the emergy inputs and outputs of three watersheds with different planting patterns, i.e., both grains and fruit trees (Gaoxigou watershed), mainly grains (Wuliwan watershed) and mainly fruit trees (Miaozuigou watershed). In addition, an emergy analysis system was established to evaluate the suitability of the three patterns from the perspectives of natural resources pressure as well as social and economic development levels. More than 75% of the total emergy inputs of all the three watersheds were purchased, and nonrenewable emergy inputs had a much larger contribution than renewable emergy inputs, indicating the characteristic of low emergy self-sufficient ratio and considerable high environmental loading ratio. The pattern of planting grains had high emergy inputs but low emergy outputs, while the patterns of planting fruit trees and planting both had high emergy inputs and outputs. The energy densities of all three patterns reached two times of the average of agricultural systems in China. Especially, the net emergy of planting grains pattern was the lowest while that of planting both grains and fruit trees was the highest. The environmental sustainability index (ESI) of planting grains pattern was less than 1 and both emergy and ESI were much lower than national averages. The ESI of planting both grains and fruit trees pattern was the highest. In summary, comparison of the three patterns showed that planting both grains and fruit trees had better sustainability and high stability and the emergy production efficiency was high. Thus, it was suggested to change the agricultural development from watershed based units to multi-industry integrated mode.

  6. Plant DB link - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods ...e Site Policy | Contact Us Plant DB link - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive ...

  7. Development of Design Information Template for Nuclear Power Plants for Electromagnetic Pulse (EMP) Effect Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minyi; Ryu, Hosan; Ye, Songhae; Lee, Euijong [KNHP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    An electromagnetic pulse (EMP) is a transient electromagnetic shock wave that has powerful electric and magnetic fields that can destroy electronic equipment. It is generally well-known that EMPs can cause the malfunction and disorder of electronic equipment and serious damages to electric power systems and communication networks. Research is being carried out to protect nuclear power plants (NPPs) from EMP threats. Penetration routes of EMPs can be roughly categorized into two groups, radioactivity and conductivity. The radioactive effect refers to an impact transmitted to the ground from high-altitude electromagnetic pulses (HEMP). Such an impact may affect target equipment through the point of entry (POE) of the concrete structure of an NPP. The conductive effect refers to induced voltage or current coupled to the NPPs cable structure. The induced voltage and current affect the target equipment via connected cables. All these factors must be considered when taking into account EMP effect analysis for NPPs. To examine all factors, it is necessary to fully understand the schemes of NPPs. This paper presents a four type design information template that can be used to analyze the EMP effect in operating nuclear power plants. In order to analyze of the effects of EMPs on operating NPPs, we must consider both the conductive and radioactive effects on the target (system, equipment, structure). For these reasons, not only the equipment information, but also the information about the structure and the external penetration will be required. We are developing a design information template for robust nuclear design information acquisition. We expect to develop a block diagram on the basis of the template.

  8. Development of Design Information Template for Nuclear Power Plants for Electromagnetic Pulse (EMP) Effect Analysis

    International Nuclear Information System (INIS)

    Kim, Minyi; Ryu, Hosan; Ye, Songhae; Lee, Euijong

    2016-01-01

    An electromagnetic pulse (EMP) is a transient electromagnetic shock wave that has powerful electric and magnetic fields that can destroy electronic equipment. It is generally well-known that EMPs can cause the malfunction and disorder of electronic equipment and serious damages to electric power systems and communication networks. Research is being carried out to protect nuclear power plants (NPPs) from EMP threats. Penetration routes of EMPs can be roughly categorized into two groups, radioactivity and conductivity. The radioactive effect refers to an impact transmitted to the ground from high-altitude electromagnetic pulses (HEMP). Such an impact may affect target equipment through the point of entry (POE) of the concrete structure of an NPP. The conductive effect refers to induced voltage or current coupled to the NPPs cable structure. The induced voltage and current affect the target equipment via connected cables. All these factors must be considered when taking into account EMP effect analysis for NPPs. To examine all factors, it is necessary to fully understand the schemes of NPPs. This paper presents a four type design information template that can be used to analyze the EMP effect in operating nuclear power plants. In order to analyze of the effects of EMPs on operating NPPs, we must consider both the conductive and radioactive effects on the target (system, equipment, structure). For these reasons, not only the equipment information, but also the information about the structure and the external penetration will be required. We are developing a design information template for robust nuclear design information acquisition. We expect to develop a block diagram on the basis of the template

  9. Method of extracting significant trouble information of nuclear power plants using probabilistic analysis technique

    International Nuclear Information System (INIS)

    Shimada, Yoshio; Miyazaki, Takamasa

    2005-01-01

    In order to analyze and evaluate large amounts of trouble information of overseas nuclear power plants, it is necessary to select information that is significant in terms of both safety and reliability. In this research, a method of efficiently and simply classifying degrees of importance of components in terms of safety and reliability while paying attention to root-cause components appearing in the information was developed. Regarding safety, the reactor core damage frequency (CDF), which is used in the probabilistic analysis of a reactor, was used. Regarding reliability, the automatic plant trip probability (APTP), which is used in the probabilistic analysis of automatic reactor trips, was used. These two aspects were reflected in the development of criteria for classifying degrees of importance of components. By applying these criteria, a simple method of extracting significant trouble information of overseas nuclear power plants was developed. (author)

  10. Development of hot water utilizing power plant in fiscal 1998. Development of a binary cycle power generation plant (development of a 10-MW class plant); 1998 nendo nessui riyo hatsuden plant nado kaihatsu. Binary cycle hatsuden plant no kaihatsu (10MW kyu plant no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This paper summarizes the achievements in fiscal 1998 on developing a 10-MW geothermal power plant in the Hohi-Sugawara area being a representative area of middle-to-high temperature hot water resources. In designing the plant, domestic and overseas surveys were carried out on media suitable for binary cycle power plants, thermal cycle characteristics, construction cost, environmental effects, safety, operation, maintenance and control. Latest technologies were also surveyed and analyzed. The plant construction performed development construction around the testing devices, new construction of a plant control room building, constructions for installing electrical machines including the hot water system testing devices, river water intake facility construction, and cooling water intake facility installing construction. The environmental effect investigation included investigations on rain falls, river flow rates, hot springs, spring water, monitoring during the construction, and the state of transplantation of precious plants, and observation on groundwater variation. In verifying the geothermal water pumping system, factory tests were carried out on DHP3 demonstration machine which couples the pump section of a down-hole pump with the motor section, whose performance and functions were verified. (NEDO)

  11. Development of seismic damage assessment system for nuclear power plant structures in Korea

    International Nuclear Information System (INIS)

    Hyun, Chang-Hun; Lee, Sung-Kyu; Choi, Kang-Ryoung; Koh, Hyun-Moo; Cho, HoHyun

    2003-01-01

    A seismic damage assessment system that analyses in real-time the actual seismic resistance capacity and the damage level of power plant structures has been developed. The system consists of three parts: a 3-D inelastic seismic analysis, a damage assessment using a damage index based on the previous 3-D analysis, and a 3-D graphic representation. PSC containment structures are modelled by finite shell elements using layered method and analysis is performed by means of time history inelastic seismic analysis method, which takes into account material nonlinearities. HHT-α, one kind of direct integration method, is adopted for the seismic analysis. Two damage indices at finite element and structural levels are applied for the seismic damage assessment. 3-D graphical representation of dynamic responses and damage index expedites procedure for evaluating the damage level. The developed system is now being installed at the Earthquake Monitoring Center of KINS (Korea Institute of Nuclear Safety) to support site inspections after an earthquake occurrence, and decisions about effective emergency measures, repair and operations of the plant. (author)

  12. Developing native plant nurseries in emerging market areas

    Science.gov (United States)

    Elliott Duemler

    2012-01-01

    The importance of developing a market for quality native plant materials in a region prior to the establishment of a nursery is crucial to ensure its success. Certain tactics can be applied to help develop a demand for native plant materials in a region. Using these tactics will help create a new market for native plant materials.

  13. Physics, systems analysis and economics of fusion power plants

    International Nuclear Information System (INIS)

    Ward, D.J.

    2006-01-01

    Fusion power is being developed because of its large resource base, low environmental impact and high levels of intrinsic safety. It is important, however, to investigate the economics of a future fusion power plant to check that the electricity produced can, in fact, have a market. Using systems code analysis, including costing algorithms, this paper gives the cost of electricity expected from a range of fusion power plants, assuming that they are brought into successful operation. Although this paper does not purport to show that a first generation of fusion plants is likely to be the cheapest option for a future energy source, such plants look likely to have a market in some countries even without taking account of fusion's environmental advantages. With improved technological maturity fusion looks likely to have a widespread potential market particularly if the value of its environmental advantages are captured, for instance through avoiding a carbon tax. (author)

  14. Development of a GIS Tool for High Precision PV Degradation Monitoring and Supervision: Feasibility Analysis in Large and Small PV Plants

    Directory of Open Access Journals (Sweden)

    Miguel de Simón-Martín

    2017-06-01

    Full Text Available It is well known that working photovoltaic (PV plants show several maintenance needs due to wiring and module degradation, mismatches, dust, and PV cell defects and faults. There are a wide range of theoretical studies as well as some laboratory tests that show how these circumstances may affect the PV production. Thus, it is mandatory to evaluate the whole PV plant performance and, then, its payback time, profitability, and environmental impact or carbon footprint. However, very few studies include a systematic procedure to quantify and supervise the real degradation effects and fault impacts on the field. In this paper, the authors first conducted a brief review of the most frequent PV faults and the degradation that can be found under real conditions of operation of PV plants. Then, they proposed and developed an innovative Geographic Information System (GIS application to locate and supervise them. The designed tool was applied to both a large PV plant of 108 kWp and a small PV plant of 9 kWp installed on a home rooftop. For the large PV plant, 24 strings of PV modules were modelized and introduced into the GIS application and every module in the power plant was studied including voltage, current, power, series and parallel resistances, fill factor, normalized PV curve to standard test conditions (STC, thermography and visual analysis. For the small PV installation three strings of PV panels were studied identically. It must be noted that PV modules in this case included power optimizers. The precision of the study enabled the researchers to locate and supervise up to a third part of every PV cell in the system, which can be adequately georeferenced. The developed tool allows both the researchers and the investors to increase control of the PV plant performance, to lead to better planning of maintenance actuations, and to evaluate several PV module replacement strategies in a preventive maintenance program. The PV faults found include hot

  15. In-field High Throughput Phenotyping and Cotton Plant Growth Analysis Using LiDAR.

    Science.gov (United States)

    Sun, Shangpeng; Li, Changying; Paterson, Andrew H; Jiang, Yu; Xu, Rui; Robertson, Jon S; Snider, John L; Chee, Peng W

    2018-01-01

    Plant breeding programs and a wide range of plant science applications would greatly benefit from the development of in-field high throughput phenotyping technologies. In this study, a terrestrial LiDAR-based high throughput phenotyping system was developed. A 2D LiDAR was applied to scan plants from overhead in the field, and an RTK-GPS was used to provide spatial coordinates. Precise 3D models of scanned plants were reconstructed based on the LiDAR and RTK-GPS data. The ground plane of the 3D model was separated by RANSAC algorithm and a Euclidean clustering algorithm was applied to remove noise generated by weeds. After that, clean 3D surface models of cotton plants were obtained, from which three plot-level morphologic traits including canopy height, projected canopy area, and plant volume were derived. Canopy height ranging from 85th percentile to the maximum height were computed based on the histogram of the z coordinate for all measured points; projected canopy area was derived by projecting all points on a ground plane; and a Trapezoidal rule based algorithm was proposed to estimate plant volume. Results of validation experiments showed good agreement between LiDAR measurements and manual measurements for maximum canopy height, projected canopy area, and plant volume, with R 2 -values of 0.97, 0.97, and 0.98, respectively. The developed system was used to scan the whole field repeatedly over the period from 43 to 109 days after planting. Growth trends and growth rate curves for all three derived morphologic traits were established over the monitoring period for each cultivar. Overall, four different cultivars showed similar growth trends and growth rate patterns. Each cultivar continued to grow until ~88 days after planting, and from then on varied little. However, the actual values were cultivar specific. Correlation analysis between morphologic traits and final yield was conducted over the monitoring period. When considering each cultivar individually

  16. Development of next BWR plant

    International Nuclear Information System (INIS)

    Moriya, Kumiaki; Tanikawa, Naoshi; Kinoshita, Shoichiro; Utena, Shunsuke

    1995-01-01

    It is expected that BWR power generation will be main nuclear power generation for long period hereafter, and in the ABWRs being constructed at present, the safety, reliability, operation performance, economical efficiency and so on are further heightend as compared with conventional BWRs. On the other hand, in order to cope with future social change, the move to develop the next reactor type following ABWRs was begun already by the cooperation of electirc power companies and plant manufacturers. Hitachi Ltd. has advanced eagerly the development of new light water reactors. Also the objective of BWR power generation hereafter is to heighten the safety, reliability, operation performance and economical efficiency, and the development has been advanced, aiming at bearing the main roles of nuclear power generation. At present, ABWRs are under construction as No. 6 and 7 plants in Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. In order to let ABWRs take root, the further improvement of economy by the standardization, the rationalization by revising the specification and the improvement of machinery and equipment is necessary. As the needs of the development of next generation BWRs, the increase of power output, the heightening of safety and economical efficiency are discussed. The concept of the next generation BWR plant aiming at the start of operation around 2010 is shown. (K.I.)

  17. Development of next BWR plant

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Kumiaki; Tanikawa, Naoshi; Kinoshita, Shoichiro; Utena, Shunsuke [Hitachi Ltd., Ibaraki (Japan). Hitachi Works

    1995-04-01

    It is expected that BWR power generation will be main nuclear power generation for long period hereafter, and in the ABWRs being constructed at present, the safety, reliability, operation performance, economical efficiency and so on are further heightend as compared with conventional BWRs. On the other hand, in order to cope with future social change, the move to develop the next reactor type following ABWRs was begun already by the cooperation of electirc power companies and plant manufacturers. Hitachi Ltd. has advanced eagerly the development of new light water reactors. Also the objective of BWR power generation hereafter is to heighten the safety, reliability, operation performance and economical efficiency, and the development has been advanced, aiming at bearing the main roles of nuclear power generation. At present, ABWRs are under construction as No. 6 and 7 plants in Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. In order to let ABWRs take root, the further improvement of economy by the standardization, the rationalization by revising the specification and the improvement of machinery and equipment is necessary. As the needs of the development of next generation BWRs, the increase of power output, the heightening of safety and economical efficiency are discussed. The concept of the next generation BWR plant aiming at the start of operation around 2010 is shown. (K.I.).

  18. Vibration and noise analysis in nuclear power plants

    International Nuclear Information System (INIS)

    1974-12-01

    Results of the investigations on noise and vibration analysis are presented as a follow-up study of the work published in ''On-load Surveillance of Nuclear Power Plant Components by Noise and Vibration Analysis'' EUR 5036 e. The state of the art in on-load surveillance techniques of light water reactors is given by extending the preceding studies to investigations of boiling water reactors and by summarizing the latest results of pressurized water reactors, the basis being experimental and theoretical work performed by the different organizations involved in preparing this report. Finally, some developments with respect to measurement and identification methods are discussed

  19. DENINT power plant cost benefit analysis code: Analysis of methane fuelled power plant/district heating system

    International Nuclear Information System (INIS)

    Cincotti, V.; D'Andrea, A.

    1989-07-01

    The DENINT power plant cost benefit analysis code takes into consideration, not only power production costs at the generator terminals, but also, in the case of cogeneration, the costs of the fuel supply and heat and power distribution systems which depend greatly on the location of the plant. The code is able to allow comparisons of alternatives with varying annual operation hours, fuel cost increases, and different types of fossil fuels and production systems. For illustrative purposes, this paper examines two methane fired cogeneration plant/district heating alternatives

  20. Studies and developments for the analysis of products of nuclear reprocessing plants with the help of the X-ray fluorescence analysis on totally reflecting sample holders (TXRF)

    International Nuclear Information System (INIS)

    Diercks, H.; Eggers, I.; Gibau, F.; Haarich, M.; Hastenteufel, S.; Haurand, M.; Knoechel, A.; Salow, H.

    1990-01-01

    Studies with inactive and active simulates of products of nuclear reprocessing plants show the suitability of the X-Ray Fluorescence Analysis on Totally Reflecting Sample Holders (TXRF), to detect the available elements simultaneously by direct measurements of specially prepared thin samples. High dilution enables in the most cases, to avoid working in hot cells and to carry out the analysis in glove boxes. The analysis of uranium products and great amounts of matrix elements containing solutions like LAW and MAW demands the separation of the matrix elements before TXRF measurement. Procedures for this task have been developed. The potential of the new analytical procedure was demonstrated by the analysis of two samples of highly diluted high active wastes. (orig.) With 65 refs., 20 tabs., 81 figs [de

  1. Seed isotopic analysis as a tool to understand ecological processes influencing plant development and physiology: the case study of Quercus rotundifolia Lam. in a desertification gradient in Mediterranean areas

    Science.gov (United States)

    Oliveira, Tatiana; Silva, Anabela; Rodrigues, Carla; Antunes Antunes, Cristina; Pinho, Pedro; Ramos, Alzira; João Pereira, Maria; Branquinho, Cristina; Máguas, Cristina

    2014-05-01

    Plant responses to climate change highly depend on the temporal variability in precipitation events and on plant specific strategies, such as drought tolerance and resilience. Within the different plant organs, seeds have become an important research tool in the past years to study plant development and nutrients allocation. Key features of seeds such as the tendency to accumulate and store nutrient compounds open many possibilities to explore isotope analysis (13C, 15N and 18O), with many outcomes in fields from ecology to food traceability. The application of light stable isotopes to plant materials have been used to study both physiological (i.e. photosynthesis and stomatal conductance), nutrients uptake and metabolism (origin of nitrogen and symbiotic associations) as well as many ecological processes, which will produce a distinctive isotope fingerprint on the plant tissues. Thus, the isotopic composition of certain bio and geo-elements of seeds, yielding relevant information on plant ecophysiology, are able to relate the plant functioning with local climatic conditions (e.g., temperature and precipitation). The application of isotope analysis in this way can be used as a proxy to understand complex environmental degradation processes such as land degradation in drylands resulting from various factors including climatic variations and human activities. In this study acorns of Quercus ilex plants were sampled during 2012-2013 in a region of southern Portugal, according to (i) soil land-use; (ii) aridity and desertification indexes. The approach developed combined plant seed analysis (seed morphology and compounds quantification) with isotope ratio mass spectrometry (δ13C, δ15N and δ18O) as a "tool" to study changes in plant ecophysiology over time and space. Seeds allow studies at specific temporal scale (development period) which varies according to its biology and depends on the climatic conditions where the plant is grown (i.e, seed's biomass integrate

  2. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties

    Directory of Open Access Journals (Sweden)

    Jin Dai

    2010-10-01

    Full Text Available Phenolics are broadly distributed in the plant kingdom and are the most abundant secondary metabolites of plants. Plant polyphenols have drawn increasing attention due to their potent antioxidant properties and their marked effects in the prevention of various oxidative stress associated diseases such as cancer. In the last few years, the identification and development of phenolic compounds or extracts from different plants has become a major area of health- and medical-related research. This review provides an updated and comprehensive overview on phenolic extraction, purification, analysis and quantification as well as their antioxidant properties. Furthermore, the anticancer effects of phenolics in-vitro and in-vivo animal models are viewed, including recent human intervention studies. Finally, possible mechanisms of action involving antioxidant and pro-oxidant activity as well as interference with cellular functions are discussed.

  3. Global Value Chain and Manufacturing Analysis on Geothermal Power Plant Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Akar, Sertac [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Augustine, Chad R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mann, Margaret K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-04

    The global geothermal electricity market has significantly grown over the last decade and is expected to reach a total installed capacity of 18.4 GWe in 2021 (GEA, 2016). Currently, geothermal project developers customize the size of the power plant to fit the resource being developed. In particular, the turbine is designed and sized to optimize efficiency and resource utilization for electricity production; most often, other power plant components are then chosen to complement the turbine design. These custom turbine designs demand one-off manufacturing processes, which result in higher manufacturing setup costs, longer lead-times, and higher capital costs overall in comparison to larger-volume line manufacturing processes. In contrast, turbines produced in standard increments, manufactured in larger volumes, could result in lower costs per turbine. This study focuses on analysis of the global supply chain and manufacturing costs for Organic Rankine Cycle (ORC) turboexpanders and steam turbines used in geothermal power plants. In this study, we developed a manufacturing cost model to identify requirements for equipment, facilities, raw materials, and labor. We analyzed three different cases 1) 1 MWe geothermal ORC turboexpander 2) 5 MWe ORC turboexpander and 3) 20 MWe geothermal steam turbine, and calculated the cost of manufacturing the major components, such as the impellers/blades, shaft/rotor, nozzles, inlet guide lanes, disks, and casings. Then we used discounted cash flow (DCF) analysis to calculate the minimum sustainable price (MSP). MSP is the minimum price that a company must sell its product for in order to pay back the capital and operating expenses during the plant lifetime (CEMAC, 2017). The results showed that MSP could highly vary between 893 dollar/kW and 30 dollar/kW based on turbine size, standardization and volume of manufacturing. The analysis also showed that the economy of scale applies both to the size of the turbine and the number

  4. Control system for technological processes in tritium processing plants with process analysis

    International Nuclear Information System (INIS)

    Retevoi, Carmen Maria; Stefan, Iuliana; Balteanu, Ovidiu; Stefan, Liviu; Bucur, Ciprian

    2005-01-01

    Integration of a large variety of installations and equipment into a unitary system for controlling the technological process in tritium processing nuclear facilities appears to be a rather complex approach particularly when experimental or new technologies are developed. Ensuring a high degree of versatility allowing easy modifications in configurations and process parameters is a major requirement imposed on experimental installations. The large amount of data which must be processed, stored and easily accessed for subsequent analyses imposes development of a large information network based on a highly integrated system containing the acquisition, control and technological process analysis data as well as data base system. On such a basis integrated systems of computation and control able to conduct the technological process could be developed as well protection systems for cases of failures or break down. The integrated system responds to the control and security requirements in case of emergency and of the technological processes specific to the industry that processes radioactive or toxic substances with severe consequences in case of technological failure as in the case of tritium processing nuclear plant. In order to lower the risk technological failure of these processes an integrated software, data base and process analysis system are developed, which, based on identification algorithm of the important parameters for protection and security systems, will display the process evolution trend. The system was checked on a existing plant that includes a removal tritium unit, finally used in a nuclear power plant, by simulating the failure events as well as the process. The system will also include a complete data base monitoring all the parameters and a process analysis software for the main modules of the tritium processing plant, namely, isotope separation, catalytic purification and cryogenic distillation

  5. Nuclear plant analyzer development at INEL

    International Nuclear Information System (INIS)

    Laats, E.T.; Russell, K.D.; Stewart, H.D.

    1983-01-01

    The Office of Nuclear Regulatory Research of the US Nuclear Regulatory Commission (NRC) has sponsored development of a software-hardware system called the Nuclear Plant Analyzer (NPA). This paper describes the status of the NPA project at the INEL after one year of development. When completed, the NPA will be an integrated network of analytical tools for performing reactor plant analyses. Development of the NPA in FY-1983 progressed along two parallel pathways; namely, conceptual planning and software development. Regarding NPA planning, and extensive effort was conducted to define the function requirements of the NPA, conceptual design, and hardware needs. Regarding software development conducted in FY-1983, all development was aimed toward demonstrating the basic concept and feasibility of the NPA. Nearly all software was developed and resides on the INEL twin Control Data Corporation 176 mainframe computers

  6. Plant community analysis and ecology of afromontane and ...

    African Journals Online (AJOL)

    The plant communities of the forests of southwestern Ethiopia were described based on floristic analysis of the data collected between February 1995 and May 1996. Floristic analysis is based on the cover-abundance values of both woody and herbaceous species. Plant community-environment relationship was assessed ...

  7. Cost analysis of light water reactor power plants

    International Nuclear Information System (INIS)

    Mooz, W.E.

    1978-06-01

    A statistical analysis is presented of the capital costs of light water reactor (LWR) electrical power plants. The objective is twofold: to determine what factors are statistically related to capital costs and to produce a methodology for estimating these costs. The analysis in the study is based on the time and cost data that are available on U.S. nuclear power plants. Out of a total of about 60 operating plants, useful capital-cost data were available on only 39 plants. In addition, construction-time data were available on about 65 plants, and data on completed construction permit applications were available for about 132 plants. The cost data were first systematically adjusted to constant dollars. Then multivariate regression analyses were performed by using independent variables consisting of various physical and locational characteristics of the plants. The dependent variables analyzed were the time required to obtain a construction permit, the construction time, and the capital cost

  8. Summary of project to develop handbook of human reliability analysis for nuclear power plant operations

    International Nuclear Information System (INIS)

    Swain, A.D.

    1978-01-01

    For the past two years Alan Swain and Henry E. Guttmann, of the Statistics, Computing, and Human Factors Division, Sandia Laboratories, have been developing a handbook to aid qualified persons to evaluate the effect of human error on the availability of engineered safety systems and features in nuclear power plants. The handbook includes a mathematical model, procedures, derived human failure data, and principles of human behavior and ergonomics. The handbook is expanding the human error analyses which were presented in WASH--1400. The work, under the sponsorship of Probabilistic Analysis Staff, NRC Office of Nuclear Regulatory Research (Dr. M.C. Cullingford, NRC Program Manager), is about half completed. An outline of the handbook contents is given in copies of vugraphs (attached), followed by copies of human performance model abstractors (also attached). A first draft of the handbook is scheduled for NRC review by July 1, 1979

  9. Development and application of objective uncertainty measures for nuclear power plant transient analysis[Dissertation 3897

    Energy Technology Data Exchange (ETDEWEB)

    Vinai, P

    2007-10-15

    For the development, design and licensing of a nuclear power plant (NPP), a sound safety analysis is necessary to study the diverse physical phenomena involved in the system behaviour under operational and transient conditions. Such studies are based on detailed computer simulations. With the progresses achieved in computer technology and the greater availability of experimental and plant data, the use of best estimate codes for safety evaluations has gained increasing acceptance. The application of best estimate safety analysis has raised new problems that need to be addressed: it has become more crucial to assess as to how reliable code predictions are, especially when they need to be compared against safety limits that must not be crossed. It becomes necessary to identify and quantify the various possible sources of uncertainty that affect the reliability of the results. Currently, such uncertainty evaluations are generally based on experts' opinion. In the present research, a novel methodology based on a non-parametric statistical approach has been developed for objective quantification of best-estimate code uncertainties related to the physical models used in the code. The basis is an evaluation of the accuracy of a given physical model achieved by comparing its predictions with experimental data from an appropriate set of separate-effect tests. The differences between measurements and predictions can be considered stochastically distributed, and thus a statistical approach can be employed. The first step was the development of a procedure for investigating the dependence of a given physical model's accuracy on the experimental conditions. Each separate-effect test effectively provides a random sample of discrepancies between measurements and predictions, corresponding to a location in the state space defined by a certain number of independent system variables. As a consequence, the samples of 'errors', achieved from analysis of the entire

  10. Chirospecific analysis of plant volatiles

    Energy Technology Data Exchange (ETDEWEB)

    Tkachev, A V [N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2007-10-31

    Characteristic features of the analysis of plant volatiles by enantioselective gas (gas-liquid) chromatography and gas chromatography/mass spectrometry are discussed. The most recent advances in the design of enantioselective stationary phases are surveyed. Examples of the preparation of the most efficient phases based on modified cyclodextrins are given. Current knowledge on the successful analytical resolution of different types of plant volatiles (aliphatic and aromatic compounds and mono-, sesqui- and diterpene derivatives) into optical antipodes is systematically described. Chiral stationary phases used for these purposes, temperature conditions and enantiomer separation factors are summarised. Examples of the enantiomeric resolution of fragrance compounds and components of plant extracts, wines and essential oils are given.

  11. Chirospecific analysis of plant volatiles

    International Nuclear Information System (INIS)

    Tkachev, A V

    2007-01-01

    Characteristic features of the analysis of plant volatiles by enantioselective gas (gas-liquid) chromatography and gas chromatography/mass spectrometry are discussed. The most recent advances in the design of enantioselective stationary phases are surveyed. Examples of the preparation of the most efficient phases based on modified cyclodextrins are given. Current knowledge on the successful analytical resolution of different types of plant volatiles (aliphatic and aromatic compounds and mono-, sesqui- and diterpene derivatives) into optical antipodes is systematically described. Chiral stationary phases used for these purposes, temperature conditions and enantiomer separation factors are summarised. Examples of the enantiomeric resolution of fragrance compounds and components of plant extracts, wines and essential oils are given.

  12. Development of nuclear power plant Risk Monitor

    International Nuclear Information System (INIS)

    Yang Xiaoming; Sun Jinlong; Ma Chao; Wang Lin; Gu Xiaohui; Bao Zhenli; Qu Yong; Zheng Hao

    2014-01-01

    Risk Monitor is a tool to monitor the real-time risk of a nuclear power plant for risk management and comprehensive decision-making, which has been widely used all over the world. The nuclear power plant Risk Monitor applies the real-time risk model with low-complicacy that could reflect the plant's actual configuration, automatically reads the plant's configuration information from the engineering system through the developed interface, and efficiently analyzes the plant's risk Dy the intelligent parallel-computing method in order to provide the risk basement for the safety management of nuclear power plant. This paper generally introduces the background, architecture, functions and key technical features of a nuclear power plant Risk Monitor, and validates the risk result, which could well reflect the plant's risk information and has a significant practical value. (authors)

  13. Cost benefit analysis of power plant database integration

    International Nuclear Information System (INIS)

    Wilber, B.E.; Cimento, A.; Stuart, R.

    1988-01-01

    A cost benefit analysis of plant wide data integration allows utility management to evaluate integration and automation benefits from an economic perspective. With this evaluation, the utility can determine both the quantitative and qualitative savings that can be expected from data integration. The cost benefit analysis is then a planning tool which helps the utility to develop a focused long term implementation strategy that will yield significant near term benefits. This paper presents a flexible cost benefit analysis methodology which is both simple to use and yields accurate, verifiable results. Included in this paper is a list of parameters to consider, a procedure for performing the cost savings analysis, and samples of this procedure when applied to a utility. A case study is presented involving a specific utility where this procedure was applied. Their uses of the cost-benefit analysis are also described

  14. Auxin-BR Interaction Regulates Plant Growth and Development

    Science.gov (United States)

    Tian, Huiyu; Lv, Bingsheng; Ding, Tingting; Bai, Mingyi; Ding, Zhaojun

    2018-01-01

    Plants develop a high flexibility to alter growth, development, and metabolism to adapt to the ever-changing environments. Multiple signaling pathways are involved in these processes and the molecular pathways to transduce various developmental signals are not linear but are interconnected by a complex network and even feedback mutually to achieve the final outcome. This review will focus on two important plant hormones, auxin and brassinosteroid (BR), based on the most recent progresses about these two hormone regulated plant growth and development in Arabidopsis, and highlight the cross-talks between these two phytohormones. PMID:29403511

  15. Intervention analysis of power plant impact on fish populations

    International Nuclear Information System (INIS)

    Madenjian, C.P.

    1984-01-01

    Intervention analysis was applied to 10 yr (years 1973-1982) of field fish abundance data at the D. C. Cook Nuclear Power Plant, southeastern Lake Michigan. Three log-transformed catch series, comprising monthly observations, were examined for each combination of two species (alewife, Alosa pseudoharenga, or yellow perch, Perca flavescens) and gear (trawl or gill net): catch at the plant discharged transect, catch at the reference transect, and the ratio of plant catch to reference catch. Time series separated by age groups were examined. Based on intervention analysis, no change in the abundance of fish populations could be attributed to plant operation. Additionally, a modification of the intervention analysis technique was applied to investigate trends in abundance at both the plant discharge and reference transects. Significant declines were detected for abundance of alewife adults at both of the transects. Results of the trend analysis support the contention that the alewives have undergone a lakewide decrease in abundance during the 1970s

  16. Analysis of color environment in nuclear power plants

    International Nuclear Information System (INIS)

    Natori, Kazuyuki; Akagi, Ichiro; Souma, Ichiro; Hiraki, Tadao; Sakurai, Yukihiro.

    1996-01-01

    This article reports the results of color and psychological analysis of the outlook of nuclear power plants and the visual environments inside of the plants. Study one was the color measurements of the outlook of nuclear plants and the visual environment inside of the plants. Study two was a survey of the impressions on the visual environments of nuclear plants obtained from observers and interviews of the workers. Through these analysis, we have identified the present state of, and the problems of the color environments of the nuclear plants. In the next step, we have designed the color environments of inside and outside of the nuclear plants which we would recommend (inside designs were about fuel handling room, operation floor of turbine building, observers' pathways, central control room, rest room for the operators). Study three was the survey about impressions on our design inside and outside of the nuclear plants. Nuclear plant observers, residents in Osaka city, residents near the nuclear plants, the operators, employees of subsidiary company and the PR center guides rated their impressions on the designs. Study four was the survey about the design of the rest room for the operators controlling the plants. From the results of four studies, we have proposed some guidelines and problems about the future planning about the visual environments of nuclear power plants. (author)

  17. Analysis of reactor trips involving balance-of-plant failures

    International Nuclear Information System (INIS)

    Seth, S.; Skinner, L.; Ettlinger, L.; Lay, R.

    1986-01-01

    The relatively high frequency of plant transients leading to reactor trips at nuclear power plants in the US is of economic and safety concern to the industry. A majority of such transients is due to failures in the balance-of-plant (BOP) systems. As a part of a study conducted for the US Nuclear Regulatory Commission, Mitre has carried out a further analysis of the BOP failures associated with reactor trips. The major objectives of the analysis were to examine plant-to-plant variations in BOP-related trips, to understand the causes of failures, and to determine the extent of any associated safety system challenges. The analysis was based on the Licensee Event Reports submitted on all commercial light water reactors during the 2-yr period, 1984-1985

  18. Approach for seismic risk analysis for CANDU plants in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B-S; Kim, T; Kang, S-K [Korea Power Engineering Co., Seoul (Korea, Republic of); Hong, S-Y; Roh, S-R [Korea Electric Power Corp., Taejon (Korea, Republic of). Research Centre

    1996-12-31

    A seismic risk analysis for CANDU type plants has never been performed. The study presented here suggested that the approach generally applied to LWR type plants could lead to unacceptable result, if directly applied to CANDU plants. This paper presents a modified approach for the seismic risk analysis of CANDU plants. (author). 5 refs., 2 tabs., 2 figs.

  19. Development of an integrated database management system to evaluate integrity of flawed components of nuclear power plant

    International Nuclear Information System (INIS)

    Mun, H. L.; Choi, S. N.; Jang, K. S.; Hong, S. Y.; Choi, J. B.; Kim, Y. J.

    2001-01-01

    The object of this paper is to develop an NPP-IDBMS(Integrated DataBase Management System for Nuclear Power Plants) for evaluating the integrity of components of nuclear power plant using relational data model. This paper describes the relational data model, structure and development strategy for the proposed NPP-IDBMS. The NPP-IDBMS consists of database, database management system and interface part. The database part consists of plant, shape, operating condition, material properties and stress database, which are required for the integrity evaluation of each component in nuclear power plants. For the development of stress database, an extensive finite element analysis was performed for various components considering operational transients. The developed NPP-IDBMS will provide efficient and accurate way to evaluate the integrity of flawed components

  20. The development of human factors technologies -The development of human behaviour analysis techniques-

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Lee, Yong Heui; Park, Keun Ok; Chun, Se Woo; Suh, Sang Moon; Park, Jae Chang [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    In order to contribute to human error reduction through the studies on human-machine interaction in nuclear power plants, this project has objectives to develop SACOM(Simulation Analyzer with a Cognitive Operator Model) and techniques for human error analysis and application. In this year, we studied the followings: development of SACOM> (1) Site investigation of operator tasks, (2) Development of operator task micro structure and revision of micro structure, (3) Development of knowledge representation software and SACOM prototype, (4) Development of performance assessment methodologies in task simulation and analysis of the effects of performance shaping factors. development of human error analysis and application techniques> (1) Classification of error shaping factors(ESFs) and development of software for ESF evaluation, (2) Analysis of human error occurrences and revision of analysis procedure, (3) Experiment for human error data collection using a compact nuclear simulator, (4) Development of a prototype data base system of the analyzed information on trip cases. 55 figs, 23 tabs, 33 refs. (Author).

  1. Development of the Chinshan plant analyzer and its assessment with plant data

    International Nuclear Information System (INIS)

    Shihjen Wang; Chunsheng Chien; Jungyuh Jang; Shawcuang Lee

    1993-01-01

    To apply fast and accurate simulation techniques to Taiwanese nuclear power plants, plant analyzer technology was transferred to Taiwan from the Brookhaven National Laboratory (BNL) through a cooperative program. The Chinshan plant analyzer is developed on the AD100 peripheral processor systems, based on the BNL boiling water reactor plant analyzer. The BNL plant analyzer was first converted from MPS10 programming for AD10 to ADSIM programming for AD100. It was then modified for the Taiwan Power Company's Chinshan power station. The simulation speed of the Chinshan plant analyzer is eight times faster than real time. A load rejection transient performed at 100% of full power during startup tests was simulated with the Chinshan plant analyzer, and the results were benchmarked against test data. The comparison shows good agreement between calculated results and test data

  2. Reliability Analysis Techniques for Communication Networks in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lim, T. J.; Jang, S. C.; Kang, H. G.; Kim, M. C.; Eom, H. S.; Lee, H. J.

    2006-09-01

    The objectives of this project is to investigate and study existing reliability analysis techniques for communication networks in order to develop reliability analysis models for nuclear power plant's safety-critical networks. It is necessary to make a comprehensive survey of current methodologies for communication network reliability. Major outputs of this study are design characteristics of safety-critical communication networks, efficient algorithms for quantifying reliability of communication networks, and preliminary models for assessing reliability of safety-critical communication networks

  3. Methods and tools for analysis and optimization of power plants

    Energy Technology Data Exchange (ETDEWEB)

    Assadi, Mohsen

    2000-09-01

    The most noticeable advantage of the introduction of the computer-aided tools in the field of power generation, has been the ability to study the plant's performance prior to the construction phase. The results of these studies have made it possible to change and adjust the plant layout to match the pre-defined requirements. Further development of computers in recent years has opened up for implementation of new features in the existing tools and also for the development of new tools for specific applications, like thermodynamic and economic optimization, prediction of the remaining component life time, and fault diagnostics, resulting in improvement of the plant's performance, availability and reliability. The most common tools for pre-design studies are heat and mass balance programs. Further thermodynamic and economic optimization of plant layouts, generated by the heat and mass balance programs, can be accomplished by using pinch programs, exergy analysis and thermoeconomics. Surveillance and fault diagnostics of existing systems can be performed by using tools like condition monitoring systems and artificial neural networks. The increased number of tools and their various construction and application areas make the choice of the most adequate tool for a certain application difficult. In this thesis the development of different categories of tools and techniques, and their application area are reviewed and presented. Case studies on both existing and theoretical power plant layouts have been performed using different commercially available tools to illuminate their advantages and shortcomings. The development of power plant technology and the requirements for new tools and measurement systems have been briefly reviewed. This thesis contains also programming techniques and calculation methods concerning part-load calculations using local linearization, which has been implemented in an inhouse heat and mass balance program developed by the author

  4. External events analysis of the Ignalina Nuclear Power Plant

    International Nuclear Information System (INIS)

    Liaukonis, Mindaugas; Augutis, Juozas

    1999-01-01

    This paper presents analysis of external events impact on the safe operation of the Ignalina Nuclear Power Plant (INPP) safety systems. Analysis was based on the probabilistic estimation and modelling of the external hazards. The screening criteria were applied to the number of external hazards. The following external events such as aircraft failure on the INPP, external flooding, fire, extreme winds requiring further bounding study were analysed. Mathematical models were developed and event probabilities were calculated. External events analysis showed rather limited external events danger to Ignalina NPP. Results of the analysis were compared to analogous analysis in western NPPs and no great differences were specified. Calculations performed show that external events can not significantly influence the safety level of the Ignalina NPP operation. (author)

  5. Safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Selvatici, E.

    1981-01-01

    A study about the safety analysis of nuclear power plant, giving emphasis to how and why to do is presented. The utilization of the safety analysis aiming to perform the licensing requirements is discussed, and an example of the Angra 2 and 3 safety analysis is shown. Some presented tendency of the safety analysis are presented and examples are shown.(E.G.) [pt

  6. Economic analysis of power generation from floating solar chimney power plant

    International Nuclear Information System (INIS)

    Zhou, Xinping; Yang, Jiakuan; Xiao, Bo; Wang, Fen

    2009-01-01

    Solar chimney thermal power technology that has a long life span is a promising large-scale solar power generating technology. This paper performs economic analysis of power generation from floating solar chimney power plant (FSCPP) by analyzing cash flows during the whole service period of a 100 MW plant. Cash flows are influenced by many factors including investment, operation and maintenance cost, life span, payback period, inflation rate, minimum attractive rate of return, non-returnable subsidy rate, interest rate of loans, sale price of electricity, income tax rate and whether additional revenue generated by carbon credits is included or not. Financial incentives and additional revenue generated by carbon credits can accelerate the development of the FSCPP. Sensitivity analysis to examine the effects of the factors on cash flows of a 100 MW FSCPP is performed in detail. The results show that the minimum price for obtaining minimum attractive rate of return (MARR) of 8% reaches 0.83 yuan (kWh) -1 under financial incentives including loans at a low interest rate of 2% and free income tax. Comparisons of economics of the FSCPP and reinforced concrete solar chimney power plant or solar photovoltaic plant are also performed by analyzing their cash flows. It is concluded that FSCPP is in reality more economical than reinforced concrete solar chimney power plant (RCSCPP) or solar photovoltaic plant (SPVP) with the same power capacity. (author)

  7. Development of inelastic design method for liquid metal reactor plants

    International Nuclear Information System (INIS)

    Takahashi, Yukio; Take, Kohji; Kaguchi, Hitoshi; Fukuda, Yoshio; Uno, Tetsuro.

    1991-01-01

    Effective utilization of inelastic analysis in structural design assessment is expected to play an important role for avoiding too conservative design of liquid metal reactor plants. Studies have been conducted by the authors to develop a guideline for application of detailed inelastic analysis in design assessment. Both fundamental material characteristics tests and structural failure tests were conducted. Fundamental investigations were made on inelastic analysis method and creep-fatigue life prediction method based on the results of material characteristics tests. It was demonstrated through structural failure tests that the design method constructed based on these fundamental investigations can predict failure lives in structures subjected to cyclic thermal loadings with sufficient accuracy. (author)

  8. Availability Performance Analysis of Thermal Power Plants

    Science.gov (United States)

    Bhangu, Navneet Singh; Singh, Rupinder; Pahuja, G. L.

    2018-03-01

    This case study presents the availability evaluation method of thermal power plants for conducting performance analysis in Indian environment. A generic availability model has been proposed for a maintained system (thermal plants) using reliability block diagrams and fault tree analysis. The availability indices have been evaluated under realistic working environment using inclusion exclusion principle. Four year failure database has been used to compute availability for different combinatory of plant capacity, that is, full working state, reduced capacity or failure state. Availability is found to be very less even at full rated capacity (440 MW) which is not acceptable especially in prevailing energy scenario. One of the probable reason for this may be the difference in the age/health of existing thermal power plants which requires special attention of each unit from case to case basis. The maintenance techniques being used are conventional (50 years old) and improper in context of the modern equipment, which further aggravate the problem of low availability. This study highlights procedure for finding critical plants/units/subsystems and helps in deciding preventive maintenance program.

  9. Dynamic analysis of WWER-1000 nuclear power plants

    International Nuclear Information System (INIS)

    Asfura, A.P.; Jordanov, M.J.

    1995-01-01

    As part of the effort to assess the seismic vulnerability of nuclear power plants in Eastern Europe, a series of dynamic analyses have been carried out for several plants. These analyses were performed using modern analysis techniques, current local seismic parameters, and local soil profiles. This paper presents a compilation of some of the seismic analyses performed for the WWER-1000 reactor buildings at the nuclear power plants of Belene and Kozloduy in Bulgaria, and Temelin in the Czech Republic. The reactor buildings at these three plants are practically identical and correspond to the standard building design for this type of reactors. The series of analyses performed for these buildings encompasses various soil profiles, seismic ground motions, and different soil-structure interaction analysis techniques and modelling. The analysis of a common structure under different conditions gives the opportunity to assess the relative importance that each of the analysis elements has in the structural responses. The use of different SSI computer programs and foundation modeling was studied for Kozloduy, and the effects of different soil conditions and site-specific seismicity were studied by comparing the responses for the three plants. In-structure acceleration response spectra were selected as the structural responses for comparison purposes

  10. Life Cycle Cost Analysis of Ready Mix Concrete Plant

    Science.gov (United States)

    Topkar, V. M.; Duggar, A. R.; Kumar, A.; Bonde, P. P.; Girwalkar, R. S.; Gade, S. B.

    2013-11-01

    India, being a developing nation is experiencing major growth in its infrastructural sector. Concrete is the major component in construction. The requirement of good quality of concrete in large quantities can be fulfilled by ready mix concrete batching and mixing plants. The paper presents a technique of applying the value engineering tool life cycle cost analysis to a ready mix concrete plant. This will help an investor or an organization to take investment decisions regarding a ready mix concrete facility. No economic alternatives are compared in this study. A cost breakdown structure is prepared for the ready mix concrete plant. A market survey has been conducted to collect realistic costs for the ready mix concrete facility. The study establishes the cash flow for the ready mix concrete facility helpful in investment and capital generation related decisions. Transit mixers form an important component of the facility and are included in the calculations. A fleet size for transit mixers has been assumed for this purpose. The life cycle cost has been calculated for the system of the ready mix concrete plant and transit mixers.

  11. Task analysis and computer aid development for human reliability analysis in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, W. C.; Kim, H.; Park, H. S.; Choi, H. H.; Moon, J. M.; Heo, J. Y.; Ham, D. H.; Lee, K. K.; Han, B. T. [Korea Advanced Institute of Science and Technology, Taejeon (Korea)

    2001-04-01

    Importance of human reliability analysis (HRA) that predicts the error's occurrence possibility in a quantitative and qualitative manners is gradually increased by human errors' effects on the system's safety. HRA needs a task analysis as a virtue step, but extant task analysis techniques have the problem that a collection of information about the situation, which the human error occurs, depends entirely on HRA analyzers. The problem makes results of the task analysis inconsistent and unreliable. To complement such problem, KAERI developed the structural information analysis (SIA) that helps to analyze task's structure and situations systematically. In this study, the SIA method was evaluated by HRA experts, and a prototype computerized supporting system named CASIA (Computer Aid for SIA) was developed for the purpose of supporting to perform HRA using the SIA method. Additionally, through applying the SIA method to emergency operating procedures, we derived generic task types used in emergency and accumulated the analysis results in the database of the CASIA. The CASIA is expected to help HRA analyzers perform the analysis more easily and consistently. If more analyses will be performed and more data will be accumulated to the CASIA's database, HRA analyzers can share freely and spread smoothly his or her analysis experiences, and there by the quality of the HRA analysis will be improved. 35 refs., 38 figs., 25 tabs. (Author)

  12. Comparative exergetic performance analysis for certain thermal power plants in Serbia

    Directory of Open Access Journals (Sweden)

    Mitrović Dejan M.

    2016-01-01

    Full Text Available Traditional methods of analysis and calculation of complex thermal systems are based on the first law of thermodynamics. These methods use energy balance for a system. In general, energy balances do not provide any information about internal losses. In contrast, the second law of thermodynamics introduces the concept of exergy, which is useful in the analysis of thermal systems. Exergy is a measure for assessing the quality of energy, and allows one to determine the location, cause, and real size of losses incurred as well as residues in a thermal process. The purpose of this study is to comparatively analyze the performance of four thermal power plants from the energetic and exergetic viewpoint. Thermodynamic models of the plants are developed based on the first and second law of thermodynamics. The primary objectives of this paper are to analyze the system components separately and to identify and quantify the sites having largest energy and exergy losses. Finally, by means of these analyses, the main sources of thermodynamic inefficiencies as well as a reasonable comparison of each plant to others are identified and discussed. As a result, the outcomes of this study can provide a basis for the improvement of plant performance for the considered thermal power plants.

  13. EVALUATION OF THE DEVELOPMENT OF MAIZE PLANTS (Zea mays L.) AFTER COLONIZATION BY ENDOPHYTE FUNGUS Fusarium verticillioides

    OpenAIRE

    Gomes, Ulisses de Deus; Orlandelli, Ravely Casarotti; Santos, Mariana Sanches; Polonio, Julio Cesar; Pamphile, João Alencar; Rubin Filho, Celso João

    2013-01-01

    Endophyte fungi inhabit the inside of plants without causing any damage. Benefits from endophyte-plant interactivities include vegetal growth and the plant´s defense against insects and other pathogens. Some endophytes, however, may act as latent pathogens which cause physiological changes and disease symptoms in the host. Current analysis evaluates the development of maize plants colonizer (treatment) and non-colonized (control) with the frequently found endophyte Fusarium verticillioides an...

  14. Projecting the success of plant restoration with population viability analysis

    Science.gov (United States)

    Bell, T.J.; Bowles, M.L.; McEachern, A.K.; Brigham, C.A.; Schwartz, M.W.

    2003-01-01

    Conserving viable populations of plant species requires that they have high probabilities of long-term persistence within natural habitats, such as a chance of extinction in 100 years of less than 5% (Menges 1991, 1998; Brown 1994; Pavlik 1994; Chap. 1, this Vol.). For endangered and threatened species that have been severely reduces in range and whose habitats have been fragmented, important species conservation strategies may include augmenting existing populations or restoring new viable populations (Bowles and Whelan 1994; Chap. 2, this Vol.). Restoration objectives may include increasing population numbers to reduce extinction probability, deterministic manipulations to develop a staged cohort structure, or more complex restoration of a desired genetic structure to allow outcrossing or increase effective population size (DeMauro 1993, 1994; Bowles et al. 1993, 1998; Pavlik 1994; Knapp and Dyer 1998; Chap. 2, this Vol.). These efforts may require translocation of propagules from existing (in situ) populations, or from ex situ botanic gardens or seed storage facilities (Falk et al. 1996; Guerrant and Pavlik 1998; Chap. 2, this Vol.). Population viability analysis (PVA) can provide a critical foundation for plant restoration, as it models demographic projections used to evaluate the probability of population persistence and links plant life history with restoration strategies. It is unknown how well artificially created populations will meet demographic modeling requirements (e.g., due to artificial cohort transitions) and few, if any, PVAs have been applied to restorations. To guide application of PVA to restored populations and to illustrate potential difficulties, we examine effects of planting different life stages, model initial population sizes needed to achieve population viability, and compare demographic characteristics between natural and restored populations. We develop and compare plant population restoration viability analysis (PRVA) case studies of

  15. The plant expert system (PLEXSYS) development environment

    International Nuclear Information System (INIS)

    Hashemi, S.; Patterson, L.; Jeffery, M.; Delashmutt, L.

    1989-06-01

    The PLEXSYS software engineering tool provides an environment with which utility engineers can build and use expert systems for power plant applications. PLEXSYS provides the engineer with access to many powerful Artificial Intelligence methodologies, while retaining an engineering frame of reference and minimizing the need for a formal background in computer science. The principle concept is that the description and understanding of power plant systems centers on graphical forms such as piping and instrumentation diagrams and electrical line diagrams, which define a graphics-based model of plant knowledge that is common to many applications. PLEXSYS provides a model editor that allows the user to construct and modify models of hydraulic, electrical, and information systems in terms of elementary components and their interconnections. Analysis of the resulting schematic models is provided by several functions that perform network analysis, schematic browsing, mathematical modeling and customization of the user interface. 41 figs., 1 tab

  16. CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants.

    Science.gov (United States)

    Delay, Christina; Imin, Nijat; Djordjevic, Michael A

    2013-12-01

    The manifestation of repetitive developmental programmes during plant growth can be adjusted in response to various environmental cues. During root development, this means being able to precisely control root growth and lateral root development. Small signalling peptides have been found to play roles in many aspects of root development. One member of the CEP (C-TERMINALLY ENCODED PEPTIDE) gene family has been shown to arrest root growth. Here we report that CEP genes are widespread among seed plants but are not present in land plants that lack true branching roots or root vasculature. We have identified 10 additional CEP genes in Arabidopsis. Expression analysis revealed that CEP genes are regulated by environmental cues such as nitrogen limitation, increased salt levels, increased osmotic strength, and increased CO2 levels in both roots and shoots. Analysis of synthetic CEP variants showed that both peptide sequence and modifications of key amino acids affect CEP biological activity. Analysis of several CEP over-expression lines revealed distinct roles for CEP genes in root and shoot development. A cep3 knockout mutant showed increased root and shoot growth under a range of abiotic stress, nutrient, and light conditions. We demonstrate that CEPs are negative regulators of root development, slowing primary root growth and reducing lateral root formation. We propose that CEPs are negative regulators that mediate environmental influences on plant development.

  17. Development of Internal Dose Assessment Program for Nuclear Power Plant Employees

    Energy Technology Data Exchange (ETDEWEB)

    Song, Myung Jae; Kang, Duck Won; Maeng, Sung Jun; Kim, Hee Geun; Son, Soon Whan; Lim, Young Kee; Son, Joong Kwon; Park, Keyoung Rock [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Jang, See Young; Ha, Jong Woo; Suh, Keyoung Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Oh, Oak Doo; Lee, Joong Woo; Yoon, Sung Sik [Yonsei University, Seoul (Korea, Republic of)

    1996-12-31

    Internal exposure monitoring based on new concept of radiation protection. Analysis and Performance test of the in vivo systems being operated in nuclear power plants in Korea. Design and fabrication of humanoid phantom for calibration of in vivo system. Development of internal dose evaluation code based on the ICRP 30 dosimetric model. (author). 44 refs., figs.

  18. HRA qualitative analysis in a nuclear power plant

    International Nuclear Information System (INIS)

    Dai Licao; Zhang Li; Huang Shudong

    2004-01-01

    Human reliability analysis (HRA) is a very important part of probability safety assessment (PSA) in a nuclear power plant. Qualitative analysis is the basis and starting point of HRA. The purpose, the principle, the method and the procedure of qualitative HRA are introduced. SGTR, a pressurized nuclear power plant as an example, is used to illustrate it. (authors)

  19. Digital Processor Module Reliability Analysis of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lee, Sang Yong; Jung, Jae Hyun; Kim, Jae Ho; Kim, Sung Hun

    2005-01-01

    The system used in plant, military equipment, satellite, etc. consists of many electronic parts as control module, which requires relatively high reliability than other commercial electronic products. Specially, Nuclear power plant related to the radiation safety requires high safety and reliability, so most parts apply to Military-Standard level. Reliability prediction method provides the rational basis of system designs and also provides the safety significance of system operations. Thus various reliability prediction tools have been developed in recent decades, among of them, the MI-HDBK-217 method has been widely used as a powerful tool for the prediction. In this work, It is explained that reliability analysis work for Digital Processor Module (DPM, control module of SMART) is performed by Parts Stress Method based on MIL-HDBK-217F NOTICE2. We are using the Relex 7.6 of Relex software corporation, because reliability analysis process requires enormous part libraries and data for failure rate calculation

  20. Development of a method for comprehensive and quantitative analysis of plant hormones by highly sensitive nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry

    International Nuclear Information System (INIS)

    Izumi, Yoshihiro; Okazawa, Atsushi; Bamba, Takeshi; Kobayashi, Akio; Fukusaki, Eiichiro

    2009-01-01

    In recent plant hormone research, there is an increased demand for a highly sensitive and comprehensive analytical approach to elucidate the hormonal signaling networks, functions, and dynamics. We have demonstrated the high sensitivity of a comprehensive and quantitative analytical method developed with nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry (LC-ESI-IT-MS/MS) under multiple-reaction monitoring (MRM) in plant hormone profiling. Unlabeled and deuterium-labeled isotopomers of four classes of plant hormones and their derivatives, auxins, cytokinins (CK), abscisic acid (ABA), and gibberellins (GA), were analyzed by this method. The optimized nanoflow-LC-ESI-IT-MS/MS method showed ca. 5-10-fold greater sensitivity than capillary-LC-ESI-IT-MS/MS, and the detection limits (S/N = 3) of several plant hormones were in the sub-fmol range. The results showed excellent linearity (R 2 values of 0.9937-1.0000) and reproducibility of elution times (relative standard deviations, RSDs, <1.1%) and peak areas (RSDs, <10.7%) for all target compounds. Further, sample purification using Oasis HLB and Oasis MCX cartridges significantly decreased the ion-suppressing effects of biological matrix as compared to the purification using only Oasis HLB cartridge. The optimized nanoflow-LC-ESI-IT-MS/MS method was successfully used to analyze endogenous plant hormones in Arabidopsis and tobacco samples. The samples used in this analysis were extracted from only 17 tobacco dry seeds (1 mg DW), indicating that the efficiency of analysis of endogenous plant hormones strongly depends on the detection sensitivity of the method. Our analytical approach will be useful for in-depth studies on complex plant hormonal metabolism.

  1. Development of a method for comprehensive and quantitative analysis of plant hormones by highly sensitive nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Yoshihiro; Okazawa, Atsushi; Bamba, Takeshi; Kobayashi, Akio [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Fukusaki, Eiichiro, E-mail: fukusaki@bio.eng.osaka-u.ac.jp [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2009-08-26

    In recent plant hormone research, there is an increased demand for a highly sensitive and comprehensive analytical approach to elucidate the hormonal signaling networks, functions, and dynamics. We have demonstrated the high sensitivity of a comprehensive and quantitative analytical method developed with nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry (LC-ESI-IT-MS/MS) under multiple-reaction monitoring (MRM) in plant hormone profiling. Unlabeled and deuterium-labeled isotopomers of four classes of plant hormones and their derivatives, auxins, cytokinins (CK), abscisic acid (ABA), and gibberellins (GA), were analyzed by this method. The optimized nanoflow-LC-ESI-IT-MS/MS method showed ca. 5-10-fold greater sensitivity than capillary-LC-ESI-IT-MS/MS, and the detection limits (S/N = 3) of several plant hormones were in the sub-fmol range. The results showed excellent linearity (R{sup 2} values of 0.9937-1.0000) and reproducibility of elution times (relative standard deviations, RSDs, <1.1%) and peak areas (RSDs, <10.7%) for all target compounds. Further, sample purification using Oasis HLB and Oasis MCX cartridges significantly decreased the ion-suppressing effects of biological matrix as compared to the purification using only Oasis HLB cartridge. The optimized nanoflow-LC-ESI-IT-MS/MS method was successfully used to analyze endogenous plant hormones in Arabidopsis and tobacco samples. The samples used in this analysis were extracted from only 17 tobacco dry seeds (1 mg DW), indicating that the efficiency of analysis of endogenous plant hormones strongly depends on the detection sensitivity of the method. Our analytical approach will be useful for in-depth studies on complex plant hormonal metabolism.

  2. Uncertainty and sensitivity analysis applied to coupled code calculations for a VVER plant transient

    International Nuclear Information System (INIS)

    Langenbuch, S.; Krzykacz-Hausmann, B.; Schmidt, K. D.

    2004-01-01

    The development of coupled codes, combining thermal-hydraulic system codes and 3D neutron kinetics, is an important step to perform best-estimate plant transient calculations. It is generally agreed that the application of best-estimate methods should be supplemented by an uncertainty and sensitivity analysis to quantify the uncertainty of the results. The paper presents results from the application of the GRS uncertainty and sensitivity method for a VVER-440 plant transient, which was already studied earlier for the validation of coupled codes. For this application, the main steps of the uncertainty method are described. Typical results of the method applied to the analysis of the plant transient by several working groups using different coupled codes are presented and discussed The results demonstrate the capability of an uncertainty and sensitivity analysis. (authors)

  3. Development of a coppice planting machine to commercial standards

    Energy Technology Data Exchange (ETDEWEB)

    Turton, J.S.

    2000-07-01

    This report gives details of the development work carried out on the Turton Engineering Coppice Planting machine in order to commercially market it. The background to the machine which plants single rows of cuttings from rods is traced,, and previous development work, design work, production of sub-assemblies and the assembly of modules, inspection and assembly, static trials, and commercial planting are examined. Further machine developments, proving trials, and recommendations for further work are discussed. Appendices address relationships applicable to vertical planting, the Turton short rotation cultivation machine rod format, estimated prices and charges, and a list of main suppliers. (UK)

  4. Development on database for foreign nuclear power plants

    International Nuclear Information System (INIS)

    Okuda, Yasunori; Yanagi, Chihiro

    1999-01-01

    The Nuclear Information Project in Institute of Nuclear Technology, Institute of Nuclear Safety Systems, Inc. (INSS) has been carrying out two activities related to technical information about nuclear power plants. The first is collection and analysis of accidents and incidents (troubles) of nuclear power plants in U.S.A. and West Europe and making draft of action proposals. The second is collection of main laws, government ordinances, regulatory guides, standard and domestic and international technical news connected with nuclear power plants. This report describes these two data bases about nuclear power plants details. (author)

  5. Towards development of new ornamental plants

    DEFF Research Database (Denmark)

    Kuligowska, Katarzyna; Lütken, Henrik Vlk; Müller, Renate

    2016-01-01

    is one of the oldest breeding techniques that contributed enormously to the development of modern plant cultivars. Within ornamental breeding, it represents the main source of genetic variation. During the long history of wide hybridization, a number of methods were implemented allowing the evolution...... from a conventional breeding tool into a modern methodology. Nowadays, the research on model plants and crop species increases our understanding of reproductive isolation among distant species and partly explains the background of the traditional approaches previously used for overcoming hybridization...... barriers. Characterization of parental plants and hybrids is performed using molecular and cytological techniques that strongly facilitate breeding processes. Molecular markers and sequencing technologies are used for the assessment of genetic relationships among plants, as the genetic distance...

  6. Development of plant dynamic analysis code for integrated self-pressurized water reactor (ISPDYN), and comparative study of pressure control methods

    International Nuclear Information System (INIS)

    Kusunoki, Tsuyoshi; Yokomura, Takeyoshi; Nabeshima, Kunihiko; Shimazaki, Junya; Shinohara, Yoshikuni.

    1988-01-01

    This report describes the development of plant dynamic analysis code (ISPDYN) for integrated self-pressurized water reactor, and comparative study of pressure control methods with this code. ISPDYN is developed for integrated self-pressurized water reactor, one of the trial design by JAERI. In the transient responses, the calculated results by ISPDYN are in good agreement with the DRUCK calculations. In addition, this report presents some sensitivity studies for selected cases. Computing time of this code is very short so as about one fifth of real time. The comparative study of self-pressurized system with forced-pressurized system by this code, for rapid load decrease and increase cases, has provided useful informations. (author)

  7. Error estimation in plant growth analysis

    Directory of Open Access Journals (Sweden)

    Andrzej Gregorczyk

    2014-01-01

    Full Text Available The scheme is presented for calculation of errors of dry matter values which occur during approximation of data with growth curves, determined by the analytical method (logistic function and by the numerical method (Richards function. Further formulae are shown, which describe absolute errors of growth characteristics: Growth rate (GR, Relative growth rate (RGR, Unit leaf rate (ULR and Leaf area ratio (LAR. Calculation examples concerning the growth course of oats and maize plants are given. The critical analysis of the estimation of obtained results has been done. The purposefulness of joint application of statistical methods and error calculus in plant growth analysis has been ascertained.

  8. The development and evaluation of programmatic performance indicators associated with maintenance at nuclear power plants

    International Nuclear Information System (INIS)

    Wreathall, J.; Fragola, J.; Appignani, P.; Burlile, G.; Shen, Y.

    1990-05-01

    This report summarizes the development and evaluation of programmatic performance indicators of maintenance. These indicators were selected by: (1) creating a formal framework of plant processes; (2) identifying features of plant behavior considered important to safety; (3) evaluating existing indicators against these features; and (4) performing statistical analyses for the selected indicators. The report recommends additional testing. This document provides the appendices to the report. These appendices are: synopsis of process model; detailed results of statistical analysis; and signal processing analysis of daily power loss indicator

  9. Biomonitoring of air pollution in Jamaica through trace-element analysis of epiphytic plants using nuclear and related analytical techniques

    International Nuclear Information System (INIS)

    Vutchkov, Mitko

    2001-01-01

    The main goal of the Coordinated Research Project (No:9937/R0), entitled 'Biomonitoring of Air Pollution in Jamaica Through Trace-Element Analysis of Epiphytic Plants Using Nuclear and Related Analytical Techniques', is to identify and validate site specific epiphytic plants for biomonitoring the atmospheric pollution in Jamaica using nuclear analytical techniques at the International Centre for Environmental and Nuclear Sciences (ICENS). The specific objectives for the second year of the project were: Development of HOP for sampling epiphytic plants in Jamaica; Sampling design and sample collection; Sample preparation and analysis; Development of an in-house SRM and participation in the NAT-5 inter-laboratory study; Data analysis and interpretation of the results; Development of a work plan of the third year of the project

  10. On exergy analysis of industrial plants and significance of ambient temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rian, Berit

    2011-07-01

    The exergy analysis has been a relatively mature theory for more than 30 years. However, it is not that developed in terms of procedures for optimizing systems, which partly explains why it is not that common. Misconceptions and prejudices, even among scientists, are also partly to blame.The main objective of this work was to contribute to the development of an understanding and methodology of the exergy analysis. The thesis was mainly based on three papers, two of which provided very different examples from existing industrial systems in Norway, thus showing the societal perspective in terms of resource utilization and thermodynamics. The last paper and the following investigation were limited to certain aspects of ambient conditions. Two Norwegian operational plants have been studied, one operative for close to 30 years (Kaarstoe steam production and distribution system), while the other has just started its expected 30 years of production (Snoehvit LNG plant). In addition to mapping the current operational status of these plants, the study of the Kaarstoe steam production and distribution system concluded that the potential for increasing the thermodynamic performance by rather cautious actions was significant, whereas the study of the Snoehvit LNG plant showed the considerable profit which the Arctic location provided in terms of reduced fuel consumption. The significance of the ambient temperature led to the study of systems with two ambient bodies (i.e. ambient water and ambient air) of different temperatures, here three different systems were investigated: A regenerative steam injection gas turbine (RSTIG), a simple Linde air liquefaction plant (Air Liq) and an air-source heat pump water heater (HPWH). In particular, the effect of the chosen environment on exergy analysis was negligible for RSTIG, modest for Air Liq and critical for HPWH. It was found that the amount of exergy received from the alternative ambient body, compared to the main exergy flow of

  11. The development of human behavior analysis techniques

    International Nuclear Information System (INIS)

    Lee, Jung Woon; Lee, Yong Hee; Park, Geun Ok; Cheon, Se Woo; Suh, Sang Moon; Oh, In Suk; Lee, Hyun Chul; Park, Jae Chang.

    1997-07-01

    In this project, which is to study on man-machine interaction in Korean nuclear power plants, we developed SACOM (Simulation Analyzer with a Cognitive Operator Model), a tool for the assessment of task performance in the control rooms using software simulation, and also develop human error analysis and application techniques. SACOM was developed to assess operator's physical workload, workload in information navigation at VDU workstations, and cognitive workload in procedural tasks. We developed trip analysis system including a procedure based on man-machine interaction analysis system including a procedure based on man-machine interaction analysis and a classification system. We analyzed a total of 277 trips occurred from 1978 to 1994 to produce trip summary information, and for 79 cases induced by human errors time-lined man-machine interactions. The INSTEC, a database system of our analysis results, was developed. The MARSTEC, a multimedia authoring and representation system for trip information, was also developed, and techniques for human error detection in human factors experiments were established. (author). 121 refs., 38 tabs., 52 figs

  12. The development of human behavior analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Lee, Yong Hee; Park, Geun Ok; Cheon, Se Woo; Suh, Sang Moon; Oh, In Suk; Lee, Hyun Chul; Park, Jae Chang

    1997-07-01

    In this project, which is to study on man-machine interaction in Korean nuclear power plants, we developed SACOM (Simulation Analyzer with a Cognitive Operator Model), a tool for the assessment of task performance in the control rooms using software simulation, and also develop human error analysis and application techniques. SACOM was developed to assess operator`s physical workload, workload in information navigation at VDU workstations, and cognitive workload in procedural tasks. We developed trip analysis system including a procedure based on man-machine interaction analysis system including a procedure based on man-machine interaction analysis and a classification system. We analyzed a total of 277 trips occurred from 1978 to 1994 to produce trip summary information, and for 79 cases induced by human errors time-lined man-machine interactions. The INSTEC, a database system of our analysis results, was developed. The MARSTEC, a multimedia authoring and representation system for trip information, was also developed, and techniques for human error detection in human factors experiments were established. (author). 121 refs., 38 tabs., 52 figs.

  13. Process development and exergy cost sensitivity analysis of a hybrid molten carbonate fuel cell power plant and carbon dioxide capturing process

    Science.gov (United States)

    Mehrpooya, Mehdi; Ansarinasab, Hojat; Moftakhari Sharifzadeh, Mohammad Mehdi; Rosen, Marc A.

    2017-10-01

    An integrated power plant with a net electrical power output of 3.71 × 105 kW is developed and investigated. The electrical efficiency of the process is found to be 60.1%. The process includes three main sub-systems: molten carbonate fuel cell system, heat recovery section and cryogenic carbon dioxide capturing process. Conventional and advanced exergoeconomic methods are used for analyzing the process. Advanced exergoeconomic analysis is a comprehensive evaluation tool which combines an exergetic approach with economic analysis procedures. With this method, investment and exergy destruction costs of the process components are divided into endogenous/exogenous and avoidable/unavoidable parts. Results of the conventional exergoeconomic analyses demonstrate that the combustion chamber has the largest exergy destruction rate (182 MW) and cost rate (13,100 /h). Also, the total process cost rate can be decreased by reducing the cost rate of the fuel cell and improving the efficiency of the combustion chamber and heat recovery steam generator. Based on the total avoidable endogenous cost rate, the priority for modification is the heat recovery steam generator, a compressor and a turbine of the power plant, in rank order. A sensitivity analysis is done to investigate the exergoeconomic factor parameters through changing the effective parameter variations.

  14. Plant analyzer development for high-speed interactive simulation of BWR plant transients

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Mallen, A.N.

    1986-01-01

    Advanced modeling techniques have been combined with modern, special-purpose peripheral minicomputer technology to develop a plant analyzer which provides realistic and accurate predictions of plant transients and severe off-normal events in nuclear power plants through on-line simulations at speeds of approximately 10 times faster than actual process speeds. The new simulation technology serves not only for carrying out routinely and efficiently safety analyses, optimizations of emergency procedures and design changes, parametric studies for obtaining safety margins and for generic training but also for assisting plant operations. Five modeling principles are presented which serve to achieve high-speed simulation of neutron kinetics, thermal conduction, nonhomogeneous and nonequilibrium two-phase flow coolant dynamics, steam line acoustical effects, and the dynamics of the balance of plant and containment systems, control systems and plant protection systems. 21 refs

  15. Analysis of fractionation in corn-to-ethanol plants

    Science.gov (United States)

    Nelson, Camille

    As the dry grind ethanol industry has grown, the research and technology surrounding ethanol production and co-product value has increased. Including use of back-end oil extraction and front-end fractionation. Front-end fractionation is pre-fermentation separation of the corn kernel into 3 fractions: endosperm, bran, and germ. The endosperm fraction enters the existing ethanol plant, and a high protein DDGS product remains after fermentation. High value oil is extracted out of the germ fraction. This leaves corn germ meal and bran as co-products from the other two streams. These 3 co-products have a very different composition than traditional corn DDGS. Installing this technology allows ethanol plants to increase profitability by tapping into more diverse markets, and ultimately could allow for an increase in profitability. An ethanol plant model was developed to evaluate both back-end oil extraction and front-end fractionation technology and predict the change in co-products based on technology installed. The model runs in Microsoft Excel and requires inputs of whole corn composition (proximate analysis), amino acid content, and weight to predict the co-product quantity and quality. User inputs include saccharification and fermentation efficiencies, plant capacity, and plant process specifications including front-end fractionation and backend oil extraction, if applicable. This model provides plants a way to assess and monitor variability in co-product composition due to the variation in whole corn composition. Additionally the co-products predicted in this model are entered into the US Pork Center of Excellence, National Swine Nutrition Guide feed formulation software. This allows the plant user and animal nutritionists to evaluate the value of new co-products in existing animal diets.

  16. Cyst nematode-induced changes in plant development

    NARCIS (Netherlands)

    Goverse, A.

    1999-01-01

    This thesis describes a first attempt to investigate the biological activity of cyst nematode secretions on plant cell proliferation and the molecular mechanisms underlying feeding cell development in plant roots upon cyst nematode infection.

    To investigate the role of

  17. Development and application of the plant condition monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, S.

    2014-01-01

    To achieve the stable operation of nuclear power plants, we developed the plant condition monitoring system based on the heat and mass balance calculation. In this system, it is a significant feature to adopt the sophisticated heat balance model based on the actual plant data to find the symptoms of anomalies in the turbine system from heat balance changes. (author)

  18. An analysis of LOCA sequences in the development of severe accident analysis DB

    International Nuclear Information System (INIS)

    Choi, Young; Park, Soo Yong; Ahn, Kwang-Il; Kim, D.H.

    2006-01-01

    Although a Level 2 PSA was performed for the Korean Standard Power Plants (KSNPs), and it considered the necessary sequences for an assessment of the containment integrity and source term analysis. In terms of an accident management, however, more cases causing severe core damage need to be analyzed and arranged systematically for an easy access to the results. At present, KAERI is calculating the severe accident sequences intensively for various initiating events and generating a database for the accident progression including thermal hydraulic and source term behaviours. The developed Database (DB) system includes a graphical display for a plant and equipment status, previous research results by knowledge-base technique, and the expected plant behaviour. The plant model used in this paper is oriented to the case of LOCAs related severe accident phenomena and thus can simulate the plant behaviours for a severe accident. Therefore the developed system may play a central role as an information source for decision-making for a severe accident management, and will be used as a training simulator for a severe accident management. (author)

  19. Greenhouse gas emission factor development for coal-fired power plants in Korea

    International Nuclear Information System (INIS)

    Jeon, Eui-Chan; Myeong, Soojeong; Sa, Jae-Whan; Kim, Jinsu; Jeong, Jae-Hak

    2010-01-01

    Accurate estimation of greenhouse gas emissions is essential for developing an appropriate strategy to mitigate global warming. This study examined the characteristics of greenhouse gas emission from power plants, a major greenhouse gas source in Korea. The power plants examined use bituminous coal, anthracite, and sub-bituminous coal as fuel. The CO 2 concentration from power plants was measured using GC-FID with methanizer. The amount of carbon, hydrogen, and calorific values in the input fuel was measured using an elemental analyzer and calorimeter. For fuel analysis, CO 2 emission factors for anthracite, bituminous coal, and sub-bituminous coal were 108.9, 88.4, and 97.9 Mg/kJ, respectively. The emission factors developed in this study were compared with those for IPCC. The results showed that CO 2 emission was 10.8% higher for anthracite, 5.5% lower for bituminous coal, and 1.9% higher for sub-bituminous coal than the IPCC figures.

  20. Global Value Chain and Manufacturing Analysis on Geothermal Power Plant Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Akar, Sertac [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Augustine, Chad R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mann, Margaret K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-03

    The global geothermal electricity market has significantly grown over the last decade and is expected to reach a total installed capacity of 18.4 GWe in 2021 (GEA, 2016). Currently, geothermal project developers customize the size of the power plant to fit the resource being developed. In particular, the turbine is designed and sized to optimize efficiency and resource utilization for electricity production; most often, other power plant components are then chosen to complement the turbine design. These custom turbine designs demand one-off manufacturing processes, which result in higher manufacturing setup costs, longer lead-times, and higher capital costs overall in comparison to larger-volume line manufacturing processes. In contrast, turbines produced in standard increments, manufactured in larger volumes, could result in lower costs per turbine. This study focuses on analysis of the global supply chain and manufacturing costs for Organic Rankine Cycle (ORC) turboexpanders and steam turbines used in geothermal power plants. In this study, we developed a manufacturing cost model to identify requirements for equipment, facilities, raw materials, and labor. We analyzed three different cases 1) 1 MWe geothermal ORC turboexpander 2) 5 MWe ORC turboexpander and 3) 20 MWe geothermal steam turbine, and calculated the cost of manufacturing the major components, such as the impellers/blades, shaft/rotor, nozzles, inlet guide lanes, disks, and casings. Then we used discounted cash flow (DCF) analysis to calculate the minimum sustainable price (MSP). MSP is the minimum price that a company must sell its product for in order to pay back the capital and operating expenses during the plant lifetime (CEMAC, 2017). The results showed that MSP could highly vary between 893 dollar/kW and 30 dollar/kW based on turbine size, standardization and volume of manufacturing. The analysis also showed that the economy of scale applies both to the size of the turbine and the number

  1. Thermodynamic analysis of PBMR plant

    International Nuclear Information System (INIS)

    Sen, S.; Kadiroglu, O.K.

    2002-01-01

    The thermodynamic analysis of a PBMR is presented for various pressures and temperatures values. The design parameters of the components of the power plant are calculated and an optimum cycle for the maximum thermal efficiency is sought for. (author)

  2. Using plant procedures as the basis for conducting a job and task analysis

    International Nuclear Information System (INIS)

    Haynes, F.H.; Ruth, B.W.

    1985-01-01

    Plant procedures were selected, by Northeast Utilities (NU), as the basis for conducting Job and Task Analyses (JTA). The resultant JTA was used to design procedure based simulator training programs for Millstone 1, 2, and Connecticut Yankee. The task listings were both plant specific and exhibited excellent correlation to INPO's generic PWR and BWR task analyses. Using the procedures based method enabled us to perform the JTA using plant and training staff. This proved cost effective in terms of both time and money. Learning objectives developed from the JTA were easily justified and correlated directly to job performance within the context of the plant procedures. In addition, the analysis generated a comprehensive review of plant procedures and, conversely, the plant's normal procedure revision process generated an automatic trigger for updating the task data

  3. Development Methodology of a Cyber Security Risk Analysis and Assessment Tool for Digital I and C Systems in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Cha, K. H.; Lee, C. K.; Song, J. G.; Lee, Y. J.; Kim, J. Y.; Lee, J. W.; Lee, D. Y.

    2011-01-01

    With the use of digital computers and communication networks the hot issues on cyber security were raised about 10 years ago. The scope of cyber security application has now been extended from the safety Instrumentation and Control (I and C) system to safety important systems, plant security system, and emergency preparedness system. Therefore, cyber security should be assessed and managed systematically throughout the development life cycle of I and C systems in order for their digital assets to be protected from cyber attacks. Fig. 1 shows the concept of a cyber security risk management of digital I and C systems in nuclear power plants (NPPs). A lot of cyber security risk assessment methods, techniques, and supported tools have been developed for Information Technology (IT) systems, but they have not been utilized widely for cyber security risk assessments of the digital I and C systems in NPPs. The main reason is a difference in goals between IT systems and nuclear I and C systems. Confidentiality is important in IT systems, but availability and integrity are important in nuclear I and C systems. Last year, it was started to develop a software tool to be specialized for the development process of nuclear I and C systems. This paper presents a development methodology of the Cyber Security Risk analysis and Assessment Tool (CSRAT) for the digital I and C systems in NPP

  4. Development Methodology of a Cyber Security Risk Analysis and Assessment Tool for Digital I and C Systems in Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Cha, K. H.; Lee, C. K.; Song, J. G.; Lee, Y. J.; Kim, J. Y.; Lee, J. W.; Lee, D. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    With the use of digital computers and communication networks the hot issues on cyber security were raised about 10 years ago. The scope of cyber security application has now been extended from the safety Instrumentation and Control (I and C) system to safety important systems, plant security system, and emergency preparedness system. Therefore, cyber security should be assessed and managed systematically throughout the development life cycle of I and C systems in order for their digital assets to be protected from cyber attacks. Fig. 1 shows the concept of a cyber security risk management of digital I and C systems in nuclear power plants (NPPs). A lot of cyber security risk assessment methods, techniques, and supported tools have been developed for Information Technology (IT) systems, but they have not been utilized widely for cyber security risk assessments of the digital I and C systems in NPPs. The main reason is a difference in goals between IT systems and nuclear I and C systems. Confidentiality is important in IT systems, but availability and integrity are important in nuclear I and C systems. Last year, it was started to develop a software tool to be specialized for the development process of nuclear I and C systems. This paper presents a development methodology of the Cyber Security Risk analysis and Assessment Tool (CSRAT) for the digital I and C systems in NPP

  5. Corruption Significantly Increases the Capital Cost of Power Plants in Developing Contexts

    Directory of Open Access Journals (Sweden)

    Kumar Biswajit Debnath

    2018-03-01

    Full Text Available Emerging economies with rapidly growing population and energy demand, own some of the most expensive power plants in the world. We hypothesized that corruption has a relationship with the capital cost of power plants in developing countries such as Bangladesh. For this study, we analyzed the capital cost of 61 operational and planned power plants in Bangladesh. Initial comparison study revealed that the mean capital cost of a power plant in Bangladesh is twice than that of the global average. Then, the statistical analysis revealed a significant correlation between corruption and the cost of power plants, indicating that higher corruption leads to greater capital cost. The high up-front cost can be a significant burden on the economy, at present and in the future, as most are financed through international loans with extended repayment terms. There is, therefore, an urgent need for the review of the procurement and due diligence process of establishing power plants, and for the implementation of a more transparent system to mitigate adverse effects of corruption on megaprojects.

  6. A method for analysis of nuclear power plant operators' decision making in simulated disturbance situations

    International Nuclear Information System (INIS)

    1995-01-01

    An analysis method has been developed for analysis of nuclear power plant operators' decision making in simulated disturbance situations. The aim of the analysis is to investigate operators' orientation which is expected to manifest itself as collective strategies in utilization of resources of decision making. Resources analyzed here are different information sources and, in addition, collaborative resources like communication and participation. The cognitive approach on the basis of the method considers decision making as collective construction of common interpretation of available information. Utilization of information is evaluated with respect to operative context. This is made with help of conceptualization of the disturbance situation from the decision making point of view and by construction of operative reference for activity. The latter means conceptualization of the situation from the safety point of view and also consideration of other boundary constraints of decision making, i.e. economical and technical aspects. The analysis method is intended to be used in routine simulator training in nuclear power plants. By virtue of its contextual and dynamical approach it makes the developing nature of activity visible. Cumulation and distribution of knowledge of decision making as developing activity, controlled by orientation and boundary constraints of process control, is expected to improve operational culture of a plant organization. (author). 2 refs, 1 fig

  7. Work Domain Analysis Methodology for Development of Operational Concepts for Advanced Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hugo, Jacques [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    This report describes a methodology to conduct a Work Domain Analysis in preparation for the development of operational concepts for new plants. This method has been adapted from the classical method described in the literature in order to better deal with the uncertainty and incomplete information typical of first-of-a-kind designs. The report outlines the strategy for undertaking a Work Domain Analysis of a new nuclear power plant and the methods to be used in the development of the various phases of the analysis. Basic principles are described to the extent necessary to explain why and how the classical method was adapted to make it suitable as a tool for the preparation of operational concepts for a new nuclear power plant. Practical examples are provided of the systematic application of the method and the various presentation formats in the operational analysis of advanced reactors.

  8. Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant

    International Nuclear Information System (INIS)

    E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

    2008-01-01

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540 C and 900 C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating-current, AC, to direct-current, DC, conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%

  9. Research and development in power plant engineering

    International Nuclear Information System (INIS)

    Riedle, K.; Taud, R.

    2001-01-01

    Research and development are a bridge for visions that are escorted to a successful market introduction. Also in power plant engineering, research and development are a lever with which the product power plant, its technology and processes can be adapted to the quickly changing future market. In the overview given by this paper, therefore at first the development boosters and targets are outlined from the viewpoint of the market; then the available technology portfolio is addressed in a concise way. Targets for the development can be seen from the support programmes of the governments. Before a preview is given, some development topics from the point of view of the manufacturer are introduced. (orig.) [de

  10. Classification of emotions by multivariate analysis and individual differences of nuclear power plant operators` emotion

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Naoko; Yoshimura, Seiichi [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1999-03-01

    The purpose of this study is the development of a simulation model which expresses operators` emotion under plant emergency. This report shows the classification of emotions by multivariate analysis and investigation results conducted to clarify individual differences of activated emotion influenced by personal traits. Although a former investigation was conducted to classify emotions into five basic emotions proposed by Johnson-Laird, the basic emotions was not based on real data. For the development of more realistic and accurate simulation model, it is necessary to recognize basic emotion and to classify emotions into them. As a result of analysis by qualification method 3 and cluster analysis, four basic clusters were clarified, i.e., Emotion expressed towards objects, Emotion affected by objects, Pleasant emotion, and Surprise. Moreover, 51 emotions were ranked in the order according to their similarities in each cluster. An investigation was conducted to clarify individual differences in emotion process using 87 plant operators. The results showed the differences of emotion depending on the existence of operators` foresight, cognitive style, experience in operation, and consciousness of attribution to an operating team. For example, operators with low self-efficacy, short experience or low consciousness of attribution to a team, feel more intensive emotion under plant emergency and more affected by severe plant conditions. The model which can express individual differences will be developed utilizing and converting these data hereafter. (author)

  11. Classification of emotions by multivariate analysis and individual differences of nuclear power plant operators' emotion

    International Nuclear Information System (INIS)

    Hasegawa, Naoko; Yoshimura, Seiichi

    1999-01-01

    The purpose of this study is the development of a simulation model which expresses operators' emotion under plant emergency. This report shows the classification of emotions by multivariate analysis and investigation results conducted to clarify individual differences of activated emotion influenced by personal traits. Although a former investigation was conducted to classify emotions into five basic emotions proposed by Johnson-Laird, the basic emotions was not based on real data. For the development of more realistic and accurate simulation model, it is necessary to recognize basic emotion and to classify emotions into them. As a result of analysis by qualification method 3 and cluster analysis, four basic clusters were clarified, i.e., Emotion expressed towards objects, Emotion affected by objects, Pleasant emotion, and Surprise. Moreover, 51 emotions were ranked in the order according to their similarities in each cluster. An investigation was conducted to clarify individual differences in emotion process using 87 plant operators. The results showed the differences of emotion depending on the existence of operators' foresight, cognitive style, experience in operation, and consciousness of attribution to an operating team. For example, operators with low self-efficacy, short experience or low consciousness of attribution to a team, feel more intensive emotion under plant emergency and more affected by severe plant conditions. The model which can express individual differences will be developed utilizing and converting these data hereafter. (author)

  12. ERP-IV-A program for transient thermal-hydraulic analysis of PWR plant

    International Nuclear Information System (INIS)

    Dai Anguo; Tang Jiahuan; Qian Huifu; Gao Zhikang

    1987-12-01

    The author deal with the descriptions of physical model of transient process in PWR plant and the function of ERP-IV (ERR-IV Transient Thermo-Hydraulic Analysis Code). The code has been developed for safety analysis and design transient. The code is characterized by the multi-loop long-term, short term, wide-range plant simulation with the capability to analyze natural circulation condition. The description of ERP-IV includes following parts: reactor, primary coolant loops, pressurizer, steam generators, main steam system, turbine, feedwater system, steam dump, relive valves, and safety valves in secondary side, etc.. The code can use for accident analysis, such as loss of all A.C. power to power plant auxiliaries (a station blackout), loss of normal feedwater, loss of load, loss of condenser vacuum and other events causing a turbine trip, complete loss of forced reactor coolant flow, uncontrolled rod cluster control assembly bank withdrawal. It can also be used for accident analysis of the emergency and limiting conditions, such as feedwater line break and main steam line rupture. It can also be utilized as a tool for system design studies, component design, setpoint studies and design transition studies, etc

  13. Analysis in environmental radioactivity around Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Woo; Han, Man Jung; Cho, Seong Won; Cho, Hong Jun; Oh, Hyeon Kyun; Lee, Jeong Min; Chang, Jae Sook [KORTIC, Taejon (Korea, Republic of)

    2003-12-15

    Twelve kinds of environmental samples such as soil, seawater, underground water, etc. around Nuclear Power Plants(NPPs) were collected. Tritium chemical analysis was tried for the samples of rain water, pine-needle, air, seawater, underground water, chinese cabbage, again of rice and milk sampled around NPPs, and surface seawater and rain water sampled over the country. Strontium in the soil that were sampled at 60 point of district in Korea were analyzed. Tritium were analyzed in 21 samples of surface seawater around the Korea peninsular that were supplied form KFRDI(National Fisheries Research and Development Institute). Sampling and chemical analysis environmental samples around Kori, Woolsung, Youngkwang, Wooljin NPPs and Taeduk science town for tritium and strontium analysis was managed according to plans. Succeed to KINS after all samples were tried.

  14. Plutonium Finishing Plant Transition Project mission analysis report

    International Nuclear Information System (INIS)

    Courson, D.B.

    1994-01-01

    This report defines the mission for the Plutonium Finishing Plant Transition Project (PFPTP) using a systems engineering approach. This mission analysis will be the basis for the functional analysis which will further define and break down the mission statement into all of the detailed functions required to accomplish the mission. The functional analysis is then used to develop requirements, allocate those requirements to functions, and eventually be used to design the system. This report: presents the problem which will be addressed, defines PFP Transition Project, defines the overall mission statement, describes the existing, initial conditions, defines the desired, final conditions, identifies the mission boundaries and external interfaces, identifies the resources required to carry out the mission, describes the uncertainties and risks, and discusses the measures which will be used to determine success

  15. Risk analysis by flooding in the PSA of Asco Nuclear Power Plant

    International Nuclear Information System (INIS)

    Faig, J.

    1993-01-01

    The scope of the Probabilistic Safety Analysis of the ASCO Nuclear Power Plant included the analysis and evaluation of the probability of situations with core damage because of flood originated by internal sources of the installation. A short description of the systematic and methodology used for the analysis and the results obtained are given. The impact of some improvements introduced on the core damage frequency within the PSA are described as well. Our methodology followed basically the guidelines of NUREG/CR-2815. Analysis procedure was developed according two major steps: Selective Analysis and Detailed Analysis

  16. Human factors review for nuclear power plant severe accident sequence analysis

    International Nuclear Information System (INIS)

    Krois, P.A.; Haas, P.M.

    1985-01-01

    The paper discusses work conducted to: (1) support the severe accident sequence analysis of a nuclear power plant transient based on an assessment of operator actions, and (2) develop a descriptive model of operator severe accident management. Operator actions during the transient are assessed using qualitative and quantitative methods. A function-oriented accident management model provides a structure for developing technical operator guidance on mitigating core damage preventing radiological release

  17. Advancements in mass spectrometry for biological samples: Protein chemical cross-linking and metabolite analysis of plant tissues

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Adam [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    This thesis presents work on advancements and applications of methodology for the analysis of biological samples using mass spectrometry. Included in this work are improvements to chemical cross-linking mass spectrometry (CXMS) for the study of protein structures and mass spectrometry imaging and quantitative analysis to study plant metabolites. Applications include using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to further explore metabolic heterogeneity in plant tissues and chemical interactions at the interface between plants and pests. Additional work was focused on developing liquid chromatography-mass spectrometry (LC-MS) methods to investigate metabolites associated with plant-pest interactions.

  18. Development of Intelligent Database Program for PSI/ISI Data Management of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Park, Un Su; Park, Ik Keun; Um, Byong Guk; Park, Yun Won; Kang, Suk Chul

    1998-01-01

    For an effective and efficient management of large amounts of preservice/inservice inspection(PSI/ISI) data in nuclear power plants, an intelligent Windows 95-based data management program was developed. This program enables the prompt extraction of previously conducted PSI/ISI conditions and results so that the time-consuming data management, painstaking data processing and analysis in the past are avoided. The program extracts, and the associated remedies. Furthermore, additional inspection data and comments can be easily added or deleted for subsequent PSI/ISI operation. Although the initial version of the program was applied to Kori nuclear power plant, this program can be equally applied to other nuclear power plant. And also this program can be used to offer the fundamental data for application of evaluation data related to fracture mechanics analysis(FMA), probabilistic reliability assessment(PRA) of PSI/ISI results, performance demonstration initiative(PDI) and risk-informed ISI based on probability of detection(POD) information of ultrasonic examination. Besides, the program can be further developed as a unique PSI/ISI data management expert system that can be apart of PSI/ISI data management expert system that can be a part of PSI/ISI Total Support System(TSS) for Korean nuclear power plants

  19. Empirical analysis of selected nuclear power plant maintenance factors and plant safety

    International Nuclear Information System (INIS)

    Olson, J.; Osborn, R.N.; Thurber, J.A.; Sommers, P.E.; Jackson, D.H.

    1985-07-01

    This report contains a statistical analysis of the relationship between selected aspects of nuclear power plant maintenance programs and safety related performance. The report identifies a large number of maintenance resources which can be expected to influence maintenance performance and subsequent plant safety performance. The resources for which data were readily available were related statistically to two sets of performance indicators: maintenance intermediate safety indicators and final safety performance indicators. The results show that the administrative structure of the plant maintenance program is a significant predictor of performance on both sets of indicators

  20. Use of image analysis to assess color response on plants caused by herbicide application

    DEFF Research Database (Denmark)

    Asif, Ali; Streibig, Jens Carl; Duus, Joachim

    2013-01-01

    by herbicides. The range of color components of green and nongreen parts of the plants and soil in Hue, Saturation, and Brightness (HSB) color space were used for segmentation. The canopy color changes of barley, winter wheat, red fescue, and brome fescue caused by doses of a glyphosate and diflufenican mixture...... for the green and nongreen parts of the plants and soil were different. The relative potencies were not significantly different from one, indicating that visual and image analysis estimations were about the same. The comparison results suggest that image analysis can be used to assess color changes of plants......In herbicide-selectivity experiments, response can be measured by visual inspection, stand counts, plant mortality, and biomass. Some response types are relative to nontreated control. We developed a nondestructive method by analyzing digital color images to quantify color changes in leaves caused...

  1. 76 FR 66033 - Plants for Planting Whose Importation Is Not Authorized Pending Pest Risk Analysis; Notice of...

    Science.gov (United States)

    2011-10-25

    ...] Plants for Planting Whose Importation Is Not Authorized Pending Pest Risk Analysis; Notice of... whose importation is not authorized pending pest risk analysis. The notice also made available to the... whose importation is not authorized pending pest risk analysis. The notice also made available to the...

  2. A Biodiversity Informatics Approach to Ethnobotany: Meta-analysis of Plant Use Patterns in Ecuador

    Directory of Open Access Journals (Sweden)

    Lucia de la Torre

    2012-03-01

    Full Text Available We explored the relative importance of ecosystem diversity, socioeconomic, environmental, and geographical factors in determining the pattern and diversity of people's plant use in Ecuador, based on existing ethnobotanic investigations and a large database of georeferenced plant collections. For each of 40 communities, we determined the number of plants used and their distribution among 12 use categories. Plant species richness of the ecosystem surrounding each village was determined using herbarium data and rarefaction. Variation in socioeconomic, environmental, and geographical indicator variables at the community level was summarized using Principal Component Analysis (PCA. Data were then analyzed using multiple regression and ordination analysis. We found a significant positive relationship between the number of plant species used and ecosystem species richness, whereas socioconomic, environmental, and geographical factors had no significance. However, ordination analysis did show a clear link among these factors and plant use patterns, i.e., the relative importance of different use categories. Study communities were divided into two groups: 1 Andean and coastal communities with better access to public services and markets categorized by high scores in these use classes: medicinal, social, food additives, environmental, apicolous (of economic interest in apiculture, and toxic to nonvertebrates; and 2 Amazonian remote communities with high scores for these use classes: food, fuel, materials, vertebrate and invertebrate food, and toxic to vertebrates. Our findings suggest that economic and social development affects plant use patterns in a selective way. Some traditional uses will persist despite increased infrastructure development and habitat disturbance, whereas others that reflect subsistence strategies dependent on conserved natural habitats may soon disappear. The study incorporates more than 20 years of ethnobotanical research effort

  3. Introduction of Integrity Evaluation Criteria Developing during and after fire for Nuclear Power Plant Buildings

    International Nuclear Information System (INIS)

    Lee, Jin Woo

    2016-01-01

    The first project for nuclear power plant built in Korea to taking account the engineering based approach was started on October 2015 including the whole process such as fire hazard analysis, standard fire modeling, cable tray fire with multi spurious operation, structural fire integrity evaluation, and large area fire induced air craft crash. This paper covers the brief developing scheme and roadmap focusing on structural fire evaluation criteria. The meaningful first step for developing the structural fire integrity in nuclear power plant building is started with the series of fire related sub sections mentioned in earlier section. The recognition and sufficient effort of fire research leads to set up the safe and reliable design of nuclear power plant

  4. Introduction of Integrity Evaluation Criteria Developing during and after fire for Nuclear Power Plant Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Woo [KEPCo, Gimcheon (Korea, Republic of)

    2016-05-15

    The first project for nuclear power plant built in Korea to taking account the engineering based approach was started on October 2015 including the whole process such as fire hazard analysis, standard fire modeling, cable tray fire with multi spurious operation, structural fire integrity evaluation, and large area fire induced air craft crash. This paper covers the brief developing scheme and roadmap focusing on structural fire evaluation criteria. The meaningful first step for developing the structural fire integrity in nuclear power plant building is started with the series of fire related sub sections mentioned in earlier section. The recognition and sufficient effort of fire research leads to set up the safe and reliable design of nuclear power plant.

  5. PGSB/MIPS Plant Genome Information Resources and Concepts for the Analysis of Complex Grass Genomes.

    Science.gov (United States)

    Spannagl, Manuel; Bader, Kai; Pfeifer, Matthias; Nussbaumer, Thomas; Mayer, Klaus F X

    2016-01-01

    PGSB (Plant Genome and Systems Biology; formerly MIPS-Munich Institute for Protein Sequences) has been involved in developing, implementing and maintaining plant genome databases for more than a decade. Genome databases and analysis resources have focused on individual genomes and aim to provide flexible and maintainable datasets for model plant genomes as a backbone against which experimental data, e.g., from high-throughput functional genomics, can be organized and analyzed. In addition, genomes from both model and crop plants form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny) between related species on macro- and micro-levels.The genomes of many economically important Triticeae plants such as wheat, barley, and rye present a great challenge for sequence assembly and bioinformatic analysis due to their enormous complexity and large genome size. Novel concepts and strategies have been developed to deal with these difficulties and have been applied to the genomes of wheat, barley, rye, and other cereals. This includes the GenomeZipper concept, reference-guided exome assembly, and "chromosome genomics" based on flow cytometry sorted chromosomes.

  6. A micro-grid operation analysis for cost-effective battery energy storage and RES plants integration

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Bonucci, F.

    2016-01-01

    Penetration of renewable energy is strongly slowed by its characteristic intermittency and fluctuating trend and by the inadequacy of electricity networks. These issues can be addressed through the development of new or improved storage technologies with higher performance, availability, durability, safety and lower costs. In the present work, micro-grids characterized by the presence of different subsections including renewable plants coupled with batteries storage solution are investigated through the development of a suitable code. Several design conditions and features, related to RES plant, storage system and users, were considered in order to realize a sensitivity analysis aimed to examine, on a yearly base and with one minute time step, interactions among the different micro-grid subsections and to identify the best solutions from both economic and energy point of views. - Highlights: • Storage systems coupling to RES plants is investigated for micro-grids. • Interactions between RES plants, storage batteries and users are analyzed. • Self-consumption increases with storage installation. • Investment pay-back analysis is performed varying plant configurations. • Pay-back reduction up to 30–40% for new RES/Storage integrated installations.

  7. Phenomenological uncertainty analysis of early containment failure at severe accident of nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su Won

    2011-02-15

    The severe accident has inherently significant uncertainty due to wide range of conditions and performing experiments, validation and practical application are extremely difficult because of its high temperature and pressure. Although internal and external researches were put into practice, the reference used in Korean nuclear plants were foreign data of 1980s and safety analysis as the probabilistic safety assessment has not applied the newest methodology. Also, it is applied to containment pressure formed into point value as results of thermal hydraulic analysis to identify the probability of containment failure in level 2 PSA. In this paper, the uncertainty analysis methods for phenomena of severe accident influencing early containment failure were developed, the uncertainty analysis that apply Korean nuclear plants using the MELCOR code was performed and it is a point of view to present the distribution of containment pressure as a result of uncertainty analysis. Because early containment failure is important factor of Large Early Release Frequency(LERF) that is used as representative criteria of decision-making in nuclear power plants, it was selected in this paper among various modes of containment failure. Important phenomena of early containment failure at severe accident based on previous researches were comprehended and methodology of 7th steps to evaluate uncertainty was developed. The MELCOR input for analysis of the severe accident reflected natural circulation flow was developed and the accident scenario for station black out that was representative initial event of early containment failure was determined. By reviewing the internal model and correlation for MELCOR model relevant important phenomena of early containment failure, the uncertainty factors which could affect on the uncertainty were founded and the major factors were finally identified through the sensitivity analysis. In order to determine total number of MELCOR calculations which can

  8. Development of a three dimensional elastic plastic analysis system for the integrity evaluation of nuclear power plant components

    International Nuclear Information System (INIS)

    Huh, Nam Su; Im, Chang Ju; Kim, Young Jin; Pyo, Chang Ryul; Park, Chi Yong

    2000-01-01

    In order to evaluate the integrity of nuclear power plant components, the analysis based on fracture mechanics is crucial. For this purpose, finite element method is popularly used to obtain J-integral. However, it is time consuming to design the finite element model of a cracked structure. Also, the J-integral should by verified by alternative methods since it may differ depending on the calculation method. The objective of this paper is to develop a three-dimensional elastic-plastic J-integral analysis system which is named as EPAS program. The EPAS program consists of an automatic mesh generator for a through-wall crack and a surface crack, a solver based on ABAQUS program, and a J-integral calculation program which provides DI (Domain Integral) and EDI (Equivalent Domain Integral) based J-integral calculation. Using the EPAS program, an optimized finite element model for a cracked structure can be generated and corresponding J-integral can be obtained subsequently

  9. Site-specific analysis of hybrid geothermal/fossil power plants

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    A preliminary economic analysis of a hybrid geothermal/coal power plant was completed for four geothermal resource areas: Roosevelt Hot Springs, Coso Hot Springs, East Mesa, and Long Valley. A hybrid plant would be economically viable at Roosevelt Hot Springs and somewhat less so at Coso Hot Springs. East Mesa and Long Valley show no economic promise. A well-designed hybrid plant could use geothermal energy for boiler feedwater heating, auxiliary power, auxiliary heating, and cooling water. Construction and operation of a hybrid plant at either Roosevelt Hot Springs or Coso Hot Springs is recommended. A modified version of the Lawrence Berkeley Livermore GEOTHM Program is the major analytical tool used in the analysis. The Intermountain Power Project is the reference all coal-fired plant.

  10. Open Source Power Plant Simulator Development Under Matlab Environment

    International Nuclear Information System (INIS)

    Ratemi, W.M.; Fadilah, S.M.; Abonoor, N

    2008-01-01

    In this paper an open source programming approach is targeted for the development of power plant simulator under Matlab environment. With this approach many individuals can contribute to the development of the simulator by developing different orders of complexities of the power plant components. Such modules can be modeled based on physical principles, or using neural networks or other methods. All of these modules are categorized in Matlab library, of which the user can select and build up his simulator. Many international companies developed its own authoring tool for the development of its simulators, and hence it became its own property available for high costs. Matlab is a general software developed by mathworks that can be used with its toolkits as the authoring tool for the development of components by different individuals, and through the appropriate coordination, different plant simulators, nuclear, traditional , or even research reactors can be computerly assembled. In this paper, power plant components such as a pressurizer, a reactor, a steam generator, a turbine, a condenser, a feedwater heater, a valve, a pump are modeled based on physical principles. Also a prototype modeling of a reactor ( a scram case) based on neural networks is developed. These modules are inserted in two different Matlab libraries one called physical and the other is called neural. Furthermore, during the simulation one can pause and shuffle the modules selected from the two libraries and then proceed the simulation. Also, under the Matlab environment a PID controller is developed for multi-loop plant which can be integrated for the control of the appropriate developed simulator. This paper is an attempt to base the open source approach for the development of power plant simulators or even research reactor simulators. It then requires the coordination among interested individuals or institutions to set it to professionalism. (author)

  11. A cost-benefit analysis of power generation from commercial reinforced concrete solar chimney power plant

    International Nuclear Information System (INIS)

    Li, Weibing; Wei, Ping; Zhou, Xinping

    2014-01-01

    Highlights: • We develop an economic model different from related models. • We evaluate the initial investment cost of a plant built in northwest China. • We analyze the cost and benefit of a plant built in northwest China. • By the sensitivity analysis, we examine the sensitivity of TNPV to many parameters. - Abstract: This paper develops a model different from existing models to analyze the cost and benefit of a reinforced concrete solar chimney power plant (RCSCPP) built in northwest China. Based on the model and some assumptions for values of parameters, this work calculates total net present value (TNPV) and the minimum electricity price in each phase by dividing the whole service period into four phases. The results show that the minimum electricity price in the first phase is higher than the current market price of electricity, but the minimum prices in the other phases are far less than the current market price. The analysis indicates that huge advantages of the RCSCPP over coal-fired power plants can be embodied in phases 2–4. In addition, the sensitivity analysis performed in this paper discovers TNPV is very sensitive to changes in the solar electricity price and inflation rate, but responds only slightly to changes in carbon credits price, income tax rate and interest rate of loans. Our analysis predicts that RCSCPPs have very good application prospect. To encourage the development of RCSCPPs, the government should provide subsidy by setting higher electricity price in the first phase, then lower electricity price in the other phases

  12. The Development of Plant Maintenance Scheduling Via lnventory System for Sustainable Plant Operation

    Directory of Open Access Journals (Sweden)

    Masripan Roslizan

    2016-01-01

    Full Text Available Industrial sector becomes the main concern for developing country. By the time, it was increased rapidly. However, there are many problems observed such as maintenance scheduling, stock inventory and supply chain. Therefore, this research develops new inventory system to develop sustainable plant operation with a high capability to plant operation especially to stock inventory of machine component. In also required green application with minimised used on paper. This system is developed using Radio Frequency Identification (RFID for inventory control which integrated with web-based system. This system consists of several modules such as station module, item module and item request module and report of critical stock in the store. This system can be controlled from a hand-phone with internet connection or automatic alert such as Short Massage Send (SMS and email. The developed system is very effective in monitoring the stock material through the barcode, supply chain and worker performance as well as to reduce the lead time for maintenance activities of the company through sustainable plant operation.

  13. New developments in nuclear power plant construction

    International Nuclear Information System (INIS)

    Bivens, A.C.

    1983-01-01

    Specific examples of construction activities are presented which demonstrate that excellent results have been achieved in the areas of cost, schedule and quality. Examples of innovation and development are given that would be particularly applicable to future work either for new plants or for plants not yet completed. (author)

  14. Generation of artificial earthquakes for dynamic analysis of nuclear power plant

    International Nuclear Information System (INIS)

    Tsushima, Y.; Hiromatsu, T.; Abe, Y.; Tamaki, T.

    1979-01-01

    A procedure for generating artificial earthquakes for the purpose of the dynamic analysis of the nuclear power plant has been studied and relevant computer codes developed. This paper describes brieafly the generation procedure employed in the computer codes and also deals with the results of two artificial earthquakes generated as an example for input motions for the aseismic design of a BWR-type reactor building. Using one of the generated artificial earthquakes and two actually recorded earthquakes, non-linear responses of the reactor building were computed and the results were compared with each other. From this comparison, it has been concluded that the computer codes are practically usable and the generated artificial earthquakes are useful and powerful as input motions for dynamic analysis of a nuclear power plant. (author)

  15. The application of CFD to hydrogen risk analysis in nuclear power plants

    International Nuclear Information System (INIS)

    Wang Hui; Han Xu; Chang Meng; Wang Xiaofeng; Wang Shuguo; Lu Xinhua; Wu Lin

    2013-01-01

    Status of the hydrogen risk analysis method is systemically summarized in this paper and the advantages and limits of CFD (Computational Fluid Dynamic) in hydrogen risk analysis is discussed. The international experimental programs on the CFD hydrogen risk analysis are introduced in this paper. The application of CFD to nuclear power plant (NPP) hydrogen risk analysis is introduced in detail by taking EPR and Ling'ao NPP for example. In these bases, the CFD development prospect of hydrogen risk analysis is also summarized in this paper. (authors)

  16. Risk analysis of geothermal power plants using Failure Modes and Effects Analysis (FMEA) technique

    International Nuclear Information System (INIS)

    Feili, Hamid Reza; Akar, Navid; Lotfizadeh, Hossein; Bairampour, Mohammad; Nasiri, Sina

    2013-01-01

    Highlights: • Using Failure Modes and Effects Analysis (FMEA) to find potential failures in geothermal power plants. • We considered 5 major parts of geothermal power plants for risk analysis. • Risk Priority Number (RPN) is calculated for all failure modes. • Corrective actions are recommended to eliminate or decrease the risk of failure modes. - Abstract: Renewable energy plays a key role in the transition toward a low carbon economy and the provision of a secure supply of energy. Geothermal energy is a versatile source as a form of renewable energy that meets popular demand. Since some Geothermal Power Plants (GPPs) face various failures, the requirement of a technique for team engineering to eliminate or decrease potential failures is considerable. Because no specific published record of considering an FMEA applied to GPPs with common failure modes have been found already, in this paper, the utilization of Failure Modes and Effects Analysis (FMEA) as a convenient technique for determining, classifying and analyzing common failures in typical GPPs is considered. As a result, an appropriate risk scoring of occurrence, detection and severity of failure modes and computing the Risk Priority Number (RPN) for detecting high potential failures is achieved. In order to expedite accuracy and ability to analyze the process, XFMEA software is utilized. Moreover, 5 major parts of a GPP is studied to propose a suitable approach for developing GPPs and increasing reliability by recommending corrective actions for each failure mode

  17. Analysis of plant height between male sterile plants obtained by space flight and male fertile plants in Maize

    International Nuclear Information System (INIS)

    Cao Moju; Huang Wenchao; Pan Guangtang; Rong Tingzhao; Zhu Yingguo

    2004-01-01

    F 2 fertility segregation population and the sister-cross fertility segregation population, which descended from the male sterile material, were analysed by their plant height of different growing stage between 2 populations of male sterile plants and male fertile plants. The plant height of different fertility plants come to the significance at 0.01 level in different stage through the whole growing period. The differences become more and more large with the development of plants, the maximum difference happens in adult stage. The increasing amount of different stage also shows significance at 0.01 level between two kinds of different fertility plants

  18. Development of web-based reliability data analysis algorithm model and its application

    International Nuclear Information System (INIS)

    Hwang, Seok-Won; Oh, Ji-Yong; Moosung-Jae

    2010-01-01

    For this study, a database model of plant reliability was developed for the effective acquisition and management of plant-specific data that can be used in various applications of plant programs as well as in Probabilistic Safety Assessment (PSA). Through the development of a web-based reliability data analysis algorithm, this approach systematically gathers specific plant data such as component failure history, maintenance history, and shift diary. First, for the application of the developed algorithm, this study reestablished the raw data types, data deposition procedures and features of the Enterprise Resource Planning (ERP) system process. The component codes and system codes were standardized to make statistical analysis between different types of plants possible. This standardization contributes to the establishment of a flexible database model that allows the customization of reliability data for the various applications depending on component types and systems. In addition, this approach makes it possible for users to perform trend analyses and data comparisons for the significant plant components and systems. The validation of the algorithm is performed through a comparison of the importance measure value (Fussel-Vesely) of the mathematical calculation and that of the algorithm application. The development of a reliability database algorithm is one of the best approaches for providing systemic management of plant-specific reliability data with transparency and continuity. This proposed algorithm reinforces the relationships between raw data and application results so that it can provide a comprehensive database that offers everything from basic plant-related data to final customized data.

  19. Development of web-based reliability data analysis algorithm model and its application

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seok-Won, E-mail: swhwang@khnp.co.k [Korea Hydro and Nuclear Power Co. Ltd., Jang-Dong 25-1, Yuseong-Gu, 305-343 Daejeon (Korea, Republic of); Oh, Ji-Yong [Korea Hydro and Nuclear Power Co. Ltd., Jang-Dong 25-1, Yuseong-Gu, 305-343 Daejeon (Korea, Republic of); Moosung-Jae [Department of Nuclear Engineering Hanyang University 17 Haengdang, Sungdong, Seoul (Korea, Republic of)

    2010-02-15

    For this study, a database model of plant reliability was developed for the effective acquisition and management of plant-specific data that can be used in various applications of plant programs as well as in Probabilistic Safety Assessment (PSA). Through the development of a web-based reliability data analysis algorithm, this approach systematically gathers specific plant data such as component failure history, maintenance history, and shift diary. First, for the application of the developed algorithm, this study reestablished the raw data types, data deposition procedures and features of the Enterprise Resource Planning (ERP) system process. The component codes and system codes were standardized to make statistical analysis between different types of plants possible. This standardization contributes to the establishment of a flexible database model that allows the customization of reliability data for the various applications depending on component types and systems. In addition, this approach makes it possible for users to perform trend analyses and data comparisons for the significant plant components and systems. The validation of the algorithm is performed through a comparison of the importance measure value (Fussel-Vesely) of the mathematical calculation and that of the algorithm application. The development of a reliability database algorithm is one of the best approaches for providing systemic management of plant-specific reliability data with transparency and continuity. This proposed algorithm reinforces the relationships between raw data and application results so that it can provide a comprehensive database that offers everything from basic plant-related data to final customized data.

  20. Plant Layout Analysis by Computer Simulation for Electronic Manufacturing Service Plant

    OpenAIRE

    Visuwan D.; Phruksaphanrat B

    2014-01-01

    In this research, computer simulation is used for Electronic Manufacturing Service (EMS) plant layout analysis. The current layout of this manufacturing plant is a process layout, which is not suitable due to the nature of an EMS that has high-volume and high-variety environment. Moreover, quick response and high flexibility are also needed. Then, cellular manufacturing layout design was determined for the selected group of products. Systematic layout planning (SLP) was used to analyze and de...

  1. Status of SPACE Safety Analysis Code Development

    International Nuclear Information System (INIS)

    Lee, Dong Hyuk; Yang, Chang Keun; Kim, Se Yun; Ha, Sang Jun

    2009-01-01

    In 2006, the Korean the Korean nuclear industry started developing a thermal-hydraulic analysis code for safety analysis of PWR(Pressurized Water Reactor). The new code is named as SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). The SPACE code can solve two-fluid, three-field governing equations in one dimensional or three dimensional geometry. The SPACE code has many component models required for modeling a PWR, such as reactor coolant pump, safety injection tank, etc. The programming language used in the new code is C++, for new generation of engineers who are more comfortable with C/C++ than old FORTRAN language. This paper describes general characteristics of SPACE code and current status of SPACE code development

  2. The development of human factors technologies -The development of human behaviour analysis techniques-

    International Nuclear Information System (INIS)

    Lee, Jung Woon; Lee, Yong Heui; Park, Keun Ok; Chun, Se Woo; Suh, Sang Moon; Park, Jae Chang

    1995-07-01

    In order to contribute to human error reduction through the studies on human-machine interaction in nuclear power plants, this project has objectives to develop SACOM(Simulation Analyzer with a Cognitive Operator Model) and techniques for human error analysis and application. In this year, we studied the followings: 1) Site investigation of operator tasks, 2) Development of operator task micro structure and revision of micro structure, 3) Development of knowledge representation software and SACOM prototype, 4) Development of performance assessment methodologies in task simulation and analysis of the effects of performance shaping factors. 1) Classification of error shaping factors(ESFs) and development of software for ESF evaluation, 2) Analysis of human error occurrences and revision of analysis procedure, 3) Experiment for human error data collection using a compact nuclear simulator, 4) Development of a prototype data base system of the analyzed information on trip cases. 55 figs, 23 tabs, 33 refs. (Author)

  3. 78 FR 26316 - Plants for Planting Whose Importation is Not Authorized Pending Pest Risk Analysis; Notice of...

    Science.gov (United States)

    2013-05-06

    ... Pending Pest Risk Analysis; Notice of Availability of Data Sheets for Taxa of Plants for Planting That Are... is not authorized pending pest risk analysis. We have prepared data sheets that detail the scientific... analysis (NAPPRA) in order to prevent the introduction of quarantine pests into the United States. The...

  4. Laser-induced breakdown spectroscopy for analysis of plant materials: A review

    International Nuclear Information System (INIS)

    Santos, Dário; Nunes, Lidiane Cristina; Gustinelli Arantes de Carvalho, Gabriel; Gomes, Marcos da Silva; Souza, Paulino Florêncio de; Leme, Flavio de Oliveira; Gustavo Cofani dos Santos, Luis; Krug, Francisco José

    2012-01-01

    Developments and contributions of laser-induced breakdown spectroscopy (LIBS) for the determination of elements in plant materials are reviewed. Several applications where the solid samples are interrogated by simply focusing the laser pulses directly onto a fresh or dried surface of leaves, roots, fruits, vegetables, wood and pollen are presented. For quantitative purposes aiming at plant nutrition diagnosis, the test sample presentation in the form of pressed pellets, prepared from clean, dried and properly ground/homogenized leaves, and the use of univariate or multivariate calibration strategies are revisited. - Highlights: ► Qualitative and quantitative LIBS analysis of plant materials are reviewed. ► Fresh or dried leaves, fruits, roots and pellets can be easily interrogated by LIBS. ► LIBS is a powerful tool for plant nutrition diagnosis and elemental mapping. ► Intended LIBS users will find a survey of applications in a comprehensive table.

  5. Chemical analysis of sewage sludge of southern sewerage treatment plant (SSTP) Hyderabad for achieving sustainable development in sector of agriculture

    International Nuclear Information System (INIS)

    Qureshi, K.; Shaikh, N.; Ahmed, R.S.; Nawaz, Z.

    2003-01-01

    A study on the chemical analysis of sewage sludge of southern sewerage treatment plant (SSPP) Hyderabad was studied. Chemical analysis on sludge samples collected form the waste stabilization for different micro-nutrients (essential manures, nitrogen, phosphorus, potassium, calcium and magnesium) were conducted in year 1999-2000. These nutrients and metal were detected by reliable analytical method i.e. Kjeldahls method and Atomic Absorption Spectrophotometer. The analysis showed that sewage sludge contained sufficient quantity of primary and secondary nutrients, hence sewage sludge could be utilized as a natural fertilizer. This will not only solve the disposal problem but it would also be environmentally safer way of providing regulators to the plants. (author)

  6. Seismic response analysis of floating nuclear power plant

    International Nuclear Information System (INIS)

    Hagiwara, Yutaka; Nakamura, Hideharu; Shiojiri, Hiroo

    1988-01-01

    Since Floating Nuclear Power Plants (FNPs) are considered to be isolated from horizontal seismic motion, it is anticipated to reduce seismic load for plant components and buildings on the barge. On the other hand, barge oscillation and sloshing in the closed basin might be excited by earthquakes, because natural periods of those motions correspond to relatively-long period component (between 2 and 20 seconds) of seismic motion. Therefore, it is necessary to evaluate seismic isolation effects and barge oscillation, for the rational design of FNPs. However, there do not exist any reasonable analytical tools which can evaluate seismic response of floating structures in closed basin. The purpose of the present report is to develop a seismic analysis method for FNPs. The proposed method is based on the finite element method, and the formulation includes fluid-structure interaction, water surface wave, buoyancy effect, and non-linear characteristics of mooring system. Response analysis can be executed in both time-domain and frequency-domain. Shaking table tests were conducted to validate the proposed method of analysis. The test results showed significant isolation effect of floating structure, and apparent interaction between the barge and the basin. And 2-D and 3-D frequency domain analyses and the 2-D linear and non-linear time-domain analyses were done and those analyses could simulate the test results well. (author)

  7. Dynamic analysis of the condensate feedwater system in boiling water reactor plants

    International Nuclear Information System (INIS)

    Tanji, J.; Omori, T.

    1982-01-01

    The computer code, CONFAC, has been developed for dynamic analysis of the condensate feedwater system in boiling water reactor plants. This code simulates the hydrodynamics in the piping system, the pump dynamics, and the feedwater controller in order to clarify the system transient characteristics in such cases as pump trip incidents. Code verification was performed by comparison between analytical results and actual plant operational data. Satisfactory agreement was obtained. With the code, appropriate pump start/stop interlocks were estimated for preventing pump cavitation in pump trip incidents

  8. Part 2: Conserving and Planting Trees at Development Sites

    Science.gov (United States)

    Karen Cappiella; Tom Schueler; Tiffany Wright

    2006-01-01

    This manual presents specific ways to enable developers, engineers or landscape architects to incorporate more trees into a development site. The proposed approach focuses on protecting existing trees, planting trees in storm water treatment practices, and planting trees in other open spaces at the development site. This manual introduces conceptual designs for storm...

  9. Development of Intelligent Database Program for PSI/ISI Data Management of Nuclear Power Plant (Part II)

    International Nuclear Information System (INIS)

    Park, Un Su; Park, Ik Keun; Um, Byong Guk; Lee, Jong Po; Han, Chi Hyun

    2000-01-01

    In a previous paper, we have discussed the intelligent Windows 95-based data management program(IDPIN) which was developed for effective and efficient management of large amounts of pre-/in-service inspection(PSI/ISI) data of Kori nuclear power plants. The IDPIN program enables the prompt extraction of previously conducted PSI/ISI conditions and results so that the time-consuming data management, painstaking data processing and analysis of the past are avoided. In this study, the intelligent Windows based data management program(WS-IDPIN) has been developed as an effective data management of PSI/ISI data for the Wolsong nuclear power plants. The WS-IDPIN program includes the modules of comprehensive management and analysis of PSI/ISI results, statistical reliability assessment program of PSI/ISI results(depth and length sizing performance etc), standardization of UT report form and computerization of UT results. In addition, the program can be further developed as a unique PSI/ISI data management expert system which can be part of the PSI/ISI total support system for Korean nuclear power plants

  10. Atucha I nuclear power plant transients analysis

    International Nuclear Information System (INIS)

    Castano, J.; Schivo, M.

    1987-01-01

    A program for the transients simulation thermohydraulic calculation without loss of coolant (KWU-ENACE development) to evaluate Atucha I nuclear power plant behaviour is used. The program includes systems simulation and nuclear power plants control bonds with real parameters. The calculation results show a good agreement with the output 'protocol' of various transients of the nuclear power plant, keeping the error, in general, lesser than ± 10% from the variation of the nuclear power plant's state variables. (Author)

  11. Developments in data acquisition systems with LabView datalogging and supervisory control module for tritium removal plant, with data base and process analysis

    International Nuclear Information System (INIS)

    Moraru, Carmen Maria; Stefan, Iuliana; Balteanu, Ovidiu; Stefan, Liviu; Bucur, Ciprian; Hartescu, Florin

    2006-01-01

    Full text: The implementation of the new trends for tritium processing nuclear plants, and especially those with an experimental character or of new technology development, shows a very high complexity due to issues raised by the integration of a high diversity of instrumentation and equipment into a unitary control system of the technological process. Keeping the system's flexibility is a demand of the experimental plants for which the change of configuration, process and parameters is something usual. The big amount of data that needs to be monitored, stored and accessed for ulterior analyses demands the achievement of an information network where the data acquiring, control and analysis systems of the technological process can be integrated with a data base system. Thus, integrated computing and control systems needed for the control of the technological process will be executed, to be continued with the execution of failure protection system, by choosing methods corresponding to the technological processes within the tritium processing nuclear plants. (authors)

  12. Plant Operation Station for HTR-PM Low Power and Shutdown operation Probabilistic safety analysis

    International Nuclear Information System (INIS)

    Liu Tao; Tong Jiejuan

    2014-01-01

    Full range Probabilistic safety analysis (PSA) is one of key conditions for nuclear power plant (NPP) licensing according to the requirement of nuclear safety regulatory authority. High Temperature Gas Cooled Reactor Pebble-bed Module (HTR-PM) has developed construction design and prepared for the charging license application. So after the normal power operation PSA submitted for review, the Low power and Shutdown operation Probabilistic safety analysis (LSPSA) also begin. The results of LSPSA will together with prior normal power PSA results to demonstrate the safety level of HTR-PM NPP Plant Operation Station (POS) is one of important terms in LSPSA. The definition of POS lays the foundation for LSPSA modeling. POS provides initial and boundary conditions for the following event tree and fault tree model development. The aim of this paper is to describe the state-of-the-art of POS definition for HTR-PM LSPSA. As for the first attempt to the high temperature gas cooled reactor module plant, the methodology and procedure of POS definition refers to the LWR LSPSA guidance, and adds to plant initial status analysis due to the HTR-PM characteristics. A specific set of POS grouping vectors is investigate and suggested for HTR-PM NPP, which reflects the characteristics of plant modularization and on-line refueling. As a result, seven POSs are given according to the grouping vectors at the end of the paper. They will be used to the LSPSA modelling and adjusted if necessary. The papers ’work may provide reference to the analogous NPP LSPSA. (author)

  13. Be-Breeder – an application for analysis of genomic data in plant breeding

    Directory of Open Access Journals (Sweden)

    Filipe Inácio Matias

    2016-12-01

    Full Text Available Be-Breeder is an application directed toward genetic breeding of plants, developed through the Shiny package of the R software, which allows different phenotype and molecular (marker analysis to be undertaken. The section for analysis of molecular data of the Be-Breeder application makes it possible to achieve quality control of genotyping data, to obtain genomic kinship matrices, and to analyze genomic selection, genome association, and genetic diversity in a simple manner on line. This application is available for use in a network through the site of the Allogamous Plant Breeding Laboratory of ESALQ-USP (http://www.genetica.esalq.usp.br/alogamas/R.html.

  14. Multilocus Sequence Analysis of Cercospora spp. from Different Host Plant Families

    Directory of Open Access Journals (Sweden)

    Floreta Fiska Yuliarni

    2014-06-01

    Full Text Available Identification of the genus Cercospora is still complicated due to the host preferences often being used as the main criteria to propose a new name. We determined the relationship between host plants and multilocus sequence variations (ITS rDNA including 5.8S rDNA, elongation factor 1-α, and calmodulin in Cercospora spp. to investigate the host specificity. We used 53 strains of Cercospora spp. infecting 12 plant families for phylogenetic analysis. The sequences of 23 strains of Cercospora spp. infecting the plant families of Asteraceae, Cucurbitaceae, and Solanaceae were determined in this study. The sequences of 30 strains of Cercospora spp. infecting the plant families of Fabaceae, Amaranthaceae, Apiaceae, Plumbaginaceae, Malvaceae, Cistaceae, Plantaginaceae, Lamiaceae, and Poaceae were obtained from GenBank. The molecular phylogenetic analysis revealed that the majority of Cercospora species lack host specificity, and only C. zinniicola, C. zeina, C. zeae-maydis, C. cocciniae, and C. mikaniicola were found to be host-specific. Closely related species of Cercospora could not be distinguished using molecular analyses of ITS, EF, and CAL gene regions. The topology of the phylogenetic tree based on the CAL gene showed a better topology and Cercospora species separation than the trees developed based on the ITS rDNA region or the EF gene.

  15. Micro-scaled high-throughput digestion of plant tissue samples for multi-elemental analysis

    Directory of Open Access Journals (Sweden)

    Husted Søren

    2009-09-01

    Full Text Available Abstract Background Quantitative multi-elemental analysis by inductively coupled plasma (ICP spectrometry depends on a complete digestion of solid samples. However, fast and thorough sample digestion is a challenging analytical task which constitutes a bottleneck in modern multi-elemental analysis. Additional obstacles may be that sample quantities are limited and elemental concentrations low. In such cases, digestion in small volumes with minimum dilution and contamination is required in order to obtain high accuracy data. Results We have developed a micro-scaled microwave digestion procedure and optimized it for accurate elemental profiling of plant materials (1-20 mg dry weight. A commercially available 64-position rotor with 5 ml disposable glass vials, originally designed for microwave-based parallel organic synthesis, was used as a platform for the digestion. The novel micro-scaled method was successfully validated by the use of various certified reference materials (CRM with matrices rich in starch, lipid or protein. When the micro-scaled digestion procedure was applied on single rice grains or small batches of Arabidopsis seeds (1 mg, corresponding to approximately 50 seeds, the obtained elemental profiles closely matched those obtained by conventional analysis using digestion in large volume vessels. Accumulated elemental contents derived from separate analyses of rice grain fractions (aleurone, embryo and endosperm closely matched the total content obtained by analysis of the whole rice grain. Conclusion A high-throughput micro-scaled method has been developed which enables digestion of small quantities of plant samples for subsequent elemental profiling by ICP-spectrometry. The method constitutes a valuable tool for screening of mutants and transformants. In addition, the method facilitates studies of the distribution of essential trace elements between and within plant organs which is relevant for, e.g., breeding programmes aiming at

  16. Development of testing system for the thermo-mechanical fatigue crack analysis of nuclear power plant pipes

    International Nuclear Information System (INIS)

    Lee, Ho Jin; Kim, Maan Won; Lee, Bong Sang

    2003-12-01

    Fatigue crack growth analysis plays an important role in the structural integrity assessment or the service life calculation of the nuclear power plant pipes. To obtain the material properties as a basic data to achieve an accurate crack growth analysis, a lot of tests and numerical crack growth simulations have been done for decades. The BS 7910 or the ASME Boiler and Pressure Vessel Code Section XI, generally used to evaluate crack growth behavior, were made under the based on simple stress states or at the evaluated isothermal temperature. It is well known that the ASME code could sometimes give so conservative results in some cases of which the cracked components are experiencing with cyclic thermal shock. In this report, we suggested a method for the life assessment of a crack embedded in nuclear power plant pipes under the thermal-mechanical fatigue loads. We here use the numerical method to get the temperature history for thermal- mechanical fatigue crack growth test. And then we can calculate the remaining life time of the pipe by using the fracture mechanics and the test results together. For this purpose, we constructed a thermal-mechanical fatigue crack growth testing system. We also gave a lot of review about recent researches in the experimental field of thermal-mechanical fatigue analysis

  17. Parametric-based thermodynamic analysis of organic Rankine cycle as bottoming cycle for combined-cycle power plant

    International Nuclear Information System (INIS)

    Qureshi, S.; Memon, A.G.; Abbasi, A.F.

    2017-01-01

    In Pakistan, the thermal efficiency of the power plants is low because of a huge share of fuel energy is dumped into the atmosphere as waste heat. The ORC (Organic Rankine Cycle) has been revealed as one of the promising technologies to recover waste heat to enhance the thermal efficiency of the power plant. In current work, ORC is proposed as a second bottoming cycle for existing CCPP (Combined Cycle Power Plant). In order to assess the efficiency of the plant, a thermodynamic model is developed in the ESS (Engineering Equation Solver) software. The developed model is used for parametric analysis to assess the effects of various operating parameters on the system performance. The analysis of results shows that the integration of ORC system with existing CCPP system enhances the overall power output in the range of 150.5-154.58 MW with 0.24-5% enhancement in the efficiency depending on the operating conditions. During the parametric analysis of ORC, it is observed that inlet pressure of the turbine shows a significant effect on the performance of the system as compared to other operating parameters. (author)

  18. Development of specific data of plant for a safety probabilistic analysis; Desarrollo de datos especificos de planta para un analisis probabilistico de seguridad

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez C, M. [Emersis S.A. de C.V., Tabachines 9-bis, 62589 Temixco, Morelos (Mexico); Nelson E, P. [LAIRN, UNAM, Paseo Cuauhnahuac 8532, Jiutepec, Morelos (Mexico)]. e-mail: cuesta@emersis.com

    2004-07-01

    In this work the development of specific data of plant is described for the Safety Probabilistic Analysis (APS) of the Laguna Verde Central. The description of those used methods concentrate on the obtention of rates of failure of the equipment and frequencies of initiator events modeled in the APS, making mention to other types of data that also appeal to specific sources of the plant. The method to obtain the rates of failure of the equipment takes advantage the information of failures of components and unavailability of systems obtained entreaty in execution with the Maintenance Rule (1OCFR50.65). The method to develop the frequencies of initiators take in account the registered operational experience as reportable events. In both cases the own experience is combined with published generic data using Bayesian realized techniques. Details are provided about the gathering of information, the confirmations of consistency and adjustment necessities, presenting examples of the obtained results. (Author)

  19. Wavelength dispersive X-ray fluorescence analysis using fundamental parameter approach of Catha edulis and other related plant samples

    Energy Technology Data Exchange (ETDEWEB)

    Shaltout, Abdallah A., E-mail: shaltout_a@hotmail.com [Spectroscopy Department, Physics Division, National Research Center, El Behooth Str., 12622 Dokki, Cairo (Egypt); Faculty of science, Taif University, 21974 Taif, P.O. Box 888 (Saudi Arabia); Moharram, Mohammed A. [Spectroscopy Department, Physics Division, National Research Center, El Behooth Str., 12622 Dokki, Cairo (Egypt); Mostafa, Nasser Y. [Faculty of science, Taif University, 21974 Taif, P.O. Box 888 (Saudi Arabia); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia (Egypt)

    2012-01-15

    This work is the first attempt to quantify trace elements in the Catha edulis plant (Khat) with a fundamental parameter approach. C. edulis is a famous drug plant in east Africa and Arabian Peninsula. We have previously confirmed that hydroxyapatite represents one of the main inorganic compounds in the leaves and stalks of C. edulis. Comparable plant leaves from basil, mint and green tea were included in the present investigation as well as trifolium leaves were included as a non-related plant. The elemental analyses of the plants were done by Wavelength Dispersive X-Ray Fluorescence (WDXRF) spectroscopy. Standard-less quantitative WDXRF analysis was carried out based on the fundamental parameter approaches. According to the standard-less analysis algorithms, there is an essential need for an accurate determination of the amount of organic material in the sample. A new approach, based on the differential thermal analysis, was successfully used for the organic material determination. The obtained results based on this approach were in a good agreement with the commonly used methods. Depending on the developed method, quantitative analysis results of eighteen elements including; Al, Br, Ca, Cl, Cu, Fe, K, Na, Ni, Mg, Mn, P, Rb, S, Si, Sr, Ti and Zn were obtained for each plant. The results of the certified reference materials of green tea (NCSZC73014, China National Analysis Center for Iron and Steel, Beijing, China) confirmed the validity of the proposed method. - Highlights: Black-Right-Pointing-Pointer Quantitative analysis of Catha edulis was carried out using standardless WDXRF. Black-Right-Pointing-Pointer Differential thermal analysis was used for determination of the loss of ignition. Black-Right-Pointing-Pointer The existence of hydroxyapatite in Catha edulis plant has been confirmed. Black-Right-Pointing-Pointer The CRM results confirmed the validity of the developed method.

  20. Wavelength dispersive X-ray fluorescence analysis using fundamental parameter approach of Catha edulis and other related plant samples

    International Nuclear Information System (INIS)

    Shaltout, Abdallah A.; Moharram, Mohammed A.; Mostafa, Nasser Y.

    2012-01-01

    This work is the first attempt to quantify trace elements in the Catha edulis plant (Khat) with a fundamental parameter approach. C. edulis is a famous drug plant in east Africa and Arabian Peninsula. We have previously confirmed that hydroxyapatite represents one of the main inorganic compounds in the leaves and stalks of C. edulis. Comparable plant leaves from basil, mint and green tea were included in the present investigation as well as trifolium leaves were included as a non-related plant. The elemental analyses of the plants were done by Wavelength Dispersive X-Ray Fluorescence (WDXRF) spectroscopy. Standard-less quantitative WDXRF analysis was carried out based on the fundamental parameter approaches. According to the standard-less analysis algorithms, there is an essential need for an accurate determination of the amount of organic material in the sample. A new approach, based on the differential thermal analysis, was successfully used for the organic material determination. The obtained results based on this approach were in a good agreement with the commonly used methods. Depending on the developed method, quantitative analysis results of eighteen elements including; Al, Br, Ca, Cl, Cu, Fe, K, Na, Ni, Mg, Mn, P, Rb, S, Si, Sr, Ti and Zn were obtained for each plant. The results of the certified reference materials of green tea (NCSZC73014, China National Analysis Center for Iron and Steel, Beijing, China) confirmed the validity of the proposed method. - Highlights: ► Quantitative analysis of Catha edulis was carried out using standardless WDXRF. ► Differential thermal analysis was used for determination of the loss of ignition. ► The existence of hydroxyapatite in Catha edulis plant has been confirmed. ► The CRM results confirmed the validity of the developed method.

  1. Parity simulation for nuclear plant analysis

    International Nuclear Information System (INIS)

    Hansen, K.F.; Depiente, E.

    1986-01-01

    The analysis of the transient performance of nuclear plants is sufficiently complex that simulation tools are needed for design and safety studies. The simulation tools are needed for design and safety studies. The simulation tools are normally digital because of the speed, flexibility, generality, and repeatability of digital computers. However, communication with digital computers is an awkward matter, requiring special skill or training. The designer wishing to gain insight into system behavior must expend considerable effort in learning to use computer codes, or else have an intermediary communicate with the machine. There has been a recent development in analog simulation that simplifies the user interface with the simulator, while at the same time improving the performance of analog computers. This development is termed parity simulation and is now in routine use in analyzing power electronic network transients. The authors describe the concept of parity simulation and present some results of using the approach to simulate neutron kinetics problems

  2. The application of availability analysis to nuclear power plants

    International Nuclear Information System (INIS)

    Brooks, A.C.

    1984-01-01

    The use of probabilistic risk analysis (PRA) to assess the risks from nuclear power plants is now well established. Considerably less attention has been given so far to the use of availability analysis techniques. The economics of power generation are now such that with nuclear power currently supplying a substantial fraction of power in many countries, increasing attention is being paid to improving plant availability. This paper presents a technique for systematically identifying the areas in which measures to improve plant availability will be most effective. (author)

  3. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny

    Directory of Open Access Journals (Sweden)

    POLAVARAPU BILHAN KAVI KISHOR

    2015-07-01

    Full Text Available Proline is a proteogenic amino acid and accumulates both under stress and non-stress conditions as a beneficial solute in plants. Recent discoveries point out that proline plays an important role in plant growth and differentiation across life cycle. It is a key determinant of many cell wall proteins that plays important roles in plant development. The role of extensins (EXTs, arabinogalactan proteins (AGPs and hydroxyproline- and proline-rich proteins (H/PRPs as important components of cell wall proteins that play pivotal roles in cell wall signal transduction cascades, plant development and stress tolerance is discussed in this review. Molecular insights are also provided here into the plausible roles of proline transporters modulating key events in plant development. In addition, the roles of proline during seed developmental transitions including storage protein synthesis are discussed.

  4. System for the analysis of plant chromosomes

    International Nuclear Information System (INIS)

    Medina Martin, D.; Peraza Gonzalez, L.H.

    1996-01-01

    The paper describes a computer system for the automation workers of recognition analysis and interpretation of plant chromosomes. This system permit to carry out the analysis in a more comfortable and faster way, using the image processing techniques

  5. 78 FR 23209 - Plants for Planting Whose Importation Is Not Authorized Pending Pest Risk Analysis; Notice of...

    Science.gov (United States)

    2013-04-18

    ... addition to the NAPPRA list of quarantine pest plants. Cordia curassavica. One commenter presented evidence... DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service [Docket No. APHIS-2011-0072] Plants for Planting Whose Importation Is Not Authorized Pending Pest Risk Analysis; Notice of Addition of...

  6. Development of 1000kW-class MCFC pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Ooue, M.; Yasue, H. [MCFC Research Association, Mie (Japan); Takasu, K.; Tsuchitori, T.

    1996-12-31

    This pilot plant is a part of the New Sunshine Program which has proceeded by the Agency of Industrial Science and Technology of the Ministry of International Trade and Industry. MCFC Research Association is entrusted with the development of the pilot plant, and constructing it at Kawagoe site. Following items will be verified by this pilot plant operation. (a) Development of 250kW class stack and confirmation of stack performance and decay rate. (b) System verification such as basic process, control system and operation characteristics, toward commercialization. (c) To get design data for demonstration plant.

  7. License - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods ...t list, Marker list, QTL list, Plant DB link & Genome analysis methods © Satoshi ... Policy | Contact Us License - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive ...

  8. Root cause analysis for fire events at nuclear power plants

    International Nuclear Information System (INIS)

    1999-09-01

    Fire hazard has been identified as a major contributor to a plant' operational safety risk. The International nuclear power community (regulators, operators, designers) has been studying and developing tools for defending against this hazed. Considerable advances have been achieved during past two decades in design and regulatory requirements for fire safety, fire protection technology and related analytical techniques. The IAEA endeavours to provide assistance to Member States in improving fire safety in nuclear power plants. A task was launched by IAEA in 1993 with the purpose to develop guidelines and good practices, to promote advanced fire safety assessment techniques, to exchange state of the art information, and to provide engineering safety advisory services and training in the implementation of internationally accepted practices. This TECDOC addresses a systematic assessment of fire events using the root cause analysis methodology, which is recognized as an important element of fire safety assessment

  9. Thermoeconomic analysis of power plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tsatsaronis, G.; Winhold, M.

    1984-08-01

    In this report, the concept of exergy and the general methodology of the exergetic analysis and the thermoeconomic (combined exergetic and economic) analysis of energy conversion systems are presented. The THESIS (THermodynamic and Economc SImulation System) computer program used for these analyses is briefly described. Detailed mass, energy, exergy and money balances for a reference steam power plant (Harry Allen Station) are shown. The effect of the most important process parameters on the overall efficiency is investigated. A year-by-year and a levelized revenue requirement analysis are presented. The costs of exergy losses are compared with the capital costs and other expenses due to owning and operating each particular plant component. The question whether it is profitable to reduce the exergy losses by increasing these costs and vice versa is investigated. A cost sensitivity analysis including the effect of coal price and average annual capacity factor is performed. The methodology applied in this report appears to be useful in analyzing and evaluating energy conversion systems. The analyses presented here allow identification and evaluation of the inefficiencies and the opportunities for improvement of an energy conversion process. Results indicate that modifications in certain process parameters can lead to a decrease in the cost of electricity produced by the reference plant.

  10. Integrated Information Technology Framework for Analysis of Data from Enrichment Plants to Support the Safeguards Mission

    International Nuclear Information System (INIS)

    Marr, Clifton T.; Thurman, David A.; Jorgensen, Bruce V.

    2008-01-01

    Many examples of software architectures exist that support process monitoring and analysis applications which could be applied to enrichment plants in a fashion that supports the Safeguards Mission. Pacific Northwest National Laboratory (PNNL) has developed mature solutions that will provide the framework to support online statistical analysis of enrichment plans and the entire nuclear fuel cycle. Most recently, PNNL has developed a refined architecture and supporting tools that address many of the common problems analysis and modeling environments experience: pipelining, handling large data volumes, and real-time performance. We propose the architecture and tools may be successfully used in furthering the goals of nuclear material control and accountability as both an aid to processing plant owners and as comprehensive monitoring for oversight teams.

  11. Situation-assessment and decision-aid production-rule analysis system for nuclear plant monitoring and emergency preparedness

    International Nuclear Information System (INIS)

    Gvillo, D.; Ragheb, M.; Parker, M.; Swartz, S.

    1987-01-01

    A Production-Rule Analysis System is developed for Nuclear Plant Monitoring. The signals generated by the Zion-1 Plant are considered. A Situation-Assessment and Decision-Aid capability is provided for monitoring the integrity of the Plant Radiation, the Reactor Coolant, the Fuel Clad, and the Containment Systems. A total of 41 signals are currently fed as facts to an Inference Engine functioning in the backward-chaining mode and built along the same structure as the E-Mycin system. The Goal-Tree constituting the Knowledge Base was generated using a representation in the form of Fault Trees deduced from plant procedures information. The system is constructed in support of the Data Analysis and Emergency Preparedness tasks at the Illinois Radiological Emergency Assessment Center (REAC)

  12. Situation-Assessment And Decision-Aid Production-Rule Analysis System For Nuclear Plant Monitoring And Emergency Preparedness

    Science.gov (United States)

    Gvillo, D.; Ragheb, M.; Parker, M.; Swartz, S.

    1987-05-01

    A Production-Rule Analysis System is developed for Nuclear Plant Monitoring. The signals generated by the Zion-1 Plant are considered. A Situation-Assessment and Decision-Aid capability is provided for monitoring the integrity of the Plant Radiation, the Reactor Coolant, the Fuel Clad, and the Containment Systems. A total of 41 signals are currently fed as facts to an Inference Engine functioning in the backward-chaining mode and built along the same structure as the E-Mycin system. The Goal-Tree constituting the Knowledge Base was generated using a representation in the form of Fault Trees deduced from plant procedures information. The system is constructed in support of the Data Analysis and Emergency Preparedness tasks at the Illinois Radiological Emergency Assessment Center (REAC).

  13. Collaborative Plant Breeding for Organic Agricultural Systems in Developed Countries

    Directory of Open Access Journals (Sweden)

    Isabelle Goldringer

    2011-08-01

    Full Text Available Because organic systems present complex environmental stress, plant breeders may either target very focused regions for different varieties, or create heterogeneous populations which can then evolve specific adaptation through on-farm cultivation and selection. This often leads to participatory plant breeding (PPB strategies which take advantage of the specific knowledge of farmers. Participatory selection requires increased commitment and engagement on the part of the farmers and researchers. Projects may begin as researcher initiatives with farmer participation or farmer initiatives with researcher participation and over time evolve into true collaborations. These projects are difficult to plan in advance because by nature they change to respond to the priorities and interests of the collaborators. Projects need to provide relevant information and analysis in a time-frame that is meaningful for farmers, while remaining scientifically rigorous and innovative. This paper presents two specific studies: the first was a researcher-designed experiment that assessed the potential adaptation of landraces to organic systems through on-farm cultivation and farmer selection. The second is a farmer-led plant breeding project to select bread wheat for organic systems in France. Over the course of these two projects, many discussions among farmers, researchers and farmers associations led to the development of methods that fit the objectives of those involved. This type of project is no longer researcher-led or farmer-led but instead an equal collaboration. Results from the two research projects and the strategy developed for an ongoing collaborative plant breeding project are discussed.

  14. Involvement of thiol-based mechanisms in plant development.

    Science.gov (United States)

    Rouhier, Nicolas; Cerveau, Delphine; Couturier, Jérémy; Reichheld, Jean-Philippe; Rey, Pascal

    2015-08-01

    Increasing knowledge has been recently gained regarding the redox regulation of plant developmental stages. The current state of knowledge concerning the involvement of glutathione, glutaredoxins and thioredoxins in plant development is reviewed. The control of the thiol redox status is mainly ensured by glutathione (GSH), a cysteine-containing tripeptide and by reductases sharing redox-active cysteines, glutaredoxins (GRXs) and thioredoxins (TRXs). Indeed, thiol groups present in many regulatory proteins and metabolic enzymes are prone to oxidation, ultimately leading to post-translational modifications such as disulfide bond formation or glutathionylation. This review focuses on the involvement of GSH, GRXs and TRXs in plant development. Recent studies showed that the proper functioning of root and shoot apical meristems depends on glutathione content and redox status, which regulate, among others, cell cycle and hormone-related processes. A critical role of GRXs in the formation of floral organs has been uncovered, likely through the redox regulation of TGA transcription factor activity. TRXs fulfill many functions in plant development via the regulation of embryo formation, the control of cell-to-cell communication, the mobilization of seed reserves, the biogenesis of chloroplastic structures, the metabolism of carbon and the maintenance of cell redox homeostasis. This review also highlights the tight relationships between thiols, hormones and carbon metabolism, allowing a proper development of plants in relation with the varying environment and the energy availability. GSH, GRXs and TRXs play key roles during the whole plant developmental cycle via their antioxidant functions and the redox-regulation of signaling pathways. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. An analysis of nuclear power plant operating costs

    International Nuclear Information System (INIS)

    1988-01-01

    This report presents the results of a statistical analysis of nonfuel operating costs for nuclear power plants. Most studies of the economic costs of nuclear power have focused on the rapid escalation in the cost of constructing a nuclear power plant. The present analysis found that there has also been substantial escalation in real (inflation-adjusted) nonfuel operating costs. It is important to determine the factors contributing to the escalation in operating costs, not only to understand what has occurred but also to gain insights about future trends in operating costs. There are two types of nonfuel operating costs. The first is routine operating and maintenance expenditures (O and M costs), and the second is large postoperational capital expenditures, or what is typically called ''capital additions.'' O and M costs consist mainly of expenditures on labor, and according to one recently completed study, the majoriy of employees at a nuclear power plant perform maintenance activities. It is generally thought that capital additions costs consist of large maintenance expenditures needed to keep the plants operational, and to make plant modifications (backfits) required by the Nuclear Regulatory Commission (NRC). Many discussions of nuclear power plant operating costs have not considered these capital additions costs, and a major finding of the present study is that these costs are substantial. The objective of this study was to determine why nonfuel operating costs have increased over the past decade. The statistical analysis examined a number of factors that have influenced the escalation in real nonfuel operating costs and these are discussed in this report. 4 figs, 19 tabs

  16. Genome analysis methods - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods Genome analysis... methods Data detail Data name Genome analysis methods DOI 10.18908/lsdba.nbdc01194-01-005 De...scription of data contents The current status and related information of the genomic analysis about each org...anism (March, 2014). In the case of organisms carried out genomic analysis, the d...e File name: pgdbj_dna_marker_linkage_map_genome_analysis_methods_en.zip File URL: ftp://ftp.biosciencedbc.j

  17. A critical review on energy, exergy, exergoeconomic and economic (4-E analysis of thermal power plants

    Directory of Open Access Journals (Sweden)

    Ravinder Kumar

    2017-02-01

    Full Text Available The growing energy supply, demand has created an interest towards the plant equipment efficiency and the optimization of existing thermal power plants. Also, a thermal power plant dependency on fossil fuel makes it a little bit difficult, because of environmental impacts has been always taken into consideration. At present, most of the power plants are going to be designed by the energetic performance criterion which is based on the first law of thermodynamics. Sometimes, the system energy balance is not sufficient for the possible finding of the system imperfections. Energy losses taking place in a system can be easily determined by using exergy analysis. Hence, it is a powerful tool for the measurement of energy quality, thereby helps to make complex thermodynamic systems more efficient. Nowadays, economic optimization of plant is also a big problem for researchers because of the complex nature. At a viewpoint of this, a comprehensive literature review over the years of energy, exergy, exergoeconomic and economic (4-E analysis and their applications in thermal power plants stimulated by coal, gas, combined cycle and cogeneration system have been done thoroughly. This paper is addressed to those researchers who are doing their research work on 4-E analysis in various thermal power plants. If anyone extracts an idea for the development of the concept of 4-E analysis using this article, we will achieve our goal. This review also indicates the scope of future research in thermal power plants.

  18. Development of web-based integrity evaluation system for primary components in a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.M.; Kim, J.C.; Choi, J.B.; Kim, Y.J. [SAFE Research Center, Sungkyunkwan Univ., Suwon (Korea); Choi, S.N.; Jang, K.S.; Hong, S.Y. [Korea Electronic Power Research Inst., Daejeon (Korea)

    2004-07-01

    A nuclear power plant is composed of a number of primary components. Maintaining the integrity of these components is one of the most critical issues in nuclear industry. In order to maintain the integrity of these primary components, a complicated procedure is required including periodical in-service inspection, failure assessment, fracture mechanics analysis, etc. Also, experts in different fields have to co-operate to resolve the integrity issues on the basis of inspection results. This integrity evaluation process usually takes long, and thus, is detrimental for the plant productivity. Therefore, an effective safety evaluation system is essential to manage integrity issues on a nuclear power plant. In this paper, a web-based integrity evaluation system for primary components in a nuclear power plant is proposed. The proposed system, which is named as WEBIES (web-based integrity evaluation system), has been developed in the form of 3-tier system architecture. The system consists of three servers; application program server, user interface program server and data warehouse server. The application program server includes the defect acceptance analysis module and the fracture mechanics analysis module which are programmed on the basis of ASME sec. XI, appendix A. The data warehouse server provides data for the integrity evaluation including material properties, geometry information, inspection data and stress data. The user interface program server provides information to all co- workers in the field of integrity evaluation. The developed system provides engineering knowledge-based information and concurrent and collaborative working environment through internet, and thus, is expected to raise the efficiency of integrity evaluation procedures on primary components of a nuclear power plant. (orig.)

  19. Development of web-based integrity evaluation system for primary components in a nuclear power plant

    International Nuclear Information System (INIS)

    Lee, S.M.; Kim, J.C.; Choi, J.B.; Kim, Y.J.; Choi, S.N.; Jang, K.S.; Hong, S.Y.

    2004-01-01

    A nuclear power plant is composed of a number of primary components. Maintaining the integrity of these components is one of the most critical issues in nuclear industry. In order to maintain the integrity of these primary components, a complicated procedure is required including periodical in-service inspection, failure assessment, fracture mechanics analysis, etc. Also, experts in different fields have to co-operate to resolve the integrity issues on the basis of inspection results. This integrity evaluation process usually takes long, and thus, is detrimental for the plant productivity. Therefore, an effective safety evaluation system is essential to manage integrity issues on a nuclear power plant. In this paper, a web-based integrity evaluation system for primary components in a nuclear power plant is proposed. The proposed system, which is named as WEBIES (web-based integrity evaluation system), has been developed in the form of 3-tier system architecture. The system consists of three servers; application program server, user interface program server and data warehouse server. The application program server includes the defect acceptance analysis module and the fracture mechanics analysis module which are programmed on the basis of ASME sec. XI, appendix A. The data warehouse server provides data for the integrity evaluation including material properties, geometry information, inspection data and stress data. The user interface program server provides information to all co- workers in the field of integrity evaluation. The developed system provides engineering knowledge-based information and concurrent and collaborative working environment through internet, and thus, is expected to raise the efficiency of integrity evaluation procedures on primary components of a nuclear power plant. (orig.)

  20. A basic study for development of environmental standard review plan of Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; Cho, Jae Seon; You, Young Woo [Seoul Nationl Univ., Seoul (Korea, Republic of)] (and others)

    1999-12-15

    In this study is performed a basic study to be ready for the development and detail analysis of NUREG-1555 ESRP. As a fundamental research for literature survey and development of draft review plan, review and translation of NUREG-1555 published by NRC, and which is applied to licensing procedure of Nuclear Power Plants are included. These provided the basic information for the developments of the environmental standard review plan.

  1. Customer benefit and power plant development

    International Nuclear Information System (INIS)

    Drenckhahn, W.; Riedle, K.

    2005-01-01

    In recent years, many aspects of the power market and customer needs in plant operation have been changing more rapidly than manufacturers could launch new products on the market. As a result, flexibility is required not only in the operation of power plants, but also in drawing up product specifications and in the ensuing engineering. The familiar major objectives of development work, such as low specific investment cost and high efficiency, remain important. Also in the context of reducing CO 2 emissions and trading with CO 2 certificates, improving the efficiency of power plants is a measure that, over and above today's cost optimum, represents the 'action of least regret' with a view to sustainably meeting the requirements of the Kyoto Protocol. (orig.)

  2. About the development strategies of power plant in energy market

    Science.gov (United States)

    Duinea, Adelaida Mihaela

    2017-12-01

    The paper aims at identifying and assessing the revenues and costs incurred by various modernization and modernization-development strategies for a power plant in order to optimize the electric and thermal energy are produced and to conduct a sensitivity analysis of the main performance indicators. The Romanian energy system and the energy market have gone a long transition way, from the vertically integrated model, the responsibility for the delivery of the electricity comes exclusively to a state monopoly, to a decentralized system, characterized by the decentralization of production and transport, respectively distribution activities. Romania chose the liberal market model where the relations between the actors in the market - producers and suppliers free to make sales and purchase transactions for electrical energy - are mostly governed by contracts, which may be either bilaterally negotiated or are already regulated. Therefore, the importance of understanding the development trend of the Romanian energy market lies in its economic effects upon the solutions which could be adopted for the evolution of the cogeneration power plant in question.

  3. Functional characterization of AGAMOUS-subfamily members from cotton during reproductive development and in response to plant hormones.

    Science.gov (United States)

    de Moura, Stéfanie Menezes; Artico, Sinara; Lima, Cássio; Nardeli, Sarah Muniz; Berbel, Ana; Oliveira-Neto, Osmundo Brilhante; Grossi-de-Sá, Maria Fátima; Ferrándiz, Cristina; Madueño, Francisco; Alves-Ferreira, Márcio

    2017-03-01

    Expression analysis of the AG -subfamily members from G. hirsutum during flower and fruit development. Reproductive development in cotton, including the fruit and fiber formation, is a complex process; it involves the coordinated action of gene expression regulators, and it is highly influenced by plant hormones. Several studies have reported the identification and expression of the transcription factor family MADS-box members in cotton ovules and fibers; however, their roles are still elusive during the reproductive development in cotton. In this study, we evaluated the expression profiles of five MADS-box genes (GhMADS3, GhMADS4, GhMADS5, GhMADS6 and GhMADS7) belonging to the AGAMOUS-subfamily in Gossypium hirsutum. Phylogenetic and protein sequence analyses were performed using diploid (G. arboreum, G. raimondii) and tetraploid (G. barbadense, G. hirsutum) cotton genomes, as well as the AG-subfamily members from Arabidopsis thaliana, Petunia hybrida and Antirrhinum majus. qPCR analysis showed that the AG-subfamily genes had high expression during flower and fruit development in G. hirsutum. In situ hybridization analysis also substantiates the involvement of AG-subfamily members on reproductive tissues of G. hirsutum, including ovule and ovary. The effect of plant hormones on AG-subfamily genes expression was verified in cotton fruits treated with gibberellin, auxin and brassinosteroid. All the genes were significantly regulated in response to auxin, whereas only GhMADS3, GhMADS4 and GhMADS7 genes were also regulated by brassinosteroid treatment. In addition, we have investigated the GhMADS3 and GhMADS4 overexpression effects in Arabidopsis plants. Interestingly, the transgenic plants from both cotton AG-like genes in Arabidopsis significantly altered the fruit size compared to the control plants. This alteration suggests that cotton AG-like genes might act regulating fruit formation. Our results demonstrate that members of the AG-subfamily in G. hirsutum

  4. Seismic margin analysis technique for nuclear power plant structures

    International Nuclear Information System (INIS)

    Seo, Jeong Moon; Choi, In Kil

    2001-04-01

    In general, the Seismic Probabilistic Risk Assessment (SPRA) and the Seismic Margin Assessment(SAM) are used for the evaluation of realistic seismic capacity of nuclear power plant structures. Seismic PRA is a systematic process to evaluate the seismic safety of nuclear power plant. In our country, SPRA has been used to perform the probabilistic safety assessment for the earthquake event. SMA is a simple and cost effective manner to quantify the seismic margin of individual structural elements. This study was performed to improve the reliability of SMA results and to confirm the assessment procedure. To achieve this goal, review for the current status of the techniques and procedures was performed. Two methodologies, CDFM (Conservative Deterministic Failure Margin) sponsored by NRC and FA (Fragility Analysis) sponsored by EPRI, were developed for the seismic margin review of NPP structures. FA method was originally developed for Seismic PRA. CDFM approach is more amenable to use by experienced design engineers including utility staff design engineers. In this study, detailed review on the procedures of CDFM and FA methodology was performed

  5. High-Reliable PLC RTOS Development and RPS Structure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, H. S.; Song, D. Y.; Sohn, D. S.; Kim, J. H. [Enersys Co., Daejeon (Korea, Republic of)

    2008-04-15

    One of the KNICS objectives is to develop a platform for Nuclear Power Plant(NPP) I and C(Instrumentation and Control) system, especially plant protection system. The developed platform is POSAFE-Q and this work supports the development of POSAFE-Q with the development of high-reliable real-time operating system(RTOS) and programmable logic device(PLD) software. Another KNICS objective is to develop safety I and C systems, such as Reactor Protection System(RPS) and Engineered Safety Feature-Component Control System(ESF-CCS). This work plays an important role in the structure analysis for RPS. Validation and verification(V and V) of the safety critical software is an essential work to make digital plant protection system highly reliable and safe. Generally, the reliability and safety of software based system can be improved by strict quality assurance framework including the software development itself. In other words, through V and V, the reliability and safety of a system can be improved and the development activities like software requirement specification, software design specification, component tests, integration tests, and system tests shall be appropriately documented for V and V.

  6. High-Reliable PLC RTOS Development and RPS Structure Analysis

    International Nuclear Information System (INIS)

    Sohn, H. S.; Song, D. Y.; Sohn, D. S.; Kim, J. H.

    2008-04-01

    One of the KNICS objectives is to develop a platform for Nuclear Power Plant(NPP) I and C(Instrumentation and Control) system, especially plant protection system. The developed platform is POSAFE-Q and this work supports the development of POSAFE-Q with the development of high-reliable real-time operating system(RTOS) and programmable logic device(PLD) software. Another KNICS objective is to develop safety I and C systems, such as Reactor Protection System(RPS) and Engineered Safety Feature-Component Control System(ESF-CCS). This work plays an important role in the structure analysis for RPS. Validation and verification(V and V) of the safety critical software is an essential work to make digital plant protection system highly reliable and safe. Generally, the reliability and safety of software based system can be improved by strict quality assurance framework including the software development itself. In other words, through V and V, the reliability and safety of a system can be improved and the development activities like software requirement specification, software design specification, component tests, integration tests, and system tests shall be appropriately documented for V and V.

  7. Development and application of an efficient method for performing modal analysis of steam generator tubes in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Huinam [Dept of Mechanical and Aerospace Engineering, Sunchon National University, Sunchon, 540-742 (Korea, Republic of); Boo, Myung-Hwan [Korea Hydro and Nuclear Power Company, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Park, Chi-Yong [KEPCO Research Institute, Yuseong-Gu, Daejeon 305-380 (Korea, Republic of); Ryu, Ki-Wahn, E-mail: kwryu@chonbuk.ac.k [Department of Aerospace Engineering, Chonbuk National University, 664-14, Deogjin-Dong, Jeonju 561-756 (Korea, Republic of)

    2010-10-15

    with the FIV analysis program, it gives an amazing benefit, which makes the FIV analysis of all tubes possible within a limited time during the design or maintenance period. Using the developed program, the stability ratio regarding the fluid-elastic instability and the amplitude of vibration resulting from the turbulence flow excitation can be calculated for all tubes according the standard ASME Code, therefore, much more reliable design of the steam generator against the FIV related failures can be achieved. For an operating plant, there is a requirement that every single tube must be quantitatively checked whether wear would be more than 40% in thickness during the next operation period. If yes, the tube must be plugged to prevent severe failure including the tube wall penetration. In order to decide the tube plugging, which leads the plant performance degradation, the wear prediction is required. The wear prediction analysis needs wear data by ultrasonic testing and modal property data of tubes. PIAT-MODE will be a power tool enabling the wear prediction in a limited maintenance period by supplying modal data for all tubes.

  8. Simple preparation of plant epidermal tissue for laser microdissection and downstream quantitative proteome and carbohydrate analysis

    Directory of Open Access Journals (Sweden)

    Christian eFalter

    2015-03-01

    Full Text Available The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape – liquid cover glass technique for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the adhesive tape – liquid cover glass technique for simple leaf epidermis preparation and the compatibility to laser microdissection and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant-microbe interaction with their potential outreach into crop breeding.

  9. Be-Breeder - an application for analysis of genomic data in plant breeding

    OpenAIRE

    Matias,Filipe Inácio; Granato,Italo Stefanine Correa; Dequigiovanni,Gabriel; Fritsche-Neto,Roberto

    2017-01-01

    Abstract Be-Breeder is an application directed toward genetic breeding of plants, developed through the Shiny package of the R software, which allows different phenotype and molecular (marker) analysis to be undertaken. The section for analysis of molecular data of the Be-Breeder application makes it possible to achieve quality control of genotyping data, to obtain genomic kinship matrices, and to analyze genome selection, genome association, and genetic diversity in a simple manner on line. ...

  10. Plant regeneration of Erigeron breviscapus (vant.) Hand. Mazz. and its chromatographic fingerprint analysis for quality control.

    Science.gov (United States)

    Liu, Chun-Zhao; Gao, Min; Guo, Bin

    2008-01-01

    An efficient micropropagation system for Erigeron breviscapus (vant.) Hand. Mazz., an important medicinal plant for heart disease, has been developed. Shoot organogenesis occurred from E. breviscapus leaf explants inoculated on a medium supplemented with a combination of plant growth regulators. On average, 17 shoots per leaf explant were produced after 30 days when they were cultured on MS basal salts and vitamin medium containing 5 microM 6-benzylaminopurine (BAP) and 5 microM 1-naphthaleneacetic acid (NAA). All the regenerated shoots formed complete plantlets on a medium containing 2.5-10 microM indole-3-butyric acid (IBA) within 30 days, and 80.2% of the regenerated plantlets survived and grew vigorously in field conditions. Based on the variation in common peaks and the produced amount of the most important bioactive component, scutellarin, a high performance liquid chromatography (HPLC) fingerprinting system was developed for quality control of these micropropagated plants. Chemical constituents in E. breviscapus micropropagated plants varied during plant development from regeneration to maturation, the latter of which showed the most similar phytochemical profile in comparison with mother plants. The regeneration protocol and HPLC fingerprint analysis developed here provided a new approach to quality control of micropropagated plants producing secondary metabolites with significant implications for germplasm conservation.

  11. Esau's Plant anatomy: meristems, cells, and tissues of the plant body : their structure, function, and development

    National Research Council Canada - National Science Library

    Evert, Ray Franklin; Esau, Katherine; Eichhorn, Susan E

    2006-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix Chapter 1 Structure and Development of the Plant Body- An Overview . . . . . . . . . . . . . . . . . . . . . . . . 1 Internal Organization of the Plant Body...

  12. Exergetic and environmental analysis of a pulverized coal power plant

    International Nuclear Information System (INIS)

    Restrepo, Álvaro; Miyake, Raphael; Kleveston, Fábio; Bazzo, Edson

    2012-01-01

    This paper presents the results of exergetic and environmental analysis of a typical pulverized coal power plant located in Brazil. The goal was to quantify both the exergy destruction and the environmental impact associated with a thermal power plant. The problem boundary consists of the entire coal delivery route, including mining and beneficiation, transport, pre-burning processes and the power plant. The used data were obtained mainly from field measurements taken in all system processes, from mining to the power plant. The study focused only on the operation period. Previous works have shown that the construction and decommissioning periods contribute less than 1% of the environmental impact. The exergetic analysis was based on the second law of thermodynamics while the environmental analysis was based on life cycle assessment (LCA) using SimaPro 7.2, focussing on the climate change and acidification impact categories. The CO 2 -eq emission was 1300 kg per MWh. The highest degree of environmental impact occurred during the combustion process. The exergetic and environmental analysis provides a tool to evaluate irreversibilities and the environmental impact, identifying the most significant stages and equipment of the entire power generation process. -- Highlights: ► Exergetic and environmental analysis of a typical Brazilian PC power plant. ► Environmental impact associated with the mining, transport and thermal power plant. ► Life cycle assessment used for environmental analysis. ► Acidification impact category evaluated using Eco-indicator 99. ► Climate change impact evaluation using (Global Warming Potential) GWP 100a.

  13. [Plant-specific pressured thermal shock safety analysis report

    International Nuclear Information System (INIS)

    Selby, D.L.

    1985-01-01

    Information is presented concerning plant data; determination of detailed PTS sequences for analysis; fracture mechanics analysis; integration of analysis; sensitivity and uncertainty analyses of through-wall crack frequencies; and effect of corrective actions on vessel through-wall crack frequency

  14. Economic analysis of nuclear power plant for decision making in Thailand

    International Nuclear Information System (INIS)

    Siri-Udomrat, Thawee

    2002-01-01

    According to National Economic and Social Development's forecast, electricity demand in Thailand from now up to the year 2011 will rise more than 147 %. So, the Eighth-Ninth National Economic and Social Development Plans (NESDP) (1997-2006) has launched the main energy resources, imported oil, coal, imported coal, natural gas and hydro. From the Tenth NESDP up (2007-) may launch the energy option more, such as liquid natural gas and nuclear. Although Thailand has reserved lignite and natural gas enough for more than two centuries, we have found that the energy resources are inadequate and expected to be imported for over 60%. So nuclear energy is necessary and suitable for alternative source of energy. The main factors used for power generating cost calculation of nuclear power plant are capital investment cost, nuclear fuel cycle cost, operation and maintenance cost, and infrastructure cost. Consequently, the parameter which indicating the performance of power plant and power generation cost are load factor, net power rating, and economic life. Another variable group are interest rate, escalation rate, and discount rate. The overhead and operation cost are always changed due to the economic or other variants of interest rate, and out of schedule operation or the changing of fuel cost. In order to compare each type of power plant, we had to use present worth value analytical technique to calculate the the levelized energy cost (mills/kWh) by giving present worth value of average power generation cost equal to present worth value of total cost of the project and operation of power plant. The economic parameter will affect exchange rate and discount rate calculation. To assess the economic analysis of cost and cost benefit of Electricity Generating Authority of Thailand (EGAT) project, real interest rate for discount rate (social discount rate) will be calculated. By the year 1992-1998, the social discount rate of Thailand is estimated at about 7.59%. For studying

  15. Download - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods ...t_db_link_en.zip (36.3 KB) - 6 Genome analysis methods pgdbj_dna_marker_linkage_map_genome_analysis_methods_... of This Database Site Policy | Contact Us Download - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive ...

  16. Third international congress of plant molecular biology: Molecular biology of plant growth and development

    Energy Technology Data Exchange (ETDEWEB)

    Hallick, R.B. [ed.

    1995-02-01

    The Congress was held October 6-11, 1991 in Tucson with approximately 3000 scientists attending and over 300 oral presentations and 1800 posters. Plant molecular biology is one of the most rapidly developing areas of the biological sciences. Recent advances in the ability to isolate genes, to study their expression, and to create transgenic plants have had a major impact on our understanding of the many fundamental plant processes. In addition, new approaches have been created to improve plants for agricultural purposes. This is a book of presentation and posters from the conference.

  17. Status on the Component Models Developed in the Modelica Framework: High-Temperature Steam Electrolysis Plant & Gas Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Suk Kim, Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-10-01

    This report has been prepared as part of an effort to design and build a modeling and simulation (M&S) framework to assess the economic viability of a nuclear-renewable hybrid energy system (N-R HES). In order to facilitate dynamic M&S of such an integrated system, research groups in multiple national laboratories have been developing various subsystems as dynamic physics-based components using the Modelica programming language. In fiscal year (FY) 2015, Idaho National Laboratory (INL) performed a dynamic analysis of two region-specific N-R HES configurations, including the gas-to-liquid (natural gas to Fischer-Tropsch synthetic fuel) and brackish water reverse osmosis desalination plants as industrial processes. In FY 2016, INL has developed two additional subsystems in the Modelica framework: a high-temperature steam electrolysis (HTSE) plant and a gas turbine power plant (GTPP). HTSE has been proposed as a high priority industrial process to be integrated with a light water reactor (LWR) in an N-R HES. This integrated energy system would be capable of dynamically apportioning thermal and electrical energy (1) to provide responsive generation to the power grid and (2) to produce alternative industrial products (i.e., hydrogen and oxygen) without generating any greenhouse gases. A dynamic performance analysis of the LWR/HTSE integration case was carried out to evaluate the technical feasibility (load-following capability) and safety of such a system operating under highly variable conditions requiring flexible output. To support the dynamic analysis, the detailed dynamic model and control design of the HTSE process, which employs solid oxide electrolysis cells, have been developed to predict the process behavior over a large range of operating conditions. As first-generation N-R HES technology will be based on LWRs, which provide thermal energy at a relatively low temperature, complementary temperature-boosting technology was suggested for integration with the

  18. Development of best estimate auditing code for CANDU thermal hydraulic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Lee, W. J.; Lim, H. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2000-03-15

    The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model if existing PWR auditing tool, i.e. RELAP5/MOD3. This scope of project is a third step of the whole project, and expand the RELAP5/MOD3/CANDU version for implementation of LOCA analysis. There are three main area of model development, i.e. moody critical flow model, flow regime model of horizontal CANDU bundle, and fuel element heatup model when the stratification occurs. Newly developed version, namely RELAP5/MOD3/CANDU+ is applicable to CANDU plant analysis with keeping the function of light water reactor analysis. The limited validations of model installation were performed. Assessment of CHF model using AECL separated effect test and calculation for Wolsong 2 plant were performed also for the applicability test of the developed version.

  19. Analysis and Design of the Logistics System for Rope Manufacturing Plant

    Directory of Open Access Journals (Sweden)

    Sun Xue

    2017-01-01

    Full Text Available In order to promote logistics system for manufacturing plant, this paper proposed a new design for the logistics system of a rope manufacturing plant. Through the analysis in the aspects of workshop facility layout, material handling and inventory management, the original logistics system of the plant is optimized. According to the comparison of the simulation results between original and optimized design, the optimized model has the higher productive efficiency. This can provide the references for the other manufacturing plant in analysis and design of the logistics system to improve plant efficiency.

  20. Chemical Analysis of Plants that Poison Livestock: Successes, Challenges, and Opportunities.

    Science.gov (United States)

    Welch, Kevin D; Lee, Stephen T; Cook, Daniel; Gardner, Dale R; Pfister, James A

    2018-04-04

    Poisonous plants have a devastating impact on the livestock industry as well as human health. To fully understand the effects of poisonous plants, multiple scientific disciplines are required. Chemical analysis of plant secondary compounds is key to identifying the responsible toxins, characterizing their metabolism, and understanding their effects on animals and humans. In this review, we highlight some of the successes in studying poisonous plants and mitigating their toxic effects. We also highlight some of the remaining challenges and opportunities with regards to the chemical analysis of poisonous plants.

  1. Development of matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) for plant metabolite analysis

    Energy Technology Data Exchange (ETDEWEB)

    Korte, Andrew R [Iowa State Univ., Ames, IA (United States)

    2014-12-01

    This thesis presents efforts to improve the methodology of matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) as a method for analysis of metabolites from plant tissue samples. The first chapter consists of a general introduction to the technique of MALDI-MSI, and the sixth and final chapter provides a brief summary and an outlook on future work.

  2. Thermal coupling system analysis of a nuclear desalination plant

    International Nuclear Information System (INIS)

    Adak, A.K.; Srivastava, V.K.; Tewari, P.K.

    2010-01-01

    When a nuclear reactor is used to supply steam for desalination plant, the method of coupling has a significant technical and economic impact. The exact method of coupling depends upon the type of reactor and type of desalination plant. As a part of Nuclear Desalination Demonstration Project (NDDP), BARC has successfully commissioned a 4500 m 3 /day MSF desalination plant coupled to Madras Atomic Power Station (MAPS) at Kalpakkam. Desalination plant coupled to nuclear power plant of Pressurized Heavy Water Reactor (PHWR) type is a good example of dual-purpose nuclear desalination plant. This paper presents the thermal coupling system analysis of this plant along with technical and safety aspects. (author)

  3. Analysis of human factor in operation of nuclear power plants

    International Nuclear Information System (INIS)

    Husseiny, A.A.; Sabri, Z.A.

    1980-01-01

    A taxonomy of operator errors is developed here to provide a scheme for compiling data from field experience according to their significance to the operation and their influence on the plant performance. The reversibility of operator actions is taken as the basis of detection of the relevances of errors to the overall operation. In addition, distinction is made between system errors, such as inadequate instrumentation or logistics, and 'operator errors', which indicate that the operator is involved in inducing an operational error rather than being uniquely responsible for an incident. The developed taxonomy can be used for evaluation of the performance of operators during scheduled training programs. Identification of each class of errors would assist in upgrading performance of operators in a given plant and in filing occurrence reports that help in revising safety provisions or operation procedures. The scheme is suitable for sorting and storing failure information in a data library for ease of retrieval by reliability analysis codes. (orig.) [de

  4. Risk analysis for nuclear power plants

    International Nuclear Information System (INIS)

    Koelzer, W.

    1983-01-01

    The German risk analysis program for nuclear power plants aiming at the man and the environment is presented. An accident consequence model to calculate the radiological impact and the potential health effects is described. (E.G.) [pt

  5. Nuclear power plant fire protection: philosophy and analysis

    International Nuclear Information System (INIS)

    Berry, D.L.

    1980-05-01

    This report combines a fire severity analysis technique with a fault tree methodology for assessing the importance to nuclear power plant safety of certain combinations of components and systems. Characteristics unique to fire, such as propagation induced by the failure of barriers, have been incorporated into the methodology. By applying the resulting fire analysis technique to actual conditions found in a representative nuclear power plant, it is found that some safety and nonsafety areas are both highly vulnerable to fire spread and impotant to overall safety, while other areas prove to be of marginal importance. Suggestions are made for further experimental and analytical work to supplement the fire analysis method

  6. Are Public-Private Partnerships an Appropriate Governance Structure for Power Plants? A Transaction Cost Analysis

    Science.gov (United States)

    Ho, S. Ping; Hsu, Yaowen

    2015-04-01

    In order to meet the requirements of the rapid economic growth, many countries demand an increasing number of power plants to meet the increasing electricity usage. Since high capital requirements of power plants present a big issue for these countries, PPPs have been considered an alternative to provide power plant infrastructure. In particular, in emerging or developing countries, PPPs may be the fastest way to provide the infrastructure needed. However, while PPPs are a promising alternative to providing various types of infrastructure, many failed power plant PPP projects have made it evident that PPPs, under certain situations, can be very costly or even a wrong choice of governance structure. While the higher efficiency due to better pooling of resources is greatly emphasized in Public-Private Partnerships (PPPs), the embedded transaction inefficiencies are often understated or even ignored. Through the lens of Transaction Cost Economics (TCE), this paper aims to answer why and when PPPs may become a costly governance structure for power plants. Specifically, we develop a TCE-based theory of PPPs as a governance structure. This theory suggests that three major opportunism problems embedded in infrastructure PPPs are possible to cause substantial transaction costs and render PPPs a costly governance structure. The three main opportunism problems are principal-principal problem, firm's hold-up problem, and government-led hold-up problem. Moreover, project and institutional characteristics that may lead to opportunism problems are identified. Based on these characteristics, an opportunism-focused transaction cost analysis (OTCA) for PPPs as a governance structure is proposed to supplement the current practice of PPP feasibility analysis. As a part of theory development, a case study of PPP power plants is performed to evaluate the proposed theory and to illustrate how the proposed OTCA can be applied in practice. Policies and administration strategies for power

  7. Development of assessment methodology for plant configuration control

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Chang Hyeon; Yu, Yeong Woo; Cho, Jae Seon; Kim, Ju Yeol; Kim, Yun Ik; Yang, Hui Chang; Park, Gang Min; Hur, Byeong Gil [Seoul National Univ., Seoul (Korea, Republic of)

    1999-03-15

    The purpose of this study is the development of effective and overall assessment methodology which reflects the characteristics of plants for the surveillance, maintenance, repair and operation of Nuclear Power Plant. The development of this methodology can contribute to enhance safety. In the first year of this study, recent researches are surveyed and concept definition, procedures, current PSA methodologies, implementation of various models are evaluated. Through this survey, systematic assessment methodology is suggested.

  8. Development of realistic thermal hydraulic system analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, B. D; Kim, K. D. [and others

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others.

  9. Development of realistic thermal hydraulic system analysis code

    International Nuclear Information System (INIS)

    Lee, Won Jae; Chung, B. D; Kim, K. D.

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others

  10. EPRI compact analyzer: A compact, interactive and color-graphics based simulator for power plant analysis

    International Nuclear Information System (INIS)

    Ipakchi, A.; Khadem, M.; Chen, H.; Colley, R.W.

    1986-01-01

    This paper presents the results of an EPRI sponsored project (RP2395-2) for design and development of an interactive, and color graphics based simulator for power plant analysis. The system is called Compact Analyzer and can be applied to engineering and training applications in the utility industry. The Compact Analyzer's software and system design are described. Results of two demonstration system for a nuclear plant, and a fossil plant are presented, and the applications of the Compact Analyzer to operating procedures evaluation are discussed

  11. Interlaboratory Comparetive Studies of Soil/Plant Analysis Methods ...

    African Journals Online (AJOL)

    The information on analytical techniques that are used for soil and plant analyses in different agricultural laboratories of Kenya was gathered and compiled in table forms. Performance of six laboratories was compaired for different elements and parameters of soil and plant samples. Chemical analysis of identical samples ...

  12. Plant-wide integrated equipment monitoring and analysis system

    International Nuclear Information System (INIS)

    Morimoto, C.N.; Hunter, T.A.; Chiang, S.C.

    2004-01-01

    A nuclear power plant equipment monitoring system monitors plant equipment and reports deteriorating equipment conditions. The more advanced equipment monitoring systems can also provide information for understanding the symptoms and diagnosing the root cause of a problem. Maximizing the equipment availability and minimizing or eliminating consequential damages are the ultimate goals of equipment monitoring systems. GE Integrated Equipment Monitoring System (GEIEMS) is designed as an integrated intelligent monitoring and analysis system for plant-wide application for BWR plants. This approach reduces system maintenance efforts and equipment monitoring costs and provides information for integrated planning. This paper describes GEIEMS and how the current system is being upgraded to meet General Electric's vision for plant-wide decision support. (author)

  13. Development of Advanced Non-LOCA Analysis Methodology for Licensing

    International Nuclear Information System (INIS)

    Jang, Chansu; Um, Kilsup; Choi, Jaedon

    2008-01-01

    KNF is developing a new design methodology on the Non-LOCA analysis for the licensing purpose. The code chosen is the best-estimate transient analysis code RETRAN and the OPR1000 is aimed as a target plant. For this purpose, KNF prepared a simple nodal scheme appropriate to the licensing analyses and developed the designer-friendly analysis tool ASSIST (Automatic Steady-State Initialization and Safety analysis Tool). To check the validity of the newly developed methodology, the single CEA withdrawal and the locked rotor accidents are analyzed by using a new methodology and are compared with current design results. Comparison results show a good agreement and it is concluded that the new design methodology can be applied to the licensing calculations for OPR1000 Non-LOCA

  14. Development, Implementation, and Evaluation of a Strategic Plan for Improving Physical Plant Management at Southwest Texas Junior College.

    Science.gov (United States)

    Box, Wilford Winston

    A study was conducted at Southwest Texas Junior College (STJC) to assess current management practices used by the physical plant maintenance department (PPMD) and to develop a strategic plan for physical plant management. Procedures included an analysis of current management practices and systems that affect physical resources, and periodic and…

  15. Development of model reference adaptive control theory for electric power plant control applications

    Energy Technology Data Exchange (ETDEWEB)

    Mabius, L.E.

    1982-09-15

    The scope of this effort includes the theoretical development of a multi-input, multi-output (MIMO) Model Reference Control (MRC) algorithm, (i.e., model following control law), Model Reference Adaptive Control (MRAC) algorithm and the formulation of a nonlinear model of a typical electric power plant. Previous single-input, single-output MRAC algorithm designs have been generalized to MIMO MRAC designs using the MIMO MRC algorithm. This MRC algorithm, which has been developed using Command Generator Tracker methodologies, represents the steady state behavior (in the adaptive sense) of the MRAC algorithm. The MRC algorithm is a fundamental component in the MRAC design and stability analysis. An enhanced MRC algorithm, which has been developed for systems with more controls than regulated outputs, alleviates the MRC stability constraint of stable plant transmission zeroes. The nonlinear power plant model is based on the Cromby model with the addition of a governor valve management algorithm, turbine dynamics and turbine interactions with extraction flows. An application of the MRC algorithm to a linearization of this model demonstrates its applicability to power plant systems. In particular, the generated power changes at 7% per minute while throttle pressure and temperature, reheat temperature and drum level are held constant with a reasonable level of control. The enhanced algorithm reduces significantly control fluctuations without modifying the output response.

  16. Development of a Computer Program for the Analysis Logistics of PWR Spent Fuels

    International Nuclear Information System (INIS)

    Choi, Heui Joo; Choi, Jong Won; Cha, Jeong Hun

    2008-01-01

    It is expected that the temporary storage facilities at the nuclear power plants will be full of the spent fuels within 10 years. Provided that a centralized interim storage facility is constructed along the coast of the Korean peninsula to solve this problem, a substantial amount of spent fuels should be transported by sea or by land every year. In this paper we developed a computer program for the analysis of transportation logistics of the spent fuels from 4 different nuclear power plant sites to the hypothetical centralized interim storage facility and the final repository. Mass balance equations were used to analyze the logistics between the nuclear power plants and the interim storage facility. To this end a computer program, CASK, was developed by using the VISUAL BASIC language. The annual transportation rates of spent fuels from the four nuclear power plant sites were determined by using the CASK program. The parameter study with the program illustrated the easiness of logistics analysis. The program could be used for the cost analysis of the spent fuel transportation as well.

  17. Canadian CANDU plant data systems for technical surveillance and analysis

    International Nuclear Information System (INIS)

    Deverno, M.; Pothier, H.; Xian, C.; Grosbois, J. De; Bosnich, M.

    1996-01-01

    Plant data systems are emerging as a critical plant support system technology. In particular, plant-wide Historical Data Systems (HDS) are pivotal to the successful implementation of technical surveillance and analysis programs supporting plant operations, maintenance, safety, and licensing activities. In partnership with Canadian CANDU utility and design organizations, AECL has conducted a review of current Canadian CANDU HDS approaches with emphasis on understanding the existing functionality and uses of plant historical data systems, their future needs and benefits. The results is a vision of a plant-wide HDS providing seamless access to both near real-time and historical data, user tool-kits for data visualization and analysis, and data management of the large volume of data acquired during the life of a plant. The successful implementation of the HDS vision will lead to higher capability and capacity factors while minimizing Operations, Maintenance, and Administration (OM and A) costs. (author). 5 refs, 3 figs

  18. Canadian CANDU plant data systems for technical surveillance and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Deverno, M; Pothier, H; Xian, C [Atomic Energy of Canada Ltd., Control Centre Technology Branch, Fredericton, NB (Canada); Grosbois, J De; Bosnich, M [Atomic Energy of Canada Ltd., Control Centre Technology Branch, Chalk River, ON (Canada). Chalk River Labs.

    1997-12-31

    Plant data systems are emerging as a critical plant support system technology. In particular, plant-wide Historical Data Systems (HDS) are pivotal to the successful implementation of technical surveillance and analysis programs supporting plant operations, maintenance, safety, and licensing activities. In partnership with Canadian CANDU utility and design organizations, AECL has conducted a review of current Canadian CANDU HDS approaches with emphasis on understanding the existing functionality and uses of plant historical data systems, their future needs and benefits. The results is a vision of a plant-wide HDS providing seamless access to both near real-time and historical data, user tool-kits for data visualization and analysis, and data management of the large volume of data acquired during the life of a plant. The successful implementation of the HDS vision will lead to higher capability and capacity factors while minimizing Operations, Maintenance, and Administration (OM and A) costs. (author). 5 refs, 3 figs.

  19. [Neotropical plant morphology].

    Science.gov (United States)

    Pérez-García, Blanca; Mendoza, Aniceto

    2002-01-01

    An analysis on plant morphology and the sources that are important to the morphologic interpretations is done. An additional analysis is presented on all published papers in this subject by the Revista de Biología Tropical since its foundation, as well as its contribution to the plant morphology development in the neotropics.

  20. Development of Human Performance Analysis and Advanced HRA Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Won Dea; Park, Jin Kyun; Kim, Jae Whan; Kim, Seong Whan; Kim, Man Cheol; Ha, Je Joo

    2007-06-15

    The purpose of this project is to build a systematic framework that can evaluate the effect of human factors related problems on the safety of nuclear power plants (NPPs) as well as develop a technology that can be used to enhance human performance. The research goal of this project is twofold: (1) the development of a human performance database and a framework to enhance human performance, and (2) the analysis of human error with constructing technical basis for human reliability analysis. There are three kinds of main results of this study. The first result is the development of a human performance database, called OPERA-I/II (Operator Performance and Reliability Analysis, Part I and Part II). In addition, a standard communication protocol was developed based on OPERA to reduce human error caused from communication error in the phase of event diagnosis. Task complexity (TACOM) measure and the methodology of optimizing diagnosis procedures were also finalized during this research phase. The second main result is the development of a software, K-HRA, which is to support the standard HRA method. Finally, an advanced HRA method named as AGAPE-ET was developed by combining methods MDTA (misdiagnosis tree analysis technique) and K-HRA, which can be used to analyze EOC (errors of commission) and EOO (errors of ommission). These research results, such as OPERA-I/II, TACOM, a standard communication protocol, K-HRA and AGAPE-ET methods will be used to improve the quality of HRA and to enhance human performance in nuclear power plants.

  1. Development of Human Performance Analysis and Advanced HRA Methodology

    International Nuclear Information System (INIS)

    Jung, Won Dea; Park, Jin Kyun; Kim, Jae Whan; Kim, Seong Whan; Kim, Man Cheol; Ha, Je Joo

    2007-06-01

    The purpose of this project is to build a systematic framework that can evaluate the effect of human factors related problems on the safety of nuclear power plants (NPPs) as well as develop a technology that can be used to enhance human performance. The research goal of this project is twofold: (1) the development of a human performance database and a framework to enhance human performance, and (2) the analysis of human error with constructing technical basis for human reliability analysis. There are three kinds of main results of this study. The first result is the development of a human performance database, called OPERA-I/II (Operator Performance and Reliability Analysis, Part I and Part II). In addition, a standard communication protocol was developed based on OPERA to reduce human error caused from communication error in the phase of event diagnosis. Task complexity (TACOM) measure and the methodology of optimizing diagnosis procedures were also finalized during this research phase. The second main result is the development of a software, K-HRA, which is to support the standard HRA method. Finally, an advanced HRA method named as AGAPE-ET was developed by combining methods MDTA (misdiagnosis tree analysis technique) and K-HRA, which can be used to analyze EOC (errors of commission) and EOO (errors of ommission). These research results, such as OPERA-I/II, TACOM, a standard communication protocol, K-HRA and AGAPE-ET methods will be used to improve the quality of HRA and to enhance human performance in nuclear power plants

  2. A novel family of small proteins that affect plant development

    Energy Technology Data Exchange (ETDEWEB)

    John Charles Walker

    2011-04-29

    The DVL genes represent a new group of plant proteins that influence plant growth and development. Overexpression of DVL1, and other members of the DVL family, causes striking phenotypic changes. The DVL proteins share sequence homology in their C-terminal half. Point mutations in the C-terminal domain show it is necessary and deletion studies demonstrate the C-terminal domain is sufficient to confer the overexpression phenotypes. The phenotypes observed, and the conservation of the protein sequence in the plant kingdom, does suggest the DVL proteins have a role in modulating plant growth and development. Our working hypothesis is the DVL proteins function as regulators of cellular signaling pathways that control growth and development.

  3. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  4. Off-design performance analysis of organic Rankine cycle using real operation data from a heat source plant

    International Nuclear Information System (INIS)

    Kim, In Seop; Kim, Tong Seop; Lee, Jong Jun

    2017-01-01

    Highlights: • ORC systems driven by waste or residual heat from a combined cycle cogeneration plant were analyzed. • An off-design analysis model was developed and validated with commercial ORC data. • A procedure to predict the actual variation of ORC performance using the off-design model was set up. • The importance of using long-term operation data of the heat source plant was demonstrated. - Abstract: There has been increasing demand for cogeneration power plants, which provides high energy utilization. Research on upgrading power plant performance is also being actively pursued. The organic Rankine cycle (ORC) can operate with mid- and low-temperature heat sources and is suitable for enhancing performance of existing power plants. In this study, an off-design analysis model for the ORC was developed, which is driven by waste heat or residual heat from a combined cycle cogeneration plant. The applied heat sources are the exhaust gas from the heat recovery steam generator (Case 1) and waste heat from a heat storage unit (Case 2). Optimal design points of the ORC were selected based on the design heat source condition of each case. Then, the available ORC power output for each case was predicted using actual long-term plant operation data and a validated off-design analysis model. The ORC capacity of Case 2 was almost two times larger than that of Case 1. The predicted average electricity generation of both cases was less than the design output. The results of this paper reveal the importance of both the prediction of electricity generation using actual plant operation data and the need for optimal ORC system sizing.

  5. DCD – a novel plant specific domain in proteins involved in development and programmed cell death

    Directory of Open Access Journals (Sweden)

    Doerks Tobias

    2005-07-01

    Full Text Available Abstract Background Recognition of microbial pathogens by plants triggers the hypersensitive reaction, a common form of programmed cell death in plants. These dying cells generate signals that activate the plant immune system and alarm the neighboring cells as well as the whole plant to activate defense responses to limit the spread of the pathogen. The molecular mechanisms behind the hypersensitive reaction are largely unknown except for the recognition process of pathogens. We delineate the NRP-gene in soybean, which is specifically induced during this programmed cell death and contains a novel protein domain, which is commonly found in different plant proteins. Results The sequence analysis of the protein, encoded by the NRP-gene from soybean, led to the identification of a novel domain, which we named DCD, because it is found in plant proteins involved in development and cell death. The domain is shared by several proteins in the Arabidopsis and the rice genomes, which otherwise show a different protein architecture. Biological studies indicate a role of these proteins in phytohormone response, embryo development and programmed cell by pathogens or ozone. Conclusion It is tempting to speculate, that the DCD domain mediates signaling in plant development and programmed cell death and could thus be used to identify interacting proteins to gain further molecular insights into these processes.

  6. Development of graphic display program of reactor operating parameters for emergency exercise at nuclear power plants

    International Nuclear Information System (INIS)

    Okuda, Yasunori; Yoshida, Yoshitaka; Gotou, Kazuko

    2001-01-01

    A scenario of nuclear emergency exercise based on the result of accident progress analysis is expected to ensure effective training. Thereupon a new graphic display program for reactor operating parameters has been developed to present real-time of plant process values (parameters), released radioactivities from the plant, and dose rate data around the site calculated by using the accident analysis code MAAP4 and other codes. This system has a trend graph screen displaying reactor operating parameters, an environmental dose rate summary screen indicating dose rate distribution around the site on the map, and a plant parameters summary screen showing important plant parameters on a simplified plant system diagram. One screen can be switched to another any time. It also has a jump-function easily accessing any stage during the exercise scenario in accordance with progress of the exercise. As a result of the application of this system to a real nuclear emergency exercise, it has been verified that this system is quite useful for confirming the parameters when the nuclear emergency exercise starts and the licensee reports the plant conditions to related bodied. (author)

  7. Development of graphic display program of reactor operating parameters for emergency exercise at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Yasunori; Yoshida, Yoshitaka [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan); Gotou, Kazuko [Kansai Electric Power Co., Inc., Osaka (Japan)

    2001-09-01

    A scenario of nuclear emergency exercise based on the result of accident progress analysis is expected to ensure effective training. Thereupon a new graphic display program for reactor operating parameters has been developed to present real-time of plant process values (parameters), released radioactivities from the plant, and dose rate data around the site calculated by using the accident analysis code MAAP4 and other codes. This system has a trend graph screen displaying reactor operating parameters, an environmental dose rate summary screen indicating dose rate distribution around the site on the map, and a plant parameters summary screen showing important plant parameters on a simplified plant system diagram. One screen can be switched to another any time. It also has a jump-function easily accessing any stage during the exercise scenario in accordance with progress of the exercise. As a result of the application of this system to a real nuclear emergency exercise, it has been verified that this system is quite useful for confirming the parameters when the nuclear emergency exercise starts and the licensee reports the plant conditions to related bodied. (author)

  8. Development and utilization of indicators to summarize and represent performance of nuclear power plants

    International Nuclear Information System (INIS)

    Kawaguchi, Hiroshi; Kakubari, Yukihiro; Kikkawa, Shigeru

    1996-01-01

    We have developed eight performance indicators (PIs) that enable quantitative and overall comprehension of operating performance. Among these eight indicators there are 'capability factor' 'incidents and failures' and 'radiation exposure and radioactive wastes', all used to represent the safety and reliability of a nuclear power plant. Results of analysis and evaluation by means of these PIs are distributed to the regulatory agency and other organizations every year, for the benefit of all involved. We have also been examining a technique that may allow synthesis of these PIs into a single, simpler comprehensive indicator that covers all aspects of plant performance. In this report, we present analysis and evaluation of the PIs, the technique to provide a comprehensive performance indicators and actual application. (author)

  9. Exergy analysis of a gas turbine power plant | Oko | Journal of ...

    African Journals Online (AJOL)

    Exergy analysis of a 100MW gas turbine power plant that works on the. Brayton cycle is presented. The average increase in the thermodynamic degradation of the plant over the period of six (6) years at three different levels of load was assessed. The exergy analysis of the plant was done on two sets of data: one from the ...

  10. Analysis of Developed Country's Export Contract and Contract Risk and Development of Sample Contract and Guide

    International Nuclear Information System (INIS)

    Lee, D. S.; Oh, K. B.; Chung, W. S.; Lee, K. S.; Yun, S. W.; Lee, J. H.; Lee, B. W.; Kim, H. J.; Yang, M. H.

    2008-10-01

    This paper aimed at developing legal support for the non nuclear power plant industry's export. This study aids establishing government policy and promoting export of non nuclear power plant industry. This paper treated analysis of contractual risk and caution before entering into contract. To promote continuing export result, governmental and legal aids and guide will be required continuously. This study showed risks related with export contract and explained export control acts and procedures

  11. Improvement of the nuclear plant analyzer for Korean Standard Nuclear Power Plants

    International Nuclear Information System (INIS)

    Choi, Sung Soo; Han, Byoung Sub; Suh, Jae Seung; Son, Dae Seong

    2005-04-01

    Accurate analysis of the operating characteristics of Nuclear Power Plants provides valuable information for both norman and abnormal operation. The information can be used for the enhancement of plant performance and safety. Usually, such analysis is performed using computer codes used for plant design or simulators. However, their usages are limited because special expertise is required to use the computer codes and simulators are not portable. Therefore, it deemed necessary to develop an NPA which minimizes those limitations and can be used for the analysis and simulation of Nuclear Power Plants. The purpose of this study is to develop a real-time best-estimate NPA for the Korean Nuclear Power Plants(KSNP). The NPA is an interactive, high fidelity engineering simulator. NPA combines the process model simulating the plant behavior with the latest computer technology such as Graphical User Interface(GUI) and simulation executive for enhanced user interface. The process model includes models for a three-dimensional reactor core, the NSSS, secondary system including turbine and feedtrain, safety auxiliary systems, and various control systems. Through the verification and validation of the NPA, it was demonstrated that the NPA can realistically simulate the plant behaviors during transient and accident conditions

  12. Development of computer-aided design and production system for nuclear power plant

    International Nuclear Information System (INIS)

    Ishii, Masanori

    1983-01-01

    The technically required matters related to the design and production of nuclear power stations tended to increase from the viewpoint of the safety and reliability, and it is indispensable to cope with such technically required matters skillfully for the rationalization of the design and production and for the construction of highly reliable plants. Ishikawajima Harima Heavy Industries Co., Ltd., has developed the computer-aided design data information and engineering system which performs dialogue type design and drawing, and as the result, the design-production consistent system is developed to do stress analysis, production design, production management and the output of data for numerically controlled machine tools consistently. In this paper, mainly the consistent system in the field of plant design centering around piping and also the computer system for the design of vessels and others are outlined. The features of the design works for nuclear power plants, the rationalization of the design and production management of piping and vessels, and the application of the CAD system to other general equipment and improvement works are reported. This system is the powerful means to meet the requirement of heightening quality and reducing cost. (Kako, I.)

  13. Flood risk analysis procedure for nuclear power plants

    International Nuclear Information System (INIS)

    Wagner, D.P.

    1982-01-01

    This paper describes a methodology and procedure for determining the impact of floods on nuclear power plant risk. The procedures are based on techniques of fault tree and event tree analysis and use the logic of these techniques to determine the effects of a flood on system failure probability and accident sequence occurrence frequency. The methodology can be applied independently or as an add-on analysis for an existing risk assessment. Each stage of the analysis yields useful results such as the critical flood level, failure flood level, and the flood's contribution to accident sequence occurrence frequency. The results of applications show the effects of floods on the risk from nuclear power plants analyzed in the Reactor Safety Study

  14. Symbiotic regulation of plant growth, development and reproduction

    Science.gov (United States)

    Russell J. Rodriguez; D. Carl Freeman; E. Durant McArthur; Yong Ok Kim; Regina S. Redman

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at...

  15. 1000kW on-site PAFC power plant development and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Satomi, Tomohide; Koike, Shunichi [Phosphoric Acid Fuel Cell Technology Research Association (PAFC-TRA), Osaka (Japan); Ishikawa, Ryou [New Energy and Industrial Technology Development Organization (NEDO), Tokyo (Japan)

    1996-12-31

    Phosphoric Acid Fuel Cell Technology Research Association (PAFC-TRA) and New Energy and Industrial Technology Development Organization (NEDO) have been conducting a joint project on development of a 5000kW urban energy center type PAFC power plant (pressurized) and a 1000kW on-site PAFC power plant (non-pressurized). The objective of the technical development of 1000kW on-site PAFC power plant is to realize a medium size power plant with an overall efficiency of over 70% and an electrical efficiency of over 36%, that could be installed in a large building as a cogeneration system. The components and system integration development work and the plant design were performed in 1991 and 1992. Manufacturing of the plant and installation at the test site were completed in 1994. PAC test was carried out in 1994, and generation test was started in January 1995. Demonstration test is scheduled for 1995 and 1996.

  16. Methodological aspects of fuel performance system analysis at raw hydrocarbon processing plants

    Science.gov (United States)

    Kulbjakina, A. V.; Dolotovskij, I. V.

    2018-01-01

    The article discusses the methodological aspects of fuel performance system analysis at raw hydrocarbon (RH) processing plants. Modern RH processing facilities are the major consumers of energy resources (ER) for their own needs. To reduce ER, including fuel consumption, and to develop rational fuel system structure are complex and relevant scientific tasks that can only be done using system analysis and complex system synthesis. In accordance with the principles of system analysis, the hierarchical structure of the fuel system, the block scheme for the synthesis of the most efficient alternative of the fuel system using mathematical models and the set of performance criteria have been developed on the main stages of the study. The results from the introduction of specific engineering solutions to develop their own energy supply sources for RH processing facilities have been provided.

  17. ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development.

    Science.gov (United States)

    Alba, Rob; Fei, Zhangjun; Payton, Paxton; Liu, Yang; Moore, Shanna L; Debbie, Paul; Cohn, Jonathan; D'Ascenzo, Mark; Gordon, Jeffrey S; Rose, Jocelyn K C; Martin, Gregory; Tanksley, Steven D; Bouzayen, Mondher; Jahn, Molly M; Giovannoni, Jim

    2004-09-01

    Gene expression profiling holds tremendous promise for dissecting the regulatory mechanisms and transcriptional networks that underlie biological processes. Here we provide details of approaches used by others and ourselves for gene expression profiling in plants with emphasis on cDNA microarrays and discussion of both experimental design and downstream analysis. We focus on methods and techniques emphasizing fabrication of cDNA microarrays, fluorescent labeling, cDNA hybridization, experimental design, and data processing. We include specific examples that demonstrate how this technology can be used to further our understanding of plant physiology and development (specifically fruit development and ripening) and for comparative genomics by comparing transcriptome activity in tomato and pepper fruit.

  18. Development of ultra supercritical (USC) power plant

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sung Ho; Kim, Bum Soo [KEPCO Research Institute, Daejeon (Korea, Republic of); Min, Taek Ki [Chung Nat' l Univ., Cheongwon (Korea, Republic of)

    2012-02-15

    For environmental reasons and because of our limited energy resources, high efficiency power generation technology will be necessary in the future. Ultra supercritical (USC) power generation technology is the key to managing the greenhouse gas problems and energy resource problems discussed in the Kyoto Protocol to the United Nations Framework Convention on Climate Change. Other countries and manufacturers are trying to build commercial power plants. In this paper, an efficient method of achieving near zero emission operation of a high efficiency fossil power plant using USC power generation is discussed. Development of USC power generation in Korea has been supported by the Korean government in two phases: Phase I was USC key technology development from 2002 to 2008, and Phase II is USC development and technology optimization from 2010 to 2017.

  19. Application of Autofluorescence for Analysis of Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Victoria V. Roshchina

    2017-01-01

    Full Text Available Autofluorescence of secondary compounds contained in plant secretory cells may be applied to the analysis of medicinal plants for pharmacy. Emission and prevailing fluorescent pharmaceuticals have been estimated in several models of species such as Salvia officinalis, Berberis vulgaris, Humulus lupulus, and Matricaria chamomilla, by luminescence microscopy, microspectrofluorimetry, and confocal microscopy.

  20. Discrete dynamic event tree modeling and analysis of nuclear power plant crews for safety assessment

    International Nuclear Information System (INIS)

    Mercurio, D.

    2011-01-01

    Current Probabilistic Risk Assessment (PRA) and Human Reliability Analysis (HRA) methodologies model the evolution of accident sequences in Nuclear Power Plants (NPPs) mainly based on Logic Trees. The evolution of these sequences is a result of the interactions between the crew and plant; in current PRA methodologies, simplified models of these complex interactions are used. In this study, the Accident Dynamic Simulator (ADS), a modeling framework based on the Discrete Dynamic Event Tree (DDET), has been used for the simulation of crew-plant interactions during potential accident scenarios in NPPs. In addition, an operator/crew model has been developed to treat the response of the crew to the plant. The 'crew model' is made up of three operators whose behavior is guided by a set of rules-of-behavior (which represents the knowledge and training of the operators) coupled with written and mental procedures. In addition, an approach for addressing the crew timing variability in DDETs has been developed and implemented based on a set of HRA data from a simulator study. Finally, grouping techniques were developed and applied to the analysis of the scenarios generated by the crew-plant simulation. These techniques support the post-simulation analysis by grouping similar accident sequences, identifying the key contributing events, and quantifying the conditional probability of the groups. These techniques are used to characterize the context of the crew actions in order to obtain insights for HRA. The model has been applied for the analysis of a Small Loss Of Coolant Accident (SLOCA) event for a Pressurized Water Reactor (PWR). The simulation results support an improved characterization of the performance conditions or context of operator actions, which can be used in an HRA, in the analysis of the reliability of the actions. By providing information on the evolution of system indications, dynamic of cues, crew timing in performing procedure steps, situation

  1. Development and evaluation of high temperature materials for power plant

    International Nuclear Information System (INIS)

    Nickel, H.; Schubert, F.

    1992-01-01

    The development of high temperature materials requires the evaluation of the interaction of microstructure and mechanical properties, the implementation of the microstructural aspects in the constitutive equations for the analysis of loads in a high temperature component and verification of the materials reactions. In this way the full potential of materials properties can be better used. This fundamental method is the basis for the formulation of the structural design code KTA 3221 'Metallic HTR Components'. The method of 'design by analysis' is also activated for large internally cooled turbine blades for stationary gas turbines in combined cycle power plants. This kind of exploratory analysis during the dimensioning procedure are discussed with two examples: He/He-heat exchanger produced of NiCr23Co12Mo (Alloy 617) and turbine blades made of superalloys (e.g. IN 738 LC). (author)

  2. Development of in-plant reference material for composition of chinese cabbage with certified selenium content

    Directory of Open Access Journals (Sweden)

    D. A. Chupahin

    2014-01-01

    Full Text Available In-plant reference material for composition of Chinese cabbage with certified selenium content was developed for accuracy control of the results of selenium determination and within-laboratory quality control of analytical work in the analysis of food raw material.

  3. System Evaluation and Life-Cycle Cost Analysis of a Commercial-Scale High-Temperature Electrolysis Hydrogen Production Plant

    Energy Technology Data Exchange (ETDEWEB)

    Edwin A. Harvego; James E. O' Brien; Michael G. McKellar

    2012-11-01

    Results of a system evaluation and lifecycle cost analysis are presented for a commercial-scale high-temperature electrolysis (HTE) central hydrogen production plant. The plant design relies on grid electricity to power the electrolysis process and system components, and industrial natural gas to provide process heat. The HYSYS process analysis software was used to evaluate the reference central plant design capable of producing 50,000 kg/day of hydrogen. The HYSYS software performs mass and energy balances across all components to allow optimization of the design using a detailed process flow sheet and realistic operating conditions specified by the analyst. The lifecycle cost analysis was performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes Microsoft Excel spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. The results of the lifecycle analyses indicate that for a 10% internal rate of return, a large central commercial-scale hydrogen production plant can produce 50,000 kg/day of hydrogen at an average cost of $2.68/kg. When the cost of carbon sequestration is taken into account, the average cost of hydrogen production increases by $0.40/kg to $3.08/kg.

  4. Cognitive task analysis of nuclear power plant operators for man-machine interface design

    International Nuclear Information System (INIS)

    Itoh, J.I.; Yoshimura, S.; Ohtsuka, T.

    1990-01-01

    This paper aims to ascertain and further develop design guidelines for a man-machine interface compatible with plant operators' problem solving strategies. As the framework for this study, operator's information processing activities were modeled, based on J. Rasmussen's framework for cognitive task analysis. Two experiments were carried out. One was an experiment aimed at gaining an understanding of internal mechanisms involved in mistakes and slips which occurred in operators' responses to incidents and accidents. As a result of fifteen cases of operator performance analysis, sixty one human errors were identified. Further analysis of the errors showed that frequently occurring error mechanisms were absent-mindedness, lack of recognition of patterns in diagnosis and failed procedure formulation due to memory lapses. The other kind of experiment was carried out to identify the envelope of trajectories for the operator's search in the problem space consisting of the two dimensions of means-ends and whole-part relations while dealing with transients. Two cases of experimental sessions were conducted with the thinking-aloud method. From analyses based on verbal protocols, trajectories of operator's search were derived, covering from the whole plant level through the component level in the whole-part dimension and covering from the functional purpose level through the physical form level in the means-ends dimension. The findings obtained from these analyses serve as a basis for developing design guidelines for man-machine interfaces in control rooms of nuclear power plants

  5. Exergy analysis of a circulating fluidized bed boiler cogeneration power plant

    International Nuclear Information System (INIS)

    Gürtürk, Mert; Oztop, Hakan F.

    2016-01-01

    Highlights: • Analysis of energy and exergy for a cogeneration power plant have been performed. • This plant has circulating fluidized bed boiler. • Energy and exergy efficiencies of the boiler are obtained as 84.65% and 29.43%, respectively. • Exergy efficiency of the plant was calculated as 20%. - Abstract: In this study, energy and exergy analysis of a cogeneration power plant have been performed. The steam which is produced by the cogeneration power plant is used for salt production and most important part of the cogeneration power plant is the circulation fluidized bed boiler. Energy and exergy efficiency of the circulation fluidized bed boiler were found as 84.65% and 29.43%, respectively. Exergy destruction of the circulation fluidized bed boiler was calculated as 21789.39 kW and 85.89% of exergy destruction in the plant. The automation system of the cogeneration power plant is insufficient. Exergy efficiency of the plant was calculated as 20%. Also, some design parameters increasing energy losses were determined.

  6. Advanced safeguards systems development for chemical processing plants. Final report for Fiscal Year 1979

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1980-01-01

    A computer system is being installed by INEL to test and evaluate safeguards monitoring concepts in an operating nuclear fuel processing plant. Safeguards development sensors and instruments installed in the ICPP provide plant information to a computer data acquisition and analysis system. Objective of the system is to collect data from process and safeguards sensors and show how this data can be analyzed to detect diversion operations or improper plant operation, and to test the performance of the monitoring devices. Approximately one-third of the installation designs and one-eighth of the installations were completed in FY 1979. The ICPP processing schedule for FY 1980 permits installation of the remaining monitoring devices before process startup in the fourth quarter of FY 1980. All computer hardware was delivered and checked out in FY 1979. Computer software system designs were completed with the majority of the programming scheduled for FY 1980. Sensor and instrument development in FY 1979 emphasized device testing for ICPP monitoring applications

  7. The role of risk analysis in control of complex plants' safety operation

    International Nuclear Information System (INIS)

    Dumitrescu, Maria; Preda, Irina Aida; Lazar, Roxana Elena; Carcadea, Elena

    1999-01-01

    The problem of risk estimation, assessment and control is necessary to be discussed at every decision level of an activity. In this way the performances of a system, action or technology are qualitatively assessed by indicating the possible consequences on environmental, people or property. The paper presents methodologies of risk assessment successfully applied on isotopic separation plants. The quantitative methodologies presented use fault tree and event tree to determine the accident states frequency and physical models to analyse the dispersion in atmosphere of dangerous substances. The qualitative methodologies use fuzzy models for the multi-criteria decision making, models based on risk matrix built on the basis of a combination between severity and probability of maximum admissible consequence. These methodologies present the following steps for applying: familiarising with the activity in study, establishing the adequate method of risk assessment, realising of the model of risk assessment for the activity or objective in study, developing of application of the proposed model. Applying this methodology to isotopic separation plants has led to: analysis of operation events and establishing of principal types of events potentially dangerous, analysis of human error in these plants operation and operating experience assessment, technical specifications optimisation by probabilistic safety assessment, reliability analysis and development of reliability and exploitation events database, post accident events analysis (releases, fires, explosions) and mathematical modelling of dispersion in atmosphere of dangerous substances. The risk concept being complex and with multiple implications, it is not the case of a rigid approaching neither of existence of some methods universally valid. Because of these reasons choosing of the most appropriate method for the risk assessment of an activity, leads to solution in due time, of some problems with economic, social

  8. The role of risk analysis in control of complex plant safe operation

    International Nuclear Information System (INIS)

    Dumitrescu, Maria; Preda, Irina Aida; Lazar, Roxana Elena; Carcadea, Elena

    1999-01-01

    The problem of risk estimation assessment and control is necessary to be discussed in every decision making level of an activity. Performances of a system, action or technology, by indicating the possible consequences on environment, people or property should be qualitatively assessed. The paper presents methodologies of risk assessment successful applied on isotopic separation plants. The quantitative methodologies presented, use fault tree and event tree to determine the accident states frequency, physical models to analyse the dispersion in atmosphere of dangerous substances. The qualitative methodologies use the fuzzy models for the multicriterial decision making, models based on risk matrix build on the base of combination between the severity and the probability of maximum admissible consequence. These methodologies present the following steps for applying: familiarising with the activity in study, establishing the adequate method of risk assessment, building the model of risk assessment for the activity or objective in study, developing the applications of the proposed model. Applying this methodology to isotopic separation plants have led to: analysis of operation events and establishing of principal types of events potentially dangerous, analysis of human error in these plant operations and operating experience assessment, technical specifications for optimisation by probabilistic safety assessment, reliability analysis and development of reliability and exploitation of events database, post accident events analysis (releases, fires, explosions) and mathematical modelling of dispersion in atmosphere of dangerous substances. The risk concept being complex and with multiple implications, is not the case of a rigid approaching neither of existence of some methods universally valid. Because of these reasons, choosing of the most appropriate method for the risk assessment of an activity, leads to a solution in useful time, of some problems with economic, social

  9. Sensitivity Analysis of Wind Plant Performance to Key Turbine Design Parameters: A Systems Engineering Approach; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Ning, A.; King, R.; Graf, P.; Scott, G.; Veers, P.

    2014-02-01

    This paper introduces the development of a new software framework for research, design, and development of wind energy systems which is meant to 1) represent a full wind plant including all physical and nonphysical assets and associated costs up to the point of grid interconnection, 2) allow use of interchangeable models of varying fidelity for different aspects of the system, and 3) support system level multidisciplinary analyses and optimizations. This paper describes the design of the overall software capability and applies it to a global sensitivity analysis of wind turbine and plant performance and cost. The analysis was performed using three different model configurations involving different levels of fidelity, which illustrate how increasing fidelity can preserve important system interactions that build up to overall system performance and cost. Analyses were performed for a reference wind plant based on the National Renewable Energy Laboratory's 5-MW reference turbine at a mid-Atlantic offshore location within the United States.

  10. Probabilistic risk analysis and its role in regulatory activity in a developing country

    International Nuclear Information System (INIS)

    Arredondo-Sanchez, C.

    1985-01-01

    The author discusses the criterion adopted for regulatory activity in a developing country with a nuclear power plant. He describes the problems that have to be overcome as a result of changes in the regulations during construction of the plant. There is discussion of the action taken by the regulatory body when introducing the method of probabilistic risk analysis. The part played by this form of analysis in quantifying the safety objectives proposed in the USA together with its limitations and the problems involved in this methodology are examined. Lastly, the author gives an opinion on the use that probabilistic risk analysis should be put to in developing countries such as Mexico. (author)

  11. Phytochemical Analysis of Some Indigenous Plants Potent Against Endoparasite

    Directory of Open Access Journals (Sweden)

    Prashant Yadav

    2010-07-01

    Full Text Available A study has been done with indigenous plants to explore their phytochemcial constituents. About 7 indigenous plants collected from Agra–Mathura Region. The collected plants under gone extraction followed by evaporation. The prepared plant extract goes through phytochemical investigation to explore active constituents which are very significant drug development.

  12. Community leaders' perspectives on socio-economic impacts of power-plant development

    International Nuclear Information System (INIS)

    Hastings, M.; Cawley, M.E.

    1981-01-01

    The primary focus of this research effort was to identify and measure the socioeconomic impacts of power plant development on non-metropolitan host communities. A mail survey, distributed to community leaders in 100 power plant communities east of the Mississippi River, was utilized to gather information from 713 respondents. Community leaders were questioned as to the plant's impact on (a) community groups, (b) aspects of community life, (c) overall community acceptance and (d) attitudes toward power plant development. Overall, the trends and patterns of plant impact on the host communities were found to be largely positive. Specifically, local employment opportunities were generally enhanced with the advent of the power plant. Directly related to power plant development was the overall improvement of the local economic situation. Off-shoots from such in the economic area included related general improvements in the community quality of life. While the vast majority of community leaders responded with positive comments on power plant presence, adverse impacts were also mentioned. Negative comments focused on environmental problems, deterioration of roads and traffic conditions, and the possibility of nuclear accidents. Despite these negative impacts, almost two-thirds of the community leaders would definitely support the reconstruction of the same energy facility. Power plant development, therefore, is generally perceived as both a positive and beneficial asset for the host area. (author)

  13. Self-organizing periodicity in development: organ positioning in plants.

    Science.gov (United States)

    Bhatia, Neha; Heisler, Marcus G

    2018-02-08

    Periodic patterns during development often occur spontaneously through a process of self-organization. While reaction-diffusion mechanisms are often invoked, other types of mechanisms that involve cell-cell interactions and mechanical buckling have also been identified. Phyllotaxis, or the positioning of plant organs, has emerged as an excellent model system to study the self-organization of periodic patterns. At the macro scale, the regular spacing of organs on the growing plant shoot gives rise to the typical spiral and whorled arrangements of plant organs found in nature. In turn, this spacing relies on complex patterns of cell polarity that involve feedback between a signaling molecule - the plant hormone auxin - and its polar, cell-to-cell transport. Here, we review recent progress in understanding phyllotaxis and plant cell polarity and highlight the development of new tools that can help address the remaining gaps in our understanding. © 2018. Published by The Company of Biologists Ltd.

  14. Competitive analysis of small hydroelectric power plants

    International Nuclear Information System (INIS)

    Assad, L.S.; Placido, R.

    1990-01-01

    The agreement between CPFL/UNICAMP/EFEI for developing energetic planning of Small Hydroelectric Power Plants construction is described. Some notions for showing the more economic alternative between decide by Small Hydroelectric Power Plants construction and continue supply the market by inter ligated system generation are shown in this stage of the agreement. (author)

  15. Development of technologies on innovative-simplified nuclear power plant using high-efficiency steam injectors. (2) Analysis of heat balance of innovative-simplified nuclear power plant

    International Nuclear Information System (INIS)

    Goto, Shoji; Ohmori, Shuichi; Mori, Mitchitsugu

    2004-01-01

    It is possible to established simplified systems and reduced space and equipments using high-efficiency Steam Injector (SI) instead of low-pressure feed water heaters in Nuclear Power Plant (NPP). The SI works as a heat exchanger through direct contact between feedwater from condenser and extracted steam from turbine. It can get a higher pressure than supplied steam pressure, so it can reduce the feedwater pumps. The maintenance and reliability are still higher because SI has no movable parts. This paper describes the analysis of the heat balance and plant efficiency of this Innovative-Simplified NPP with high-efficiency SI. The plant efficiency is compared with the electric power of 1100MWe class original BWR system and the Innovative-Simplified BWR system with SI. The SI model is adapted into the heat balance simulator with a simplified model. The results show plant efficiencies of the Innovated-Simplified BWR system are almost equal to the original BWR one. The present research is one of the projects that are carried out by Tokyo Electric Power Company, Toshiba Corporation, and six Universities in Japan, funded from the Institute of Applied Energy (IAE) of Japan as the national public research-funded program. (author)

  16. Development of useful recombinant promoter and its expression analysis in different plant cells using confocal laser scanning microscopy.

    Directory of Open Access Journals (Sweden)

    Deepak Kumar

    Full Text Available BACKGROUND: Designing functionally efficient recombinant promoters having reduced sequence homology and enhanced promoter activity will be an important step toward successful stacking or pyramiding of genes in a plant cell for developing transgenic plants expressing desired traits(s. Also basic knowledge regarding plant cell specific expression of a transgene under control of a promoter is crucial to assess the promoter's efficacy. METHODOLOGY/PRINCIPAL FINDINGS: We have constructed a set of 10 recombinant promoters incorporating different up-stream activation sequences (UAS of Mirabilis mosaic virus sub-genomic transcript (MS8, -306 to +27 and TATA containing core domains of Figwort mosaic virus sub-genomic transcript promoter (FS3, -271 to +31. Efficacies of recombinant promoters coupled to GUS and GFP reporter genes were tested in tobacco protoplasts. Among these, a 369-bp long hybrid sub-genomic transcript promoter (MSgt-FSgt showed the highest activity in both transient and transgenic systems. In a transient system, MSgt-FSgt was 10.31, 2.86 and 2.18 times more active compared to the CaMV35S, MS8 and FS3 promoters, respectively. In transgenic tobacco (Nicotiana tabaccum, var. Samsun NN and Arabidopsis plants, the MSgt-FSgt hybrid promoter showed 14.22 and 7.16 times stronger activity compared to CaMV35S promoter respectively. The correlation between GUS activity and uidA-mRNA levels in transgenic tobacco plants were identified by qRT-PCR. Both CaMV35S and MSgt-FSgt promoters caused gene silencing but the degree of silencing are less in the case of the MSgt-FSgt promoter compared to CaMV35S. Quantification of GUS activity in individual plant cells driven by the MSgt-FSgt and the CaMV35S promoter were estimated using confocal laser scanning microscopy and compared. CONCLUSION AND SIGNIFICANCE: We propose strong recombinant promoter MSgt-FSgt, developed in this study, could be very useful for high-level constitutive expression of transgenes in

  17. Simulation and analysis of plutonium reprocessing plant data

    International Nuclear Information System (INIS)

    Burr, T.; Coulter, A.; Wangen, L.

    1996-01-01

    It will be difficult for large-throughput reprocessing plants to meet International Atomic Energy Agency (IAEA) detection goals for protracted diversion of plutonium by materials accounting alone. Therefore, the IAEA is considering supplementing traditional material balance analysis with analysis of solution monitoring data (frequent snapshots of such solution parameters as level, density, and temperature for all major process vessels). Analysis of solution monitoring data will enhance safeguards by improving anomaly detection and resolution, maintaining continuity of knowledge, and validating and improving measurement error models. However, there are costs associated with accessing and analyzing the data. To minimize these costs, analysis methods should be as complete as possible simple to implement, and require little human effort. As a step toward that goal, the authors have implemented simple analysis methods for use in an off-line situation. These methods use solution level to recognize major tank activities, such as tank-to-tank transfers and sampling. In this paper, the authors describe their application to realistic simulated data (the methods were developed by using both real and simulated data), and they present some quantifiable benefits of solution monitoring

  18. Human Factors Considerations in New Nuclear Power Plants: Detailed Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    OHara,J.; Higgins, J.; Brown, W.; Fink, R.

    2008-02-14

    This Nuclear Regulatory Commission (NRC) sponsored study has identified human-performance issues in new and advanced nuclear power plants. To identify the issues, current industry developments and trends were evaluated in the areas of reactor technology, instrumentation and control technology, human-system integration technology, and human factors engineering (HFE) methods and tools. The issues were organized into seven high-level HFE topic areas: Role of Personnel and Automation, Staffing and Training, Normal Operations Management, Disturbance and Emergency Management, Maintenance and Change Management, Plant Design and Construction, and HFE Methods and Tools. The issues where then prioritized into four categories using a 'Phenomena Identification and Ranking Table' methodology based on evaluations provided by 14 independent subject matter experts. The subject matter experts were knowledgeable in a variety of disciplines. Vendors, utilities, research organizations and regulators all participated. Twenty issues were categorized into the top priority category. This Brookhaven National Laboratory (BNL) technical report provides the detailed methodology, issue analysis, and results. A summary of the results of this study can be found in NUREG/CR-6947. The research performed for this project has identified a large number of human-performance issues for new control stations and new nuclear power plant designs. The information gathered in this project can serve as input to the development of a long-term strategy and plan for addressing human performance in these areas through regulatory research. Addressing human-performance issues will provide the technical basis from which regulatory review guidance can be developed to meet these challenges. The availability of this review guidance will help set clear expectations for how the NRC staff will evaluate new designs, reduce regulatory uncertainty, and provide a well-defined path to new nuclear power plant

  19. A de-novo-assembly-based Data Analysis Pipeline for Plant Obligate Parasite Metatranscriptomic Studies

    Directory of Open Access Journals (Sweden)

    Li Guo

    2016-07-01

    Full Text Available Current and emerging plant diseases caused by obligate parasitic microbes such as rusts, downy mildews, and powdery mildews threaten worldwide crop production and food safety. These obligate parasites are typically unculturable in the laboratory, posing technical challenges to characterize them at the genetic and genomic level. Here we have developed a data analysis pipeline integrating several bioinformatic software programs. This pipeline facilitates rapid gene discovery and expression analysis of a plant host and its obligate parasite simultaneously by next generation sequencing of mixed host and pathogen RNA (i.e. metatranscriptomics. We applied this pipeline to metatranscriptomic sequencing data of sweet basil (Ocimum basilicum and its obligate downy mildew parasite Peronospora belbahrii, both lacking a sequenced genome. Even with a single data point, we were able to identify both candidate host defense genes and pathogen virulence genes that are highly expressed during infection. This demonstrates the power of this pipeline for identifying genes important in host-pathogen interactions without prior genomic information for either the plant host or the obligate biotrophic pathogen. The simplicity of this pipeline makes it accessible to researchers with limited computational skills and applicable to metatranscriptomic data analysis in a wide range of plant-obligate-parasite systems.

  20. Development of RCM methodology and tools for EDF nuclear power plants

    International Nuclear Information System (INIS)

    Jacquot, J.P.; Bouchet, J.L.; Despujols, A.; Dewailly, J.; Martin-Mattei, C.

    1995-01-01

    In 1990, EDF launched a Reliability-Centered Maintenance project for its nuclear plants. This 'OMF' project aims at developing methods and tools for analysis and in the first phase, applying these to one initial system (the pilot study). The results of the pilot study have confirmed the advantages of the 'OMF' analytical method: the prospects for the approach on an industrial scale are extremely promising. It should be noted that the precision of our 'OMF' analysis is not doubt superior to that common in other industrial domains (MSG/RCM analysis). The particular approach implies analysis of systems and components and, most importantly, integration of operation feedback, with a view to developing a rigorous maintenance program which can constantly be updated. In addition to the defining and implementing the method, the review of designing software aids has begun. The pilot study clearly pointed up the need for such aids in handling the necessary volume of information and assisting experts in their analysis. The EDF 'OMF' workstation (and its environment) will be used not only in preparing the 'initial' maintenance program but also in updating it during the 'living' program phase. (author)

  1. Development of RCM methodology and tools for EDF nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jacquot, J.P.; Bouchet, J.L.; Despujols, A.; Dewailly, J.; Martin-Mattei, C. [Electricite de France, 78 - Chatou (France)

    1995-12-31

    In 1990, EDF launched a Reliability-Centered Maintenance project for its nuclear plants. This `OMF` project aims at developing methods and tools for analysis and in the first phase, applying these to one initial system (the pilot study). The results of the pilot study have confirmed the advantages of the `OMF` analytical method: the prospects for the approach on an industrial scale are extremely promising. It should be noted that the precision of our `OMF` analysis is not doubt superior to that common in other industrial domains (MSG/RCM analysis). The particular approach implies analysis of systems and components and, most importantly, integration of operation feedback, with a view to developing a rigorous maintenance program which can constantly be updated. In addition to the defining and implementing the method, the review of designing software aids has begun. The pilot study clearly pointed up the need for such aids in handling the necessary volume of information and assisting experts in their analysis. The EDF `OMF` workstation (and its environment) will be used not only in preparing the `initial` maintenance program but also in updating it during the `living` program phase. (author) 4 refs.

  2. EXERGETIC ANALYSIS OF A COGENERATION POWER PLANT

    Directory of Open Access Journals (Sweden)

    Osvaldo Manuel Nuñez Bosch

    2016-07-01

    Full Text Available Cogeneration power plants connected to industrial processes have a direct impact on the overall efficiency of the plant and therefore on the economic results. Any modification to the thermal outline of these plants must first include an exergetic analysis to compare the benefits it can bring the new proposal. This research is performed to a cogeneration plant in operation with an installed electrical capacity of 24 MW and process heat demand of 190 MW, it shows a study made from the Second Law of Thermodynamics. Exergetic evaluation of each component of the plant was applied and similarly modified cogeneration scheme was evaluated. The results illustrate that the exergy losses and irreversibilities are completely different from one subsystem to another. In general, the total exergy destruction represented 70,7% from the primary fuel exergy. Steam generator was the subsystem with the highest irreversibility of the plant with 54%. It was demonstrated that the increase of the steam parameters lead to reduce exergy destruction and exergy efficiency elevation. The suppression of the reduction system and the adding of an extraction-condensing steam turbine produce the same effect and contribute to drop off the electrical consumption from the grid.

  3. Development and application of a deterministic-realistic hybrid methodology for LOCA licensing analysis

    International Nuclear Information System (INIS)

    Liang, Thomas K.S.; Chou, Ling-Yao; Zhang, Zhongwei; Hsueh, Hsiang-Yu; Lee, Min

    2011-01-01

    Highlights: → A new LOCA licensing methodology (DRHM, deterministic-realistic hybrid methodology) was developed. → DRHM involves conservative Appendix K physical models and statistical treatment of plant status uncertainties. → DRHM can generate 50-100 K PCT margin as compared to a traditional Appendix K methodology. - Abstract: It is well recognized that a realistic LOCA analysis with uncertainty quantification can generate greater safety margin as compared with classical conservative LOCA analysis using Appendix K evaluation models. The associated margin can be more than 200 K. To quantify uncertainty in BELOCA analysis, generally there are two kinds of uncertainties required to be identified and quantified, which involve model uncertainties and plant status uncertainties. Particularly, it will take huge effort to systematically quantify individual model uncertainty of a best estimate LOCA code, such as RELAP5 and TRAC. Instead of applying a full ranged BELOCA methodology to cover both model and plant status uncertainties, a deterministic-realistic hybrid methodology (DRHM) was developed to support LOCA licensing analysis. Regarding the DRHM methodology, Appendix K deterministic evaluation models are adopted to ensure model conservatism, while CSAU methodology is applied to quantify the effect of plant status uncertainty on PCT calculation. Generally, DRHM methodology can generate about 80-100 K margin on PCT as compared to Appendix K bounding state LOCA analysis.

  4. Database Description - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods ... QTL list, Plant DB link & Genome analysis methods Alternative name - DOI 10.18908/lsdba.nbdc01194-01-000 Cr...ers and QTLs are curated manually from the published literature. The marker information includes marker sequences, genotyping methods... Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive ...

  5. Development of real options model for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, Kenji

    2004-01-01

    As the Japanese electricity market is deregulated, it becomes more important for electric utilities to recognize their financial risks and to adopt strategic and scientific decision making methodology. We have developed two models for valuation of Japanese nuclear power plants to support utilities' decision making. One is a net present value (NPV) model using discounted cash flow analysis method. Another is a real options model. This model is based on strict financial technology theory and can calculate value of early retirement, life extension and new unit addition options of nuclear units under electricity price uncertainty. This can also derive an optimal period for retirement, life extension and new unit addition. (author)

  6. Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis.

    Science.gov (United States)

    Sha, A H; Lin, X H; Huang, J B; Zhang, D P

    2005-07-01

    DNA methylation is known to play an important role in the regulation of gene expression in eukaryotes. The rice cultivar Wase Aikoku 3 becomes resistant to the blight pathogen Xanthomonas oryzae pv. oryzae at the adult stage. Using methylation-sensitive amplified polymorphism (MSAP) analysis, we compared the patterns of cytosine methylation in seedlings and adult plants of the rice cultivar Wase Aikoku 3 that had been inoculated with the pathogen Xanthomonas oryzae pv. oryzae, subjected to mock inoculation or left untreated. In all, 2000 DNA fragments, each representing a recognition site cleaved by either or both of two isoschizomers, were amplified using 60 pairs of selective primers. A total of 380 sites were found to be methylated. Of these, 45 showed differential cytosine methylation among the seedlings and adult plants subjected to different treatments, and overall levels of methylation were higher in adult plants than in seedlings. All polymorphic fragments were sequenced, and six showed homology to genes that code for products of known function. Northern analysis of three fragments indicated that their expression varied with methylation pattern, with hypermethylation being correlated with repression of transcription, as expected. The results suggest that significant differences in cytosine methylation exist between seedlings and adult plants, and that hypermethylation or hypomethylation of specific genes may be involved in the development of adult plant resistance (APR) in rice plants.

  7. A task analysis-linked approach for integrating the human factor in reliability assessments of nuclear power plants

    International Nuclear Information System (INIS)

    Ryan, T.G.

    1988-01-01

    This paper describes an emerging Task Analysis-Linked Evaluation Technique (TALENT) for assessing the contributions of human error to nuclear power plant systems unreliability and risk. Techniques such as TALENT are emerging as a recognition that human error is a primary contributor to plant safety, however, it has been a peripheral consideration to data in plant reliability evaluations. TALENT also recognizes that involvement of persons with behavioral science expertise is required to support plant reliability and risk analyses. A number of state-of-knowledge human reliability analysis tools are also discussed which support the TALENT process. The core of TALENT is comprised of task, timeline and interface analysis data which provide the technology base for event and fault tree development, serve as criteria for selecting and evaluating performance shaping factors, and which provide a basis for auditing TALENT results. Finally, programs and case studies used to refine the TALENT process are described along with future research needs in the area. (author)

  8. A human reliability analysis of the Three Mile power plant accident considering the THERP and ATHEANA methodologies

    International Nuclear Information System (INIS)

    Fonseca, Renato Alves da

    2004-03-01

    The main purpose of this work is the study of human reliability using the THERP (Technique for Human Error Prediction) and ATHEANA methods (A Technique for Human Error Analysis), and some tables and also, from case studies presented on the THERP Handbook to develop a qualitative and quantitative study of nuclear power plant accident. This accident occurred in the TMI (Three Mile Island Unit 2) power plant, PWR type plant, on March 28th, 1979. The accident analysis has revealed a series of incorrect actions, which resulted in the Unit 2 shut down and permanent loss of the reactor. This study also aims at enhancing the understanding of the THERP method and ATHEANA, and of its practical applications. In addition, it is possible to understand the influence of plant operational status on human failures and of these on equipment of a system, in this case, a nuclear power plant. (author)

  9. The IEAGHG Power Plant Assessment Program (PPAP). Development and testing June 2002-October 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-12-15

    The Power Plant Assessment Program (PPAP) is an Excel based program which allows alternative CO{sub 2} capture technologies for centralised power generation to be compared using multi-criteria analysis. This report outlines recent development work on the program and the results obtained from evaluating a range of novel capture processes with it.

  10. Appliance of software engineering in development of nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Y. W.; Kim, H. C.; Yun, C. [Chungnam National Univ., Taejon (Korea, Republic of); Kim, B. R. [KINS, Taejon (Korea, Republic of)

    1999-10-01

    Application of computer technology in nuclear power plant is also a necessary transformation as in other industry fields. But until now, application of software technology was not wide-spread because of its potential effect to safety in nuclear field. It is an urgent theme to develop evaluation guide and regulation techniques to guarantee safety, reliability and quality assurance. To meet these changes, techniques for development and operation should be enhanced to ensure the quality of software systems. In this study, we show the difference between waterfall model and software life-cycle needed in development of nuclear power plant and propose the consistent framework needed in development of instrumentation and control system of nuclear power plant.

  11. Appliance of software engineering in development of nuclear power plant

    International Nuclear Information System (INIS)

    Baek, Y. W.; Kim, H. C.; Yun, C.; Kim, B. R.

    1999-01-01

    Application of computer technology in nuclear power plant is also a necessary transformation as in other industry fields. But until now, application of software technology was not wide-spread because of its potential effect to safety in nuclear field. It is an urgent theme to develop evaluation guide and regulation techniques to guarantee safety, reliability and quality assurance. To meet these changes, techniques for development and operation should be enhanced to ensure the quality of software systems. In this study, we show the difference between waterfall model and software life-cycle needed in development of nuclear power plant and propose the consistent framework needed in development of instrumentation and control system of nuclear power plant

  12. Development of intelligent database program for PSI/ISI data management of nuclear power plant

    International Nuclear Information System (INIS)

    Um, Byong Guk; Park, Un Su; Park, Ik Keun; Park, Yun Won; Kang, Suk Chul

    1998-01-01

    An intelligent database program has been developed under fully compatible with windows 95 for the construction of total support system and the effective management of Pre-/In-Service Inspection data. Using the database program, it can be executed the analysis and multi-dimensional evaluation of the defects detected during PSI/ISI in the pipe and the pressure vessel of the nuclear power plants. And also it can be used to investigate the NDE data inspected repetitively and the contents of treatment, and to offer the fundamental data for application of evaluation data related to Fracture Mechanics Analysis(FMA). Furthermore, the PSI/ISI database loads and material properties can be utilized to secure the higher degree of safety, integrity, reliability, and life-prediction of components and systems in nuclear power plant.

  13. Application of the neutron noise analysis technique in nuclear power plants

    International Nuclear Information System (INIS)

    Lescano, Victor H.; Wentzeis, Luis M.

    1999-01-01

    Using the neutron noise analysis in nuclear power plants, and without producing any perturbation in the normal operation of the plant, information of the vibration state of the reactor internals and the behavior of the operating conditions of the reactor primary circuit can be obtained. In Argentina, the neutron noise analysis technique is applied in customary way in the nuclear power plants Atucha I and Embalse. A database was constructed and vibration frequencies corresponding to different reactor internals were characterized. Reactor internals with particular mechanical vibrations have been detected and localized. In the framing of a cooperation project between Argentina and Germany, we participated in the measurements, analysis and modelisation, using the neutron noise technique, in the Obrigheim and Gundremmingen nuclear power plants. In the nuclear power plant Obrigheim (PWR, 350 M We), correlations between the signals measured from self-power neutron detectors and accelerometers located inside the reactor core, were made. In the nuclear power plant Gundremmingen (BWR, 1200 M We) we participated in the study of a particular mechanical vibration detected in one of the instrumentation tube. (author)

  14. Development of Plant Application Technique of Low Dose Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jae Sung; Lim, Yong Taek (and others)

    2007-07-15

    The project was carried out to achieve three aims. First, development of application techniques of cell-stimulating effects by low-dose radiation. Following irradiation with gamma-rays of low doses, beneficial effects in crop germination, early growth, and yield were investigated using various plant species and experimental approaches. For the actual field application, corroborative studies were also carried out with a few concerned experimental stations and farmers. Moreover, we attempted to establish a new technique of cell cultivation for industrial mass-production of shikonin, a medicinal compound from Lithospermum erythrorhizon and thereby suggested new application fields for application techniques of low-dose radiation. Second, elucidation of action mechanisms of ionizing radiation in plants. By investigating changes in plant photosynthesis and physiological metabolism, we attempted to elucidate physiological activity-stimulating effects of low-dose radiation and to search for radiation-adaptive cellular components. Besides, analyses of biochemical and molecular biological mechanisms for stimulus-stimulating effects of low-dose radiation were accomplished by examining genes and proteins inducible by low-dose radiation. Third, development of functional crop plants using radiation-resistant factors. Changes in stress-tolerance of plants against environmental stress factors such as light, temperature, salinity and UV-B stress after exposed to low-dose gamma-rays were investigated. Concerned reactive oxygen species, antioxidative enzymes, and antioxidants were also analyzed to develop high value-added and environment-friendly functional plants using radiation-resistant factors. These researches are important to elucidate biological activities increased by low-dose radiation and help to provide leading technologies for improvement of domestic productivity in agriculture and development of high value-added genetic resources.

  15. Development of Plant Application Technique of Low Dose Radiation

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jae Sung; Lim, Yong Taek

    2007-07-01

    The project was carried out to achieve three aims. First, development of application techniques of cell-stimulating effects by low-dose radiation. Following irradiation with gamma-rays of low doses, beneficial effects in crop germination, early growth, and yield were investigated using various plant species and experimental approaches. For the actual field application, corroborative studies were also carried out with a few concerned experimental stations and farmers. Moreover, we attempted to establish a new technique of cell cultivation for industrial mass-production of shikonin, a medicinal compound from Lithospermum erythrorhizon and thereby suggested new application fields for application techniques of low-dose radiation. Second, elucidation of action mechanisms of ionizing radiation in plants. By investigating changes in plant photosynthesis and physiological metabolism, we attempted to elucidate physiological activity-stimulating effects of low-dose radiation and to search for radiation-adaptive cellular components. Besides, analyses of biochemical and molecular biological mechanisms for stimulus-stimulating effects of low-dose radiation were accomplished by examining genes and proteins inducible by low-dose radiation. Third, development of functional crop plants using radiation-resistant factors. Changes in stress-tolerance of plants against environmental stress factors such as light, temperature, salinity and UV-B stress after exposed to low-dose gamma-rays were investigated. Concerned reactive oxygen species, antioxidative enzymes, and antioxidants were also analyzed to develop high value-added and environment-friendly functional plants using radiation-resistant factors. These researches are important to elucidate biological activities increased by low-dose radiation and help to provide leading technologies for improvement of domestic productivity in agriculture and development of high value-added genetic resources

  16. Authentication of organically grown plants - advantages and limitations of atomic spectroscopy for multi-element and stable isotope analysis

    DEFF Research Database (Denmark)

    Laursen, Kristian Holst; Schjørring, Jan Kofod; Kelly, S.D.

    2014-01-01

    Organic food products are believed to be healthier, safer and more environment-friendly than their conventional counterparts and are sold at premium prices. Consequently, adulteration of organic plants and fraudulent activities for economic profit are increasing. This has spurred the development...... plant tissue, and compound-specific isotope analysis based on isotope ratio-mass spectrometry are promising tools for documenting the fertilization history of organic plants. However, these techniques are challenged by the potential diversity of fertilization practices of organic and conventional plant...

  17. Development of a fully-coupled, all atates, all hazards level 2 PSA at leibstadt nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Zvoncek, Pavol; Nusbaumer, Olivier [Safety Compliance and Technical Support Department, Leibstadt Nuclear Power Plant, Leibstadt (Sweden); Torri, Alfred [Risk Management Associates, Inc., Encinitas (United States)

    2017-03-15

    This paper describes the development process, the innovative techniques used and insights gained from the latest integrated, full scope, multistate Level 2 PSA analysis conducted at the Leibstadt Nuclear Power Plant (KKL), Switzerland. KKL is a modern single-unit General Electric Boiling Water Reactor (BWR/6) with Mark III Containment, and a power output of 3600MWth/1200MWe, the highest among the five operating reactors in Switzerland. A Level 2 Probabilistic Safety Assessment (PSA) analyses accident phenomena in nuclear power plants, identifies ways in which radioactive releases from plants can occur and estimates release pathways, magnitude and frequency. This paper attempts to give an overview of the advanced modeling techniques that have been developed and implemented for the recent KKL Level 2 PSA update, with the aim of systematizing the analysis and modeling processes, as well as complying with the relatively prescriptive Swiss requirements for PSA. The analysis provides significant insights into the absolute and relative importance of risk contributors and accident prevention and mitigation measures. Thanks to several newly developed techniques and an integrated approach, the KKL Level 2 PSA report exhibits a high degree of reviewability and maintainability, and transparently highlights the most important risk contributors to Large Early Release Frequency (LERF) with respect to initiating events, components, operator actions or seismic component failure probabilities (fragilities)

  18. Analysis and modelling of the energy consumption of chemical batch plants

    Energy Technology Data Exchange (ETDEWEB)

    Bieler, P.S.

    2004-07-01

    This report for the Swiss Federal Office of Energy (SFOE) describes two different approaches for the energy analysis and modelling of chemical batch plants. A top-down model consisting of a linear equation based on the specific energy consumption per ton of production output and the base consumption of the plant is postulated. The model is shown to be applicable to single and multi-product batches for batch plants with constant production mix and multi-purpose batch plants in which only similar chemicals are produced. For multipurpose batch plants with highly varying production processes and changing production mix, the top-down model produced inaccurate results. A bottom-up model is postulated for such plants. The results obtained are discussed that show that the electricity consumption for infrastructure equipment was significant and responsible for about 50% of total electricity consumption. The specific energy consumption for the different buildings was related to the degree of automation and the production processes. Analyses of the results of modelling are presented. More detailed analyses of the energy consumption of this apparatus group show that about 30 to 40% of steam energy is lost and thus a large potential for optimisation exists. Various potentials for making savings, ranging from elimination of reflux conditions to the development of a new heating/cooling-system for a generic batch reactor, are identified.

  19. QTL list - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods ...Policy | Contact Us QTL list - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive ...

  20. Development of assessment methodology for plant configuration control

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; You, Young Woo; Kim, Yoon Ik; Yang, Hui Chang; Huh, Byeong Gill; Lee, Dong Won; Ahn, Gwan Won [Seoul National Univ., Seoul (Korea, Republic of)

    2001-03-15

    The purpose of this study IS the development of effective and overall assessment methodology which reflects the characteristics of plants for the surveillance, maintenance, repair and operation of nuclear power plants. In this study, recent researches are surveyed and concept definition, procedures, current PSA methodologies, implementation of various models are evaluated. Through this survey, systematic assessment methodology is suggested. Configuration control assessment methodology suggested in this study for the purpose of the development of configuration control methodology reflecting the characteristics of Korean NPPs, can be utilized as the supplement of current PSA methodologies.

  1. Roles of autophagy in male reproductive development in plants

    Directory of Open Access Journals (Sweden)

    Shigeru eHanamata

    2014-09-01

    Full Text Available Autophagy, a major catabolic pathway in eukaryotic cells, is essential in development, maintenance of cellular homeostasis, immunity and programmed cell death (PCD in multicellular organisms. In plant cells, autophagy plays roles in recycling of proteins and metabolites including lipids, and is involved in many physiological processes such as abiotic and biotic stress responses. However, its roles during reproductive development had remained poorly understood. Quantitative live cell imaging techniques for the autophagic flux and genetic studies in several plant species have recently revealed significant roles of autophagy in developmental processes, regulation of PCD and lipid metabolism. We here review the novel roles of autophagic fluxes in plant cells, and discuss their possible significance in PCD and metabolic regulation, with particular focus on male reproductive development during the pollen maturation.

  2. UPVAPOR: computer application for the analysis of the results of Cofrentes Nuclear Power Plant production

    International Nuclear Information System (INIS)

    Palomo, M. J.; Baraza Peregrin, A.; Bucho Piqueras, L.; Vaquer Perez, J. I.; Lopez Lopez, B.

    2010-01-01

    UPVapor is a software developed for the Cofrentes Nuclear Power Plant Group of Results. This application presents a graphical environment for analysis in which the user has available many variables registered to configure the graphics. This application saves a lot of time at work because it allows other users to do their own analysis without resorting to analysts.

  3. Markov modeling and reliability analysis of urea synthesis system of a fertilizer plant

    Science.gov (United States)

    Aggarwal, Anil Kr.; Kumar, Sanjeev; Singh, Vikram; Garg, Tarun Kr.

    2015-12-01

    This paper deals with the Markov modeling and reliability analysis of urea synthesis system of a fertilizer plant. This system was modeled using Markov birth-death process with the assumption that the failure and repair rates of each subsystem follow exponential distribution. The first-order Chapman-Kolmogorov differential equations are developed with the use of mnemonic rule and these equations are solved with Runga-Kutta fourth-order method. The long-run availability, reliability and mean time between failures are computed for various choices of failure and repair rates of subsystems of the system. The findings of the paper are discussed with the plant personnel to adopt and practice suitable maintenance policies/strategies to enhance the performance of the urea synthesis system of the fertilizer plant.

  4. Development of a Probabilistic Tsunami Hazard Analysis Method and Application to an NPP in Korea

    International Nuclear Information System (INIS)

    Kim, M. K.; Choi, Ik

    2012-01-01

    A methodology of tsunami PSA was developed in this study. A tsunami PSA consists of tsunami hazard analysis, tsunami fragility analysis and system analysis. In the case of tsunami hazard analysis, evaluation of tsunami return period is a major task. For the evaluation of tsunami return period was evaluated with empirical method using historical tsunami record and tidal gauge record. For the performing a tsunami fragility analysis, procedure of tsunami fragility analysis was established and target equipment and structures for investigation of tsunami fragility assessment were selected. A sample fragility calculation was performed for the equipment in a Nuclear Power Plant. For the system analysis, accident sequence of tsunami event was developed according to the tsunami run-up and draw down, and tsunami induced core damage frequency (CDF) is determined. For the application to the real nuclear power plant, the Ulchin 56 NPP which is located on the east coast of Korean peninsula was selected. Through this study, whole tsunami PSA (Probabilistic Safety Assessment) working procedure was established and an example calculation was performed for one nuclear power plant in Korea

  5. Signal Network Analysis of Plant Genes Responding to Ionizing Radiation

    International Nuclear Information System (INIS)

    Kim, Dong Sub; Kim, Jinbaek; Kim, Sang Hoon

    2012-12-01

    In this project, we irradiated Arabidopsis plants with various doses of gamma-rays at the vegetative and reproductive stages to assess their radiation sensitivity. After the gene expression profiles and an analysis of the antioxidant response, we selected several Arabidopsis genes for uses of 'Radio marker genes (RMG)' and conducted over-expression and knock-down experiments to confirm the radio sensitivity. Based on these results, we applied two patents for the detection of two RMG (At3g28210 and At4g37990) and development of transgenic plants. Also, we developed a Genechip for use of high-throughput screening of Arabidopsis genes responding only to ionizing radiation and identified RMG to detect radiation leaks. Based on these results, we applied two patents associated with the use of Genechip for different types of radiation and different growth stages. Also, we conducted co-expression network study of specific expressed probes against gamma-ray stress and identified expressed patterns of duplicated genes formed by whole/500kb segmental genome duplication

  6. Development of a Wind Plant Large-Eddy Simulation with Measurement-Driven Atmospheric Inflow

    Energy Technology Data Exchange (ETDEWEB)

    Quon, Eliot W.; Churchfield, Matthew J.; Cheung, Lawrence; Kern, Stefan

    2017-01-09

    This paper details the development of an aeroelastic wind plant model with large-eddy simulation (LES). The chosen LES solver is the Simulator for Wind Farm Applications (SOWFA) based on the OpenFOAM framework, coupled to NREL's comprehensive aeroelastic analysis tool, FAST. An atmospheric boundary layer (ABL) precursor simulation was constructed based on assessments of meteorological tower, lidar, and radar data over a 3-hour window. This precursor was tuned to the specific atmospheric conditions that occurred both prior to and during the measurement campaign, enabling capture of a night-to-day transition in the turbulent ABL. In the absence of height-varying temperature measurements, spatially averaged radar data were sufficient to characterize the atmospheric stability of the wind plant in terms of the shear profile, and near-ground temperature sensors provided a reasonable estimate of the ground heating rate describing the morning transition. A full aeroelastic simulation was then performed for a subset of turbines within the wind plant, driven by the precursor. Analysis of two turbines within the array, one directly waked by the other, demonstrated good agreement with measured time-averaged loads.

  7. Development of computer program for safety of nuclear power plant against tsunami

    International Nuclear Information System (INIS)

    Jin, S. B.; Choi, K. R.; Lee, S. K.; Cho, Y. S.

    2001-01-01

    The main objective of this study is the development of a computer program to check the safety of nuclear power plants along the coastline of the Korean Peninsula. The computer program describes the propagation and associated run-up process of tsunamis by solving linear and nonlinear shallow-water equations with finite difference methods. The computer program has been applied to several ideal and simplified problems. Obtained numerical solutions are compared to existing and available solutions and measurements. A very good agreement between numerical solutions and existing measurement is observed. The computer program developed in this study can be to check the safety analysis of nuclear power plants against tsunamis. The program can also be used to study the propagation of tsunamis for a long distance, and associated run-up and run-down process along a shoreline. Furthermore, the computer program can be used to provide the proper design criteria of coastal facilities and structures

  8. Prediction system of hydroponic plant growth and development using algorithm Fuzzy Mamdani method

    Science.gov (United States)

    Sudana, I. Made; Purnawirawan, Okta; Arief, Ulfa Mediaty

    2017-03-01

    Hydroponics is a method of farming without soil. One of the Hydroponic plants is Watercress (Nasturtium Officinale). The development and growth process of hydroponic Watercress was influenced by levels of nutrients, acidity and temperature. The independent variables can be used as input variable system to predict the value level of plants growth and development. The prediction system is using Fuzzy Algorithm Mamdani method. This system was built to implement the function of Fuzzy Inference System (Fuzzy Inference System/FIS) as a part of the Fuzzy Logic Toolbox (FLT) by using MATLAB R2007b. FIS is a computing system that works on the principle of fuzzy reasoning which is similar to humans' reasoning. Basically FIS consists of four units which are fuzzification unit, fuzzy logic reasoning unit, base knowledge unit and defuzzification unit. In addition to know the effect of independent variables on the plants growth and development that can be visualized with the function diagram of FIS output surface that is shaped three-dimensional, and statistical tests based on the data from the prediction system using multiple linear regression method, which includes multiple linear regression analysis, T test, F test, the coefficient of determination and donations predictor that are calculated using SPSS (Statistical Product and Service Solutions) software applications.

  9. Marker list - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods ...Database Site Policy | Contact Us Marker list - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive ...

  10. Medicinal Plants: A Public Resource for Metabolomics and Hypothesis Development

    Directory of Open Access Journals (Sweden)

    Eve Syrkin Wurtele

    2012-11-01

    Full Text Available Specialized compounds from photosynthetic organisms serve as rich resources for drug development. From aspirin to atropine, plant-derived natural products have had a profound impact on human health. Technological advances provide new opportunities to access these natural products in a metabolic context. Here, we describe a database and platform for storing, visualizing and statistically analyzing metabolomics data from fourteen medicinal plant species. The metabolomes and associated transcriptomes (RNAseq for each plant species, gathered from up to twenty tissue/organ samples that have experienced varied growth conditions and developmental histories, were analyzed in parallel. Three case studies illustrate different ways that the data can be integrally used to generate testable hypotheses concerning the biochemistry, phylogeny and natural product diversity of medicinal plants. Deep metabolomics analysis of Camptotheca acuminata exemplifies how such data can be used to inform metabolic understanding of natural product chemical diversity and begin to formulate hypotheses about their biogenesis. Metabolomics data from Prunella vulgaris, a species that contains a wide range of antioxidant, antiviral, tumoricidal and anti-inflammatory constituents, provide a case study of obtaining biosystematic and developmental fingerprint information from metabolite accumulation data in a little studied species. Digitalis purpurea, well known as a source of cardiac glycosides, is used to illustrate how integrating metabolomics and transcriptomics data can lead to identification of candidate genes encoding biosynthetic enzymes in the cardiac glycoside pathway. Medicinal Plant Metabolomics Resource (MPM [1] provides a framework for generating experimentally testable hypotheses about the metabolic networks that lead to the generation of specialized compounds, identifying genes that control their biosynthesis and establishing a basis for modeling metabolism in less

  11. Reliability analysis of meteorological data registered during nuclear power plant normal operation

    International Nuclear Information System (INIS)

    Amado, V.; Ulke, A.; Marino, B.; Thomas, L.

    2011-01-01

    The atmosphere is the environment in which gaseous radioactive discharges from nuclear power plants are transported. It is therefore essential to have reliable meteorological information to characterize the dispersion and feed evaluation models and radiological environmental impact during normal operation of the plant as well as accidental releases. In this way it is possible to determine the effects on the environment and in humans. The basic data needed to represent adequately the local weather include air temperature, wind speed and direction, rainfall, humidity and pressure. On the other hand, specific data consistent with the used model is required to determine the turbulence, for instance, radiation, cloud cover and vertical temperature gradient. It is important that the recorded data are representative of the local meteorology. This requires, first, properly placed instruments, that should be kept in operation and undergoing maintenance on a regular basis. Second, but equally substantial, a thorough analysis of its reliability must be performed prior to storage and/or data processing. In this paper we present the main criteria to consider choosing the location of a meteorological tower in the area of a nuclear power plant and propose a methodology for assessing the reliability of recorded data. The methodology was developed from the analysis of meteorological data registered in nuclear power plants in Argentina. (authors) [es

  12. Procedure Development and Qualification of the Phased Array Ultrasonic Testing for the Nuclear Power Plant Piping Weld

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Yang, Seung Han; Kim, Yong Sik; Lee, Hee Jong

    2010-01-01

    The manual ultrasonic examination for the nuclear power plant piping welds has been demonstrated by using KPD(Korean Performance Demonstration) generic procedure. For automated ultrasonic examination, there is no generic procedure and it should be qualified by using applicable automated equipment. Until now, most of qualified procedures used pulse-echo technique and there is no qualified procedure using phased array technique. In this study, data acquisition and analysis software were developed and phased-array transducer and wedge were designed to implement phased array technique for nuclear power plant in-service inspection. The developed procedure are qualified for performance demonstration for the flaw detection, length sizing and depth sizing. The qualified procedure will be applied for the field examination in the nuclear power plant piping weld inspection

  13. Plant responses to Agrobacterium tumefaciens and crown gall development

    Science.gov (United States)

    Gohlke, Jochen; Deeken, Rosalia

    2014-01-01

    Agrobacterium tumefaciens causes crown gall disease on various plant species by introducing its T-DNA into the genome. Therefore, Agrobacterium has been extensively studied both as a pathogen and an important biotechnological tool. The infection process involves the transfer of T-DNA and virulence proteins into the plant cell. At that time the gene expression patterns of host plants differ depending on the Agrobacterium strain, plant species and cell-type used. Later on, integration of the T-DNA into the plant host genome, expression of the encoded oncogenes, and increase in phytohormone levels induce a fundamental reprogramming of the transformed cells. This results in their proliferation and finally formation of plant tumors. The process of reprogramming is accompanied by altered gene expression, morphology and metabolism. In addition to changes in the transcriptome and metabolome, further genome-wide (“omic”) approaches have recently deepened our understanding of the genetic and epigenetic basis of crown gall tumor formation. This review summarizes the current knowledge about plant responses in the course of tumor development. Special emphasis is placed on the connection between epigenetic, transcriptomic, metabolomic, and morphological changes in the developing tumor. These changes not only result in abnormally proliferating host cells with a heterotrophic and transport-dependent metabolism, but also cause differentiation and serve as mechanisms to balance pathogen defense and adapt to abiotic stress conditions, thereby allowing the coexistence of the crown gall and host plant. PMID:24795740

  14. Development of a risk monitoring system for nuclear power plants based on GO-FLOW methodology

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jun, E-mail: youngjun51@hotmail.com [College of Nuclear Science and Technology, Harbin Engineering University, No. 145 Nantong Street, Nangang District, Harbin 150001 (China); Yang, Ming, E-mail: yangming@hrbeu.edu.cn [College of Nuclear Science and Technology, Harbin Engineering University, No. 145 Nantong Street, Nangang District, Harbin 150001 (China); Yoshikawa, Hidekazu, E-mail: yosikawa@kib.biglobe.ne.jp [Symbio Community Forum, Kyoto (Japan); Yang, Fangqing, E-mail: yfq613@163.com [China Nuclear Power Technology Research Institute, 518000 (China)

    2014-10-15

    Highlights: • A method for developing Living PSA is proposed. • Living PSA is easy to update with online modification to system model file. • A risk monitoring system is designed and developed using the GO-FLOW. • The risk monitoring system is useful for plant daily operation risk management. - Abstract: The paper presents a risk monitoring system developed based on GO-FLOW methodology which is a success-oriented system reliability modeling technique for phased mission as well as time-dependent problems analysis. The risk monitoring system is designed to receive information on plant configuration changes either from equipment failures, operator interventions, or maintenance activities, then update the Living PSA model with online modification to the system GO-FLOW model file which contains all the functional modes of equipment represented by a proposed generalized GO-FLOW modeling structure, and display risk values graphically. The risk monitoring system can be used to assist safety engineers and plant operators in their maintenance management and daily operation risk management at NPPs.

  15. Development of a risk monitoring system for nuclear power plants based on GO-FLOW methodology

    International Nuclear Information System (INIS)

    Yang, Jun; Yang, Ming; Yoshikawa, Hidekazu; Yang, Fangqing

    2014-01-01

    Highlights: • A method for developing Living PSA is proposed. • Living PSA is easy to update with online modification to system model file. • A risk monitoring system is designed and developed using the GO-FLOW. • The risk monitoring system is useful for plant daily operation risk management. - Abstract: The paper presents a risk monitoring system developed based on GO-FLOW methodology which is a success-oriented system reliability modeling technique for phased mission as well as time-dependent problems analysis. The risk monitoring system is designed to receive information on plant configuration changes either from equipment failures, operator interventions, or maintenance activities, then update the Living PSA model with online modification to the system GO-FLOW model file which contains all the functional modes of equipment represented by a proposed generalized GO-FLOW modeling structure, and display risk values graphically. The risk monitoring system can be used to assist safety engineers and plant operators in their maintenance management and daily operation risk management at NPPs

  16. Need for a probabilistic fire analysis at nuclear power plants

    International Nuclear Information System (INIS)

    Calabuig Beneyto, J. L.; Ibanez Aparicio, J.

    1993-01-01

    Although fire protection standards for nuclear power plants cover a wide scope and are constantly being updated, the existence of certain constraints makes it difficult to precisely evaluate plant response to different postulatable fires. These constraints involve limitations such as: - Physical obstacles which impede the implementation of standards in certain cases; - Absence of general standards which cover all the situations which could arise in practice; - Possible temporary noncompliance of safety measures owing to unforeseen circumstances; - The fact that a fire protection standard cannot possibly take into account additional damages occurring simultaneously with the fire; Based on the experience of the ASCO NPP PSA developed within the framework of the joint venture, INITEC-INYPSA-EMPRESARIOS AGRUPADOS, this paper seeks to justify the need for a probabilistic analysis to overcome the limitations detected in general application of prevailing standards. (author)

  17. Analysis of offsite Emergency Planning Zones (EPZs) for the Rocky Flats Plant

    International Nuclear Information System (INIS)

    Petrocchi, A.J.; Zimmerman, G.A.

    1994-01-01

    During Phase 3 of the EPZ project, a sitewide analysis will be performed applying a spectrum-of-accidents approach to both radiological and nonradiological hazardous materials release scenarios. This analysis will include the MCA but will be wider in scope and will produce options for the State of Colorado for establishing a bounding EPZ that is intended to more comprehensively update the interim, preliminary EPZ developed in Phase 2. EG ampersand G will propose use of a hazards assessment methodology that is consistent with the DOE Emergency Management Guide for Hazards Assessments and other methods required by DOE orders. This will include hazards, accident, safety, and risk analyses. Using this methodology, EG ampersand G will develop technical analyses for a spectrum of accidents. The analyses will show the potential effects from the spectrum of accidents on the offsite population together with identification of offsite vulnerable zones and areas of concern. These analyses will incorporate state-of-the-art technology for accident analysis, atmospheric plume dispersion modeling, consequence analysis, and the application of these evaluations to the general public population at risk. The analyses will treat both radiological and nonradiological hazardous materials and mixtures of both released accidentally to the atmosphere. DOE/RFO will submit these results to the State of Colorado for the State's use in determining offsite emergency planning zones for the Rocky Flats Plant. In addition, the results will be used for internal Rocky Flats Plant emergency planning

  18. Design and analysis of heat recovery system in bioprocess plant

    International Nuclear Information System (INIS)

    Anastasovski, Aleksandar; Rašković, Predrag; Guzović, Zvonimir

    2015-01-01

    Highlights: • Heat integration of a bioprocess plant is studied. • Bioprocess plant produces yeast and ethyl-alcohol. • The design of a heat recovery system is performed by batch pinch analysis. • Direct and indirect heat integration approaches are used in process design. • The heat recovery system without a heat storage opportunity is more profitable. - Abstract: The paper deals with the heat integration of a bioprocess plant which produces yeast and ethyl-alcohol. The referent plant is considered to be a multiproduct batch plant which operates in a semi-continuous mode. The design of a heat recovery system is performed by batch pinch analysis and by the use of the Time slice model. The results obtained by direct and indirect heat integration approaches are presented in the form of cost-optimal heat exchanger networks and evaluated by different thermodynamic and economic indicators. They signify that the heat recovery system without a heat storage opportunity can be considered to be a more profitable solution for the energy efficiency increase in a plant

  19. Design and simulation of a plant control system for a GCFR demonstration plant

    International Nuclear Information System (INIS)

    Estrine, E.A.; Greiner, H.G.

    1980-02-01

    A plant control system is being designed for a 300 MW(e) Gas Cooled Fast Breeder Reactor (GCFR) demonstration plant. Control analysis is being performed as an integral part of the plant design process to ensure that control requirements are satisfied as the plant design evolves. Plant models and simulations are being developed to generate information necessary to further define control system requirements for subsequent plant design iterations

  20. Development of technologies on innovative-simplified nuclear power plant using high-efficiency steam injectors (2) analysis of heat balance of innovative-simplified nuclear power plant

    International Nuclear Information System (INIS)

    Goto, S.; Ohmori, S.; Mori, M.

    2005-01-01

    It is possible to establish simplified system with reduced space and total equipment weight using high-efficiency Steam Injector (SI) instead of low-pressure feedwater heaters in Nuclear Power Plant (NPP)(1)-(6). The SI works as a heat exchanger through direct contact between feedwater from the condensers and extracted steam from the turbines. It can get a higher pressure than supplied steam pressure, so it can reduce the feedwater pumps. The maintenance and reliability are still higher because SI has no movable parts. This paper describes the analysis of the heat balance and plant efficiency of this Innovative- Simplified NPP with high-efficiency SI. The plant efficiency is compared with the electric power of 1100MWe-class BWR system and the Innovative- Simplified BWR system with SI. The SI model is adapted into the heat balance simulator with a simplified model. The results show plant efficiencies of the Innovated-Simplified BWR system are almost equal to the original BWR one. The present research is one of the projects that are carried out by Tokyo Electric Power Company, Toshiba Corporation, and six Universities in Japan, funded from the Institute of Applied Energy (IAE) of Japan as the national public research-funded program. (authors)

  1. Development of a best estimate auditing code for CANDU thermal hydraulic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B.D.; Lee, W.J.; Lim, H.S. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model of existing PWR auditing tool , i.e. RELAP5/MOD3. This scope of project is a third step of the whole project, and expand the RELAP5/MOD3/CANDU version for implementation of LOCA Analysis. There are three main area of model development, i.e. Moody critical flow model, flow regime model of horizontal CANDU bundle, and fuel element heatup model when the stratification occurs. Newly developed version, namely RELAP5/MOD3/CANDU+ is applicable to CANDU plant analysis with keeping the function of light water reactor analysis. The limited validations of model installation were performed. Assessment of CHF model using AECL separated effect test and calculation for Wolsong 2 plant were performed also for the applicability test of the developed version. 15 refs., 37 figs., 8 tabs. (Author)

  2. Research and development towards decommissioning of Fukushima Daiichi Nuclear Power Plants

    International Nuclear Information System (INIS)

    Minato, Kazuo

    2013-01-01

    Towards the decommissioning of Fukushima Daiichi Nuclear Power Plants, science-based research and development is important and useful, as well as technology and engineering development. Research and development activities based on radiation chemistry, radiochemistry, thermodynamics, etc., have contributed to safe and efficient decommissioning of the plants. (author)

  3. Graphical analysis of French nuclear power plant production date

    Energy Technology Data Exchange (ETDEWEB)

    Jourdan, J.P. [Electricite de France (EDF), Projet Production EPR 1, 93 - Saint-Denis (France)

    2001-07-01

    The analysis of values of plant production uses here an original method of graphical analysis. This method clarifies various difficulties of analysing big experience feedback databases among which the language interpretation and distinctions between scarce events and multi-annual events. In general, the method shows the logical processes that production values obey (pure chance logic, administrative logic, and willpower) This method of graphical analysis provides a tool to observe and question in a concrete way so that each person involved can put the events in which he played a role into the general context of other plants. It is a deductible method to improve this big and complex system. (author)

  4. Graphical analysis of French nuclear power plant production date

    International Nuclear Information System (INIS)

    Jourdan, J.P.

    2001-01-01

    The analysis of values of plant production uses here an original method of graphical analysis. This method clarifies various difficulties of analysing big experience feedback databases among which the language interpretation and distinctions between scarce events and multi-annual events. In general, the method shows the logical processes that production values obey (pure chance logic, administrative logic, and willpower) This method of graphical analysis provides a tool to observe and question in a concrete way so that each person involved can put the events in which he played a role into the general context of other plants. It is a deductible method to improve this big and complex system. (author)

  5. System Evaluation and Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen-Production Plant

    International Nuclear Information System (INIS)

    Harvego, E.A.; McKellar, M.G.; Sohal, M.S.; O'Brien, J.E.; Herring, J.S.

    2010-01-01

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540 C and 900 C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating current (AC) to direct current (DC) conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.1% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

  6. Procedures for analysis of accidents in shutdown modes for WWER nuclear power plants. A publication of the extrabudgetary programme on the safety of WWER and RBMK nuclear power plants

    International Nuclear Information System (INIS)

    1997-07-01

    Operational events occurring during shutdown conditions contribute significantly to the NPP risk due to the fact that both preventive and mitigatory capabilities of the plant are somehow degraded. The need for detailed information in the performance and review of accident analysis for WWER type NPPs was identified as a priority within IAEA Extrabudgetary Program on Safety of WWER and RBMK NPPs. The present guidelines were developed through two consultants meetings in 1995 and 1996. The guidelines establish a set of criteria for performing deterministic analysis of accidents, initiated by events occurring under shutdown conditions. This report is mostly relevant for licensing type calculations, and may to a certain extent, also used for development, improvement or justification of the plant limits and conditions, emergency operating procedures, operator training programs and probabilistic safety studies. The guidelines apply to all WWER plants in operation and/or under construction

  7. Computer aided plant engineering: An analysis and suggestions for computer use

    International Nuclear Information System (INIS)

    Leinemann, K.

    1979-09-01

    To get indications to and boundary conditions for computer use in plant engineering, an analysis of the engineering process was done. The structure of plant engineering is represented by a network of substaks and subsets of data which are to be manipulated. Main tool for integration of CAD-subsystems in plant engineering should be a central database which is described by characteristical requirements and a possible simple conceptual schema. The main features of an interactive system for computer aided plant engineering are shortly illustrated by two examples. The analysis leads to the conclusion, that an interactive graphic system for manipulation of net-like structured data, usable for various subtasks, should be the base for computer aided plant engineering. (orig.) [de

  8. Update History of This Database - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods ...B link & Genome analysis methods English archive site is opened. 2012/08/08 PGDBj... Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods is opened. About This...ate History of This Database - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive ...

  9. Multi-criteria evaluation and priority analysis for localization equipment in a thermal power plant using the AHP (analytic hierarchy process)

    International Nuclear Information System (INIS)

    Yagmur, Levent

    2016-01-01

    Ensuring the safety of its energy supply is one of the main issues for newly industrialized/developing countries when utilizing domestic sources for electricity generation. Turkey depends heavily on imported gas to generate electricity, and the ratio of natural gas power generation to total electricity production is nearly 50%. Coal-fired thermal power plants using domestic resources are considered a good option to decrease the large amount of imported natural gas, and to supply a secure energy demand. However, electricity generation from coal-fired power plants using local lignite reserves is not adequate to maintain a secure energy mix and provide sustainable development, as Turkey does not have indigenous energy sector technology. Therefore, technology transfer and its localization are crucial for newly industrialized/developing countries such as Turkey. The aim of this study is to use the analytic hierarchy process to determine a priority analysis in relation to localization equipment for a thermal power plant. Parameters involved, such as readiness of both infrastructure and human resources, manpower as skilled labor, market potential for equipment developed by transferred technology, and competition in global/internal market, are related to localization in thermal power plant technologies, and are considered in relation to the country's technological capability, design ability, possession of materials/equipment, and ability to erect a plant. Results of analysis show that the boiler is the most important piece of equipment in this respect, and that heaters and fans are ranked after the boiler with respect to local conditions. - Highlights: • Localization of foreign technology was determined for developing countries. • An evaluation and priority analysis were performed for parts of a thermal power plant. • Analytic hierarchy process was applied for the hierarchical ordering of parts when transferring technology.

  10. Exergy Analysis of Operating Lignite Fired Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    K. Murugesan

    2009-01-01

    Full Text Available The energy assessment must be made through the energy quantity as well as the quality. But the usual energy analysisevaluates the energy generally on its quantity only. However, the exergy analysis assesses the energy on quantity as well asthe quality. The aim of the exergy analysis is to identify the magnitudes and the locations of real energy losses, in order toimprove the existing systems, processes or components. The present paper deals with an exergy analysis performed on anoperating 50MWe unit of lignite fired steam power plant at Thermal Power Station-I, Neyveli Lignite Corporation Limited,Neyveli, Tamil Nadu, India. The exergy losses occurred in the various subsystems of the plant and their components havebeen calculated using the mass, energy and exergy balance equations. The distribution of the exergy losses in several plantcomponents during the real time plant running conditions has been assessed to locate the process irreversibility. The Firstlaw efficiency (energy efficiency and the Second law efficiency (exergy efficiency of the plant have also been calculated.The comparison between the energy losses and the exergy losses of the individual components of the plant shows that themaximum energy losses of 39% occur in the condenser, whereas the maximum exergy losses of 42.73% occur in the combustor.The real losses of energy which has a scope for the improvement are given as maximum exergy losses that occurredin the combustor.

  11. Real-time analysis of nitrogen translocation in plants

    International Nuclear Information System (INIS)

    Hayashi, Hiroaki

    2000-01-01

    Nitrogen absorbed by roots is transported to the leaves through xylem vessels and then retranslocated to the new leaves, such as root and storage organs through sieve tubes. It is very important to know how this nitrogen movement occurs in the plants and what mechanisms are involved in controlling this movement in order to increase the efficiency of fertilizer. In this experiments, 13 N and 15 N was used to detect the nitrogen circulation in plants, in combination with the technique for positron detection in real time and for collection of sap in sieve tubes and analysis of 15 N in it. By using 13 N, nitrogen movement from root to shoot was analyzed within 10 min after 13 N was applied to the roots. On the other hand, nitrogen retranslocation through sieve tubes was detected by the analysis of 15 N in the phloem sap over 6 hrs. All data suggest the dynamic translocation of nitrogen in rice plants. (author)

  12. Development of CAP code for nuclear power plant containment: Lumped model

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Soon Joon, E-mail: sjhong90@fnctech.com [FNC Tech. Co. Ltd., Heungdeok 1 ro 13, Giheung-gu, Yongin-si, Gyeonggi-do 446-908 (Korea, Republic of); Choo, Yeon Joon; Hwang, Su Hyun; Lee, Byung Chul [FNC Tech. Co. Ltd., Heungdeok 1 ro 13, Giheung-gu, Yongin-si, Gyeonggi-do 446-908 (Korea, Republic of); Ha, Sang Jun [Central Research Institute, Korea Hydro & Nuclear Power Company, Ltd., 70, 1312-gil, Yuseong-daero, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

    2015-09-15

    Highlights: • State-of-art containment analysis code, CAP, has been developed. • CAP uses 3-field equations, water level oriented upwind scheme, local head model. • CAP has a function of linked calculation with reactor coolant system code. • CAP code assessments showed appropriate prediction capabilities. - Abstract: CAP (nuclear Containment Analysis Package) code has been developed in Korean nuclear society for the analysis of nuclear containment thermal hydraulic behaviors including pressure and temperature trends and hydrogen concentration. Lumped model of CAP code uses 2-phase, 3-field equations for fluid behaviors, and has appropriate constitutive equations, 1-dimensional heat conductor model, component models, trip and control models, and special process models. CAP can run in a standalone mode or a linked mode with a reactor coolant system analysis code. The linked mode enables the more realistic calculation of a containment response and is expected to be applicable to a more complicated advanced plant design calculation. CAP code assessments were carried out by gradual approaches: conceptual problems, fundamental phenomena, component and principal phenomena, experimental validation, and finally comparison with other code calculations on the base of important phenomena identifications. The assessments showed appropriate prediction capabilities of CAP.

  13. Development of CAP code for nuclear power plant containment: Lumped model

    International Nuclear Information System (INIS)

    Hong, Soon Joon; Choo, Yeon Joon; Hwang, Su Hyun; Lee, Byung Chul; Ha, Sang Jun

    2015-01-01

    Highlights: • State-of-art containment analysis code, CAP, has been developed. • CAP uses 3-field equations, water level oriented upwind scheme, local head model. • CAP has a function of linked calculation with reactor coolant system code. • CAP code assessments showed appropriate prediction capabilities. - Abstract: CAP (nuclear Containment Analysis Package) code has been developed in Korean nuclear society for the analysis of nuclear containment thermal hydraulic behaviors including pressure and temperature trends and hydrogen concentration. Lumped model of CAP code uses 2-phase, 3-field equations for fluid behaviors, and has appropriate constitutive equations, 1-dimensional heat conductor model, component models, trip and control models, and special process models. CAP can run in a standalone mode or a linked mode with a reactor coolant system analysis code. The linked mode enables the more realistic calculation of a containment response and is expected to be applicable to a more complicated advanced plant design calculation. CAP code assessments were carried out by gradual approaches: conceptual problems, fundamental phenomena, component and principal phenomena, experimental validation, and finally comparison with other code calculations on the base of important phenomena identifications. The assessments showed appropriate prediction capabilities of CAP

  14. Analysis on Single Point Vulnerabilities of Plant Control System

    International Nuclear Information System (INIS)

    Chi, Moon Goo; Lee, Eun Chan; Bae, Yeon Kyoung

    2011-01-01

    The Plant Control System (PCS) is a system that controls pumps, valves, dampers, etc. in nuclear power plants with an OPR-1000 design. When there is a failure or spurious actuation of the critical components in the PCS, it can result in unexpected plant trips or transients. From this viewpoint, single point vulnerabilities are evaluated in detail using failure mode effect analyses (FMEA) and fault tree analyses (FTA). This evaluation demonstrates that the PCS has many vulnerable components and the analysis results are provided for OPR-1000 plants for reliability improvements that can reduce their vulnerabilities

  15. Analysis on Single Point Vulnerabilities of Plant Control System

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Moon Goo; Lee, Eun Chan; Bae, Yeon Kyoung [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2011-08-15

    The Plant Control System (PCS) is a system that controls pumps, valves, dampers, etc. in nuclear power plants with an OPR-1000 design. When there is a failure or spurious actuation of the critical components in the PCS, it can result in unexpected plant trips or transients. From this viewpoint, single point vulnerabilities are evaluated in detail using failure mode effect analyses (FMEA) and fault tree analyses (FTA). This evaluation demonstrates that the PCS has many vulnerable components and the analysis results are provided for OPR-1000 plants for reliability improvements that can reduce their vulnerabilities.

  16. Symbiotic regulation of plant growth, development and reproduction

    Science.gov (United States)

    Rodriguez, R.J.; Freeman, D. Carl; McArthur, E.D.; Kim, Y.-O.; Redman, R.S.

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at five times the rate observed in nonsymbiotic plants. Endophytes also influenced sexual reproduction of mature big sagebrush (Artemisia tridentata) plants. Two spatially distinct big sagebrush subspecies and their hybrids were symbiotic with unique fungal endophytes, despite being separated by only 380 m distance and 60 m elevation. A double reciprocal transplant experiment of parental and hybrid plants, and soils across the hybrid zone showed that fungal endophytes interact with the soils and different plant genotypes to confer enhanced plant reproduction in soil native to the endophyte and reduced reproduction in soil alien to the endophyte. Moreover, the most prevalent endophyte of the hybrid zone reduced the fitness of both parental subspecies. Because these endophytes are passed to the next generation of plants on seed coats, this interaction provides a selective advantage, habitat specificity, and the means of restricting gene flow, thereby making the hybrid zone stable, narrow and potentially leading to speciation. ?? 2009 Landes Bioscience.

  17. Analysis of public comments on the proposed rule on nuclear power plant license renewal

    International Nuclear Information System (INIS)

    1991-12-01

    This report provides a summary and analysis of public comments on the proposed license renewal rule for the nuclear power plants (10 CFR Part 54) published in the Federal Register on 17 July 1990. It also documents the NRC's resolution of the issues raised by the commenters. Comments from 121 organizations and 76 individuals were reviewed and analyzed to identify the issues, including those pertaining to the adequacy of the licensing basis, the performance of an integrated plant assessment, backfit considerations, and need for public hearings. The analysis included grouping of commenters' views according to the issues raised. The public comments analyzed in this report were taken into consideration in the development of the final rule and revisions to the supporting documents

  18. Evaluation of methods for seismic analysis of nuclear fuel reprocessing plants, part 1

    International Nuclear Information System (INIS)

    Tokarz, F.J.; Murray, R.C.; Arthur, D.F.; Feng, W.W.; Wight, L.H.; Zaslawsky, M.

    1975-01-01

    Currently, no guidelines exist for choosing methods of structural analysis to evaluate the seismic hazard of nuclear fuel reprocessing plants. This study examines available methods and their applicability to fuel reprocessing plant structures. The results of this study should provide a basis for establishing guidelines recommending methods of seismic analysis for evaluating future fuel reprocessing plants. The approach taken is: (1) to identify critical plant structures and place them in four categories (structures at or near grade; deeply embedded structures; fully buried structures; equipment/vessels/attachments/piping), (2) to select a representative structure in each of the first three categories and perform static and dynamic analysis on each, and (3) to evaluate and recommend method(s) of analysis for structures within each category. The Barnwell Nuclear Fuel Plant is selected as representative of future commercial reprocessing plants. The effect of site characteristics on the structural response is also examined. The response spectra method of analysis combined with the finite element model for each category is recommended. For structures founded near or at grade, the lumped mass model could also be used. If a time history response is required, a time-history analysis is necessary. (U.S.)

  19. Developing a taxonomy of coordination behaviours in nuclear power plant control rooms during emergencies.

    Science.gov (United States)

    Wang, Dunxing; Gao, Qin; Li, Zhizhong; Song, Fei; Ma, Liang

    2017-12-01

    This study aims to develop a taxonomy of coordination behaviours during emergencies in nuclear power plants (NPPs). We summarised basic coordination behaviours from literature in aviation, health care and nuclear field and identified coordination behaviours specific to the nuclear domain by interviewing and surveying control crew operators. The established taxonomy includes 7 workflow stages and 24 basic coordination behaviours. To evaluate the reliability and feasibility of the taxonomy, we analysed 12 videos of operators' training sessions by coding coordination behaviours with the taxonomy and the inter-rater reliability was acceptable. Further analysis of the frequency, the duration and the direction of the coordination behaviours revealed four coordination problems. This taxonomy provides a foundation of systematic observation of coordination behaviours among NPP crews, advances researchers' understanding of the coordination mechanism during emergencies in NPPs and facilitate the possibility to deepen the understanding of the relationships between coordination behaviours and team performance. Practitioner Summary: A taxonomy of coordination behaviours during emergencies in nuclear power plants was developed. Reliability and feasibility of the taxonomy was verified through the analysis of 12 training sessions. The taxonomy can serve as an observation system for analysis of coordination behaviours and help to identify coordination problems of control crews.

  20. Kuroshio power plant development plan

    International Nuclear Information System (INIS)

    Chen, Falin

    2010-01-01

    As a country lacking energy reserves, Taiwan imports 99.2% of its energy, with only a small portion of indigenous energy, such as hydro, wind, and solar. In 2008, each Taiwanese spent 85,000 NTD dollars (1 USD ∝ 32 NTD) to purchase oil, coal, gas, and nuclear fuel from foreign countries, accounting for a total payment of 1.8 trillion NTD, more than the annual budget of the Taiwan government of 1.7 trillion NTD. In the same year, Taiwan emitted about 1% of the world's greenhouse gas (GHG), or 12 tons per person-year, ranking 18th globally. These situations in terms of energy security and carbon emission are very severe. To resolve these severe situations, harnessing the power of the Kuroshio in eastern Taiwan offers a great opportunity. The Kuroshio is a branch of the North Pacific Ocean current. Due to the westward-enhanced effect, this ocean current is strong and stable as it passes through eastern Taiwan. The flow rate is about 30 sverdrup (Sv) or 1000 times that of the Yangtze River, the average speed is 1 m/s, the flow direction is fixed to the north, and the flow path is close to the east coast of Taiwan. By precisely locating high-quality sites and implementing sequential works with careful planning, one can possibly generate exploitable power more than 30 GW. With 30 GW of clean energy, Taiwan could effectively enhance energy security, reduce GHG emission, and lower energy-purchasing cost. This paper proposes a feasibility study to explore the power of the Kuroshio. The content consists of four parts: (1) assessment of Kuroshio power reserves, (2) development of turbine generators, (3) development of turbine-anchor system, and (4) deep-sea marine engineering of turbine clusters. By integrating these technologies above, we propose a project to construct a 30 MW pilot plant. In this project, we also discuss the financial analysis and propose new regulations, environmental impact analysis, risk assessment, and other relevant issues. (author)

  1. Development of instructors for nuclear power plant personnel training

    International Nuclear Information System (INIS)

    2004-06-01

    In 1996 the IAEA published Technical Reports Series No. 380, Nuclear Power Plant Personnel Training and its Evaluation, A Guidebook, which provides guidance with respect to development, implementation and evaluation of training programmes. The IAEA Technical Working Group on Training and Qualification of Nuclear Power Plant Personnel recommended that an additional publication be prepared to provide further details concerning the development of instructors for NPP personnel training. The quality of nuclear power plant personnel training is strongly dependent on the availability of competent instructors. Instructors must have a comprehensive practical as well as theoretical understanding of all aspects of the subjects being taught and the relationship of the subject to nuclear plant operation. Instructors should have the appropriate knowledge, skills and attitudes (KSAs) in their assigned areas of responsibility. They should thoroughly understand all aspects of the contents of the training programmes and the relationship between these contents and overall plant operation. This means that they should be technically competent and show credibility with the trainees and other plant personnel. In addition, the instructors should be familiar with the basics of adult learning and a systematic approach to training, and should have adequate instructional and assessment skills. This TECDOC provides practical guidance on various aspects of instructor selection, development and deployment, by quoting actual examples from different countries. It highlights the importance of having an appropriate training policy, especially considering the various organisational arrangements that exist in different utilities/countries. This should result in: plant performance improvement, improved human performance, meeting goals and objectives of the business (quality, safety, productivity), and improving training programs. This publication is available in two formats - as a conventional printed

  2. Analysis and assessment of water treatment plant reliability

    Directory of Open Access Journals (Sweden)

    Szpak Dawid

    2017-03-01

    Full Text Available The subject of the publication is the analysis and assessment of the reliability of the surface water treatment plant (WTP. In the study the one parameter method of reliability assessment was used. Based on the flow sheet derived from the water company the reliability scheme of the analysed WTP was prepared. On the basis of the daily WTP work report the availability index Kg for the individual elements included in the WTP, was determined. Then, based on the developed reliability scheme showing the interrelationships between elements, the availability index Kg for the whole WTP was determined. The obtained value of the availability index Kg was compared with the criteria values.

  3. Energy analysis of nuclear power plants and their fuel cycle

    International Nuclear Information System (INIS)

    Held, C.; Moraw, G.; Schneeberger, M.; Szeless, A.

    1977-01-01

    Energy analysis has become an increasingly feasible and practical additional method for evaluating the engineering, economic and environmental aspects of power producing systems. Energy analysis compares total direct and indirect energy investment into construction and operation of power plants with their lifetime energy output. Statically we have applied this method to nuclear power producing sytems and their fuel cycles. Results were adapted to countries with various levels of industrialization and resources. With dynamic energy analysis different scenarios have been investigated. For comparison purposes fossil fueled and solar power plants have also been analyzed. By static evaluation it has been shown that for all types of power plants the energy investment for construction is shortly after plant startup being repaid by energy output. Static analyses of nuclear and fossil fuels have indicated values of fuel concentrations below which more energy is required for their utilization than can be obtained from the plants they fuel. In a further step these global results were specifically modified to the economic situations of countries with various levels of industrialization. Also the influence of energy imports upon energy analysis has been discussed. By dynamic energy analyses the cumulative energy requirements for specific power plant construction programs have been compared with their total energy output. Investigations of this sort are extremely valuable not only for economic reasons but especially for their usefulness in showing the advantages and disadvantages of a specific power program with respect to its alternatives. Naturally the impact of these investigations on the fuel requirements is of importance especially because of the today so often cited ''valuable cumulated fossil fuel savings''

  4. Temperature extremes: Effect on plant growth and development

    Directory of Open Access Journals (Sweden)

    Jerry L. Hatfield

    2015-12-01

    Full Text Available Temperature is a primary factor affecting the rate of plant development. Warmer temperatures expected with climate change and the potential for more extreme temperature events will impact plant productivity. Pollination is one of the most sensitive phenological stages to temperature extremes across all species and during this developmental stage temperature extremes would greatly affect production. Few adaptation strategies are available to cope with temperature extremes at this developmental stage other than to select for plants which shed pollen during the cooler periods of the day or are indeterminate so flowering occurs over a longer period of the growing season. In controlled environment studies, warm temperatures increased the rate of phenological development; however, there was no effect on leaf area or vegetative biomass compared to normal temperatures. The major impact of warmer temperatures was during the reproductive stage of development and in all cases grain yield in maize was significantly reduced by as much as 80−90% from a normal temperature regime. Temperature effects are increased by water deficits and excess soil water demonstrating that understanding the interaction of temperature and water will be needed to develop more effective adaptation strategies to offset the impacts of greater temperature extreme events associated with a changing climate.

  5. Genotyping-By-Sequencing for Plant Genetic Diversity Analysis: A Lab Guide for SNP Genotyping

    Directory of Open Access Journals (Sweden)

    Gregory W. Peterson

    2014-10-01

    Full Text Available Genotyping-by-sequencing (GBS has recently emerged as a promising genomic approach for exploring plant genetic diversity on a genome-wide scale. However, many uncertainties and challenges remain in the application of GBS, particularly in non-model species. Here, we present a GBS protocol we developed and use for plant genetic diversity analysis. It uses two restriction enzymes to reduce genome complexity, applies Illumina multiplexing indexes for barcoding and has a custom bioinformatics pipeline for genotyping. This genetic diversity-focused GBS (gd-GBS protocol can serve as an easy-to-follow lab guide to assist a researcher through every step of a GBS application with five main components: sample preparation, library assembly, sequencing, SNP calling and diversity analysis. Specifically, in this presentation, we provide a brief overview of the GBS approach, describe the gd-GBS procedures, illustrate it with an application to analyze genetic diversity in 20 flax (Linum usitatissimum L. accessions and discuss related issues in GBS application. Following these lab bench procedures and using the custom bioinformatics pipeline, one could generate genome-wide SNP genotype data for a conventional genetic diversity analysis of a non-model plant species.

  6. Observations on the development of plants

    OpenAIRE

    A. Listowski; A. Jaśmianowicz; M. Iwanejko

    2015-01-01

    The influence of light intensity and daylength on four short-day species of Chenopodium was analysed. The following species were tested: Ch. ficifolium, Ch. glaucum, Ch. rubrum and Ch. hybridum. Under short day, generative initiation was accelerated, the abundance of flowering, and growth and leaf differentiation processes were reduced. Under light of low intensity, the rhythm of development of the plants growing under long day is similar to that under short day. The development of axillary b...

  7. Analysis of medicinal plant extracts by neutron activation method

    International Nuclear Information System (INIS)

    Vaz, Sandra Muntz

    1995-01-01

    This dissertation has presented the results from analysis of medicinal plant extracts using neutron activation method. Instrumental neutron activation analysis was applied to the determination of the elements Al, Br, Ca, Ce, Cl, Cr, Cs, Fe, K, La, Mg, Mn, Na, Rb, Sb, Sc and Zn in medicinal extracts obtained from Achyrolcline satureoides DC, Casearia sylvestris, Centella asiatica, Citrus aurantium L., Solano lycocarpum, Solidago microglossa, Stryphnondedron barbatiman and Zingiber officinale R. plants. The elements Hg and Se were determined using radiochemical separation by means of retention of Se in HMD inorganic exchanger and solvent extraction of Hg by bismuth diethyl-dithiocarbamate solution. Precision and accuracy of the results have been evaluated by analysing reference materials. The therapeutic action of some elements found in plant extracts analyzed was briefly discussed

  8. Application of Multivariable Statistical Techniques in Plant-wide WWTP Control Strategies Analysis

    DEFF Research Database (Denmark)

    Flores Alsina, Xavier; Comas, J.; Rodríguez-Roda, I.

    2007-01-01

    The main objective of this paper is to present the application of selected multivariable statistical techniques in plant-wide wastewater treatment plant (WWTP) control strategies analysis. In this study, cluster analysis (CA), principal component analysis/factor analysis (PCA/FA) and discriminant...... analysis (DA) are applied to the evaluation matrix data set obtained by simulation of several control strategies applied to the plant-wide IWA Benchmark Simulation Model No 2 (BSM2). These techniques allow i) to determine natural groups or clusters of control strategies with a similar behaviour, ii......) to find and interpret hidden, complex and casual relation features in the data set and iii) to identify important discriminant variables within the groups found by the cluster analysis. This study illustrates the usefulness of multivariable statistical techniques for both analysis and interpretation...

  9. Development of a seismic damage assessment program for nuclear power plant structures

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Hyun Moo; Cho, Yang Heui; Shin, Hyun Mok [Seoul National Univ., Seoul (Korea, Republic of)] (and others)

    2001-12-15

    The most part of the nuclear power plants operating currently in Korea are more than 20 years old and obviously we cannot pretend that their original performance is actually maintained. In addition, earthquake occurrences show an increasing trend all over the world, and Korea can no more be considered as a zone safe from earthquake. Therefore, need is to guarantee the safety of these power plant structures against seismic accident, to decide to maintain them operational and to obtain data relative to maintenance/repair. Such objectives can be reached by damage assessment using inelastic seismic analysis considering aging degradation. It appears to be more important particularly for the structure enclosing the nuclear reactor that must absolutely protect against any radioactive leakage. Actually, the tendency of the technical world, led by the OECD/NEA, BNL in the United States, CEA in France and IAEA, is to develop researches or programs to assess the seismic safety considering aging degradation of operating nuclear power plants. Regard to the above-mentioned international technical trend, a technology to establish inelastic seismic analysis considering aging degradation so as to assess damage level and seismic safety margin appears to be necessary. Damage assessment and prediction system to grasp in real-time the actual seismic resistance capacity and damage level by 3-dimensional graphic representations are also required.

  10. Development of a seismic damage assessment program for nuclear power plant structures

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Hyun Moo; Cho, Ho Hyun; Cho, Yang Hui [Seoul National Univ., Seoul (Korea, Republic of)] (and others)

    2000-12-15

    Some of nuclear power plants operating currently in Korea have been passed about 20 years after construction. Moreover, in the case of KORI I the service year is over 20 years, so their abilities are different from initial abilities. Also, earthquake outbreak increase, our country is not safe area for earthquake. Therefore, need is to guarantee the safety of these power plant structures against seismic accident, to decide to maintain them operational and to obtain data relative to maintenance/repair. Such objectives can be reached by damage assessment using inelastic seismic analysis considering aging degradation. It appears to be more important particularly for the structure enclosing the nuclear reactor that must absolutely protect against any radioactive leakage. Actually, the tendency of the technical world, led by the OECD/NEA, BNL in the United States, CEA in France and IAEA, is to develop researches or programs to assess the seismic safety considering aging degradation of operating nuclear power plants. Regard to the above-mentioned international technical trend, a technology to establish inelastic seismic analysis considering aging degradation so as to assess damage level and seismic safety margin appears to be necessary. Damage assessment and prediction system to grasp in real-time the actual seismic resistance capacity and damage level by 3-dimensional graphic representations are also required.

  11. Successful Training Development and Implementation in Plant Modernization Projects

    International Nuclear Information System (INIS)

    Kuhn, A.; Schoenfelder, C.

    2012-01-01

    In plant modernization projects, for life extension or power update, the competence development (in particular, job and needs oriented training) of the plant staff plays an important role for ensuring the highest standard of nuclear safety, and for facilitating an economic operation of the plant. This paper describes challenges, methodology, activities, and results obtained so far from an on-going project in Sweden. - - As conclusion, critical factors for a successful staff training in plant modernization projects include a systematic approach to training, a dedicated training management team, and good interfaces between supplier's engineering teams, experienced training providers, and equipment suppliers.

  12. A study in the reliability analysis method for nuclear power plant structures (I)

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Byung Hwan; Choi, Seong Cheol; Shin, Ho Sang; Yang, In Hwan; Kim, Yi Sung; Yu, Young; Kim, Se Hun [Seoul, Nationl Univ., Seoul (Korea, Republic of)

    1999-03-15

    Nuclear power plant structures may be exposed to aggressive environmental effects that may cause their strength and stiffness to decrease over their service life. Although the physics of these damage mechanisms are reasonably well understood and quantitative evaluation of their effects on time-dependent structural behavior is possible in some instances, such evaluations are generally very difficult and remain novel. The assessment of existing steel containment in nuclear power plants for continued service must provide quantitative evidence that they are able to withstand future extreme loads during a service period with an acceptable level of reliability. Rational methodologies to perform the reliability assessment can be developed from mechanistic models of structural deterioration, using time-dependent structural reliability analysis to take loading and strength uncertainties into account. The final goal of this study is to develop the analysis method for the reliability of containment structures. The cause and mechanism of corrosion is first clarified and the reliability assessment method has been established. By introducing the equivalent normal distribution, the procedure of reliability analysis which can determine the failure probabilities has been established. The influence of design variables to reliability and the relation between the reliability and service life will be continued second year research.

  13. Direction of Technology Development for Nuclear Power Plants at the O and M Phase

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Insu; Park, Hwanpyo; Kim, Younghyun [Korea Institute of Construction Technology, Goyang (Korea, Republic of)

    2014-05-15

    Recently, Korea has attempted to advance overseas markets by securing competitive power in nuclear power technology. In order to develop and operate overall construction management systems with Korea's own brand equipped with sufficient applicability and competitive power in the market abroad and to ensure equal competitive power with other foreign advanced companies of nuclear power plants, Korea has launched a project called 'Data Centric Integration/Automation Technology for NP Project Management System' since July 2011. This project is divided into two phases: the first phase from 2012 to 2016 realizes EPCS stage, and the second phase from 2017 to 2020 extends to O and M stage. Appropriate technology development planning must be established if 'Data Centric Integration/Automation Technology for NP Project Management System' conducted at the first phase would extend to O and M stage at the second phase. Therefore, this study aimed at drawing out the direction of technology development based on present analysis of process at the operational phase of nuclear power plants in Korea conducted as previous study. This study analyzed current operation and maintenance systems first, analyzing the results of differences between the operation process of nuclear plants in Korea which was suggested at the previous study and the process of the Korea Hydro and Nuclear Power Co., Ltd. (hereafter referred to as 'KHNP') and drawing out the direction of technology development for nuclear power plants at the operational phase from the viewpoint of life cycle.

  14. Direction of Technology Development for Nuclear Power Plants at the O and M Phase

    International Nuclear Information System (INIS)

    Jung, Insu; Park, Hwanpyo; Kim, Younghyun

    2014-01-01

    Recently, Korea has attempted to advance overseas markets by securing competitive power in nuclear power technology. In order to develop and operate overall construction management systems with Korea's own brand equipped with sufficient applicability and competitive power in the market abroad and to ensure equal competitive power with other foreign advanced companies of nuclear power plants, Korea has launched a project called 'Data Centric Integration/Automation Technology for NP Project Management System' since July 2011. This project is divided into two phases: the first phase from 2012 to 2016 realizes EPCS stage, and the second phase from 2017 to 2020 extends to O and M stage. Appropriate technology development planning must be established if 'Data Centric Integration/Automation Technology for NP Project Management System' conducted at the first phase would extend to O and M stage at the second phase. Therefore, this study aimed at drawing out the direction of technology development based on present analysis of process at the operational phase of nuclear power plants in Korea conducted as previous study. This study analyzed current operation and maintenance systems first, analyzing the results of differences between the operation process of nuclear plants in Korea which was suggested at the previous study and the process of the Korea Hydro and Nuclear Power Co., Ltd. (hereafter referred to as 'KHNP') and drawing out the direction of technology development for nuclear power plants at the operational phase from the viewpoint of life cycle

  15. Plant growth and development vs. high and low levels of plant-beneficial heavy metal ions

    Directory of Open Access Journals (Sweden)

    Namira Arif

    2016-11-01

    Full Text Available Heavy metals (HMs exists in the environment in both forms as essential and non-essential. These HM ions enter in soil biota from various sources like natural and anthropogenic. Essential HMs such as cobalt (Co, copper (Cu, iron (Fe, manganese (Mn, molybdenum (Mo, nickel (Ni, and zinc (Zn plays a beneficial role in plant growth and development. At optimum level these beneficial elements improves the plant’s nutritional level and also several mechanisms essential for the normal growth and better yield of plants. The range of their optimality for land plants is varied. Plant uptake heavy metals as a soluble component or solubilized them by root exudates. While their presence in excess become toxic for plants that switches the plant’s ability to uptake and accumulate other nonessential elements. The increased amount of HMs within the plant tissue displays direct and indirect toxic impacts. Such direct effects are the generation of oxidative stress which further aggravates inhibition of cytoplasmic enzymes and damage to cell structures. Although, indirect possession is the substitution of essential nutrients at plant’s cation exchange sites. These ions readily influence role of various enzymes and proteins, arrest metabolism, and reveal phytotoxicity. On account of recent advancements on beneficial HMs ions Co, Cu, Fe, Mn, Mo, Ni, and Zn in soil-plant system, the present paper: overview the sources of HMs in soils and their uptake and transportation mechanism, here we have discussed the role of metal transporters in transporting the essential metal ions from soil to plants. The role played by Co, Cu, Fe, Mn, Mo, Ni, and Zn at both low and high level on the plant growth and development and the mechanism to alleviate metal toxicity at high level have been also discussed. At the end, on concluding the article we have also discussed the future perspective in respect to beneficial HM ions interaction with plant at both levels.

  16. Nuclear power plant personnel qualifications and training: TAPS: the task analysis profiling system. Volume 2

    International Nuclear Information System (INIS)

    Jorgensen, C.C.

    1985-06-01

    This report discusses an automated task analysis profiling system (TAPS) designed to provide a linking tool between the behaviors of nuclear power plant operators in performing their tasks and the measurement tools necessary to evaluate their in-plant performance. TAPS assists in the identification of the entry-level skill, knowledge, ability and attitude (SKAA) requirements for the various tasks and rapidly associates them with measurement tests and human factors principles. This report describes the development of TAPS and presents its first demonstration. It begins with characteristics of skilled human performance and proceeds to postulate a cognitive model to formally describe these characteristics. A method is derived for linking SKAA characteristics to measurement tests. The entire process is then automated in the form of a task analysis computer program. The development of the program is detailed and a user guide with annotated code listings and supporting test information is provided

  17. Chemical analysis of plants that poison livestock: Successes, challenges, and opportunities

    Science.gov (United States)

    Poisonous plants have a devastating impact on the livestock industry, as well as human health. In order to fully understand the effects of poisonous plants, multiple scientific disciplines are required. Chemical analysis of plant secondary compounds is key to identifying the responsible toxins, char...

  18. Determination of uncertainties in energy and exergy analysis of a power plant

    International Nuclear Information System (INIS)

    Ege, Ahmet; Şahin, Hacı Mehmet

    2014-01-01

    Highlights: • Energy and exergy efficiency uncertainties in a large thermal power plant examined. • Sensitivity analysis shows importance of basic measurements on efficiency analysis. • A quick and practical approach is provided for determining efficiency uncertainties. • Extreme case analysis characterizes maximum possible boundaries of uncertainties. • Uncertainty determination in a plant is a dynamic process with real data. - Abstract: In this study, energy and exergy efficiency uncertainties of a large scale lignite fired power plant cycle and various measurement parameter sensitivities were investigated for five different design power outputs (100%, 85%, 80%, 60% and 40%) and with real data of the plant. For that purpose a black box method was employed considering coal flow with Lower Heating Value (LHV) as a single input and electricity produced as a single output of the plant. The uncertainty of energy and exergy efficiency of the plant was evaluated with this method by applying sensitivity analysis depending on the effect of measurement parameters such as LHV, coal mass flow rate, cell generator output voltage/current. In addition, an extreme case analysis was investigated to determine the maximum range of the uncertainties. Results of the black box method showed that uncertainties varied between 1.82–1.98% for energy efficiency and 1.32–1.43% for exergy efficiency of the plant at an operating power level of 40–100% of full power. It was concluded that LHV determination was the most important uncertainty source of energy and exergy efficiency of the plant. The uncertainties of the extreme case analysis were determined between 2.30% and 2.36% for energy efficiency while 1.66% and 1.70% for exergy efficiency for 40–100% power output respectively. Proposed method was shown to be an approach for understanding major uncertainties as well as effects of some measurement parameters in a large scale thermal power plant

  19. Ash fouling monitoring and key variables analysis for coal fired power plant boiler

    Directory of Open Access Journals (Sweden)

    Shi Yuanhao

    2015-01-01

    Full Text Available Ash deposition on heat transfer surfaces is still a significant problem in coal-fired power plant utility boilers. The effective ways to deal with this problem are accurate on-line monitoring of ash fouling and soot-blowing. In this paper, an online ash fouling monitoring model based on dynamic mass and energy balance method is developed and key variables analysis technique is introduced to study the internal behavior of soot-blowing system. In this process, artificial neural networks (ANN are used to optimize the boiler soot-blowing model and mean impact values method is utilized to determine a set of key variables. The validity of the models has been illustrated in a real case-study boiler, a 300MW Chinese power station. The results on same real plant data show that both models have good prediction accuracy, while the ANN model II has less input parameters. This work will be the basis of a future development in order to control and optimize the soot-blowing of the coal-fired power plant utility boilers.

  20. Radiation risk analysis of tritium in PWR plants

    International Nuclear Information System (INIS)

    Yang Maochun; Wang Shimin

    1999-03-01

    Tritium is a common radionuclide in PWR nuclear power plant. In the normal operation conditions, its radiation risk to plant workers is the internal radiation exposure when tritium existing in air as HTO (hydrogen tritium oxide) is breathed in. As the HTO has the same physical and chemical characteristics as water, the main way that HTO entering the air is by evaporation. There are few opening systems in Nuclear Power Plant, the radiation risk of tritium mainly exists near the area of spent fuel pit and reactor pit. The highest possible radiation risk it may cause--the maximum concentration in air is the level when equilibrium is established between water and air phases for tritium. The author analyzed the relationship among the concentration of HTO in water, in air and the water temperature when equilibrium is established, the equilibrated HTO concentration in air increases with HTO concentration in water and water temperature. The analysis revealed that at 30 degree C, the equilibrated HTO concentration in air might reach 1 DAC (derived air concentration) when the HTO concentration in water is 28 GBq/m 3 . Owing to the operation of plant ventilation systems and the existence of moisture in the input air of the ventilation, the practical tritium concentration in air is much lower than its equilibrated levels, the radiation risk of tritium in PWR plant is quite limited. In 1997, Daya Bay Nuclear Power Plant's practical monitoring result of the HTO concentration in the air of the nuclear island and the urine of workers supported this conclusion. Based on this analysis, some suggestions to the reduction of tritium radiation risk were made