WorldWideScience

Sample records for plant adaptation research

  1. Photosynthesis, environmental change, and plant adaptation: Research topics in plant molecular ecology. Summary report of a workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    As we approach the 21st Century, it is becoming increasingly clear that human activities, primarily related to energy extraction and use, will lead to marked environmental changes at the local, regional, and global levels. The realized and the potential photosynthetic performance of plants is determined by a combination of intrinsic genetic information and extrinsic environmental factors, especially climate. It is essential that the effects of environmental changes on the photosynthetic competence of individual species, communities, and ecosystems be accurately assessed. From October 24 to 26, 1993, a group of scientists specializing in various aspects of plant science met to discuss how our predictive capabilities could be improved by developing a more rational, mechanistic approach to relating photosynthetic processes to environmental factors. A consensus emerged that achieving this goal requires multidisciplinary research efforts that combine tools and techniques of genetics, molecular biology, biophysics, biochemistry, and physiology to understand the principles, mechanisms, and limitations of evolutional adaptation and physiological acclimation of photosynthetic processes. Many of these basic tools and techniques, often developed in other fields of science, already are available but have not been applied in a coherent, coordinated fashion to ecological research. The efforts of this research program are related to the broader efforts to develop more realistic prognostic models to forecast climate change that include photosynthetic responses and feedbacks at the regional and ecosystem levels.

  2. Adaptation of thermal power plants

    NARCIS (Netherlands)

    Bogmans, Christian W.J.; Dijkema, Gerard P.J.; Vliet, van Michelle T.H.

    2017-01-01

    When does climate change information lead to adaptation? We analyze thermal power plant adaptation by means of investing in water-saving (cooling) technology to prevent a decrease in plant efficiency and load reduction. A comprehensive power plant investment model, forced with downscaled climate

  3. Adaptation of thermal power plants

    NARCIS (Netherlands)

    Bogmans, Christian W.J.; Dijkema, Gerard P.J.; Vliet, van Michelle T.H.

    2017-01-01

    When does climate change information lead to adaptation? We analyze thermal power plant adaptation by means of investing in water-saving (cooling) technology to prevent a decrease in plant efficiency and load reduction. A comprehensive power plant investment model, forced with downscaled climate

  4. Research approaches, adaptation strategies, and knowledge gaps concerning the impacts of climate change on plant diseases.

    OpenAIRE

    GHINI, R.; Hamada,E.; F. Angelotti; Costa,L.B.; BETTIOL, W.

    2012-01-01

    This review discusses the present trends in studies on the impacts of climate change on plant diseases. Firstly, the approaches used for studying the potential effects of altered temperature, water availability, CO2 and O3 air concentrations, and UV-B radiation on components of the disease cycle are explained and discussed. Next, the impact of changes in climate patterns on the geographic and temporal distribution of diseases by integrating biological and epidemiological models into geographi...

  5. Plant Research

    Science.gov (United States)

    1990-01-01

    The Land's agricultural research team is testing new ways to sustain life in space as a research participant with Kennedy Space Center's Controlled Ecological Life Support System (CELSS). The Land, sponsored by Kraft General Foods, is an entertainment, research, and education facility at EPCOT Center, part of Walt Disney World. The cooperative effort is simultaneously a research and development program, a technology demonstration that provides the public to see high technology at work and an area of potential spinoff: the CELSS work may generate Earth use technology beneficial to the hydroponic (soilless growing) vegetable production industries of the world.

  6. Epigenetic contribution to stress adaptation in plants.

    Science.gov (United States)

    Mirouze, Marie; Paszkowski, Jerzy

    2011-06-01

    Plant epigenetics has recently gained unprecedented interest, not only as a subject of basic research but also as a possible new source of beneficial traits for plant breeding. We discuss here mechanisms of epigenetic regulation that should be considered when undertaking the latter. Since these mechanisms are responsible for the formation of heritable epigenetic gene variants (epialleles) and also regulate transposons mobility, both aspects could be exploited to broaden plant phenotypic and genetic variation, which could improve long-term plant adaptation to environmental challenges and, thus, increase productivity.

  7. Plant adaptation to temperature and photoperiod

    Directory of Open Access Journals (Sweden)

    O. JUNTTILA

    2008-12-01

    Full Text Available Plants respond to environmental conditions both by adaptation and by acclimation. The ability of the plants to grow, reproduce and survive under changing climatic conditions depends on the efficiency of adaptation and acclimation. The adaptation of developmental processes in plants to temperature and photoperiod is briefly reviewed. In annual plants this adaptation is related to growth capacity and to the timing of reproduction. In perennial plants growing under northern conditions, adaptation of the annual growth cycle to the local climatic cycle is of primary importance. Examples of the role of photothermal conditions in regulation of these phenological processes are given and discussed. The genetic and physiological bases for climatic adaptation in plants are briefly examined.;

  8. Phytomonas: trypanosomatids adapted to plant environments.

    Directory of Open Access Journals (Sweden)

    Eleanor Jaskowska

    2015-01-01

    Full Text Available Over 100 years after trypanosomatids were first discovered in plant tissues, Phytomonas parasites have now been isolated across the globe from members of 24 different plant families. Most identified species have not been associated with any plant pathology and to date only two species are definitively known to cause plant disease. These diseases (wilt of palm and coffee phloem necrosis are problematic in areas of South America where they threaten the economies of developing countries. In contrast to their mammalian infective relatives, our knowledge of the biology of Phytomonas parasites and how they interact with their plant hosts is limited. This review draws together a century of research into plant trypanosomatids, from the first isolations and experimental infections to the recent publication of the first Phytomonas genomes. The availability of genomic data for these plant parasites opens a new avenue for comparative investigations into trypanosomatid biology and provides fresh insight into how this important group of parasites have adapted to survive in a spectrum of hosts from crocodiles to coconuts.

  9. Plant Research '75

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    Research is reported on stomatal regulation of the gas exchanges between plant and environment; inhibitory effects in flower formation; plant growth and development through hormones; hormone action; development and nitrogen fixation in algae; primary cell wall glycoprotein ectensin; enzymic mechanisms and control of polysaccharide and glycoprotein synthesis; molecular studies of membrane studies; sensory transduction in plants; regulation of formation of protein complexes and enzymes in higher plant cell and mechanism of sulfur dioxide toxicity in plants. (PCS)

  10. Plant toxicity, adaptive herbivory, and plant community dynamics

    Science.gov (United States)

    Zhilan Feng; Rongsong Liu; Donald L. DeAngelis; John P. Bryant; Knut Kielland; F. Stuart Chapin; Robert K. Swihart

    2009-01-01

    We model effects of interspecific plant competition, herbivory, and a plant's toxic defenses against herbivores on vegetation dynamics. The model predicts that, when a generalist herbivore feeds in the absence of plant toxins, adaptive foraging generally increases the probability of coexistence of plant species populations, because the herbivore switches more of...

  11. Method selection in adaptation research

    NARCIS (Netherlands)

    Werners, Saskia Elisabeth; Loon-Steensma, van Jantsje Mintsje; Oost, Albert Peter

    2016-01-01

    Many methods are available to support adaptation planning. Yet there is little guidance on their selection. A recently developed diagnostic framework offers a structured set of criteria to choose research methods for specific adaptation questions. It has been derived from science-driven cases mos

  12. Externalizing Research Through Adaptive Frameworks

    DEFF Research Database (Denmark)

    Vedel, Jane Bjørn; Irwin, Alan; Høngaard Andersen, Peter

    2013-01-01

    Adaptive approaches to collaborations between industry and academic research institutions can enable both parties to achieve their goals more effectively. Here, we discuss our experience with such approaches and suggest recommendations for addressing the associated management challenges.......Adaptive approaches to collaborations between industry and academic research institutions can enable both parties to achieve their goals more effectively. Here, we discuss our experience with such approaches and suggest recommendations for addressing the associated management challenges....

  13. Active materials for adaptive architectural envelopes based on plant adaptation principles

    Directory of Open Access Journals (Sweden)

    Marlen Lopez

    2015-06-01

    Full Text Available In this paper, the authors present research into adaptive architectural envelopes that adapt to environmental changes using active materials, as a result of application of biomimetic principles from plants to architecture. Buildings use large amounts of energy in order to maintain their internal comfort, because conventional buildings are designed to provide a static design solution. Most of the current solutions for facades are not designed for optimum adaptation to contextual issues and needs, while biological solutions to adaptation are often complex, multi-functional and highly responsive. We focus on plant adaptations to the environment, as, due to their immobility, they have developed special means of protection against weather changing conditions. Furthermore, recent developments in new technologies are allowing the possibility to transfer these plant adaptation strategies to technical implementation. These technologies include: multi-material 3D printing, advances in materials science and new capabilities in simulation software. Unlike traditional mechanical activation used for dynamic systems in kinetic facades, adaptive architectural envelopes require no complex electronics, sensors, or actuators. The paper proposes a research of the relationship that can be developed between active materials and environmental issues in order to propose innovative and low-tech design strategies to achieve living envelopes according to plant adaptation principles.  

  14. Plant Protection Research Institute

    Directory of Open Access Journals (Sweden)

    N. Allsopp

    1993-12-01

    Full Text Available A survey of the mycorrhizal status of plants growing in the Cape Floristic Region of South Africa was undertaken to assess the range of mycorrhizal types and their dominance in species characteristic of this region. Records were obtained by ex­amining the root systems of plants growing in three Cape lowland vegetation types, viz. West Coast Strandveld, West Coast Renosterveld and Sand Plain Lowland Fynbos for mycorrhizas, as well as by collating literature records of mycorrhizas on plants growing in the region. The mycorrhizal status of 332 species is listed, of which 251 species are new records. Members of all the important families in this region have been examined. Mycorrhizal status appears to be associated mainly with taxonomic position of the species. Extrapolating from these results, we conclude that 62% of the flora of the Cape Floristic Region form vesicular-arbuscular mycorrhizas, 23% have no mycorrhizas, 8% are ericoid mycorrhizal, 2% form orchid mycorrhizas, whereas the mycorrhizal status of 4% of the flora is unknown. There were no indigenous ectomycor- rhizal species. The proportion of non-mycorrhizal species is high compared to other ecosystems. In particular, the lack of mycorrhizas in several important perennial families in the Cape Floristic Region is unusual. The diversity of nutrient acquir­ing adaptations, including the range of mycorrhizas and cluster roots in some non-mycorrhizal families, may promote co­existence of plants in this species-rich region.

  15. Adaptation, plant evolution, and the fossil record

    Science.gov (United States)

    Knoll, A. H.; Niklas, K. J.

    1987-01-01

    The importance of adaptation in determining patterns of evolution has become an important focus of debate in evolutionary biology. As it pertains to paleobotany, the issue is whether or not adaptive evolution mediated by natural selection is sufficient to explain the stratigraphic distributions of taxa and character states observed in the plant fossil record. One means of addressing this question is the functional evaluation of stratigraphic series of plant organs set in the context of paleoenvironmental change and temporal patterns of floral composition within environments. For certain organ systems, quantitative estimates of biophysical performance can be made on the basis of structures preserved in the fossil record. Performance estimates for plants separated in time or space can be compared directly. Implicit in different hypotheses of the forces that shape the evolutionary record (e.g. adaptation, mass extinction, rapid environmental change, chance) are predictions about stratigraphic and paleoenvironmental trends in the efficacy of functional performance. Existing data suggest that following the evolution of a significant structural innovation, adaptation for improved functional performance can be a major determinant of evolutionary changes in plants; however, there are structural and development limits to functional improvement, and once these are reached, the structure in question may no longer figure strongly in selection until and unless a new innovation evolves. The Silurian-Devonian paleobotanical record is consistent with the hypothesis that the succession of lowland floodplain dominants preserved in the fossil record of this interval was determined principally by the repeated evolution of new taxa that rose to ecological importance because of competitive advantages conferred by improved biophysical performance. This does not seem to be equally true for Carboniferous-Jurassic dominants of swamp and lowland floodplain environments. In these cases

  16. Plant toxicity, adaptive herbivory, and plant community dynamics

    Science.gov (United States)

    Feng, Z.; Liu, R.; DeAngelis, D.L.; Bryant, J.P.; Kielland, K.; Stuart, Chapin F.; Swihart, R.K.

    2009-01-01

    We model effects of interspecific plant competition, herbivory, and a plant's toxic defenses against herbivores on vegetation dynamics. The model predicts that, when a generalist herbivore feeds in the absence of plant toxins, adaptive foraging generally increases the probability of coexistence of plant species populations, because the herbivore switches more of its effort to whichever plant species is more common and accessible. In contrast, toxin-determined selective herbivory can drive plant succession toward dominance by the more toxic species, as previously documented in boreal forests and prairies. When the toxin concentrations in different plant species are similar, but species have different toxins with nonadditive effects, herbivores tend to diversify foraging efforts to avoid high intakes of any one toxin. This diversification leads the herbivore to focus more feeding on the less common plant species. Thus, uncommon plants may experience depensatory mortality from herbivory, reducing local species diversity. The depensatory effect of herbivory may inhibit the invasion of other plant species that are more palatable or have different toxins. These predictions were tested and confirmed in the Alaskan boreal forest. ?? 2009 Springer Science+Business Media, LLC.

  17. Epigenetic contribution to stress adaptation in plants

    OpenAIRE

    Mirouze, Marie; Paszkowski, Jerzy

    2011-01-01

    Plant epigenetics has recently gained unprecedented interest, not only as a subject of basic research but also as a possible new source of beneficial traits for plant breeding. We discuss here mechanisms of epigenetic regulation that should be considered when undertaking the latter. Since these mechanisms are responsible for the formation of heritable epigenetic gene variants (epialleles) and also regulate transposons mobility, both aspects could be exploited to broaden plant phenotypic and g...

  18. Host plant adaptation in the glasshouse whitefly

    NARCIS (Netherlands)

    Thomas, D.C.

    1993-01-01

    Introduction
    Although much research towards the development and understanding of plant resistance and biological control as pest control strategies has been done, few studies have concentrated upon the interaction between these two control methods

  19. Plant Responses to Salt Stress: Adaptive Mechanisms

    Directory of Open Access Journals (Sweden)

    Jose Ramón Acosta-Motos

    2017-02-01

    Full Text Available This review deals with the adaptive mechanisms that plants can implement to cope with the challenge of salt stress. Plants tolerant to NaCl implement a series of adaptations to acclimate to salinity, including morphological, physiological and biochemical changes. These changes include increases in the root/canopy ratio and in the chlorophyll content in addition to changes in the leaf anatomy that ultimately lead to preventing leaf ion toxicity, thus maintaining the water status in order to limit water loss and protect the photosynthesis process. Furthermore, we deal with the effect of salt stress on photosynthesis and chlorophyll fluorescence and some of the mechanisms thought to protect the photosynthetic machinery, including the xanthophyll cycle, photorespiration pathway, and water-water cycle. Finally, we also provide an updated discussion on salt-induced oxidative stress at the subcellular level and its effect on the antioxidant machinery in both salt-tolerant and salt-sensitive plants. The aim is to extend our understanding of how salinity may affect the physiological characteristics of plants.

  20. Host plant adaptation in Drosophila mettleri populations.

    Directory of Open Access Journals (Sweden)

    Sergio Castrezana

    Full Text Available The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total. We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp. in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts.

  1. Plant adaptive behaviour in hydrological models (Invited)

    Science.gov (United States)

    van der Ploeg, M. J.; Teuling, R.

    2013-12-01

    Models that will be able to cope with future precipitation and evaporation regimes need a solid base that describes the essence of the processes involved [1]. Micro-behaviour in the soil-vegetation-atmosphere system may have a large impact on patterns emerging at larger scales. A complicating factor in the micro-behaviour is the constant interaction between vegetation and geology in which water plays a key role. The resilience of the coupled vegetation-soil system critically depends on its sensitivity to environmental changes. As a result of environmental changes vegetation may wither and die, but such environmental changes may also trigger gene adaptation. Constant exposure to environmental stresses, biotic or abiotic, influences plant physiology, gene adaptations, and flexibility in gene adaptation [2-6]. Gene expression as a result of different environmental conditions may profoundly impact drought responses across the same plant species. Differences in response to an environmental stress, has consequences for the way species are currently being treated in models (single plant to global scale). In particular, model parameters that control root water uptake and plant transpiration are generally assumed to be a property of the plant functional type. Assigning plant functional types does not allow for local plant adaptation to be reflected in the model parameters, nor does it allow for correlations that might exist between root parameters and soil type. Models potentially provide a means to link root water uptake and transport to large scale processes (e.g. Rosnay and Polcher 1998, Feddes et al. 2001, Jung 2010), especially when powered with an integrated hydrological, ecological and physiological base. We explore the experimental evidence from natural vegetation to formulate possible alternative modeling concepts. [1] Seibert, J. 2000. Multi-criteria calibration of a conceptual runoff model using a genetic algorithm. Hydrology and Earth System Sciences 4(2): 215

  2. Plant Cell Adaptive Responses to Microgravity

    Science.gov (United States)

    Kordyum, Elizabeth; Kozeko, Liudmyla; Talalaev, Alexandr

    Microgravity is an abnormal environmental condition that plays no role in the functioning of biosphere. Nevertheless, the chronic effect of microgravity in space flight as an unfamiliar factor does not prevent the development of adaptive reactions at the cellular level. In real microgravity in space flight under the more or less optimal conditions for plant growing, namely temperature, humidity, CO2, light intensity and directivity in the hardware angiosperm plants perform an “reproductive imperative”, i.e. they flower, fruit and yield viable seeds. It is known that cells of a multicellular organism not only take part on reactions of the organism but also carry out processes that maintain their integrity. In light of these principles, the problem of the identification of biochemical, physiological and structural patterns that can have adaptive significance at the cellular and subcellular level in real and simulated microgravity is considered. Cytological studies of plants developing in real and simulated microgravity made it possible to establish that the processes of mitosis, cytokinesis, and tissue differentiation of vegetative and generative organs are largely normal. At the same time, under microgravity, essential reconstruction in the structural and functional organization of cell organelles and cytoskeleton, as well as changes in cell metabolism and homeostasis have been described. In addition, new interesting data concerning the influence of altered gravity on lipid peroxidation intensity, the level of reactive oxygen species, and antioxidant system activity, just like on the level of gene expression and synthesis of low-molecular and high-molecular heat shock proteins were recently obtained. So, altered gravity caused time-dependent increasing of the HSP70 and HSP90 levels in cells, that may indicate temporary strengthening of their functional loads that is necessary for re-establish a new cellular homeostasis. Relative qPCR results showed that

  3. Cellular and molecular aspects of plant adaptation to microgravity

    Science.gov (United States)

    Kordyum, Elizabeth; Kozeko, Liudmyla

    2016-07-01

    microgravity, because normal seed production is the major goal of their adaptation to the new conditions. Therefore, future research at the basis of modern methodology of space and gravitational biology are required to evaluate reasonably the adaptive potential of plants for long-term space flight.

  4. Crop plants as models for understanding plant adaptation and diversification

    Directory of Open Access Journals (Sweden)

    Kenneth M Olsen

    2013-08-01

    Full Text Available Since the time of Darwin, biologists have understood the promise of crop plants and their wild relatives for providing insight into the mechanisms of phenotypic evolution. The intense selection imposed by our ancestors during plant domestication and subsequent crop improvement has generated remarkable transformations of plant phenotypes. Unlike evolution in natural settings, descendent and antecedent conditions for crop plants are often both extant, providing opportunities for direct comparisons through crossing and other experimental approaches. Moreover, since domestication has repeatedly generated a suite of domestication syndrome traits that are shared among crops, opportunities exist for gaining insight into the genetic and developmental mechanisms that underlie parallel adaptive evolution. Advances in our understanding of the genetic architecture of domestication-related traits have emerged from combining powerful molecular technologies with advanced experimental designs, including nested association mapping, genome-wide association studies, population genetic screens for signatures of selection, and candidate gene approaches. These studies may be combined with high-throughput evaluations of the various omics involved in trait transformation, revealing a diversity of underlying causative mutations affecting phenotypes and their downstream propagation through biological networks. We summarize the state of our knowledge of the mutational spectrum that generates phenotypic novelty in domesticated plant species, and our current understanding of how domestication can reshape gene expression networks and emergent phenotypes. An exploration of traits that have been subject to similar selective pressures across crops (e.g., flowering time suggests that a diversity of targeted genes and causative mutational changes can underlie parallel adaptation in the context of crop evolution.

  5. Local biotic adaptation of trees and shrubs to plant neighbors

    Science.gov (United States)

    Grady, Kevin C.; Wood, Troy E.; Kolb, Thomas E.; Hersch-Green, Erika; Shuster, Stephen M.; Gehring, Catherine A.; Hart, Stephen C.; Allan, Gerard J.; Whitham, Thomas G.

    2017-01-01

    Natural selection as a result of plant–plant interactions can lead to local biotic adaptation. This may occur where species frequently interact and compete intensely for resources limiting growth, survival, and reproduction. Selection is demonstrated by comparing a genotype interacting with con- or hetero-specific sympatric neighbor genotypes with a shared site-level history (derived from the same source location), to the same genotype interacting with foreign neighbor genotypes (from different sources). Better genotype performance in sympatric than allopatric neighborhoods provides evidence of local biotic adaptation. This pattern might be explained by selection to avoid competition by shifting resource niches (differentiation) or by interactions benefitting one or more members (facilitation). We tested for local biotic adaptation among two riparian trees, Populus fremontii and Salix gooddingii, and the shrub Salix exigua by transplanting replicated genotypes from multiple source locations to a 17 000 tree common garden with sympatric and allopatric treatments along the Colorado River in California. Three major patterns were observed: 1) across species, 62 of 88 genotypes grew faster with sympatric neighbors than allopatric neighbors; 2) these growth rates, on an individual tree basis, were 44, 15 and 33% higher in sympatric than allopatric treatments for P. fremontii, S. exigua and S. gooddingii, respectively, and; 3) survivorship was higher in sympatric treatments for P. fremontiiand S. exigua. These results support the view that fitness of foundation species supporting diverse communities and dominating ecosystem processes is determined by adaptive interactions among multiple plant species with the outcome that performance depends on the genetic identity of plant neighbors. The occurrence of evolution in a plant-community context for trees and shrubs builds on ecological evolutionary research that has demonstrated co-evolution among herbaceous taxa, and

  6. Host plant adaptation in the glasshouse whitefly.

    NARCIS (Netherlands)

    Thomas, D.C.

    1993-01-01

    IntroductionAlthough much research towards the development and understanding of plant resistance and biological control as pest control strategies has been done, few studies have concentrated upon the interaction between these two control methods where they are combined. However, ec

  7. Flight Test Approach to Adaptive Control Research

    Science.gov (United States)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration s Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The validation of adaptive controls has the potential to enhance safety in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  8. Adaptation of plants to atmospheric pollutants.

    Science.gov (United States)

    Hutchinson, T C

    1984-01-01

    Man-made air pollutants are a recent phenomenon in the evolutionary experience of plants and animals although natural air pollutants from volcanic eruptions, forest fires and dust storms have accompanied evolution for geological eras. Plants have responded to increasing concentrations of such pollutants as sulphur dioxide, fluorides, photochemical oxidants and acid rain at the community, species, population and individual levels. The lichens and bryophytes have shown particularly dramatic changes in urban and industrial areas. Many species have had their distribution severely limited. Tolerances to sulphur dioxide have evolved in populations of a number of grasses and herbs, and some sulphur dioxide-tolerant lichens have invaded inner city areas. Sensitivity to pollutants is partly a function of substrate chemistry. Synergistic interactions occur between various pollutants and also between pollutants and pathogens. A good deal of genetic variation occurs within crops, and this allows for selection of pollution-tolerant varieties. The nature of specific adaptations is not generally well known although, for sulphur dioxide, recent studies in poplar and spinach strongly suggest that increased production of the enzyme superoxide dismutase may be a key factor. In other adaptations, morphological and anatomical features play a part.

  9. Plant sulfolipid. III. Role in adaptation

    Directory of Open Access Journals (Sweden)

    Taran N. Yu.

    2009-04-01

    Full Text Available The quality and/or relative content of plant sulfoquinovosyl diacylglycerol (SQDG change in response to a stress action. Various types of stress action induce two types of response – more general to the oxidative stress and specific – to a concrete stress factor. Besides, two types of reaction take place in photosynthesizing and non-photosynthesizing tissues. SQDG molecules take part in the adaptation reaction being cytochrome oxidase, CF1, F1, ATPase regulators, protectors and stabilizing agents for D1/D2 dimers and LHC II. This compound in non-photosynthesising tissues could be connected with negative charge domination required for lipoprotein complex stabilisation. SQDG quantitative changes and acyl composition shifts take place at both abiotic and biotic factors impact.

  10. Plant research '76

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Overall objective remains unchanged: to contribute to the knowledge, with strong emphasis on fundamental problems, of how plants function, the roles they play in the environment and energy relations of the world, and how these roles may be optimized for the benefit of mankind. (PCS)

  11. Flight Approach to Adaptive Control Research

    Science.gov (United States)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The testbed served as a full-scale vehicle to test and validate adaptive flight control research addressing technical challenges involved with reducing risk to enable safe flight in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  12. A meta-analysis of local adaptation in plants.

    Directory of Open Access Journals (Sweden)

    Roosa Leimu

    Full Text Available Local adaptation is of fundamental importance in evolutionary, population, conservation, and global-change biology. The generality of local adaptation in plants and whether and how it is influenced by specific species, population and habitat characteristics have, however, not been quantitatively reviewed. Therefore, we examined published data on the outcomes of reciprocal transplant experiments using two approaches. We conducted a meta-analysis to compare the performance of local and foreign plants at all transplant sites. In addition, we analysed frequencies of pairs of plant origin to examine whether local plants perform better than foreign plants at both compared transplant sites. In both approaches, we also examined the effects of population size, and of the habitat and species characteristics that are predicted to affect local adaptation. We show that, overall, local plants performed significantly better than foreign plants at their site of origin: this was found to be the case in 71.0% of the studied sites. However, local plants performed better than foreign plants at both sites of a pair-wise comparison (strict definition of local adaption only in 45.3% of the 1032 compared population pairs. Furthermore, we found local adaptation much more common for large plant populations (>1000 flowering individuals than for small populations (<1000 flowering individuals for which local adaptation was very rare. The degree of local adaptation was independent of plant life history, spatial or temporal habitat heterogeneity, and geographic scale. Our results suggest that local adaptation is less common in plant populations than generally assumed. Moreover, our findings reinforce the fundamental importance of population size for evolutionary theory. The clear role of population size for the ability to evolve local adaptation raises considerable doubt on the ability of small plant populations to cope with changing environments.

  13. Plants : Adaptive behavior, root-brains, and minimal cognition

    NARCIS (Netherlands)

    Calvo Garzon, Paco; Keijzer, Fred

    2011-01-01

    Plant intelligence has gone largely unnoticed within the field of animal and human adaptive behavior. In this context, we will introduce current work on plant intelligence as a new set of relevant phenomena that deserves attention and also discuss its potential relevance for the study of adaptive be

  14. Aquatic plant control research

    Energy Technology Data Exchange (ETDEWEB)

    Pryfogle, P.A.; Rinehart, B.N. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Ghio, E.G. [Pacific Gas & Electric Company, San Francisco, CA (United States). Hydro Generation Engineering

    1997-05-01

    The Northwest region of the United States contains extensive canal systems that transport water for hydropower generation. Nuisance plants, including algae, that grow in these systems reduce their hydraulic capacity through water displacement and increased surface friction. Most control methods are applied in an ad hoc fashion. The goal of this work is to develop cost-effective, environmentally sound, long-term management strategies to prevent and control nuisance algal growth. This paper reports on a multi-year study, performed in collaboration with the Pacific Gas & Electric Company, to investigate algal growth in their canal systems, and to evaluate various control methodologies. Three types of controls, including mechanical, biological and chemical treatment, were selected for testing and evaluation. As part of this study, water quality data were collected and algal communities were sampled from numerous stations throughout the distribution system at regular intervals. This study resulted in a more comprehensive understanding of conditions leading to the development of nuisance algal growth, a better informed selection of treatment plans, and improved evaluation of the effectiveness for the control strategies selected for testing.

  15. Researchers Discover Plants Biological Clock

    Institute of Scientific and Technical Information of China (English)

    王全良

    1996-01-01

    Scientists who created glow-in-the-dark plants by shooting up seedlingswith firefly DNA have identified the first biological clock gene in plants. Discovery of the timepiece gene, which controls such biological rhythmsas daily leaf movements and proe openings, flower-blooming schedules andphotosynthesis cycles, could lead to a host of applications in ornamental horti-culture, agriculture and even human health. Many researchers believe that

  16. Insect Counter-Adaptations to Plant Cyanogenic Glucosides

    DEFF Research Database (Denmark)

    Pentzold, Stefan

    Cyanogenic glucosides are ancient and widespread defence compounds that are used by plants to fend off non-adapted insect herbivores. After insect herbivory and plant tissue damage, cyanogenic glucosides come into contact with compartmentalised plant β-glucosidases, resulting in the release...... of toxic hydrogen cyanide. Such a binary system of components that are chemically inert when separated is also referred to as two-component plant defence. Since the co-evolution of cyanogenic plants and insect herbivores has continued for several hundred million years, some specialised herbivores have...... adapted and gained the ability to feed on cyanogenic plants. Moreover, a few specialists are even able to sequester cyanogenic glucosides into specialised tissues, often for use in their own defence. However, insect counter-adaptations to overcome plant cyanogenic glucosides are largely unknown...

  17. Gaps in agricultural climate adaptation research

    Science.gov (United States)

    Davidson, Debra

    2016-05-01

    The value of the social sciences to climate change research is well recognized, but notable gaps remain in the literature on adaptation in agriculture. Contributions focus on farmer behaviour, with important research regarding gender, social networks and institutions remaining under-represented.

  18. 2010 Plant Molecular Biology Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Michael Sussman

    2010-07-23

    The Plant Molecular Biology Conference has traditionally covered a breadth of exciting topics and the 2010 conference will continue in that tradition. Emerging concerns about food security have inspired a program with three main themes: (1) genomics, natural variation and breeding to understand adaptation and crop improvement, (2) hormonal cross talk, and (3) plant/microbe interactions. There are also sessions on epigenetics and proteomics/metabolomics. Thus this conference will bring together a range of disciplines, will foster the exchange of ideas and enable participants to learn of the latest developments and ideas in diverse areas of plant biology. The conference provides an excellent opportunity for individuals to discuss their research because additional speakers in each session will be selected from submitted abstracts. There will also be a poster session each day for a two-hour period prior to dinner. In particular, this conference plays a key role in enabling students and postdocs (the next generation of research leaders) to mingle with pioneers in multiple areas of plant science.

  19. Evolutionary Transcriptomics and Proteomics: Insight into Plant Adaptation.

    Science.gov (United States)

    Voelckel, Claudia; Gruenheit, Nicole; Lockhart, Peter

    2017-06-01

    Comparative transcriptomics and proteomics (T&P) have brought biological insight into development, gene function, and physiological stress responses. However, RNA-seq and high-throughput proteomics remain underutilised in studies of plant adaptation. These methodologies have created discovery tools with the potential to significantly advance our understanding of adaptive diversification. We outline experimental recommendations for their application. We discuss analysis models and approaches that accelerate the identification of adaptive gene sets and integrate transcriptome, proteome, phenotypic, and environmental data. Finally, we encourage widespread uptake and future developments in T&P that will advance our understanding of evolution and adaptation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Engineered Gold Nanoparticles and Plant Adaptation Potential

    Science.gov (United States)

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-09-01

    Use of metal nanoparticles in biological system has recently been recognised although little is known about their possible effects on plant growth and development. Nanoparticles accumulation, translocation, growth response and stress modulation in plant system is not well understood. Plants exposed to gold and gold nanoparticles have been demonstrated to exhibit both positive and negative effects. Their growth and yield vary from species to species. Cytoxicity of engineered gold nanoparticles depends on the concentration, particle size and shape. They exhibit increase in vegetative growth and yield of fruit/seed at lower concentration and decrease them at higher concentration. Studies have shown that the gold nanoparticles exposure has improved free radical scavenging potential and antioxidant enzymatic activities and alter micro RNAs expression that regulate different morphological, physiological and metabolic processes in plants. These modulations lead to improved plant growth and yields. Prior to the use of gold nanoparticles, it has been suggested that its cost may be calculated to see if it is economically feasible.

  1. Research Synthesis for "Adaptive Mentorship"©

    Science.gov (United States)

    Ralph, Edwin G.; Walker, Keith D.

    2014-01-01

    "Adaptive Mentorship"© (AM) is a mentoring model the authors have developed over a 21-year period. Mentor-protégé pairs originally applied it in teacher-education internship programs; however, the authors have subsequently witnessed its adoption by other mentorship/coaching practitioners/researchers across the professions. In this…

  2. Genomics of adaptation to host-plants in herbivorous insects.

    Science.gov (United States)

    Simon, Jean-Christophe; d'Alençon, Emmanuelle; Guy, Endrick; Jacquin-Joly, Emmanuelle; Jaquiéry, Julie; Nouhaud, Pierre; Peccoud, Jean; Sugio, Akiko; Streiff, Réjane

    2015-11-01

    Herbivorous insects represent the most species-rich lineages of metazoans. The high rate of diversification in herbivorous insects is thought to result from their specialization to distinct host-plants, which creates conditions favorable for the build-up of reproductive isolation and speciation. These conditions rely on constraints against the optimal use of a wide range of plant species, as each must constitute a viable food resource, oviposition site and mating site for an insect. Utilization of plants involves many essential traits of herbivorous insects, as they locate and select their hosts, overcome their defenses and acquire nutrients while avoiding intoxication. Although advances in understanding insect-plant molecular interactions have been limited by the complexity of insect traits involved in host use and the lack of genomic resources and functional tools, recent studies at the molecular level, combined with large-scale genomics studies at population and species levels, are revealing the genetic underpinning of plant specialization and adaptive divergence in non-model insect herbivores. Here, we review the recent advances in the genomics of plant adaptation in hemipterans and lepidopterans, two major insect orders, each of which includes a large number of crop pests. We focus on how genomics and post-genomics have improved our understanding of the mechanisms involved in insect-plant interactions by reviewing recent molecular discoveries in sensing, feeding, digesting and detoxifying strategies. We also present the outcomes of large-scale genomics approaches aimed at identifying loci potentially involved in plant adaptation in these insects.

  3. Plant adaptation to low atmospheric pressures: potential molecular responses

    Science.gov (United States)

    Ferl, Robert J.; Schuerger, Andrew C.; Paul, Anna-Lisa; Gurley, William B.; Corey, Kenneth; Bucklin, Ray

    2002-01-01

    There is an increasing realization that it may be impossible to attain Earth normal atmospheric pressures in orbital, lunar, or Martian greenhouses, simply because the construction materials do not exist to meet the extraordinary constraints imposed by balancing high engineering requirements against high lift costs. This equation essentially dictates that NASA have in place the capability to grow plants at reduced atmospheric pressure. Yet current understanding of plant growth at low pressures is limited to just a few experiments and relatively rudimentary assessments of plant vigor and growth. The tools now exist, however, to make rapid progress toward understanding the fundamental nature of plant responses and adaptations to low pressures, and to develop strategies for mitigating detrimental effects by engineering the growth conditions or by engineering the plants themselves. The genomes of rice and the model plant Arabidopsis thaliana have recently been sequenced in their entirety, and public sector and commercial DNA chips are becoming available such that thousands of genes can be assayed at once. A fundamental understanding of plant responses and adaptation to low pressures can now be approached and translated into procedures and engineering considerations to enhance plant growth at low atmospheric pressures. In anticipation of such studies, we present here the background arguments supporting these contentions, as well as informed speculation about the kinds of molecular physiological responses that might be expected of plants in low-pressure environments.

  4. Plants adapted to warmer climate do not outperform regional plants during a natural heat wave.

    Science.gov (United States)

    Bucharova, Anna; Durka, Walter; Hermann, Julia-Maria; Hölzel, Norbert; Michalski, Stefan; Kollmann, Johannes; Bossdorf, Oliver

    2016-06-01

    With ongoing climate change, many plant species may not be able to adapt rapidly enough, and some conservation experts are therefore considering to translocate warm-adapted ecotypes to mitigate effects of climate warming. Although this strategy, called assisted migration, is intuitively plausible, most of the support comes from models, whereas experimental evidence is so far scarce. Here we present data on multiple ecotypes of six grassland species, which we grew in four common gardens in Germany during a natural heat wave, with temperatures 1.4-2.0°C higher than the long-term means. In each garden we compared the performance of regional ecotypes with plants from a locality with long-term summer temperatures similar to what the plants experienced during the summer heat wave. We found no difference in performance between regional and warm-adapted plants in four of the six species. In two species, regional ecotypes even outperformed warm-adapted plants, despite elevated temperatures, which suggests that translocating warm-adapted ecotypes may not only lack the desired effect of increased performance but may even have negative consequences. Even if adaptation to climate plays a role, other factors involved in local adaptation, such as biotic interactions, may override it. Based on our results, we cannot advocate assisted migration as a universal tool to enhance the performance of local plant populations and communities during climate change.

  5. Binucleation to breed new plant species adaptable to their environments.

    Science.gov (United States)

    Moustafa, Khaled

    2015-01-01

    Classical plant breeding approaches may fall short to breed new plant species of high environmental and ecological interests. Biotechnological and genetic manipulations, on the other hand, may hold more effective capabilities to circumvent the limitations of sexual incompatibility and conventional breeding programs. Given that plant cells encompass multiple copies of organellar genomes (mitochondrial and plastidial genomes), an important question could be raised about whether an artificial attempt to duplicate the nuclear genome might also be conceivable through a binucleation approach (generating plant cells with 2 nuclei from 2 different plant species) for potential production of new polyploidies that would characterize new plant species. Since the complexities of plant genomes are the result of multiple genome duplications, an artificial binucleation approach would thus be of some interest to eventually varying plant genomes and producing new polyploidy from related or distal plant species. Here, I discuss the potentiality of such an approach to engineer binucleated plant cells as a germ of new plant species to fulfill some environmental applications such as increasing the biodiversity and breeding new species adaptable to harsh environmental stresses and increasing green surfaces to reduce atmospheric pollutions in arid lands with poor vegetation.

  6. Adaptation in a plant-hummingbird association.

    Science.gov (United States)

    Temeles, Ethan J; Kress, W John

    2003-04-25

    Sexual dimorphism in bill morphology and body size of the Caribbean purple-throated carib hummingbird is associated with a reversal in floral dimorphism of its Heliconia food plants. This hummingbird is the sole pollinator of H. caribaea and H. bihai, with flowers of the former corresponding to the short, straight bills of males, the larger sex, and flowers of the latter corresponding to the long, curved bills of females. On St. Lucia, H. bihai compensates for the rarity of H. caribaea by evolving a second color morph with flowers that match the bills of males, whereas on Dominica, H. caribaea evolves a second color morph with flowers that match the bills of females. The nectar rewards of all Heliconia morphs are consistent with each sex's choice of the morph that corresponds to its bill morphology and energy requirements, supporting the hypothesis that feeding preferences have driven their coadaptation.

  7. Molecular mechanisms of insect adaptation to plant defense:Lessons Iearned from a Bruchid beetle

    Institute of Scientific and Technical Information of China (English)

    Keyan Zhu-Salzman; Ren Sen Zeng

    2008-01-01

    Plants can accumulate,constitutively and/or after induction,a wide variety of defense compounds in their tissues that confer resistance to herbivorous insects.The naturally occurring plant resistance gene pool can serve as an arsenal in pest management via transgenic approaches.As insect-plant interaction research rapidly advances,it has gradually become clear that the effects of plant defense compounds ale determined not only by their toxicity toward target sites,but also by how insects respond to the challenge.Insect digestive tracts age not passive targets of plant defense,but often can adapt to dietary challenge and successfully deal with various plant toxins and anti-metabolites.This adaptive response has posed an obstacle to biotechnology-based pest control approaches,which underscores the importance of understanding insect adaptive mechanisms.Molecular studies on the impact of protease inhibitors on insect digestion have contributed significantly to our understanding of insect adaptation to plant defense.This review will focus on exposing how the insect responds to protease inhibitors by both qualitative and quantitative remod-eling of their digestive proteases using the cowpea bruchid-soybean cysteine protease inhibitor N system.

  8. Co-adaptation mechanisms in plant-nematode systems.

    Science.gov (United States)

    Zinovieva, S V

    2014-01-01

    The review is aimed to analyze the biochemical and immune-breaking adaptive mechanisms established in evolution of plant parasitic nematodes. Plant parasitic nematodes are obligate, biotrophic pathogens of numerous plant species. These organisms cause dramatic changes in the morphology and physiology of their hosts. The group of sedentary nematodes which are among the most damaging plant-parasitic nematodes cause the formation of special organs called nematode feeding sites in the root tissue called syncytium (cyst nematodes, CN; Heterodera and Globodera spp.) or giant cells (root-knot nematodes, RKN; Meloidogyne spp.). The most pronounced morphological adaptations of nematodes for plant parasitism include a hollow, protrusible stylet (feeding spear) connected to three esophageal gland cells that express products secreted into plant tissues through the stylet. Several gene products secreted by the nematode during parasitism have been identified. The current battery of candidate parasitism proteins secreted by nematodes to modify plant tissues for parasitism includes cell-wall-modifying enzymes, multiple regulators of host cell cycle and metabolism, proteins that can localize near the plant cell nucleus, potential suppressors of host defense, and mimics of plant molecules. Plants are usually able to recognize and react to parasites by activating various defense responses. When the response of the plant is too weak or too late, a successful infection (compatible interaction) will result. A rapid and strong defense response (e. g. due to the presence of a resistance gene) will result in the resistant (incompatible) reaction. Defense responses include the production of toxic oxygen radicals and systemic signaling compounds as well as the activation of defense genes that lead to the production of structural barriers or other toxins.

  9. Adaptation and survival of plants in high stress habitats via fungal endophyte conferred stress tolerance

    Science.gov (United States)

    Rodriguez, Rusty J.; Woodward, Claire; Redman, Regina S.

    2010-01-01

    From the Arctic to the Antarctic, plants thrive in diverse habitats that impose different levels of adaptive pressures depending on the type and degree of biotic and abiotic stresses inherent to each habitat (Stevens, 1989). At any particular location, the abundance and distribution of individual plant species vary tremendously and is theorized to be based on the ability to tolerate a wide range of edaphic conditions and habitat-specific stresses (Pianka, 1966). The ability of individual plant species to thrive in diverse habitats is commonly referred to as phenotypic plasticity and is thought to involve adaptations based on changes in the plant genome (Givnish, 2002; Pan et al., 2006; Robe and Griffiths, 2000; Schurr et al., 2006). Habitats that impose high levels of abiotic stress are typically colonized with fewer plant species compared to habitats imposing low levels of stress. Moreover, high stress habitats have decreased levels of plant abundance compared to low stress habitats even though these habitats may occur in close proximity to one another (Perelman et al., 2007). This is particularly interesting because all plants are known to perceive, transmit signals, and respond to abiotic stresses such as drought, heat, and salinity (Bartels and Sunkar, 2005; Bohnert et al., 1995). Although there has been extensive research performed to determine the genetic, molecular, and physiological bases of how plants respond to and tolerate stress, the nature of plant adaptation to high stress habitats remains unresolved (Leone et al., 2003; Maggio et al., 2003; Tuberosa et al., 2003). However, recent evidence indicates that a ubiquitous aspect of plant biology (fungal symbiosis) is involved in the adaptation and survival of at least some plants in high stress habitats (Rodriguez et al., 2008).

  10. Intelligent CAD Methodology Research of Adaptive Modeling

    Institute of Scientific and Technical Information of China (English)

    ZHANG Weibo; LI Jun; YAN Jianrong

    2006-01-01

    The key to carry out ICAD technology is to establish the knowledge-based and wide rang of domains-covered product model. This paper put out a knowledge-based methodology of adaptive modeling. It is under the Ontology mind, using the Object-Oriented technology and being a knowledge-based model framework. It involves the diverse domains in product design and realizes the multi-domain modeling, embedding the relative information including standards, regulars and expert experience. To test the feasibility of the methodology, the research bonds of the automotive diaphragm spring clutch design and an adaptive clutch design model is established, using the knowledge-based modeling language-AML.

  11. Adaptive evolution of centromere proteins in plants and animals

    Directory of Open Access Journals (Sweden)

    Henikoff Steven

    2004-08-01

    Full Text Available Abstract Background Centromeres represent the last frontiers of plant and animal genomics. Although they perform a conserved function in chromosome segregation, centromeres are typically composed of repetitive satellite sequences that are rapidly evolving. The nucleosomes of centromeres are characterized by a special H3-like histone (CenH3, which evolves rapidly and adaptively in Drosophila and Arabidopsis. Most plant, animal and fungal centromeres also bind a large protein, centromere protein C (CENP-C, that is characterized by a single 24 amino-acid motif (CENPC motif. Results Whereas we find no evidence that mammalian CenH3 (CENP-A has been evolving adaptively, mammalian CENP-C proteins contain adaptively evolving regions that overlap with regions of DNA-binding activity. In plants we find that CENP-C proteins have complex duplicated regions, with conserved amino and carboxyl termini that are dissimilar in sequence to their counterparts in animals and fungi. Comparisons of Cenpc genes from Arabidopsis species and from grasses revealed multiple regions that are under positive selection, including duplicated exons in some grasses. In contrast to plants and animals, yeast CENP-C (Mif2p is under negative selection. Conclusions CENP-Cs in all plant and animal lineages examined have regions that are rapidly and adaptively evolving. To explain these remarkable evolutionary features for a single-copy gene that is needed at every mitosis, we propose that CENP-Cs, like some CenH3s, suppress meiotic drive of centromeres during female meiosis. This process can account for the rapid evolution and the complexity of centromeric DNA in plants and animals as compared to fungi.

  12. New advances in virtual plant research

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Virtual plants are computer simulations of the growth, development and deployment of plants in a three-dimensional space. Over the past 20 years, significant pro-gress has been made in virtual plant modeling corresponding to the rapid advances in information technology. Virtual plant research has broad applications in agronomy, forestry, ecology, and remote sensing areas. In this review, we attempt to introduce the significance, modeling methodology, and main advances in virtual plant research and applications. The challenges associated with virtual plant modeling in agronomy applications, including the interaction mechanism between plant and environment and root system modeling, are also discussed. Insights into applications of virtual plants in agronomy are given in the areas of performing virtual experiments to accurately quantify the utilization of soil water and nutrients, to design crop ideotype on computers, and to improve crop planting.

  13. Urban plant physiology: adaptation-mitigation strategies under permanent stress.

    Science.gov (United States)

    Calfapietra, Carlo; Peñuelas, Josep; Niinemets, Ülo

    2015-02-01

    Urban environments that are stressful for plant function and growth will become increasingly widespread in future. In this opinion article, we define the concept of 'urban plant physiology', which focuses on plant responses and long term adaptations to urban conditions and on the capacity of urban vegetation to mitigate environmental hazards in urbanized settings such as air and soil pollution. Use of appropriate control treatments would allow for studies in urban environments to be comparable to expensive manipulative experiments. In this opinion article, we propose to couple two approaches, based either on environmental gradients or manipulated gradients, to develop the concept of urban plant physiology for assessing how single or multiple environmental factors affect the key environmental services provided by urban forests. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The evolutionary strategies of plant defenses have a dynamic impact on the adaptations and interactions of vectors and pathogens

    Institute of Scientific and Technical Information of China (English)

    Ordom Brian Huot; Punya Nachappa; Cecilia Tamborindeguy

    2013-01-01

    Plants have evolved and diversified to reduce the damages imposed by infectious pathogens and herbivorous insects.Living in a sedentary lifestyle,plants are constantly adapting to their environment.They employ various strategies to increase performance and fitness.Thus,plants developed cost-effective strategies to defend against specific insects and pathogens.Plant defense,however,imposes selective pressure on insects and pathogens.This selective pressure provides incentives for pathogens and insects to diversify and develop strategies to counter plant defense.This results in an evolutionary arms race among plants,pathogens and insects.The ever-changing adaptations and physiological alterations among these organisms make studying plant-vector-pathogen interactions a challenging and fascinating field.Studying plant defense and plant protection requires knowledge of the relationship among organisms and the adaptive strategies each organism utilize.Therefore,this review focuses on the integral parts of plant-vectorpathogen interactions in order to understand the factors that affect plant defense and disease development.The review addresses plant-vector-pathogen co-evolution,plant defense strategies,specificity of plant defenses and plant-vector-pathogen interactions.Improving the comprehension of these factors will provide a multi-dimensional perspective for the future research in pest and disease management.

  15. Plant Research Department annual report 2001

    DEFF Research Database (Denmark)

    Kossmann, J.; Gissel Nielsen, G.; Jakobsen, Iver

    2002-01-01

    The Plant Research Department integrates modern post-genomic tools to improve our understanding of plants. The aim is to develop crops with improved agronomic traits and to engineer high-value plants, which are able to meet the growth conditions of thefuture environment. The department is divided...

  16. Model-free adaptive control of advanced power plants

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  17. Model-free adaptive control of advanced power plants

    Science.gov (United States)

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  18. Genomic Aspects of Research Involving Polyploid Plants

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaohan [ORNL; Ye, Chuyu [ORNL; Tschaplinski, Timothy J [ORNL; Wullschleger, Stan D [ORNL; Tuskan, Gerald A [ORNL

    2011-01-01

    Almost all extant plant species have spontaneously doubled their genomes at least once in their evolutionary histories, resulting in polyploidy which provided a rich genomic resource for evolutionary processes. Moreover, superior polyploid clones have been created during the process of crop domestication. Polyploid plants generated by evolutionary processes and/or crop domestication have been the intentional or serendipitous focus of research dealing with the dynamics and consequences of genome evolution. One of the new trends in genomics research is to create synthetic polyploid plants which provide materials for studying the initial genomic changes/responses immediately after polyploid formation. Polyploid plants are also used in functional genomics research to study gene expression in a complex genomic background. In this review, we summarize the recent progress in genomics research involving ancient, young, and synthetic polyploid plants, with a focus on genome size evolution, genomics diversity, genomic rearrangement, genetic and epigenetic changes in duplicated genes, gene discovery, and comparative genomics. Implications on plant sciences including evolution, functional genomics, and plant breeding are presented. It is anticipated that polyploids will be a regular subject of genomics research in the foreseeable future as the rapid advances in DNA sequencing technology create unprecedented opportunities for discovering and monitoring genomic and transcriptomic changes in polyploid plants. The fast accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.

  19. MSU-DOE Plant Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This document is the compiled progress reports of research funded through the Michigan State University/Department of Energy Plant Research Laboratory. Fourteen reports are included, covering the molecular basis of plant/microbe symbiosis, cell wall biosynthesis and proteins, gene expression, stress responses, plant hormone biosynthesis, interactions between the nuclear and organelle genomes, sensory transduction and tropisms, intracellular sorting and trafficking, regulation of lipid metabolism, molecular basis of disease resistance and plant pathogenesis, developmental biology of Cyanobacteria, and hormonal involvement in environmental control of plant growth. 320 refs., 26 figs., 3 tabs. (MHB)

  20. Stress tolerance in plants via habitat-adapted symbiosis.

    Science.gov (United States)

    Rodriguez, Rusty J; Henson, Joan; Van Volkenburgh, Elizabeth; Hoy, Marshal; Wright, Leesa; Beckwith, Fleur; Kim, Yong-Ok; Redman, Regina S

    2008-04-01

    We demonstrate that native grass species from coastal and geothermal habitats require symbiotic fungal endophytes for salt and heat tolerance, respectively. Symbiotically conferred stress tolerance is a habitat-specific phenomenon with geothermal endophytes conferring heat but not salt tolerance, and coastal endophytes conferring salt but not heat tolerance. The same fungal species isolated from plants in habitats devoid of salt or heat stress did not confer these stress tolerances. Moreover, fungal endophytes from agricultural crops conferred disease resistance and not salt or heat tolerance. We define habitat-specific, symbiotically-conferred stress tolerance as habitat-adapted symbiosis and hypothesize that it is responsible for the establishment of plants in high-stress habitats. The agricultural, coastal and geothermal plant endophytes also colonized tomato (a model eudicot) and conferred disease, salt and heat tolerance, respectively. In addition, the coastal plant endophyte colonized rice (a model monocot) and conferred salt tolerance. These endophytes have a broad host range encompassing both monocots and eudicots. Interestingly, the endophytes also conferred drought tolerance to plants regardless of the habitat of origin. Abiotic stress tolerance correlated either with a decrease in water consumption or reactive oxygen sensitivity/generation but not to increased osmolyte production. The ability of fungal endophytes to confer stress tolerance to plants may provide a novel strategy for mitigating the impacts of global climate change on agricultural and native plant communities.

  1. Shaped by the environment--adaptation in plants: meeting report based on the presentations at the FEBS Workshop 'Adaptation Potential in Plants' 2009 (Vienna, Austria).

    Science.gov (United States)

    Siomos, Maria F

    2009-09-01

    As sessile organisms that are unable to escape from inhospitable environments, plants are at the mercy of the elements. Nonetheless, plants have managed to adapt, evolve and survive in some of the harshest conditions on earth. The FEBS Workshop 'Adaptation Potential in Plants', held at the Gregor Mendel Institute of Molecular Plant Biology, Vienna, Austria from 19 to 21 March 2009, provided a forum (including 18 invited talks, 8 selected short talks and 69 posters) for about 100 plant biologists from 32 countries, working in the diverse fields of genetics, epigenetics, stress signalling, and growth and development, to come together and discuss adaptation potential in plants at all its levels.

  2. Role of brassinosteroid in plant adaptation to abiotic stresses and its interplay with other hormones.

    Science.gov (United States)

    Ahammed, Golam J; Xia, Xiao-Jian; Li, Xin; Shi, Kai; Yu, Jing-Quan; Zhou, Yan-Hong

    2015-01-01

    Brassinosteroids (BRs) are ubiquitous plant steroid hormones, playing diverse roles in plant growth, development and stress responses. Defects in BRs biosynthesis or signaling result in physiologic and phenotypic abnormalities. To date, numerous studies have highlighted BRs-induced stress tolerance to various environmental extremes such as high temperature, chilling, drought, salinity and heavy metals in a range of plant species. However, the in-depth mechanisms of BRs-induced stress tolerance still remain largely unknown. It is now clear that BRs-induced stress responses are strictly concentration dependent and the optimal concentration for improving the plant adaptability may vary depending on the plant species, developmental stages and environmental conditions as well. Conflicting evidences concerning regulation of stress adaptation by BRs demand further elucidation of mechanism of BRs action in response to environmental stresses in plants. Recent advances in phytohormone research suggest that the effect of BRs on stress tolerance relies largely on its interplay with other hormones. In this review, we critically analyze the multifaceted roles of BRs in various abiotic stresses and its potential crosstalk with other hormones in stress adaptation. The discrepancy in the dose and mode of application of BRs analogues for stress management is also discussed.

  3. Adaptive research supervision : Exploring expert thesis supervisors' practical knowledge

    NARCIS (Netherlands)

    de Kleijn, Renske A M; Meijer, Paulien C.; Brekelmans, Mieke; Pilot, Albert

    2015-01-01

    Several researchers have suggested the importance of being responsive to students' needs in research supervision. Adapting support strategies to students' needs in light of the goals of a task is referred to as adaptivity. In the present study, the practice of adaptivity is explored by interviewing

  4. Adaptive research supervision : Exploring expert thesis supervisors' practical knowledge

    NARCIS (Netherlands)

    de Kleijn, Renske A M; Meijer, Paulien C.; Brekelmans, Mieke; Pilot, Albert

    2015-01-01

    Several researchers have suggested the importance of being responsive to students' needs in research supervision. Adapting support strategies to students' needs in light of the goals of a task is referred to as adaptivity. In the present study, the practice of adaptivity is explored by interviewing

  5. Adaptive Research Supervision: Exploring Expert Thesis Supervisors' Practical Knowledge

    Science.gov (United States)

    de Kleijn, Renske A. M.; Meijer, Paulien C.; Brekelmans, Mieke; Pilot, Albert

    2015-01-01

    Several researchers have suggested the importance of being responsive to students' needs in research supervision. Adapting support strategies to students' needs in light of the goals of a task is referred to as "adaptivity." In the present study, the practice of adaptivity is explored by interviewing expert thesis supervisors about…

  6. Epigenetic memory for stress response and adaptation in plants.

    Science.gov (United States)

    Kinoshita, Tetsu; Seki, Motoaki

    2014-11-01

    In contrast to the majority of animal species, plants are sessile organisms and are, therefore, constantly challenged by environmental perturbations. Over the past few decades, our knowledge of how plants perceive environmental stimuli has increased considerably, e.g. the mechanisms for transducing environmental stress stimuli into cellular signaling cascades and gene transcription networks. In addition, it has recently been shown that plants can remember past environmental events and can use these memories to aid responses when these events recur. In this mini review, we focus on recent progress in determination of the epigenetic mechanisms used by plants under various environmental stresses. Epigenetic mechanisms are now known to play a vital role in the control of gene expression through small RNAs, histone modifications and DNA methylation. These are inherited through mitotic cell divisions and, in some cases, can be transmitted to the next generation. They therefore offer a possible mechanism for stress memories in plants. Recent studies have yielded evidence indicating that epigenetic mechanisms are indeed essential for stress memories and adaptation in plants.

  7. Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities.

    Science.gov (United States)

    Gorzelak, Monika A; Asay, Amanda K; Pickles, Brian J; Simard, Suzanne W

    2015-01-01

    Adaptive behaviour of plants, including rapid changes in physiology, gene regulation and defence response, can be altered when linked to neighbouring plants by a mycorrhizal network (MN). Mechanisms underlying the behavioural changes include mycorrhizal fungal colonization by the MN or interplant communication via transfer of nutrients, defence signals or allelochemicals. We focus this review on our new findings in ectomycorrhizal ecosystems, and also review recent advances in arbuscular mycorrhizal systems. We have found that the behavioural changes in ectomycorrhizal plants depend on environmental cues, the identity of the plant neighbour and the characteristics of the MN. The hierarchical integration of this phenomenon with other biological networks at broader scales in forest ecosystems, and the consequences we have observed when it is interrupted, indicate that underground 'tree talk' is a foundational process in the complex adaptive nature of forest ecosystems.

  8. Adaptive Multichannel Radiation Sensors for Plant Parameter Monitoring

    Science.gov (United States)

    Mollenhauer, Hannes; Remmler, Paul; Schuhmann, Gudrun; Lausch, Angela; Merbach, Ines; Assing, Martin; Mollenhauer, Olaf; Dietrich, Peter; Bumberger, Jan

    2016-04-01

    Nutrients such as nitrogen are playing a key role in the plant life cycle. They are much needed for chlorophyll production and other plant cell components. Therefore, the crop yield is strongly affected by plant nutrient status. Due to the spatial and temporal variability of soil characteristics or swaying agricultural inputs the plant development varies within a field. Thus, the determination of these fluctuations in the plant development is valuable for a detection of stress conditions and optimization of fertilisation due to its high environmental and economic impact. Plant parameters play crucial roles in plant growth estimation and prediction since they are used as indicators of plant performance. Especially indices derived out of remote sensing techniques provide quantitative information about agricultural crops instantaneously, and above all, non-destructively. Due to the specific absorption of certain plant pigments, a characteristic spectral signature can be seen in the visible and IR part of the electromagnetic spectrum, known as narrow-band peaks. In an analogous manner, the presence and concentration of different nutrients cause a characteristic spectral signature. To this end, an adequate remote sensing monitoring concept is needed, considering heterogeneity and dynamic of the plant population and economical aspects. This work will present the development and field investigations of an inexpensive multichannel radiation sensor to observe the incoming and reflected specific parts or rather distinct wavelengths of the solar light spectrum on the crop and facilitate the determination of different plant indices. Based on the selected sensor wavelengths, the sensing device allows the detection of specific parameters, e.g. plant vitality, chlorophyll content or nitrogen content. Besides the improvement of the sensor characteristic, the simple wavelength adaption, and the price-performance ratio, the achievement of appropriate energy efficiency as well as a

  9. Plant performance across latitude: the role of plasticity and local adaptation in a clonal aquatic plant

    OpenAIRE

    Santamaria, L.; Figuerola, J; Pilon, J.; Mjelde, M.; Green, A. J.; T. De Boer; King, R H M; Gornall, R.J.

    2003-01-01

    Geographic variation can lead to the evolution of different local varieties within a given species, therefore influencing its distribution and genetic structure. We investigated the contribution of plasticity and local adaptation to the performance of a common aquatic plant (Potamogeton pectinatus) in contrasting climates, using reciprocal transplants at three experimental sites across a latitudinal cline in Europe. Plants from 54 genets, originally collected from 14 populations situated with...

  10. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants

    Institute of Scientific and Technical Information of China (English)

    Zhaoliang Zhang; Hong Liao; William J. Lucas

    2014-01-01

    As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition, remobiliza-tion and recycling of phosphate (Pi) to maintain P homeostasis. Spatio-temporal molecular, physiological, and biochemical Pi deficiency responses developed by plants are the consequence of local and systemic sensing and signaling pathways. Pi deficiency is sensed local y by the root system where hormones serve as important signaling components in terms of develop-mental reprogramming, leading to changes in root system architecture. Root-to-shoot and shoot-to-root signals, delivered through the xylem and phloem, respectively, involving Pi itself, hormones, miRNAs, mRNAs, and sucrose, serve to coordinate Pi deficiency responses at the whole-plant level. A combination of chromatin remodeling, transcriptional and posttranslational events contribute to global y regulating a wide range of Pi deficiency responses. In this review, recent advances are evaluated in terms of progress toward developing a comprehen-sive understanding of the molecular events underlying control over P homeostasis. Application of this knowledge, in terms of developing crop plants having enhanced attributes for P use efficiency, is discussed from the perspective of agricultural sustainability in the face of diminishing global P supplies.

  11. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants.

    Science.gov (United States)

    Zhang, Zhaoliang; Liao, Hong; Lucas, William J

    2014-03-01

    As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition, remobilization and recycling of phosphate (Pi) to maintain P homeostasis. Spatio-temporal molecular, physiological, and biochemical Pi deficiency responses developed by plants are the consequence of local and systemic sensing and signaling pathways. Pi deficiency is sensed locally by the root system where hormones serve as important signaling components in terms of developmental reprogramming, leading to changes in root system architecture. Root-to-shoot and shoot-to-root signals, delivered through the xylem and phloem, respectively, involving Pi itself, hormones, miRNAs, mRNAs, and sucrose, serve to coordinate Pi deficiency responses at the whole-plant level. A combination of chromatin remodeling, transcriptional and posttranslational events contribute to globally regulating a wide range of Pi deficiency responses. In this review, recent advances are evaluated in terms of progress toward developing a comprehensive understanding of the molecular events underlying control over P homeostasis. Application of this knowledge, in terms of developing crop plants having enhanced attributes for P use efficiency, is discussed from the perspective of agricultural sustainability in the face of diminishing global P supplies.

  12. Plant performance across latitude: the role of plasticity and local adaptation in a clonal aquatic plant

    NARCIS (Netherlands)

    Santamaria, L.; Figuerola, J.; Pilon, J.; Mjelde, M.; Green, A.J.; De Boer, T.; King, R.H.M.; Gornall, R.J.

    2003-01-01

    Geographic variation can lead to the evolution of different local varieties within a given species, therefore influencing its distribution and genetic structure. We investigated the contribution of plasticity and local adaptation to the performance of a common aquatic plant (Potamogeton pectinatus)

  13. Stress tolerance in plants via habitat-adapted symbiosis

    Science.gov (United States)

    Rodriguez, R.J.; Henson, J.; Van Volkenburgh, E.; Hoy, M.; Wright, L.; Beckwith, F.; Kim, Y.-O.; Redman, R.S.

    2008-01-01

    We demonstrate that native grass species from coastal and geothermal habitats require symbiotic fungal endophytes for salt and heat tolerance, respectively. Symbiotically conferred stress tolerance is a habitat-specific phenomenon with geothermal endophytes conferring heat but not salt tolerance, and coastal endophytes conferring salt but not heat tolerance. The same fungal species isolated from plants in habitats devoid of salt or heat stress did not confer these stress tolerances. Moreover, fungal endophytes from agricultural crops conferred disease resistance and not salt or heat tolerance. We define habitat-specific, symbiotically-conferred stress tolerance as habitat-adapted symbiosis and hypothesize that it is responsible for the establishment of plants in high-stress habitats. The agricultural, coastal and geothermal plant endophytes also colonized tomato (a model eudicot) and conferred disease, salt and heat tolerance, respectively. In addition, the coastal plant endophyte colonized rice (a model monocot) and conferred salt tolerance. These endophytes have a broad host range encompassing both monocots and eudicots. Interestingly, the endophytes also conferred drought tolerance to plants regardless of the habitat of origin. Abiotic stress tolerance correlated either with a decrease in water consumption or reactive oxygen sensitivity/generation but not to increased osmolyte production. The ability of fungal endophytes to confer stress tolerance to plants may provide a novel strategy for mitigating the impacts of global climate change on agricultural and native plant communities.The ISME Journal (2008) 2, 404-416; doi:10.1038/ismej.2007.106; published online 7 February 2008. ?? 2008 International Society for Microbial Ecology All rights reserved.

  14. Optical Property Analyses of Plant Cells for Adaptive Optics Microscopy

    Science.gov (United States)

    Tamada, Yosuke; Murata, Takashi; Hattori, Masayuki; Oya, Shin; Hayano, Yutaka; Kamei, Yasuhiro; Hasebe, Mitsuyasu

    2014-04-01

    In astronomy, adaptive optics (AO) can be used to cancel aberrations caused by atmospheric turbulence and to perform diffraction-limited observation of astronomical objects from the ground. AO can also be applied to microscopy, to cancel aberrations caused by cellular structures and to perform high-resolution live imaging. As a step toward the application of AO to microscopy, here we analyzed the optical properties of plant cells. We used leaves of the moss Physcomitrella patens, which have a single layer of cells and are thus suitable for optical analysis. Observation of the cells with bright field and phase contrast microscopy, and image degradation analysis using fluorescent beads demonstrated that chloroplasts provide the main source of optical degradations. Unexpectedly, the cell wall, which was thought to be a major obstacle, has only a minor effect. Such information provides the basis for the application of AO to microscopy for the observation of plant cells.

  15. Fluidic origami: a plant-inspired adaptive structure with shape morphing and stiffness tuning

    Science.gov (United States)

    Li, Suyi; Wang, K. W.

    2015-10-01

    Inspired by the physics behind the rapid plant movements and the rich topologies in origami folding, this research creates a unique class of multi-functional adaptive structure through exploring the innovation of fluidic origami. The idea is to connect multiple Miura folded sheets along their crease lines into a space-filling structure, and fill the tubular cells in-between with working fluids. The pressure and fluid flow in these cells can be strategically controlled much like in plants for nastic movements. The relationship between the internal fluid volume and the overall structure deformation is primarily determined by the kinematics of folding. This relationship can be exploited so that fluidic origami can achieve actuation/morphing by actively changing the internal fluid volume, and stiffness tuning by constraining the fluid volume. In order to characterize the working principles and performance potentials of these two adaptive functions, this research develops an equivalent truss frame model on a fluidic origami unit cell to analyze its fundamental elastic characteristics. Eigen-stiffness analysis based on this model reveals the primary modes of deformation and their relationships with initial folding configurations. Performances of the adaptive functions are correlated to the crease pattern design. In parallel to analytical studies, the feasibility of the morphing and stiffness tuning is also examined experimentally via a 3D printed multi-material prototype demonstrator. The research reported in this paper could lead to the synthesis of adaptive fluidic origami cellular metastructures or metamaterial systems for various engineering applications.

  16. Allelophaty - the chemical information system in plants adaptation

    Directory of Open Access Journals (Sweden)

    Eugenia CHIRCA

    1985-08-01

    Full Text Available The plant, as a living system, is an informational system too, with transmission and reception of different messages between the individuals of the community in which is integrated. The most common and most efficient system in the plant kingdom is of chemical nature. Through this system energy and information are transmitted among individuals, or even communities, in order to ensure the homeostasis of the system. The study of these signals in the supraindividual level is designated as ecochemistry (Florkin, 1966 or ecological biochemistry (Schlee, 1981. Plant metabolic substance - especially those designed as "secondary" organic substances works as allelopathic information signalsin plant communities and function as stabilisers in a agiven community Owing to this chemical mediators the stability of the structure and the function in an ecosystem is granted. In industrialized societies a lot of pseudosignals of chemical nature may occur (pollution, pesticides, herbicides, fertilizers which may alter considerably the normal allelopathic relations. Research in this direction is almost neglected.

  17. Adaptive Technologies. Research Report. ETS RR-07-05

    Science.gov (United States)

    Shute, Valerie J.; Zapata-Rivera, Diego

    2007-01-01

    This paper describes research and development efforts related to adaptive technologies, which can be combined with other technologies and processes to form an adaptive system. The goal of an adaptive system, in the context of this paper, is to create an instructionally sound and flexible environment that supports learning for students with a range…

  18. Evidence of local adaptation in plant virus effects on host-vector interactions.

    Science.gov (United States)

    Mauck, K E; De Moraes, C M; Mescher, M C

    2014-07-01

    Recent research suggests that plant viruses, and other pathogens, frequently alter host-plant phenotypes in ways that facilitate transmission by arthropod vectors. However, many viruses infect multiple hosts, raising questions about whether these pathogens are capable of inducing transmission-facilitating phenotypes in phylogenetically divergent host plants and the extent to which evolutionary history with a given host or plant community influences such effects. To explore these issues, we worked with two newly acquired field isolates of cucumber mosaic virus (CMV)-a widespread multi-host plant pathogen transmitted in a non-persistent manner by aphids-and explored effects on the phenotypes of different host plants and on their subsequent interactions with aphid vectors. An isolate collected from cultivated squash fields (KVPG2-CMV) induced in the native squash host (Cucurbita pepo) a suite of effects on host-vector interactions suggested by previous work to be conducive to transmission (including reduced host-plant quality for aphids, rapid aphid dispersal from infected to healthy plants, and enhanced aphid attraction to the elevated emission of a volatile blend similar to that of healthy plants). A second isolate (P1-CMV) collected from cultivated pepper (Capsicum annuum) induced more neutral effects in its native host (largely exhibiting non-significant trends in the direction of effects seen for KVPG2-CMV in squash). When we attempted cross-host inoculations of these two CMV isolates (KVPG2-CMV in pepper and P1-CMV in squash), P1-CMV was only sporadically able to infect the novel host; KVPG2-CMV infected the novel pepper host with somewhat reduced success compared with its native host and reached virus titers significantly lower than those observed for either strain in its native host. Furthermore, KVPG2-CMV induced changes in the phenotype of the novel host, and consequently in host-vector interactions, dramatically different than those observed in the native

  19. A Research on Darkness Adaptation of Drivers

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper presents the results of darkness adaptation test fordrivers. It is shown that there is a significant difference (p10 s is 7.3%, implying that the high accident rate of the drivers in accident group might be caused by their longer darkness adaptation time.

  20. Whether Plant Responses to Microgravity are Adaptive in Full or in Part.

    Science.gov (United States)

    Kordyum, Elizabeth

    impossible to say on full adaptation of plants to microgravity, because the accomplish-ment of " reproductive imperative" by plants, i. e. high seed production is the major factor of their adaptation to the new conditions. Therefore, future research at the cell and molecular levels are required to evaluate reasonably the adaptive potential of plants for long-time space flight.

  1. Plant Research Department annual report 2003

    DEFF Research Database (Denmark)

    Kossmann, J.; Jakobsen, Iver; Nielsen, K.K.

    2004-01-01

    In 2003 the Plant Research Department (PRD) at Risø National Laboratory was involved in establishing the consortium Plant Biotech Denmark, which is unifying most of the Danish Plant Biotechnology activities. Within the consortium, PRD has the uniqueopportunity to be the only life science department...... located in an environment that is largely dominated by physicists. PRD is challenged to optimally interface Plant Biology with the different fields of expertise that are established at Risø NationalLaboratory. These activities are mainly related to develop novel post-genomic tools to assign function...... to genes, which are widely applicable in the life sciences, such as non-invasive and non-destructive technologies to determine metabolite concentrationswith high spatial and temporal resolution. The Plant Research Department applies these and state-of-the-art technologies to increase knowledge to develop...

  2. Effects of fragmentation on plant adaptation to urban environments.

    Science.gov (United States)

    Dubois, Jonathan; Cheptou, Pierre-Olivier

    2017-01-19

    Urban ecosystems are relatively recent and heavily human-altered terrestrial ecosystems with a surprisingly high diversity of animals, plants and other organisms. Urban habitats are also strongly fragmented and subject to higher temperatures, providing a compelling model for studying adaptation to global change. Crepis sancta (Asteraceae), an annual Mediterranean wasteland weed, occupies fragmented urban environments as well as certain unfragmented landscapes in southern France. We tested for shifts in dispersal, reproductive traits and size across a rural-urban gradient to learn whether and how selection may be driving changes in life history in urban and fragmented habitats. We specifically compared the structure of quantitative genetic variation and of neutral markers (microsatellites) between urban and rural and between fragmented and unfragmented habitats. We showed that fragmentation provides a better descriptor of trait variation than urbanization per se for dispersal traits. Fragmentation also affected reproductive traits and plant size though one rural population did conform to this scheme. Our study shows the role of fragmentation for dispersal traits shift in urban environments and a more complex pattern for other traits. We discuss the role of pollinator scarcity and an inhospitable matrix as drivers of adaptation.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.

  3. Gendered medicinal plant knowledge contributions to adaptive capacity and health sovereignty in Amazonia.

    Science.gov (United States)

    Díaz-Reviriego, Isabel; Fernández-Llamazares, Álvaro; Salpeteur, Matthieu; Howard, Patricia L; Reyes-García, Victoria

    2016-12-01

    Local medical systems are key elements of social-ecological systems as they provide culturally appropriate and locally accessible health care options, especially for populations with scarce access to biomedicine. The adaptive capacity of local medical systems generally rests on two pillars: species diversity and a robust local knowledge system, both threatened by local and global environmental change. We first present a conceptual framework to guide the assessment of knowledge diversity and redundancy in local medicinal knowledge systems through a gender lens. Then, we apply this conceptual framework to our research on the local medicinal plant knowledge of the Tsimane' Amerindians. Our results suggest that Tsimane' medicinal plant knowledge is gendered and that the frequency of reported ailments and the redundancy of knowledge used to treat them are positively associated. We discuss the implications of knowledge diversity and redundancy for local knowledge systems' adaptive capacity, resilience, and health sovereignty.

  4. Research in digital adaptive flight controllers

    Science.gov (United States)

    Kaufman, H.

    1976-01-01

    A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Both explicit controllers which directly utilize parameter identification and implicit controllers which do not require identification were considered. Extensive analytical and simulation efforts resulted in the recommendation of two explicit digital adaptive flight controllers. Interface weighted least squares estimation procedures with control logic were developed using either optimal regulator theory or with control logic based upon single stage performance indices.

  5. Maize canopy architecture and adaptation to high plant density in long term selection programs

    Science.gov (United States)

    Grain yield since the 1930s has increased more than five-fold in large part due to improvements in adaptation to high plant density. Changes to plant architecture that associated with improved light interception have made a major contribution to improved adaptation to high plant density. Improved ...

  6. Plant research '79: report of the Michigan State University, Department of Energy, Plant Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Botanical research conducted at MSU during 1979 is described. Areas of study include cell wall biosynthesis, hormonal regulation, responses of plants to environmental stresses, and molecular studies. (ACR)

  7. Plant biotechnology: research behind fences.

    Science.gov (United States)

    Romeis, Jörg; Meissle, Michael; Brunner, Susanne; Tschamper, Denise; Winzeler, Michael

    2013-04-01

    The government of Switzerland has responded to vandalism of field experiments with genetically modified (GM) crops by establishing a protected field site. This site will enable research groups to conduct experiments without having to install and pay for security measures. This could be a model for other European countries who wish to evaluate the advantages and disadvantages of GM crops in an objective and scientific manner and without the interference of vandalism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Adaptive Neural Network Algorithm for Power Control in Nuclear Power Plants

    Science.gov (United States)

    Masri Husam Fayiz, Al

    2017-01-01

    The aim of this paper is to design, test and evaluate a prototype of an adaptive neural network algorithm for the power controlling system of a nuclear power plant. The task of power control in nuclear reactors is one of the fundamental tasks in this field. Therefore, researches are constantly conducted to ameliorate the power reactor control process. Currently, in the Department of Automation in the National Research Nuclear University (NRNU) MEPhI, numerous studies are utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems and genetic algorithms) to enhance the performance, safety, efficiency and reliability of nuclear power plants. In particular, a study of an adaptive artificial intelligent power regulator in the control systems of nuclear power reactors is being undertaken to enhance performance and to minimize the output error of the Automatic Power Controller (APC) on the grounds of a multifunctional computer analyzer (simulator) of the Water-Water Energetic Reactor known as Vodo-Vodyanoi Energetichesky Reaktor (VVER) in Russian. In this paper, a block diagram of an adaptive reactor power controller was built on the basis of an intelligent control algorithm. When implementing intelligent neural network principles, it is possible to improve the quality and dynamic of any control system in accordance with the principles of adaptive control. It is common knowledge that an adaptive control system permits adjusting the controller’s parameters according to the transitions in the characteristics of the control object or external disturbances. In this project, it is demonstrated that the propitious options for an automatic power controller in nuclear power plants is a control system constructed on intelligent neural network algorithms.

  9. Roadmap towards justice in urban climate adaptation research

    Science.gov (United States)

    Shi, Linda; Chu, Eric; Anguelovski, Isabelle; Aylett, Alexander; Debats, Jessica; Goh, Kian; Schenk, Todd; Seto, Karen C.; Dodman, David; Roberts, Debra; Roberts, J. Timmons; Vandeveer, Stacy D.

    2016-02-01

    The 2015 United Nations Climate Change Conference in Paris (COP21) highlighted the importance of cities to climate action, as well as the unjust burdens borne by the world's most disadvantaged peoples in addressing climate impacts. Few studies have documented the barriers to redressing the drivers of social vulnerability as part of urban local climate change adaptation efforts, or evaluated how emerging adaptation plans impact marginalized groups. Here, we present a roadmap to reorient research on the social dimensions of urban climate adaptation around four issues of equity and justice: (1) broadening participation in adaptation planning; (2) expanding adaptation to rapidly growing cities and those with low financial or institutional capacity; (3) adopting a multilevel and multi-scalar approach to adaptation planning; and (4) integrating justice into infrastructure and urban design processes. Responding to these empirical and theoretical research needs is the first step towards identifying pathways to more transformative adaptation policies.

  10. Climate vs. soil factors in local adaptation of two common plant species

    NARCIS (Netherlands)

    Macel, M.; Lawson, C.S.; Mortimer, S.R.; Smilauerova, M.; Bischoff, A.; Crémieux, L.; Dolezal, J.; Edwards, A.R.; Lanta, V.; Bezemer, T.M.; Putten, van der W.H.; Igual, J.M.; Rodriguez-Barrueco, C.; Müller-Schärer, H.; Steinger, T.

    2007-01-01

    Evolutionary theory suggests that divergent natural selection in heterogeneous environments can result in locally adapted plant genotypes. To understand local adaptation it is important to study the ecological factors responsible for divergent selection. At a continental scale, variation in climate

  11. Research of the Power Plant Operational Modes

    Directory of Open Access Journals (Sweden)

    Koismynina Nina M.

    2017-01-01

    Full Text Available In this article the algorithm of the power plant operational modes research is offered. According to this algorithm the program for the modes analysis and connection power transformers choice is developed. The program can be used as educational means for studying of the power plant electric part, at the same time basic data are provided. Also the program can be used for the analysis of the working power plants modes. Checks of the entered data completeness and a choice correctness of the operational modes are provided in the program; in all cases of a deviation from the correct decisions to the user the relevant information is given.

  12. Research of Modified LMS Adaptive Noise Cancellation

    Institute of Scientific and Technical Information of China (English)

    YANG Ming-sheng; LI Yan-peng

    2003-01-01

    Noise cancellation is very important in the field of signal processing. In this paper, the designation of a modified LMS Adaptive Noise Cancellation is demonstrated in detail; the model is simulated. We have compared the performance of the new model with the old model. The result of the experiments shows that this designation improves the noise cancellation′s performance greatly.

  13. Adaptive and Adaptable Automation Design: A Critical Review of the Literature and Recommendations for Future Research

    Science.gov (United States)

    Prinzel, Lawrence J., III; Kaber, David B.

    2006-01-01

    This report presents a review of literature on approaches to adaptive and adaptable task/function allocation and adaptive interface technologies for effective human management of complex systems that are likely to be issues for the Next Generation Air Transportation System, and a focus of research under the Aviation Safety Program, Integrated Intelligent Flight Deck Project. Contemporary literature retrieved from an online database search is summarized and integrated. The major topics include the effects of delegation-type, adaptable automation on human performance, workload and situation awareness, the effectiveness of various automation invocation philosophies and strategies to function allocation in adaptive systems, and the role of user modeling in adaptive interface design and the performance implications of adaptive interface technology.

  14. The role of fungal symbiosis in the adaptation of plants to high stress environments

    Science.gov (United States)

    Rodriguez, Russell J.; Redman, Regina S.; Henson, Joan M.

    2004-01-01

    All plants studied in natural ecosystemsare symbiotic with fungi that either resideentirely (endophytes) or partially(mycorrhizae) within plants. Thesesymbioses appear to adapt to biotic andabiotic stresses and may be responsible forthe survival of both plant hosts and fungalsymbionts in high stress habitats. Here wedescribe the role of symbiotic fungi inplant stress tolerance and present astrategy based on adaptive symbiosis topotentially mitigate the impacts of globalchange on plant communities.

  15. Calcium efflux systems in stress signalling and adaptation in plants

    Directory of Open Access Journals (Sweden)

    Jayakumar eBose

    2011-12-01

    Full Text Available Transient cytosolic calcium ([Ca2+]cyt elevation is an ubiquitous denominator of the signalling network when plants are exposed to literally every known abiotic and biotic stress. These stress-induced [Ca2+]cyt elevations vary in magnitude, frequency and shape, depending on the severity of the stress as well the type of stress experienced. This creates a unique stress-specific calcium signature that is then decoded by signal transduction networks. While most published papers have been focused predominantly on the role of Ca2+ influx mechanisms in shaping [Ca2+]cyt signatures, restoration of the basal [Ca2+]cyt levels is impossible without both cytosolic Ca2+ buffering and efficient Ca2+ efflux mechanisms removing excess Ca2+ from cytosol, to reload Ca2+ stores and to terminate Ca2+ signalling. This is the topic of the current review. The molecular identity of two major types of Ca2+ efflux systems, Ca2+-ATPase pumps and Ca2+/H+ exchangers, is described, and their regulatory modes are analysed in detail. The spatial and temporal organisation of calcium signalling networks is described, and the importance of existence of intracellular calcium microdomains is discussed. Experimental evidence for the role of Ca2+ efflux systems in plant responses to a range of abiotic and biotic factors is summarised. Contribution of Ca2+-ATPase pumps and Ca2+/H+ exchangers in shaping [Ca2+]cyt signatures is then modelled by using a four-component model (plasma- and endo- membrane-based Ca2+-permeable channels and efflux systems taking into account the cytosolic Ca2+ buffering. It is concluded that physiologically relevant variations in the activity of Ca2+-ATPase pumps and Ca2+/H+ exchangers are sufficient to fully describe all the reported experimental evidence and determine the shape of [Ca2+]cyt signatures in response to environmental stimuli, emphasising the crucial role these active efflux systems play in plant adaptive responses to environment.

  16. Ecological adaptation strategies of annual plants in artificial vegetation-stabilized sand dune in Shapotou Region

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jingguang; LI Xinrong; WANG Xinping; WANG Gang

    2004-01-01

    Taking annual plant Eragrostis poaeides in the artificial vegetation-stabilized sand dune in the Shapotou Experimental Research Station as example, study has been done on the adaptation strategies of annual plants to random environment through fixed quadrat observations of population changes and fixed plant determinations of individual growth, seed germination,population dynamics, spatial distribution pattern of population, competition and regulation. During the growing season, the survival rate of annual plants depends on the precipitation intensity and precipitation duration which activate the germination of seeds. The optimal germination strategy of annual plants in this habitat during the growing season appears as continuous germination under suitable conditions. Such continuous germination is an adaptive characteristic of annual plants to random environment. In addition, the variation processes of population size and regulation mechanism of E. poaeoides are studied. Statistical results of natural population in four consecutive years show that water condition in the habitat is the leading factor affecting the population dynamics of E. poaeoides. During the establishment period E. poaeoides had a higher death rate, but in the middle to later period they could survive stably. Due to the limitation of soil moisture, the competition among individuals for water inevitably led to self-thinning phenomena. Under very arid condition, the survival curve of annual herbs entirely appears as Deevey Ⅲ type (C type), but under relatively adequate precipitation condition, the survival curve appears as intermediate type. The strategy of life history obviously appears as r-strategy. Plant species of r-strategy often occurs in the early succession stage of the communities. In the relatively adequate and evenly-distributed rainfall years, E. poaeoides population exhibited a density-dependent, i. e., survival rate increased with decrease in population density. The main pattern to

  17. RESEARCH ON DIALECT-SPECIFIC LEXICON ADAPTATION

    Institute of Scientific and Technical Information of China (English)

    Liu Linquan

    2008-01-01

    With respect m dialectal-accented speech recognition, dialect-specific lexicon adaptation is an indispensable component to improve the performance. In this paper, a phone-based confusion matrix is adopted to obtain dialect-specific pronunciation variants. A weighting method, improved context-dependent weighting (ICDW) is proposed to characterize the pronunciation probability precisely by taking both the surface form left-context-dependency and the base form left-context-dependency into account. To make a much robust lexicon, a pruning criterion, syllable-dependent pruning (SDP), is also proposed which achieves the most effective result. In summary, the dialect-specific dialect adaptation reduces a 2.9% absolute and a 3.6% absolute in syllable error rate (SER) respectively on read speech and spontaneous speech from Shanghai-accented speakers.

  18. Genomics-based plant germplasm research (GPGR

    Directory of Open Access Journals (Sweden)

    Jizeng Jia

    2017-04-01

    Full Text Available Plant germplasm underpins much of crop genetic improvement. Millions of germplasm accessions have been collected and conserved ex situ and/or in situ, and the major challenge is now how to exploit and utilize this abundant resource. Genomics-based plant germplasm research (GPGR or “Genoplasmics” is a novel cross-disciplinary research field that seeks to apply the principles and techniques of genomics to germplasm research. We describe in this paper the concept, strategy, and approach behind GPGR, and summarize current progress in the areas of the definition and construction of core collections, enhancement of germplasm with core collections, and gene discovery from core collections. GPGR is opening a new era in germplasm research. The contribution, progress and achievements of GPGR in the future are predicted.

  19. Adapting and Merging Methodologies in Doctoral Research

    Science.gov (United States)

    Levy, Ronit Ben-Bassat; Ben-Ari, Mordechai

    2009-01-01

    This article describes how research methodologies were modified and integrated during the doctoral research conducted by the first author under the supervision of the second author. The research project concerned trying to understand why teachers do or don't use "Jeliot", a program animation system designed to facilitate teaching and learning of…

  20. Engineering rhizosphere hydraulics: pathways to improve plant adaptation to drought

    Science.gov (United States)

    Ahmed, Mutez; Zarebanadkouki, Mohsen; Ahmadi, Katayoun; Kroener, Eva; Kostka, Stanley; Carminati, Andrea

    2017-04-01

    rhizosphere reproduced well the experimental observations. Rhizoligands increase the rhizosphere wetting kinetics and decrease the maximum swelling of mucilage. As a consequence, root rehydration upon irrigation is faster, a larger volume of water is available to the plant and this water is used more slowly. This slower water consumption would allow the plant to stay turgid over a prolonged dying period. We propose that by managing the hydraulic properties of the rhizosphere, we can improve plants adaptation to drought.

  1. Research on Threshold Adjustment Algorithm in Adaptive Modulation and Coding

    Institute of Scientific and Technical Information of China (English)

    FAN Chen; CHEN Mei-ya; SU Li-jun; YANG Da-cheng

    2006-01-01

    Adaptive Modulation and Coding (AMC) has gained a lot of attentions in the research of High Speed Downlink Packet Access (HSDPA). The idea is to adapt the transmission to the fast changing channel conditions by the use of different Modulation and Coding Schemes (MCS). This paper presents an adaptive AMC algorithm and introduces a theoretical analysis model in order to to investigate its throughput and Frame Error Rate (FER). Subject to the given FER target, our numerical and link level simulation results both show that our algorithm outperforms other existing adaptive algorithms.

  2. Adaptive image segmentation applied to plant reproduction by tissue culture

    Science.gov (United States)

    Vazquez Rueda, Martin G.; Hahn, Federico; Zapata, Jose L.

    1997-04-01

    This paper presents that experimental results obtained on indoor tissue culture using the adaptive image segmentation system. The performance of the adaptive technique is contrasted with different non-adaptive techniques commonly used in the computer vision field to demonstrate the improvement provided by the adaptive image segmentation system.

  3. 76 FR 30193 - National Fish, Wildlife, and Plants Climate Adaptation Strategy; Notice of Intent: Request for...

    Science.gov (United States)

    2011-05-24

    ... Technical Teams will take primary responsibility for developing the content of the Strategy, based around... Fish and Wildlife Service National Fish, Wildlife, and Plants Climate Adaptation Strategy; Notice of... National Fish, Wildlife, and Plants Climate Adaptation Strategy (Strategy). The Strategy will provide a...

  4. Interdisciplinary Research and Training Program in the Plant Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, C.P.

    1992-01-01

    Research on plants continued. Topics include: Molecular basis of symbiotic plant-microbe interations; enzymatic mechanisms and regulation of plant cell wall biosynthesis; molecular mechanisms that regulate the expression of genes in plants; resistance of plants to environmental stress; studies on hormone biosynthesis and action; plant cell wall proteins; interaction of nuclear and organelle genomes; sensor transduction in plants; molecular mechanisms of trafficking in the plant cell; regulation of lipid metabolism; molecular bases of plant disease resistance mechanisms; biochemical and molecular aspects of plant pathogenesis; developmental biology of nitrogen-fixing cyanobacteria; environmental control of plant development and its relation to plant hormones.

  5. The Role of Endophytic Microorganisms of Medicinal Plants in the Adaptation of Host Plant

    Directory of Open Access Journals (Sweden)

    Zhivetev M.A.

    2015-09-01

    Full Text Available Cultures of microorganisms were isolated from endosphere of Lake Baikal littoral zone plants: Veronica chamaedrys L., Alchemilla subscrenata Buser, Achillea asiatica Serg., Taraxacum officinale Wigg., Plantago major L. Morphology and biochemical properties of isolated bacteria were studied. For the majority of the endophytic bacterial cultures cellulolitic and proteolytic activity has been shown, which necessary for the effective colonization of plant tissue. For many cultures revealed ability in varying degrees to form a biofilm to improve survival in a vegetative organism. Their potencial role in adaptation of plant-hosts under conditions of climat Baikal region was shown. In particular, 9 of cultures demonstrated ability to act as nitrogen retainer. The vast majority of bacterial cultures did not have phytotoxicity or demonstrated its low level, reflecting and minimum negative effects of them on plant. Moreover, culture with encryption P3, isolated from Plantago major in August, showed a stimulatory effect in experiments on phytotoxicity. This same culture possessed the highest ability to secrete sugars as at +26°С and at +4°С.

  6. Self-tuning regulators. [adaptive control research

    Science.gov (United States)

    Astrom, K. J.

    1975-01-01

    The results of a research project are discussed for self-tuning regulators for active control. An algorithm for the self-tuning regulator is described as being stochastic, nonlinear, time variable, and not trivial.

  7. Pattern matching and adaptive image segmentation applied to plant reproduction by tissue culture

    Science.gov (United States)

    Vazquez Rueda, Martin G.; Hahn, Federico

    1999-03-01

    This paper shows the results obtained in a system vision applied to plant reproduction by tissue culture using adaptive image segmentation and pattern matching algorithms, this analysis improves the number of tissue obtained and minimize errors, the image features of tissue are considered join to statistical analysis to determine the best match and results. Tests make on potato plants are used to present comparative results with original images processed with adaptive segmentation algorithm and non adaptive algorithms and pattern matching.

  8. Can emergency medicine research benefit from adaptive design clinical trials?

    Science.gov (United States)

    Flight, Laura; Julious, Steven A; Goodacre, Steve

    2017-04-01

    Adaptive design clinical trials use preplanned interim analyses to determine whether studies should be stopped or modified before recruitment is complete. Emergency medicine trials are well suited to these designs as many have a short time to primary outcome relative to the length of recruitment. We hypothesised that the majority of published emergency medicine trials have the potential to use a simple adaptive trial design. We reviewed clinical trials published in three emergency medicine journals between January 2003 and December 2013. We determined the proportion that used an adaptive design as well as the proportion that could have used a simple adaptive design based on the time to primary outcome and length of recruitment. Only 19 of 188 trials included in the review were considered to have used an adaptive trial design. A total of 154/165 trials that were fixed in design had the potential to use an adaptive design. Currently, there seems to be limited uptake in the use of adaptive trial designs in emergency medicine despite their potential benefits to save time and resources. Failing to take advantage of adaptive designs could be costly to patients and research. It is recommended that where practical and logistical considerations allow, adaptive designs should be used for all emergency medicine clinical trials. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  9. ADAPTATION OF THE OBTAINED in vitro Gentiana lutea L. PLANTS TO ex vitro AND in situ CONDITIONS

    Directory of Open Access Journals (Sweden)

    О. Yu.

    2015-12-01

    Full Text Available The objective of the research was to develop the technology of introduction of the obtained by microclonal propagation Gentiana lutea L. plants into conditions in situ. Methods of cultivation of plant objects in vitro were used. There were chosen optimal conditions for rooting G. lutea shoots obtained through microclonal propagation in vitro: МS/2 medium with twice decreased concentration of NH4NO3 without vitamins and sucrose supplemented with 3 g/l of mannite and 0.05 mg/l kinetin, and agar (4 mg/l in combination with perlite (16 g/l used as a maintaining substrate; or the nutrient medium (MS/2 without vitamins and smaller concentration of N4NO3 with gradual decrease of carbohydrates from 10 g/l to 2 g/l, and further rooting experimental shoots in tap water. Rooted plants were adapted to conditions ex vitro through planting them into flowerpots with soil and gradual changing hothouse regime for exposed one. The share of adapted to in situ conditions plants (21% after a year of planting proves the suggested method to be efficient and promising. There was suggested this technology is the most efficient ones for revival of disturbed G. lutea populations that includes repatriation of rooted and adapted to ex vitro conditions plants obtained through microclonal propagation in vitro.

  10. Nuclear power plant Severe Accident Research Plan

    Energy Technology Data Exchange (ETDEWEB)

    Larkins, J T; Cunningham, M A

    1983-01-01

    The Severe Accident Research Plan (SARP) will provide technical information necessary to support regulatory decisions in the severe accident area for existing or planned nuclear power plants, and covers research for the time period of January 1982 through January 1986. SARP will develop generic bases to determine how safe the plants are and where and how their level of safety ought to be improved. The analysis to address these issues will be performed using improved probabilistic risk assessment methodology, as benchmarked to more exact data and analysis. There are thirteen program elements in the plan and the work is phased in two parts, with the first phase being completed in early 1984, at which time an assessment will be made whether or not any major changes will be recommended to the Commission for operating plants to handle severe accidents. Additionally at this time, all of the thirteen program elements in Chapter 5 will be reviewed and assessed in terms of how much additional work is necessary and where major impacts in probabilistic risk assessment might be achieved. Confirmatory research will be carried out in phase II to provide additional assurance on the appropriateness of phase I decisions. Most of this work will be concluded by early 1986.

  11. Evolutionary adaptation in three-way interactions between plants, microbes and arthropods

    NARCIS (Netherlands)

    Biere, A.; Tack, A.J.M.

    2013-01-01

    Evolutionary adaptations in interactions between plants, microbes and arthropods are generally studied in interactions that involve only two of these groups, that is, plants and microbes, plants and arthropods or arthropods and microbes. We review the accumulating evidence from a wide variety of

  12. Space plant biology research in Lithuania.

    Science.gov (United States)

    Ričkienė, Aurika

    2012-09-01

    In 1957, the Soviet Union launched the first artificial Earth satellite, initiating its space exploration programs. Throughout the rest of the twentieth century, the development of these space programs received special attention from Soviet Union authorities. Scientists from the former Soviet Republics, including Lithuania, participated in these programs. From 1971 to 1990, Lithuanians designed more than 20 experiments on higher plant species during space flight. Some of these experiments had never before been attempted and, therefore, made scientific history. However, the formation and development of space plant biology research in Lithuania or its origins, context of formation, and placement in a worldwide context have not been explored from a historical standpoint. By investigating these topics, this paper seeks to construct an image of the development of a very specific field of science in a small former Soviet republic.

  13. Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense.

    Science.gov (United States)

    Fibach-Paldi, Sharon; Burdman, Saul; Okon, Yaacov

    2012-01-01

    Azospirillum brasilense is a plant growth promoting rhizobacterium (PGPR) that is being increasingly used in agriculture in a commercial scale. Recent research has elucidated key properties of A. brasilense that contribute to its ability to adapt to the rhizosphere habitat and to promote plant growth. They include synthesis of the auxin indole-3-acetic acid, nitric oxide, carotenoids, and a range of cell surface components as well as the ability to undergo phenotypic variation. Storage and utilization of polybetahydroxyalkanoate polymers are important for the shelf life of the bacteria in production of inoculants, products containing bacterial cells in a suitable carrier for agricultural use. Azospirillum brasilense is able to fix nitrogen, but despite some controversy, as judging from most systems evaluated so far, contribution of fixed nitrogen by this bacterium does not seem to play a major role in plant growth promotion. In this review, we focus on recent advances in the understanding of physiological properties of A. brasilense that are important for rhizosphere performance and successful interactions with plant roots.

  14. Research on leaf anatomical structures of 13 Ficus plants and their adaptabilities to environment%13种榕属植物的叶片结构及其对环境的适应性

    Institute of Scientific and Technical Information of China (English)

    戴叶辉; 王琳; 邢福武; 肖德兴

    2012-01-01

    layer of epi- dermis; 2 species have the upper epidermis of 4 to 5 layers, 3 species with 3 to 4 layers, 6 species with 2 to 3 layers, 1 specie with 2 layers. Stomas in a sunken form distribute in lower epidermis, the guard cells, together with the second layer cells of lower epidermis, exist in the same plane, whereas the guard cells of F. virens Air. and E religiosa Linn. together with the cells of the first layer of lower epider- mis exist in the same plane. Scanning electron microscopy showed that F. elastica cv. Decora Burgundy, F. elastica var. variegata, F. elastica Roxb. ex Hornem., F. altissima BI., F. microcarpa cv. Golden Leaves, F. benjaminacv. Golden Princess, E drupacea Thunb., F. pandurata Hance, F. benjamina IAnn., F. stenophyllaHwsml. and F. microcarpa Linn. f. have outer stomatal rims, and their stomas are sunken;while F. virens Ait. and F. religiosa Linn. do not have outer stomatal rims, and their stomas are upward. According to mor- phological characteristics of leaves, the environmental adaptabilities of the 13 ficus plants in garden were discussed by using analysis of variance and multiple comparison.

  15. Crop management in greenhouses: adapting the growth conditions to the plant needs or adapting the plant to the growth conditions?

    NARCIS (Netherlands)

    Marcelis, L.F.M.; Pascale, De S.

    2009-01-01

    Strategies for improving greenhouse crop production should target both developing advanced technological systems and designing improved plants. Based on greenhouse experiments, crop models and biotechnological tools, this paper will discuss the physiology of plant-greenhouse interactions. It is disc

  16. Metagenomic analysis of Atriplex microbiomes: Investigating Plant-microbe interactions that enhance adaptation to extreme habitats

    Science.gov (United States)

    Cryptic symbiotic microbes influence host adaptation by improving nutrient uptake or stress tolerance. Current technologies for increasing plant productivity, whether for food and fuel production or for restoration and remediation, often utilize approaches that bypass, rather than leverage, microb...

  17. Binucleation to breed new plant species adaptable to their environments

    OpenAIRE

    Moustafa, Khaled

    2015-01-01

    Classical plant breeding approaches may fall short to breed new plant species of high environmental and ecological interests. Biotechnological and genetic manipulations, on the other hand, may hold more effective capabilities to circumvent the limitations of sexual incompatibility and conventional breeding programs. Given that plant cells encompass multiple copies of organellar genomes (mitochondrial and plastidial genomes), an important question could be raised about whether an artificial at...

  18. Methods in plant foliar volatile organic compounds research 1

    OpenAIRE

    Materić, Dušan; Bruhn, Dan; Turner, Claire; Morgan, Geraint; Mason, Nigel J.; Gauci, Vincent

    2015-01-01

    Plants are a major atmospheric source of volatile organic compounds (VOCs). These secondary metabolic products protect plants from high-temperature stress, mediate in plant–plant and plant–insect communication, and affect our climate globally. The main challenges in plant foliar VOC research are accurate sampling, the inherent reactivity of some VOC compounds that makes them hard to detect directly, and their low concentrations. Plant VOC research relies on analytical techniques for trace gas...

  19. Adaptive radiation of gall-inducing insects within a single host-plant species.

    Science.gov (United States)

    Joy, Jeffrey B; Crespi, Bernard J

    2007-04-01

    Speciation of plant-feeding insects is typically associated with host-plant shifts, with subsequent divergent selection and adaptation to the ecological conditions associated with the new plant. However, a few insect groups have apparently undergone speciation while remaining on the same host-plant species, and such radiations may provide novel insights into the causes of adaptive radiation. We used mitochondrial and nuclear DNA to infer a phylogeny for 14 species of gall-inducing Asphondylia flies (Diptera: Cecidomyiidae) found on Larrea tridentata (creosote bush), which have been considered to be monophyletic based on morphological evidence. Our phylogenetic analyses provide strong support for extensive within-host plant speciation in this group, and it demonstrates that diversification has involved numerous shifts between different plant organs (leaves, buds, flowers, and stems) of the same host-plant species. Within-plant speciation of Asphondylia is thus apparently facilitated by the opportunity to partition the plant ecologically. One clade exhibits temporal isolation among species, which may have facilitated divergence via allochronic shifts. Using a novel method based on Bayesian reconstruction, we show that the rate of change in an ecomorphological trait, ovipositor length, was significantly higher along branches with inferred shifts between host-plant organs than along branches without such shifts. This finding suggests that Larrea gall midges exhibit close morphological adaptation to specific host-plant parts, which may mediate ecological transitions via disruptive selection.

  20. Invasion strategies in clonal aquatic plants: Are phenotypic differences caused by phenotypic plasticity or local adaptation?

    DEFF Research Database (Denmark)

    Riis, Tenna; Lambertini, Carla; Olesen, Birgit

    2010-01-01

    Background and Aims: The successful spread of invasive plants in new environments is often linked to multiple introductions and a diverse gene pool that facilitates local adaptation to variable environmental conditions. For clonal plants, however, phenotypic plasticity may be equally important...... conditions and plant morphological characteristics. Conclusions: The results indicate that at the current stage of spread into New Zealand, the primary adaptive strategy of these three invasive macrophytes is phenotypic plasticity. However, while limited, the possibility that genetic diversity between...... populations may facilitate ecotypic differentiation in the future cannot be excluded. These results thus indicate that invasive clonal aquatic plants adapt to new introduced areas by phenotypic plasticity. Inorganic carbon, nitrogen and phosphorous were important in controlling plant size of E. canadensis...

  1. Adaptation of the methodology of sample surveys for marketing researches

    Directory of Open Access Journals (Sweden)

    Kataev Andrey

    2015-08-01

    Full Text Available The article presents the results of the theory of adaptation of sample survey for the purposes of marketing, that allows to answer the fundamental question of any marketing research – how many objects should be studied for drawing adequate conclusions.

  2. Complex inheritance of larval adaptation in Plutella xylostella to a novel host plant

    NARCIS (Netherlands)

    K. Henniges-Janssen; A. Reineke; D.G. Heckel; A.T. Groot

    2011-01-01

    Studying the genetics of host shifts and range expansions in phytophagous insects contributes to our understanding of the evolution of host plant adaptation. We investigated the recent host range expansion to pea, in the pea-adapted strain (P-strain) of the crucifer-specialist diamondback moth, Plut

  3. Resource competition in plant invasions: emerging patterns and research needs

    Science.gov (United States)

    Gioria, Margherita; Osborne, Bruce A.

    2014-01-01

    Invasions by alien plants provide a unique opportunity to examine competitive interactions among plants. While resource competition has long been regarded as a major mechanism responsible for successful invasions, given a well-known capacity for many invaders to become dominant and reduce plant diversity in the invaded communities, few studies have measured resource competition directly or have assessed its importance relative to that of other mechanisms, at different stages of an invasion process. Here, we review evidence comparing the competitive ability of invasive species vs. that of co-occurring native plants, along a range of environmental gradients, showing that many invasive species have a superior competitive ability over native species, although invasive congeners are not necessarily competitively superior over native congeners, nor are alien dominants are better competitors than native dominants. We discuss how the outcomes of competition depend on a number of factors, such as the heterogeneous distribution of resources, the stage of the invasion process, as well as phenotypic plasticity and evolutionary adaptation, which may result in increased or decreased competitive ability in both invasive and native species. Competitive advantages of invasive species over natives are often transient and only important at the early stages of an invasion process. It remains unclear how important resource competition is relative to other mechanisms (competition avoidance via phenological differences, niche differentiation in space associated with phylogenetic distance, recruitment and dispersal limitation, indirect competition, and allelopathy). Finally, we identify the conceptual and methodological issues characterizing competition studies in plant invasions, and we discuss future research needs, including examination of resource competition dynamics and the impact of global environmental change on competitive interactions between invasive and native species. PMID

  4. Adaptive Management of Invasive Forest Plants - Forest Invasives Adaptive Mangement (FIAM)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This project provides guidance for conducting adaptive management of invasive species including inventories, prioritization, and treatment effectiveness monitoring...

  5. Game-based Research Collaboration adapted to Science Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke; Damgaard Hansen, Sidse; Grønbæk, Kaj

    2012-01-01

    This paper presents prospects for adapting scientific discovery games to science education. In the paper a prototype of The Quantum Computing Game is presented as a working example of adapting game-based research collaboration to physics education. The game concept is the initial result of a thre...... on a discussion of the concrete development of the Quantum Computing Game, the aim of this paper is to open a broader discussion of the potentials and implications of developing this class of games for new types of innovative science education....

  6. Adaptive Sampling approach to environmental site characterization at Joliet Army Ammunition Plant: Phase 2 demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Bujewski, G.E. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies Dept.; Johnson, R.L. [Argonne National Lab., IL (United States)

    1996-04-01

    Adaptive sampling programs provide real opportunities to save considerable time and money when characterizing hazardous waste sites. This Strategic Environmental Research and Development Program (SERDP) project demonstrated two decision-support technologies, SitePlanner{trademark} and Plume{trademark}, that can facilitate the design and deployment of an adaptive sampling program. A demonstration took place at Joliet Army Ammunition Plant (JAAP), and was unique in that it was tightly coupled with ongoing Army characterization work at the facility, with close scrutiny by both state and federal regulators. The demonstration was conducted in partnership with the Army Environmental Center`s (AEC) Installation Restoration Program and AEC`s Technology Development Program. AEC supported researchers from Tufts University who demonstrated innovative field analytical techniques for the analysis of TNT and DNT. SitePlanner{trademark} is an object-oriented database specifically designed for site characterization that provides an effective way to compile, integrate, manage and display site characterization data as it is being generated. Plume{trademark} uses a combination of Bayesian analysis and geostatistics to provide technical staff with the ability to quantitatively merge soft and hard information for an estimate of the extent of contamination. Plume{trademark} provides an estimate of contamination extent, measures the uncertainty associated with the estimate, determines the value of additional sampling, and locates additional samples so that their value is maximized.

  7. Plant Adaptation to Multiple Stresses during Submergence and Following Desubmergence

    Directory of Open Access Journals (Sweden)

    Bishal Gole Tamang

    2015-12-01

    Full Text Available Plants require water for growth and development, but excessive water negatively affects their productivity and viability. Flash floods occasionally result in complete submergence of plants in agricultural and natural ecosystems. When immersed in water, plants encounter multiple stresses including low oxygen, low light, nutrient deficiency, and high risk of infection. As floodwaters subside, submerged plants are abruptly exposed to higher oxygen concentration and greater light intensity, which can induce post-submergence injury caused by oxidative stress, high light, and dehydration. Recent studies have emphasized the significance of multiple stress tolerance in the survival of submergence and prompt recovery following desubmergence. A mechanistic understanding of acclimation responses to submergence at molecular and physiological levels can contribute to the deciphering of the regulatory networks governing tolerance to other environmental stresses that occur simultaneously or sequentially in the natural progress of a flood event.

  8. Oxidation Stress is Adaptative Reaction Inductor of Winter Wheat Plants

    Directory of Open Access Journals (Sweden)

    Batsmanova Ludmila

    2014-07-01

    Full Text Available Hydrogen peroxide impact upon the activity of superoxide dismutase (SOD, catalase (CAT, development of lipid peroxidation processes (LP, photosynthetic pigment content and productivity in conditions of field experiment were studied for winter wheat varieties of different ecotypes, namely Stolychna, Polisska 90 – forest-steppe, and Scala-steppe. It was found that hydrogen peroxide action for 24 h induced LP activity, whereas antioxidative enzyme activity dropped at two varieties. Exception was the Stolychna plants that showed decrease in all indexes studied after treatment. In the next phase of ontogenesis (flowering, however, SOD activity increased both in the plants of Polisska 90 and Scala, while CAT and LP activities were close to control in all plants. The data suggest that treatment by hydrogen peroxide stimulated the formation of general unspecific resistance of plants and increased the grain productivity of winter wheat varieties studied.

  9. Biomedical applications of poisonous plant research.

    Science.gov (United States)

    James, Lynn F; Panter, Kip E; Gaffield, William; Molyneux, Russell J

    2004-06-01

    Research designed to isolate and identify the bioactive compounds responsible for the toxicity of plants to livestock that graze them has been extremely successful. The knowledge gained has been used to design management techniques to prevent economic losses, predict potential outbreaks of poisoning, and treat affected animals. The availability of these compounds in pure form has now provided scientists with tools to develop animal models for human diseases, study modes of action at the molecular level, and apply such knowledge to the development of potential drug candidates for the treatment of a number of genetic and infectious conditions. These advances are illustrated by specific examples of biomedical applications of the toxins of Veratrum californicum (western false hellebore), Lupinus species (lupines), and Astragalus and Oxytropis species (locoweeds).

  10. Adapting qualitative research strategies to technology savvy adolescents.

    Science.gov (United States)

    Mason, Deanna Marie; Ide, Bette

    2014-05-01

    To adapt research strategies involving adolescents in a grounded theory qualitative research study by conducting email rather than face-to-face interviews. Adolescent culture relies heavily on text-based communication and teens prefer interactions mediated through technology. Traditional qualitative research strategies need to be rethought when working with adolescents. Adapting interviewing strategies to electronic environments is timely and relevant for researching adolescents. Twenty three adolescents (aged 16-21) were interviewed by email. A letter of invitation was distributed. Potential participants emailed the researcher to convey interest in participating. If the inclusion criteria were met, email interviews were initiated. Participants controlled the interviews through their rate of response to interview questions. A grounded theory methodology was employed. Initial contact with participants reiterated confidentiality and the ability to withdraw from the study at any time. Interviews began with the collection of demographic information and a broad opening based on a semi-structured interview guide. All data were permissible, including text, photos, music, videos or outside media, for example YouTube. The participant was allowed to give direction to the interview after initial questions were posed. Email interviews continued until saturation was reached in the data. Participants were enthusiastic about email interviewing. Attrition did not occur. Email interviewing gave participants more control over the research, decreased power differentials between the adolescent and researcher, allowed the study to be adapted to cultural, linguistic and developmental needs, and maintained confidentiality. As participants said that email communication was slow and they preferred instant messaging, replication in faster-paced media is recommended. Repetition in face-to-face settings is warranted to evaluate how technology may have influenced the findings. Implications for

  11. Adaptive Superheat Control of a Refrigeration Plant using Backstepping

    DEFF Research Database (Denmark)

    Rasmussen, Henrik

    2008-01-01

    . A new low order nonlinear model of the evaporator is developed and used in a backstepping design of an adaptive nonlinear controller.  The stability of the proposed method is validated theoretically by Lyapunov analysis and experimental results shows the performance of the system for a wide range...

  12. Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment.

    Science.gov (United States)

    Anschütz, Uta; Becker, Dirk; Shabala, Sergey

    2014-05-15

    Partially and fully completed plant genome sequencing projects in both lower and higher plants allow drawing a comprehensive picture of the molecular and structural diversities of plant potassium transporter genes and their encoded proteins. While the early focus of the research in this field was aimed on the structure-function studies and understanding of the molecular mechanisms underlying K(+) transport, availability of Arabidopsis thaliana mutant collections in combination with micro-array techniques have significantly advanced our understanding of K(+) channel physiology, providing novel insights into the transcriptional regulation of potassium homeostasis in plants. More recently, posttranslational regulation of potassium transport systems has moved into the center stage of potassium transport research. The current review is focused on the most exciting developments in this field. By summarizing recent work on potassium transporter regulation we show that potassium transport in general, and potassium channels in particular, represent important targets and are mediators of the cellular responses during different developmental stages in a plant's life cycle. We show that regulation of intracellular K(+) homeostasis is essential to mediate plant adaptive responses to a broad range of abiotic and biotic stresses including drought, salinity, and oxidative stress. We further link post-translational regulation of K(+) channels with programmed cell death and show that K(+) plays a critical role in controlling the latter process. Thus, is appears that K(+) is not just the essential nutrient required to support optimal plant growth and yield but is also an important signaling agent mediating a wide range of plant adaptive responses to environment.

  13. Plant biology research and training for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, K. [ed.

    1992-12-31

    The committee was assembled in response to a request from the National Science Foundation (NSF), the US Department of Agriculture (USDA), and the US Department of Energy (DoE). The leadership of these agencies asked the National Academy of Sciences through the National Research Council (NRC) to assess the status of plant-science research in the United States in light of the opportunities arising from advances inother areas of biology. NRC was asked to suggest ways of accelerating the application of these new biologic concepts and tools to research in plant science with the aim of enhancing the acquisition of new knowledge about plants. The charge to the committee was to examine the following: Organizations, departments, and institutions conducting plant biology research; human resources involved in plant biology research; graduate training programs in plant biology; federal, state, and private sources of support for plant-biology research; the role of industry in conducting and supporting plant-biology research; the international status of US plant-biology research; and the relationship of plant biology to leading-edge research in biology.

  14. Plant biology research and training for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, K. (ed.)

    1992-01-01

    The committee was assembled in response to a request from the National Science Foundation (NSF), the US Department of Agriculture (USDA), and the US Department of Energy (DoE). The leadership of these agencies asked the National Academy of Sciences through the National Research Council (NRC) to assess the status of plant-science research in the United States in light of the opportunities arising from advances inother areas of biology. NRC was asked to suggest ways of accelerating the application of these new biologic concepts and tools to research in plant science with the aim of enhancing the acquisition of new knowledge about plants. The charge to the committee was to examine the following: Organizations, departments, and institutions conducting plant biology research; human resources involved in plant biology research; graduate training programs in plant biology; federal, state, and private sources of support for plant-biology research; the role of industry in conducting and supporting plant-biology research; the international status of US plant-biology research; and the relationship of plant biology to leading-edge research in biology.

  15. Adaptation of eastern whitepine provenances to planting sites

    Science.gov (United States)

    Maurice E., Jr. Demeritt; Peter W. Garrett

    1996-01-01

    Eastern white pine provenances from the extreme limits of the natural range of this species are changing from above- and below-average stability to average stability for height growth with increasing age. The regression method is useful for evaluating the stability of provenance to planting sites. The same general conclusions are reached for the performance at...

  16. Spider mites adaptively learn recognizing mycorrhiza-induced changes in host plant volatiles.

    Science.gov (United States)

    Patiño-Ruiz, J David; Schausberger, Peter

    2014-12-01

    Symbiotic root micro-organisms such as arbuscular mycorrhizal fungi commonly change morphological, physiological and biochemical traits of their host plants and may thus influence the interaction of aboveground plant parts with herbivores and their natural enemies. While quite a few studies tested the effects of mycorrhiza on life history traits, such as growth, development and reproduction, of aboveground herbivores, information on possible effects of mycorrhiza on host plant choice of herbivores via constitutive and/or induced plant volatiles is lacking. Here we assessed whether symbiosis of the mycorrhizal fungus Glomus mosseae with common bean plants Phaseolus vulgaris influences the response of the two-spotted spider mite Tetranychus urticae to volatiles of plants that were clean or infested with spider mites. Mycorrhiza-naïve and -experienced spider mites, reared on mycorrhizal or non-mycorrhizal bean plants for several days before the experiments, were subjected to Y-tube olfactometer choice tests. Experienced but not naïve spider mites distinguished between constitutive volatiles of clean non-mycorrhizal and mycorrhizal plants, preferring the latter. Neither naïve nor experienced spider mites distinguished between spider mite-induced volatiles of mycorrhizal and non-mycorrhizal plants. Learning the odor of clean mycorrhizal plants, resulting in a subsequent preference for these odors, is adaptive because mycorrhizal plants are more favorable host plants for fitness of the spider mites than are non-mycorrhizal plants.

  17. 2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Benning

    2011-02-04

    This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. The goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.

  18. Plant reproduction in the Central Amazonian floodplains : challenges and adaptations

    OpenAIRE

    Ferreira, Cristiane da Silva; Fernandez Piedade, Maria Teresa; Wittmann, Astrid de Oliveira; Franco, Augusto César

    2010-01-01

    Background The Central Amazonian floodplain forests are subjected to extended periods of flooding and to flooding amplitudes of 10 m or more. The predictability, the length of the flood pulse, the abrupt transition in the environmental conditions along topographic gradients on the banks of major rivers in Central Amazonia, and the powerful water and sediment dynamics impose a strong selective pressure on plant reproduction systems. Scope In this review, we examine how the hydrological cycle i...

  19. Metabolic adaptation in transplastomic plants massively accumulating recombinant proteins.

    Directory of Open Access Journals (Sweden)

    Julia Bally

    Full Text Available BACKGROUND: Recombinant chloroplasts are endowed with an astonishing capacity to accumulate foreign proteins. However, knowledge about the impact on resident proteins of such high levels of recombinant protein accumulation is lacking. METHODOLOGY/PRINCIPAL FINDINGS: Here we used proteomics to characterize tobacco (Nicotiana tabacum plastid transformants massively accumulating a p-hydroxyphenyl pyruvate dioxygenase (HPPD or a green fluorescent protein (GFP. While under the conditions used no obvious modifications in plant phenotype could be observed, these proteins accumulated to even higher levels than ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco, the most abundant protein on the planet. This accumulation occurred at the expense of a limited number of leaf proteins including Rubisco. In particular, enzymes involved in CO(2 metabolism such as nuclear-encoded plastidial Calvin cycle enzymes and mitochondrial glycine decarboxylase were found to adjust their accumulation level to these novel physiological conditions. CONCLUSIONS/SIGNIFICANCE: The results document how protein synthetic capacity is limited in plant cells. They may provide new avenues to evaluate possible bottlenecks in recombinant protein technology and to maintain plant fitness in future studies aiming at producing recombinant proteins of interest through chloroplast transformation.

  20. Genome Wide Analyses Reveal Little Evidence for Adaptive Evolution in Many Plant Species

    Science.gov (United States)

    Gossmann, Toni I.; Song, Bao-Hua; Windsor, Aaron J.; Mitchell-Olds, Thomas; Dixon, Christopher J.; Kapralov, Maxim V.; Filatov, Dmitry A.; Eyre-Walker, Adam

    2010-01-01

    The relative contribution of advantageous and neutral mutations to the evolutionary process is a central problem in evolutionary biology. Current estimates suggest that whereas Drosophila, mice, and bacteria have undergone extensive adaptive evolution, hominids show little or no evidence of adaptive evolution in protein-coding sequences. This may be a consequence of differences in effective population size. To study the matter further, we have investigated whether plants show evidence of adaptive evolution using an extension of the McDonald–Kreitman test that explicitly models slightly deleterious mutations by estimating the distribution of fitness effects of new mutations. We apply this method to data from nine pairs of species. Altogether more than 2,400 loci with an average length of ≈280 nucleotides were analyzed. We observe very similar results in all species; we find little evidence of adaptive amino acid substitution in any comparison except sunflowers. This may be because many plant species have modest effective population sizes. PMID:20299543

  1. Adapting ORAP to wind plants : industry value and functional requirements.

    Energy Technology Data Exchange (ETDEWEB)

    2010-08-01

    Strategic Power Systems (SPS) was contracted by Sandia National Laboratories to assess the feasibility of adapting their ORAP (Operational Reliability Analysis Program) tool for deployment to the wind industry. ORAP for Wind is proposed for use as the primary data source for the CREW (Continuous Reliability Enhancement for Wind) database which will be maintained by Sandia to enable reliability analysis of US wind fleet operations. The report primarily addresses the functional requirements of the wind-based system. The SPS ORAP reliability monitoring system has been used successfully for over twenty years to collect RAM (Reliability, Availability, Maintainability) and operations data for benchmarking and analysis of gas and steam turbine performance. This report documents the requirements to adapt the ORAP system for the wind industry. It specifies which existing ORAP design features should be retained, as well as key new requirements for wind. The latter includes alignment with existing and emerging wind industry standards (IEEE 762, ISO 3977 and IEC 61400). There is also a comprehensive list of thirty critical-to-quality (CTQ) functional requirements which must be considered and addressed to establish the optimum design for wind.

  2. Transgenerational consequences of plant responses to herbivory: an adaptive maternal effect?

    Science.gov (United States)

    Agrawal, A A

    2001-05-01

    Herbivory has many effects on plants, ranging from shifts in primary processes such as photosynthesis, growth, and phenology to effects on defense against subsequent herbivores and other species interactions. In this study, I investigated the effects of herbivory on seed and seedling characteristics of several families of wild radish (Raphanus raphanistrum) to test the hypothesis that herbivory may affect the quality of offspring and the resistance of offspring to plant parasites. Transgenerational effects of herbivory may represent adaptive maternal effects or factors that constrain or amplify natural selection on progeny. Caterpillar (Pieris rapae) herbivory to greenhouse-grown plants caused plants in some families to produce smaller seeds and those in other families to produce larger seeds compared with undamaged controls. Seed mass was positively associated with probability of emergence in the field. The number of setose trichomes, a putative plant defense, was higher in the progeny of damaged plants in some families and lower in the progeny of damaged plants in other families. In a field experiment, plant families varied in their resistance to several herbivores and pathogens as well as in growth rate and time to flowering. Seeds from damaged parent plants were more likely to become infested with a plant virus. Although herbivory on maternal plants did not directly affect interactions of offspring with other plant parasites, seed mass influenced plant resistance to several attackers. Thus, herbivory affected seed characters, which mediated interactions between plants and their parasites. Finally, irrespective of seed mass, herbivory on maternal plants influenced components of progeny fitness, which was dependent on plant family. Natural selection may act on plant responses to herbivory that affect seedling-parasite interactions and, ultimately, fitness.

  3. Game-based Research Collaboration adapted to Science Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke; Damgaard Hansen, Sidse; Grønbæk, Kaj

    2012-01-01

    This paper presents prospects for adapting scientific discovery games to science education. In the paper a prototype of The Quantum Computing Game is presented as a working example of adapting game-based research collaboration to physics education. The game concept is the initial result of a three......-year, inter-disciplinary project “Pilot Center for Community-driven Research” at Aarhus and Aalborg University in Denmark. The paper discusses how scientific discovery games can contribute to educating students in how to work with unsolved scientific problems and creation of new scientific knowledge. Based...... on a discussion of the concrete development of the Quantum Computing Game, the aim of this paper is to open a broader discussion of the potentials and implications of developing this class of games for new types of innovative science education....

  4. Interdisciplinary research and training program in the plant sciences

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, C.P.

    1991-01-01

    This document is the compiled progress reports from the Interdisciplinary Research and Training Program in the Plant Sciences funded through the MSU-DOE Plant Research Laboratory. Fourteen reports are included, covering topics such as the molecular basis of plant/microbe symbiosis, cell wall proteins and assembly, gene expression, stress responses, growth regulator biosynthesis, interaction between nuclear and organelle genomes, sensory transduction and tropisms, intracellular sorting and membrane trafficking, regulation of lipid metabolism, the molecular basis of disease resistance and plant pathogenesis, developmental biology of Cyanobacteria and hormonal involvement in environmental control of plant growth. 132 refs. (MHB)

  5. Adaptive radiation with regard to nutrient sequestration strategies in the carnivorous plants of the genus Nepenthes.

    Science.gov (United States)

    Pavlovič, Andrej

    2012-02-01

    Carnivorous pitcher plants of the genus Nepenthes have evolved a great diversity of pitcher morphologies. Selective pressures for maximizing nutrient uptake have driven speciation and diversification of the genus in a process known as adaptive radiation. This leads to the evolution of pitchers adapted to specific and often bizarre source of nutrients, which are not strictly animal-derived. One example is Nepenthes ampullaria with unusual growth pattern and pitcher morphology what enables the plant to capture a leaf litter from the canopy above. We showed that the plant benefits from nitrogen uptake by increased rate of photosynthesis and growth what may provide competitive advantage over others co-habiting plants. A possible impact of such specialization toward hybridization, an important mechanism in speciation, is discussed.

  6. Epigenetic Signals on Plant Adaptation: A Biotic Stress Perspective.

    Science.gov (United States)

    Neto, José Ribamar Costa Ferreira; da Silva, Manassés Daniel; Pandolfi, Valesca; Crovella, Sérgio; Benko-Iseppon, Ana Maria; Kido, Ederson Akio

    2016-07-24

    For sessile organisms such as plants, regulatory mechanisms of gene expression are vital, since they remain exposed to climatic and biological threats. Thus, they have to face hazards with instantaneous reorganization of their internal environment. For this purpose, besides the use of transcription factors, the participation of chromatin as an active factor in the regulation of transcription is crucial. Chemical changes in chromatin structure affect the accessibility of the transcriptional machinery and acting in signaling, engaging/inhibiting factors that participate in the transcription processes. Mechanisms in which gene expression undergoes changes without the occurrence of DNA gene mutations in the monomers that make up DNA, are understood as epigenetic phenomena. These include (1) post-translational modifications of histones, which results in stimulation or repression of gene activity and (2) cytosine methylation in the promoter region of individual genes, both preventing access of transcriptional activators as well as signaling the recruitment of repressors. There is evidence that such modifications can pass on to subsequent generations of daughter cells and even generations of individuals. However, reports indicate that they persist only in the presence of a stressor factor (or an inductor of the above-mentioned modifications). In its absence, these modifications weaken or lose heritability, being eliminated in the next few generations. In this review, it is argued how epigenetic signals influence gene regulation, the mechanisms involved and their participation in processes of resistance to biotic stresses, controlling processes of the plant immune system.

  7. Symbiotic lifestyle expression by fungal endophytes and the adaptation of plants to stress: unraveling the complexities of intimacy

    Science.gov (United States)

    Redman, Regina S.; Henson, Joan M.; Rodriguez, Russell J.

    2005-01-01

    The fossil record indicates that fungal symbionts have been associated with plants since the Ordovician period (approximately 400 million years ago), when plants first became established on land (Pirozynski and Malloch, 1975; Redecker et al., 2000; Remy et al., 1994; Simon et al., 1993). Transitioning from aquatic to terrestrial habitats likely presented plants with new stresses, including periods of desiccation. Since symbiotic fungi are known to confer drought tolerance to plants (Bacon, 1993; Read and Camp, 1986), it has been suggested that fungal symbiosis was involved with or responsible for the establishment of land plants (Pirozynski and Malloch, 1975). Symbiosis was first defined by De Bary in 1879, and since that time, all plants in natural ecosystems have been found to be colonized with fungal and bacterial symbionts. It is clear that individual plants represent symbiotic communities with microorganisms associated in or on tissues below- and aboveground.There are two major classes of fungal symbionts associated with internal plant tissues: fungal endophytes that reside entirely within plants and may be associated with roots, stems leaves, or flowers; and mycorrhizal fungi that reside only in roots but extend out into the rhizosphere. In addition, fungal endophytes may be divided into two classes: (1) a relatively small number of fastidious species that are limited to a few monocot hosts (Clay and Schardl, 2002), and (2) a large number of tractable species with broad host ranges, including both monocots and eudicots (Stone et al., 2000). While significant resources and research have been invested in mycorrhizae and class 1 endophytes, comparatively little is known about class 2 endophytes, which may represent the largest group of fungal symbionts. This is partially because the symbiotic functionalities of class 2 endophytes have only recently been elucidated and shown to be responsible for the adaptation of some plants to high-stress environments (Redman

  8. Development of adaptive core emulator for PMS-XRBP of CE type plant

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jae Seung; Zee, Sung Quun; Lee, Chung Chan; Lee, Ki Bog; Rhy, Hyo Sang; Chang, Jong Hwa; Lee, Young Ouk; Baek, Seung Min; Seo, Ho Joon

    1996-12-01

    The purpose of this report is to develop ONED-based adaptive core emulator (ACE) for Korean Standard Nuclear Power Plant. This report is first year report and includes (1) augmentation of ONED94 I/O system (2) non-equilibrium xenon initialization for core transient simulation (3) ONED94 verification via plant measurements (4) automatic data link system from PMS and personal computer. (author). 4 tabs., 4 figs., 8 refs.

  9. 2007 Plant Metabolic Engineering Gordon Conference and Graduate Research Seminar

    Energy Technology Data Exchange (ETDEWEB)

    Erich Grotewold

    2008-09-15

    Plant Metabolic Engineering is an emerging field that integrates a diverse range of disciplines including plant genetics, genomics, biochemistry, chemistry and cell biology. The Gordon-Kenan Graduate Research Seminar (GRS) in Plant Metabolic Engineering was initiated to provide a unique opportunity for future researcher leaders to present their work in this field. It also creates an environment allowing for peer-review and critical assessment of work without the intimidation usually associated with the presence of senior investigators. The GRS immediately precedes the Plant Metabolic Engineering Gordon Research Conference and will be for and by graduate students and post-docs, with the assistance of the organizers listed.

  10. Research advances on transgenic plant vaccines.

    Science.gov (United States)

    Han, Mei; Su, Tao; Zu, Yuan-Gang; An, Zhi-Gang

    2006-04-01

    In recent years, with the development of genetics molecular biology and plant biotechnology, the vaccination (e.g. genetic engineering subunit vaccine, living vector vaccine, nucleic acid vaccine) programs are taking on a prosperous evolvement. In particular, the technology of the use of transgenic plants to produce human or animal therapeutic vaccines receives increasing attention. Expressing vaccine candidates in vegetables and fruits open up a new avenue for producing oral/edible vaccines. Transgenic plant vaccine disquisitions exhibit a tempting latent exploiting foreground. There are a lot of advantages for transgenic plant vaccines, such as low cost, easiness of storage, and convenient immune-inoculation. Some productions converged in edible tissues, so they can be consumed directly without isolation and purification. Up to now, many transgenic plant vaccine productions have been investigated and developed. In this review, recent advances on plant-derived recombinant protein expression systems, infectious targets, and delivery systems are presented. Some issues of high concern such as biosafety and public health are also discussed. Special attention is given to the prospects and limitations on transgenic plant vaccines.

  11. Plants adapted to nutrient limitation allocate less biomass into stems in an arid-hot grassland.

    Science.gov (United States)

    Yan, Bangguo; Ji, Zhonghua; Fan, Bo; Wang, Xuemei; He, Guangxiong; Shi, Liangtao; Liu, Gangcai

    2016-09-01

    Biomass allocation can exert a great influence on plant resource acquisition and nutrient use. However, the role of biomass allocation strategies in shaping plant community composition under nutrient limitations remains poorly addressed. We hypothesized that species-specific allocation strategies can affect plant adaptation to nutrient limitations, resulting in species turnover and changes in community-level biomass allocations across nutrient gradients. In this study, we measured species abundance and the concentrations of nitrogen and phosphorus in leaves and soil nutrients in an arid-hot grassland. We quantified species-specific allocation parameters for stems vs leaves based on allometric scaling relationships. Species-specific stem vs leaf allocation parameters were weighted with species abundances to calculate the community-weighted means driven by species turnover. We found that the community-weighted means of biomass allocation parameters were significantly related to the soil nutrient gradient as well as to leaf stoichiometry, indicating that species-specific allocation strategies can affect plant adaptation to nutrient limitations in the studied grassland. Species that allocate less to stems than leaves tend to dominate nutrient-limited environments. The results support the hypothesis that species-specific allocations affect plant adaptation to nutrient limitations. The allocation trade-off between stems and leaves has the potential to greatly affect plant distribution across nutrient gradients.

  12. The Plant Protoplast: A Useful Tool for Plant Research and Student Instruction

    Science.gov (United States)

    Wagner, George J.; And Others

    1978-01-01

    A plant protoplast is basically a plant cell that lacks a cell wall. This article outlines some of the ways in which protoplasts may be used to advance understanding of plant cell biology in research and student instruction. Topics include high efficiency experimental virus infection, organelle isolation, and osmotic effects. (Author/MA)

  13. Aquatic Plant Control Research Program: Effects of Water Chemistry on Submersed Aquatic Plants: A Synthesis

    Science.gov (United States)

    1990-07-01

    plants exhibiting C4 photosynthesis, C is conserved by refixing photorespired CO2. These terres- trial adaptations have counterparts in the aquatic...such as low photorespiration rates and low CO2 compensation points. The advantages of this photosynthetic pathway include conservation of... photorespired C and efficient C assimilation under the high dissolved oxygen and low free CO2 concentrations common in dense submersed aquatic plant populations

  14. Frontiers for research on the ecology of plant-pathogenic bacteria: fundamentals for sustainability: Challenges in Bacterial Molecular Plant Pathology.

    Science.gov (United States)

    Morris, Cindy E; Barny, Marie-Anne; Berge, Odile; Kinkel, Linda L; Lacroix, Christelle

    2017-02-01

    Methods to ensure the health of crops owe their efficacy to the extent to which we understand the ecology and biology of environmental microorganisms and the conditions under which their interactions with plants lead to losses in crop quality or yield. However, in the pursuit of this knowledge, notions of the ecology of plant-pathogenic microorganisms have been reduced to a plant-centric and agro-centric focus. With increasing global change, i.e. changes that encompass not only climate, but also biodiversity, the geographical distribution of biomes, human demographic and socio-economic adaptations and land use, new plant health problems will emerge via a range of processes influenced by these changes. Hence, knowledge of the ecology of plant pathogens will play an increasingly important role in the anticipation and response to disease emergence. Here, we present our opinion on the major challenges facing the study of the ecology of plant-pathogenic bacteria. We argue that the discovery of markedly novel insights into the ecology of plant-pathogenic bacteria is most likely to happen within a framework of more extensive scales of space, time and biotic interactions than those that currently guide much of the research on these bacteria. This will set a context that is more propitious for the discovery of unsuspected drivers of the survival and diversification of plant-pathogenic bacteria and of the factors most critical for disease emergence, and will set the foundation for new approaches to the sustainable management of plant health. We describe the contextual background of, justification for and specific research questions with regard to the following challenges: Development of terminology to describe plant-bacterial relationships in terms of bacterial fitness. Definition of the full scope of the environments in which plant-pathogenic bacteria reside or survive. Delineation of pertinent phylogenetic contours of plant-pathogenic bacteria and naming of strains

  15. The response of the root apex in plant adaptation to iron heterogeneity in soil

    Directory of Open Access Journals (Sweden)

    Guangjie eLi

    2016-03-01

    Full Text Available Iron (Fe is an essential micronutrient for plant growth and development, and is frequently limiting. By contrast, over-accumulation of iron in plant tissues leads to toxicity. In soils, the distribution of Fe is highly heterogeneous. To cope with this heterogeneity, plant roots engage an array of adaptive responses to adjust their morphology and physiology. In this article, we review root morphological and physiological changes in response to low- and high-Fe conditions and highlight differences between these responses. We especially focus on the role of the root apex in dealing with the stresses resulting from Fe shortage and excess.

  16. Mapping quantitative trait loci for plant adaptation and morphology traits in wheat using single nucleotide polymorphisms

    Science.gov (United States)

    Wheat (Triticum aestivum L.) morphological and adaptation-related traits that are controlled by quantitative traits loci (QTL) define potential growing areas of a wheat cultivar. To dissect the QTL for heading date (HD), lodging resistance (LR), shattering resistance (SR), cold tolerance (CT), plant...

  17. Host plant preference of Lygus hesperus exposed to three desert-adapted industrial crops

    Science.gov (United States)

    The desert-adapted crops vernonia (Centrapalus pauciflorus), lesquerella (Physaria fendleri), and camelina (Camelina sativa) are being grown in the arid southwestern USA as potential feedstock for biofuel and/or other environmentally friendly products. A plant feeding choice test was conducted to de...

  18. Dealing with plant variations in multi-model unfalsified switching control via adaptive memory selection

    NARCIS (Netherlands)

    Battistelli, Giorgio; Mosca, Edoardo; Tesi, Pietro

    2011-01-01

    In this paper, a multi-model unfalsified adaptive switching control scheme is proposed for controlling uncertain plants subject to time variations. In the adopted approach, the switching between the candidate controllers is orchestrated according to a hysteresis logic variant wherein the memory leng

  19. Embolism resistance as a key mechanism to understand adaptive plant strategies

    NARCIS (Netherlands)

    Lens, F.; Tixier, A.; Cochard, H.; Sperry, J.S.; Jansen, S.; Herbette, S.

    2013-01-01

    One adaptation of plants to cope with drought or frost stress is to develop wood that is able to withstand the formation and distribution of air bubbles (emboli) in its water conducting xylem cells under negative pressure. The ultrastructure of interconduit pits strongly affects drought-induced

  20. 77 FR 2996 - National Fish, Wildlife, and Plants Climate Adaptation Strategy

    Science.gov (United States)

    2012-01-20

    ... negative impacts of climate change on fish, wildlife, plants, habitats, and our natural resource heritage... further actions are most likely to promote natural resource adaptation to climate change, and will... can help limit the damage climate change causes to our natural resources and communities, and will...

  1. Most substrates suitable if you adapt the watering and fertiliser : take note of specific plants needs

    NARCIS (Netherlands)

    Heuvelink, E.; Kierkels, T.

    2012-01-01

    The diversity in substrates keeps growing. You can't say that one is better than the other if you take into account their characteristics and adapt the watering and fertilisation. But you also need take into account the specific requirements of the plant which we'll discuss in this article.

  2. Embolism resistance as a key mechanism to understand adaptive plant strategies

    NARCIS (Netherlands)

    Lens, F.; Tixier, A.; Cochard, H.; Sperry, J.S.; Jansen, S.; Herbette, S.

    2013-01-01

    One adaptation of plants to cope with drought or frost stress is to develop wood that is able to withstand the formation and distribution of air bubbles (emboli) in its water conducting xylem cells under negative pressure. The ultrastructure of interconduit pits strongly affects drought-induced embo

  3. PlantDB – a versatile database for managing plant research

    Directory of Open Access Journals (Sweden)

    Gruissem Wilhelm

    2008-01-01

    Full Text Available Abstract Background Research in plant science laboratories often involves usage of many different species, cultivars, ecotypes, mutants, alleles or transgenic lines. This creates a great challenge to keep track of the identity of experimental plants and stored samples or seeds. Results Here, we describe PlantDB – a Microsoft® Office Access database – with a user-friendly front-end for managing information relevant for experimental plants. PlantDB can hold information about plants of different species, cultivars or genetic composition. Introduction of a concise identifier system allows easy generation of pedigree trees. In addition, all information about any experimental plant – from growth conditions and dates over extracted samples such as RNA to files containing images of the plants – can be linked unequivocally. Conclusion We have been using PlantDB for several years in our laboratory and found that it greatly facilitates access to relevant information.

  4. Methods in plant foliar volatile organic compounds research.

    Science.gov (United States)

    Materić, Dušan; Bruhn, Dan; Turner, Claire; Morgan, Geraint; Mason, Nigel; Gauci, Vincent

    2015-12-01

    Plants are a major atmospheric source of volatile organic compounds (VOCs). These secondary metabolic products protect plants from high-temperature stress, mediate in plant-plant and plant-insect communication, and affect our climate globally. The main challenges in plant foliar VOC research are accurate sampling, the inherent reactivity of some VOC compounds that makes them hard to detect directly, and their low concentrations. Plant VOC research relies on analytical techniques for trace gas analysis, usually based on gas chromatography and soft chemical ionization mass spectrometry. Until now, these techniques (especially the latter one) have been developed and used primarily by physicists and analytical scientists, who have used them in a wide range of scientific research areas (e.g., aroma, disease biomarkers, hazardous compound detection, atmospheric chemistry). The interdisciplinary nature of plant foliar VOC research has recently attracted the attention of biologists, bringing them into the field of applied environmental analytical sciences. In this paper, we review the sampling methods and available analytical techniques used in plant foliar VOC research to provide a comprehensive resource that will allow biologists moving into the field to choose the most appropriate approach for their studies.

  5. Flavonoids: a metabolic network mediating plants adaptation to their real estate.

    Science.gov (United States)

    Mouradov, Aidyn; Spangenberg, German

    2014-01-01

    From an evolutionary perspective, the emergence of the sophisticated chemical scaffolds of flavonoid molecules represents a key step in the colonization of Earth's terrestrial environment by vascular plants nearly 500 million years ago. The subsequent evolution of flavonoids through recruitment and modification of ancestors involved in primary metabolism has allowed vascular plants to cope with pathogen invasion and damaging UV light. The functional properties of flavonoids as a unique combination of different classes of compounds vary significantly depending on the demands of their local real estate. Apart from geographical location, the composition of flavonoids is largely dependent on the plant species, their developmental stage, tissue type, subcellular localization, and key ecological influences of both biotic and abiotic origin. Molecular and metabolic cross-talk between flavonoid and other pathways as a result of the re-direction of intermediate molecules have been well investigated. This metabolic plasticity is a key factor in plant adaptive strength and is of paramount importance for early land plants adaptation to their local ecosystems. In human and animal health the biological and pharmacological activities of flavonoids have been investigated in great depth and have shown a wide range of anti-inflammatory, anti-oxidant, anti-microbial, and anti-cancer properties. In this paper we review the application of advanced gene technologies for targeted reprogramming of the flavonoid pathway in plants to understand its molecular functions and explore opportunities for major improvements in forage plants enhancing animal health and production.

  6. Signaling Network of Environmental Sensing and Adaptation in Plants:. Key Roles of Calcium Ion

    Science.gov (United States)

    Kurusu, Takamitsu; Kuchitsu, Kazuyuki

    2011-01-01

    Considering the important issues concerning food, environment, and energy that humans are facing in the 21st century, humans mostly depend on plants. Unlike animals which move from an inappropriate environment, plants do not move, but rapidly sense diverse environmental changes or invasion by other organisms such as pathogens and insects in the place they root, and adapt themselves by changing their own bodies, through which they developed adaptability. Whole genetic information corresponding to the blueprints of many biological systems has recently been analyzed, and comparative genomic studies facilitated tracing strategies of each organism in their evolutional processes. Comparison of factors involved in intracellular signal transduction between animals and plants indicated diversification of different gene sets. Reversible binding of Ca2+ to sensor proteins play key roles as a molecular switch both in animals and plants. Molecular mechanisms for signaling network of environmental sensing and adaptation in plants will be discussed with special reference to Ca2+ as a key element in information processing.

  7. Adaptive transgenerational plasticity in plants: case studies, mechanisms, and implications for natural populations

    Directory of Open Access Journals (Sweden)

    Jacob J. Herman

    2011-12-01

    Full Text Available Plants respond to environmental conditions not only by plastic changes to their own development and physiology, but also by altering the phenotypes expressed by their offspring. This transgenerational plasticity was initially considered to entail only negative effects of stressful parental environments, such as production of smaller seeds by resource- or temperature-stressed parent plants, and was therefore viewed as environmental noise. Recent evolutionary ecology studies have shown that in some cases, these inherited environmental effects can include specific growth adjustments that are functionally adaptive to the parental conditions that induced them, which can range from contrasting states of controlled laboratory environments to the complex habitat variation encountered by natural plant populations. Preliminary findings suggest that adaptive transgenerational effects can be transmitted by means of diverse mechanisms including changes to seed provisioning and biochemistry, and epigenetic modifications such as DNA methylation that can persist across multiple generations. These non-genetically inherited adaptations can influence the ecological breadth and evolutionary dynamics of plant taxa and promote the spread of invasive plants. Interdisciplinary studies that join mechanistic and evolutionary ecology approaches will be an important source of future insights.

  8. Transcriptional variation associated with cactus host plant adaptation in Drosophila mettleri populations.

    Science.gov (United States)

    Hoang, Kim; Matzkin, Luciano M; Bono, Jeremy M

    2015-10-01

    Although the importance of host plant chemistry in plant-insect interactions is widely accepted, the genetic basis of adaptation to host plants is not well understood. Here, we investigate transcriptional changes associated with a host plant shift in Drosophila mettleri. While D. mettleri is distributed mainly throughout the Sonoran Desert where it specializes on columnar cacti (Carnegiea gigantea and Pachycereus pringleii), a population on Santa Catalina Island has shifted to chemically divergent coastal prickly pear cactus (Opuntia littoralis). We compared gene expression of larvae from the Sonoran Desert and Santa Catalina Island when reared on saguaro (C. gigantea), coastal prickly pear and laboratory food. Consistent with expectations based on the complexity and toxicity of cactus relative to laboratory food, within-population comparisons between larvae reared on these food sources revealed transcriptional differences in detoxification and other metabolic pathways. The majority of transcriptional differences between populations on the cactus hosts were independent of the rearing environment and included a disproportionate number of genes involved in processes relevant to host plant adaptation (e.g. detoxification, central metabolism and chemosensory pathways). Comparisons of transcriptional reaction norms between the two populations revealed extensive shared plasticity that likely allowed colonization of coastal prickly pear on Santa Catalina Island. We also found that while plasticity may have facilitated subsequent adaptive divergence in gene expression between populations, the majority of genes that differed in expression on the novel host were not transcriptionally plastic in the presumed ancestral state.

  9. The Use of Medicinal Plants by Migrant People: Adaptation, Maintenance, and Replacement

    Directory of Open Access Journals (Sweden)

    Patrícia Muniz de Medeiros

    2012-01-01

    Full Text Available Given the importance of studying the knowledge, beliefs, and practices of migrant communities to understand the dynamics of plant resource use, we reviewed the scientific literature concerning the use of medicinal plants by migrant populations engaged in international or long-distance migrations. We considered the importance of two processes: (1 adaptation to the new flora of the host country (i.e., substitution and incorporation of plants in the pharmacopoeia and (2 continued use and acquisition of the original flora from migrants' home countries (i.e., importation, cultivation, and/or continued use of plants that grow in both host and home environments. We suggest that, depending on the specific context and conditions of migration, different processes that determine the use and/or selection of plants as herbal medicines may become predominant.

  10. [Structural and functional reorganization of photosynthetic apparatus in cold adaptation of wheat plants].

    Science.gov (United States)

    Venzhik, Ju V; Titov, D F; Talanova, V V; Miroslavov, E D; Koteeva, N K

    2012-01-01

    The structural and functional characteristics of the photosynthetic apparatus (PSA) and the cold resistance of wheat seedlings were studied during low-temperature adaptation. It has been established that large chloroplasts with thylakoid system of "sun type" forme in the mesophyll cells in the early hours of plants hardening. At the same time the functional reorganization of the PSA in the leaves of wheat occurs: content of pigments changes, stabilization of the pigment-protein complexes is observed, non-photochemical quenching of excess energy increases. The stabilization of photosynthesis during cold adaptation occurs due to structural and functional reorganization of the PSA. It is assumed that the reorganization of the PSA is a prerequisite for formation of increased cold resistance of leaf cells, and this, along with other physiological and biochemical changes occurring in cells and tissues of plants, allows the plants to survive in chilling.

  11. Plant Research Department annual report 2002

    DEFF Research Database (Denmark)

    2003-01-01

    these and state-of-the-art technologies to increase knowledge to develop crops with improved agronomic traits and to engineer high-value compound containingplants, which are, in addition, able to meet the growth conditions of the future environment with elevated temperatures and increasing carbondioxide and ozone...... to the optimal use of crops. One programme is devoted to improve the market value of plant products. Plants with enhanced nutritional value or that contain novel renewable resources are designed to add value to the European Agro-Industries.A fifth programme ultimately is studying the effects of the future...

  12. Researches on Sequence of Plant Cystatin: Phytocystatin

    Institute of Scientific and Technical Information of China (English)

    QINQingfeng; HEWei; LIANGJun; ZHANGXingyao

    2005-01-01

    Plant cystatins or phytocystatins are cysteine proteinase inhibitors exist widely in different plant species. Because they can kill insects by inhibiting the digestive function of the cysteine proteinase in gut, they are believed to play an important role in plant's defense against pests. Phytocystatins contain the conserved QXVXG motif and show some features on their sequence different to animal cystatins.After sequencing the protein directly and the cDNA clone, a large number of plant cystatins have been characterized. A multialignment with BLAST software and a detail analysis of 38 phytocystatins show that phytocystatins possess a specific conserved amino acid sequence [LRVI]-[AGT]-[RQKE]-[FY]-[AS]-[VI]-X-[EGHDQV]-[HYFQ]-N different to the conserved sequence demonstrated by Margis in 1998. This conserved sequence can be enough to detect with exclusivity phytocystatin sequences on protein data banks. A classification of these phytocystatins is performed and they can be divided into 3 groups according to their features on amino acid sequence, and the group-I can be still divided into 3 subgroups based on the feature of their amino acid and genomic sequence. By the CLUSTALX software,the most conserved nucleotide sequences of phytocystatins were found, which could be used to design the degenerate premiers to search new phytocystatins with PCR reaction.

  13. Climate adaptation - 5 key research themes; Denmark; Klimatilpasning - 5 centrale forskningstemaer

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Bent; Binnerup, S.; Bijl, L. van der; Villholth, K.G.; Drews, M.; Strand, I.F.; Henrichs, T.; Larsen, Niels; Timmermann, T.; Moseholm, L.

    2009-06-15

    The report proposes five key research themes under the heading 'Future climate and climate adaptation' which can support the Danish climate adaptation efforts. These themes underpin climate adaptation in the light of research needs identified by the research environments and sectors under the government's strategy on adaptation to climate change in Denmark from March 2008. The paper has been prepared within the framework of RESEARCH2015-proposal by the Ministry of Science, Technology and Innovation in order to bring about the knowledge and tools that are demanded by sectors and authorities to implement the government's climate adaptation strategy. This concept paper for research themes is a thorough, holistic and inter-sectoral suggestion for future research priorities in climate adaptation with anchoring in both the research community as well as in the political-administrative system. The five key themes are; 1. Models and climate adaptation; 2. Communities and climate adaptation; 3. Construction and climate adaptation; 4. Landscape and climate adaptation; 5. Climate adaptation in the coastal zone. The overall research needs over a 5 year period is estimated at 700 million DKK, of which 85 million DKK yearly can be estimated to be financed primarily through national basic funds and research council funds. Research is assumed to be coupled to external financing, for which the EU's 7th Framework Program and the Nordic excellence and innovation program in the energy, climate and environment will be significant sources.

  14. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae.

    Science.gov (United States)

    Dermauw, Wannes; Wybouw, Nicky; Rombauts, Stephane; Menten, Björn; Vontas, John; Grbic, Miodrag; Clark, Richard M; Feyereisen, René; Van Leeuwen, Thomas

    2013-01-08

    Plants produce a wide range of allelochemicals to defend against herbivore attack, and generalist herbivores have evolved mechanisms to avoid, sequester, or detoxify a broad spectrum of natural defense compounds. Successful arthropod pests have also developed resistance to diverse classes of pesticides and this adaptation is of critical importance to agriculture. To test whether mechanisms to overcome plant defenses predispose the development of pesticide resistance, we examined adaptation of the generalist two-spotted spider mite, Tetranychus urticae, to host plant transfer and pesticides. T. urticae is an extreme polyphagous pest with more than 1,100 documented hosts and has an extraordinary ability to develop pesticide resistance. When mites from a pesticide-susceptible strain propagated on bean were adapted to a challenging host (tomato), transcriptional responses increased over time with ~7.5% of genes differentially expressed after five generations. Whereas many genes with altered expression belonged to known detoxification families (like P450 monooxygenases), new gene families not previously associated with detoxification in other herbivores showed a striking response, including ring-splitting dioxygenase genes acquired by horizontal gene transfer. Strikingly, transcriptional profiles of tomato-adapted mites resembled those of multipesticide-resistant strains, and adaptation to tomato decreased the susceptibility to unrelated pesticide classes. Our findings suggest key roles for both an expanded environmental response gene repertoire and transcriptional regulation in the life history of generalist herbivores. They also support a model whereby selection for the ability to mount a broad response to the diverse defense chemistry of plants predisposes the evolution of pesticide resistance in generalists.

  15. [Research progress on plant diversity conservation in sand dune areas].

    Science.gov (United States)

    Liu, Zhi-min; Ma, Jun-ling

    2008-01-01

    The landscape in sand dune areas is characterized by the alternate distribution of sand dune and interdune lowland, and the unique floras in these areas are some endemic or rare plant species. In recent years, the decrease in plant species richness and the disappearance of some endemic or rare plant species in these areas have been received special attention, which were listed in the Program of International Biodiversity Conservation, and studied in many countries and districts. In this paper, the research progress in these fields was summarized from the aspects of significance of plant diversity conservation, formation mechanisms of plant diversity, ways of plant diversity conservation, roles of plant diversity research in the development of ecological theories, and important issues in operating plant diversity conservation project. To conserve plant diversity in sand dune areas, attentions should be paid to the differences in conservation goals (to maintain high species richness or to conserve endemic or rare species) among different regions, and the balances between the stabilization of active sand and the conservation of endemic or rare species, and the maintenance of high species richness and the conservation of endemic or rare species. It needed also to consider the sand dune and the interdune lowland as a unified landscape unit to explore the impacts of disturbances and habitat fragment on plant diversity.

  16. Low investment in sexual reproduction threatens plants adapted to phosphorus limitation.

    Science.gov (United States)

    Fujita, Yuki; Venterink, Harry Olde; van Bodegom, Peter M; Douma, Jacob C; Heil, Gerrit W; Hölzel, Norbert; Jabłońska, Ewa; Kotowski, Wiktor; Okruszko, Tomasz; Pawlikowski, Paweł; de Ruiter, Peter C; Wassen, Martin J

    2014-01-01

    Plant species diversity in Eurasian wetlands and grasslands depends not only on productivity but also on the relative availability of nutrients, particularly of nitrogen and phosphorus. Here we show that the impacts of nitrogen:phosphorus stoichiometry on plant species richness can be explained by selected plant life-history traits, notably by plant investments in growth versus reproduction. In 599 Eurasian sites with herbaceous vegetation we examined the relationship between the local nutrient conditions and community-mean life-history traits. We found that compared with plants in nitrogen-limited communities, plants in phosphorus-limited communities invest little in sexual reproduction (for example, less investment in seed, shorter flowering period, longer lifespan) and have conservative leaf economy traits (that is, a low specific leaf area and a high leaf dry-matter content). Endangered species were more frequent in phosphorus-limited ecosystems and they too invested little in sexual reproduction. The results provide new insight into how plant adaptations to nutrient conditions can drive the distribution of plant species in natural ecosystems and can account for the vulnerability of endangered species.

  17. Progress in Research of Bacteria Fertilizer Strengthening Resistance of Plants

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Bacteria fertilizer is used most widely among all kinds of microbial fertilizers. We summarize the research headway of bacteria fertilizer. It mainly focuses on bacteria fertilizer improving the stress resistance of plant. Then we can offer basis to research and exploit bacteria fertilizer. These bacteria include azotobacter, photosynthetic bacteria, Bacillus mucilaginosus siliceous, phosphorus bacteria, plant growth-promoting rhizobacteria(PGPR), effective microorganism(EM).

  18. Relative crystallinity of plant biomass: studies on assembly, adaptation and acclimation.

    Directory of Open Access Journals (Sweden)

    Darby Harris

    Full Text Available Plant biomechanical design is central to cell shape, morphogenesis, reproductive performance and protection against environmental and mechanical stress. The cell wall forms the central load bearing support structure for plant design, yet a mechanistic understanding of its synthesis is incomplete. A key tool for studying the structure of cellulose polymorphs has been x-ray diffraction and fourier transform infrared spectroscopy (FTIR. Relative crystallinity index (RCI is based on the x-ray diffraction characteristics of two signature peaks and we used this technique to probe plant assembly, adaptation and acclimation. Confocal microscopy was used to visualize the dynamics of cellulose synthase in transgenic Arabidopsis plants expressing a homozygous YFP::CESA6. Assembly: RCI values for stems and roots were indistinguishable but leaves had 23.4 and 21.6% lower RCI than stems and roots respectively. Adaptation: over 3-fold variability in RCI was apparent in leaves from 35 plant species spanning Ordovician to Cretaceous periods. Within this study, RCI correlated positively with leaf geometric constraints and with mass per unit area, suggestive of allometry. Acclimation: biomass crystallinity was found to decrease under conditions of thigmomorphogenesis in Arabidopsis. Further, in etiolated pea hypocotyls, RCI values also decreased compared to plants that were grown in light, consistent with alterations in FTIR cellulose fingerprint peaks and live cell imaging experiments revealing rapid orientation of the YFP::cellulose synthase-6 array in response to light. Herein, results and technical challenges associated with the structure of the cell wall that gives rise to sample crystallinity are presented and examined with respect to adaptation, acclimation and assembly in ecosystem-level processes.

  19. Smart plants, smart models? On adaptive responses in vegetation-soil systems

    Science.gov (United States)

    van der Ploeg, Martine; Teuling, Ryan; van Dam, Nicole; de Rooij, Gerrit

    2015-04-01

    Hydrological models that will be able to cope with future precipitation and evapotranspiration regimes need a solid base describing the essence of the processes involved [1]. The essence of emerging patterns at large scales often originates from micro-behaviour in the soil-vegetation-atmosphere system. A complicating factor in capturing this behaviour is the constant interaction between vegetation and geology in which water plays a key role. The resilience of the coupled vegetation-soil system critically depends on its sensitivity to environmental changes. To assess root water uptake by plants in a changing soil environment, a direct indication of the amount of energy required by plants to take up water can be obtained by measuring the soil water potential in the vicinity of roots with polymer tensiometers [2]. In a lysimeter experiment with various levels of imposed water stress the polymer tensiometer data suggest maize roots regulate their root water uptake on the derivative of the soil water retention curve, rather than the amount of moisture alone. As a result of environmental changes vegetation may wither and die, or these changes may instead trigger gene adaptation. Constant exposure to environmental stresses, biotic or abiotic, influences plant physiology, gene adaptations, and flexibility in gene adaptation [3-7]. To investigate a possible relation between plant genotype, the plant stress hormone abscisic acid (ABA) and the soil water potential, a proof of principle experiment was set up with Solanum Dulcamare plants. The results showed a significant difference in ABA response between genotypes from a dry and a wet environment, and this response was also reflected in the root water uptake. Adaptive responses may have consequences for the way species are currently being treated in models (single plant to global scale). In particular, model parameters that control root water uptake and plant transpiration are generally assumed to be a property of the plant

  20. Advancing our understanding of plant adaptation to metal polluted environments - new insights from Biscutella laevigata

    Science.gov (United States)

    Babst-Kostecka, Alicja; Waldmann, Patrik; Frérot, Hélène; Vollenweider, Pierre

    2016-04-01

    The legacy of industrial pollution alters ecosystems, particularly at post-mining sites where metal trace elements have created toxic conditions that trigger rapid plant adaptation. Apart from the purely scientific merits, in-depth knowledge of the mechanisms underlying plant adaptation to metal contamination is beneficial for the economic and societal sectors because of its application in bioengineering (e.g. phytoremediation or biofortification). An important process is the evolution and/or enhancement of metal tolerance, a trait that has predominantly been studied by applying acute metal stress on species that allocate large quantities of certain metals to their foliage (so-called hyperaccumulators). As the vast majority of vascular plants does not hyperaccumulate metals, more efforts are needed to investigate non-hyperaccumulating species and thereby broaden understanding of biological mechanisms underlying metal tolerance. The pseudometallophyte Biscutella laevigata has shown potential in this respect, but its characteristics are insufficiently understood. We determined the zinc tolerance level and various plant responses to environmentally relevant zinc concentrations in ten metallicolous and non-metallicolous B. laevigata populations. In a two-phase hydroponic experiment, we scored multiple morphological and physiological traits (e.g. biomass, visible stress symptoms, element content in foliage) and assessed phenotypic variability within plant families. The structure of these quantitative traits was compared to that of neutral molecular markers to test, whether natural selection caused population differentiation in zinc tolerance. While all genotypes were tolerant compared to a zinc sensitive reference species, we found congruent trends toward higher tolerance in metallicolous compared to non-metallicolous plants. We identified the most indicative parameters for these differences and find that enhanced zinc tolerance in metallicolous populations is driven by

  1. Soil- and plant- water uptake in saline environments and their consequences to plant adaptation in fluctuating climates

    Science.gov (United States)

    Volpe, V.; Albertson, J. D.; Katul, G. G.; Marani, M.

    2010-12-01

    Ecological processes determining plant colonization are quite peculiar and competition among different species is governed by a set of unique adaptations to stress conditions caused by drought, hypoxic or hyper-saline conditions. These adaptations and possible positive feedbacks often lead to the formation of patterns of vegetation colonization and spatial heterogeneity (zonation), and play a primary role in the stabilization of sediments. It is these issues that frame the scope of this study. The main objective of this work is to track one of the fundamental pathways between plant adaptation (quantified in terms of physiological and ecological attributes such as leaf area or root density profile) and feedbacks (quantified by plant-mediated alterations to water availability and salinity levels): root water uptake. Because root-water uptake is the main conduit connecting transpiring leaves to reservoirs of soil water, the means by which salinity modifies the processes governing its two end-points and any two-way interactions between them serves as a logical starting point. Salinity effects on leaf transpiration and photosynthesis are first explored via stomatal optimization principles that maximize carbon gain at a given water loss for autonomous leaves. Salinity directly affects leaf physiological attributes such as mesophyll conductance and photosynthetic parameters and hence over-all conductance to transpiration as well as different strategies to cope with the high salinity (e.g. through salt seclusion, compartmentation and osmotic adjustments). A coupled model of subsurface flow based on a modified Richards’ equation that accounts for the effects of increasing salinity, anaerobic conditions, water stress and compensation factors is developed. Plant water uptake is considered as a soil moisture sink term with a potential rate dictated by the carbon demands of the leaves, and an actual rate that accounts for both - hydraulic and salinity limitations. Using this

  2. A plant microRNA regulates the adaptation of roots to drought stress

    KAUST Repository

    Chen, Hao

    2012-06-01

    Plants tend to restrict their horizontal root proliferation in response to drought stress, an adaptive response mediated by the phytohormone abscisic acid (ABA) in antagonism with auxin through unknown mechanisms. Here, we found that stress-regulated miR393-guided cleavage of the transcripts encoding two auxin receptors, TIR1 and AFB2, was required for inhibition of lateral root growth by ABA or osmotic stress. Unlike in the control plants, the lateral root growth of seedlings expressing miR393-resistant TIR1 or AFB2 was no longer inhibited by ABA or osmotic stress. Our results indicate that miR393-mediated attenuation of auxin signaling modulates root adaptation to drought stress. © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. How is adaptation, resilience, and vulnerability research engaging with gender?

    Science.gov (United States)

    Bunce, A.; Ford, J.

    2015-12-01

    The gendered dimensions of climate change have received increasing interest in climate change adaptation, resilience, and vulnerability (ARV) research. Yet concerns have been expressed that engagement with ‘gender’ in this work has been tokenistic. In this context, we ask: how is climate change ARV research engaging with gender? To answer this question, we develop an assessment framework capturing key attributes of engagement and use it to evaluate peer reviewed ARV articles with a focus on gender published since 2006 (n = 123). Results indicate an increase in ARV studies with a gender focus over this period, with the level of gender engagement also increasing. There are a relatively equal numbers of studies categorized as engaging gender at a high, medium, and low level, with studies from Sub-Saharan Africa consistently exhibiting high levels of gender engagement. Gender focused ARV has a strong focus on examining female experiences, with few studies explicitly focusing on men, and no work accounting for those identifying outside the gender binary.

  4. Investment in plant research and development bears fruit in China.

    Science.gov (United States)

    Chong, Kang; Xu, Zhihong

    2014-04-01

    Recent rapid progress in plant science and biotechnology in China demonstrates that China's stronger support for funding in plant research and development (R&D) has borne fruit. Chinese groups have contributed major advances in a range of fields, such as rice biology, plant hormone and developmental biology, genomics and evolution, plant genetics and epigenetics, as well as plant biotechnology. Strigolactone studies including those identifying its receptor and dissecting its complex structure and signaling are representative of the recent researches from China at the forefront of the field. These advances are attributable in large part to interdisciplinary studies among scientists from plant science, chemistry, bioinformatics, structural biology, and agronomy. The platforms provided by national facilities facilitate this collaboration. As well, efficient restructuring of the top-down organization of state programs and free exploration of scientists' interests have accelerated achievements by Chinese researchers. Here, we provide a general outline of China's progress in plant R&D to highlight fields in which Chinese research has made significant contributions.

  5. Aquatic Plant Control Research Program. Allelopathic Aquatic Plants for Aquatic Plant Management: A Feasibility Study

    Science.gov (United States)

    1989-10-01

    block number) FIELD GROUP SUB-GROUP Allelopathy "Bioassay . Growth inhibition. Aquatic macrophytes. Biocontrol Lena minor 19. ABSTRACT (Continue on...Bibliography of Aquatic Plant Allelopathy ........ Al 2 ALLELOPATHIC AQUATIC PLANTS FOR AQUATIC PLANT MANAGEMENT; A FEASIBILITY STUDY Introduction Background 1...nutrients, water, and other biotic effects could have overriding effects that appear as competition or allelopathy . These biotic factors must be

  6. Data Analytics Based Dual-Optimized Adaptive Model Predictive Control for the Power Plant Boiler

    Directory of Open Access Journals (Sweden)

    Zhenhao Tang

    2017-01-01

    Full Text Available To control the furnace temperature of a power plant boiler precisely, a dual-optimized adaptive model predictive control (DoAMPC method is designed based on the data analytics. In the proposed DoAMPC, an accurate predictive model is constructed adaptively by the hybrid algorithm of the least squares support vector machine and differential evolution method. Then, an optimization problem is constructed based on the predictive model and many constraint conditions. To control the boiler furnace temperature, the differential evolution method is utilized to decide the control variables by solving the optimization problem. The proposed method can adapt to the time-varying situation by updating the sample data. The experimental results based on practical data illustrate that the DoAMPC can control the boiler furnace temperature with errors of less than 1.5% which can meet the requirements of the real production process.

  7. Insensitive trypsins are differentially transcribed during Spodoptera frugiperda adaptation against plant protease inhibitors.

    Science.gov (United States)

    de Oliveira, Caio Fernando Ramalho; de Paula Souza, Thaís; Parra, José Roberto Postali; Marangoni, Sergio; Silva-Filho, Marcio de Castro; Macedo, Maria Ligia Rodrigues

    2013-05-01

    0The fall armyworm (Spodoptera frugiperda) is an important pest insect due to high degree of polyphagia. In order to better understand its adaptation mechanism against plant protease inhibitors, bioassays were carried supplementing diet with the Kunitz trypsin inhibitor from Entada acaciifolia seeds (EATI). In vitro assays showed an increase of proteolytic activity in EATI-fed larvae midgut. Moreover, the trypsin enzymes showed insensitivity to inhibition with EATI. In order to understand what genes were overexpressed after chronic exposition to EATI, quantitative RT-PCR analyses were performed and revealed an increase in transcription of two trypsin genes, suggesting its participation in insensitivity of midgut trypsins. Another important result was the expression of one chymotrypsin gene, which is not expressed in control fed-larvae but induced in EATI-fed larvae. New regions of higher molecular weight showing proteolytic activity were visualized in inhibitor-fed larvae by zymography gel electrophoresis, proposing that the new enzymes expressed in response of inhibitor dietary would be formatting oligomers. This is a characteristic also observed in other pest insects that adapt to feed in plant protease inhibitors diet. Additional assays revealed that trypsins from EATI-fed larvae also became insensitive against Kunitz and Bowman-Birk inhibitors from soybean. This result suggests a possible involvement of the same S. frugiperda genes in adaptation against Kunitz and Bowman-Birk inhibitors in their host plants.

  8. Introduction: contexts and concepts of adaptability and plasticity in 20th-century plant science.

    Science.gov (United States)

    Baranski, Marci; Peirson, B R Erick

    2015-04-01

    Nowhere is the problem of understanding the complex linkages between organisms and their environments more apparent than in the science of plants. Today, efforts by scientists to predict and manage the biological consequences of shifting global and regional climates depend on understanding how organisms respond morphologically, physiologically, and behaviorally to changes in their environments. Investigating organismal "adaptability" (or "plasticity") is rarely straightforward, prompting controversy and discourse among and between ecologists and agricultural scientists. Concepts like agro-climatic adaptation, phenotypic plasticity, and genotype-environment interaction (GxE) are key to those debates, and their complex histories have imbued them with assumptions and meanings that are consequential but often opaque. This special section explores the diverse ways in which organismal adaptability has been conceptualized and investigated in the second half of the 20th century, and the multifarious political, economic, environmental, and intellectual contexts in which those conceptions have emerged and evolved. The papers in this section bring together perspectives from the histories of agriculture, population ecology, evolutionary theory, and plant physiology, cutting across Asian, North American, and British contexts. As a whole, this section highlights not only the diversity of meanings of "adaptability" and "plasticity," but also the complex linkages between those meanings, the scientific practices and technologies in which they are embedded, and the ends toward which those practices and technologies are employed.

  9. The genome sequence of the North-European cucumber (Cucumis sativus L.) unravels evolutionary adaptation mechanisms in plants.

    Science.gov (United States)

    Wóycicki, Rafał; Witkowicz, Justyna; Gawroński, Piotr; Dąbrowska, Joanna; Lomsadze, Alexandre; Pawełkowicz, Magdalena; Siedlecka, Ewa; Yagi, Kohei; Pląder, Wojciech; Seroczyńska, Anna; Śmiech, Mieczysław; Gutman, Wojciech; Niemirowicz-Szczytt, Katarzyna; Bartoszewski, Grzegorz; Tagashira, Norikazu; Hoshi, Yoshikazu; Borodovsky, Mark; Karpiński, Stanisław; Malepszy, Stefan; Przybecki, Zbigniew

    2011-01-01

    Cucumber (Cucumis sativus L.), a widely cultivated crop, has originated from Eastern Himalayas and secondary domestication regions includes highly divergent climate conditions e.g. temperate and subtropical. We wanted to uncover adaptive genome differences between the cucumber cultivars and what sort of evolutionary molecular mechanisms regulate genetic adaptation of plants to different ecosystems and organism biodiversity. Here we present the draft genome sequence of the Cucumis sativus genome of the North-European Borszczagowski cultivar (line B10) and comparative genomics studies with the known genomes of: C. sativus (Chinese cultivar--Chinese Long (line 9930)), Arabidopsis thaliana, Populus trichocarpa and Oryza sativa. Cucumber genomes show extensive chromosomal rearrangements, distinct differences in quantity of the particular genes (e.g. involved in photosynthesis, respiration, sugar metabolism, chlorophyll degradation, regulation of gene expression, photooxidative stress tolerance, higher non-optimal temperatures tolerance and ammonium ion assimilation) as well as in distributions of abscisic acid-, dehydration- and ethylene-responsive cis-regulatory elements (CREs) in promoters of orthologous group of genes, which lead to the specific adaptation features. Abscisic acid treatment of non-acclimated Arabidopsis and C. sativus seedlings induced moderate freezing tolerance in Arabidopsis but not in C. sativus. This experiment together with analysis of abscisic acid-specific CRE distributions give a clue why C. sativus is much more susceptible to moderate freezing stresses than A. thaliana. Comparative analysis of all the five genomes showed that, each species and/or cultivars has a specific profile of CRE content in promoters of orthologous genes. Our results constitute the substantial and original resource for the basic and applied research on environmental adaptations of plants, which could facilitate creation of new crops with improved growth and yield in

  10. The genome sequence of the North-European cucumber (Cucumis sativus L. unravels evolutionary adaptation mechanisms in plants.

    Directory of Open Access Journals (Sweden)

    Rafał Wóycicki

    Full Text Available Cucumber (Cucumis sativus L., a widely cultivated crop, has originated from Eastern Himalayas and secondary domestication regions includes highly divergent climate conditions e.g. temperate and subtropical. We wanted to uncover adaptive genome differences between the cucumber cultivars and what sort of evolutionary molecular mechanisms regulate genetic adaptation of plants to different ecosystems and organism biodiversity. Here we present the draft genome sequence of the Cucumis sativus genome of the North-European Borszczagowski cultivar (line B10 and comparative genomics studies with the known genomes of: C. sativus (Chinese cultivar--Chinese Long (line 9930, Arabidopsis thaliana, Populus trichocarpa and Oryza sativa. Cucumber genomes show extensive chromosomal rearrangements, distinct differences in quantity of the particular genes (e.g. involved in photosynthesis, respiration, sugar metabolism, chlorophyll degradation, regulation of gene expression, photooxidative stress tolerance, higher non-optimal temperatures tolerance and ammonium ion assimilation as well as in distributions of abscisic acid-, dehydration- and ethylene-responsive cis-regulatory elements (CREs in promoters of orthologous group of genes, which lead to the specific adaptation features. Abscisic acid treatment of non-acclimated Arabidopsis and C. sativus seedlings induced moderate freezing tolerance in Arabidopsis but not in C. sativus. This experiment together with analysis of abscisic acid-specific CRE distributions give a clue why C. sativus is much more susceptible to moderate freezing stresses than A. thaliana. Comparative analysis of all the five genomes showed that, each species and/or cultivars has a specific profile of CRE content in promoters of orthologous genes. Our results constitute the substantial and original resource for the basic and applied research on environmental adaptations of plants, which could facilitate creation of new crops with improved growth

  11. Comparative characteristics of anatomical and morphological adaptations of plants of two subgenera Haworthia Duval to arid environmental conditions

    Directory of Open Access Journals (Sweden)

    Nataliya Volodymyrivna Nuzhyna

    2015-03-01

    Full Text Available This paper presents the comparative anatomical and morphological characteristics of plants of two subgenera: Haworthia and Hexangularis. The study revealed two different strategies of adaptation to arid conditions of the growth of different subgenera of the genus Haworthia. Plants of the subgenus Haworthia adapted to arid conditions by increasing the accumulation of water, the presence of “windows”, a smaller stoma size, and a thinner outer wall of the epidermis cells. On the other hand, plants of the subgenus Hexangularis adapted to arid conditions by reducing overheating and transpiration as well as by the presence of papillae and a thickened outer wall of the epidermis cells.

  12. Nuclear physics detector technology applied to plant biology research

    Energy Technology Data Exchange (ETDEWEB)

    Weisenberger, Andrew G. [JLAB; Kross, Brian J. [JLAB; Lee, Seung Joo [JLAB; McKisson, John E. [JLAB; Xi, Wenze [JLAB; Zorn, Carl J. [JLAB; Howell, Calvin [DUKE; Crowell, A.S. [DUKE; Reid, C.D. [DUKE; Smith, Mark [MARYLAND U.

    2013-08-01

    The ability to detect the emissions of radioactive isotopes through radioactive decay (e.g. beta particles, x-rays and gamma-rays) has been used for over 80 years as a tracer method for studying natural phenomena. More recently a positron emitting radioisotope of carbon: {sup 11}C has been utilized as a {sup 11}CO{sub 2} tracer for plant ecophysiology research. Because of its ease of incorporation into the plant via photosynthesis, the {sup 11}CO{sub 2} radiotracer is a powerful tool for use in plant biology research. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using {sup 11}CO{sub 2}. Presently there are several groups developing and using new PET instrumentation for plant based studies. Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with the Duke University Phytotron and the Triangle Universities Nuclear Laboratory (TUNL) is involved in PET detector development for plant imaging utilizing technologies developed for nuclear physics research. The latest developments of the use of a LYSO scintillator based PET detector system for {sup 11}CO{sub 2} tracer studies in plants will be briefly outlined.

  13. Research priorities for harnessing plant microbiomes in sustainable agriculture.

    Science.gov (United States)

    Busby, Posy E; Soman, Chinmay; Wagner, Maggie R; Friesen, Maren L; Kremer, James; Bennett, Alison; Morsy, Mustafa; Eisen, Jonathan A; Leach, Jan E; Dangl, Jeffery L

    2017-03-01

    Feeding a growing world population amidst climate change requires optimizing the reliability, resource use, and environmental impacts of food production. One way to assist in achieving these goals is to integrate beneficial plant microbiomes-i.e., those enhancing plant growth, nutrient use efficiency, abiotic stress tolerance, and disease resistance-into agricultural production. This integration will require a large-scale effort among academic researchers, industry researchers, and farmers to understand and manage plant-microbiome interactions in the context of modern agricultural systems. Here, we identify priorities for research in this area: (1) develop model host-microbiome systems for crop plants and non-crop plants with associated microbial culture collections and reference genomes, (2) define core microbiomes and metagenomes in these model systems, (3) elucidate the rules of synthetic, functionally programmable microbiome assembly, (4) determine functional mechanisms of plant-microbiome interactions, and (5) characterize and refine plant genotype-by-environment-by-microbiome-by-management interactions. Meeting these goals should accelerate our ability to design and implement effective agricultural microbiome manipulations and management strategies, which, in turn, will pay dividends for both the consumers and producers of the world food supply.

  14. Research priorities for harnessing plant microbiomes in sustainable agriculture

    Science.gov (United States)

    Soman, Chinmay; Wagner, Maggie R.; Friesen, Maren L.; Kremer, James; Bennett, Alison; Morsy, Mustafa; Eisen, Jonathan A.; Leach, Jan E.; Dangl, Jeffery L.

    2017-01-01

    Feeding a growing world population amidst climate change requires optimizing the reliability, resource use, and environmental impacts of food production. One way to assist in achieving these goals is to integrate beneficial plant microbiomes—i.e., those enhancing plant growth, nutrient use efficiency, abiotic stress tolerance, and disease resistance—into agricultural production. This integration will require a large-scale effort among academic researchers, industry researchers, and farmers to understand and manage plant-microbiome interactions in the context of modern agricultural systems. Here, we identify priorities for research in this area: (1) develop model host–microbiome systems for crop plants and non-crop plants with associated microbial culture collections and reference genomes, (2) define core microbiomes and metagenomes in these model systems, (3) elucidate the rules of synthetic, functionally programmable microbiome assembly, (4) determine functional mechanisms of plant-microbiome interactions, and (5) characterize and refine plant genotype-by-environment-by-microbiome-by-management interactions. Meeting these goals should accelerate our ability to design and implement effective agricultural microbiome manipulations and management strategies, which, in turn, will pay dividends for both the consumers and producers of the world food supply. PMID:28350798

  15. DAMAGE RESEARCH WITH P. PENETRANS IN ASPARAGUS PLANTS.

    Science.gov (United States)

    Hoek, J; Molendijk, L P G

    2014-01-01

    During cultivation of asparagus plants growth can be inhibited and yield can be reduced by plant-parasitic nematodes. Plant raising companies assume that the root lesion nematode (Pratylenchus penetrans) can cause severe yield loss in asparagus plants. However quantitative information about yield reduction in relation to the degree of infestation of this nematode species in the field is lacking. Research was done in The Netherlands by Applied Plant Research (part of Wageningen University and Research Centre) to determine the maximum degree of yield loss of asparagus plants at high infestation levels of P. penetrans and to establish the height of the tolerance limit for this nematode species. Also was investigated whether a field application of a granular nematicide could prevent or reduce yield loss caused by P. penetrans. Research was done in the field at sandy soils at the PPO location near Vredepeel in The Netherlands over a period of two years. In the first year the most suitable field was selected and on this field different infestation levels of P. penetrans were created. In the second year asparagus was cultivated and plant yield (number and quality of deliverable plants and financial yield) was calculated. At high infestation levels of Pratylenchus penetrans maximum yield loss was 12% (which can mean a financial loss of 7.000 C per ha). Yield started to decrease at very low infestation levels of P. penetrans and no statistical reliable tolerance limit could be calculated. Field application of 40 kg per ha of Vydate 10 G just before sowing of asparagus, could almost completely prevent yield loss caused by P. penetrans. After harvest infestation levels of P. penetrans were much lower than could be expected if asparagus was a non-host for this nematode species. In this paper therefore it is suggested that asparagus plants are (actively) controlling P. penetrans.

  16. Changes in chloroplast ultrastructure in some high-alpine plants: adaptation to metabolic demands and climate?

    Science.gov (United States)

    Lütz, C; Engel, L

    2007-01-01

    The cytology of leaf cells from five different high-alpine plants was studied and compared with structures in chloroplasts from the typical high-alpine plant Ranunculus glacialis previously described as having frequent envelope plus stroma protrusions. The plants under investigation ranged from subalpine/alpine Geum montanum through alpine Geum reptans, Poa alpina var. vivipara, and Oxyria digyna to nival Cerastium uniflorum and R. glacialis. The general leaf structure (by light microscopy) and leaf mesophyll cell ultrastructure (by transmission electron microscopy [TEM]) did not show any specialized structures unique to these mountain species. However, chloroplast protrusion formation could be found in G. reptans and, to a greater extent, in O. digyna. The other species exhibited only a low percentage of such chloroplast structural changes. Occurrence of protrusions in samples of G. montanum and O. digyna growing in a mild climate at about 50 m above sea level was drastically reduced. Serial TEM sections of O. digyna cells showed that the protrusions can appear as rather broad and long appendices of plastids, often forming pocketlike structures where mitochondria and microbodies are in close vicinity to the plastid and to each other. It is suggested that some high-alpine plants may form such protrusions to facilitate fast exchange of molecules between cytoplasm and plastid as an adaptation to the short, often unfavorable vegetation period in the Alps, while other species may have developed different types of adaptation that are not expressed in ultrastructural changes of the plastids.

  17. Functional adaptation and phenotypic plasticity at the cellular and whole plant level

    Indian Academy of Sciences (India)

    Karl J Niklas

    2009-10-01

    The ability to adaptively alter morphological, anatomical, or physiological functional traits to local environmental variations using external environmental cues is especially well expressed by all terrestrial and most aquatic plants. A ubiquitous cue eliciting these plastic phenotypic responses is mechanical perturbation (MP), which can evoke dramatic differences in the size, shape, or mechanical properties of conspecifics. Current thinking posits that MP is part of a very ancient ``stress-perception response system” that involves receptors located at the cell membrane/cell wall interface capable of responding to a broad spectrum of stress-inducing factors. This hypothesis is explored here from the perspective of cell wall evolution and the control of cell wall architecture by unicellular and multicellular plants. Among the conclusions that emerge from this exploration is the perspective that the plant cell is phenotypically plastic.

  18. Plant adaptation to extreme environments: the example of Cistus salviifolius of an active geothermal alteration field.

    Science.gov (United States)

    Bartoli, Giacomo; Bottega, Stefania; Forino, Laura M C; Ciccarelli, Daniela; Spanò, Carmelina

    2014-02-01

    Cistus salviifolius is able to colonise one of the most extreme active geothermal alteration fields in terms of both soil acidity and hot temperatures. The analyses of morpho-functional and physiological characters, investigated in leaves of plants growing around fumaroles (G leaves) and in leaves developed by the same plants after transfer into growth chamber under controlled conditions (C leaves) evidenced the main adaptive traits developed by this pioneer plant in a stressful environment. These traits involved leaf shape and thickness, mesophyll compactness, stomatal and trichome densities, chloroplast size. Changes of functional and physiological traits concerned dry matter content, peroxide and lipid peroxidation, leaf area, relative water and pigment contents. A higher reducing power and antioxidant enzymatic activity were typical of G leaves. Though the high levels of stress parameters, G leaves showed stress-induced specific morphogenic and physiological responses putatively involved in their surviving in active geothermal habitats.

  19. Sequestration of plant-derived glycosides by leaf beetles: A model system for evolution and adaptation

    Directory of Open Access Journals (Sweden)

    Wilhelm Boland

    2015-12-01

    Full Text Available Leaf beetles have developed an impressive repertoire of toxins and repellents to defend themselves against predators. Upon attack, the larvae discharge small droplets from glandular reservoirs on their back. The reservoirs are “bioreactors” performing the late reactions of the toxin-production from plant-derived or de novo synthesised glucosides. The import of the glucosides into the bioreactor relies on a complex transport system. Physiological studies revealed a functional network of transporters guiding the glucosides through the larval body into the defensive system. The first of the involved transporters has been identified and characterised concerning selectivity, tissue distribution, and regulation. The development of a well-tuned transport system, perfectly adjusted to the compounds provided by the food plants, provides the functional basis for the leaf beetle defenses and their local adaptation to their host plants.

  20. Research on Adaptation of Service-based Business Processes

    Directory of Open Access Journals (Sweden)

    Zongmin Shang

    2013-07-01

    Full Text Available This paper proposes an adaptation mechanism based on adaptation planning graph for service-based business processes. First, a three-layer representation model of service-based business process is introduced. Second, control-flow patterns of tasks, goal, logic model of service-based business process and adaptation planning graph are introduced to enforce reliability of composite web services at run-time. Finally, a simulation example of adaptation in service-based business processes is given. Simulations prove that this approach can efficiently guarantee the reliability of composite services at run-time.  

  1. Implementing Content Constraints in Alpha-Stratified Adaptive Testing Using a Shadow Test Approach. Research Report.

    Science.gov (United States)

    van der Linden, Wim J.; Chang, Hua-Hua

    The methods of alpha-stratified adaptive testing and constrained adaptive testing with shadow tests are combined in this study. The advantages are twofold. First, application of the shadow test allows the researcher to implement any type of constraint on item selection in alpha-stratified adaptive testing. Second, the result yields a simple set of…

  2. Is the plant-associated microbiota of Thymus spp. adapted to plant essential oil?

    Science.gov (United States)

    Checcucci, Alice; Maida, Isabel; Bacci, Giovanni; Ninno, Cristina; Bilia, Anna Rita; Biffi, Sauro; Firenzuoli, Fabio; Flamini, Guido; Fani, Renato; Mengoni, Alessio

    2016-11-21

    We examined whether the microbiota of two related aromatic thyme species, Thymus vulgaris and Thymus citriodorus, differs in relation to the composition of the respective essential oil (EO). A total of 576 bacterial isolates were obtained from three districts (leaves, roots and rhizospheric soil). They were taxonomically characterized and inspected for tolerance to the EO from the two thyme species. A district-related taxonomic pattern was found. In particular, high taxonomic diversity among the isolates from leaves was detected. Moreover, data obtained revealed a differential pattern of resistance of the isolates to EOs extracted from T. vulgaris and T. citriodorus, which was interpreted in terms of differing chemical composition of the EO of their respective host plants. In conclusion, we suggest that bacterial colonization of leaves in Thymus spp. is influenced by the EO present in leaf glandular tissue as one of the selective forces shaping endophytic community composition.

  3. MIPS PlantsDB: a database framework for comparative plant genome research.

    Science.gov (United States)

    Nussbaumer, Thomas; Martis, Mihaela M; Roessner, Stephan K; Pfeifer, Matthias; Bader, Kai C; Sharma, Sapna; Gundlach, Heidrun; Spannagl, Manuel

    2013-01-01

    The rapidly increasing amount of plant genome (sequence) data enables powerful comparative analyses and integrative approaches and also requires structured and comprehensive information resources. Databases are needed for both model and crop plant organisms and both intuitive search/browse views and comparative genomics tools should communicate the data to researchers and help them interpret it. MIPS PlantsDB (http://mips.helmholtz-muenchen.de/plant/genomes.jsp) was initially described in NAR in 2007 [Spannagl,M., Noubibou,O., Haase,D., Yang,L., Gundlach,H., Hindemitt, T., Klee,K., Haberer,G., Schoof,H. and Mayer,K.F. (2007) MIPSPlantsDB-plant database resource for integrative and comparative plant genome research. Nucleic Acids Res., 35, D834-D840] and was set up from the start to provide data and information resources for individual plant species as well as a framework for integrative and comparative plant genome research. PlantsDB comprises database instances for tomato, Medicago, Arabidopsis, Brachypodium, Sorghum, maize, rice, barley and wheat. Building up on that, state-of-the-art comparative genomics tools such as CrowsNest are integrated to visualize and investigate syntenic relationships between monocot genomes. Results from novel genome analysis strategies targeting the complex and repetitive genomes of triticeae species (wheat and barley) are provided and cross-linked with model species. The MIPS Repeat Element Database (mips-REdat) and Catalog (mips-REcat) as well as tight connections to other databases, e.g. via web services, are further important components of PlantsDB.

  4. Plant regeneration from seeds responds to phylogenetic relatedness and local adaptation in Mediterranean Romulea (Iridaceae) species.

    Science.gov (United States)

    Carta, Angelino; Hanson, Sarah; Müller, Jonas V

    2016-06-01

    Seed germination is the most important transitional event between early stages in the life cycle of spermatophytes and understanding it is crucial to understand plant adaptation and evolution. However, so far seed germination of phylogenetically closely related species has been poorly investigated. To test the hypothises that phylogenetically related plant species have similar seed ecophysiological traits thereby reflecting certain habitat conditions as a result of local adaptation, we studied seed dormancy and germination in seven Mediterranean species in the genus Romulea (Iridaceae). Both the across-species model and the model accounting for shared evolutionary history showed that cool temperatures (≤ 15°C) were the main factor that promoted seed germination. The absence of embryo growth before radicle emergence is consistent with a prompt germination response at cool temperatures. The range of temperature conditions for germination became wider after a period of warm stratification, denoting a weak primary dormancy. Altogether these results indicate that the studied species exhibit a Mediterranean germination syndrome, but with species-specific germination requirements clustered in a way that follows the phylogenetic relatedness among those species. In addition, species with heavier seeds from humid habitats showed a wider range of conditions for germination at dispersal time than species from dry habitats possessing lighter seeds. We conclude that while phylogenetically related species showed very similar germination requirements, there are subtle ecologically meaningful differences, confirming the onset of adaptation to local ecological factors mediated by species relatedness.

  5. Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels

    Science.gov (United States)

    Lebaudy, Anne; Vavasseur, Alain; Hosy, Eric; Dreyer, Ingo; Leonhardt, Nathalie; Thibaud, Jean-Baptiste; Véry, Anne-Aliénor; Simonneau, Thierry; Sentenac, Hervé

    2008-01-01

    At least four genes encoding plasma membrane inward K+ channels (Kin channels) are expressed in Arabidopsis guard cells. A double mutant plant was engineered by disruption of a major Kin channel gene and expression of a dominant negative channel construct. Using the patch-clamp technique revealed that this mutant was totally deprived of guard cell Kin channel (GCKin) activity, providing a model to investigate the roles of this activity in the plant. GCKin activity was found to be an essential effector of stomatal opening triggered by membrane hyperpolarization and thereby of blue light-induced stomatal opening at dawn. It improved stomatal reactivity to external or internal signals (light, CO2 availability, and evaporative demand). It protected stomatal function against detrimental effects of Na+ when plants were grown in the presence of physiological concentrations of this cation, probably by enabling guard cells to selectively and rapidly take up K+ instead of Na+ during stomatal opening, thereby preventing deleterious effects of Na+ on stomatal closure. It was also shown to be a key component of the mechanisms that underlie the circadian rhythm of stomatal opening, which is known to gate stomatal responses to extracellular and intracellular signals. Finally, in a meteorological scenario with higher light intensity during the first hours of the photophase, GCKin activity was found to allow a strong increase (35%) in plant biomass production. Thus, a large diversity of approaches indicates that GCKin activity plays pleiotropic roles that crucially contribute to plant adaptation to fluctuating and stressing natural environments. PMID:18367672

  6. Genome of the actinomycete plant pathogen Clavibacter michiganensis subsp. sepedonicus suggests recent niche adaptation.

    Science.gov (United States)

    Bentley, Stephen D; Corton, Craig; Brown, Susan E; Barron, Andrew; Clark, Louise; Doggett, Jon; Harris, Barbara; Ormond, Doug; Quail, Michael A; May, Georgiana; Francis, David; Knudson, Dennis; Parkhill, Julian; Ishimaru, Carol A

    2008-03-01

    Clavibacter michiganensis subsp. sepedonicus is a plant-pathogenic bacterium and the causative agent of bacterial ring rot, a devastating agricultural disease under strict quarantine control and zero tolerance in the seed potato industry. This organism appears to be largely restricted to an endophytic lifestyle, proliferating within plant tissues and unable to persist in the absence of plant material. Analysis of the genome sequence of C. michiganensis subsp. sepedonicus and comparison with the genome sequences of related plant pathogens revealed a dramatic recent evolutionary history. The genome contains 106 insertion sequence elements, which appear to have been active in extensive rearrangement of the chromosome compared to that of Clavibacter michiganensis subsp. michiganensis. There are 110 pseudogenes with overrepresentation in functions associated with carbohydrate metabolism, transcriptional regulation, and pathogenicity. Genome comparisons also indicated that there is substantial gene content diversity within the species, probably due to differential gene acquisition and loss. These genomic features and evolutionary dating suggest that there was recent adaptation for life in a restricted niche where nutrient diversity and perhaps competition are low, correlated with a reduced ability to exploit previously occupied complex niches outside the plant. Toleration of factors such as multiplication and integration of insertion sequence elements, genome rearrangements, and functional disruption of many genes and operons seems to indicate that there has been general relaxation of selective pressure on a large proportion of the genome.

  7. Research on adaptive filtering method for electrostatic signals

    Science.gov (United States)

    Xu, Hongke; Pang, Yue; Yi, Yingmin

    2017-05-01

    The signal will be inevitably mixed with various types of noise in the process of transmission, which causes the distortion of information in different degree, in order to obtain accurate information, it's an important work to suppress random noise in the digital signal processing system. This paper mainly studies the adaptive filtering method, using LMS algorithm in adaptive filter (Least mean square LMS algorithm), when the filter starts reading the electrostatic signal, it also can estimate the statistical characteristics of electrostatic signal, adaptive adjust its filter parameters, filtering the electrostatic signal on time, attain the maximum noise suppression, to avoid distortion of information, and to achieve optimal filtering.

  8. Nuclear Power Plant Operator Reliability Research Based on Fuzzy Math

    Directory of Open Access Journals (Sweden)

    Fang Xiang

    2011-01-01

    Full Text Available This paper makes use of the concept and theory of fuzzy number in fuzzy mathematics, to research for the response time of operator in accident of Chinese nuclear power plant. Through the quantitative analysis for the performance shape factors (PSFs which influence the response time of operators, the formula of the operator response time is obtained based on the possibilistic fuzzy linear regression model which is used for the first time in this kind of research. The research result shows that the correct research method can be achieved through the analysis of the information from a small sample. This method breaks through the traditional research method and can be used not only for the reference to the safe operation of nuclear power plant, but also in other areas.

  9. Research on Aeration Systems Efficiency in Small Wastewater Treatment Plants

    OpenAIRE

    Ala Sokolova

    2011-01-01

    Large amount of small wastewater treatment plants does not work properly. One of the reasons could be wrong design of the aeration system. Therefore, the aim of this research is to analyse the performance of two aeration systems used in Lithuanian small wastewater treatment plants. Both aeration systems are designed for the following parameters: 4 PE and 0,8 m3/d wastewater flow. These data correspond to the oxygen requirement of 40,9 g O2/h. Summarizing the results of the research, it was fo...

  10. Rapid genetic adaptation precedes the spread of an exotic plant species.

    Science.gov (United States)

    Vandepitte, Katrien; de Meyer, Tim; Helsen, Kenny; van Acker, Kasper; Roldán-Ruiz, Isabel; Mergeay, Joachim; Honnay, Olivier

    2014-05-01

    Human activities have increasingly introduced plant species far outside their native ranges under environmental conditions that can strongly differ from those originally met. Therefore, before spreading, and potentially causing ecological and economical damage, non-native species may rapidly evolve. Evidence of genetically based adaptation during the process of becoming invasive is very scant, however, which is due to the lack of knowledge regarding the historical genetic makeup of the introduced populations and the lack of genomic resources. Capitalizing on the availability of old non-native herbarium specimens, we examined frequency shifts in genic SNPs of the Pyrenean Rocket (Sisymbrium austriacum subsp. chrysanthum), comparing the (i) native, (ii) currently spreading non-native and (iii) historically introduced gene pool. Results show strong divergence in flowering time genes during the establishment phase, indicating that rapid genetic adaptation preceded the spread of this species and possibly assisted in overcoming environmental constraints.

  11. Plant database resources at The Institute for Genomic Research.

    Science.gov (United States)

    Chan, Agnes P; Rabinowicz, Pablo D; Quackenbush, John; Buell, C Robin; Town, Chris D

    2007-01-01

    With the completion of the genome sequences of the model plants Arabidopsis and rice, and the continuing sequencing efforts of other economically important crop plants, an unprecedented amount of genome sequence data is now available for large-scale genomics studies and analyses, such as the identification and discovery of novel genes, comparative genomics, and functional genomics. Efficient utilization of these large data sets is critically dependent on the ease of access and organization of the data. The plant databases at The Institute for Genomic Research (TIGR) have been set up to maintain various data types including genomic sequence, annotation and analyses, expressed transcript assemblies and analyses, and gene expression profiles from microarray studies. We present here an overview of the TIGR database resources for plant genomics and describe methods to access the data.

  12. Research progress of Tunisian medicinal plants used for acute diabetes

    Institute of Scientific and Technical Information of China (English)

    Wissem Aidi Wannes; Brahim Marzouk

    2016-01-01

    The use of the medicinal plants in treating diabetes is frequent in Africa, especially in Tunisia, and it is ritually transmitted from generation to generation within cultures. Many of Tunisian medicinal plants have been experimentally validated. A comprehensive re-view was conducted to pile up information from scientific journal articles, including indigenous knowledge researches, about Tunisian medicinal plants used for the treatment of diabetes. The aim of this review article is to provide the reader with information concerning the importance of Tunisian medicinal plants in the treatment of diabetes and to draw attention of the health professionals and scientists working in the field of phar-macology and therapeutics to develop new drug formulations to cure different kinds of diabetes.

  13. Research progress of Tunisian medicinal plants used for acute diabetes

    Directory of Open Access Journals (Sweden)

    Wissem Aidi Wannes

    2016-09-01

    Full Text Available The use of the medicinal plants in treating diabetes is frequent in Africa, especially in Tunisia, and it is ritually transmitted from generation to generation within cultures. Many of Tunisian medicinal plants have been experimentally validated. A comprehensive review was conducted to pile up information from scientific journal articles, including indigenous knowledge researches, about Tunisian medicinal plants used for the treatment of diabetes. The aim of this review article is to provide the reader with information concerning the importance of Tunisian medicinal plants in the treatment of diabetes and to draw attention of the health professionals and scientists working in the field of pharmacology and therapeutics to develop new drug formulations to cure different kinds of diabetes.

  14. Plant NF-Y transcription factors: Key players in plant-microbe interactions, root development and adaptation to stress.

    Science.gov (United States)

    Zanetti, María Eugenia; Rípodas, Carolina; Niebel, Andreas

    2017-05-01

    NF-Ys are heterotrimeric transcription factors composed by the NF-YA, NF-YB and NF-YC subunits. In plants, NF-Y subunits are encoded by multigene families whose members show structural and functional diversifications. An increasing number of NF-Y genes has been shown to play key roles during different stages of root nodule and arbuscular mycorrhizal symbiosis, as well as during the interaction of plants with pathogenic microorganisms. Individual members of the NF-YA and NF-YB families have also been implicated in the development of primary and lateral roots. In addition, different members of the NF-YA and NF-YB gene families from mono- and di-cotyledonous plants have been involved in plant responses to water and nutrient scarcity. This review presents the most relevant and striking results concerning these NF-Y subunits. A phylogenetic analysis of the functionally characterized NF-Y genes revealed that, across plant species, NF-Y proteins functioning in the same biological process tend to belong to common phylogenetic groups. Finally, we discuss the forthcoming challenges of plant NF-Y research, including the detailed dissection of expression patterns, the elucidation of functional specificities as well as the characterization of the potential NF-Y-mediated epigenetic mechanisms by which they control the expression of their target genes. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Plant Heat Adaptation: priming in response to heat stress [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Isabel Bäurle

    2016-04-01

    Full Text Available Abiotic stress is a major threat to crop yield stability. Plants can be primed by heat stress, which enables them to subsequently survive temperatures that are lethal to a plant in the naïve state. This is a rapid response that has been known for many years and that is highly conserved across kingdoms. Interestingly, recent studies in Arabidopsis and rice show that this thermo-priming lasts for several days at normal growth temperatures and that it is an active process that is genetically separable from the priming itself. This is referred to as maintenance of acquired thermotolerance or heat stress memory. Such a memory conceivably has adaptive advantages under natural conditions, where heat stress often is chronic or recurring. In this review, I will focus on recent advances in the mechanistic understanding of heat stress memory.

  16. Field-based phenomics for plant genetics research

    Science.gov (United States)

    Perhaps the greatest challenge for crop research in the 21st century is how to predict crop performance as a function of genetic architecture and climate change. Advances in “next generation” DNA sequencing have greatly reduced genotyping costs. Methods for characterization of plant traits (phenotyp...

  17. Energy-rich Plant Research in China: Overview and Prospect

    Institute of Scientific and Technical Information of China (English)

    WU Guojiang; LIU Jie; LOU Zhiping; KANG Le

    2006-01-01

    @@ The energy crisis is an enormous challenge to the human race.Consequently, the technology development and utilization of biomass energy have become a new "hot spot"in the international arena.This article gives an overview on the current status of the research on energy plants and puts forward several suggestions on how to reasonably develop them in China.

  18. NaCl-induced physiological and biochemical adaptative mechanisms in the ornamental Myrtus communis L. plants.

    Science.gov (United States)

    Acosta-Motos, José Ramón; Diaz-Vivancos, Pedro; Álvarez, Sara; Fernández-García, Nieves; Sánchez-Blanco, María Jesús; Hernández, José Antonio

    2015-07-01

    Physiological and biochemical changes in Myrtus communis L. plants after being subjected to different solutions of NaCl (44, and 88 mM) for up to 30 days (Phase I) and after recovery from the salinity period (Phase II) were studied. Myrtle plants showed salinity tolerance by displaying a series of adaptative mechanisms to cope with salt-stress, including controlled ion homeostasis, the increase in root/shoot ratio, the reduction of water potentials and stomatal conductance to limit water loss. In addition, they displayed different strategies to protect the photosynthetic machinery, including limiting toxic ion accumulation in leaves, increase in chlorophyll content, and changes in chlorophyll fluorescence parameters, leaf anatomy and increases in catalase activity. Anatomical modifications in leaves, including a decrease in spongy parenchyma and increased intercellular spaces, allow CO2 diffusion in a situation of reduced stomatal aperture. In spite of all these changes, salinity produced oxidative stress in myrtle plants as monitored by increases in oxidative stress parameter values. The post-recovery period is perceived as a new stress situation, as observed through effects on plant growth and alterations in non-photochemical quenching parameters and lipid peroxidation values.

  19. Responses to Environmental Stress in Plants Adapted to Mediterranean Gypsum Habitats

    Directory of Open Access Journals (Sweden)

    Josep V. LLINARES

    2015-03-01

    Full Text Available Gypsum areas are stressful environments inhabited by gypsophytes, plants that are exclusive for such habitats, and by plants that grow on gypsum but also on other soil types, the so-called gypsovags. To investigate possible differences between gypsovags and gypsophytes with respect to basic stress response mechanisms, two common osmolytes, glycine betaine and total soluble sugars, as well as monovalent (Na+ and K+ and bivalent (Ca2+ and Mg2+ cations, were quantified, under field conditions, in two Iberian endemic gypsophytes (Gypsophila struthium subsp. hispanica and Ononis tridentata and two common Mediterranean gypsovags (Rosmarinus officinalis and Helianthemum syriacum. Their spatial variation according to a topographic gradient and their temporal variation over a period of three successive seasons were correlated with climatic data and soil characteristics. This analysis confirmed that water stress is the main environmental stress factor in gypsum habitats, whereas the percentage of gypsum in the soil does not seem to play any relevant role in the activation of stress responses in plants. Glycine betaine may contribute to stress tolerance in the gypsophytes, but not in the gypsovags, according to the close correlation found between the level of this osmolyte and the gypsophily of the investigated taxa. Cation contents in the plants did not correlate with those present in the soil, but the gypsophytes have higher levels of Ca2+ and Mg2+ than the gypsovags, under all environmental conditions, which may represent an adaptation mechanism to their specific habitat.

  20. Adaptive evolution of threonine deaminase in plant defense against insect herbivores

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales-Vigil, Eliana; Bianchetti, Christopher M.; Phillips, Jr., George N.; Howe, Gregg A. (MSU); (UW)

    2011-11-07

    Gene duplication is a major source of plant chemical diversity that mediates plant-herbivore interactions. There is little direct evidence, however, that novel chemical traits arising from gene duplication reduce herbivory. Higher plants use threonine deaminase (TD) to catalyze the dehydration of threonine (Thr) to {alpha}-ketobutyrate and ammonia as the committed step in the biosynthesis of isoleucine (Ile). Cultivated tomato and related Solanum species contain a duplicated TD paralog (TD2) that is coexpressed with a suite of genes involved in herbivore resistance. Analysis of TD2-deficient tomato lines showed that TD2 has a defensive function related to Thr catabolism in the gut of lepidopteran herbivores. During herbivory, the regulatory domain of TD2 is removed by proteolysis to generate a truncated protein (pTD2) that efficiently degrades Thr without being inhibited by Ile. We show that this proteolytic activation step occurs in the gut of lepidopteran but not coleopteran herbivores, and is catalyzed by a chymotrypsin-like protease of insect origin. Analysis of purified recombinant enzymes showed that TD2 is remarkably more resistant to proteolysis and high temperature than the ancestral TD1 isoform. The crystal structure of pTD2 provided evidence that electrostatic interactions constitute a stabilizing feature associated with adaptation of TD2 to the extreme environment of the lepidopteran gut. These findings demonstrate a role for gene duplication in the evolution of a plant defense that targets and co-opts herbivore digestive physiology.

  1. No evidence for local adaptation in an invasive alien plant: field and greenhouse experiments tracing a colonization sequence.

    Science.gov (United States)

    Pahl, Anna T; Kollmann, Johannes; Mayer, Andreas; Haider, Sylvia

    2013-12-01

    Local adaptation enables plant species to persist under different environmental conditions. Evolutionary change can occur rapidly in invasive annual species and has been shown to lead to local adaptation. However, the patterns and mechanisms of local adaptation in invasive species along colonization sequences are not yet understood. Thus, in this study the alien annual Impatiens glandulifera was used to investigate local adaptation to distinct habitats that have been consecutively invaded in central Europe. A reciprocal transplant experiment was performed using 15 populations from alluvial deciduous forests, fallow meadows and coniferous upland forests, and a greenhouse experiment was performed in which plants from these habitats were grown under treatments reflecting the main habitat differentiators (shade, soil acidity, competition). Biomass production, specific leaf area, plant height and relative growth rate differed between habitats in the field experiment and between treatments in the greenhouse, but not between seed origins. Overall, there was no indication of local adaptation in either experiment. Since I. glandulifera is a successful invader in many habitats without showing local adaptation, it is suggested that the species is coping with environmental variation by means of high phenotypic plasticity. The species seems to follow a 'jack-and-master' strategy, i.e. it is able to maintain high fitness under a wide range of environmental conditions, but performs particularly well in favourable habitats. Therefore, the proposed colonization sequence is likely to be based primarily on changes in propagule pressure. It is concluded that invasive alien plants can become dominant in distinct habitats without local adaptation.

  2. NASA Space Biology Plant Research for 2010-2020

    Science.gov (United States)

    Levine, H. G.; Tomko, D. L.; Porterfield, D. M.

    2012-01-01

    The U.S. National Research Council (NRC) recently published "Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era" (http://www.nap.edu/catalog.php?record id=13048), and NASA completed a Space Biology Science Plan to develop a strategy for implementing its recommendations ( http://www.nasa.gov/exploration/library/esmd documents.html). The most important recommendations of the NRC report on plant biology in space were that NASA should: (1) investigate the roles of microbial-plant systems in long-term bioregenerative life support systems, and (2) establish a robust spaceflight program of research analyzing plant growth and physiological responses to the multiple stimuli encountered in spaceflight environments. These efforts should take advantage of recently emerged analytical technologies (genomics, transcriptomics, proteomics, metabolomics) and apply modern cellular and molecular approaches in the development of a vigorous flight-based and ground-based research program. This talk will describe NASA's strategy and plans for implementing these NRC Plant Space Biology recommendations. New research capabilities for Plant Biology, optimized by providing state-of-the-art automated technology and analytical techniques to maximize scientific return, will be described. Flight experiments will use the most appropriate platform to achieve science results (e.g., ISS, free flyers, sub-orbital flights) and NASA will work closely with its international partners and other U.S. agencies to achieve its objectives. One of NASA's highest priorities in Space Biology is the development research capabilities for use on the International Space Station and other flight platforms for studying multiple generations of large plants. NASA will issue recurring NASA Research Announcements (NRAs) that include a rapid turn-around model to more fully engage the biology community in designing experiments to respond to the NRC recommendations. In doing so, NASA

  3. USDA-ARS Plant Science Research Unit, St. Paul Alfalfa/Forage Research Program

    Science.gov (United States)

    The Plant Science Research Unit (PSRU) located at the University of Minnesota in St. Paul receives approximately $1.5 million to fund the research of six scientists who direct their research efforts toward developing new uses and improved traits for alfalfa. Our overarching goal is to develop alfalf...

  4. Research on the Adaptive Object-Model Architecture Style

    Institute of Scientific and Technical Information of China (English)

    YAO Hai-qiong; NI Gui-qiang

    2004-01-01

    The rapidly changing requirements and business rules stimulate software developers to make their applications more dynamic, configurable, and adaptable. An effective way to meet such requirements is to apply an adaptive object-model (AOM). The AOM architecture style is composed of metamodel, model engine and tools. Firstly, two small patterns for building up metamodel are analyzed in detail. Then model engine for interpreting metamodel and tools for end-uses to define and configure object models are discussed. Finally, a novel platform-applicationware-is proposed.

  5. Getting your research published: adapting the thesis style.

    Science.gov (United States)

    Johnson, S H

    1992-01-01

    Writing a research report is similar to the research experience; both are processes with many distinct steps. Break your research project into parts and write about key accomplishments as you complete each milestone in the project.

  6. Strong genetic differentiation but not local adaptation toward the range limit of a coastal dune plant.

    Science.gov (United States)

    Samis, Karen E; López-Villalobos, Adriana; Eckert, Christopher G

    2016-11-01

    All species have limited geographic distributions; but the ecological and evolutionary mechanisms causing range limits are largely unknown. That many species' geographic range limits are coincident with niche limits suggests limited evolutionary potential of marginal populations to adapt to conditions experienced beyond the range. We provide a test of range limit theory by combining population genetic analysis of microsatellite polymorphisms with a transplant experiment within, at the edge of, and 60 km beyond the northern range of a coastal dune plant. Contrary to expectations, lifetime fitness increased toward the range limit with highest fitness achieved by most populations at and beyond the range edge. Genetic differentiation among populations was strong, with very low, nondirectional gene flow suggesting range limitation via constraints to dispersal. In contrast, however, local adaptation was negligible, and a distance-dependent decline in fitness only occurred for those populations furthest from home when planted beyond the range limit. These results challenge a commonly held assumption that stable range limits match niche limits, but also raise questions about the unique value of peripheral populations in expanding species' geographical ranges.

  7. Adaptive Hierarchical Voltage Control of a DFIG-Based Wind Power Plant for a Grid Fault

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinho; Muljadi, Eduard; Park, Jung-Wook; Kang, Yong Cheol

    2016-11-01

    This paper proposes an adaptive hierarchical voltage control scheme of a doubly-fed induction generator (DFIG)-based wind power plant (WPP) that can secure more reserve of reactive power (Q) in the WPP against a grid fault. To achieve this, each DFIG controller employs an adaptive reactive power to voltage (Q-V) characteristic. The proposed adaptive Q-V characteristic is temporally modified depending on the available Q capability of a DFIG; it is dependent on the distance from a DFIG to the point of common coupling (PCC). The proposed characteristic secures more Q reserve in the WPP than the fixed one. Furthermore, it allows DFIGs to promptly inject up to the Q limit, thereby improving the PCC voltage support. To avert an overvoltage after the fault clearance, washout filters are implemented in the WPP and DFIG controllers; they can prevent a surplus Q injection after the fault clearance by eliminating the accumulated values in the proportional-integral controllers of both controllers during the fault. Test results demonstrate that the scheme can improve the voltage support capability during the fault and suppress transient overvoltage after the fault clearance under scenarios of various system and fault conditions; therefore, it helps ensure grid resilience by supporting the voltage stability.

  8. Gravity research on plants: use of single cell experimental models

    Directory of Open Access Journals (Sweden)

    Youssef eChebli

    2011-09-01

    Full Text Available Future space missions and implementation of permanent bases on Moon and Mars will greatly depend on the availability of ambient air and sustainable food supply. Therefore, understanding the effects of altered gravity conditions on plant metabolism and growth is vital for space missions and extra-terrestrial human existence. In this mini-review we summarize how plant cells are thought to perceive changes in magnitude and orientation of the gravity vector. The particular advantages of several single celled model systems for gravity research are explored and an overview over recent advancements and potential use of these systems is provided.

  9. Assessment of Variable Planting Date as an Agricultural Adaptation to Climate Variability in Sri Lanka

    Science.gov (United States)

    Rivera, A.; Gunda, T.; Hornberger, G. M.

    2016-12-01

    Agriculture accounts for approximately 70% of global freshwater withdrawals. Changes in precipitation patterns due to climate change as well as increasing demands for water necessitate an increased understanding of the water-­food intersection, notably at a local scale to inform farmer adaptations to improve water productivity, i.e., to get more food with less water. Local assessments of water-food security are particularly important for nations with self-sufficiency policies, which prioritize in-country production of certain resources. An ideal case study is the small island nation of Sri Lanka, which has a self-sufficiency policy for its staple food of rice. Because rice is a water-intensive crop, assessment of irrigation water requirements (IWRs) and the associated changes over time is especially important. Previous studies on IWRs of rice in Sri Lanka have failed to consider the Yala (dry) season, when water is scarcest.The goal of this study is to characterize the role that a human decision, setting the planting date, can play in buffering declines in rice yield against changes in precipitation patterns. Using four meteorological stations in the main rice-growing zones in Sri Lanka, we explore (1) general changes in IWRs over time during the Yala season and (2) the impact of the rice planting date. We use both historical data from meteorological stations as well as future projections from regional climate models. Our results indicate that gains can be achieved using a variable planting date relative to a fixed date, in accordance with a similar conclusion for the Maha (wet) season. This local scale assessment of Sri Lanka IWRs will contribute to the growing global literature on the impacts of water scarcity on agriculture and the role that one adaptation measure can play in mitigating deleterious impacts.

  10. Review of current research on hydrocarbon production by plants

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, H. M.; Inman, B.

    1979-01-01

    This review assesses the status of research and development in the area of plants that produce hydrocarbons as a possible replacement for traditional fossil fuels. The information is meant to be used as a basis for determining the scope of a possible R and D program by DOE/FFB. Except in the case of guayule (Parthenium argentatum Gray), research on hydrocarbon species generally has not advanced beyond preliminary screening, extraction, and growth studies. Virtually no field studies have been initiated; hydrocarbon component extraction, separation, identification, and characterization have been only timidly approached; the biochemistry of hydrocarbon formation remains virtually untouched; and potential market analysis has been based on insufficient data. Research interest is increasing in this area, however. Industrial interest understandably centers about guayule prospects and is supplemented by NSF and DOE research funds. Additional support for other research topics has been supplied by DOE and USDA and by certain university systems. Due to the infant state of technology in this area of energy research, it is not possible to predict or satisfactorily assess at this time the potential contribution that plant hydrocarbons might make toward decreasing the nation's dependence upon petroleum. However, the general impression received from experts interviewed during this review was that the major thrust of research should be directed toward the manufacture of petrochemical substitutes rather than fuel production.

  11. Review of current research on hydrocarbon production by plants

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, H. M.; Inman, B.

    1979-01-01

    This review assesses the status of research and development in the area of plants that produce hydrocarbons as a possible replacement for traditional fossil fuels. The information is meant to be used as a basis for determining the scope of a possible R and D program by DOE/FFB. Except in the case of guayule (Parthenium argentatum Gray), research on hydrocarbon species generally has not advanced beyond preliminary screening, extraction, and growth studies. Virtually no field studies have been initiated; hydrocarbon component extraction, separation, identification, and characterization have been only timidly approached; the biochemistry of hydrocarbon formation remains virtually untouched; and potential market analysis has been based on insufficient data. Research interest is increasing in this area, however. Industrial interest understandably centers about guayule prospects and is supplemented by NSF and DOE research funds. Additional support for other research topics has been supplied by DOE and USDA and by certain university systems. Due to the infant state of technology in this area of energy research, it is not possible to predict or satisfactorily assess at this time the potential contribution that plant hydrocarbons might make toward decreasing the nation's dependence upon petroleum. However, the general impression received from experts interviewed during this review was that the major thrust of research should be directed toward the manufacture of petrochemical substitutes rather than fuel production.

  12. The Role of Biodiversity, Traditional Knowledge and Participatory Plant Breeding in Climate Change Adaptation in Karst Mountain Areas in SW China

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yiching; Li, Jingsong [Center for Chinese Agricultural Policy (China)

    2011-07-15

    This is a report of a country case study on the impacts of climate change and local people's adaptation. The research sites are located in the karst mountainous region in 3 SW China provinces - Guangxi, Guizhou and Yunnan – an area inhabited by 33 ethnic groups of small farmers and the poor, with rich Plant Genetic Resources (PGR) and culture. Climate change is exacerbating already harsh natural conditions and impacting on biodiversity of remote farmers living in extreme poverty, with very limited arable land. Genetic diversity has also suffered from the adoption of high yielding hybrids. Yet traditional varieties, related TK and Participatory Plant Breeding (PPB) for maize and rice are showing real potential for resilience and adaptation.

  13. Advances in Research on Genetically Engineered Plants for Metal Resistance

    Institute of Scientific and Technical Information of China (English)

    Ri-Qing Zhang; Chun-Fang Tang; Shi-Zhi Wen; Yun-Guo Liu; Ke-Lin Li

    2006-01-01

    The engineering application of natural hyperaccumulators in removing or inactivating metal pollutants from soil and surface water in field trials mostly presents the insurmountable shortcoming of low efficiency owing to their little biomass and slow growth. Based on further understanding of the molecular mechanism of metal uptake, translocation, and also the separation, identification, and cloning of some related functional genes, this article highlights and summarizes in detail the advances in research on transgenic techniques, such as Agrobacterium tumefaciens-mediated transformation and particle bombardment, in breeding of plants for metal resistance and accumulation, and points out that deepening the development of transgenic plants is one of the efficient approaches to improving phytoremediation efficiency of metal-contaminated environments. From the viewpoint of sustainable development, governments should strengthen support to the development of genetic engineering for metal resistance and accumulation in plants.

  14. Plants: a unique model for research on high diluted substances

    Directory of Open Access Journals (Sweden)

    Tatiana Vladimirovna Novasadyuk

    2011-09-01

    Full Text Available Introduction: High efficiency and low cost of homeopathic drugs, lack of side effects and accumulation of toxins in animal farming products made homeopathy one of the priority developments in veterinary medicine. However, opponents of homeopathy have intensified their activity in the recent years. The attacks of the opponents of homeopathy, with their unfounded claims that it is totally explained by the placebo effect, can largely be explained by complexity of understanding the mechanism of action of these remedies which does not fit into the established concepts the effect of drugs on the body. That is why further study of homeopathic phenomenon is especially important in these days. In order to disproof the opinion that homeopathic phenomenon is explained by placebo effect, we have been studying the effect homeopathic remedies on vegetable growth and ripening. This choice was based on the hope that the opponents of homeopathy would not be able to accuse plants of self-suggestion under the effect of potentiated remedies. There are many publications about application of homeopathic remedies on plants. For example, in this direction such researchers as Stephan Baumgartner, Carneiro SMTPG, Rossi F, Carvalho LM, Bonato CM, Betti L, Lazzarato L V. Majewsky, and other researchers worked. Methods: Our first experiments that we performed during two years demonstrated a significant improvement of growth and ripening variables when homeopathic remedies were added to fertilizing mixtures, as compared with conventional plant care. Tomatoes of Typhoon F1 and Titan breeds were sued to study the effect of homeopathic remedies on plant growth and ripening. The studies were performed in greenhouse conditions in summer 2009 and 2010, on fertile soils of an experimental farm in the Krasnoselskiy district of the Leningrad region. Every study group of a certain tomato breed contained 20 plants. When the young plants were planted in the soil they were watered with

  15. Adapting the Vegetative Vigour Terrestrial Plant Test for assessing ecotoxicity of aerosol samples.

    Science.gov (United States)

    Kováts, Nora; Horváth, Eszter; Eck-Varanka, Bettina; Csajbók, Eszter; Hoffer, András

    2017-06-01

    Plants, being recognized to show high sensitivity to air pollution, have been long used to assess the ecological effects of airborne contaminants. However, many changes in vegetation are now generally attributed to atmospheric deposition of aerosol particles; the dose-effect relationships of this process are usually poorly known. In contrast to bioindication studies, ecotoxicological tests (or bioassays) are controlled and reproducible where ecological responses are determined quantitatively. In our study, the No. 227 OECD Guideline for the Testing of Chemicals: Terrestrial Plant Test: Vegetative Vigour Test (hereinafter referred to as 'Guideline') was adapted and its applicability for assessing the ecotoxicity of water-soluble aerosol compounds of aerosol samples was evaluated. In the aqueous extract of the sample, concentration of metals, benzenes, aliphatic hydrocarbons and PAHs was determined analytically. Cucumis sativus L. plants were sprayed with the aqueous extract of urban aerosol samples collected in a winter sampling campaign in Budapest. After the termination of the test, on day 22, the following endpoints were measured: fresh weight, shoot length and visible symptoms. The higher concentrations applied caused leaf necrosis due to toxic compounds found in the extract. On the other hand, the extract elucidated stimulatory effect at low concentration on both fresh weight and shoot length. The test protocol, based on the Guideline, seems sensitive enough to assess the phytotoxicity of aqueous extract of aerosol and to establish clear cause-effect relationship.

  16. Research of Adaptation of Infrastructures for WSRF in Grid Computing

    Institute of Scientific and Technical Information of China (English)

    YANG Qing; WANG Ru-chuan; WANG Hai-yan

    2005-01-01

    One of the challenges that come from the development of Grid Computing applications is to predigest complicated process of compiling, deploying on the infrastructures and toolkits such as Globus Toolkit. As we explain in this article, we think it is essential to find the solution for rapid Grid Computing applications development. Gbuilder is just such a tool we worked out for rapid develop on extant Grid Computing infrastructure platforms. By using Gbuilder, applications should be able to react dynamically to different infrastructures and toolkits. Since WS-Resource Framework (WSRF) specifications provide technique standard to developers to declare and implement the association between Web service and one or more stateful resources, we aim at making infrastructures provide WS-Resource according these specifications automatically by adding a middleware. This paper focuses on the adapting mechanisms that are provided as the lowermost component of Gbuilder. First we study the adapting model for Globus Toolkit in patterns of combination dynamic and static. Then it describes how to apply the dynam-static adaptation flexibly to adjust different infrastructures to provide WS-Resource based on WSRF. At last, it comes along the conclusion and we give out our future works.

  17. Socio-Cultural Adaptation, Academic Adaptation and Satisfaction of International Higher Degree Research Students in Australia

    Science.gov (United States)

    Yu, Baohua; Wright, Ewan

    2016-01-01

    The number of international higher degree research students has grown at a significant rate in recent years, with Australia becoming a hub for attracting such students from around the world. However, research has identified that international higher degree research students often encounter a wide range of academic and socio-cultural challenges in…

  18. Scholarly Research on Educational Adaptation of Social Media: Is There Evidence of Publication Bias?

    Science.gov (United States)

    Piotrowski, Chris

    2015-01-01

    The sizeable majority of research findings on educational adaptation of social media (SM) is based on college student samples. A cursory review of the extant literature on the educational use of SM appears to convey an uncritical spirit regarding adaptations of modern Web 2.0 technology. This article examines the issue of whether "publication…

  19. Method selection in adaptation research : the case of the Delta Programme for the Dutch Wadden region

    NARCIS (Netherlands)

    Werners, Saskia Elisabeth; van Loon-Steensma, Jantsje Mintsje; Oost, Albert Peter

    2016-01-01

    Many methods are available to support adaptation planning. Yet there is little guidance on their selection. A recently developed diagnostic framework offers a structured set of criteria to choose research methods for specific adaptation questions. It has been derived from science-driven cases mostly

  20. Transportable Hydrogen Research Plant Based on Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Mikel Fernandez; Carlos Madina; Asier Gil de Muro [LABEIN, Parque Tecnologico, edificio 700, 48160 Derio, Bizkaia (Spain); Jose Angel Alzolab; Iker Marino; Javier Garcia-Tejedor [ROBOTIKER, Parque Tecnologico, edificio 202, 48170 Zamudio, Bizkaia, (Spain); Juan Carlos Mugica; Inaki Azkkrate; Jose Angel Alzola [INASMET, Mikeletegi Pasalekua, Parque Tecnologico, E-20009 San Sebastian, Guipuzcoa (Spain)

    2006-07-01

    Efficiency and cost are nowadays the most important barriers for the penetration of systems based on hydrogen and renewable energies. According to this background, TECNALIA Corporation has started in 2004 the HIDROTEC project: 'Hydrogen Technologies for Renewable Energy Applications'. The ultimate aim of this project is the implementation of a multipurpose demonstration and research plant in order to explore diverse options for sustainable energetic solutions based on hydrogen. The plant is conceived as an independent system that can be easily transported and assembled. Research and demonstration activities can thus be carried out at very different locations, including commercial renewable facilities. Modularity and scalability have also been taken into account for an optimised exploitation. (authors)

  1. Adapting Western research methods to indigenous ways of knowing.

    Science.gov (United States)

    Simonds, Vanessa W; Christopher, Suzanne

    2013-12-01

    Indigenous communities have long experienced exploitation by researchers and increasingly require participatory and decolonizing research processes. We present a case study of an intervention research project to exemplify a clash between Western research methodologies and Indigenous methodologies and how we attempted reconciliation. We then provide implications for future research based on lessons learned from Native American community partners who voiced concern over methods of Western deductive qualitative analysis. Decolonizing research requires constant reflective attention and action, and there is an absence of published guidance for this process. Continued exploration is needed for implementing Indigenous methods alone or in conjunction with appropriate Western methods when conducting research in Indigenous communities. Currently, examples of Indigenous methods and theories are not widely available in academic texts or published articles, and are often not perceived as valid.

  2. Research of beekeeping products using as radioprotectors for plants

    Directory of Open Access Journals (Sweden)

    I. О. Oginova

    2006-12-01

    Full Text Available Research conducted on a winter wheat, which was cultivated in a 30-km area in the year ofChernobylaccident, allowed to ascertain that complex use of sodium humate and beekeeping products is ineffective for diminishing the negative irradiation influence on the early growth processes of plants. Only the simultaneous use of humic preparations and anodic extraction of propolis has permanent positive effect.

  3. Facilitating adaptation in montane plants to changing precipitation along an elevation gradient

    Science.gov (United States)

    Hess, Steve; Leopold, Christina

    2017-01-01

    Montane plant communities throughout the world have responded to changes in precipitation and temperature regimes by shifting ranges upward in elevation. Continued warmer, drier climate conditions have been documented and are projected to increase in high-elevation areas in Hawai‘i, consistent with climate change effects reported in other environments throughout the world. Organisms that cannot disperse or adapt biologically to projected climate scenarios in situ may decrease in distributional range and abundance over time. Restoration efforts will need to accommodate future climate change and account for the interactive effects of existing invasive species to ensure long-term persistence. As part of a larger, ongoing restoration effort, we hypothesized that plants from a lower-elevation forest ecotype would have higher rates of survival and growth compared to high-elevation forest conspecifics when grown in common plots along an elevation gradient. We monitored climate conditions at planting sites to identify whether temperature or rainfall influenced survival and growth after 20 weeks. We found that origin significantly affected survival in only one of three native montane species, Dodonaea viscosa. Contrary to our hypothesis, 75.2% of seedlings from high-elevation origin survived in comparison to 58.7% of seedlings from low elevation across the entire elevation gradient. Origin also influenced survival in linearized mixed models that controlled for temperature, precipitation, and elevation in D. viscosa and Chenopodium oahuense. Only C. oahuense seedlings had similar predictors of growth and survival. There were no common patterns of growth or survival between species, indicating that responses to changing precipitation and emperature regimes varied between montane plant species. Results also suggest that locally sourced seed is important to ensure highest survival at restoration sites. Further experimentation on larger spatial and temporal scales is necessary

  4. Spatiotemporal variation in local adaptation of a specialist insect herbivore to its long-lived host plant.

    Science.gov (United States)

    Kalske, Aino; Leimu, Roosa; Scheepens, J F; Mutikainen, Pia

    2016-09-01

    Local adaptation of interacting species to one another indicates geographically variable reciprocal selection. This process of adaptation is central in the organization and maintenance of genetic variation across populations. Given that the strength of selection and responses to it often vary in time and space, the strength of local adaptation should in theory vary between generations and among populations. However, such spatiotemporal variation has rarely been explicitly demonstrated in nature and local adaptation is commonly considered to be relatively static. We report persistent local adaptation of the short-lived herbivore Abrostola asclepiadis to its long-lived host plant Vincetoxicum hirundinaria over three successive generations in two studied populations and considerable temporal variation in local adaptation in six populations supporting the geographic mosaic theory. The observed variation in local adaptation among populations was best explained by geographic distance and population isolation, suggesting that gene flow reduces local adaptation. Changes in herbivore population size did not conclusively explain temporal variation in local adaptation. Our results also imply that short-term studies are likely to capture only a part of the existing variation in local adaptation.

  5. Helping fluid teams work: A research agenda for effective team adaptation in healthcare.

    Science.gov (United States)

    Bedwell, Wendy L; Ramsay, P Scott; Salas, Eduardo

    2012-12-01

    Although membership changes within teams are a common practice, research into this phenomenon is relatively nascent (Summers et al.; Acad Manag J 55:314-338, 2012). The small literature base, however, does provide insight into skills required for effective adaptation. The purpose of this effort is to provide a brief research synopsis, leading to research hypotheses about medical team training. By generalizing previous scientific findings regarding skills required for effective membership adaptation in different kinds of teams, we posit mechanisms whereby teamwork training might also support adaptation among medical teams (Burke et al.; Qual & Saf Health Care 13:i96-i104, 2004 and Salas et al.; Theor Issues Ergon Sci 8:381-394, 2007). We provide an overview of the membership change literature. Drawing upon literature from both within and outside of the medical domain, we suggest a framework and research propositions to aid in research efforts designed to determine the best content for helping to create adaptable medical teams through team training efforts. For effective adaptation, we suggest ad hoc teams should be trained on generalizable teamwork skills, to share just "enough" and the "right" information, to engage in shared leadership, and to shift from explicit to implicit coordination. Our overarching goal was to present what is known from the general research literature on successful team adaptation to membership changes, and to propose a research agenda to evaluate whether findings generalize to member changes in medical teams.

  6. Meta analysis of research on climate change adaptation and health in southern Africa: Identifying research gaps

    CSIR Research Space (South Africa)

    Nhemachena, C

    2010-09-01

    Full Text Available and opportunities from existing local and regional studies and existing adaptation strategies (e.g. in terms of dissemination, implementation, translation, institutional capacity, theoretical aspects of adaptation etc). To ensure a robust management of the effects...

  7. Research on PGNAA adaptive analysis method with BP neural network

    Science.gov (United States)

    Peng, Ke-Xin; Yang, Jian-Bo; Tuo, Xian-Guo; Du, Hua; Zhang, Rui-Xue

    2016-11-01

    A new approach method to dealing with the puzzle of spectral analysis in prompt gamma neutron activation analysis (PGNAA) is developed and demonstrated. It consists of utilizing BP neural network to PGNAA energy spectrum analysis which is based on Monte Carlo (MC) simulation, the main tasks which we will accomplish as follows: (1) Completing the MC simulation of PGNAA spectrum library, we respectively set mass fractions of element Si, Ca, Fe from 0.00 to 0.45 with a step of 0.05 and each sample is simulated using MCNP. (2) Establishing the BP model of adaptive quantitative analysis of PGNAA energy spectrum, we calculate peak areas of eight characteristic gamma rays that respectively correspond to eight elements in each individual of 1000 samples and that of the standard sample. (3) Verifying the viability of quantitative analysis of the adaptive algorithm where 68 samples were used successively. Results show that the precision when using neural network to calculate the content of each element is significantly higher than the MCLLS.

  8. Adapting Project Management Practices to Research-Based Projects

    Science.gov (United States)

    Bahr, P.; Baker, T.; Corbin, B.; Keith, L.; Loerch, L.; Mullenax, C.; Myers, R.; Rhodes, B.; Skytland, N.

    2007-01-01

    From dealing with the inherent uncertainties in outcomes of scientific research to the lack of applicability of current NASA Procedural Requirements guidance documentation, research-based projects present challenges that require unique application of classical project management techniques. If additionally challenged by the creation of a new program transitioning from basic to applied research in a technical environment often unfamiliar with the cost and schedule constraints addressed by project management practices, such projects can find themselves struggling throughout their life cycles. Finally, supplying deliverables to a prime vehicle customer, also in the formative stage, adds further complexity to the development and management of research-based projects. The Biomedical Research and Countermeasures Projects Branch at NASA Johnson Space Center encompasses several diverse applied research-based or research-enabling projects within the newly-formed Human Research Program. This presentation will provide a brief overview of the organizational structure and environment in which these projects operate and how the projects coordinate to address and manage technical requirements. We will identify several of the challenges (cost, technical, schedule, and personnel) encountered by projects across the Branch, present case reports of actions taken and techniques implemented to deal with these challenges, and then close the session with an open forum discussion of remaining challenges and potential mitigations.

  9. Adaptive Molecular Evolution of PHYE in Primulina, a Karst Cave Plant.

    Science.gov (United States)

    Tao, Junjie; Qi, Qingwen; Kang, Ming; Huang, Hongwen

    2015-01-01

    Limestone Karst areas possess high levels of biodiversity and endemism. Primulina is a typical component of Karst endemic floras. The high species richness and wide distribution in various Karst microenvironments make the genus an idea model for studying speciation and local adaptation. In this study, we obtained 10 full-length sequences of the phytochrome PHYE from available transcriptome resources of Primulina and amplified partial sequences of PHYE from the genomic DNA of 74 Primulina species. Then, we used maximum-likelihood approaches to explore molecular evolution of PHYE in this Karst cave plant. The results showed that PHYE was dominated by purifying selection in both data sets, and two sites were identified as potentially under positive selection. Furthermore, the ω ratio varies greatly among different functional domains of PHYE and among different species lineages. These results suggest that potential positive selection in PHYE might have played an important role in the adaption of Primulina to heterogeneous light environments in Karst regions, and different species lineages might have been subjected to different selective pressures.

  10. Adaptive Molecular Evolution of PHYE in Primulina, a Karst Cave Plant.

    Directory of Open Access Journals (Sweden)

    Junjie Tao

    Full Text Available Limestone Karst areas possess high levels of biodiversity and endemism. Primulina is a typical component of Karst endemic floras. The high species richness and wide distribution in various Karst microenvironments make the genus an idea model for studying speciation and local adaptation. In this study, we obtained 10 full-length sequences of the phytochrome PHYE from available transcriptome resources of Primulina and amplified partial sequences of PHYE from the genomic DNA of 74 Primulina species. Then, we used maximum-likelihood approaches to explore molecular evolution of PHYE in this Karst cave plant. The results showed that PHYE was dominated by purifying selection in both data sets, and two sites were identified as potentially under positive selection. Furthermore, the ω ratio varies greatly among different functional domains of PHYE and among different species lineages. These results suggest that potential positive selection in PHYE might have played an important role in the adaption of Primulina to heterogeneous light environments in Karst regions, and different species lineages might have been subjected to different selective pressures.

  11. Gene duplications circumvent trade-offs in enzyme function: Insect adaptation to toxic host plants.

    Science.gov (United States)

    Dalla, Safaa; Dobler, Susanne

    2016-12-01

    Herbivorous insects and their adaptations against plant toxins provide striking opportunities to investigate the genetic basis of traits involved in coevolutionary interactions. Target site insensitivity to cardenolides has evolved convergently across six orders of insects, involving identical substitutions in the Na,K-ATPase gene and repeated convergent gene duplications. The large milkweed bug, Oncopeltus fasciatus, has three copies of the Na,K-ATPase α-subunit gene that bear differing numbers of amino acid substitutions in the binding pocket for cardenolides. To analyze the effect of these substitutions on cardenolide resistance and to infer possible trade-offs in gene function, we expressed the cardenolide-sensitive Na,K-ATPase of Drosophila melanogaster in vitro and introduced four distinct combinations of substitutions observed in the three gene copies of O. fasciatus. With an increasing number of substitutions, the sensitivity of the Na,K-ATPase to a standard cardenolide decreased in a stepwise manner. At the same time, the enzyme's overall activity decreased significantly with increasing cardenolide resistance and only the least substituted mimic of the Na,K-ATPase α1C copy maintained activity similar to the wild-type enzyme. Our results suggest that the Na,K-ATPase copies in O. fasciatus have diverged in function, enabling specific adaptations to dietary cardenolides while maintaining the functionality of this critical ion carrier. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  12. Archaeogenomic insights into the adaptation of plants to the human environment: pushing plant-hominin co-evolution back to the Pliocene.

    Science.gov (United States)

    Allaby, Robin G; Kistler, Logan; Gutaker, Rafal M; Ware, Roselyn; Kitchen, James L; Smith, Oliver; Clarke, Andrew C

    2015-02-01

    The colonization of the human environment by plants, and the consequent evolution of domesticated forms is increasingly being viewed as a co-evolutionary plant-human process that occurred over a long time period, with evidence for the co-evolutionary relationship between plants and humans reaching ever deeper into the hominin past. This developing view is characterized by a change in emphasis on the drivers of evolution in the case of plants. Rather than individual species being passive recipients of artificial selection pressures and ultimately becoming domesticates, entire plant communities adapted to the human environment. This evolutionary scenario leads to systems level genetic expectations from models that can be explored through ancient DNA and Next Generation Sequencing approaches. Emerging evidence suggests that domesticated genomes fit well with these expectations, with periods of stable complex evolution characterized by large amounts of change associated with relatively small selective value, punctuated by periods in which changes in one-half of the plant-hominin relationship cause rapid, low-complexity adaptation in the other. A corollary of a single plant-hominin co-evolutionary process is that clues about the initiation of the domestication process may well lie deep within the hominin lineage.

  13. Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants

    Directory of Open Access Journals (Sweden)

    Zhenzhu eXu

    2015-09-01

    Full Text Available It is well known that plant photosynthesis and respiration are two fundamental and crucial physiological processes, while the critical role of the antioxidant system in response to abiotic factors is still a focus point for investigating physiological stress. Although one key metabolic process and its response to climatic change have already been reported and reviewed, an integrative review, including several biological processes at multiple scales, has not been well reported. The current review will present a synthesis focusing on the underlying mechanisms in the responses to elevated CO2 at multiple scales, including molecular, cellular, biochemical, physiological, and individual aspects, particularly, for these biological processes under elevated CO2 with other key abiotic stresses, such as heat, drought, and ozone pollution, as well as nitrogen limitation. The present comprehensive review may add timely and substantial information about the topic in recent studies, while it presents what has been well established in previous reviews. First, an outline of the critical biological processes, and an overview of their roles in environmental regulation, is presented. Second, the research advances with regard to the individual subtopics are reviewed, including the response and adaptation of the photosynthetic capacity, respiration, and antioxidant system to CO2 enrichment alone, and its combination with other climatic change factors. Finally, the potential applications for plant responses at various levels to climate change are discussed. The above issue is currently of crucial concern worldwide, and this review may help in a better understanding of how plants deal with elevated CO2 using other mainstream abiotic factors, including molecular, cellular, biochemical, physiological, and whole individual processes, and the better management of the ecological environment, climate change, and sustainable development.

  14. RESEARCH ON ADAPTIVE DATA COMPRESSION METHOD FOR TRIANGULATED SURFACES

    Institute of Scientific and Technical Information of China (English)

    Wang Wen; Wu Shixiong; Chen Zichen

    2004-01-01

    NC code or STL file can be generated directly from measuring data in a fast reverse-engineering mode.Compressing the massive data from laser scanner is the key of the new mode.An adaptive compression method based on triangulated-surfaces model is put forward.Normal-vector angles between triangles are computed to find prime vertices for removal.Ring data structure is adopted to save massive data effectively.It allows the efficient retrieval of all neighboring vertices and triangles of a given vertices.To avoid long and thin triangles,a new re-triangulation approach based on normalized minimum-vertex-distance is proposed,in which the vertex distance and interior angle of triangle are considered.Results indicate that the compression method has high efficiency and can get reliable precision.The method can be applied in fast reverse engineering to acquire an optimal subset of the original massive data.

  15. 植物自然群体适应逆境的分子机理%Molecular Mechanisms of Stress Adaptation in Plant Natural Populations

    Institute of Scientific and Technical Information of China (English)

    胡志昂; 王洪新

    2001-01-01

    Recent advances in studies of genetic variation at protein andDNA levels in plant natural populations and its relationship with environmental changes were reviewed with special reference to the works on the wild barley (Hordeum spontaneum C. Koch.). On one side, adaptation was shown in statistic data, on the other side, the fact that a considerable part of genetic variation does exist within populations (subpopulations) under same ecological condition indicated its maintainability of neutral or near-neutral mutations in natural populations. The researches on adaptive populations of plants, especially on wild soybean (Glycine soja Sieb. et Zucc.) mainly conducted in author's laboratory, have shown that the most part of molecular variation within and among populations can not be explained by selection particularly as far as the individual uniqueness was concerned. There are some data shown that adaptation may be caused by accumulation of a few near-neutral mutations. Recent publications on molecular mechanisms of morphological evolution has been received special attention to elucidate the discrepancy between molecular evolution and morphological adaptive evolution. A frame on the unified evolution theory has been built. Finally some related viewpoints of philosophy were discussed.

  16. Physiological and genetic control mechanisms for plant adaptation to high temperature and elevated CO2

    Energy Technology Data Exchange (ETDEWEB)

    Zeiger, Eduardo

    2001-02-01

    Acclimations of the stomatal response to CO2 were characterized. Stomata from the model plant used, Vicia faba, are very sensitive to ambient CO2 when grown in growth chambers as compared to stomata from green house grown leaves. The different CO2 sensitivities of growth chamber and green house grown guard cells was confirmed by reciprocal transfer experiments. Stomata acclimated to their new environment and acquired the CO2 sensitivity typical of that environment. A mechanism for CO2 sensing was also characterized. Results show that CO2 concentration alters the concentration of zeaxanthin in the guard cell chloroplast, thus modifying the light response of the guard cells. This mechanism accounts for the well characterized interactions of light and CO2 in the stomatal responses. The xanthophyll cycle in the stomata of the facultative CAM plant, Mesembryanthemum crystallinum, was characterized. In the C3 mode, zeaxanthin is formed in the light and stomata open. Upon induction of the CAM mode, zeaxanthin synthesis is blocked and stomata no longer respond to light. These results implicate the regulation of the xanthophyll cycle of guard cells in the CAM adaptation.

  17. [Research advance in seed germination of desert woody plants].

    Science.gov (United States)

    Chang, Wei; Wu, Jian-guo; Liu, Yan-hong

    2007-02-01

    This paper reviewed the research methods of desert woody plants seed germination, and the effects of internal and external ecological factors on it. Most researchers use incubator and artificial climate chamber to dispose the seeds, while field investigation was few involved. Seed dormancy is the important physiological factor affecting germination, while seed size, mass and color are closely correlated with its maturity and vigor. The poor permeability of seed capsule is a barrier that restrains the germination, which can be weakened or eliminated by shaving, cutting, treating with low temperature, and dipping in chemical reagent, etc. Seed water content has a close correlation with its storage life and water-absorbing capability. Suitable temperature is the prerequisite of seed germination, while changing temperature can accelerate the germination. Soil moisture content is a limiting factor, while illumination is not so essential to the seed germination of most desert woody plants. Sand-burying plays an important role in the seed germination through regulating illumination, temperature, and soil moisture content. Salinity stress restrains the seed germination of desert woody plants observably. In further studies, the effects of multi-factors and the eco-physiological and molecular biological mechanisms of germination should be more concerned.

  18. Program on Promoting Climate Change Adaptation Technologies Bridging Policy Making and Science Research in Taiwan

    Science.gov (United States)

    Chiang, Y.; Chiang, W.; Sui, C.; Tung, C.; Ho, H.; Li, M.; Chan, S.; Climate Change Adaptation Technologies Program, National Science Council, Taiwan

    2010-12-01

    Climate changes adaptation needs innovative technological revolution on demand for transdisciplinary studies in various temporal and spatial scales. In our proposed program, a systematic and scientific framework will be developed to promote innovative adaptation technologies with respect to providing decision making information for government sectors, enhancing applicability of scientific research output, strengthening national research capabilities, and integrating both academic and non-academic resources. The objectives of this program are to identify key issues, required technologies, and scientific knowledge for climate change adaptations, and to build a transdisciplinary platform bridging science-supported technologies required by government sectors and demand-oriented scientific research conducted by academic communities. The approach proposed herein will be practiced in vulnerable regions, such as urban, rural, mountain, river basin, and coastal areas, which are particularly sensitive to climate change. The first phase of 3-year (2011~2013) work is to deploy framework and strategies of climate change impact assessment and adaptation measures between related government sectors and researchers from academic communities. The proposed framework involves three principle research groups, namely Environmental System, Vulnerability Assessment, and Risk Management and Adaptation Technology. The goal of the first group, Environmental System, is to combine climate change projections with enhanced scientific and environmental monitoring technologies for better adaptations to future scenarios in different social, economic, and environmental sectors to support adaptation measures planning and to reduce uncertainties on assessing vulnerability. The goal of the second group, Vulnerability Assessment, is to identify interfaces and information structures of climate change vulnerably issues and to develop protocol, models, and indices for vulnerability assessment. The goal of

  19. No evidence for local adaptation in an invasive alien plant: field and greenhouse experiments tracing a colonization sequence

    Science.gov (United States)

    Pahl, Anna T.; Kollmann, Johannes; Mayer, Andreas; Haider, Sylvia

    2013-01-01

    Background and Aims Local adaptation enables plant species to persist under different environmental conditions. Evolutionary change can occur rapidly in invasive annual species and has been shown to lead to local adaptation. However, the patterns and mechanisms of local adaptation in invasive species along colonization sequences are not yet understood. Thus, in this study the alien annual Impatiens glandulifera was used to investigate local adaptation to distinct habitats that have been consecutively invaded in central Europe. Methods A reciprocal transplant experiment was performed using 15 populations from alluvial deciduous forests, fallow meadows and coniferous upland forests, and a greenhouse experiment was performed in which plants from these habitats were grown under treatments reflecting the main habitat differentiators (shade, soil acidity, competition). Key Results Biomass production, specific leaf area, plant height and relative growth rate differed between habitats in the field experiment and between treatments in the greenhouse, but not between seed origins. Overall, there was no indication of local adaptation in either experiment. Conclusions Since I. glandulifera is a successful invader in many habitats without showing local adaptation, it is suggested that the species is coping with environmental variation by means of high phenotypic plasticity. The species seems to follow a ‘jack-and-master’ strategy, i.e. it is able to maintain high fitness under a wide range of environmental conditions, but performs particularly well in favourable habitats. Therefore, the proposed colonization sequence is likely to be based primarily on changes in propagule pressure. It is concluded that invasive alien plants can become dominant in distinct habitats without local adaptation. PMID:24214934

  20. Increasing sustainable stormwater management adaption through transdisciplinary research

    Science.gov (United States)

    Wingfield, Thea; Potter, Karen; Jones, Gareth; Spees, Jack; Macdonald, Neil

    2016-04-01

    The Ribble Rivers Trust leads a partnership of land and water management organisations that use a holistic approach to water management in the Ribble catchment. They are interested in incorporating sustainable stormwater systems, into their program of delivery with a view to ensuring that their activities to improve the environments and habitats of the catchment also contribute to reducing flood risk. A methodology, to locate interventions that would slow water within the catchment are identified; however partner buy in, institutional caution and economic barriers are felt to be hindering delivery. In response a transdisciplinary research project in which both the academics of the University of Liverpool and the practitioners of The Ribble Rivers Trust are active investigators has been established. The project aims to increase the uptake of sustainable stormwater management techniques through the analysis of the institutional, experiential and governance processes and their interactions with the physical hydrological processes governing stormwater systems. Research that is transdisciplinary must integrate academic knowledge with practitioner, local understanding and practice. Furthermore methodologies belonging to different academic fields must be blended together to collect, analyse and interpret data in order to examine complex problems through different disciplinary lenses in an integrated way. This approach has been developed in response to the complex relationships of cause and effect of contemporary inter-related economic, environmental and societal challenges. There have been a number of challenges to overcome as transdisciplinary researchers, the first and most important was to understand the different research philosophies and theoretical assumptions behind various natural science and social science research methods. Without this understanding research methodologies could be flawed and would not be effectively integrated and the data would not be

  1. Can Psychological Expectation Models Be Adapted for Placebo Research?

    Science.gov (United States)

    Rief, Winfried; Petrie, Keith J

    2016-01-01

    Placebo responses contribute substantially to the effect and clinical outcome of medical treatments. Patients' expectations have been identified as one of the major mechanisms contributing to placebo effects. However, to date a general theoretical framework to better understand how patient expectations interact with features of medical treatment has not been developed. In this paper we outline an expectation model that can be used as framework for experimental studies on both placebo and nocebo mechanisms. This model is based on psychological concepts of expectation development, expectation maintenance, and expectation change within the typical paradigms used in placebo research. This theoretical framework reflects the dynamic aspects of the interaction between expectations and medical treatment, and offers a platform to combine psychological and neurophysiological research activities. Moreover, this model can be used to identify important future research questions. For example, we argue that the dynamic processes of expectation maintenance vs. expectation changes are not sufficiently addressed in current research on placebo mechanisms. Therefore, the question about how to change and optimize patients' expectations prior to treatment should be a special focus of future clinical research.

  2. Autonomous Research Vessels for Adaptive Upper-Ocean Process Studies

    Science.gov (United States)

    2014-09-30

    wave and turbulence modeling for interpretation. OBJECTIVES This award is supporting the development  of Autonomous Research Vessels   (ARVs) for...outlet glacier,  and within meters of large icebergs .   This vehicle  was  specifically  developed  for fjord research, so is small (2...sampling.   As an example,  data from a 1.5 hour mission to study the dynamics of iceberg wakes is shown  below.   During this period, R/V Rob

  3. Non-Western Students' Causal Reasoning about Biologically Adaptive Changes in Humans, Other Animals and Plants: Instructional and Curricular Implications

    Science.gov (United States)

    Mbajiorgu, Ngozika; Anidu, Innocent

    2017-01-01

    Senior secondary school students (N = 360), 14- to 18-year-olds, from the Igbo culture of eastern Nigeria responded to a questionnaire requiring them to give causal explanations of biologically adaptive changes in humans, other animals and plants. A student subsample (n = 36) was, subsequently, selected for in-depth interviews. Significant…

  4. Adapting the distress thermometer for cross-cultural research: a method enhanced by Mexican American undergraduate research assistants.

    Science.gov (United States)

    Wells, Jo Nell; Dietz, Tracy J

    2013-01-01

    Spanish-speaking Mexican Americans (MAs) need representation in cancer research studies to provide an empirical base for developing culturally relevant health care interventions. One factor that limits research with MAs is the lack of Spanish language measurement tools. Bilingual, bicultural student research assistants (RAs), working with faculty researchers and translation consultants, adapted the English version Distress Thermometer and Problem List (DT-PL) tool into the Spanish language. Additionally, RAs assessed tool feasibility with five MA women to determine its usefulness for a later study. The translation process resulted in a distress assessment instrument suitable for use in a low-literacy, Spanish-speaking population. RAs can enhance a process of adapting a measurement tool for use in research. Health care researchers should now pilot the Spanish DT-PL tool to assess its reliability and validity.

  5. Some results of medical researches at Ulba Metallurgical Plant

    Energy Technology Data Exchange (ETDEWEB)

    Artemieva, G.I.; Novikov, V.G.; Savchuk, V.V. [Ulba Metallurgical Plant, Ust-Kamenogorsk (Kazakhstan)

    1998-01-01

    The results of 45-years medical researches at beryllium production of Ulba Metallurgical Plant are summarized in this report. Statistic data on different kinds of occupational diseases, related to beryllium production and the dynamics of changing occupational diseases with the development of beryllium production, are given there. Data on average duration of life of occupational disease patients are presented in the report. It includes the description of problems, related to berylliosis diagnosis. Issues, connected to beryllium production effect on health of man, located nearby beryllium production are also discussed there as well. (author)

  6. Local adaptation is associated with zinc tolerance in Pseudomonas endophytes of the metal-hyperaccumulator plant Noccaea caerulescens.

    Science.gov (United States)

    Fones, H N; McCurrach, H; Mithani, A; Smith, J A C; Preston, G M

    2016-05-11

    Metal-hyperaccumulating plants, which are hypothesized to use metals for defence against pests and pathogens, provide a unique context in which to study plant-pathogen coevolution. Previously, we demonstrated that the high concentrations of zinc found in leaves of the hyperaccumulator Noccaea caerulescens provide protection against bacterial pathogens, with a potential trade-off between metal-based and pathogen-induced defences. We speculated that an evolutionary arms race between zinc-based defences in N. caerulescens and zinc tolerance in pathogens might have driven the development of the hyperaccumulation phenotype. Here, we investigate the possibility of local adaptation by bacteria to the zinc-rich environment of N. caerulescens leaves and show that leaves sampled from the contaminated surroundings of a former mine site harboured endophytes with greater zinc tolerance than those within plants of an artificially created hyperaccumulating population. Experimental manipulation of zinc concentrations in plants of this artificial population influenced the zinc tolerance of recovered endophytes. In laboratory experiments, only endophytic bacteria isolated from plants of the natural population were able to grow to high population densities in any N. caerulescens plants. These findings suggest that long-term coexistence with zinc-hyperaccumulating plants leads to local adaptation by endophytic bacteria to the environment within their leaves. © 2016 The Author(s).

  7. Does leaf photosynthesis adapt to CO2-enriched environments? An experiment on plants originating from three natural CO2 springs.

    Science.gov (United States)

    Onoda, Yusuke; Hirose, Tadaki; Hikosaka, Kouki

    2009-01-01

    Atmospheric CO2 elevation may act as a selective agent, which consequently may alter plant traits in the future. We investigated the adaptation to high CO2 using transplant experiments with plants originating from natural CO2 springs and from respective control sites. We tested three hypotheses for adaptation to high-CO2 conditions: a higher photosynthetic nitrogen use efficiency (PNUE); a higher photosynthetic water use efficiency (WUE); and a higher capacity for carbohydrate transport from leaves. Although elevated growth CO2 enhanced both PNUE and WUE, there was no genotypic improvement in PNUE. However, some spring plants had a higher WUE, as a result of a significant reduction in stomatal conductance, and also a lower starch concentration. Higher natural variation (assessed by the coefficient of variation) within populations in WUE and starch concentration, compared with PNUE, might be responsible for the observed population differentiation. These results support the concept that atmospheric CO2 elevation can act as a selective agent on some plant traits in natural plant communities. Reduced stomatal conductance and reduced starch accumulation are highlighted for possible adaptation to high CO2.

  8. Highly Adaptable but Not Invulnerable: Necessary and Facilitating Conditions for Research in Evolutionary Developmental Biology

    NARCIS (Netherlands)

    Laudel, Grit; Benninghoff, Martin; Lettkemann, Eric; Håkansson, Elias; Whitley, Richard; Gläser, Jochen

    2014-01-01

    Evolutionary developmental biology is a highly variable scientific innovation because researchers can adapt their involvement in the innovation to the opportunities provided by their environment. On the basis of comparative case studies in four countries, we link epistemic properties of research tas

  9. Self-medication as adaptive plasticity: increased ingestion of plant toxins by parasitized caterpillars.

    Directory of Open Access Journals (Sweden)

    Michael S Singer

    Full Text Available Self-medication is a specific therapeutic behavioral change in response to disease or parasitism. The empirical literature on self-medication has so far focused entirely on identifying cases of self-medication in which particular behaviors are linked to therapeutic outcomes. In this study, we frame self-medication in the broader realm of adaptive plasticity, which provides several testable predictions for verifying self-medication and advancing its conceptual significance. First, self-medication behavior should improve the fitness of animals infected by parasites or pathogens. Second, self-medication behavior in the absence of infection should decrease fitness. Third, infection should induce self-medication behavior. The few rigorous studies of self-medication in non-human animals have not used this theoretical framework and thus have not tested fitness costs of self-medication in the absence of disease or parasitism. Here we use manipulative experiments to test these predictions with the foraging behavior of woolly bear caterpillars (Grammia incorrupta; Lepidoptera: Arctiidae in response to their lethal endoparasites (tachinid flies. Our experiments show that the ingestion of plant toxins called pyrrolizidine alkaloids improves the survival of parasitized caterpillars by conferring resistance against tachinid flies. Consistent with theoretical prediction, excessive ingestion of these toxins reduces the survival of unparasitized caterpillars. Parasitized caterpillars are more likely than unparasitized caterpillars to specifically ingest large amounts of pyrrolizidine alkaloids. This case challenges the conventional view that self-medication behavior is restricted to animals with advanced cognitive abilities, such as primates, and empowers the science of self-medication by placing it in the domain of adaptive plasticity theory.

  10. [Bioremediation of petroleum hydrocarbon-contaminated soils by cold-adapted microorganisms: research advance].

    Science.gov (United States)

    Wang, Shi-jie; Wang, Xiang; Lu, Gui-lan; Wang, Qun-hui; Li, Fa-sheng; Guo, Guan-lin

    2011-04-01

    Cold-adapted microorganisms such as psychrotrophs and psychrophiles widely exist in the soils of sub-Arctic, Arctic, Antarctic, alpine, and high mountains, being the important microbial resources for the biodegradation of petroleum hydrocarbons at low temperature. Using the unique advantage of cold-adapted microorganisms to the bioremediation of petroleum hydrocarbon-contaminated soils in low temperature region has become a research hotspot. This paper summarized the category and cold-adaptation mechanisms of the microorganisms able to degrade petroleum hydrocarbon at low temperature, biodegradation characteristics and mechanisms of different petroleum fractions under the action of cold-adapted microorganisms, bio-stimulation techniques for improving biodegradation efficiency, e. g., inoculating petroleum-degrading microorganisms and adding nutrients or bio-surfactants, and the present status of applying molecular biotechnology in this research field, aimed to provide references to the development of bioremediation techniques for petroleum hydrocarbon-contaminated soils.

  11. The Recent Advances in Plant Protection Researches of China

    Institute of Scientific and Technical Information of China (English)

    GuoYuyuan; LiangGemei

    2005-01-01

    There are eight examples briefly given in this paper, namely, (1) Polymyxa graminis and the cereal viruses it transmits; (2) the geographical types and facultative migration of cotton bollworm as well as the safety of Bt transgenic cotton; (3) development of crop near-isogenic lines with resistance to diseases; (4) molecular-biological researches induced resistance of rice by infection of blast fungus;(5) to use cytological and molecular-biological techniques for breeding wheat varieties resistant to barley yellow dwarf virus; (6) mass rearing and field releasing of Microplitis mediator for cotton bollworm control; (7) identification and recombination of insecticidal crystal genes of Bacillus thuringiensis; and (8) interplanting of diverse resistance rice varieties for sustainable control of blast disease; which reflect the general situation of recent advances in plant protection researches of China.

  12. Research on Community Competition and Adaptive Genetic Algorithm for Automatic Generation of Tang Poetry

    OpenAIRE

    Wujian Yang; Yining Cheng; Jie He; Wenqiong Hu; Xiaojia Lin

    2016-01-01

    As there are many researches about traditional Tang poetry, among which automatically generated Tang poetry has arouse great concern in recent years. This study presents a community-based competition and adaptive genetic algorithm for automatically generating Tang poetry. The improved algorithm with community-based competition that has been added aims to maintain the diversity of genes during evolution; meanwhile, the adaptation means that the probabilities of crossover and mutation are varie...

  13. An adaptive decision framework for the conservation of a threatened plant

    Science.gov (United States)

    Moore, Clinton T.; Fonnesbeck, Christopher J.; Shea, Katriona; Lah, Kristopher J.; McKenzie, Paul M.; Ball, Lianne C.; Runge, Michael C.; Alexander, Helen M.

    2011-01-01

    Mead's milkweed Asclepias meadii, a long-lived perennial herb of tallgrass prairie and glade communities of the central United States, is a species designated as threatened under the U.S. Endangered Species Act. Challenges to its successful management include the facts that much about its life history is unknown, its age at reproductive maturity is very advanced, certain life stages are practically unobservable, its productivity is responsive to unpredictable environmental events, and most of the known populations occur on private lands unprotected by any legal conservation instrument. One critical source of biological uncertainty is the degree to which fire promotes growth and reproductive response in the plant. To aid in its management, we developed a prototype population-level state-dependent decision-making framework that explicitly accounts for this uncertainty and for uncertainties related to stochastic environmental effects and vital rates. To parameterize the decision model, we used estimates found in the literature, and we analyzed data from a long-term monitoring program where fates of individual plants were observed through time. We demonstrate that different optimal courses of action are followed according to how one believes that fire influences reproductive response, and we show that the action taken for certain population states is informative for resolving uncertainty about competing beliefs regarding the effect of fire. We advocate the use of a model-predictive approach for the management of rare populations, particularly when management uncertainty is profound. Over time, an adaptive management approach should reduce uncertainty and improve management performance as predictions of management outcome generated under competing models are continually informed and updated by monitoring data.

  14. Adaptation of the Agrobacterium tumefaciens VirG response regulator to activate transcription in plants.

    Science.gov (United States)

    Czarnecka-Verner, Eva; Salem, Tarek A; Gurley, William B

    2016-02-01

    The Agrobacterium tumefaciens VirG response regulator of the VirA/VirG two-component system was adapted to function in tobacco protoplasts. The subcellular localization of VirG and VirA proteins transiently expressed in onion cells was determined using GFP fusions. Preliminary studies using Gal4DBD-VP16 fusions with VirG and Escherichia coli UhpA, and NarL response regulators indicated compatibility of these bacterial proteins with the eukaryotic transcriptional apparatus. A strong transcriptional activator based on tandem activation domains from the Drosophila fushi tarazu and Herpes simplex VP16 was created. Selected configurations of the two-site Gal4-vir box GUS reporters were activated by chimeric effectors dependent on either the yeast Gal4 DNA-binding domain or that of VirG. Transcriptional induction of the GUS reporter was highest for the VirE19-element promoter with both constitutive and wild-type VirG-tandem activation domain effectors. Multiple VirE19 elements increased the reporter activity proportionately, indicating that the VirG DNA binding domain was functional in plants. The VirG constitutive-Q-VP16 effector was more active than the VirG wild-type. In both the constitutive and wild-type forms of VirG, Q-VP16 activated transcription of the GUS reporter best when located at the C-terminus, i.e. juxtaposed to the VirG DNA binding domain. These results demonstrate the possibility of using DNA binding domains from bacterial response regulators and their cognate binding elements in the engineering of plant gene expression.

  15. Plant natriuretic peptides induce proteins diagnostic for an adaptive response to stress

    KAUST Repository

    Turek, Ilona

    2014-11-26

    In plants, structural and physiological evidence has suggested the presence of biologically active natriuretic peptides (PNPs). PNPs are secreted into the apoplast, are systemically mobile and elicit a range of responses signaling via cGMP. The PNP-dependent responses include tissue specific modifications of cation transport and changes in stomatal conductance and the photosynthetic rate. PNP also has a critical role in host defense responses. Surprisingly, PNP-homologs are produced by several plant pathogens during host colonization suppressing host defense responses. Here we show that a synthetic peptide representing the biologically active fragment of the Arabidopsis thaliana PNP (AtPNP-A) induces the production of reactive oxygen species in suspension-cultured A. thaliana (Col-0) cells. To identify proteins whose expression changes in an AtPNP-A dependent manner, we undertook a quantitative proteomic approach, employing tandem mass tag (TMT) labeling, to reveal temporal responses of suspension-cultured cells to 1 nM and 10 pM PNP at two different time-points post-treatment. Both concentrations yield a distinct differential proteome signature. Since only the higher (1 nM) concentration induces a ROS response, we conclude that the proteome response at the lower concentration reflects a ROS independent response. Furthermore, treatment with 1 nM PNP results in an over-representation of the gene ontology (GO) terms “oxidation-reduction process,” “translation” and “response to salt stress” and this is consistent with a role of AtPNP-A in the adaptation to environmental stress conditions.

  16. Multiple feedbacks between chloroplast and whole plant in the context of plant adaptation and acclimation to the environment

    Science.gov (United States)

    Demmig-Adams, Barbara; Stewart, Jared J.; Adams, William W.

    2014-01-01

    This review focuses on feedback pathways that serve to match plant energy acquisition with plant energy utilization, and thereby aid in the optimization of chloroplast and whole-plant function in a given environment. First, the role of source–sink signalling in adjusting photosynthetic capacity (light harvesting, photochemistry and carbon fixation) to meet whole-plant carbohydrate demand is briefly reviewed. Contrasting overall outcomes, i.e. increased plant growth versus plant growth arrest, are described and related to respective contrasting environments that either do or do not present opportunities for plant growth. Next, new insights into chloroplast-generated oxidative signals, and their modulation by specific components of the chloroplast's photoprotective network, are reviewed with respect to their ability to block foliar phloem-loading complexes, and, thereby, affect both plant growth and plant biotic defences. Lastly, carbon export capacity is described as a newly identified tuning point that has been subjected to the evolution of differential responses in plant varieties (ecotypes) and species from different geographical origins with contrasting environmental challenges. PMID:24591724

  17. Local adaptation is associated with zinc tolerance in Pseudomonas endophytes of the metal-hyperaccumulator plant Noccaea caerulescens

    Science.gov (United States)

    Fones, H. N.; McCurrach, H.; Mithani, A.; Smith, J. A. C.

    2016-01-01

    Metal-hyperaccumulating plants, which are hypothesized to use metals for defence against pests and pathogens, provide a unique context in which to study plant–pathogen coevolution. Previously, we demonstrated that the high concentrations of zinc found in leaves of the hyperaccumulator Noccaea caerulescens provide protection against bacterial pathogens, with a potential trade-off between metal-based and pathogen-induced defences. We speculated that an evolutionary arms race between zinc-based defences in N. caerulescens and zinc tolerance in pathogens might have driven the development of the hyperaccumulation phenotype. Here, we investigate the possibility of local adaptation by bacteria to the zinc-rich environment of N. caerulescens leaves and show that leaves sampled from the contaminated surroundings of a former mine site harboured endophytes with greater zinc tolerance than those within plants of an artificially created hyperaccumulating population. Experimental manipulation of zinc concentrations in plants of this artificial population influenced the zinc tolerance of recovered endophytes. In laboratory experiments, only endophytic bacteria isolated from plants of the natural population were able to grow to high population densities in any N. caerulescens plants. These findings suggest that long-term coexistence with zinc-hyperaccumulating plants leads to local adaptation by endophytic bacteria to the environment within their leaves. PMID:27170725

  18. Impact of Metal Nanoform Colloidal Solution on the Adaptive Potential of Plants

    Science.gov (United States)

    Taran, Nataliya; Batsmanova, Ludmila; Kovalenko, Mariia; Okanenko, Alexander

    2016-02-01

    Nanoparticles are a known cause of oxidative stress and so induce antistress action. The latter property was the purpose of our study. The effect of two concentrations (120 and 240 mg/l) of nanoform biogenic metal (Ag, Cu, Fe, Zn, Mn) colloidal solution on antioxidant enzymes, superoxide dismutase and catalase; the level of the factor of the antioxidant state; and the content of thiobarbituric acid reactive substances (TBARSs) of soybean plant in terms of field experience were studied. It was found that the oxidative processes developed a metal nanoparticle pre-sowing seed treatment variant at a concentration of 120 mg/l, as evidenced by the increase in the content of TBARS in photosynthetic tissues by 12 %. Pre-sowing treatment in a double concentration (240 mg/l) resulted in a decrease in oxidative processes (19 %), and pre-sowing treatment combined with vegetative treatment also contributed to the reduction of TBARS (10 %). Increased activity of superoxide dismutase (SOD) was observed in a variant by increasing the content of TBARS; SOD activity was at the control level in two other variants. Catalase activity decreased in all variants. The factor of antioxidant activity was highest (0.3) in a variant with nanoparticle double treatment (pre-sowing and vegetative) at a concentration of 120 mg/l. Thus, the studied nanometal colloidal solution when used in small doses, in a certain time interval, can be considered as a low-level stress factor which according to hormesis principle promoted adaptive response reaction.

  19. Ways of adaptation of the plant populations to chemical and radioactive contamination

    Energy Technology Data Exchange (ETDEWEB)

    Pozolotina, V.; Bezel' , V.; Zhuykova, T.; Severu' Khina, O.; Ulyanova, E. [Institute of Plant and Animal Ecology, Ural Division of Russian Academy of Sciences, Ekaterinburg (Russian Federation)

    2004-07-01

    Chemical agents (heavy metals, acids, etc.) and radiation render their influence upon biota being clearly distinct in primary mechanisms of action. However, lively organisms demonstrate one and the same set [arsenal] of response reactions, and thus it is important to reveal the ways of their realization caused by different types of techno-genic impacts. Our work was intended to examine the seed progeny of the dandelion, Taraxacum officinale, from radionuclides-contaminated coeno-populations (grown at the territories influenced by Eastern-Ural radioactive trace, in the Techa-river flood plain) and those situated in the nearest impact zone affected by a large metallurgical plant in the Urals. Plots, differently distanced from the enterprise, showed heavy metal contamination loads 8-33 times higher than the control site did. Radionuclides concentrations ({sup 90}Sr and {sup 137}Cs) within the contaminated zone exceeded the background values 4-40 times. The study allowed estimation of the seed progeny vitality level for different coeno-populations, comparison of their adaptive potential in regard to heavy metals tolerance and gamma radiation resistance, estimation of abnormal seedlings [sprouts] frequency values. It was shown [found] that under techno-genic pollution the dandelion coeno-populations usually demonstrate wider variations of different characteristics (vitality, mutability, root and leaf growth rates) as compared to those in the background zone. As a general regularity one can regard the phenomenon, that negative effects were not marked to be increased by heavier pollution loads, irrespectively of the agents nature. (author)

  20. Dissecting the contributions of plasticity and local adaptation to the phenology of a butterfly and its host plants.

    Science.gov (United States)

    Phillimore, Albert B; Stålhandske, Sandra; Smithers, Richard J; Bernard, Rodolphe

    2012-11-01

    Phenology affects the abiotic and biotic conditions that an organism encounters and, consequently, its fitness. For populations of high-latitude species, spring phenology often occurs earlier in warmer years and regions. Here we apply a novel approach, a comparison of slope of phenology on temperature over space versus over time, to identify the relative roles of plasticity and local adaptation in generating spatial phenological variation in three interacting species, a butterfly, Anthocharis cardamines, and its two host plants, Cardamine pratensis and Alliaria petiolata. All three species overlap in the time window over which mean temperatures best predict variation in phenology, and we find little evidence that a day length requirement causes the sensitive time window to be delayed as latitude increases. The focal species all show pronounced temperature-mediated phenological plasticity of similar magnitude. While we find no evidence for local adaptation in the flowering times of the plants, geographic variation in the phenology of the butterfly is consistent with countergradient local adaptation. The butterfly's phenology appears to be better predicted by temperature than it is by the flowering times of either host plant, and we find no evidence that coevolution has generated geographic variation in adaptive phenological plasticity.

  1. Intrinsic motivation inventory: an adapted measure for schizophrenia research.

    Science.gov (United States)

    Choi, Jimmy; Mogami, Tamiko; Medalia, Alice

    2010-09-01

    This article describes the psychometric validation of a scale designed to measure intrinsic motivation (IM) in schizophrenia. Recent studies have highlighted the relationship between motivation and functional outcome in schizophrenia and identified IM as an important mediating factor between neurocognition and psychosocial outcome. It therefore becomes imperative to have validated measures of IM for empirical use. To that end, we validated a self-report IM scale that gauges the central motivational structures identified by Self-determinism Theory as pertinent to cognitive task engagement, skill acquisition, treatment compliance, and remediation outcome. Participants were schizophrenia outpatients involved in a cognitive remediation study (n = 58), a convenience subsample of clinically stable schizophrenia outpatients (n = 15), and a group of healthy normals (n = 22). The Intrinsic Motivation Inventory for Schizophrenia Research (IMI-SR) is a concise instrument, possessing good internal consistency (alpha = .92) and test-retest reliability (intraclass correlation = .77). Data were analyzed to abridge the original 54 items into a final 21-item questionnaire comprised of 3 domains relevant to motivation for treatments (interest/enjoyment, perceived choice, value/usefulness). The scale was highly associated with germane constructs of motivation for health-related behaviors, including perceived competency for attempting challenging tasks and autonomous treatment engagement. Importantly, the scale was able to distinguish improvers and nonimprovers on a cognitive task and actual learning exercises, delineate high vs low treatment attendance, and demonstrate sensitivity to motivational changes due to intervention variation. The IMI-SR is a viable instrument to measure IM in schizophrenia as part of a cognitive remediation protocol or psychosocial rehabilitation program.

  2. The Brazilian research contribution to knowledge of the plant communities from Antarctic ice free areas

    Directory of Open Access Journals (Sweden)

    ANTONIO B. PEREIRA

    2013-09-01

    Full Text Available This work aims to summarize the results of research carried out by Brazilian researchers on the plant communities of Antarctic ice free areas during the last twenty five years. Since 1988 field work has been carried out in Elephant Island, King George Island, Nelson Island and Deception Island. During this period six papers were published on the chemistry of lichens, seven papers on plant taxonomy, five papers on plant biology, two studies on UVB photoprotection, three studies about the relationships between plant communities and bird colonies and eleven papers on plant communities from ice free areas. At the present, Brazilian botanists are researching the plant communities of Antarctic ice free areas in order to understand their relationships to soil microbial communities, the biodiversity, the distribution of the plants populations and their relationship with birds colonies. In addition to these activities, a group of Brazilian researchers are undertaking studies related to Antarctic plant genetic diversity, plant chemistry and their biotechnological applications.

  3. Wageningen researchers create ideal virtual tomato plant (interview with Pieter de Visser and Leo Marcelis)

    NARCIS (Netherlands)

    Arkesteijn, M.; Visser, de P.H.B.; Marcelis, L.F.M.

    2012-01-01

    What does the ideal tomato plant look like? What is the ideal planting distance? At what plant height is light most effective? These questions are difficult to answer in trials and/or they are expensive. Greek researcher, Vaia Sarlikioti, developed a virtual tomato plant during her doctorate study a

  4. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: A strategy for mitigating impacts of climate change

    Science.gov (United States)

    Redman, R.S.; Kim, Y.-O.; Woodward, C.J.D.A.; Greer, C.; Espino, L.; Doty, S.L.; Rodriguez, R.J.

    2011-01-01

    Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients. Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions. The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20–30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization). These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.

  5. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change.

    Science.gov (United States)

    Redman, Regina S; Kim, Yong Ok; Woodward, Claire J D A; Greer, Chris; Espino, Luis; Doty, Sharon L; Rodriguez, Rusty J

    2011-01-01

    Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients.Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions.The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20-30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization).These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.

  6. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change.

    Directory of Open Access Journals (Sweden)

    Regina S Redman

    Full Text Available Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients.Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions.The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20-30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization.These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.

  7. Research Progress in Glycine Betaine Improving Plant Salty Stressful Tolerance

    Institute of Scientific and Technical Information of China (English)

    ZHU Hong; WANG Wenjie; YAN Yongqing; ZU Yuangang

    2008-01-01

    Many plants accumulate compatible solutes in response to the imposition of environmental stresses. Glycine betaine, which is one of compatible solutes in cell of plants, has been shown to have surviving ability for plant from salt stress. Effect of glycine betaine on improving plant salt resistance was discussed in plants under salt stress. The accumulation of glycine betaine protects plants against the damaging effects of stress. Strategies of glycine betaine against the damaging effects of stress were analyzed to clarify the roles of glycine betaine in salt stress tolerance of plants.

  8. [Research progress of genetic engineering on medicinal plants].

    Science.gov (United States)

    Teng, Zhong-qiu; Shen, Ye

    2015-02-01

    The application of genetic engineering technology in modern agriculture shows its outstanding role in dealing with food shortage. Traditional medicinal plant cultivation and collection have also faced with challenges, such as lack of resources, deterioration of environment, germplasm of recession and a series of problems. Genetic engineering can be used to improve the disease resistance, insect resistance, herbicides resistant ability of medicinal plant, also can improve the medicinal plant yield and increase the content of active substances in medicinal plants. Thus, the potent biotechnology can play an important role in protection and large area planting of medicinal plants. In the development of medicinal plant genetic engineering, the safety of transgenic medicinal plants should also be paid attention to. A set of scientific safety evaluation and judgment standard which is suitable for transgenic medicinal plants should be established based on the recognition of the particularity of medicinal plants.

  9. The good and the bad of poisonous plants: an introduction to the USDA-ARS Poisonous Plant Research Laboratory.

    Science.gov (United States)

    Welch, Kevin D; Panter, Kip E; Gardner, Dale R; Stegelmeier, Bryan L

    2012-06-01

    This article provides an overview of the Poisonous Plant Research Laboratory (PPRL), about the unique services and activities of the PPRL and the potential assistance that they can provide to plant poisoning incidences. The PPRL is a federal research laboratory. It is part of the Agricultural Research Service, the in-house research arm of the U.S. Department of Agriculture. The mission of the PPRL is to identify toxic plants and their toxic compounds, determine how the plants poison animals, and develop diagnostic and prognostic procedures for poisoned animals. Furthermore, the PPRL's mission is to identify the conditions under which poisoning occurs and develop management strategies and treatments to reduce losses. Information obtained through research efforts at the PPRL is mostly used by the livestock industry, natural resource managers, veterinarians, chemists, plant and animal scientists, extension personnel, and other state and federal agencies. PPRL currently has 9 scientists and 17 support staff, representing various disciplines consisting of toxicology, reproductive toxicology, veterinary medicine, chemistry, animal science, range science, and plant physiology. This team of scientists provides an interdisciplinary approach to applied and basic research to develop solutions to plant intoxications. While the mission of the PPRL primarily impacts the livestock industry, spinoff benefits such as development of animal models, isolation and characterization of novel compounds, elucidation of biological and molecular mechanisms of action, national and international collaborations, and outreach efforts are significant to biomedical researchers. The staff at the PPRL has extensive knowledge regarding a number of poisonous plants. Although the focus of their knowledge is on plants that affect livestock, oftentimes, these plants are also poisonous to humans, and thus, similar principles could apply for cases of human poisonings. Consequently, the information provided

  10. RNA interference: more than a research tool in the vertebrates' adaptive immunity

    Directory of Open Access Journals (Sweden)

    Mak Johnson

    2005-05-01

    Full Text Available Abstract In recent years, RNA silencing, usage of small double stranded RNAs of ~21 – 25 base pairs to regulate gene expression, has emerged as a powerful research tool to dissect the role of unknown host cell factors in this 'post-genomic' era. While the molecular mechanism of RNA silencing has not been precisely defined, the revelation that small RNA molecules are equipped with this regulatory function has transformed our thinking on the role of RNA in many facets of biology, illustrating the complexity and the dynamic interplay of cellular regulation. As plants and invertebrates lack the protein-based adaptive immunity that are found in jawed vertebrates, the ability of RNA silencing to shut down gene expression in a sequence-specific manner offers an explanation of how these organisms counteract pathogen invasions into host cells. It has been proposed that this type of RNA-mediated defence mechanism is an ancient form of immunity to offset the transgene-, transposon- and virus-mediated attack. However, whether 1 RNA silencing is a natural immune response in vertebrates to suppress pathogen invasion; or 2 vertebrate cells have evolved to counteract invasion in a 'RNA silencing' independent manner remains to be determined. A number of recent reports have provided tantalizing clues to support the view that RNA silencing functions as a physiological response to regulate viral infection in vertebrate cells. Amongst these, two manuscripts that are published in recent issues of Science and Immunity, respectively, have provided some of the first direct evidences that RNA silencing is an important component of antiviral defence in vertebrate cells. In addition to demonstrating RNA silencing to be critical to vertebrate innate immunity, these studies also highlight the potential of utilising virus-infection systems as models to refine our understanding on the molecular determinants of RNA silencing in vertebrate cells.

  11. Testing local host adaptation and phenotypic plasticity in a herbivore when alternative related host plants occur sympatrically.

    Science.gov (United States)

    Ruiz-Montoya, Lorena; Núñez-Farfán, Juan

    2013-01-01

    Host race formation in phytophagous insects can be an early stage of adaptive speciation. However, the evolution of phenotypic plasticity in host use is another possible outcome. Using a reciprocal transplant experiment we tested the hypothesis of local adaptation in the aphid Brevicoryne brassicae. Aphid genotypes derived from two sympatric host plants, Brassica oleracea and B. campestris, were assessed in order to measure the extent of phenotypic plasticity in morphological and life history traits in relation to the host plants. We obtained an index of phenotypic plasticity for each genotype. Morphological variation of aphids was summarized by principal components analysis. Significant effects of recipient host on morphological variation and life history traits (establishment, age at first reproduction, number of nymphs, and intrinsic growth rate) were detected. We did not detected genotype × host plant interaction; in general the genotypes developed better on B. campestris, independent of the host plant species from which they were collected. Therefore, there was no evidence to suggest local adaptation. Regarding plasticity, significant differences among genotypes in the index of plasticity were detected. Furthermore, significant selection on PC1 (general aphid body size) on B. campestris, and on PC1 and PC2 (body length relative to body size) on B. oleracea was detected. The elevation of the reaction norm of PC1 and the slope of the reaction norm for PC2 (i.e., plasticity) were under directional selection. Thus, host plant species constitute distinct selective environments for B. brassicae. Aphid genotypes expressed different phenotypes in response to the host plant with low or nil fitness costs. Phenotypic plasticity and gene flow limits natural selection for host specialization promoting the maintenance of genetic variation in host exploitation.

  12. Climate change and health in the United States of America: impacts, adaptations, and research; Changement climatique et santeaux Etats-Unis: impacts, adaptations et recherche

    Energy Technology Data Exchange (ETDEWEB)

    Jouan, R.; Magaud, M

    2009-11-15

    After a description of the various impacts of climate change on human health, this report describes and comments the impacts of climate change on health in the USA: impacts of heat waves, of air quality degradation, of extreme climate events, of climate change on infectious diseases and allergies, regional impacts of climate change. In a second part, it describes the strategies of adaptation to the 'climate change and health' issue in the USA: mitigation and adaptation to climate change, adaptation challenges, insufficiently prepared public health system, adaptation to heat waves, adaptation to air quality degradation, adaptation to extreme climate events, adaptation to food- and water-based diseases and to vector-based diseases, examples of proactive adaptation. The last part describes the organisation of research on 'climate change and health' in the USA: nowadays and in the future, role of federal agencies, priority research axes. The 'United States Global Change Research Program' is presented in appendix, as well as the most important research centres (mostly in universities)

  13. Research of polysaccharide complexes from asteraceae family plants

    Directory of Open Access Journals (Sweden)

    Світлана Михайлівна Марчишин

    2015-10-01

    Full Text Available Aim of research. Depth study of polysaccharides in some little-known plant species of Asteraceae family is pressing question, considering that polysaccharides are important biologically active compounds widely used in pharmaceutical and medical practice as remedies and preventive medications. The aim of research was to determinate both quantitative content and monomeric composition of polysaccharide complexes from Asteraceae family plant species – Tagetes genus, Arnica genus, and Bellis genus.Materials and methods. Determination of polysaccharides was carried out by the precipitation reaction, using 96 % ethyl alcohol P and Fehling's solution after acid hydrolysis; quantitative content of this group of compounds was determined by gravimetric analysis. On purpose to identify the monomeric composition hydrolysis under sulfuric acid conditions was conducted. Qualitative monomeric composition of polysaccharides after hydrolysis was carried out by paper chromatography method in n-Butanol – Pyridine – Distilled water P (6:4:3 system along with saccharides reference samples.Results. Polysaccharide complexes from Tagetes erecta, Tagetes patula, Tagetes tenuifolia, Arnica montana, Arnica foliosa, wild and cultivated Bellis perennis herbs were studied. Water-soluble polysaccharides and pectin fractions were isolated from studied objects; their quantitative content and monomeric composition were determined.Conclusion. The highest amount of water-soluble polysaccharides was found in cultivated Bellis perennis herb (10,13 %, the highest amount of pectin compounds – in Tagetes tenuifolia herb (13,62 %; the lowest amount of water-soluble polysaccharides and pectin compounds was found in Arnica montana herb (4,61 % and Tagetes patula herb (3,62 %, respectively. It was found that polysaccharide complexes from all studied species include glucose and arabinose

  14. 2009 Plant Lipids: Structure, Metabolism & Function Gordon Research Conference - February 1- 6 ,2009

    Energy Technology Data Exchange (ETDEWEB)

    Kent D. Chapman

    2009-02-06

    The Gordon Research Conference on 'Plant Lipids: Structure, Metabolism and Function' has been instituted to accelerate research productivity in the field of plant lipids. This conference will facilitate wide dissemination of research breakthroughs, support recruitment of young scientists to the field of plant lipid metabolism and encourage broad participation of the plant lipid community in guiding future directions for research in plant lipids. This conference will build upon the strengths of the successful, previous biannual meetings of the National Plant Lipid Cooperative (www.plantlipids.org) that began in 1993, but will reflect a broader scope of topics to include the biochemistry, cell biology, metabolic regulation, and signaling functions of plant acyl lipids. Most importantly, this conference also will serve as a physical focal point for the interaction of the plant lipid research community. Applications to attend this conference will be open to all researchers interested in plant lipids and will provide a venue for the presentation of the latest research results, networking opportunities for young scientists, and a forum for the development and exchange of useful lipid resources and new ideas. By bringing together senior- and junior-level scientists involved in plant lipid metabolism, a broad range of insights will be shared and the community of plant lipid researchers will function more as a network of vested partners. This is important for the vitality of the research community and for the perceived value that will encourage conference attendance into the future.

  15. Herbaceous plant species invading natural areas tend to have stronger adaptive root foraging than other naturalized species.

    Science.gov (United States)

    Keser, Lidewij H; Visser, Eric J W; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2015-01-01

    Although plastic root-foraging responses are thought to be adaptive, as they may optimize nutrient capture of plants, this has rarely been tested. We investigated whether nutrient-foraging responses are adaptive, and whether they pre-adapt alien species to become natural-area invaders. We grew 12 pairs of congeneric species (i.e., 24 species) native to Europe in heterogeneous and homogeneous nutrient environments, and compared their foraging responses and performance. One species in each pair is a USA natural-area invader, and the other one is not. Within species, individuals with strong foraging responses, measured as plasticity in root diameter and specific root length, had a higher biomass. Among species, the ones with strong foraging responses, measured as plasticity in root length and root biomass, had a higher biomass. Our results therefore suggest that root foraging is an adaptive trait. Invasive species showed significantly stronger root-foraging responses than non-invasive species when measured as root diameter. Biomass accumulation was decreased in the heterogeneous vs. the homogeneous environment. In aboveground, but not belowground and total biomass, this decrease was smaller in invasive than in non-invasive species. Our results show that strong plastic root-foraging responses are adaptive, and suggest that it might aid in pre-adapting species to becoming natural-area invaders.

  16. Robust Adaptation Research in High Mountains: Integrating the Scientific, Social, and Ecological Dimensions of Glacio-Hydrological Change

    Directory of Open Access Journals (Sweden)

    Graham McDowell

    2017-09-01

    Full Text Available Climate-related changes in glacierized watersheds are widely documented, stimulating adaptive responses among the 370 million people living in glacier-influenced watersheds as well as aquatic and riparian ecosystems. The situation denotes important interdependencies between science, society, and ecosystems, yet integrative approaches to the study of adaptation to such changes remain scarce in both the mountain- and non-mountain-focused adaptation scholarship. Using the example of glacio-hydrological change, it is argued here that this analytical limitation impedes the identification, development, and implementation of “successful” adaptations. In response, the paper introduces three guiding principles for robust adaptation research in glaciated mountain regions. Principle 1: Adaptation research should integrate detailed analyses of watershed-specific glaciological and hydro-meteorological conditions; glacio-hydrological changes are context-specific and therefore cannot be assumed to follow idealized trajectories of “peak water”. Principle 2: Adaptation research should consider the complex interplay between glacio-hydrological changes and socio-economic, cultural, and political conditions; responses to environmental changes are non-deterministic and therefore not deducible from hydrological changes alone. Principle 3: Adaptation research should be attentive to interdependencies, feedbacks, and tradeoffs between human and ecological responses to glacio-hydrological change; research that does not evaluate these socio-ecological dynamics may lead to maladaptive adaptation plans. These principles call attention to the linked scientific, social, and ecological dimensions of adaptation, and offer a point of departure for future climate change adaptation research in high mountains.

  17. Conceptual model of management the vital state plant eсomorрhs by the criteria of adaptation mechanisms

    Directory of Open Access Journals (Sweden)

    T. Z. Moskalets

    2016-03-01

    Full Text Available On the basis of representatives of the tribe Triticеae (Triticum аestivum L., T. trispecies Shulind, Secale cereale L. we have developed a conceptual model of management of the vital state of anthropogenically transformed ecosystems by the criteria of adaptation mechanisms, that are important for improving the controls of the vitality of culturivated plant species within certain ecosystems. Morpho-physiological and ontogenetic features of plants are considered as exogenous manifestation of adaptation to certain amplitude of ecological factors. According to preferences of the representatives of the tribe Triticeae for environmental conditions the plants were ranked by hygo-, helio-, trophomorphous affiliation as ecomorphs and subecomorphs. We established that an exogenous manifestation of high levels of adaptability of plant organisms to a variety of stress winter conditions was high photoperiodic sensitivity, which is manifested in morphological and physiological mechanisms, including weak growth in autumn and late spring vegetation restoration. The criteria of frost and winter resistance of plants are the accumulation of high overall sugar content in the node tillering (26–38 mg/g as cryoprotectants and energy sources and their economical expenditure during the autumn-winter period. In drought resistant ecotypes growing in various habitats we detected smaller length, width and therefore area of flag leaf, however, the high index of leaf lamina, compared to leaves from less drought-prone areas. Expression was manifested of adaptive morphological and physiological changes (high index of leaf, glossy sheen, long duration of green colorin the flag leaf, the presence of awns, significant increase in dry mass for arid conditions caused by presence of alleles of genes of drought-resistant Dreb 1 glutenin Glu-D1, gliadin Gli and high protein in the grain (14.2–18.0%. The more drought-resistant plants have an inherent ability to mobilize their

  18. Potential of adaptive clinical trial designs in pharmacogenetic research, A simulation based on the IPASS trial

    NARCIS (Netherlands)

    Van Der Baan, Frederieke H.; Knol, Mirjam J.; Klungel, Olaf H.; Egberts, Toine C.G.; Grobbee, Diederick E.; Roes, Kit C.B.

    2011-01-01

    Background: An adaptive clinical trial design that allows population enrichment after interim analysis can be advantageous in pharmacogenetic research if previous evidence is not strong enough to exclude part of the patient population beforehand.With this design, underpowered studies or unnecessary

  19. Evidence-Based Practice in Special Education and Cultural Adaptations: Challenges and Implications for Research

    Science.gov (United States)

    Wang, Mian; Lam, Yeana

    2017-01-01

    Many issues arise in the discussion of the evidence-based practice (EBP) movement and implementation science in special education and specific educational practices for students with severe disabilities. Yet cultural adaptations of EBPs, which have emerged as an area of research in other fields, are being left out as a focus of EBP discourse. The…

  20. Enhancing the relevance of Shared Socioeconomic Pathways for climate change impacts, adaptation and vulnerability research.

    NARCIS (Netherlands)

    Ruijven, B.J.; Levy, M.; Agrawal, A.; Biermann, F.; Birkmann, J.; Carter, T.R.; Ebi, K.L.; Garschagen, M.; Jones, B.; Jones, R.; Kemp-Benedict, E.; Kok, M.; Kok, K.; Lemos, M.C.; Lucas, P.L.; Orlove, B.; Pachauri, S.; Parris, T.; Patwardhan, A.; Petersen, A.; Preston, B.L.; Ribot, J.; Rothman, D.S.; Schweizer, V.J.

    2014-01-01

    This paper discusses the role and relevance of the shared socioeconomic pathways (SSPs) and the new scenarios that combine SSPs with representative concentration pathways (RCPs) for climate change impacts, adaptation, and vulnerability (IAV) research. It first provides an overview of uses of social–

  1. Towards an integrated agenda for adaptation research: theory, practice, and policy: Strategy paper

    Energy Technology Data Exchange (ETDEWEB)

    Wilbanks, Thomas J [ORNL; Patwardhan, Anand [Indian Institute of Technology, Bombay; Downing, Tom [Stockholm Environment Institute, UK; Leary, Neil [Dickinson College

    2009-01-01

    Adaptation to the adverse impacts of climate change has been recognized as a priority area for national and international policy. The findings of the Fourth Assessment Report of the IPCC have reemphasized the urgency of action and the scale of response needed to cope with climate change outcomes. The scientific community has an important role to play in advancing the information and knowledge base that would help in identifying, developing and implementing effective responses to enhance adaptive capacity and reduce vulnerability. This paper examines the way in which science and research could advance the adaptation agenda. To do so, we pose a number of questions aimed at identifying the knowledge gaps and research needs. We argue that in order to address these science and research needs, an integrated approach is necessary, one that combines new knowledge with new approaches for knowledge generation, and where research and practice co-evolve; and that such a learning-by-doing approach is essential to rapidly scale up and implement concrete adaptation actions.

  2. Climate change and infectious diseases in Australia: future prospects, adaptation options, and research priorities.

    Science.gov (United States)

    Harley, David; Bi, Peng; Hall, Gillian; Swaminathan, Ashwin; Tong, Shilu; Williams, Craig

    2011-03-01

    Climate change will have significant and diverse impacts on human health. These impacts will include changes in infectious disease incidence. In this article, the authors review the current situation and potential future climate change impacts for respiratory, diarrheal, and vector-borne diseases in Australia. Based on this review, the authors suggest adaptive strategies within the health sector and also recommend future research priorities.

  3. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire.

    Science.gov (United States)

    Simon, Marcelo F; Grether, Rosaura; de Queiroz, Luciano P; Skema, Cynthia; Pennington, R Toby; Hughes, Colin E

    2009-12-01

    The relative importance of local ecological and larger-scale historical processes in causing differences in species richness across the globe remains keenly debated. To gain insight into these questions, we investigated the assembly of plant diversity in the Cerrado in South America, the world's most species-rich tropical savanna. Time-calibrated phylogenies suggest that Cerrado lineages started to diversify less than 10 Mya, with most lineages diversifying at 4 Mya or less, coinciding with the rise to dominance of flammable C4 grasses and expansion of the savanna biome worldwide. These plant phylogenies show that Cerrado lineages are strongly associated with adaptations to fire and have sister groups in largely fire-free nearby wet forest, seasonally dry forest, subtropical grassland, or wetland vegetation. These findings imply that the Cerrado formed in situ via recent and frequent adaptive shifts to resist fire, rather than via dispersal of lineages already adapted to fire. The location of the Cerrado surrounded by a diverse array of species-rich biomes, and the apparently modest adaptive barrier posed by fire, are likely to have contributed to its striking species richness. These findings add to growing evidence that the origins and historical assembly of species-rich biomes have been idiosyncratic, driven in large part by unique features of regional- and continental-scale geohistory and that different historical processes can lead to similar levels of modern species richness.

  4. When history repeats itself: exploring the genetic architecture of host-plant adaptation in two closely related lepidopteran species.

    Science.gov (United States)

    Alexandre, Hermine; Ponsard, Sergine; Bourguet, Denis; Vitalis, Renaud; Audiot, Philippe; Cros-Arteil, Sandrine; Streiff, Réjane

    2013-01-01

    The genus Ostrinia includes two allopatric maize pests across Eurasia, namely the European corn borer (ECB, O. nubilalis) and the Asian corn borer (ACB, O. furnacalis). A third species, the Adzuki bean borer (ABB, O. scapulalis), occurs in sympatry with both the ECB and the ACB. The ABB mostly feeds on native dicots, which probably correspond to the ancestral host plant type for the genus Ostrinia. This situation offers the opportunity to characterize the two presumably independent adaptations or preadaptations to maize that occurred in the ECB and ACB. In the present study, we aimed at deciphering the genetic architecture of these two adaptations to maize, a monocot host plant recently introduced into Eurasia. To this end, we performed a genome scan analysis based on 684 AFLP markers in 12 populations of ECB, ACB and ABB. We detected 2 outlier AFLP loci when comparing French populations of the ECB and ABB, and 9 outliers when comparing Chinese populations of the ACB and ABB. These outliers were different in both countries, and we found no evidence of linkage disequilibrium between any two of them. These results suggest that adaptation or preadaptation to maize relies on a different genetic architecture in the ECB and ACB. However, this conclusion must be considered in light of the constraints inherent to genome scan approaches and of the intricate evolution of adaptation and reproductive isolation in the Ostrinia spp. complex.

  5. Next Generation Nuclear Plant Materials Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for

  6. Trophic complexity and the adaptive value of damage-induced plant volatiles.

    Directory of Open Access Journals (Sweden)

    Ian Kaplan

    Full Text Available Indirect plant defenses are those facilitating the action of carnivores in ridding plants of their herbivorous consumers, as opposed to directly poisoning or repelling them. Of the numerous and diverse indirect defensive strategies employed by plants, inducible volatile production has garnered the most fascination among plant-insect ecologists. These volatile chemicals are emitted in response to feeding by herbivorous arthropods and serve to guide predators and parasitic wasps to their prey. Implicit in virtually all discussions of plant volatile-carnivore interactions is the premise that plants "call for help" to bodyguards that serve to boost plant fitness by limiting herbivore damage. This, by necessity, assumes a three-trophic level food chain where carnivores benefit plants, a theoretical framework that is conceptually tractable and convenient, but poorly depicts the complexity of food-web dynamics occurring in real communities. Recent work suggests that hyperparasitoids, top consumers acting from the fourth trophic level, exploit the same plant volatile cues used by third trophic level carnivores. Further, hyperparasitoids shift their foraging preferences, specifically cueing in to the odor profile of a plant being damaged by a parasitized herbivore that contains their host compared with damage from an unparasitized herbivore. If this outcome is broadly representative of plant-insect food webs at large, it suggests that damage-induced volatiles may not always be beneficial to plants with major implications for the evolution of anti-herbivore defense and manipulating plant traits to improve biological control in agricultural crops.

  7. Next Generation Nuclear Plant Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: (1) Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission (2) Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented

  8. Next Generation Nuclear Plant Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    P. E. MacDonald

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission Demonstrate safe and economical nuclearassisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen

  9. The application of biotechnology in medicinal plants breeding research in China.

    Science.gov (United States)

    Huang, He-Ping; Li, Jin-Cai; Huang, Lu-Qi; Wang, Dian-Lei; Huang, Peng; Nie, Jiu-Sheng

    2015-07-01

    Breeding is not only an important area of medicinal plants research but also the foundation for the superior varieties acquirement of medicinal plants. The rise of modern biotechnology provides good opportunities and new means for medicinal plants breeding research in China. Biotechnology shows its technical advantages and new development prospects in breeding of new medicinal plants varieties with high and stable yield, good quality, as well as stress-resistance. In this paper, we describe recent advances, problems, and development prospects about the application of modern biotechnology in medicinal plants breeding research in China.

  10. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation.

    Science.gov (United States)

    Yamori, Wataru; Hikosaka, Kouki; Way, Danielle A

    2014-02-01

    Most plants show considerable capacity to adjust their photosynthetic characteristics to their growth temperatures (temperature acclimation). The most typical case is a shift in the optimum temperature for photosynthesis, which can maximize the photosynthetic rate at the growth temperature. These plastic adjustments can allow plants to photosynthesize more efficiently at their new growth temperatures. In this review article, we summarize the basic differences in photosynthetic reactions in C3, C4, and CAM plants. We review the current understanding of the temperature responses of C3, C4, and CAM photosynthesis, and then discuss the underlying physiological and biochemical mechanisms for temperature acclimation of photosynthesis in each photosynthetic type. Finally, we use the published data to evaluate the extent of photosynthetic temperature acclimation in higher plants, and analyze which plant groups (i.e., photosynthetic types and functional types) have a greater inherent ability for photosynthetic acclimation to temperature than others, since there have been reported interspecific variations in this ability. We found that the inherent ability for temperature acclimation of photosynthesis was different: (1) among C3, C4, and CAM species; and (2) among functional types within C3 plants. C3 plants generally had a greater ability for temperature acclimation of photosynthesis across a broad temperature range, CAM plants acclimated day and night photosynthetic process differentially to temperature, and C4 plants was adapted to warm environments. Moreover, within C3 species, evergreen woody plants and perennial herbaceous plants showed greater temperature homeostasis of photosynthesis (i.e., the photosynthetic rate at high-growth temperature divided by that at low-growth temperature was close to 1.0) than deciduous woody plants and annual herbaceous plants, indicating that photosynthetic acclimation would be particularly important in perennial, long-lived species that

  11. Decentralized Adaptive Control of Systems with Uncertain Interconnections, Plant-Model Mismatch and Actuator Failures

    Science.gov (United States)

    Patre, Parag; Joshi, Suresh M.

    2011-01-01

    Decentralized adaptive control is considered for systems consisting of multiple interconnected subsystems. It is assumed that each subsystem s parameters are uncertain and the interconnection parameters are not known. In addition, mismatch can exist between each subsystem and its reference model. A strictly decentralized adaptive control scheme is developed, wherein each subsystem has access only to its own state but has the knowledge of all reference model states. The mismatch is estimated online for each subsystem and the mismatch estimates are used to adaptively modify the corresponding reference models. The adaptive control scheme is extended to the case with actuator failures in addition to mismatch.

  12. Transcriptional reprogramming and phenotypic switching associated with the adaptation of Lactobacillus plantarum C2 to plant niches

    Science.gov (United States)

    Filannino, Pasquale; Di Cagno, Raffaella; Crecchio, Carmine; De Virgilio, Caterina; De Angelis, Maria; Gobbetti, Marco

    2016-01-01

    Lactobacillus plantarum has been isolated from a large variety of ecological niches, thus highlighting its remarkable environmental adaptability as a generalist. Plant fermentation conditions markedly affect the functional features of L. plantarum strains. We investigated the plant niche-specific traits of L. plantarum through whole-transcriptome and phenotypic microarray profiles. Carrot (CJ) and pineapple (PJ) juices were chosen as model systems, and MRS broth was used as a control. A set of 3,122 genes was expressed, and 21 to 31% of genes were differentially expressed depending on the plant niche and cell physiological state. L. plantarum C2 seemed to specifically respond to plant media conditions. When L. plantarum was cultured in CJ, useful pathways were activated, which were aimed to sense the environment, save energy and adopt alternative routes for NAD+ regeneration. In PJ the acidic environment caused a transcriptional switching, which was network-linked to an acid tolerance response involving carbohydrate flow, amino acid and protein metabolism, pH homeostasis and membrane fluidity. The most prominent phenotypic dissimilarities observed in cells grown in CJ and PJ were related to carbon and nitrogen metabolism, respectively. Summarising, a snapshot of a carrot and pineapple sensing and adaptive regulation model for L. plantarum C2 was proposed. PMID:27273017

  13. Specialization and local adaptation of a fungal parasite on two host plant species as revealed by two fitness traits.

    Science.gov (United States)

    Sicard, Delphine; Pennings, Pleuni S; Grandclément, Catherine; Acosta, Jorge; Kaltz, Oliver; Shykoff, Jacqui A

    2007-01-01

    We investigate the geographic pattern of adaptation of a fungal parasite, Colletotrichum lindemuthianum, on two host species, Phaseolus vulgaris and P. coccineus for two parasite fitness traits: infectivity (ability to attack a host individual) and aggressivity (degree of sporulation and leaf surface damage). Using a cross-inoculation experiment, we show specialization of the fungus on its host species of origin for both traits even when fungi, which originated from hosts growing in sympatry, were tested on sympatric host populations. Within the two host species, we compared infectivity and aggressivity on local versus allopatric plant-fungus combinations. We found evidence for local adaptation for the two traits on P. vulgaris but not on P. coccineus. There was no significant correlation between the degrees of local adaptation for infectivity and aggressivity, indicating that the genetic basis and the effect of selection may differ between these two traits. For the two fitness traits, a positive correlation between the degree of specialization and the degree of local adaptation was found, suggesting that specialization can be reinforced by local adaptation.

  14. Variability in the insect and plant adhesins, Mad1 and Mad2, within the fungal genus metarhizium suggest plant adaptation as an evolutionary force.

    Science.gov (United States)

    Wyrebek, Michael; Bidochka, Michael J

    2013-01-01

    Several species of the insect pathogenic fungus Metarhizium are associated with certain plant types and genome analyses suggested a bifunctional lifestyle; as an insect pathogen and as a plant symbiont. Here we wanted to explore whether there was more variation in genes devoted to plant association (Mad2) or to insect association (Mad1) overall in the genus Metarhizium. Greater divergence within the genus Metarhizium in one of these genes may provide evidence for whether host insect or plant is a driving force in adaptation and evolution in the genus Metarhizium. We compared differences in variation in the insect adhesin gene, Mad1, which enables attachment to insect cuticle, and the plant adhesin gene, Mad2, which enables attachment to plants. Overall variation for the Mad1 promoter region (7.1%), Mad1 open reading frame (6.7%), and Mad2 open reading frame (7.4%) were similar, while it was higher in the Mad2 promoter region (9.9%). Analysis of the transcriptional elements within the Mad2 promoter region revealed variable STRE, PDS, degenerative TATA box, and TATA box-like regions, while this level of variation was not found for Mad1. Sequences were also phylogenetically compared to EF-1α, which is used for species identification, in 14 isolates representing 7 different species in the genus Metarhizium. Phylogenetic analysis demonstrated that the Mad2 phylogeny is more congruent with 5' EF-1α than Mad1. This would suggest that Mad2 has diverged among Metarhizium lineages, contributing to clade- and species-specific variation, while it appears that Mad1 has been largely conserved. While other abiotic and biotic factors cannot be excluded in contributing to divergence, these results suggest that plant relationships, rather than insect host, have been a major driving factor in the divergence of the genus Metarhizium.

  15. Adaptation of the application of good clinical practice depending on the features of specific research projects.

    Science.gov (United States)

    Bertoye, Pierre-Henri; Courcier-Duplantier, Soizic; Best, Nicolas

    2006-01-01

    The conduct of clinical trials falls within a strict regulatory framework. The objective of the round table was to develop reasonable recommendations for the implementation of GCP according to the type of research and taking in account the risks and challenges related to this research. Two types of risks have been identified: those related to the characteristics of the research and those related to the impact of the study results. The group designed an evaluation table of these risks. The round table focused its investigations on 3 main themes: monitoring, the investigational medicinal product and undesirable effects. Three methods of monitoring adaptation were analysed in terms of advantages and disadvantages: the gradual approach, the central monitoring, monitoring on the basis of sampling. Examination of the investigational medicinal product focused on the medicinal product circuit. The group recommends using the following 'basic' decision-making tree, which takes three elements into account: 1) is it an investigational medicinal product?, 2) do the trial objectives and design require packaging specific to the research?, 3) is the risk of use higher than that in standard practice? Finally, adaptation of the implementation of GCP in terms of pharmacovigilance appeared very limited and could possibly be considered for the medicinal product, the subject of the research, which already holds a marketing authorisation, and for which the safety profile is well known; in this case, only simplified collection of non-serious adverse events may be envisaged, which may be implemented by designing and using a standard collection listing. The adaptation of the implementation of GCP is possible. This firstly takes into account the characteristics of the research: which objectives/which risks/which challenges. The options in terms of adaptation must be pre-defined, documented and justified; if necessary, they will also be re-assessed in the course of analysis.

  16. Social and natural sciences differ in their research strategies, adapted to work for different knowledge landscapes.

    Science.gov (United States)

    Jaffe, Klaus

    2014-01-01

    Do different fields of knowledge require different research strategies? A numerical model exploring different virtual knowledge landscapes, revealed two diverging optimal search strategies. Trend following is maximized when the popularity of new discoveries determine the number of individuals researching it. This strategy works best when many researchers explore few large areas of knowledge. In contrast, individuals or small groups of researchers are better in discovering small bits of information in dispersed knowledge landscapes. Bibliometric data of scientific publications showed a continuous bipolar distribution of these strategies, ranging from natural sciences, with highly cited publications in journals containing a large number of articles, to the social sciences, with rarely cited publications in many journals containing a small number of articles. The natural sciences seem to adapt their research strategies to landscapes with large concentrated knowledge clusters, whereas social sciences seem to have adapted to search in landscapes with many small isolated knowledge clusters. Similar bipolar distributions were obtained when comparing levels of insularity estimated by indicators of international collaboration and levels of country-self citations: researchers in academic areas with many journals such as social sciences, arts and humanities, were the most isolated, and that was true in different regions of the world. The work shows that quantitative measures estimating differences between academic disciplines improve our understanding of different research strategies, eventually helping interdisciplinary research and may be also help improve science policies worldwide.

  17. Adapting comparative effectiveness research summaries for delivery to patients and providers through a patient portal.

    Science.gov (United States)

    McDougald Scott, Amanda M; Jackson, Gretchen Purcell; Ho, Yun-Xian; Yan, Zhou; Davison, Coda; Rosenbloom, S Trent

    2013-01-01

    Despite increases in the scientific evidence for a variety of medical treatments, a gap remains in the adoption of best medical practices. This manuscript describes a process for adapting published summary guides from comparative effectiveness research to render them concise, targeted to audience, and easily actionable; and a strategy for disseminating such evidence to patients and their physicians through a web-based portal and linked electronic health record. This project adapted summary guides about oral medications for adults with type 2 diabetes to a fifth-grade literacy level and modified the resulting materials based on evaluations with the Suitability Assessment of Materials instrument. Focus groups and individual interviews with patients, diabetes providers, and health literacy experts were employed to evaluate and enhance the adapted summary guide. We present the lessons learned as general guidelines for the creation of concise, targeted, and actionable evidence and its delivery to both patients and providers through increasingly prevalent health information technologies.

  18. Planning adaptation for food and farming: lessons from 40 year's research

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Hannah; Chambwera, Muyeye; Murray, Laurel

    2012-05-15

    Local farmers and pastoralists in poor countries have long coped with droughts, floods and variable rainfall patterns. This first-hand experience is invaluable for those working on climate change adaptation policies, but how do we access it? The International Institute for Environment and Development (IIED) has 40 years' experience working alongside vulnerable communities to help inform regional, national and global policies. Our research has shown that measures to increase climate change resilience must view food, energy, water and waste management systems as interconnected and mutually dependent. This holistic approach must also be applied to economic analysis on adaptation planning. Similarly, it is vital to use traditional knowledge and management skills, which can further support adaptation planning. Taking these lessons into account, we can then address the emerging policy challenges that we face.

  19. Enhancing and expanding intersectional research for climate change adaptation in agrarian settings.

    Science.gov (United States)

    Thompson-Hall, Mary; Carr, Edward R; Pascual, Unai

    2016-12-01

    Most current approaches focused on vulnerability, resilience, and adaptation to climate change frame gender and its influence in a manner out-of-step with contemporary academic and international development research. The tendency to rely on analyses of the sex-disaggregated gender categories of 'men' and 'women' as sole or principal divisions explaining the abilities of different people within a group to adapt to climate change, illustrates this problem. This framing of gender persists in spite of established bodies of knowledge that show how roles and responsibilities that influence a person´s ability to deal with climate-induced and other stressors emerge at the intersection of diverse identity categories, including but not limited to gender, age, seniority, ethnicity, marital status, and livelihoods. Here, we provide a review of relevant literature on this topic and argue that approaching vulnerability to climate change through intersectional understandings of identity can help improve adaptation programming, project design, implementation, and outcomes.

  20. Varying herbivore population structure correlates with lack of local adaptation in a geographic variable plant-herbivore interaction.

    Directory of Open Access Journals (Sweden)

    Rodrigo Cogni

    Full Text Available Local adaptation of parasites to their hosts due to coevolution is a central prediction of many theories in evolutionary biology. However, empirical studies looking for parasite local adaptation show great variation in outcomes, and the reasons for such variation are largely unknown. In a previous study, we showed adaptive differentiation in the arctiid moth Utetheisa ornatrix to its host plant, the pyrrolizidine alkaloid-bearing legume Crotalaria pallida, at the continental scale, but found no differentiation at the regional scale. In the present study, we sampled the same sites to investigate factors that may contribute to the lack of differentiation at the regional scale. We performed field observations that show that specialist and non-specialist polyphagous herbivore incidence varies among populations at both scales. With a series of common-garden experiments we show that some plant traits that may affect herbivory (pyrrolizidine alkaloids and extrafloral nectaries vary at the regional scale, while other traits (trichomes and nitrogen content just vary at the continental scale. These results, combined with our previous evidence for plant population differentiation based on larval performance on fresh fruits, suggest that U. ornatrix is subjected to divergent selection even at the regional scale. Finally, with a microsatellite study we investigated population structure of U. ornatrix. We found that population structure is not stable over time: we found population differentiation at the regional scale in the first year of sampling, but not in the second year. Unstable population structure of the herbivore is the most likely cause of the lack of regional adaptation.

  1. Varying Herbivore Population Structure Correlates with Lack of Local Adaptation in a Geographic Variable Plant-Herbivore Interaction

    Science.gov (United States)

    Cogni, Rodrigo; Trigo, José R.; Futuyma, Douglas J.

    2011-01-01

    Local adaptation of parasites to their hosts due to coevolution is a central prediction of many theories in evolutionary biology. However, empirical studies looking for parasite local adaptation show great variation in outcomes, and the reasons for such variation are largely unknown. In a previous study, we showed adaptive differentiation in the arctiid moth Utetheisa ornatrix to its host plant, the pyrrolizidine alkaloid-bearing legume Crotalaria pallida, at the continental scale, but found no differentiation at the regional scale. In the present study, we sampled the same sites to investigate factors that may contribute to the lack of differentiation at the regional scale. We performed field observations that show that specialist and non-specialist polyphagous herbivore incidence varies among populations at both scales. With a series of common-garden experiments we show that some plant traits that may affect herbivory (pyrrolizidine alkaloids and extrafloral nectaries) vary at the regional scale, while other traits (trichomes and nitrogen content) just vary at the continental scale. These results, combined with our previous evidence for plant population differentiation based on larval performance on fresh fruits, suggest that U. ornatrix is subjected to divergent selection even at the regional scale. Finally, with a microsatellite study we investigated population structure of U. ornatrix. We found that population structure is not stable over time: we found population differentiation at the regional scale in the first year of sampling, but not in the second year. Unstable population structure of the herbivore is the most likely cause of the lack of regional adaptation. PMID:22220208

  2. Research progress of genome editing and derivative technologies in plants.

    Science.gov (United States)

    Qiwei, Shan; Caixia, Gao

    2015-10-01

    Genome editing technologies using engineered nucleases have been widely used in many model organisms. Genome editing with sequence-specific nuclease (SSN) creates DNA double-strand breaks (DSBs) in the genomic target sites that are primarily repaired by the non-homologous end joining (NHEJ) or homologous recombination (HR) pathways, which can be employed to achieve targeted genome modifications such as gene mutations, insertions, replacements or chromosome rearrangements. There are three major SSNs─zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) system. In contrast to ZFN and TALEN, which require substantial protein engineering to each DNA target, the CRISPR/Cas9 system requires only a change in the guide RNA. For this reason, the CRISPR/Cas9 system is a simple, inexpensive and versatile tool for genome engineering. Furthermore, a modified version of the CRISPR/Cas9 system has been developed to recruit heterologous domains that can regulate endogenous gene expression, such as activation, depression and epigenetic regulation. In this review, we summarize the development and applications of genome editing technologies for basic research and biotechnology, as well as highlight challenges and future directions, with particular emphasis on plants.

  3. The potential of beech seedlings to adapt to low P availability in soil - plant versus microbial effects on P mobilising potential in the rhizosphere

    Science.gov (United States)

    Meller, Sonia; Frey, Beat; Frossard, Emmanuel; Spohn, Marie; Schack-Kirchner, Helmer; Luster, Jörg

    2016-04-01

    The objective of our work was to investigate to what extent tree seedlings (Fagus sylvatica) are able to adapt the process of P mobilisation in the rhizosphere according to P speciation in the soil. Such mobilisation activity can include root exudation of P mobilising compounds or stimulation of specific P mobilising soil microbes. We hypothesized that Fagus sylvatica seedlings can adapt their own activity based on their P nutritional status and genetic memory of how to react under a given nutritional situation. To test the hypothesis, we set up a cross-growth experiment with beech of different provenances growing in soil from their own provenance site and in soil differing in P availability. Experiments were performed as a greenhouse experiment, with temperature control and natural light, during one vegetation period in rhizoboxes . We used two acidic forest soils, contrasting in P availability, collected at field sites of the German research priority program "Ecosystem Nutrition". Juvenile trees were collected along with the soils at the sites and planted respectively. The occurrence of P mobilising compounds and available P in the rhizosphere and in bulk soil were measured during the active growth season of the plants. In particular, we assessed phosphatase activity, (measured with zymography and plate enzymatic assay at pH 4,6.5, and 11) carboxylates and phosphate (measured by application of ion exchange membranes to specific soil micro zones, and by microdialysis), and pH (mapping with optodes). Plant P nutrition status was assessed by total P, N/P, phosphatase activity, and metabolic (TCA extractable) P in the leaves. The P-nutritional status of the beech provenances differed markedly independent from the P status of the soil where they were actually grown during experiment. In particular, the juvenile trees from the site rich in mineral P were sufficient in P, while those from the P-poor site with mostly organic P, were deficient. Enzymatic activity at the

  4. Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance.

    Science.gov (United States)

    Kochian, Leon V; Piñeros, Miguel A; Liu, Jiping; Magalhaes, Jurandir V

    2015-01-01

    Aluminum (Al) toxicity in acid soils is a significant limitation to crop production worldwide, as approximately 50% of the world's potentially arable soil is acidic. Because acid soils are such an important constraint to agriculture, understanding the mechanisms and genes conferring resistance to Al toxicity has been a focus of intense research interest in the decade since the last article on crop acid soil tolerance was published in this journal. An impressive amount of progress has been made during that time that has greatly increased our understanding of the diversity of Al resistance genes and mechanisms, how resistance gene expression is regulated and triggered by Al and Al-induced signals, and how the proteins encoded by these genes function and are regulated. This review examines the state of our understanding of the physiological, genetic, and molecular bases for crop Al tolerance, looking at the novel Al resistance genes and mechanisms that have been identified over the past ten years. Additionally, it examines how the integration of molecular and genetic analyses of crop Al resistance is starting to be exploited for the improvement of crop plants grown on acid soils via both molecular-assisted breeding and biotechnology approaches.

  5. MOLAR: Modular Linux and Adaptive Runtime Support for HEC OS/R Research

    Energy Technology Data Exchange (ETDEWEB)

    Frank Mueller

    2009-02-05

    MOLAR is a multi-institution research effort that concentrates on adaptive, reliable,and efficient operating and runtime system solutions for ultra-scale high-end scientific computing on the next generation of supercomputers. This research addresses the challenges outlined by the FAST-OS - forum to address scalable technology for runtime and operating systems --- and HECRTF --- high-end computing revitalization task force --- activities by providing a modular Linux and adaptable runtime support for high-end computing operating and runtime systems. The MOLAR research has the following goals to address these issues. (1) Create a modular and configurable Linux system that allows customized changes based on the requirements of the applications, runtime systems, and cluster management software. (2) Build runtime systems that leverage the OS modularity and configurability to improve efficiency, reliability, scalability, ease-of-use, and provide support to legacy and promising programming models. (3) Advance computer reliability, availability and serviceability (RAS) management systems to work cooperatively with the OS/R to identify and preemptively resolve system issues. (4) Explore the use of advanced monitoring and adaptation to improve application performance and predictability of system interruptions. The overall goal of the research conducted at NCSU is to develop scalable algorithms for high-availability without single points of failure and without single points of control.

  6. [Progress in research and application of gene engineering on medicinal plants].

    Science.gov (United States)

    Wang, Min; Huang, Lu-qi; Li, Meng-meng

    2008-06-01

    China is the country possessing the largest amount of trade and consumption of medicinal plants in the world. Research and application of gene engineering on medicinal plants are the one of the most promising ways to increase the productivity and quality of medicinal plants, reduce the resource stress, and enhance the competitive power and sustainable development ability of the medicinal plants industry. In spite of the great progress in research and application of plant gene engineering worldwide, the research of gene transformation has mostly been conducted on some model plants, and the application of transgenic plant has been limited to a few staple and important crop species. For medicinal plants, recently the researches of gene transformation has emerged, however, compared with other crop and economic plants, it is still a very limited amount. On the basis of a general introduction of application of transgenic plants, this paper focuses on the present situation of the research and application of gene engineering on medicinal plants, to put forward the problems in this field, and give a prospect for its development.

  7. Adaptive plasticity of floral display size in animal-pollinated plants

    OpenAIRE

    Harder, Lawrence D; Johnson, Steven D.

    2005-01-01

    Plants need not participate passively in their own mating, despite their immobility and reliance on pollen vectors. Instead, plants may respond to their recent pollination experience by adjusting the number of flowers that they display simultaneously. Such responsiveness could arise from the dependence of floral display size on the longevity of individual flowers, which varies with pollination rate in many plant species. By hand-pollinating some inflorescences, but not others, we demonstrate ...

  8. Planting density and initial growth of two tree species adapted to the semi-arid region

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Lima e Silva

    2012-10-01

    Full Text Available Planting densities influence several aspects of forest formation, including management practices, timber yield, quality, and extraction, and consequently its production costs. The objective of this study was to evaluate Mimosa caesalpiinifolia and Gliricidia sepium growth as a function of planting density (400, 600, 800, 1000, and 1200 plants ha-1 and plant age. The species were evaluated every 90 days for plant height (PH, crown diameter (CD and root collar diameter (RCD (10 cm above the ground, with the first evaluation performed at 90 days and the last at 720 days. When plants were one year of age and beyond, evaluations were conducted also for stem diameter at breast height (DBH (1.30 m above the ground. A randomized block design with split-plots and three replicates was adopted. Species were assigned to plots, planting densities were assigned to subplots, and evaluation ages were assigned to subsubplots. The four traits in both species had their values decreased as planting density increased, but continually increased as plant age increased. For PH and RCD there was an alternation between species superiority, with gliricidia being superior to sabiá at some ages, while the opposite occurred at other ages. As to CD the species only differed in the last measurement, gliricidia being superior. With regard to DBH, gliricidia was superior starting from the second measurement. There was an effect of the species × ages interaction for the four traits and also an effect of the densities × ages interaction for CD and DBH.

  9. Integrating Insect Life History and Food Plant Phenology: Flexible Maternal Choice Is Adaptive.

    Science.gov (United States)

    Fei, Minghui; Harvey, Jeffrey A; Weldegergis, Berhane T; Huang, Tzeyi; Reijngoudt, Kimmy; Vet, Louise M; Gols, Rieta

    2016-08-03

    Experience of insect herbivores and their natural enemies in the natal habitat is considered to affect their likelihood of accepting a similar habitat or plant/host during dispersal. Growing phenology of food plants and the number of generations in the insects further determines lability of insect behavioural responses at eclosion. We studied the effect of rearing history on oviposition preference in a multivoltine herbivore (Pieris brassicae), and foraging behaviour in the endoparasitoid wasp (Cotesia glomerata) a specialist enemy of P. brassicae. Different generations of the insects are obligatorily associated with different plants in the Brassicaceae, e.g., Brassica rapa, Brassica nigra and Sinapis arvensis, exhibiting different seasonal phenologies in The Netherlands. Food plant preference of adults was examined when the insects had been reared on each of the three plant species for one generation. Rearing history only marginally affected oviposition preference of P. brassicae butterflies, but they never preferred the plant on which they had been reared. C. glomerata had a clear preference for host-infested B. rapa plants, irrespective of rearing history. Higher levels of the glucosinolate breakdown product 3-butenyl isothiocyanate in the headspace of B. rapa plants could explain enhanced attractiveness. Our results reveal the potential importance of flexible plant choice for female multivoltine insects in nature.

  10. The Charophycean green algae as model systems to study plant cell walls and other evolutionary adaptations that gave rise to land plants.

    Science.gov (United States)

    Sørensen, Iben; Rose, Jocelyn K C; Doyle, Jeff J; Domozych, David S; Willats, William G T

    2012-01-01

    The Charophycean green algae (CGA) occupy a key phylogenetic position as the evolutionary grade that includes the sister group of the land plants (embryophytes), and so provide potentially valuable experimental systems to study the development and evolution of traits that were necessary for terrestrial colonization. The nature and molecular bases of such traits are still being determined, but one critical adaptation is thought to have been the evolution of a complex cell wall. Very little is known about the identity, origins and diversity of the biosynthetic machinery producing the major suites of structural polymers (i. e., cell wall polysaccharides and associated molecules) that must have been in place for land colonization. However, it has been suggested that the success of the earliest land plants was partly based on the frequency of gene duplication, and possibly whole genome duplications, during times of radical habitat changes. Orders of the CGA span early diverging taxa retaining more ancestral characters, through complex multicellular organisms with morphological characteristics resembling those of land plants. Examination of gene diversity and evolution within the CGA could help reveal when and how the molecular pathways required for synthesis of key structural polymers in land plants arose.

  11. Research progress on electrical signals in higher plants

    Institute of Scientific and Technical Information of China (English)

    Xiaofei Yan; Zhongyi Wang; Lan Huang; Cheng Wang; Ruifeng Hou; Zhilong Xu; Xiaojun Qiao

    2009-01-01

    This review introduces the characteristics of electrical signals in higher plants and their corresponding physiological significance,and describes in detail the impact of environmental factors (e.g.light and temperature) on the electrical potential of the plants.Also,we evaluate the measurement techniques used for electrical signals in plants,including intracellular measurement,extracellular measurement,measurement of the ion channel based on the patch-clamp technique and on the non-invasive microelectrode vibrating probe technique.We also give a brief review of the applications of these methods for investigating electrical signals in plants.The ionic mechanism of electrical activity in plants is then discussed in terms of environmental response in higher plants,and this is used to provide a theoretical basis for quantitative description of the electrical signals in plants.A model for interpretation of the electrical signal mechanisms in higher plants is discussed,but further experiments are required for the verification of this model.(C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences.Published by Elsevier Limited and Science in China Press.All rights reserved.

  12. Comparative Genomics of NAC Transcriptional Factors in Angiosperms: Implications for the Adaptation and Diversification of Flowering Plants.

    Science.gov (United States)

    Pereira-Santana, Alejandro; Alcaraz, Luis David; Castaño, Enrique; Sanchez-Calderon, Lenin; Sanchez-Teyer, Felipe; Rodriguez-Zapata, Luis

    2015-01-01

    NAC proteins constitute one of the largest groups of plant-specific transcription factors and are known to play essential roles in various developmental processes. They are also important in plant responses to stresses such as drought, soil salinity, cold, and heat, which adversely affect growth. The current knowledge regarding the distribution of NAC proteins in plant lineages comes from relatively small samplings from the available data. In the present study, we broadened the number of plant species containing the NAC family origin and evolution to shed new light on the evolutionary history of this family in angiosperms. A comparative genome analysis was performed on 24 land plant species, and NAC ortholog groups were identified by means of bidirectional BLAST hits. Large NAC gene families are found in those species that have experienced more whole-genome duplication events, pointing to an expansion of the NAC family with divergent functions in flowering plants. A total of 3,187 NAC transcription factors that clustered into six major groups were used in the phylogenetic analysis. Many orthologous groups were found in the monocot and eudicot lineages, but only five orthologous groups were found between P. patens and each representative taxa of flowering plants. These groups were called basal orthologous groups and likely expanded into more recent taxa to cope with their environmental needs. This analysis on the angiosperm NAC family represents an effort to grasp the evolutionary and functional diversity within this gene family while providing a basis for further functional research on vascular plant gene families.

  13. Interdisciplinary Research and Training Program in the Plant Sciences. Technical progress report, February 1, 1991--November 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, C.P.

    1992-07-01

    Research on plants continued. Topics include: Molecular basis of symbiotic plant-microbe interations; enzymatic mechanisms and regulation of plant cell wall biosynthesis; molecular mechanisms that regulate the expression of genes in plants; resistance of plants to environmental stress; studies on hormone biosynthesis and action; plant cell wall proteins; interaction of nuclear and organelle genomes; sensor transduction in plants; molecular mechanisms of trafficking in the plant cell; regulation of lipid metabolism; molecular bases of plant disease resistance mechanisms; biochemical and molecular aspects of plant pathogenesis; developmental biology of nitrogen-fixing cyanobacteria; environmental control of plant development and its relation to plant hormones.

  14. Building and Researching the Bidding Model Based on the Cost of Power Plant

    Institute of Scientific and Technical Information of China (English)

    秦春申; 叶春; 赵景峰

    2004-01-01

    A bidding model of neural network was presented to pursue the largest benefit according to the policy of separating power plants from network and bidding transaction. This model bases on the cost of power plant and its research object is a power plant in the market. The market clearing price (MCP) can be predicted and an optimized load curve can be decided in this model. The model may provide technical support for the power plant.

  15. 适应性软件体系结构研究%Research on Adaptive Software Architecture

    Institute of Scientific and Technical Information of China (English)

    李刚; 金茂忠

    2002-01-01

    In this paper,the necessity of researching on adaptive software architecture is expounded from the angle of impacts of Internet on software;the status quo of software architecture and software adaptability is summarized;the open problems and our viewpoints are presented.To contribute to improving software architecture adaptability,much attention should be paid to the following:(1)the theory and methodology of software surviving environment system and system analyzing,(2) the model of adaptive software architecture and the formal theory,(3) the methodology of adaptive software architecture-based software development and achitecture requirement analysis.

  16. Adapting and Using Scrum in a Software Research and Development Laboratory

    Directory of Open Access Journals (Sweden)

    LIMA, I. R.

    2012-06-01

    Full Text Available Agile software development has gained importance in the industry because of its approach on the issues of human agility and return on investment. This paper shows how Scrum agile software project management methodology has been deployed and adapted to the model of software project management of a research and development laboratory. As a result of this deployment, experiences and lessons learned in seven real projects developed by the authors are reported.

  17. Applications of Fuzzy adaptive PID control in the thermal power plant denitration liquid ammonia evaporation

    Directory of Open Access Journals (Sweden)

    Li Jing

    2016-01-01

    Full Text Available For the control of the liquid level of liquid ammonia in thermal power plant’s ammonia vaporization room, traditional PID controller parameter tuning is difficult to adapt to complex control systems, the setting of the traditional PID controller parameters is difficult to adapt to the complex control system. For the disadvantage of bad parameter setting, poor performance and so on the fuzzy adaptive PID control is proposed. Fuzzy adaptive PID control combines the advantages of traditional PID technology and fuzzy control. By using the fuzzy controller to intelligent control the object, the performance of the PID controller is further improved, and the control precision of the system is improved[1]. The simulation results show that the fuzzy adaptive PID controller not only has the advantages of high accuracy of PID controller, but also has the characteristics of fast and strong adaptability of fuzzy controller. It realizes the optimization of PID parameters which are in the optimal state, and the maximum increase production efficiency, so that are more suitable for nonlinear dynamic system.

  18. 2012 Gordon Research Conference, Plant molecular biology, July 15-20 2012

    Energy Technology Data Exchange (ETDEWEB)

    Sussman, Michael R. [Univ. of Wisconsin, Madison, WI (United States)

    2013-07-20

    The 2012 Gordon Conference on Plant Molecular Biology will present cutting-edge research on molecular aspects of plant growth and development, with particular emphasis on recent discoveries in molecular mechanisms involved with plant signaling systems. The Conference will feature a wide range of topics in plant molecular biology including hormone receptors and early events in hormone signaling, plant perception of and response to plant pathogen and symbionts, as well as technological and biological aspects of epigenomics particularly as it relates to signaling systems that regulate plant growth and development. Genomic approaches to plant signaling will be emphasized, including genomic profiling technologies for quantifying various biological subsystems, such as the epigenome, transcriptome, phosphorylome, and metabolome. The meeting will include an important session devoted to answering the question, "What are the biological and technological limits of plant breeding/genetics, and how can they be solved"?

  19. Low investment in sexual reproduction threatens plants adapted to phosphorus limitation

    NARCIS (Netherlands)

    Fujita, Y.; Olde Venterink, H.; Bodegom, van P.M.; Douma, J.C.; Heil, G.W.; Hölzel, N.; Jablonska, E.; Kotowski, W.; Okruszko, T.; Pawlikowski, P.; Ruiter, de P.C.; Wassen, M.J.

    2014-01-01

    Plant species diversity in Eurasian wetlands and grasslands depends not only on productivity but also on the relative availability of nutrients, particularly of nitrogen and phosphorus1–4. Here we show that the impacts of nitrogen:phosphorus stoichiometry on plant species richness can be explained b

  20. Model-Free Adaptive Switching Control of Time-Varying Plants

    NARCIS (Netherlands)

    Battistelli, Giorgio; Hespanha, João P.; Mosca, Edoardo; Tesi, Pietro

    2013-01-01

    This paper addresses the problem of controlling an uncertain time-varying plant by means of a finite family of candidate controllers supervised by an appropriate switching logic. It is assumed that, at every time, the plant consists of an uncertain single-input/single output linear system. It is sho

  1. Do Regional Disparities in Research on Climate and Water Influence Adaptive Capacity?

    Energy Technology Data Exchange (ETDEWEB)

    Kiparsky, M.; Brooks, C. [Energy and Resources Group, University of California, 310 Barrows Hall, Berkeley, CA, 94720-3050 (United States); Gleick, P.H. [Pacific Institute, 654 13th Street, Oakland, CA, 94612 (United States)

    2006-08-15

    As part of a long-term effort to both improve access to information on climate change and freshwater resources, and to understand the state of the science, we compiled an electronic bibliography of scientific literature in that area. We analyzed the distribution of information on climatic impacts on freshwater resources, with an emphasis on differences between developed and developing regions as well as differences in the types and focus of research carried out among regions. There has been more research overall in developed countries than in the developing world. Proportionally more of the available research on natural and human systems pertains to developed regions, while most of the analysis done in developing countries is limited to higher-level climatology and hydrology. We argue that scientific information and understanding are important elements of the ability to adapt to potential climatic changes. The distribution of the scientific literature in our database suggests that the types of science most directly relevant to adaptive capacity are skewed towards developed countries, which may exacerbate existing disparities in adaptive capacity, and ultimately worsen the consequences of climatic impacts in developing countries.

  2. Technical Note: DIRART- A software suite for deformable image registration and adaptive radiotherapy research

    Energy Technology Data Exchange (ETDEWEB)

    Yang Deshan; Brame, Scott; El Naqa, Issam; Aditya, Apte; Wu Yu; Murty Goddu, S.; Mutic, Sasa; Deasy, Joseph O.; Low, Daniel A. [Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, Missouri 63110 (United States)

    2011-01-15

    Purpose: Recent years have witnessed tremendous progress in image guide radiotherapy technology and a growing interest in the possibilities for adapting treatment planning and delivery over the course of treatment. One obstacle faced by the research community has been the lack of a comprehensive open-source software toolkit dedicated for adaptive radiotherapy (ART). To address this need, the authors have developed a software suite called the Deformable Image Registration and Adaptive Radiotherapy Toolkit (DIRART). Methods: DIRART is an open-source toolkit developed in MATLAB. It is designed in an object-oriented style with focus on user-friendliness, features, and flexibility. It contains four classes of DIR algorithms, including the newer inverse consistency algorithms to provide consistent displacement vector field in both directions. It also contains common ART functions, an integrated graphical user interface, a variety of visualization and image-processing features, dose metric analysis functions, and interface routines. These interface routines make DIRART a powerful complement to the Computational Environment for Radiotherapy Research (CERR) and popular image-processing toolkits such as ITK. Results: DIRART provides a set of image processing/registration algorithms and postprocessing functions to facilitate the development and testing of DIR algorithms. It also offers a good amount of options for DIR results visualization, evaluation, and validation. Conclusions: By exchanging data with treatment planning systems via DICOM-RT files and CERR, and by bringing image registration algorithms closer to radiotherapy applications, DIRART is potentially a convenient and flexible platform that may facilitate ART and DIR research.

  3. Demonstration of the use of ADAPT to derive predictive maintenance algorithms for the KSC central heat plant

    Science.gov (United States)

    Hunter, H. E.

    1972-01-01

    The Avco Data Analysis and Prediction Techniques (ADAPT) were employed to determine laws capable of detecting failures in a heat plant up to three days in advance of the occurrence of the failure. The projected performance of algorithms yielded a detection probability of 90% with false alarm rates of the order of 1 per year for a sample rate of 1 per day with each detection, followed by 3 hourly samplings. This performance was verified on 173 independent test cases. The program also demonstrated diagnostic algorithms and the ability to predict the time of failure to approximately plus or minus 8 hours up to three days in advance of the failure. The ADAPT programs produce simple algorithms which have a unique possibility of a relatively low cost updating procedure. The algorithms were implemented on general purpose computers at Kennedy Space Flight Center and tested against current data.

  4. Two decades of Mexican ethnobotany and research in plant drugs.

    Science.gov (United States)

    Lozoya, X

    1994-01-01

    A renewed interest in the systematic study of indigenous medicines and associated medicinal plants arose in the 1970s. In Mexico the government established a national pharmaceutical industry to make use of the valuable colonial heritage of traditional practices combined with European medical concepts and resources. In 1975 the Mexican Institute for the Study of Medical Plants was created to integrate botanical, chemical and pharmacological studies on the Mexican flora. It compiled a database on ethnobotanical information relating to Mexican medicinal plants from the medical literature of the 16th to 19th centuries. A second database contained information on medicinal plants in current use. A medicinal herbarium was established. Taxonomical studies led to classification of the 11,000 voucher specimens in the herbarium and cross-referencing of the information with other databanks. A core group of 1000 plants used in traditional medicine throughout Mexico for almost 400 years was identified. Most of these are used to treat common diseases or basic health problems, usually given orally as decoctions or infusions. 95% of the plants used traditionally are from wild species. Information was collected from almost 3000 small Indian communities over four years on three aspects of traditional medicine--the healer, the disease categories recognized and the therapeutic resources in use. Plants with reported medicinal activity were selected for laboratory screening according to the frequency and commonality of their use, geographical distribution and seasonal availability. Screening involves a collaboration between chemists and pharmacologists: plant extracts are sequentially assayed and fractionated until the pure compound is isolated. Several active compounds are usually obtained from the same extract, frequently from the aqueous fractions. Ethnomedical information influences which plants are selected for screening and the type of assay used.

  5. Aquatic Plant Control Research Program: The Rhizosphere Microbiology of Rooted Aquatic Plants.

    Science.gov (United States)

    1988-04-01

    organic compounds materials are flooded periods, a and partially accumulated temporary buildup of degraded plant and reduced organic com- animal matter...extensive mycelium , mycorrhizal fungi also contribute to the stabilization of both the plant and the substrate. The fungi further facili- tate this...excretion of organic materials by plant roots mediates the selection and growth of bacteria in the rhizosphere, any changes that aging brings about in

  6. Lab to farm: applying research on plant genetics and genomics to crop improvement.

    Science.gov (United States)

    Ronald, Pamela C

    2014-06-01

    Over the last 300 years, plant science research has provided important knowledge and technologies for advancing the sustainability of agriculture. In this Essay, I describe how basic research advances have been translated into crop improvement, explore some lessons learned, and discuss the potential for current and future contribution of plant genetic improvement technologies to continue to enhance food security and agricultural sustainability.

  7. RESEARCH OF TECHNOLOGICAL AND MICROBIOLOGICAL PROPERTIES OF THE CRYOMILLED MEDICINAL PLANT RAW MATIRIAL

    OpenAIRE

    Soldatov DP; Chueshov VI; Koniukhov IV

    2012-01-01

    The technological parameters of the cryomilled plant raw matirial Calendula flowers, Taraxacum roots, Silybum fruit, Mentha leaves, Menyanthes grass, Agrimonia grass, Fumaria grass have been determined. Microbiological cleanness and antimicrobial activity of cryopowders and input material have been researched. It is established that use of cryomilling lead to microbiological contamination decrease, cryopowders of researched medicinal plant raw material can be used in tablets technology.

  8. Transcriptomic analysis of a tertiary relict plant, extreme xerophyte Reaumuria soongorica to identify genes related to drought adaptation.

    Directory of Open Access Journals (Sweden)

    Yong Shi

    Full Text Available BACKGROUND: Reaumuria soongorica is an extreme xerophyte shrub widely distributed in the desert regions including sand dune, Gobi and marginal loess of central Asia which plays a crucial role to sustain and restore fragile desert ecosystems. However, due to the lacking of the genomic sequences, studies on R. soongorica had mainly limited in physiological responses to drought stress. Here, a deep transcriptomic sequencing of R. soongorica will facilitate molecular functional studies and pave the path to understand drought adaptation for a desert plant. METHODOLOGY/PRINCIPAL FINDINGS: A total of 53,193,660 clean paired-end reads was generated from the Illumina HiSeq™ 2000 platform. By assembly with Trinity, we got 173,700 contigs and 77,647 unigenes with mean length of 677 bp and N50 of 1109 bp. Over 55% (43,054 unigenes were successfully annotated based on sequence similarity against public databases as well as Rfam and Pfam database. Local BLAST and Kyoto Encyclopedia of Genes and Genomes (KEGG maps were used to further exhausting seek for candidate genes related to drought adaptation and a set of 123 putative candidate genes were identified. Moreover, all the C4 photosynthesis genes existed and were active in R. soongorica, which has been regarded as a typical C3 plant. CONCLUSION/SIGNIFICANCE: The assembled unigenes in present work provide abundant genomic information for the functional assignments in an extreme xerophyte R. soongorica, and will help us exploit the genetic basis of how desert plants adapt to drought environment in the near future.

  9. Stakeholder integrated research (STIR): a new approach tested in climate change adaptation research

    NARCIS (Netherlands)

    Gramberger, M.; Zellmer, K.; Kok, K.; Metzger, M.J.

    2015-01-01

    Ensuring active participation of stakeholders in scientific projects faces many challenges. These range from adequately selecting stakeholders, overcoming stakeholder fatigue, and dealing with the limited time available for stakeholder engagement, to interacting with, and integrating, the research

  10. Researcher-Researched Difference: Adapting an Autoethnographic Approach for Addressing the Racial Matching Issue

    Directory of Open Access Journals (Sweden)

    Donnalyn Pompper

    2010-01-01

    Full Text Available This introspective essay was inspired by a desire to reflect on the use of qualitative research methods--where I am a Caucasian woman examining work experiences of women of color. I launched a journey backward to discover respondents' motivation for participating in my focus groups over the years, to closely examine their comfort level with a cross-ethnic dyad. The exercise enabled me to reflect on how I had negotiated power issues inherent in the research process. It contributes to the ongoing dialogue about autoethnography--where understanding of self in socio-cultural context is both the subject and object of the research enterprise. Overall, I interrogate epistemological and methodological practicalities of researching difference.

  11. Adaptive Training and Education Research at the US Army Research Laboratory: Bibliography (2013-2015)

    Science.gov (United States)

    2016-03-01

    education research program. This includes journal articles, technical reports, and conference papers produced by ARL employees and contractors to support...research program. The bibliography includes references for journal articles, technical reports, and conference papers produced by ARL employees and...2014. ISBN 978-0-9893923-3-4 (print version) and 978-0-9893923-2-7 ( digital version). Nye B, Sottilare R, Ragusa C, Hoffman M. Prologue: defining

  12. Herbaceous Plants for Climate Adaptation and Intensely Developed Urban Sites In Northern Europe: A Case Study From the Eastern Romanian Steppe

    Directory of Open Access Journals (Sweden)

    Sjöman Henrik

    2015-03-01

    Full Text Available In the increasingly compact city, services currently provided for in parks will in future be compressed into smaller green unit-structures, often associated with paved surfaces. Left-over spaces in urban environments, such as traffic roundabouts and strips along paths, roads and other corridors, will be important in the future city in order to deliver different eco-system services, especially stormwater management. It is therefore essential to start now to develop the knowledge and experience needed to create sustainable plantings for these sites. This paper presents the findings of a field survey in eastern Romania that sought to identify potential species for urban paved plantings in the Scandinavian region (northern Europe. The research approach is rooted in the hypothesis that studies of natural vegetation systems and habitats where plants are exposed to environmental conditions similar to those in inner-city environments can: 1 identify new or non-traditional species and genotypes adapted to urban environments; and 2 supply information and knowledge about their use potential concerning growth, flowering, life form, etc. In total, 117 different herbaceous species, all of which experience water stress regimes comparable to those in urban paved sites in Scandinavia. The initial information obtained from this field survey present a base of knowledge of which species that have a future potential for use in urban environment, which is of great importance in the following work within this project instead of testing species randomly without this knowledge of the species tolerance and performance in similar habitats.

  13. Ceratopteris richardii (C-fern: A model for investigating adaptive modification of vascular plant cell walls

    Directory of Open Access Journals (Sweden)

    Olivier eLeroux

    2013-09-01

    Full Text Available Plant cell walls are essential for most aspects of plant growth, development, and survival, including cell division, expansive cell growth, cell-cell communication, biomechanical properties, and stress responses. Therefore, characterising cell wall diversity contributes to our overall understanding of plant evolution and development. Recent biochemical analyses, concomitantly with whole genome sequencing of plants located at pivotal points in plant phylogeny, have helped distinguish between homologous characters and those which might be more derived. Most plant lineages now have at least one fully sequenced representative and although genome sequences for fern species are in progress they not yet available this group. Ferns offer key advantages for the study of developmental processes leading to vascularisation and complex organs as well as the specific differences between diploid sporophyte tissues and haploid gametophyte tissues and the interplay between them. Ceratopteris richardii has been well investigated building a body of knowledge which combined with the genomic and biochemical information available for other plants will progress our understanding of wall diversity and its impact on evolution and development.

  14. Goji Berry: Quality Assessment and Crop Adaptation of Plants Cultivated in Tuscany (Italy) by Combination of Carotenoid and DNA Analyses.

    Science.gov (United States)

    Capecchi, Giada; Goti, Emanuele; Nicolai, Elena; Bergonzi, Maria Camilla; Monnanni, Roberto; Bilia, Anna Rita

    2015-06-01

    In this study HPLC analysis for the evaluation of carotenoids and DNA barcoding are reported for three different samples of Lycium cultivated in Tuscany (Italy). These two analytical methods can represent integrative methods for quality control of goji, giving also crucial information on the plant adaptation to different environments. Hence, carotenoids represent the quality markers proposed by the monograph of the European Pharmacopoeia, while DNA barcoding can differentiate between species and populations and is useful for the detection of the homogeneity of the samples.

  15. The research of lamp for the growing of green plants

    Science.gov (United States)

    Feng, Chunyuan; Feng, Hongnian; Jin, Shangzhong; Gao, Jun

    2005-01-01

    Photosynthesis of plants is to absorb the special wavelength of sunlight by the chlorophylls. According to the absorption spectrum of chlorophylls, we managed to make a LED lamp for the growing of green plants, and the relative energy spectrum distribution of the lamp match with the absorbing spectrum of green plants. Because the absorption wavelength range of chlorophylls are respectively 390~420nm, 430~460nm and 650~680nm, we choose different peak wavelength LEDs which are respectively at 400nm, 450nm, 655nm. By calculation, the general energy ratio of the three types of LEDs is 22:46:33, which corresponds to the absorption spectrum of chlorophylls. The illuminance of lamp for the growing of green plants on plants away 0.5 meter is 80lx by measuring. The LEDs lamp can be used to complement light and increase the efficiency of photosynthesis in cloudy, in door or at night. In another word, the photosynthesis is more powerful, and the more carbohydrates are synthesized, supplying enough material and energy for the growing of green plants.

  16. Application of plant tissue cultures in phytoremediation research: incentives and limitations.

    Science.gov (United States)

    Doran, Pauline M

    2009-05-01

    The aim of this review is to critically assess the benefits and limitations associated with the use of in vitro plant cell and organ cultures as research tools in phytoremediation studies. Plant tissue cultures such as callus, cell suspensions, and hairy roots are applied frequently in phytoremediation research as model plant systems. In vitro cultures offer a range of experimental advantages in studies aimed at examining the intrinsic metabolic capabilities of plant cells and their capacity for toxicity tolerance. The ability to identify the contributions of plant cells to pollutant uptake and detoxification without interference from microorganisms is of particular significance in the search for fundamental knowledge about plants. However, if the ultimate goal of plant tissue culture experiments is the development of practical phytoremediation technology, the limitations inherent in the use of in vitro cultures as a representative of whole plants in the field must be recognized. The bioavailability of contaminants and the processes of pollutant uptake and metabolite distribution are likely to be substantially different in the two systems; this can lead to qualitative as well as quantitative differences in metabolic profiles and tolerance characteristics. Yet, many studies have demonstrated that plant tissue cultures are an extremely valuable tool in phytoremediation research. The results derived from tissue cultures can be used to predict the responses of plants to environmental contaminants, and to improve the design and thus reduce the cost of subsequent conventional whole plant experiments.

  17. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants

    National Research Council Canada - National Science Library

    Jorn Lamke; Isabel Baurle

    2017-01-01

    .... Given their potential epigenetic nature, such modifications may provide a mechanistic basis for a stress memory, enabling plants to respond more efficiently to recurring stress or even to prepare...

  18. Biogas production from coumarin-rich plants--inhibition by coumarin and recovery by adaptation of the bacterial community.

    Science.gov (United States)

    Popp, Denny; Schrader, Steffi; Kleinsteuber, Sabine; Harms, Hauke; Sträuber, Heike

    2015-09-01

    Plants like sweet clover (Melilotus spp.) are not suitable as fodder for cattle because of harmful effects of the plant secondary metabolite coumarin. As an alternative usage, the applicability of coumarin-rich plants as substrates for biogas production was investigated. When coumarin was added to continuous fermentation processes codigesting grass silage and cow manure, it caused a strong inhibition noticeable as decrease of biogas production by 19% and increase of metabolite concentrations to an organic acids/alkalinity ratio higher than 0.3(gorganic acids) gCaCO3 (-1). Microbial communities of methanogenic archaea were dominated by the genera Methanosarcina (77%) and Methanoculleus (11%). This community composition was not influenced by coumarin addition. The bacterial community analysis unraveled a divergence caused by coumarin addition correlating with the anaerobic degradation of coumarin and the recovery of the biogas process. As a consequence, biogas production resumed similar to the coumarin-free control with a biogas yield of 0.34 LN g(volatile solids) (-1) and at initial metabolite concentrations (∼ 0.2 g(organic acids) gCaCO3 (-1)). Coumarin acts as inhibitor and as substrate during anaerobic digestion. Hence, coumarin-rich plants might be suitable for biogas production, but should only be used after adaptation of the microbial community to coumarin.

  19. Analysis of gas exchange, stomatal behaviour and micronutrients uncovers dynamic response and adaptation of tomato plants to monochromatic light treatments.

    Science.gov (United States)

    O'Carrigan, Andrew; Babla, Mohammad; Wang, Feifei; Liu, Xiaohui; Mak, Michelle; Thomas, Richard; Bellotti, Bill; Chen, Zhong-Hua

    2014-09-01

    Light spectrum affects the yield and quality of greenhouse tomato, especially over a prolonged period of monochromatic light treatments. Physiological and chemical analysis was employed to investigate the influence of light spectral (blue, green and red) changes on growth, photosynthesis, stomatal behaviour, leaf pigment, and micronutrient levels. We found that plants are less affected under blue light treatment, which was evident by the maintenance of higher A, gs, Tr, and stomatal parameters and significantly lower VPD and Tleaf as compared to those plants grown in green and red light treatments. Green and red light treatments led to significantly larger increase in the accumulation of Fe, B, Zn, and Cu than blue light. Moreover, guard cell length, width, and volume all showed highly significant positive correlations to gs, Tr and negative links to VPD. There was negative impact of monochromatic lights-induced accumulation of Mn, Cu, and Zn on photosynthesis, leaf pigments and plant growth. Furthermore, most of the light-induced significant changes of the physiological traits were partially recovered at the end of experiment. A high degree of morphological and physiological plasticity to blue, green and red light treatments suggested that tomato plants may have developed mechanisms to adapt to the light treatments. Thus, understanding the optimization of light spectrum for photosynthesis and growth is one of the key components for greenhouse tomato production.

  20. Making the National Adaptation Programme of Action (NAPA More Responsive to the Livelihood Needs of Tree Planting Farmers, Drawing on Previous Experience in Dryland Sudan

    Directory of Open Access Journals (Sweden)

    Markku Kanninen

    2011-11-01

    Full Text Available Recently, tree planting has become popular under NAPA. For decades, many tree planting projects were implemented to reduce the vulnerability of ecosystems and societies. Despite all of these, tree-dependent livelihoods remain vulnerable, which leaves doubt on the benefit of tree planting to enhance the resilience of livelihoods to climatic shocks. This suggests that much can be learned from the past to improve future tree planting adaptation projects. This paper draws on the experience of farmers involved in gum arabic agroforestry in Sudan in order to understand the needs of tree-related adaptation projects that should be addressed. Surveyed farmers appreciated the different environmental services rendered by trees. Their priority areas for an adaptation project however, remain issues tied to gum producer price, rainfall pattern, and locust attacks as well as extension services and to a lesser extent access to micro credits. Moreover, Sudan’s Gum Arabic Company (GAC and Forests National Corporation play key roles in governance but are not yet considered as key adaptation players particularly the unsupportive role of the monopoly of gum exportation by GAC to tree planting as an adaptation activity. By focusing the design and implementation on tree related livelihood obstacles, adaptation projects are likely to be more responsive to the needs of vulnerable groups.

  1. A horizontal gene transfer at the origin of phenylpropanoid metabolism: a key adaptation of plants to land

    Directory of Open Access Journals (Sweden)

    Gribaldo Simonetta

    2009-02-01

    Full Text Available Abstract Background The pioneering ancestor of land plants that conquered terrestrial habitats around 500 million years ago had to face dramatic stresses including UV radiation, desiccation, and microbial attack. This drove a number of adaptations, among which the emergence of the phenylpropanoid pathway was crucial, leading to essential compounds such as flavonoids and lignin. However, the origin of this specific land plant secondary metabolism has not been clarified. Results We have performed an extensive analysis of the taxonomic distribution and phylogeny of Phenylalanine Ammonia Lyase (PAL, which catalyses the first and essential step of the general phenylpropanoid pathway, leading from phenylalanine to p-Coumaric acid and p-Coumaroyl-CoA, the entry points of the flavonoids and lignin routes. We obtained robust evidence that the ancestor of land plants acquired a PAL via horizontal gene transfer (HGT during symbioses with soil bacteria and fungi that are known to have established very early during the first steps of land colonization. This horizontally acquired PAL represented then the basis for further development of the phenylpropanoid pathway and plant radiation on terrestrial environments. Conclusion Our results highlight a possible crucial role of HGT from soil bacteria in the path leading to land colonization by plants and their subsequent evolution. The few functional characterizations of sediment/soil bacterial PAL (production of secondary metabolites with powerful antimicrobial activity or production of pigments suggest that the initial advantage of this horizontally acquired PAL in the ancestor of land plants might have been either defense against an already developed microbial community and/or protection against UV. Reviewers This article was reviewed by Purificación López-García, Janet Siefert, and Eugene Koonin.

  2. Genomic resources for a model in adaptation and speciation research: characterization of the Poecilia mexicana transcriptome

    Directory of Open Access Journals (Sweden)

    Kelley Joanna L

    2012-11-01

    Full Text Available Abstract Background Elucidating the genomic basis of adaptation and speciation is a major challenge in natural systems with large quantities of environmental and phenotypic data, mostly because of the scarcity of genomic resources for non-model organisms. The Atlantic molly (Poecilia mexicana, Poeciliidae is a small livebearing fish that has been extensively studied for evolutionary ecology research, particularly because this species has repeatedly colonized extreme environments in the form of caves and toxic hydrogen sulfide containing springs. In such extreme environments, populations show strong patterns of adaptive trait divergence and the emergence of reproductive isolation. Here, we used RNA-sequencing to assemble and annotate the first transcriptome of P. mexicana to facilitate ecological genomics studies in the future and aid the identification of genes underlying adaptation and speciation in the system. Description We provide the first annotated reference transcriptome of P. mexicana. Our transcriptome shows high congruence with other published fish transcriptomes, including that of the guppy, medaka, zebrafish, and stickleback. Transcriptome annotation uncovered the presence of candidate genes relevant in the study of adaptation to extreme environments. We describe general and oxidative stress response genes as well as genes involved in pathways induced by hypoxia or involved in sulfide metabolism. To facilitate future comparative analyses, we also conducted quantitative comparisons between P. mexicana from different river drainages. 106,524 single nucleotide polymorphisms were detected in our dataset, including potential markers that are putatively fixed across drainages. Furthermore, specimens from different drainages exhibited some consistent differences in gene regulation. Conclusions Our study provides a valuable genomic resource to study the molecular underpinnings of adaptation to extreme environments in replicated sulfide

  3. The Gatsby Plant Science Summer School: Inspiring the Next Generation of Plant Science Researchers[OA

    Science.gov (United States)

    Levesley, Aurora; Jopson, Juliet; Knight, Celia

    2012-01-01

    We provide evidence from a 5-year study to show that a single concerted effort at the start of undergraduate study can have a clear and lasting effect on the attitudes of students toward plant science. Attendance at a week-long residential plant science summer school in the first year of an undergraduate degree resulted in many students changing courses to include more plant science and increased numbers of graduates selecting plant-based PhDs. The evidence shows that the Gatsby Plant Science Summer School has increased the pool of high-quality plant science related PhD applicants in the UK and has had a positive impact on students’ career aspirations. The results are discussed within the context of enhancing the pipeline of future plant scientists and reversing the decline of this vulnerable and strategically important subject relevant to addressing food security and other major global challenges. We have shown that a single well-designed and timely intervention can influence future student behavior and as such offers a framework of potential use to other vulnerable disciplines. PMID:22534129

  4. The Gatsby Plant Science Summer School: inspiring the next generation of plant science researchers.

    Science.gov (United States)

    Levesley, Aurora; Jopson, Juliet; Knight, Celia

    2012-04-01

    We provide evidence from a 5-year study to show that a single concerted effort at the start of undergraduate study can have a clear and lasting effect on the attitudes of students toward plant science. Attendance at a week-long residential plant science summer school in the first year of an undergraduate degree resulted in many students changing courses to include more plant science and increased numbers of graduates selecting plant-based PhDs. The evidence shows that the Gatsby Plant Science Summer School has increased the pool of high-quality plant science related PhD applicants in the UK and has had a positive impact on students' career aspirations. The results are discussed within the context of enhancing the pipeline of future plant scientists and reversing the decline of this vulnerable and strategically important subject relevant to addressing food security and other major global challenges. We have shown that a single well-designed and timely intervention can influence future student behavior and as such offers a framework of potential use to other vulnerable disciplines.

  5. Research Progress of Space-Time Adaptive Detection for Airborne Radar

    Directory of Open Access Journals (Sweden)

    Wang Yong-liang

    2014-04-01

    Full Text Available Compared with Space-Time Adaptive Processing (STAP, Space-Time Adaptive Detection (STAD employs the data in the cell under test and those in the training to form reasonable detection statistics and consequently decides whether the target exists or not. The STAD has concise processing procedure and flexible design. Furthermore, the detection statistics usually possess the Constant False Alarm Rate (CFAR property, and hence it needs no additional CFAR processing. More importantly, the STAD usually exhibits improved detection performance than that of the conventional processing, which first suppresses the clutter then adopts other detection strategy. In this paper, we first summarize the key strongpoint of the STAD, then make a classification for the STAD, and finally give some future research tracks.

  6. Research on Community Competition and Adaptive Genetic Algorithm for Automatic Generation of Tang Poetry

    Directory of Open Access Journals (Sweden)

    Wujian Yang

    2016-01-01

    Full Text Available As there are many researches about traditional Tang poetry, among which automatically generated Tang poetry has arouse great concern in recent years. This study presents a community-based competition and adaptive genetic algorithm for automatically generating Tang poetry. The improved algorithm with community-based competition that has been added aims to maintain the diversity of genes during evolution; meanwhile, the adaptation means that the probabilities of crossover and mutation are varied from the fitness values of the Tang poetry to prevent premature convergence and generate better poems more quickly. According to the analysis of experimental results, it has been found that the improved algorithm is superior to the conventional method.

  7. Maternal effects in an insect herbivore as a mechanism to adapt to host plant phenology

    NARCIS (Netherlands)

    van Asch, Margriet; Julkunen-Tiito, Riita; Visser, Marcel E.

    2010-01-01

    P>1. Maternal effects may play an important role in shaping the life history of organisms. Using an insect herbivore, the winter moth (Operophtera brumata) feeding on oak (Quercus robur), we show that maternal effects can affect seasonal timing of egg hatching in an herbivore in an adaptive way. 2.

  8. Phytoplasma adapt to the diverse environments of their plant and insect hosts by altering gene expression

    DEFF Research Database (Denmark)

    Makarova, Olga; MacLean, Allyson M.; Nicolaisen, Mogens

    2015-01-01

    Phytoplasmas are intracellular insect-transmitted phytopathogenic bacteria with small genomes. To understand how Aster Yellows phytoplasma strain witches' broom (AY-WB) adapts to their hosts, we performed qRT-PCR analysis of 179 in silico functionally annotated AY-WB genes that are likely to have...

  9. Substantial Research Secures the Blue Future for our Blue Plant

    Directory of Open Access Journals (Sweden)

    Moustafa Abdel Maksoud

    2016-06-01

    accelerating the design process and ensuring the safe operation of floating wind turbines. In order to optimise the overall system, interdisciplinary numerical simulation methods are essential for evaluating the dynamic structure’s behaviour. Due to the motion of the floating structure, the wind turbine design and the power generation system must be optimised to withstand high accelerations. Advanced control systems are crucial for maintaining a safe operation of the system. Reducing costs is a main challenge for the offshore wind industry. One strategy in this effort is to assemble floating structure and the wind turbine onshore and then towing them out to sea. This procedure eliminates the need to use installation jack-up vessels with high crane capacity and therefore reduces overall installation time and costs. Floating structures are designed to accommodate large turbines; therefore, it should be expected that the final cost per MWh will be lower. Another important resource of renewable maritime energy is wave energy. It has a considerable extracting potential and is available nearly up to 90 per cent of the time, which is not the case for wind and solar energy. However, there is no converged solution for the best method of extracting wave energy. Research in this area is still in a very early stage as compared to wind or solar energy technologies. The main challenge in designing wave energy converters (WEC is the strong fluctuation of the available wave power levels, which can vary by a factor of 100. This means a WEC has to work efficiently at a low energy level and withstand extreme wave conditions that can occur once every few years. That is not only a structural problem but it is also a design problem with many challenges with respect to optimising the hydrodynamic behaviour of the system and the dynamic characteristics of the power take-off systems. The efficiency of a WEC can be significantly increased by using an adaptive active control of the power take

  10. Research progress of pharmacological activities and analytical methods for plant origin proteins.

    Science.gov (United States)

    Li, Chun-hong; Chen, Cen; Xia, Zhi-ning; Yang, Feng-qing

    2015-07-01

    As one of the important active components of traditional Chinese medicine (TCM), plant origin active proteins have many significant pharmacological functions. According to researches on the plant origin active proteins reported in recent years, pharmacological effects include anti-tumor, immune regulation, anti-oxidant, anti-pathogeny microorganism, anti-thrombus, as well as hypolipidemic and hypoglycemic activities of plant origin were reviewed, respectively. On the other hand, the analytical methods including chromatography, spectroscopy, electrophoresis and mass spectrometry for plant origin proteins analysis were also summarized. The main purpose of this paper is providing a reference for future development and application of plant active proteins.

  11. 2012 PLANT CELL WALLS GORDON RESEARCH CONFERENCE AND GORDON RESEARCH SEMINAR, AUGUST 4-10, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Jocelyn

    2012-08-10

    The sub-theme of this year’s meeting, ‘Cell Wall Research in a Post-Genome World’, will be a consideration of the dramatic technological changes that have occurred in the three years since the previous cell wall Gordon Conference in the area of DNA sequencing. New technologies are providing additional perspectives of plant cell wall biology across a rapidly growing number of species, highlighting a myriad of architectures, compositions, and functions in both "conventional" and specialized cell walls. This meeting will focus on addressing the knowledge gaps and technical challenges raised by such diversity, as well as our need to understand the underlying processes for critical applications such as crop improvement and bioenergy resource development.

  12. A plant resource and experiment management system based on the Golm Plant Database as a basic tool for omics research

    Directory of Open Access Journals (Sweden)

    Selbig Joachim

    2008-05-01

    names generated by the system and barcode labels facilitate identification and management of the material. Web pages are provided as user interfaces to facilitate maintaining the system in an environment with many desktop computers and a rapidly changing user community. Web based search tools are the basis for joint use of the material by all researchers of the institute. Conclusion The Golm Plant Database system, which is based on a relational database, collects the genetic and environmental information on plant material during its production or experimental use at the Max-Planck-Institute of Molecular Plant Physiology. It thus provides information according to the MIAME standard for the component 'Sample' in a highly standardised format. The Plant Database system thus facilitates collaborative work and allows efficient queries in data analysis for systems biology research.

  13. Folates in plants: research advances and progress in crop biofortification

    Science.gov (United States)

    Gorelova, Vera; Ambach, Lars; Rébeillé, Fabrice; Stove, Christophe; Van Der Straeten, Dominique

    2017-03-01

    Folates, also known as B9 vitamins, serve as donors and acceptors in one-carbon (C1) transfer reactions. The latter are involved in synthesis of many important biomolecules, such as amino acids, nucleic acids and vitamin B5. Folates also play a central role in the methyl cycle that provides one-carbon groups for methylation reactions. The important functions fulfilled by folates make them essential in all living organisms. Plants, being able to synthesize folates de novo, serve as an excellent dietary source of folates for animals that lack the respective biosynthetic pathway. Unfortunately, the most important staple crops such as rice, potato and maize are rather poor sources of folates. Insufficient folate consumption is known to cause severe developmental disorders in humans. Two approaches are employed to fight folate deficiency: pharmacological supplementation in the form of folate pills and biofortification of staple crops. As the former approach is considered rather costly for the major part of the world population, biofortification of staple crops is viewed as a decent alternative in the struggle against folate deficiency. Therefore strategies, challenges and recent progress of folate enhancement in plants will be addressed in this review. Apart from the ever-growing need for the enhancement of nutritional quality of crops, the world population faces climate change catastrophes or environmental stresses, such as elevated temperatures, drought, salinity that severely affect growth and productivity of crops. Due to immense diversity of their biochemical functions, folates take part in virtually every aspect of plant physiology. Any disturbance to the plant folate metabolism leads to severe growth inhibition and, as a consequence, to a lower productivity. Whereas today’s knowledge of folate biochemistry can be considered very profound, evidence on the physiological roles of folates in plants only starts to emerge. In the current review we will discuss the

  14. Next Generation Nuclear Plant Materials Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    G. O. Hayner; E.L. Shaber

    2004-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

  15. [Growth responses of six leguminous plants adaptable in Northern Shaanxi to petroleum contaminated soil].

    Science.gov (United States)

    Shan, Bao-Qin; Zhang, Yong-Tao; Cao, Qiao-Ling; Kang, Zhen-Yan; Li, Shu-Yuan

    2014-03-01

    To select appropriate native species in Northern Shaanxi for phytoremediation, the growth index of six kinds of leguminous plants planted in petroleum contaminated soils were investigated through pot culture. Petroleum concentrations were set at 0, 5 000, 10 000, 20 000, 40 000 mg x kg(-1) respectively with three replicates. Using different levels of seed germination rate, germination time, individual height, wilting rate, dry weight and chlorophyll content in leaves of tested plants as the ecological indicator. The results showed that tested plants have significantly different responses to petroleum pollution. Compared with those planted in clean soils, seed germination rate and individual height were promoted when petroleum concentration was lower than 5000 mg x kg(-1), but inhibition occurred when petroleum concentrations were higher than 10000 mg x kg(-1). Strong endurance of Medicago sativa was observed to petroleum polluted soil, especially at lower petroleum concentration. Leaf wilting of Robinia pseudoacacia was unobserved even when petroleum concentration was 40 000 mg x kg(-1), thus displaying the potential of remediating petroleum contaminated soils. The petroleum concentration was significantly and negatively correlated with seed germination rate, individual height and dry weight, but positively correlated with chlorophyll content in leaves.

  16. Opportunistic maintenance and adaptation of warranty maintenance tasks for Power Plant equipment

    Directory of Open Access Journals (Sweden)

    P. McGibney

    2016-08-01

    Full Text Available This paper makes a link between opportunistic maintenance literature and warranty analysis of a power plant. A new plant warranty maintenance tasks are observed over a two year period. The main aim is to see how opportunistic maintenance could be incorporated when the warranty period has elapsed. The paper examine the warranty period maintenance task list and propose adequate methods for assessing opportunistic maintenance as a preventive maintenance task in order to ensure reliability and availability of the plant equipment. Statistical approach is used to give an insight to the plant equipment status and a modeling approach is proposed to also assess maintenance information defined by experts in the context of actual operating regimes. This study focuses on the power plant‟s critical equipment. Failure Mode and Effect Analysis (FMEA is conducted on the power plant Booster Fans. This gives an insight about equipment failure mode patterns and maintenance requirements. A simulation example is presented based in the failure modes results obtained and a graphical display of optimum preventive maintenance schedule cost curves is also presented.

  17. Divergence and adaptive evolution of the gibberellin oxidase genes in plants.

    Science.gov (United States)

    Huang, Yuan; Wang, Xi; Ge, Song; Rao, Guang-Yuan

    2015-09-29

    The important phytohormone gibberellins (GAs) play key roles in various developmental processes. GA oxidases (GAoxs) are critical enzymes in GA synthesis pathway, but their classification, evolutionary history and the forces driving the evolution of plant GAox genes remain poorly understood. This study provides the first large-scale evolutionary analysis of GAox genes in plants by using an extensive whole-genome dataset of 41 species, representing green algae, bryophytes, pteridophyte, and seed plants. We defined eight subfamilies under the GAox family, namely C19-GA2ox, C20-GA2ox, GA20ox,GA3ox, GAox-A, GAox-B, GAox-C and GAox-D. Of these, subfamilies GAox-A, GAox-B, GAox-C and GAox-D are described for the first time. On the basis of phylogenetic analyses and characteristic motifs of GAox genes, we demonstrated a rapid expansion and functional divergence of the GAox genes during the diversification of land plants. We also detected the subfamily-specific motifs and potential sites of some GAox genes, which might have evolved under positive selection. GAox genes originated very early-before the divergence of bryophytes and the vascular plants and the diversification of GAox genes is associated with the functional divergence and could be driven by positive selection. Our study not only provides information on the classification of GAox genes, but also facilitates the further functional characterization and analysis of GA oxidases.

  18. Authoring Tools and Methods for Adaptive Training and Education in Support of the US Army Learning Model: Research Outline

    Science.gov (United States)

    2015-10-01

    investigating and developing adaptive tools and methods to largely automate the authoring (creation), delivery of instruction, and evaluation of computer... evaluate adaptive technologies to make them usable by a larger segment of the training and educational community. This research includes 6...and evaluation of computer-regulated training and education capabilities to help build SRL skills and support mixed-initiative interaction. A major

  19. Comparative Analysis of Transcriptomes in Rhizophoraceae Provides Insights into the Origin and Adaptive Evolution of Mangrove Plants in Intertidal Environments

    Directory of Open Access Journals (Sweden)

    Wuxia Guo

    2017-05-01

    Full Text Available Mangroves are woody plants that grow at the interface between land and sea in tropical and subtropical latitudes, where they exist in conditions of high salinity, extreme tides, strong winds, high temperatures, and muddy, anaerobic soils. Rhizophoraceae is a key mangrove family, with highly developed morphological and physiological adaptations to extreme conditions. It is an ideal system for the study of the origin and adaptive evolution of mangrove plants. In this study, we characterized and comprehensively compared the transcriptomes of four mangrove species, from all four mangrove genera, as well as their closest terrestrial relative in Rhizophoraceae, using RNA-Seq. We obtained 41,936–48,845 unigenes with N50 values of 982–1,185 bp and 61.42–69.48% annotated for the five species in Rhizophoraceae. Orthology annotations of Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Clusters of Orthologous Groups revealed overall similarities in the transcriptome profiles among the five species, whereas enrichment analysis identified remarkable genomic characteristics that are conserved across the four mangrove species but differ from their terrestrial relative. Based on 1,816 identified orthologs, phylogeny analysis and divergence time estimation revealed a single origin for mangrove species in Rhizophoraceae, which diverged from the terrestrial lineage ~56.4 million years ago (Mya, suggesting that the transgression during the Paleocene–Eocene Thermal Maximum may have been responsible for the entry of the mangrove lineage of Rhizophoraceae into intertidal environments. Evidence showed that the ancestor of Rhizophoraceae may have experienced a whole genome duplication event ~74.6 Mya, which may have increased the adaptability and survival chances of Rhizophoraceae during and following the Cretaceous–Tertiary extinction. The analysis of positive selection identified 10 positively selected genes from the ancestor branch of

  20. Integrating role of ethylene and ABA in tomato plants adaptation to salt stress

    DEFF Research Database (Denmark)

    Amjad, Muhammad; Akhtar, Javaid; Anwar-ul-Haq, Muhammad

    2014-01-01

    Saline stress seriously disrupts the growth and physiology of plants, whereas phytohormones play an important role in regulating plant responses to salinity stress. The involvement of phytohormones in salt tolerance of tomato and the interaction between potassium and phytohormones was studied...... concentrations of ABA and ethylene under saline conditions compared to control (0mM NaCl) and salt-sensitive genotype. The concentration of hormones was significantly higher in the treatment where no K was applied and it was lower in treatments where K was applied indicating that K application reduced...... the negative impact of salinity stress and thus increased the hormone concentration. Enhanced concentration of hormones in salt-tolerant genotype positively affected plant physiology and thus better chlorophyll content index (CCI), stomatal conductance and ion homeostasis that is higher K+/Na+ ratio...

  1. 植物白花授粉的类型及其适应性进化%Categories and Adaptive Evolution of Plant Self - pollination

    Institute of Scientific and Technical Information of China (English)

    杨期和; 杨和生; 李姣清

    2011-01-01

    综述了植物自花授粉的方式和类型,分析了白花授粉的生态适应性、可能的进化趋势及其影响因素.白花授粉是指两性花中雌雄蕊之间的授粉,通常也包括同株异花间的授粉.植物按授粉方式可分为自花授粉植物、异花授粉植物和常异花授粉植物3类.在自然界很少有绝对白花授粉的植物,都存在一定频率的异交,根据其自交发生的时间,可将自交分为3种方式:优先自交、竞争自交乖滞后自交.自交进化的假说主要集中在两个方面,即繁殖保障和自动选择优势,并已得到广泛的数据支持.分子生物学和生态学相结合的研究方法将进一步揭示植物自花授粉的形成与进化机制.%In this paper, the ways and categories are overviewed, and ecological adaptation and possible evolution- ary trends of plant self - pollination and their influencing factors are also analyzed. The self - pollination refers to the pollination between the pistil and stamen of the same bisexuanl flower, often including the pollination between different flowers in the same strain. Plants can be divided into 3 categories : self - pollinated plant, cross - pollina- ted plant, and often cross - pollinated plants according to pollinating ways. There is rarely absolute self - pollinated plants and is always a certain frequency of out - crossing in nature, so according to the time that the self - pollina- tion occurred, the selfing modes can be divided into three kinds : prior - selfing, competing selfing and delayed sel- ring. The self- evolution hypothesis focus on two aspects: reproduction assurance and automatic" selective advan- tage, and have been widely supported by ogy will further reveal the formation and data. The research methods of combination of molecular biology and ecol- evolution mechanism of plant self -pollination.

  2. Model-Free Adaptive Switching Control of Time-Varying Plants

    OpenAIRE

    Battistelli, Giorgio; Hespanha, João P.; Mosca, Edoardo; Tesi, Pietro

    2013-01-01

    This paper addresses the problem of controlling an uncertain time-varying plant by means of a finite family of candidate controllers supervised by an appropriate switching logic. It is assumed that, at every time, the plant consists of an uncertain single-input/single output linear system. It is shown that stability of the switched closed-loop system can be ensured provided that 1) at every time there is at least one candidate controller capable of potentially stabilizing the current time-inv...

  3. Catalyzing plant science research with RNA-seq

    Science.gov (United States)

    Next generation DNA sequencing technologies are driving increasingly rapid, affordable and high resolution analyses of plant transcriptomes through sequencing of the associated cDNA populations; an analytical platform commonly referred to as RNA-sequencing (RNA-seq). Since its first adoption only a ...

  4. Does the name really matter? The importance of botanical nomenclature and plant taxonomy in biomedical research.

    Science.gov (United States)

    Bennett, Bradley C; Balick, Michael J

    2014-03-28

    Medical research on plant-derived compounds requires a breadth of expertise from field to laboratory and clinical skills. Too often basic botanical skills are evidently lacking, especially with respect to plant taxonomy and botanical nomenclature. Binomial and familial names, synonyms and author citations are often misconstrued. The correct botanical name, linked to a vouchered specimen, is the sine qua non of phytomedical research. Without the unique identifier of a proper binomial, research cannot accurately be linked to the existing literature. Perhaps more significant, is the ambiguity of species determinations that ensues of from poor taxonomic practices. This uncertainty, not surprisingly, obstructs reproducibility of results-the cornerstone of science. Based on our combined six decades of experience with medicinal plants, we discuss the problems of inaccurate taxonomy and botanical nomenclature in biomedical research. This problems appear all too frequently in manuscripts and grant applications that we review and they extend to the published literature. We also review the literature on the importance of taxonomy in other disciplines that relate to medicinal plant research. In most cases, questions regarding orthography, synonymy, author citations, and current family designations of most plant binomials can be resolved using widely-available online databases and other electronic resources. Some complex problems require consultation with a professional plant taxonomist, which also is important for accurate identification of voucher specimens. Researchers should provide the currently accepted binomial and complete author citation, provide relevant synonyms, and employ the Angiosperm Phylogeny Group III family name. Taxonomy is a vital adjunct not only to plant-medicine research but to virtually every field of science. Medicinal plant researchers can increase the precision and utility of their investigations by following sound practices with respect to botanical

  5. Comparative Genomics of NAC Transcriptional Factors in Angiosperms: Implications for the Adaptation and Diversification of Flowering Plants.

    Directory of Open Access Journals (Sweden)

    Alejandro Pereira-Santana

    Full Text Available NAC proteins constitute one of the largest groups of plant-specific transcription factors and are known to play essential roles in various developmental processes. They are also important in plant responses to stresses such as drought, soil salinity, cold, and heat, which adversely affect growth. The current knowledge regarding the distribution of NAC proteins in plant lineages comes from relatively small samplings from the available data. In the present study, we broadened the number of plant species containing the NAC family origin and evolution to shed new light on the evolutionary history of this family in angiosperms. A comparative genome analysis was performed on 24 land plant species, and NAC ortholog groups were identified by means of bidirectional BLAST hits. Large NAC gene families are found in those species that have experienced more whole-genome duplication events, pointing to an expansion of the NAC family with divergent functions in flowering plants. A total of 3,187 NAC transcription factors that clustered into six major groups were used in the phylogenetic analysis. Many orthologous groups were found in the monocot and eudicot lineages, but only five orthologous groups were found between P. patens and each representative taxa of flowering plants. These groups were called basal orthologous groups and likely expanded into more recent taxa to cope with their environmental needs. This analysis on the angiosperm NAC family represents an effort to grasp the evolutionary and functional diversity within this gene family while providing a basis for further functional research on vascular plant gene families.

  6. Comparative Genomics of NAC Transcriptional Factors in Angiosperms: Implications for the Adaptation and Diversification of Flowering Plants

    Science.gov (United States)

    Pereira-Santana, Alejandro; Alcaraz, Luis David; Castaño, Enrique; Sanchez-Calderon, Lenin; Sanchez-Teyer, Felipe; Rodriguez-Zapata, Luis

    2015-01-01

    NAC proteins constitute one of the largest groups of plant-specific transcription factors and are known to play essential roles in various developmental processes. They are also important in plant responses to stresses such as drought, soil salinity, cold, and heat, which adversely affect growth. The current knowledge regarding the distribution of NAC proteins in plant lineages comes from relatively small samplings from the available data. In the present study, we broadened the number of plant species containing the NAC family origin and evolution to shed new light on the evolutionary history of this family in angiosperms. A comparative genome analysis was performed on 24 land plant species, and NAC ortholog groups were identified by means of bidirectional BLAST hits. Large NAC gene families are found in those species that have experienced more whole-genome duplication events, pointing to an expansion of the NAC family with divergent functions in flowering plants. A total of 3,187 NAC transcription factors that clustered into six major groups were used in the phylogenetic analysis. Many orthologous groups were found in the monocot and eudicot lineages, but only five orthologous groups were found between P. patens and each representative taxa of flowering plants. These groups were called basal orthologous groups and likely expanded into more recent taxa to cope with their environmental needs. This analysis on the angiosperm NAC family represents an effort to grasp the evolutionary and functional diversity within this gene family while providing a basis for further functional research on vascular plant gene families. PMID:26569117

  7. Adaptation of forest ecosystems to air pollution and climate change: a global assessment on research priorities

    Directory of Open Access Journals (Sweden)

    Serengil Y

    2011-04-01

    Full Text Available Climate change and air pollution are two of the anthropogenic stressors that require international collaboration. Influence mechanisms and combating strategies towards them have similarities to some extent. Impacts of air pollution and climate change have long been studied under IUFRO Research Group 7.01 and state of the art findings are presented at biannual meetings. Monitoring, modelling, assessment of multiple stressors, ecophysiology, and nutrient cycles have been thoroughly studied aspects of climate change and air pollution research for a long time under the umbrella of IUFRO RG 7.01. Recently, social and economic issues together with water relations are gaining more attention in parallel with science requirements on adaptation. In this paper, we summarise the main research needs emphasized at the recent 24th IUFRO RG 7.01 Conference titled “Adaptation of Forest Ecosystems to Air Pollution and Climate Change”. One important conclusion of the conference was the need for information on nutritional status of forest stands for sustainable forest management. It has been suggested to maintain long-term monitoring programs and to account for the effects of extreme years, and past and present management practices. Long-term monitoring can also help to understand the effects of forestry treatments on the nutrient and water budgets of the ecosystems which may enable to improve management practices like water saving silviculture.

  8. Cultural adaptation and validation of an instrument on barriers for the use of research results.

    Science.gov (United States)

    Ferreira, Maria Beatriz Guimarães; Haas, Vanderlei José; Dantas, Rosana Aparecida Spadoti; Felix, Márcia Marques Dos Santos; Galvão, Cristina Maria

    2017-03-02

    to culturally adapt The Barriers to Research Utilization Scale and to analyze the metric validity and reliability properties of its Brazilian Portuguese version. methodological research conducted by means of the cultural adaptation process (translation and back-translation), face and content validity, construct validity (dimensionality and known groups) and reliability analysis (internal consistency and test-retest). The sample consisted of 335 nurses, of whom 43 participated in the retest phase. the validity of the adapted version of the instrument was confirmed. The scale investigates the barriers for the use of the research results in clinical practice. Confirmatory factorial analysis demonstrated that the Brazilian Portuguese version of the instrument is adequately adjusted to the dimensional structure the scale authors originally proposed. Statistically significant differences were observed among the nurses holding a Master's or Doctoral degree, with characteristics favorable to Evidence-Based Practice, and working at an institution with an organizational cultural that targets this approach. The reliability showed a strong correlation (r ranging between 0.77 and 0.84, pcultura organizacional dirigida hacia tal aproximación. La fiabilidad presentó correlación fuerte (r variando entre 0,77 y 0,84, pcultura organizacional direcionada para tal abordagem. A confiabilidade apresentou correlação forte (r variando entre 0,77e 0,84, p<0,001) e a consistência interna foi adequada (alfa de Cronbach variando entre 0,77 e 0,82) . a versão para o português brasileiro do instrumento The Barriers Scale demonstrou-se válida e confiável no grupo estudado.

  9. Research Progress and Perspectives of Nitrogen Fixing Bacterium, Gluconacetobacter diazotrophicus, in Monocot Plants

    Directory of Open Access Journals (Sweden)

    N. Eskin

    2014-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a nitrogen fixing bacterium originally found in monocotyledon sugarcane plants in which the bacterium actively fixes atmosphere nitrogen and provides significant amounts of nitrogen to plants. This bacterium mainly colonizes intercellular spaces within the roots and stems of plants and does not require the formation of the complex root organ like nodule. The bacterium is less plant/crop specific and indeed G. diazotrophicus has been found in a number of unrelated plant species. Importantly, as the bacterium was of monocot plant origin, there exists a possibility that the nitrogen fixation feature of the bacterium may be used in many other monocot crops. This paper reviews and updates the research progress of G. diazotrophicus for the past 25 years but focuses on the recent research development.

  10. Achievement of genetics in plant reproduction research: the past decade for the coming decade.

    Science.gov (United States)

    Suwabe, Keita; Suzuki, Go; Watanabe, Masao

    2010-01-01

    In the last decade, a variety of innovations of emerging technologies in science have been accomplished. Advanced research environment in plant science has made it possible to obtain whole genome sequence in plant species. But now we recognize this by itself is not sufficient to understand the overall biological significance. Since Gregor Mendel established a principle of genetics, known as Mendel's Laws of Inheritance, genetics plays a prominent role in life science, and this aspect is indispensable even in modern plant biology. In this review, we focus on achievements of genetics on plant sexual reproduction research in the last decade and discuss the role of genetics for the coming decade. It is our hope that this will shed light on the importance of genetics in plant biology and provide valuable information to plant biologists.

  11. Adaptive Molecular Evolution of PHYE in Primulina, a Karst Cave Plant

    OpenAIRE

    Junjie Tao; Qingwen Qi; Ming Kang; Hongwen Huang

    2015-01-01

    Limestone Karst areas possess high levels of biodiversity and endemism. Primulina is a typical component of Karst endemic floras. The high species richness and wide distribution in various Karst microenvironments make the genus an idea model for studying speciation and local adaptation. In this study, we obtained 10 full-length sequences of the phytochrome PHYE from available transcriptome resources of Primulina and amplified partial sequences of PHYE from the genomic DNA of 74 Primulina spec...

  12. A resurrection study reveals rapid adaptive evolution within populations of an invasive plant.

    Science.gov (United States)

    Sultan, Sonia E; Horgan-Kobelski, Tim; Nichols, Lauren M; Riggs, Charlotte E; Waples, Ryan K

    2013-02-01

    The future spread and impact of an introduced species will depend on how it adapts to the abiotic and biotic conditions encountered in its new range, so the potential for rapid evolution subsequent to species introduction is a critical, evolutionary dimension of invasion biology. Using a resurrection approach, we provide a direct test for change over time within populations in a species' introduced range, in the Asian shade annual Polygonum cespitosum. We document, over an 11-year period, the evolution of increased reproductive output as well as greater physiological and root-allocational plasticity in response to the more open, sunny conditions found in the North American range in which the species has become invasive. These findings show that extremely rapid adaptive modifications to ecologically-important traits and plastic expression patterns can evolve subsequent to a species' introduction, within populations established in its introduced range. This study is one of the first to directly document evolutionary change in adaptive plasticity. Such rapid evolutionary changes can facilitate the spread of introduced species into novel habitats and hence contribute to their invasive success in a new range. The data also reveal how evolutionary trajectories can differ among populations in ways that can influence invasion dynamics.

  13. Adaptive memory in multi-model switching control of uncertain plants

    NARCIS (Netherlands)

    Battistelli, Giorgio; Mosca, Edoardo; Tesi, Pietro

    2014-01-01

    This paper describes some recent results in multi-model switching control. The scheme here considered embeds a finite family of pre-designed controllers and a high-level unit which selects, at each instant of time, the candidate controller to be placed in feedback to the uncertain plant. The study c

  14. Adaptive radiation of island plants: Evidence from Aeonium (Crassulaceae) of the Canary Islands

    DEFF Research Database (Denmark)

    Jorgensen, T.H.; Olesen, J.M.

    2001-01-01

    evidence that such traits have been acquired through convergent evolution on islands comes from molecular phylogenies; however, direct evidence of their selective value rarely is obtained. The importance of hybridization in the evolution of island plants is also considered as part of a more general...

  15. Plant quality and local adaptation undermine relocation in a bog specialist butterfly

    NARCIS (Netherlands)

    Turlure, C.; Radchuk, V.; Baguette, M.; Meijrink, M.; Burg, van den A.; Wallis de Vries, M.F.; Duinen, G.J.

    2013-01-01

    The butterfly Boloria aquilonaris is a specialist of oligotrophic ecosystems. Population viability analysis predicted the species to be stable in Belgium and to collapse in the Netherlands with reduced host plant quality expected to drive species decline in the latter. We tested this hypothesis by r

  16. 藏族高原适应研究%Research about Tibetan Plateau Adaptation

    Institute of Scientific and Technical Information of China (English)

    薛强; 杨建军

    2015-01-01

    By using literature material method, the study from perspectives of physiology and anthropological to research Tibetan's physical health level and adaption ability of low oxygen under condition of high altitude hypoxia. Results show that the plateau low oxygen environment, Tibetan formed a perfect combination of three aspects:the oxygen uptake, transport of oxygen and oxygen using, organizations and molecular adaptation level has been reached. Conclusion:Tibetan have special body potential in some competitive sports such as mountaineering and the sports depending on the endurance, should have maximum full play of the Tibetan plateau hypoxia adaptation.%运用文献资料法,从生理学和人类学的视角,研究藏族在高原低氧适应条件下的体质健康水平和低氧适应能力。结果显示,在高原低氧的环境下,藏族形成了氧摄取、氧运输和氧利用3方面完美的结合,低氧适应已经达到组织和分子水平。结论:藏族在登山和以耐力性为主的竞技体育项目中有特殊的身体潜力,应该最大限度的发挥藏族的高原低氧适应能力。

  17. Comparative research of international exchange of plant products

    Directory of Open Access Journals (Sweden)

    Đorović Milutin T.

    2003-01-01

    Full Text Available The well known events which had taken place in our country over the period 1989-2001 provoked adverse effects on foreign trade exchange of the total economy, agriculture and commodities of plant origin. These effects and changes were analyzed using corresponding indices for the sub periods 1989-1992 and 1998-2001. The foreign trade exchange balance was substantially negative in both sub periods over the analyzed period showing an aggravating trend. Export covering import declined from 78.09% to only 47.71%. The positive balance of exchange of agricultural, especially commodities of plant origin in the first four years was turned into a negative balance of exchange in the second four years. Export covering import at the agricultural level declined from 164.79% to 78.58% and at the level of commodities of plant origin from 201,76% to 87.35%. There was a significant disturbance of commodity and regional structure exchange. The share of agriculture in the total export of the country was raised from 13.82% to 18.16%. The share of plant originating commodities in the total export of agriculture was raised from 71,96% to 86,34%. Basic agricultural products predominated in the export. In addition, in the domestic export the share of developed countries decreased which contributed to poor export results and increased the import dependence of the country. Considering the above said, the need arises to increase substantially agricultural production, i.e. commodities of plant origin. The structure and output of these productions should meet the needs of both domestic and foreign markets. International standards need to be applied in order to take hold of new foreign markets, exporting high technology processed products, using intensive and efficient promotive activities. Subsequently, greater investments and a planned production are needed, liberalization and especially the system of import control in foreign trade exchange of agricultural products, i

  18. [Research progress of chemistry and anti-cancer activities of natural products from Chinese Garcinia plants].

    Science.gov (United States)

    Fu, Wen-Wei; Tan, Hong-Sheng; Xu, Hong-Xi

    2014-02-01

    Garcinia plants are one of the rich sources of natural xanthones and benzophenones which have attracted a great deal of attention from the scientists in the fields of chemistry and pharmacology. Recently, many structurally unique constituents with various bioactivities, especially anti-tumor activity, have been isolated from Garcinia plants. This concise review focused on the anti-cancer activity natural products isolated from Chinese Garcinia plants, and the research finding by authors and collaborators over the past several years were cited.

  19. Research progress on isolation and cloning of functional genes in tea plants

    Institute of Scientific and Technical Information of China (English)

    MA Chunlei; CHEN Liang

    2007-01-01

    Tea,which has many sanitarian functions,is one of the most popular non-alcoholic soft and healthy beverages in the world.In many countries,as well as in China,tea (Camellia sinensis) is an important cash crop.It has great value as a source of secondary metabolic products.Molecular biology of tea plants has been one of the most active and kinetic research fields of tea science for the last decade.Isolation and cloning of important functional genes of tea plants have a critical significance on elucidating the molecular mechanism of high quality,yield and resistance,as well as genetic manipulating via biotechnological approaches for tea plants.In this paper,we introduced the research progress on the isolation and cloning of functional genes in tea plants.In addition,the brief prospect on the research of functional genes of tea plants in the near future is also given out.

  20. Adaptive models for decision making in production management for thermoelectrical plants; Modelos adaptativos para suporte a decisao na gestao da producao de unidades termeletricas

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcante, Carlos Arthur Mattos Teixeira; Nascimento, Ricardo Santos; Pacheco, Luciana de Almeida; Ferreira, Adonias Magdiel S.; Leite, Weliton Emanuel S. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Escola Politecnica; Barretto, Sergio Torres Sa [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The development of technologies for the efficient production management of increasingly complex and dynamic systems has proven been a competitive differential for businesses world-class. The integrated management systems are currently among the areas of knowledge more defendants by the different branches of human activity. These systems has widely used mathematical modeling and optimization methods, through which it is feasible identify the optimal operational status, which can be translated as the minimum cost, maximum profit or minimum use of equipment, besides other goals. Also, they could measure the technical-economic consequences to operate in an operational status different from optimal. Thus, integrated systems management tools has been increasingly adopted in decision-support in production units. This paper proposes a methodology for the development of adaptive models, embedded in integrated management. This research also incorporates a software development, called Production Planning and Control of Thermo Electrical Co-Generation Unit that, connected to industrial plants' supervision layer, adapt its model in real time. (author)

  1. Effectiveness Evaluation Tools and Methods for Adaptive Training and Education in Support of the US Army Learning Model: Research Outline

    Science.gov (United States)

    2015-09-01

    Evaluation Tools and Methods for Adaptive Training and Education in Support of the US Army Learning Model: Research Outline by Joan H Johnston, Greg...4. TITLE AND SUBTITLE Effectiveness Evaluation Tools and Methods for Adaptive Training and Education in Support of the US Army Learning Model...provide affordable, tailored SRL training and educational capabilities for the US Army, the US Army Research Laboratory is investigating and developing

  2. Research on Mathematics Learning at the "Center of Individual Development and Adaptive Education" (IDeA)--An Introduction

    Science.gov (United States)

    Krummheuer, Götz

    2013-01-01

    In 2008, the research center "Individual Development and Adaptive Education" was constituted by the Goethe University, the German Institute for International Educational Research, and the Sigmund Freud Institute, all located in Frankfurt am Main, Germany (http://www.idea-frankfurt.eu). The research of the center focuses on the…

  3. Research on Mathematics Learning at the "Center of Individual Development and Adaptive Education" (IDeA)--An Introduction

    Science.gov (United States)

    Krummheuer, Götz

    2013-01-01

    In 2008, the research center "Individual Development and Adaptive Education" was constituted by the Goethe University, the German Institute for International Educational Research, and the Sigmund Freud Institute, all located in Frankfurt am Main, Germany (http://www.idea-frankfurt.eu). The research of the center focuses on the…

  4. Catalyzing plant science research with RNA-seq.

    Science.gov (United States)

    Martin, Laetitia B B; Fei, Zhangjun; Giovannoni, James J; Rose, Jocelyn K C

    2013-01-01

    Next generation DNA sequencing technologies are driving increasingly rapid, affordable and high resolution analyses of plant transcriptomes through sequencing of their associated cDNA (complementary DNA) populations; an analytical platform commonly referred to as RNA-sequencing (RNA-seq). Since entering the arena of whole genome profiling technologies only a few years ago, RNA-seq has proven itself to be a powerful tool with a remarkably diverse range of applications, from detailed studies of biological processes at the cell type-specific level, to providing insights into fundamental questions in plant biology on an evolutionary time scale. Applications include generating genomic data for heretofore unsequenced species, thus expanding the boundaries of what had been considered "model organisms," elucidating structural and regulatory gene networks, revealing how plants respond to developmental cues and their environment, allowing a better understanding of the relationships between genes and their products, and uniting the "omics" fields of transcriptomics, proteomics, and metabolomics into a now common systems biology paradigm. We provide an overview of the breadth of such studies and summarize the range of RNA-seq protocols that have been developed to address questions spanning cell type-specific-based transcriptomics, transcript secondary structure and gene mapping.

  5. Catalyzing Plant Science Research with RNA-seq

    Directory of Open Access Journals (Sweden)

    Laetitia eMartin

    2013-04-01

    Full Text Available Next generation DNA sequencing technologies are driving increasingly rapid, affordable and high resolution analyses of plant transcriptomes through sequencing of their associated cDNA populations; an analytical platform commonly referred to as RNA-sequencing (RNA-seq. Since entering the arena of whole genome profiling technologies only a few years ago, RNA-seq has proven itself to be a powerful tool with a remarkably diverse range of applications, from detailed studies of biological processes at the cell type specific level, to providing insights into fundamental questions in plant biology on an evolutionary time scale. Applications include generating genomic data for heretofore unsequenced species, thus expanding the boundaries of what had been considered ‘model organisms’, elucidating structural and regulatory gene networks, revealing how plants respond to developmental cues and their environment, allowing a better understanding of the relationships between genes and their products, and uniting the ‘omics’ fields of transcriptomics, proteomics and metabolomics into a now common systems biology paradigm. We provide an overview of the breadth of such studies and summarize the range of RNA-seq protocols that have been developed to address questions spanning cell-type specific based transcriptomics, transcript secondary structure and gene mapping.

  6. The role of chemistry in poisonous plant research: Current status and future prospects

    Science.gov (United States)

    Poisonous plants are a major cause of economic loss to livestock producers in many parts of the world. Losses include deaths, abortions, birth defects, reduced production and lost forage value. The USDA-ARS-Poisonous Plant Research Lab in collaboration with the Inner Mongolia Agricultural Univers...

  7. Reading the second code: mapping epigenomes to understand plant growth, development, and adaptation to the environment.

    Science.gov (United States)

    2012-06-01

    We have entered a new era in agricultural and biomedical science made possible by remarkable advances in DNA sequencing technologies. The complete sequence of an individual's set of chromosomes (collectively, its genome) provides a primary genetic code for what makes that individual unique, just as the contents of every personal computer reflect the unique attributes of its owner. But a second code, composed of "epigenetic" layers of information, affects the accessibility of the stored information and the execution of specific tasks. Nature's second code is enigmatic and must be deciphered if we are to fully understand and optimize the genetic potential of crop plants. The goal of the Epigenomics of Plants International Consortium is to crack this second code, and ultimately master its control, to help catalyze a new green revolution.

  8. Towards a more holistic research approach to plant conservation: the case of rare plants on oceanic islands.

    Science.gov (United States)

    Silva, Luís; Dias, Elisabete Furtado; Sardos, Julie; Azevedo, Eduardo Brito; Schaefer, Hanno; Moura, Mónica

    2015-06-11

    Research dedicated to rare endemic plants is usually focused on one given aspect. However, holistic studies, addressing several key issues, might be more useful, supporting management programmes while unravelling basic knowledge about ecological and population-level processes. A more comprehensive approach to research is proposed, encompassing: phylogenetics/systematics, pollination biology and seed dispersal, propagation, population genetics, species distribution models (SDMs), threats and monitoring. We present a holistic study dedicated to Veronica dabneyi Hochst. ex Seub., an endangered chamaephyte endemic to the Azores. Veronica dabneyi was mainly found associated with other endemic taxa; however, invasive plants were also present and together with introduced cattle, goats and rabbits are a major threat. Most populations grow at somewhat rocky and steep locations that appeared to work as refuges. Seed set in the wild was generally high and recruitment of young plants from seed seemed to be frequent. In the laboratory, it was possible to germinate and fully develop V. dabneyi seedlings, which were planted at their site of origin. No dormancy was detected and time for 50 % germination was affected by incubation temperature. Eight new microsatellite markers were applied to 72 individuals from 7 sites. A considerable degree of admixture was found between samples from the two islands Flores and Corvo, with 98 % of the genetic variability allocated within populations. Levels of heterozygosity were high and no evidence of inbreeding was found. Species distribution models based on climatic and topographic variables allowed the estimation of the potential distribution of V. dabneyi on Flores and Corvo using ecological niche factor analysis and Maxent. The inclusion of land-use variables only slightly increased the information explained by the models. Projection of the expected habitat in Faial largely coincided with the only historic record of V. dabneyi on that island

  9. Impact of Metal Nanoform Colloidal Solution on the Adaptive Potential of Plants

    OpenAIRE

    Taran, Nataliya; Batsmanova, Ludmila; Kovalenko, Mariia; Okanenko, Alexander

    2016-01-01

    Nanoparticles are a known cause of oxidative stress and so induce antistress action. The latter property was the purpose of our study. The effect of two concentrations (120 and 240 mg/l) of nanoform biogenic metal (Ag, Cu, Fe, Zn, Mn) colloidal solution on antioxidant enzymes, superoxide dismutase and catalase; the level of the factor of the antioxidant state; and the content of thiobarbituric acid reactive substances (TBARSs) of soybean plant in terms of field experience were studied. It was...

  10. Development and Field Test of the Central Energy Plant Adaptive Control System (CEPACS)

    Science.gov (United States)

    1994-06-01

    conventional P11) mode. PID controllers implemented in pneumatic, electronic, or microcomputer software can be somewhat difficult to set up and may not...plan was repeated using digital PID controllers to create a comparison data set. Appendix A gives details of th" test plan. Test Difficuities Problems...backlash in the drive mechanism. The oscillation was also present when using the Abbott Power Plant continuous pneumatic PID controllers , but at a smaller

  11. Plant growth and cultivation.

    Science.gov (United States)

    Podar, Dorina

    2013-01-01

    There is a variety of methods used for growing plants indoor for laboratory research. In most cases plant research requires germination and growth of plants. Often, people have adapted plant cultivation protocols to the conditions and materials at hand in their own laboratory and growth facilities. Here I will provide a guide for growing some of the most frequently used plant species for research, i.e., Arabidopsis thaliana, barley (Hordeum vulgare) and rice (Oryza sativa). However, the methods presented can be used for other plant species as well, especially if they are related to the above-mentioned species. The presented methods include growing plants in soil, hydroponics, and in vitro on plates. This guide is intended as a starting point for those who are just beginning to work on any of the above-mentioned plant species. Methods presented are to be taken as suggestive and modification can be made according to the conditions existing in the host laboratory.

  12. The role of coastal plant communities for climate change mitigation and adaptation

    Science.gov (United States)

    Duarte, Carlos M.; Losada, Iñigo J.; Hendriks, Iris E.; Mazarrasa, Inés; Marbà, Núria

    2013-11-01

    Marine vegetated habitats (seagrasses, salt-marshes, macroalgae and mangroves) occupy 0.2% of the ocean surface, but contribute 50% of carbon burial in marine sediments. Their canopies dissipate wave energy and high burial rates raise the seafloor, buffering the impacts of rising sea level and wave action that are associated with climate change. The loss of a third of the global cover of these ecosystems involves a loss of CO2 sinks and the emission of 1 Pg CO2 annually. The conservation, restoration and use of vegetated coastal habitats in eco-engineering solutions for coastal protection provide a promising strategy, delivering significant capacity for climate change mitigation and adaption.

  13. Adaptive divergence of scaling relationships mediates the arms race between a weevil and its host plant.

    Science.gov (United States)

    Toju, Hirokazu; Sota, Teiji

    2006-12-22

    Coevolution of exaggerated morphologies between insects and plants is a well-known but poorly understood phenomenon in evolutionary biology. In the antagonistic interaction between a seed-predatory insect, the camellia weevil (Curculio camelliae), and its host plant, Japanese camellia (Camellia japonica), we examined the evolutionary trajectory of an exaggerated offensive trait of the weevil (rostrum length) in terms of scaling relationship. Sampling throughout Japan revealed that the ratio of the rostrum length to overall body size was correlated with the ratio of the pericarp thickness to overall fruit size across the localities. We found a geographical interpopulation divergence in a parameter pertaining to the allometric equation of rostrum length (the coefficient a in y=axb, where y and x denote rostrum and body lengths, respectively), and the pattern of geographical differentiation in the allometric coefficient was closely correlated with the variation in the pericarp thickness of Japanese camellia. Our results provide a novel example of a geographically diverged scaling relationship in an insect morphology resulting from a coevolutionary arms race with its host plant.

  14. Participatory Research for Adaptive Water Management in a Transition Country - a Case Study from Uzbekistan

    Directory of Open Access Journals (Sweden)

    Darya Hirsch

    2010-09-01

    Full Text Available Participatory research has in recent years become a popular approach for problem-oriented scientific research that aims to tackle complex problems in a real management context. Within the European Union project NeWater, stakeholder processes were initiated in seven case studies to develop approaches for adaptive water management. The Uzbek part of the Amudarya River basin was one of the studied river basins. However, given the current political and cultural context in Uzbekistan, which provides little room for stakeholder participation, it was unclear to what extent participation could be realized there. In this paper, we present an evaluation of the participatory research carried out in the Amudarya case study with respect to (i the choice and application of different participatory methods and their adaptation to the given political, socioeconomic, and cultural environment, (ii their usefulness in improving system understanding and developing strategies and measures to improve water management and monitoring, and (iii their acceptance and suitability for enhancing policy-making processes in the Amudarya River basin context. The main lessons learned from the comparison of the different participatory methods were (1 the stakeholder process provided an opportunity for meetings and discussions among stakeholders from different organizational levels and thus promoted communication between different levels and organizations, and (2 in a context where most stakeholders are not generally involved in policy-making, there is a danger of raising expectations that a research project cannot meet, e.g., of transferring local interests to higher levels. Our experience shows that in order to choose participatory methods and adapt them to the Uzbek cultural and political setting (and most likely this applies to other post-Soviet transition countries as well, four aspects should be taken into account: the time required to prepare and apply the method, good

  15. Adapting Research Agendas and Observing Programs for Responding to Arctic Change

    Science.gov (United States)

    Murray, M. S.; Schlosser, P.; van der Watt, L. M.; Fahnestock, J.; Rajdev, V.; Ibarguchi, G.; Spiers, K.

    2014-12-01

    This paper presents a synthesis of data related to two types of response to arctic change: 1) The response of the research community to societal needs for information around arctic change; and 2) The response of stakeholder communities to engagement efforts designed to improve scientific observations for the purposes of adaptation, mitigation and management of arctic change. In the first instance we focus on how the research trajectory has changed across all disciplines during the period from 2003 to present, and present quantitative data demonstrating a shift in orientation and purpose. In the second instance we illustrate from two case studies wherein stakeholder engagement has been critical to framing objectives for and outcomes from environmental observing programs in ways that lead to solutions for coping with change.

  16. The Research and Application of Visual Saliency and Adaptive Support Vector Machine in Target Tracking Field

    Directory of Open Access Journals (Sweden)

    Yuantao Chen

    2013-01-01

    Full Text Available The efficient target tracking algorithm researches have become current research focus of intelligent robots. The main problems of target tracking process in mobile robot face environmental uncertainty. They are very difficult to estimate the target states, illumination change, target shape changes, complex backgrounds, and other factors and all affect the occlusion in tracking robustness. To further improve the target tracking’s accuracy and reliability, we present a novel target tracking algorithm to use visual saliency and adaptive support vector machine (ASVM. Furthermore, the paper’s algorithm has been based on the mixture saliency of image features. These features include color, brightness, and sport feature. The execution process used visual saliency features and those common characteristics have been expressed as the target’s saliency. Numerous experiments demonstrate the effectiveness and timeliness of the proposed target tracking algorithm in video sequences where the target objects undergo large changes in pose, scale, and illumination.

  17. Research on Adaptive Dual-Mode Switch Control Strategy for Vehicle Maglev Flywheel Battery

    Directory of Open Access Journals (Sweden)

    Hui Gao

    2015-01-01

    Full Text Available Because of the jamming signal is real-time changeable and control algorithm cannot timely tracking control flywheel rotor, this paper takes vehicle maglev flywheel battery as the research object. One kind of dual-model control strategy is developed based on the analysis of the vibration response impact of the flywheel battery control system. In view of the complex foundation vibration problems of electric vehicles, the nonlinear dynamic simulation model of vehicle maglev flywheel battery is solved. Through analyzing the nonlinear vibration response characteristics, one kind of dual-mode adaptive hybrid control strategy based on H∞ control and unbalance displacement feed-forward compensation control is presented and a real-time switch controller is designed. The reliable hybrid control is implemented, and the stability in the process of real-time switch is solved. The results of this project can provide important basic theory support for the research of vehicle maglev flywheel battery control system.

  18. 克隆植物对种间竞争的适应策略%A review of adaptive strategies of clonal plants to interspecific competition

    Institute of Scientific and Technical Information of China (English)

    葛俊; 邢福

    2012-01-01

    Clonal plants have many advantages over non-clonal plants, such as longevity, spatial mobility and two modes of reproduction. Therefore, clonal plants are dominant or constructive species in many natural ecosystems. We review the adaptive strategies of clonal plants to interspecific competition and elaborate the differences of competitive ability. It accounts for the responses to interspecific competition from those aspects, including modular morphology, clonal architecture, reproductive strategy and the relationship between physiological integration and interspecific competition. Those factors lead to different results, such as diversities of experimental materials, conditions of habitat, design of experiments and dynamic spatial changes of morphology and physiology of clonal plants. Key issues that need research are proposed, including clonal plants and interspecific competition under global change and its molecular ecological mechanism.%克隆植物种群因其寿命的持久性、空间上的可移动性和繁殖方式的多样化等特征与非克隆植物有很大区别,在自然生态系统中占有重要地位,甚至成为优势种或者建群种.该文通过归纳有关克隆植物的种间竞争适应策略研究案例,阐述了克隆植物的竞争能力差异和影响竞争力的因素;论述了克隆植物在构件形态、克隆构型、繁殖对策等方面对种间竞争的响应,以及生理整合作用与种间竞争的关系;分析了导致某些同类研究的结论不一致的原因,认为实验对象差异、实验设计、生境条件与克隆植物形态及生理上的时空动态变化等都可能影响实验结果;提出了全球变化背景下的克隆植物种间竞争及其分子生态学机制等可能是今后需要重点关注的问题.

  19. Minimal watering regime impacts on desert adapted green roof plant performance

    Science.gov (United States)

    Kovachich, S.; Pavao-Zuckerman, M.; Templer, S.; Livingston, M.; Stoltz, R.; Smith, S.

    2011-12-01

    Roof tops can cover one-fifth of urban areas and can greatly alter the movement of matter and energy in cities. With traditional roofing methods and materials, roof tops readily absorb heat and as a result, buildings and the surrounding urban area heat to unnaturally high temperatures. It is hypothesized that extensive green roofs would have wide-ranging benefits for arid environments. However, little is known about the cost of water use associated with green roof installations and how to balance energy reduction needs with water costs in this water limited environment. We are conducting a pilot study to test whether a) green roofs with native plants and environmentally-responsible watering regimes will prove successful in arid environments and if b) green roofs provide ecosystem services with responsible water application. Three species of Sonoran Desert natives, Dyssodia pentachaeta (groundcover), Calliandra eriophylla (shrub), and Hesperaloe parviflora (succulent) have been planted in experimental plots [1 m2 model houses and roofs, replicated in triplicate] with two sandy, rocky desert soil mixtures (light mix: 60% expanded shale and heavy mix: organic and sandy mix with 50% shale) at the Biosphere 2 campus near Oracle, Az. The green roofs are watered by two different techniques. The first technique provides "smart watering", the minimal amount of water needed by green roof plants based on precipitation and historical data. The second watering technique is considered heavy and does not take into account environmental conditions. Preliminary data from the experimental plots shows a 30% decrease in daytime roof top temperatures on green roofs and a 10% decrease in interior temperatures in buildings with green roofs. This trend occurs with both watering regimes (heavy and light). This finding suggests that additional irrigation yields no extra heat reduction and energy savings. In order to explain this phenomenon more clearly, we use co-located temperature and

  20. The Canadian minimum dataset for chronic low back pain research: a cross-cultural adaptation of the National Institutes of Health Task Force Research Standards

    Science.gov (United States)

    Lacasse, Anaïs; Roy, Jean-Sébastien; Parent, Alexandre J.; Noushi, Nioushah; Odenigbo, Chúk; Pagé, Gabrielle; Beaudet, Nicolas; Choinière, Manon; Stone, Laura S.; Ware, Mark A.

    2017-01-01

    Background: To better standardize clinical and epidemiological studies about the prevalence, risk factors, prognosis, impact and treatment of chronic low back pain, a minimum data set was developed by the National Institutes of Health (NIH) Task Force on Research Standards for Chronic Low Back Pain. The aim of the present study was to develop a culturally adapted questionnaire that could be used for chronic low back pain research among French-speaking populations in Canada. Methods: The adaptation of the French Canadian version of the minimum data set was achieved according to guidelines for the cross-cultural adaptation of self-reported measures (double forward-backward translation, expert committee, pretest among 35 patients with pain in the low back region). Minor cultural adaptations were also incorporated into the English version by the expert committee (e.g., items about race/ethnicity, education level). Results: This cross-cultural adaptation provides an equivalent French-Canadian version of the minimal data set questionnaire and a culturally adapted English-Canadian version. Modifications made to the original NIH minimum data set were minimized to facilitate comparison between the Canadian and American versions. Interpretation: The present study is a first step toward the use of a culturally adapted instrument for phenotyping French- and English-speaking low back pain patients in Canada. Clinicians and researchers will recognize the importance of this standardized tool and are encouraged to incorporate it into future research studies on chronic low back pain. PMID:28401140

  1. Intra-plastid protein trafficking: how plant cells adapted prokaryotic mechanisms to the eukaryotic condition.

    Science.gov (United States)

    Celedon, Jose M; Cline, Kenneth

    2013-02-01

    Protein trafficking and localization in plastids involve a complex interplay between ancient (prokaryotic) and novel (eukaryotic) translocases and targeting machineries. During evolution, ancient systems acquired new functions and novel translocation machineries were developed to facilitate the correct localization of nuclear encoded proteins targeted to the chloroplast. Because of its post-translational nature, targeting and integration of membrane proteins posed the biggest challenge to the organelle to avoid aggregation in the aqueous compartments. Soluble proteins faced a different kind of problem since some had to be transported across three membranes to reach their destination. Early studies suggested that chloroplasts addressed these issues by adapting ancient-prokaryotic machineries and integrating them with novel-eukaryotic systems, a process called 'conservative sorting'. In the last decade, detailed biochemical, genetic, and structural studies have unraveled the mechanisms of protein targeting and localization in chloroplasts, suggesting a highly integrated scheme where ancient and novel systems collaborate at different stages of the process. In this review we focus on the differences and similarities between chloroplast ancestral translocases and their prokaryotic relatives to highlight known modifications that adapted them to the eukaryotic situation. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.

  2. Intra-plastid protein trafficking; how plant cells adapted prokaryotic mechanisms to the eukaryotic condition

    Science.gov (United States)

    Celedon, Jose M.; Cline, Kenneth

    2012-01-01

    Protein trafficking and localization in plastids involves a complex interplay between ancient (prokaryotic) and novel (eukaryotic) translocases and targeting machineries. During evolution, ancient systems acquired new functions and novel translocation machineries were developed to facilitate the correct localization of nuclear encoded proteins targeted to the chloroplast. Because of its post-translational nature, targeting and integration of membrane proteins posed the biggest challenge to the organelle to avoid aggregation in the aqueous compartments. Soluble proteins faced a different kind of problem since some had to be transported across three membranes to reach their destination. Early studies suggested that chloroplasts addressed these issues by adapting ancient-prokaryotic machineries and integrating them with novel-eukaryotic systems, a process called ‘conservative sorting’. In the last decade, detailed biochemical, genetic, and structural studies have unraveled the mechanisms of protein targeting and localization in chloroplasts, suggesting a highly integrated scheme where ancient and novel systems collaborate at different stages of the process. In this review we focus on the differences and similarities between chloroplast ancestral translocases and their prokaryotic relatives to highlight known modifications that adapted them to the eukaryotic situation. PMID:22750312

  3. Adaptive Cell Segmentation and Tracking for Volumetric Confocal Microscopy Images of a Developing Plant Meristem

    Institute of Scientific and Technical Information of China (English)

    Min Liu; Anirban Chakraborty; Damanpreet Singh; Ram Kishor Yadav; Gopi Meenakshisundaram; G. Venugopala Reddy; Amit Roy-Chowdhury

    2011-01-01

    Automated segmentation and tracking of cells in actively developing tissues can provide high-throughput and quantitative spatiotemporal measurements of a range of cell behaviors; cell expansion and cell-division kinetics leading to a better understanding of the underlying dynamics of morphogenesis.Here,we have studied the problem of constructing cell lineages in time-lapse volumetric image stacks obtained using Confocal Laser Scanning Microscopy (CLSM).The novel contribution of the work lies in its ability to segment and track cells in densely packed tissue,the shoot apical meristem (SAM),through the use of a close-loop,adaptive segmentation,and tracking approach.The tracking output acts as an indicator of the quality of segmentation and,in turn,the segmentation can be improved to obtain better tracking results.We construct an optimization function that minimizes the segmentation error,which is,in turn,estimated from the tracking results.This adaptive approach significantly improves both tracking and segmentation when compared to an open loop framework in which segmentation and tracking modules operate separately.

  4. The gravitational plant physiology facility-Description of equipment developed for biological research in spacelab

    Science.gov (United States)

    Heathcote, D. G.; Chapman, D. K.; Brown, A. H.; Lewis, R. F.

    1994-01-01

    In January 1992, the NASA Suttle mission STS 42 carried a facility designed to perform experiments on plant gravi- and photo-tropic responses. This equipment, the Gravitational Plant Physiology Facility (GPPF) was made up of a number of interconnected units mounted within a Spacelab double rack. The details of these units and the plant growth containers designed for use in GPPF are described. The equipment functioned well during the mission and returned a substantial body of time-lapse video data on plant responses to tropistic stimuli under conditions of orbital microgravity. GPPF is maintained by NASA Ames Research Center, and is flight qualifiable for future spacelab missions.

  5. Improving the use of research evidence in guideline development: 13. Applicability, transferability and adaptation

    Directory of Open Access Journals (Sweden)

    Oxman Andrew D

    2006-12-01

    Full Text Available Abstract Background The World Health Organization (WHO, like many other organisations around the world, has recognised the need to use more rigorous processes to ensure that health care recommendations are informed by the best available research evidence. This is the thirteenth of a series of 16 reviews that have been prepared as background for advice from the WHO Advisory Committee on Health Research to WHO on how to achieve this. Objectives We reviewed the literature on applicability, transferability, and adaptation of guidelines. Methods We searched five databases for existing systematic reviews and relevant primary methodological research. We reviewed the titles of all citations and retrieved abstracts and full text articles if the citations appeared relevant to the topic. We checked the reference lists of articles relevant to the questions and used snowballing as a technique to obtain additional information. We used the definition "coming from, concerning or belonging to at least two or all nations" for the term international. Our conclusions are based on the available evidence, consideration of what WHO and other organisations are doing and logical arguments. Key questions and answers We did not identify systematic reviews addressing the key questions. We found individual studies and projects published in the peer reviewed literature and on the Internet. Should WHO develop international recommendations? • Resources for developing high quality recommendations are limited. Internationally developed recommendations can facilitate access to and pooling of resources, reduce unnecessary duplication, and involve international scientists. • Priority should be given to international health problems and problems that are important in low and middle-income countries, where these advantages are likely to be greatest. • Factors that influence the transferability of recommendations across different settings should be considered systematically and

  6. Adaptive Water Governance: Assessing the Institutional Prescriptions of Adaptive (Co-Management from a Governance Perspective and Defining a Research Agenda

    Directory of Open Access Journals (Sweden)

    Dave Huitema

    2009-06-01

    Full Text Available This article assesses the institutional prescriptions of adaptive (co-management based on a literature review of the (water governance literature. The adaptive (co-management literature contains four institutional prescriptions: collaboration in a polycentric governance system, public participation, an experimental approach to resource management, and management at the bioregional scale. These prescriptions largely resonate with the theoretical and empirical insights embedded in the (water governance literature. However, this literature also predicts various problems. In particular, attention is called to the complexities associated with participation and collaboration, the difficulty of experimenting in a real-world setting, and the politicized nature of discussion on governance at the bioregional scale. We conclude this article by outlining a common research agenda that invites the collaborative efforts of adaptive (co-management and governance scholars.

  7. Collaborative adaptations in social work intervention research in real-world settings: lessons learned from the field.

    Science.gov (United States)

    Blank Wilson, Amy; Farkas, Kathleen

    2014-01-01

    Social work research has identified the crucial role that service practitioners play in the implementation of evidence-based practices. This has led some researchers to suggest that intervention research needs to incorporate collaborative adaptation strategies in the design and implementation of studies focused on adapting evidence-based practices to real-world practice settings. This article describes a collaborative approach to service adaptations that was used in an intervention study that integrated evidence-based mental health and correctional services in a jail reentry program for people with serious mental illness. This description includes a discussion of the nature of the collaboration engaged in this study, the implementation strategies that were used to support this collaboration, and the lessons that the research team has learned about engaging a collaborative approach to implementing interventions in research projects being conducted in real-world social service delivery settings.

  8. VirtualPlant: A Software Platform to Support Systems Biology Research1[W][OA

    Science.gov (United States)

    Katari, Manpreet S.; Nowicki, Steve D.; Aceituno, Felipe F.; Nero, Damion; Kelfer, Jonathan; Thompson, Lee Parnell; Cabello, Juan M.; Davidson, Rebecca S.; Goldberg, Arthur P.; Shasha, Dennis E.; Coruzzi, Gloria M.; Gutiérrez, Rodrigo A.

    2010-01-01

    Data generation is no longer the limiting factor in advancing biological research. In addition, data integration, analysis, and interpretation have become key bottlenecks and challenges that biologists conducting genomic research face daily. To enable biologists to derive testable hypotheses from the increasing amount of genomic data, we have developed the VirtualPlant software platform. VirtualPlant enables scientists to visualize, integrate, and analyze genomic data from a systems biology perspective. VirtualPlant integrates genome-wide data concerning the known and predicted relationships among genes, proteins, and molecules, as well as genome-scale experimental measurements. VirtualPlant also provides visualization techniques that render multivariate information in visual formats that facilitate the extraction of biological concepts. Importantly, VirtualPlant helps biologists who are not trained in computer science to mine lists of genes, microarray experiments, and gene networks to address questions in plant biology, such as: What are the molecular mechanisms by which internal or external perturbations affect processes controlling growth and development? We illustrate the use of VirtualPlant with three case studies, ranging from querying a gene of interest to the identification of gene networks and regulatory hubs that control seed development. Whereas the VirtualPlant software was developed to mine Arabidopsis (Arabidopsis thaliana) genomic data, its data structures, algorithms, and visualization tools are designed in a species-independent way. VirtualPlant is freely available at www.virtualplant.org. PMID:20007449

  9. Management of adaptation of graduates of medical schools to conditions of independent professional activity: research and optimization

    Directory of Open Access Journals (Sweden)

    Erugina M.V.

    2014-03-01

    Full Text Available The Objective: research of regularities of adaptation of graduates of medical schools to conditions of independent professional activity and justification of the directions of optimization of management by this process. Material and Methods. Object of research included functioning of system of adaptation of graduates of medical schools to conditions of independent professional activity. Are carried out: The study of reports of the Saratov region for 2006-2012, documentation of 16 treatment-and-prophylactic medical organizations and 84 responses on graduates of Saratov State Medical University n.a. V. I. Razumovsky; anonymous retrospective questioning of 164 doctors after professional retraining at the faculty of professional development; expert questionnaire of 15 persons of the faculty of organizational chairs have been carried out. Results. In the work "complex adaptation factor"; dynamics of level of social and psychological, psychophysiological, organizational and professional indicators of adaptation of graduates to conditions of independent professional activity; the characteristic of "lagging behind" doctors; purposes of management of adaptation, importance of stages of its organizational support have been established. The ways to evaluate the success of individual adaptation and management of this process have been worked out, which are designed on the basis of the corresponding authorized optimization technology. Conclusion. Results of the conducted research allowed to expand idea of adaptation of graduates of medical schools to conditions of independent professional activity and to solve a number of applied problems of its optimization.

  10. Adaptive Q–V Scheme for the Voltage Control of a DFIG-Based Wind Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinho; Seok, Jul-Ki; Muljadi, Eduard; Kang, Yong Cheol

    2016-05-01

    Wind generators within a wind power plant (WPP) will produce different amounts of active power because of the wake effect, and therefore, they have different reactive power capabilities. This paper proposes an adaptive reactive power to the voltage (Q-V) scheme for the voltage control of a doubly fed induction generator (DFIG)-based WPP. In the proposed scheme, the WPP controller uses a voltage control mode and sends a voltage error signal to each DFIG. The DFIG controller also employs a voltage control mode utilizing the adaptive Q-V characteristics depending on the reactive power capability such that a DFIG with a larger reactive power capability will inject more reactive power to ensure fast voltage recovery. Test results indicate that the proposed scheme can recover the voltage within a short time, even for a grid fault with a small short-circuit ratio, by making use of the available reactive power of a WPP and differentiating the reactive power injection in proportion to the reactive power capability. This will, therefore, help to reduce the additional reactive power and ensure fast voltage recovery.

  11. Stable Short-Term Frequency Support Using Adaptive Gains for a DFIG-Based Wind Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jinsik; Jang, Gilsoo; Muljadi, Eduard; Blaabjerg, Frede; Chen, Zhe; Cheol Kang, Yong

    2016-09-01

    For the fixed-gain inertial control of wind power plants (WPPs), a large gain setting provides a large contribution to supporting system frequency control, but it may cause over-deceleration for a wind turbine generator that has a small amount of kinetic energy (KE). Further, if the wind speed decreases during inertial control, even a small gain may cause over-deceleration. This paper proposes a stable inertial control scheme using adaptive gains for a doubly fed induction generator (DFIG)-based WPP. The scheme aims to improve the frequency nadir (FN) while ensuring stable operation of all DFIGs, particularly when the wind speed decreases during inertial control. In this scheme, adaptive gains are set to be proportional to the KE stored in DFIGs, which is spatially and temporally dependent. To improve the FN, upon detecting an event, large gains are set to be proportional to the KE of DFIGs; to ensure stable operation, the gains decrease with the declining KE. The simulation results demonstrate that the scheme improves the FN while ensuring stable operation of all DFIGs in various wind and system conditions. Further, it prevents over-deceleration even when the wind speed decreases during inertial control.

  12. Transcriptional Analysis of The Adaptive Digestive System of The Migratory Locust in Response to Plant Defensive Protease Inhibitors

    Science.gov (United States)

    Spit, Jornt; Holtof, Michiel; Badisco, Liesbet; Vergauwen, Lucia; Vogel, Elise; Knapen, Dries; vanden Broeck, Jozef

    2016-09-01

    Herbivorous insects evolved adaptive mechanisms to compensate for the presence of plant defensive protease inhibitors (PI) in their food. The underlying regulatory mechanisms of these compensatory responses remain largely elusive. In the current study, we investigated the initiation of this adaptive response in the migratory locust, Locusta migratoria, via microarray analysis of gut tissues. Four hours after dietary uptake of PIs, 114 and 150 transcripts were respectively found up- or downregulated. The results suggest a quick trade-off between compensating for potential loss of digestive activity on the one hand, and stress tolerance, defense, and structural integrity of the gut on the other hand. We additionally addressed the role of a group of related upregulated hexamerin-like proteins in the PI-induced response. Simultaneous knockdown of corresponding transcripts by means of RNA interference resulted in a reduced capacity of the locust nymphs to cope with the effects of PI. Moreover, since insect hexamerins have been shown to bind Juvenile Hormone (JH), we also investigated the effect of JH on the proteolytic digestion in L. migratoria. Our results indicate that JH has a stimulatory effect on the expression of three homologous chymotrypsin genes, while knocking down the JH receptor (methoprene tolerant) led to opposite effects.

  13. Plant-microbe interactions: Plant hormone production by phylloplane fungi. Research report

    Energy Technology Data Exchange (ETDEWEB)

    Tuomi, T.; Ilvesoksa, J.; Rosenqvist, H.

    1993-06-23

    The molds Botrytis cinerea, Cladosporium cladosporioides and the yeast Aureobasidium pullulans, isolated from the leaves of three short-rotation Salix clones, were found to produce indole-3-acetic acid (a growth promoter of plants). Abscisic acid (a growth inhibitor of plants) production was detected in B. cinerea. The contents of indole-3-acetic acid and abscisic acid in the leaves of the Salix clones and the amounts of fungal propagules in these leaves were also measured, in order to evaluate whether the amounts of plant growth regulators produced by the fungi would make a significant contribution to the hormonal quantities of the leaves. The content of abscisic acid, and to a lesser degree that of indole-3-acetic acid, showed a positive correlation with the frequency of infection by the hormone producing organisms. The amounts of hormone producing fungi on leaves that bore visible colonies were, however, not sufficiently high to support the argument that neither the fungal production of abscisic nor indole-3-acetic acid would to a significant degree contribute to the hormonal contents of the leaves of the Salix clones.

  14. Reevaluating the conceptual framework for applied research on host-plant resistance

    Institute of Scientific and Technical Information of China (English)

    Michael J.Stout

    2013-01-01

    Applied research on host-plant resistance to arthropod pests has been guided over the past 60 years by a framework originally developed by Reginald Painter in his 1951 book,Insect Resistance in Crop Plants.Painter divided the "phenomena" of resistance into three "mechanisms," nonpreference (later renamed antixenosis),antibiosis,and tolerance.The weaknesses of this framework are discussed.In particular,this trichotomous framework does not encompass all known mechanisms of resistance,and the antixenosis and antibiosis categories are ambiguous and inseparable in practice.These features have perhaps led to a simplistic approach to understanding arthropod resistance in crop plants.A dichotomous scheme is proposed as a replacement,with a major division between resistance (plant traits that limit injury to the plant) and tolerance (plant traits that reduce amount of yield loss per unit injury),and the resistance category subdivided into constitutive/inducible and direct/indirect subcategories.The most important benefits of adopting this dichotomous scheme are to more closely align the basic and applied literatures on plant resistance and to encourage a more mechanistic approach to studying plant resistance in crop plants.A more mechanistic approach will be needed to develop novel approaches for integrating plant resistance into pest management programs.

  15. Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives.

    Science.gov (United States)

    Zeng, Yan; Guo, Lan-Ping; Chen, Bao-Dong; Hao, Zhi-Peng; Wang, Ji-Yong; Huang, Lu-Qi; Yang, Guang; Cui, Xiu-Ming; Yang, Li; Wu, Zhao-Xiang; Chen, Mei-Lan; Zhang, Yan

    2013-05-01

    Medicinal plants have been used world-wide for thousands of years and are widely recognized as having high healing but minor toxic side effects. The scarcity and increasing demand for medicinal plants and their products have promoted the development of artificial cultivation of medicinal plants. Currently, one of the prominent issues in medicinal cultivation systems is the unstable quality of the products. Arbuscular mycorrhiza (AM) affects secondary metabolism and the production of active ingredients of medicinal plants and thus influence the quality of herbal medicines. In this review, we have assembled, analyzed, and summarized the effects of AM symbioses on secondary metabolites of medicinal plants. We conclude that symbiosis of AM is conducive to favorable characteristics of medicinal plants, by improving the production and accumulation of important active ingredients of medicinal plants such as terpenes, phenols, and alkaloids, optimizing the composition of different active ingredients in medicinal plants and ultimately improving the quality of herbal materials. We are convinced that the AM symbiosis will benefit the cultivation of medicinal plants and improve the total yield and quality of herbal materials. Through this review, we hope to draw attention to the status and prospects of, and arouse more interest in, the research field of medicinal plants and mycorrhiza.

  16. Aquatic Plant Control Research Program. Effects of Water Chemistry on Aquatic Plants. Growth and Photosynthesis of Myriophyllum spicatum L.

    Science.gov (United States)

    1986-05-01

    A D-A±69 98 AQUATIC PLANT CONTROL RESEARCH PRGRAM EFFECTS OF N*TER 1 I CHEMISTRY ON AQUA .(U) ARMY ENGINEER NATERNAYS I EXPERIMENT STATION VICKSBURG...photosynthesis should be clearly resolved. Objective and Scope 6. The objective of this report is to evaluate the effects of major cation and inorganic...carbon levels on the growth and photosynthesis of M. spicaturn. A secondary objective is to evaluate the relationship between growth and

  17. 2009 Plant Cell Walls Gordon Research Conference-August 2-7,2009

    Energy Technology Data Exchange (ETDEWEB)

    Debra Mohnen

    2009-08-07

    Plant cell walls are a complex cellular compartment essential for plant growth, development and response to biotic and abiotic stress and a major biological resource for meeting our future bioenergy and natural product needs. The goal of the 2009 Plant Cell Walls Gordon Research Conference is to summarize and critically evaluate the current level of understanding of the structure, synthesis and function of the whole plant extracellular matrix, including the polysaccharides, proteins, lignin and waxes that comprise the wall, and the enzymes and regulatory proteins that drive wall synthesis and modification. Innovative techniques to study how both primary and secondary wall polymers are formed and modified throughout plant growth will be emphasized, including rapid advances taking place in the use of anti-wall antibodies and carbohydrate binding proteins, comparative and evolutionary wall genomics, and the use of mutants and natural variants to understand and identify wall structure-function relationships. Discussions of essential research advances needed to push the field forward toward a systems biology approach will be highlighted. The meeting will include a commemorative lecture in honor of the career and accomplishments of the late Emeritus Professor Bruce A. Stone, a pioneer in wall research who contributed over 40 years of outstanding studies on plant cell wall structure, function, synthesis and remodeling including emphasis on plant cell wall beta-glucans and arabinogalactans. The dwindling supply of fossil fuels will not suffice to meet our future energy and industrial product needs. Plant biomass is the renewable resource that will fill a large part of the void left by vanishing fossil fuels. It is therefore critical that basic research scientists interact closely with industrial researchers to critically evaluate the current state of knowledge regarding how plant biomass, which is largely plant cell walls, is synthesized and utilized by the plant. A final

  18. A chloroplast "wake up" mechanism: Illumination with weak light activates the photosynthetic antenna function in dark-adapted plants.

    Science.gov (United States)

    Janik, Ewa; Bednarska, Joanna; Zubik, Monika; Luchowski, Rafal; Mazur, Radoslaw; Sowinski, Karol; Grudzinski, Wojciech; Garstka, Maciej; Gruszecki, Wieslaw I

    2017-03-01

    The efficient and fluent operation of photosynthesis in plants relies on activity of pigment-protein complexes called antenna, absorbing light and transferring excitations toward the reaction centers. Here we show, based on the results of the fluorescence lifetime imaging analyses of single chloroplasts, that pigment-protein complexes, in dark-adapted plants, are not able to act effectively as photosynthetic antennas, due to pronounced, adverse excitation quenching. It appeared that the antenna function could be activated by a short (on a minute timescale) illumination with light of relatively low intensity, substantially below the photosynthesis saturation threshold. The low-light-induced activation of the antenna function was attributed to phosphorylation of the major accessory light-harvesting complex LHCII, based on the fact that such a mechanism was not observed in the stn7 Arabidopsis thaliana mutant, with impaired LHCII phosphorylation. It is proposed that the protein phosphorylation-controlled change in the LHCII clustering ability provides mechanistic background for this regulatory process.

  19. Neuro-fuzzy controller of low head hydropower plants using adaptive-network based fuzzy inference system

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M.B. [Inst. Nikola Tesla, Belgrade (Yugoslavia). Dept. of Power Systems; Calovic, M.S. [Univ. of Belgrade (Yugoslavia). Dept. of Electrical Engineering; Vesovic, B.V. [Inst. Mihajlo Pupin, Belgrade (Yugoslavia). Dept. of Automatic Control; Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1997-12-01

    This paper presents an attempt of nonlinear, multivariable control of low-head hydropower plants, by using adaptive-network based fuzzy inference system (ANFIS). The new design technique enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near optimal manner. The controller has flexibility for accepting more sensory information, with the main goal to improve the generator unit transients, by adjusting the exciter input, the wicket gate and runner blade positions. The developed ANFIS controller whose control signals are adjusted by using incomplete on-line measurements, can offer better damping effects to generator oscillations over a wide range of operating conditions, than conventional controllers. Digital simulations of hydropower plant equipped with low-head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-feedback optimal control and ANFIS based output feedback control are presented. To demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired neuro-fuzzy controller, the controller has been implemented on a complex high-order non-linear hydrogenerator model.

  20. Flash Flood Risk Perception in an Italian Alpine Region. From Research into Adaptive Strategies.

    Science.gov (United States)

    Scolobig, A.; de Marchi, B.; Borga, M.

    2009-04-01

    Flash floods are characterised by short lead times and high levels of uncertainty. Adaptive strategies to face them need to take into account not only the physical characteristics of the hydro-geological phenomena, but also peoples' risk perceptions, attitudes and behaviours in case of an emergency. It is quite obvious that a precondition for an effective adaptation, e.g. in the case of a warning, is the awareness of being endangered. At the same time the perceptions of those at risk and their likely actions inform hazard warning strategies and recovery programmes following such events. Usually low risk awareness or "wrong perceptions" of the residents are considered among the causes of an inadequate preparedness or response to flash floods as well as a symptom of a scarce self-protection culture. In this paper we will focus on flood risk perception and on how research on this topic may contribute to design adaptive strategies and give inputs to flood policy decisions. We will report on a flood risk perception study of the population residing in four villages in an Italian Alpine Region (Trentino Alto-Adige), carried out between October 2005 and January 2006. A total of 400 standardised questionnaires were submitted to local residents by face to face interviews. The surveys were preceded by focus groups with officers from agencies in charge of flood risk management and semi-structured and in-depth interviews with policy, scientific and technical experts. Survey results indicated that people are not so worried about hydro-geological phenomena, and think that their community is more endangered than themselves. The knowledge of the territory and danger sources, the unpredictability of flash floods and the feeling of safety induced by structural devices are the main elements which make the difference in shaping residents' perceptions. The study also demonstrated a widespread lack of adoption of preparatory measures among residents, together with a general low

  1. Research on the Random Shock Vibration Test Based on the Filter-X LMS Adaptive Inverse Control Algorithm

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2016-01-01

    Full Text Available The related theory and algorithm of adaptive inverse control were presented through the research which pointed out the adaptive inverse control strategy could effectively eliminate the noise influence on the system control. Proposed using a frequency domain filter-X LMS adaptive inverse control algorithm, and the control algorithm was applied to the two-exciter hydraulic vibration test system of random shock vibration control process and summarized the process of the adaptive inverse control strategies in the realization of the random shock vibration test. The self-closed-loop and field test show that using the frequency-domain filter-X LMS adaptive inverse control algorithm can realize high precision control of random shock vibration test.

  2. Statistical controversies in clinical research: early-phase adaptive design for combination immunotherapies.

    Science.gov (United States)

    Wages, N A; Slingluff, C L; Petroni, G R

    2017-04-01

    In recent years, investigators have asserted that the 3 + 3 design lacks flexibility, making its use in modern early-phase trial settings, such as combinations and/or biological agents, inefficient. More innovative approaches are required to address contemporary research questions, such as those posed in trials involving immunotherapies. We describe the implementation of an adaptive design for identifying an optimal treatment regimen, defined by low toxicity and high immune response, in an early-phase trial of a melanoma helper peptide vaccine plus novel adjuvant combinations. Operating characteristics demonstrate the ability of the method to effectively recommend optimal regimens in a high percentage of trials with reasonable sample sizes. The proposed design is a practical, early-phase, adaptive method for use with combined immunotherapy regimens. This design can be applied more broadly to early-phase combination studies, as it was used in an ongoing study of two small molecule inhibitors in relapsed/refractory mantle cell lymphoma.

  3. Living with genome instability: the adaptation of phytoplasmas todiverse environments of their insect and plant hosts

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xiaodong; Zhang, Jianhua; Ewing, Adam; Miller, Sally A.; Radek, Agnes; Shevchenko, Dimitriy; Tsukerman, Kiryl; Walunas, Theresa; Lapidus, Alla; Campbell, John W.; Hogenhout Saskia A.

    2006-02-17

    Phytoplasmas (Candidatus Phytoplasma, Class Mollicutes) cause disease in hundreds of economically important plants, and are obligately transmitted by sap-feeding insects of the order Hemiptera, mainly leafhoppers and psyllids. The 706,569-bp chromosome and four plasmids of aster yellows phytoplasma strain witches broom (AY-WB) were sequenced and compared to the onion yellows phytoplasma strain M (OY-M) genome. The phytoplasmas have small repeat-rich genomes. The repeated DNAs are organized into large clusters, potential mobile units (PMUs), which contain tra5 insertion sequences (ISs), and specialized sigma factors and membrane proteins. So far, PMUs are unique to phytoplasmas. Compared to mycoplasmas, phytoplasmas lack several recombination and DNA modification functions, and therefore phytoplasmas probably use different mechanisms of recombination, likely involving PMUs, for the creation of variability, allowing phytoplasmas to adjust to the diverse environments of plants and insects. The irregular GC skews and presence of ISs and large repeated sequences in the AY-WB and OY-M genomes are indicative of high genomic plasticity. Nevertheless, segments of {approx}250 kb, located between genes lplA and glnQ are syntenic between the two phytoplasmas, contain the majority of the metabolic genes and no ISs. AY-WB is further along in the reductive evolution process than OY-M. The AY-WB genome is {approx}154 kb smaller than the OY-M genome, primarily as a result of fewer multicopy sequences, including PMUs. Further, AY-WB lacks genes that are truncated and are part of incomplete pathways in OY-M. This is the first comparative phytoplasma genome analysis and report of the existence of PMUs in phytoplasma genomes.

  4. [Research on source profile of aerosol organic compounds in leather plant].

    Science.gov (United States)

    Wang, Bo-Guang; Zhou, Yan; Feng, Zhi-Cheng; Liu, Hui-Xuan

    2009-04-15

    Through investigating current air pollution condition for PM10 in every factories of different style leather plants in Pearl River Delta, characteristic profile of semi-volatile organic compounds in PM10 emitted from leather factories and their contents were researched by using ultrasonic and gas chromatography and mass spectrum technology. The 6 types of organic compounds containing 46 species in total were found in the collected samples, including phenyl compounds, alcohols, PAHs, acids, esters and amides. The concentrations of PM10 in leather tanning plant, leather dying plant and man-made leather plant were 678.5, 454.5, 498.6 microgm x m(-3) respectively, and concentration of organic compounds in PM10 were 10.04, 6.89, 14.21 microg x m(-3) in sequence. The more important type of pollutants in each leather plants had higher contribution to total organic mass as follows, esters and amides in tanning plants profile account for 43.47% and 36.51% respectively; esters and alcohols in dying plants profiles account for 52.52% and 16.16% respectively; esters and amide in man-made leather plant have the highest content and account for 57.07% and 24.17% respectively. In the aerosol organic source profiles of tested leather plants, 9-octadecenamide was the abundant important species with the weight of 26.15% in tanning plant, and Bis(2-ethylhexyl) phthalate was up to 44.19% in the dying plant, and Bis(2-ethylhexyl) maleate and 1-hydroxy-piperidine had obviously higher weight in man-made plant than the other two plants.

  5. ADEX optimized adaptive controllers and systems from research to industrial practice

    CERN Document Server

    Martín-Sánchez, Juan M

    2015-01-01

    This book is a didactic explanation of the developments of predictive, adaptive predictive and optimized adaptive control, including the latest methodology of adaptive predictive expert (ADEX) control, and their practical applications. It is focused on the stability perspective, used in the introduction of these methodologies, and is divided into six parts, with exercises and real-time simulations provided for the reader as appropriate. ADEX Optimized Adaptive Controllers and Systems begins with the conceptual and intuitive knowledge of the technology and derives the stability conditions to be verified by the driver block and the adaptive mechanism of the optimized adaptive controller to guarantee achievement of desired control performance. The second and third parts are centered on the design of the driver block and adaptive mechanism, which verify these stability conditions. The authors then proceed to detail the stability theory that supports predictive, adaptive predictive and optimized adaptive control m...

  6. Social science at the wildland-urban interface: a compendium of research results to create fire-adapted communities

    Science.gov (United States)

    Eric Toman; Melanie Stidham; Sarah McCaffrey; Bruce. Shindler

    2013-01-01

    Over the past decade, a growing body of research has been conducted on the human dimensions of wildland fire. As this research has matured, there has been a recognition of the need to examine the full body of resulting literature to synthesize disparate findings and identify lessons learned across studies. These lessons can then be applied to fostering fire-adapted...

  7. Lick Observatory's Shane telescope adaptive optics system (ShaneAO): research directions and progress

    Science.gov (United States)

    Gavel, Donald T.; Kupke, Renate; Rudy, Alexander R.; Srinath, Srikar; Dillon, Daren; Poyneer, Lisa A.

    2016-07-01

    We present a review of the ongoing research activity surrounding the adaptive optics system at the Shane telescope (ShaneAO) particularly the R&D efforts on the technology and algorithms for that will advance AO into wider application for astronomy. We are pursuing the AO challenges for whole sky coverage diffraction-limited correction down to visible science wavelengths. This demands high-order wavefront correction and bright artificial laser beacons. We present recent advancements in the development of MEMS based AO correction, woofer-tweeter architecture, wind-predictive wavefront control algorithms, atmospheric characterization, and a pulsed fiber amplifier guide star laser tuned for optical pumping of the sodium layer. We present the latest on-sky results from the new AO system and present status and experimental plans for the optical pumping guide star laser.

  8. RESEARCHES RELATED TO THE BIOLOGICAL STAGE FROM WASTEWATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    I.C MOGA

    2013-03-01

    Full Text Available In the present study a model for the oxygen concentration profiles in a mobile bed biofilm reactor (MBBR is proposed. By using a material with a large specific surface area (m2/m3 high biological activity can be maintained using a relatively small reactor volume. Small parts made of special materials with density close to the water density, are immersed in the bioreactors. The biofilm carriers are kept in suspension and even mixed with the help of air bubbles generated by the aeration system. Water oxygenation is a mass transfer process of oxygen from gas/air to the liquid mass. It can be used in wastewater treatment in order to remove the organic matter, in the biological stage. The functioning of aerobic processes depends on the availability of sufficient quantities of oxygen. In wastewater treatment plants, submerged bubbles aeration is most frequently accomplished by dispersing air bubbles in the liquid. The main purpose of this study is to determine the concentration of dissolved oxygen using mathematical modeling and numerical simulations. The aim of the study is to find the optimum dimension and position of the aeration pipes for maintaining the oxygen concentration in the limits indicated in the literature. Experimental determinations (measurements of the DO concentration have also been realized. The oxygen profile concentration, in a MBBR reactor, was determined.

  9. [Research of adaptive notch filter based on QRD-LS algorithm for power line interference in ECG].

    Science.gov (United States)

    Wang, Shuyan; Dong, Jian; Guan, Xin

    2008-10-01

    In this paper, an adaptive notch filter based on QRD-LS algorithm for power line interference in ECG is researched. It can automatically eliminate the power line interference in order to improve the signal-to-interference ratio. Furthermore, QLD-LS algorithm, which is recursive least-squares minimization using systolic arrays, is employed to adjust the weight vector. Compared with the adaptive notch filter based on LMS (least mean square) algorithm, it has good robustness. Simulation examples confirm the results. QRD-LS adaptive notch filter has better performance in comparison with LMS method.

  10. Research and management of soil, plant, animal, and human resources in the Middle Rio Grande Basin

    Science.gov (United States)

    Deborah M. Finch

    1996-01-01

    The Rocky Mountain Forest and Range Experiment Station initiated a research program in 1994 called. "Ecology, diversity, and sustainability of soil, plant, animal, and human resources of the Rio Grande Basin". This program is funded by an Ecosystem Management grant from Forest Service Research. Its mission focuses on the development and application of new...

  11. Differences in competitive ability between plants from nonnative and native populations of a tropical invader relates to adaptive responses in abiotic and biotic environments.

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Liao

    Full Text Available The evolution of competitive ability of invasive plant species is generally studied in the context of adaptive responses to novel biotic environments (enemy release in introduced ranges. However, invasive plants may also respond to novel abiotic environments. Here we studied differences in competitive ability between Chromolaena odorata plants of populations from nonnative versus native ranges, considering biogeographical differences in both biotic and abiotic environments. An intraspecific competition experiment was conducted at two nutrient levels in a common garden. In both low and high nutrient treatments, C. odorata plants from nonnative ranges showed consistently lower root to shoot ratios than did plants from native ranges grown in both monoculture and competition. In the low nutrient treatment, C. odorata plants from nonnative ranges showed significantly lower competitive ability (competition-driven decreases in plant height and biomass were more, which was associated with their lower root to shoot ratios and higher total leaf phenolic content (defense trait. In the high nutrient treatment, C. odorata plants from nonnative ranges showed lower leaf toughness and cellulosic contents (defense traits but similar competitive ability compared with plants from native ranges, which was also associated with their lower root to shoot ratios. Our results indicate that genetically based shifts in biomass allocation (responses to abiotic environments also influence competitive abilities of invasive plants, and provide a first potential mechanism for the interaction between range and environment (environment-dependent difference between ranges.

  12. Computational network pharmacological research of Chinese medicinal plants for chronic kidney disease

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The interaction between drug molecules and target proteins is the basis of pharmacological action.The pharmacodynamic mechanism of Chinese medicinal plants for chronic kidney disease(CKD) was studied by molecular docking and complex network analysis.It was found that the interaction network of components-proteins of Chinese medicinal plants is different from the interaction network of components-proteins of drugs.The action mechanism of Chinese medicinal plants is different from that of drugs.We also found the interaction network of components-proteins of tonifying herbs is different from the interaction network of components-proteins of evil expelling herbs using complex network research approach.It illuminates the ancient classification theory of Chinese medicinal plants.This computational approach could identify the pivotal components of Chinese medicinal plants and their key target proteins rapidly.The results provide data for development of multi-component Chinese medicine.

  13. Research on Determination of Demands of Tekirdağ Community on Design Plants

    Directory of Open Access Journals (Sweden)

    R. Yılmaz

    2006-01-01

    Full Text Available As a results of rapid increase in population and urbanization, open and green areas which are integral parts of ecological balance, have been dramatically decreasing in Tekirdağ city. Thus, the importance and demand on outdoor design plants increase day by day. Design plants are used in urban areas for both their aesthetic and functional properties (absorption of sun’s rays, prevention of reflection, increasing humidity, erosion control, etc.. In this research, behaviors, information, preferances and demands of the citizens of Tekirdağ towards these design plants are studied. For this reason, a survey study containing 20 questions was applied to 400 people for determination of public demands on design plants in Tekirdağ. Analyzing the survey results, precautions for landscape planning and suggestions for the demands on the design plants with respect to the public opinion are presented.

  14. Avian use of introduced plants: ornithologist records illuminate interspecific associations and research needs.

    Science.gov (United States)

    Aslan, Clare E; Rejmánek, Marcel

    2010-06-01

    Introduced species have the potential to impact processes central to the organization of ecological communities. Although hundreds of nonnative plant species have naturalized in the United States, only a small percentage of these have been studied in their new biotic communities. Their interactions with resident (native and introduced) bird species remain largely unexplored. As a group, citizen scientists such as ornithologists possess a wide range of experiences. They may offer insights into the prevalence and form of bird interactions with nonnative plants on a broad geographic scale. We surveyed 173 ornithologists from four U.S. states, asking them to report observations of bird interactions with nonnative plants. The primary goal of the survey was to obtain information useful in guiding future empirical research. In all, 1143 unique bird-plant interactions were reported, involving 99 plant taxa and 168 bird species. Forty-seven percent of reported interactions concerned potential dispersal (feeding on seeds or fruits). Remaining "habitat interactions" involved bird use of plants for nesting, perching, woodpecking, gleaning, and other activities. We utilized detrended correspondence analysis to ordinate birds with respect to the plants they reportedly utilize. Results illuminate the new guilds formed by these interactions. We assessed the existing level of knowledge about invasiveness of those plants reported most often in feeding interactions, identifying information gaps for biological invasions research priority. To exemplify the usefulness of citizen science data, we utilized survey results to guide field research on invasiveness in some of these plant species and observed both qualitatively and quantitatively strong agreement between survey reports and our empirical data. Questionnaire reports are therefore heuristically informative for the fields of both avian ecology and invasion biology.

  15. Annual Research Review: The Neurobiology and Physiology of Resilience and Adaptation across the Life Course

    Science.gov (United States)

    Karatoreos, Ilia N.; McEwen, Bruce S.

    2013-01-01

    Background: Adaptation is key to survival. An organism must adapt to environmental challenges in order to be able to thrive in the environment in which they find themselves. Resilience can be thought of as a measure of the ability of an organism to adapt, and to withstand challenges to its stability. In higher animals, the brain is a key player in…

  16. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress.

    Science.gov (United States)

    García-Mata, C; García Mata, C; Lamattina, L

    2001-07-01

    Nitric oxide (NO) is a very active molecule involved in many and diverse biological pathways where it has proved to be protective against damages provoked by oxidative stress conditions. In this work, we studied the effect of two NO donors, sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine SNP-treated on the response of wheat (Triticum aestivum) to water stress conditions. After 2 and 3 h of drought, detached wheat leaves pretreated with 150 microM SNP retained up to 15% more water than those pretreated with water or NO(2)(-)/NO(3)(-). The effect of SNP treatment on water retention was also found in wheat seedlings after 7 d of drought. These results were consistent with a 20% decrease in the transpiration rate of SNP-treated detached wheat leaves for the same analyzed time. In parallel experiments, NO was also able to induce a 35%, 30%, and 65% of stomatal closure in three different species, Tradescantia sp. (monocotyledonous) and two dicotyledonous, Salpichroa organifolia and fava bean (Vicia faba), respectively. In SNP-treated leaves of Tradescantia sp., the stomatal closure was correlated with a 10% increase on RWC. Ion leakage, a cell injury index, was 25% lower in SNP-treated wheat leaves compared with control ones after the recovery period. Carboxy-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), a specific NO scavenger, reverted SNP action by restoring the transpiration rate, stomatal aperture, and the ion leakage to the level found in untreated leaves. Northern-blot analysis showed that SNP-treated wheat leaves display a 2-fold accumulation of a group three late embryogenesis abundant transcript with respect to control leaves both after 2 and 4 h of drought periods. All together, these results suggest that the exogenous application of NO donors might confer an increased tolerance to severe drought stress conditions in plants.

  17. Research on psychoactive plants at Mexico’s National Medical Institute, 1888-1915

    OpenAIRE

    Sarabia, Angélica Morales; Centro de Estudios Interdisciplinarios en Ciencias y Humanidades, Universidad Nacional Autónoma de México; Reynoso, Mariana Ortiz; Universidad Autónoma del Estado de México

    2015-01-01

    The aim of the present essay is to analyze the work performed at the National Medical Institute (NMI) with a group of plants remarkable for containing significant psychoactive principles. The studies on the NMI conducted up to the present time did not analyze in depth the place those substances had in the Institute’s research agenda. For that reason we sought to identify the medicinal plants studied at NMI together with their active principles, the diseases to which they were experimentally a...

  18. New research discovery may mean less radioactive contamination, safer nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Murph, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-20

    Murph has now made another nanoparticle breakthrough that could benefit various work environments such as nuclear power plants. Murph and her team have created nanoparticle treated stainless steel filters that are capable to capturing radioactive vapor materials. Just like air filters capture dust and dirt, these filters are capable of capturing large amounts of radioactive vapors. The new research may one day mean that nuclear power plant workers, and other workers in related fields, will have a safer working environment.

  19. History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience.

    Science.gov (United States)

    Baldani, José I; Baldani, Vera L D

    2005-09-01

    This review covers the history on Biological Nitrogen Fixation (BNF) in Graminaceous plants grown in Brazil, and describes research progress made over the last 40 years, most of which was coordinated by Johanna Döbereiner. One notable accomplishment during this period was the discovery of several nitrogen-fixing bacteria such as the rhizospheric (Beijerinckia fluminensis and Azotobacter paspali), associative (Azospirillum lipoferum, A. brasilense, A. amazonense) and the endophytic (Herbaspirillum seropedicae, H. rubrisubalbicans, Gluconacetobacter diazotrophicus, Burkholderia brasilensis and B. tropica). The role of these diazotrophs in association with grasses, mainly with cereal plants, has been studied and a lot of progress has been achieved in the ecological, physiological, biochemical, and genetic aspects. The mechanisms of colonization and infection of the plant tissues are better understood, and the BNF contribution to the soil/plant system has been determined. Inoculation studies with diazotrophs showed that endophytic bacteria have a much higher BNF contribution potential than associative diazotrophs. In addition, it was found that the plant genotype influences the plant/bacteria association. Recent data suggest that more studies should be conducted on the endophytic association to strengthen the BNF potential. The ongoing genome sequencing programs: RIOGENE (Gluconacetobacter diazotrophicus) and GENOPAR (Herbaspirillum seropedicae) reflect the commitment to the BNF study in Brazil and should allow the country to continue in the forefront of research related to the BNF process in Graminaceous plants.

  20. Design and fabrication of adjustable red-green-blue LED light arrays for plant research

    Directory of Open Access Journals (Sweden)

    Kenitz J Dustin

    2005-08-01

    Full Text Available Abstract Background Although specific light attributes, such as color and fluence rate, influence plant growth and development, researchers generally cannot control the fine spectral conditions of artificial plant-growth environments. Plant growth chambers are typically outfitted with fluorescent and/or incandescent fixtures that provide a general spectrum that is accommodating to the human eye and not necessarily supportive to plant development. Many studies over the last several decades, primarily in Arabidopsis thaliana, have clearly shown that variation in light quantity, quality and photoperiod can be manipulated to affect growth and control developmental transitions. Light emitting diodes (LEDs has been used for decades to test plant responses to narrow-bandwidth light. LEDs are particularly well suited for plant growth chambers, as they have an extraordinary life (about 100,000 hours, require little maintenance, and use negligible energy. These factors render LED-based light strategies particularly appropriate for space-biology as well as terrestrial applications. However, there is a need for a versatile and inexpensive LED array platform where individual wavebands can be specifically tuned to produce a series of light combinations consisting of various quantities and qualities of individual wavelengths. Two plans are presented in this report. Results In this technical report we describe the practical construction of tunable red-green-blue LED arrays to support research in plant growth and development. Two light fixture designs and corresponding circuitry are presented. The first is well suited for a laboratory environment for use in a finite area with small plants, such as Arabidopsis. The second is expandable and appropriate for growth chambers. The application of these arrays to early plant developmental studies has been validated with assays of hypocotyl growth inhibition/promotion and phototropic curvature in Arabidopsis seedlings

  1. Mexican medicinal plants with anxiolytic or antidepressant activity: Focus on preclinical research.

    Science.gov (United States)

    López-Rubalcava, Carolina; Estrada-Camarena, Erika

    2016-06-20

    Anxiety and depression are considered the most prevalent psychiatric disorders worldwide. In Mexico, the use of medicinal plants to alleviate the symptoms associated with these psychiatric disorders is increasing. However, there is little scientific evidence that validates the efficacy of these plants. This evidence needs to be critically revised, and further studied to provided scientific support for their use. To identify the plants that are used in Mexico for the treatment of disorders related to anxiety and depression, and to review the current preclinical and when available, clinical information of these plants. We searched in scientific databases (Pubmed, Web of Science, Scopus and other web sources such as "Biblioteca digital de la medicina tradicional Mexicana" ) for Mexican plants used for the treatment of anxiety and depression that have been analyzed in preclinical studies. Additional information was obtained from published books. For this review, we also consider those plants used in Mexican traditional medicine for the treatment of "nervios," "susto" or "espanto;" common terms that describe symptoms related to anxiety and depression disorders. The bibliographic search identified 49 plants used in Mexican traditional medicine for the treatment of disorders related to anxiety and depression. From all these plants, 59% were analyzed in preclinical research, and only 8% were tested in clinical studies; only a few of these studies tried to elucidate their mechanism of action. In general, it is proposed that the plant extracts interact with the GABAergic system. However, only part of these studies attempted to analyze other neurotransmitter systems. Finally, in some cases, drug-herbal interactions were reported. There is a large number of Mexican medicinal plants used as a treatment for anxiety and depression disorders. Although some of these plants have been studied in preclinical research, in most cases these studies are preliminary, and the understanding

  2. Creative tensions: mutual responsiveness adapted to private sector research and development.

    Science.gov (United States)

    Sonck, Matti; Asveld, Lotte; Landeweerd, Laurens; Osseweijer, Patricia

    2017-09-07

    The concept of mutual responsiveness is currently based on little empirical data in the literature of Responsible Research and Innovation (RRI). This paper explores RRI's idea of mutual responsiveness in the light of recent RRI case studies on private sector research and development (R&D). In RRI, responsible innovation is understood as a joint endeavour of innovators and societal stakeholders, who become mutually responsive to each other in defining the 'right impacts' of the innovation in society, and in steering the innovation towards realising those impacts. Yet, the case studies identified several reasons for why the idea of mutual responsiveness does not always appear feasible or desirable in actual R&D situations. Inspired by the discrepancies between theory and practice, we suggest three further elaborations for the concept of responsiveness in RRI. Process-responsiveness is suggested for identifying situations that require stakeholder involvement specifically during R&D. Product-responsiveness is suggested for mobilising the potential of innovation products to be adaptable according to diverse stakeholder needs. Presponsiveness is suggested as responsiveness towards stakeholders that are not (yet) reachable at a given time of R&D. Our aim is to contribute to a more tangible understanding of responsiveness in RRI, and suggest directions for further analysis in upcoming RRI case studies.

  3. Numerical Research of Steam and Gas Plant Efficiency of Triple Cycle for Extreme North Regions

    Directory of Open Access Journals (Sweden)

    Galashov Nikolay

    2016-01-01

    Full Text Available The present work shows that temperature decrease of heat rejection in a cycle is necessary for energy efficiency of steam turbine plants. Minimum temperature of heat rejection at steam turbine plant work on water steam is 15°C. Steam turbine plant of triple cycle where lower cycle of steam turbine plant is organic Rankine cycle on low-boiling substance with heat rejection in air condenser, which safely allows rejecting heat at condensation temperatures below 0°C, has been offered. Mathematical model of steam and gas plant of triple cycle, which allows conducting complex researches with change of working body appearance and parameters defining thermodynamic efficiency of cycles, has been developed. On the basis of the model a program of parameters and index cycles design of steam and gas plants has been developed in a package of electron tables Excel. Numerical studies of models showed that energy efficiency of steam turbine plants of triple cycle strongly depend on low-boiling substance type in a lower cycle. Energy efficiency of steam and gas plants net 60% higher can be received for steam and gas plants on the basis of gas turbine plant NK-36ST on pentane and its condensation temperature below 0°C. It was stated that energy efficiency of steam and gas plants net linearly depends on condensation temperature of low-boiling substance type and temperature of gases leaving reco very boiler. Energy efficiency increases by 1% at 10% decrease of condensation temperature of pentane, and it increases by 0.88% at 15°C temperature decrease of gases leaving recovery boiler.

  4. Role of Root Exudates in Adaptative Reactions of Buckwheat Plants in Aluminium-acid Stress

    Directory of Open Access Journals (Sweden)

    A.E. Smirnov

    2014-03-01

    Full Text Available Aliminium toxicity is major limiting factor of crop production in acidic soils. It is known that mechanisms of toxic effects of aluminium are differing in biochemical characters, research of aluminium toxicity complicated by variety of its chemical forms and migration in soil and water ability. The root exudates qualitative composition of common buckwheat was evaluated. Organic complexing agents – oxalic acid and phenolic compounds were revealed. The role of these complexing agents in the buckwheat aluminium resistance under acidic stress, participation in processes of external and internal detoxification was shown. Spectrophometric assay revealed an increase in root secretion of oxalic acid by 2.5 times and decrease in content of phenolic compounds in root exudates solution by 3 times upon aluminium (50 µM treatment. In the meanwhile the same concentration of the metal had induced phenylalanine ammonia-lyase activity by 2 times.

  5. Experimental researches on power plant condensers performed at ENEA laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Fabrizi, F.; Girardi, G.; Palazzi, G. [ENEA, Casaccia (Italy). Area Energetica

    1993-09-01

    Improvement of Italian industrial design capability is the principal aim of the ENEA (Italian Agency for Energy, New Technologies and the Environment) R&D program which is studying the thermo-hydraulic aspects of shell-and-tube condensers. The principal experimental apparatus of this project allows researchers to perform tests for investigating in detail feed-water heater (FWH) thermo-hydraulic performance. A scaled-down test section was used in significant size to reproduce condensing, de-superheating and drain cooling zones. To approach condensation phenomena occurring in the FWH, a visualization test section was also built. A new model for condensation flow, perpendicular to the tubes, was developed using the films shot through the visualization test section. All the experimental data carried out in the program were used to assess an original code, named COND. Concerning the tube-side condenser design, an analysis of the velocity field in the front end head was performed to minimize erosion phenomena.

  6. Cadmium and zinc activate adaptive mechanisms in Nicotiana tabacum similar to those observed in metal tolerant plants.

    Science.gov (United States)

    Vera-Estrella, Rosario; Gómez-Méndez, María F; Amezcua-Romero, Julio C; Barkla, Bronwyn J; Rosas-Santiago, Paul; Pantoja, Omar

    2017-04-28

    Tobacco germinated and grew in the presence of high concentrations of cadmium and zinc without toxic symptoms. Evidence suggests that these ions are sequestered into the vacuole by heavy metal/H (+) exchanger mechanisms. Heavy metal hyperaccumulation and hypertolerance are traits shared by a small set of plants which show specialized physiological and molecular adaptations allowing them to accumulate and sequester toxic metal ions. Nicotiana tabacum was used to test its potential as a metal-accumulator in a glass house experiment. Seed germination was not affected in the presence of increasing concentrations of zinc and cadmium. Juvenile and adult plants could concentrate CdCl2 and ZnSO4 to levels exceeding those in the hydroponic growth medium and maintained or increased their leaf dry weight when treated with 0.5- or 1-mM CdCl2 or 1-mM ZnSO4 for 5 days. Accumulation of heavy metals did not affect the chlorophyll and carotenoid levels, while variable effects were observed in cell sap osmolarity. Heavy metal-dependent H(+) transport across the vacuole membrane was monitored using quinacrine fluorescence quenching. Cadmium- or zinc-dependent fluorescence recovery revealed that increasing concentrations of heavy metals stimulated the activities of the tonoplast Cd(2+) or Zn(2+)/H(+) exchangers. Immunodetection of the V-ATPase subunits showed that the increased proton transport by zinc was not due to changes in protein amount. MTP1 and MTP4 immunodetection and semiquantitative RT-PCR of NtMTP1, NtNRAMP1, and NtZIP1 helped to identify the genes that are likely involved in sequestration of cadmium and zinc in the leaf and root tissue. Finally, we demonstrated that cadmium and zinc treatments induced an accumulation of zinc in leaf tissues. This study shows that N. tabacum possesses a hyperaccumulation response, and thus could be used for phytoremediation purposes.

  7. An emerging crisis across northern prairie refuges: Prevalence of invasive plants and a plan for adaptive management

    Science.gov (United States)

    Grant, T.A.; Flanders-Wanner, B.; Shaffer, T.L.; Murphy, R.K.; Knutsen, G.A.

    2009-01-01

    In the northern Great Plains, native prairies managed by the U.S. Fish and Wildlife Service (Service) can be pivotal in conservation of North America's biological diversity. From 2002 to 2006, we surveyed 7,338 belt transects to assess the general composition of mixed-grass and tallgrass prairie vegetation across five "complexes" (i.e., administrative groupings) of national wildlife refuges managed by the Service in North Dakota and South Dakota. Native grasses and forbs were common (mean frequency of occurrence 47%-54%) on two complexes but uncommon (4%-13%) on two others. Conversely, an introduced species of grass, smooth brome (Bromus inermis), accounted for 45% to 49% of vegetation on two complexes and another species, Kentucky bluegrass (Poa pratensis) accounted for 27% to 36% of the vegetation on three of the complexes. Our data confirm prior suspicions of widespread invasion by introduced species of plants on Service-owned tracts of native prairie, changes that likely stem in part from a common management history of little or no disturbance (e.g., defoliation by grazing or fire). However, variability in the degree and type of invasion among prairie tracts suggests that knowledge of underlying causes (e.g., edaphic or climatic factors, management histories) could help managers more effectively restore prairies. We describe an adaptive management approach to acquire such knowledge while progressing with restoration. More specifically, we propose to use data from inventories of plant communities on Service-owned prairies to design and implement, as experiments, optimal restoration strategies. We will then monitor these experiments and use the results to refine future strategies. This comprehensive, process-oriented approach should yield reliable and robust recommendations for restoration and maintenance of native prairies in the northern Great Plains. ??2009 by the Board of Regents of the University of Wisconsin System.

  8. Selection and adaptation to high plant density in the Iowa Stiff Stalk synthetic maize (Zea mays L.) population: II. Plant morphology

    Science.gov (United States)

    The plant density at which Zea mays L. hybrids achieve maximum grain yield has increased throughout the hybrid era while grain yield on a per plant basis has increased little. Changes in plant characteristics including flag leaf angle, anthesis-silking interval (ASI), plant height, tassel branch num...

  9. Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds.

    Science.gov (United States)

    Oliveira, D C; Isaias, R M S; Fernandes, G W; Ferreira, B G; Carneiro, R G S; Fuzaro, L

    2016-01-01

    Biologists who study insect-induced plant galls are faced with the overwhelming diversity of plant forms and insect species. A challenge is to find common themes amidst this diversity. We discuss common themes that have emerged from our cytological and histochemical studies of diverse neotropical insect-induced galls. Gall initiation begins with recognition of reactive plant tissues by gall inducers, with subsequent feeding and/or oviposition triggering a cascade of events. Besides, to induce the gall structure insects have to synchronize their life cycle with plant host phenology. We predict that reactive oxygen species (ROS) play a role in gall induction, development and histochemical gradient formation. Controlled levels of ROS mediate the accumulation of (poly)phenols, and phytohormones (such as auxin) at gall sites, which contributes to the new cell developmental pathways and biochemical alterations that lead to gall formation. The classical idea of an insect-induced gall is a chamber lined with a nutritive tissue that is occupied by an insect that directly harvests nutrients from nutritive cells via its mouthparts, which function mechanically and/or as a delivery system for salivary secretions. By studying diverse gall-inducing insects we have discovered that insects with needle-like sucking mouthparts may also induce a nutritive tissue, whose nutrients are indirectly harvested as the gall-inducing insects feeds on adjacent vascular tissues. Activity of carbohydrate-related enzymes across diverse galls corroborates this hypothesis. Our research points to the importance of cytological and histochemical studies for elucidating mechanisms of induced susceptibility and induced resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Plant biology in space: recent accomplishments and recommendations for future research.

    Science.gov (United States)

    Ruyters, G; Braun, M

    2014-01-01

    Gravity has shaped the evolution of life since its origin. However, experiments in the absence of this overriding force, necessary to precisely analyse its role, e.g. for growth, development, and orientation of plants and single cells, only became possible with the advent of spaceflight. Consequently, this research has been supported especially by space agencies around the world for decades, mainly for two reasons: first, to enable fundamental research on gravity perception and transduction during growth and development of plants; and second, to successfully grow plants under microgravity conditions with the goal of establishing a bioregenerative life support system providing oxygen and food for astronauts in long-term exploratory missions. For the second time, the International Space Life Sciences Working Group (ISLSWG), comprised of space agencies with substantial life sciences programmes in the world, organised a workshop on plant biology research in space. The present contribution summarises the outcome of this workshop. In the first part, an analysis is undertaken, if and how the recommendations of the first workshop held in Bad Honnef, Germany, in 1996 have been implemented. A chapter summarising major scientific breakthroughs obtained in the last 15 years from plant research in space concludes this first part. In the second part, recommendations for future research in plant biology in space are put together that have been elaborated in the various discussion sessions during the workshop, as well as provided in written statements from the session chairs. The present paper clearly shows that plant biology in space has contributed significantly to progress in plant gravity perception, transduction and responses - processes also relevant for general plant biology, including agricultural aspects. In addition, the interplay between light and gravity effects has increasingly received attention. It also became evident that plants will play a major role as

  11. Climate adaptation is not enough: warming does not facilitate success of southern tundra plant populations in the high Arctic.

    Science.gov (United States)

    Bjorkman, Anne D; Vellend, Mark; Frei, Esther R; Henry, Gregory H R

    2017-04-01

    Rapidly rising temperatures are expected to cause latitudinal and elevational range shifts as species track their optimal climate north and upward. However, a lack of adaptation to environmental conditions other than climate - for example photoperiod, biotic interactions, or edaphic conditions - might limit the success of immigrants in a new location despite hospitable climatic conditions. Here, we present one of the first direct experimental tests of the hypothesis that warmer temperatures at northern latitudes will confer a fitness advantage to southern immigrants relative to native populations. As rates of warming in the Arctic are more than double the global average, understanding the impacts of warming in Arctic ecosystems is especially urgent. We established experimentally warmed and nonwarmed common garden plots at Alexandra Fiord, Ellesmere Island in the Canadian High Arctic with seeds of two forb species (Oxyria digyna and Papaver radicatum) originating from three to five populations at different latitudes across the Arctic. We found that plants from the local populations generally had higher survival and obtained a greater maximum size than foreign individuals, regardless of warming treatment. Phenological traits varied with latitude of the source population, such that southern populations demonstrated substantially delayed leaf-out and senescence relative to northern populations. Our results suggest that environmental conditions other than temperature may influence the ability of foreign populations and species to establish at more northerly latitudes as the climate warms, potentially leading to lags in northward range shifts for some species.

  12. Native Prairie Adaptive Management: a multi region adaptive approach to invasive plant management on Fish and Wildlife Service owned native prairies

    Science.gov (United States)

    Gannon, Jill J.; Shaffer, Terry L.; Moore, Clinton T.

    2013-01-01

    Much of the native prairie managed by the U.S. Fish and Wildlife Service (FWS) in the Prairie Pothole Region (PPR) of the northern Great Plains is extensively invaded by the introduced cool-season grasses, smooth brome (Bromus inermis) and Kentucky bluegrass (Poa pratensis). Management to suppress these invasive plants has had poor to inconsistent success. The central challenge to managers is selecting appropriate management actions in the face of biological and environmental uncertainties. In partnership with the FWS, the U.S. Geological Survey (USGS) developed an adaptive decision support framework to assist managers in selecting management actions under uncertainty and maximizing learning from management outcomes. This joint partnership is known as the Native Prairie Adaptive Management (NPAM) initiative. The NPAM decision framework is built around practical constraints faced by FWS refuge managers and includes identification of the management objective and strategies, analysis of uncertainty and construction of competing decision models, monitoring, and mechanisms for model feedback and decision selection. Nineteen FWS field stations, spanning four states of the PPR, have participated in the initiative. These FWS cooperators share a common management objective, available management strategies, and biological uncertainties. Though the scope is broad, the initiative interfaces with individual land managers who provide site-specific information and receive updated decision guidance that incorporates understanding gained from the collective experience of all cooperators. We describe the technical components of this approach, how the components integrate and inform each other, how data feedback from individual cooperators serves to reduce uncertainty across the whole region, and how a successful adaptive management project is coordinated and maintained on a large scale. During an initial scoping workshop, FWS cooperators developed a consensus management objective

  13. [Research advances in iron and zinc transfer from soil to plant in intercropping systems].

    Science.gov (United States)

    Xia, Hai-yong; Xue, Yan-fang; Meng, Wei-wei; Yu, Li-min; Liu, Ling-yan; Zhang, Zheng

    2015-04-01

    Intercropping facilitates the efficient utilization of land, light, water and nutrients. It is, therefore, important to increase the biodiversity of farmland and to develop sustainable ecological agriculture in both theory and practice. Intercropping helps improve the mobilization and uptake of soil iron (Fe) and zinc (Zn) and corresponding nutritional status in the plants, thus achieving grain micronutrient biofortification. In this review, phenomena of the improvement of Fe and Zn nutrition in dicotyledonous plants as affected by intercropping with gramineous plants (e.g. maize/peanut intercropping) were summarized. Moreover, the possible mechanisms in relation to interspecific rhizosphere molecular and physiological processes, as well as the changes in interspecific root morphology and distribution and microorganisms in the rhizosphere were elucidated. The accumulation, transfer and distribution of Fe and Zn in the plants in intercropping systems were also reviewed. The possible affecting factors on nutrients of Fe and Zn were analyzed. Based on the present advances in the mobilization and acquisition of soil Fe and Zn, and their accumulation and distribution in plants as well as the related management and environment influence factors, some new research questions were pointed out. Quantitative analysis, dynamic and systemic researches and field studies on Fe and Zn transfer from soil to plant in intercropping systems should be strengthened in the future.

  14. Chemotaxonomical researches in higher plants XII. Researches concerning the pigments and glucides of Phytolacca Americana L.

    Directory of Open Access Journals (Sweden)

    Gavrila NEAMTU

    1979-08-01

    Full Text Available The paper presents the results of biochemical analyses of Phytolacca Americana plants grown in the Agrobotanical Garden Cluj-Napoca. Carotenoid pigments (neoxanthin, violaxanthin, zeaxanthin, lutein, cryptoxanthin, alpha-carotene and beta-carotene chlorophyll pigments (a,b and glycoside pigments (betalaines, quercetin have been analysed in fruits and leaves respectively.

  15. WWTP design in warm climates - guideline comparison and parameter adaptation for a full-scale activated sludge plant using mass balancing.

    Science.gov (United States)

    Walder, C; Lindtner, S; Proesl, A; Klegraf, F; Weissenbacher, N

    2013-01-01

    The ATV-A-131 guideline and the design approach published in 'Wastewater Engineering, Treatment and Reuse (WE)' are widely used for the design of activated sludge plants. They are both based on simplified steady-state assumptions tailored to the boundary conditions of temperate climates. Using design guidelines beyond the designated temperature range may lead to inappropriate results. The objectives of this paper are (1) to summarise temperature relevant differences between ATV-A-131 and WE; (2) to show the related design components; and (3) to demonstrate a procedure for design parameter adaptation for a full-scale activated sludge plant located in a warm climate region. To gain steady-state data required for wastewater treatment plant (WWTP) design according to ATV-A-131 and WE, full-scale plant data were acquired for a period of 6 months as a basis for analyses and adaptation. Mass balances were calculated for the verification of the measurements and for analysing excess sludge production. The two approaches showed relevant temperature related differences. WE default application resulted in lower deviation in the mass balance results for excess sludge production. However, with the adaptation of the heterotrophic decay rates for both approaches and the inert organic and mineral solids fraction additionally for ATV-A-131, a good fit to the observed excess sludge production could be achieved.

  16. Plant Molecular Biology 2008 Gordon Research Conference - July 13-18, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Richard M. Amasino

    2009-08-28

    The Plant Molecular Biology Conference has traditionally covered a breadth of exciting topics and the 2008 conference will continue in that tradition. There will be sessions on metabolism; new methods to study genomes, proteomes and metabolomes; plant-microbe interactions; plant hormones; epigenetics. A new topic for the conference this year will be bioenergy. Thus this conference will bring together a range of disciplines to foster the exchange ideas and to permit the participants to learn of the latest developments and ideas in diverse areas of plant biology. The conference provides an excellent opportunity for individuals to discuss their research because additional speakers in each session will be selected from submitted abstracts. There will also be a poster session each day for a two-hour period prior to dinner.

  17. The Cultural Adaptation of the Youth Quality of Life Instrument-Research Version for Latino Children and Adolescents

    Science.gov (United States)

    Chavez, Ligia M.; Matias-Carrelo, Leida; Barrio, Concepcion; Canino, Glorisa

    2007-01-01

    We reviewed the Spanish translation of the Youth Quality of Life Instrument-Research Version (YQOL-R) and culturally adapted the measure with Puerto Rican and Mexican American children and adolescents. The YQOL-R is a self-reported measure that includes four domains: Sense of Self, Social Relationships, Environment, and General Quality of Life. A…

  18. Adapting Evidence-Based Pedagogy to Local Cultural Contexts: A Design Research Study of Policy Borrowing in Vietnam

    Science.gov (United States)

    Pham, Thanh Thi Hong; Renshaw, Peter

    2015-01-01

    This study employs design-based research to investigate how university teachers and their students from Vietnam perceived and adapted an evidence-based pedagogy known as "student-teams achievement division" (STAD). Two hundred and twenty one students and their teachers from three classes at a Vietnamese university participated in this…

  19. Participation under a spell of instrumentalization? Reflections on action research in an entrenched climate adaptation policy process

    NARCIS (Netherlands)

    Boezeman, D.; Vink, M.J.; Leroy, P.; Halffman, W.

    2014-01-01

    The article discusses action research in a Dutch intergovernmental project group DV2050. That group was to assess the effects of climate change and soil subsidence on the regional water system and to propose adaptive policies to increase regional water safety. In this study, we draw a parallel

  20. 植物内生菌的研究进展%Research Advance on Plant Endophyte

    Institute of Scientific and Technical Information of China (English)

    王莉衡

    2011-01-01

    植物内生是菌是一种新型的微生物资源,具有重大的研究意义和潜在的应用价值,近年来成为微生物资源研究的热点之一.对植物内生菌的研究进展和生物学作用进行了综述,以期更好地了解和研究植物内生菌.%Plant endophytes are the new microorganism resources with great investigative significance and potential applied value, which have become one of the most popular research topics in recent years. In this paper, general situation and research advances and biological functions of plant endophyte were summarized for further understanding of interactions of endophytes and host plants.

  1. [Research-oriented experimental course of plant cell and gene engineering for undergraduates].

    Science.gov (United States)

    Xiaofei, Lin; Rong, Zheng; Morigen, Morigen

    2015-04-01

    Research-oriented comprehensive experimental course for undergraduates is an important part for their training of innovation. We established an optional course of plant cell and gene engineering for undergraduates using our research platform. The course is designed to study the cellular and molecular basis and experimental techniques for plant tissue culture, isolation and culture of protoplast, genetic transformation, and screening and identification of transgenic plants. To develop undergraduates' ability in experimental design and operation, and inspire their interest in scientific research and innovation consciousness, we integrated experimental teaching and practice in plant genetic engineering on the tissue, cellular, and molecular levels. Students in the course practiced an experimental teaching model featured by two-week teaching of principles, independent experimental design and bench work, and ready-to-access laboratory. In this paper, we describe the contents, methods, evaluation system and a few issues to be solved in this course, as well as the general application and significance of the research-oriented experimental course in reforming undergraduates' teaching and training innovative talents.

  2. Left-right asymmetry in plants and animals: a gold mine for research

    NARCIS (Netherlands)

    Schilthuizen, M.; Gravendeel, B.

    2012-01-01

    Left-right asymmetry patterns in the body shapes of animals and plants have been a continuous source of interest among biologists. Recently, inroads have been made to developing a coherent research programme that makes use of the unique fact that chiral patterns may be studied (and generalities dedu

  3. Research methods in weed science: herbicide absorption and translocation in plants using radioisotopes

    Science.gov (United States)

    Herbicide absorption and translocation in plants is a key component in the study of herbicide physiology, mode of action, selectivity, resistance mechanisms, and in the registration process. Radioactive herbicides have been in use for over half-a-century in the research and study of herbicide absorp...

  4. Research on energy use of field plants; Peltokasvien energiakaeyttoeae koskeva tutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Tauriainen, J. [Commission of Agricultural Research, Helsinki (Finland). Finnish Ministry of Agriculture and Forestry

    1996-12-31

    Production of energy plants on set aside areas of peat production has risen to a subject of discussions during past few years. The field area becoming useless has been estimated to be, before the EU-membership, hundreds of thousands of hectares, 500 000 - 800 000 ha. Alternate usage will be needed for the set aside field areas because the profitability of plant cultivation is diminishing remarkable, and new possibilities for additional income are sought in Finnish farms. Research on field biomasses started in the national Bioenergy Research Programme in 1995. The number of projects was five, funded mainly by the Finnish Ministry of Agriculture and Forestry. The projects carried out in 1995 were: (1) Demonstration of the cultivation of Rape and Reed canary grass at present oil mills to fuel-oil, paper fibers and flash-pyrolysis oil as a large non-food production; (2) Cultivation of energy plants at peat production areas and the applicability of the bioenergy for different purposes; (3) Production of biomass in fields and the utilization of it for energy production; (4) Fractionation of different parts of the field plants and the development of the sorting technologies; and (5) Upgraded fuel from reed canary grass (an international task of the EU/AIR programme). In addition to these, the Agro-fiber research, funded totally by the Ministry of Agriculture and Forestry, will serve the purposes of the energy sector. The research is concentrated on the investigation of the fundamentals of the pulping applications of the field biomasses

  5. Linking training, research and policy advice: capacity building for adaptation to climate change in East Africa

    NARCIS (Netherlands)

    Terwisscha van Scheltinga, C.T.H.M.; Geene, van J.

    2011-01-01

    It is increasingly acknowledged that adapting to climate change is important in developing countries, where the majority of people depend on agriculture and natural resources for their livelihoods, and their capacity to adapt to change is low. These people are especially vulnerable to climate

  6. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, William J.; Prusa, Joseph M.; Smolarkiewicz, Piotr K.

    2012-05-08

    demonstrated range of validity of soundproof models, showing that they are more broadly applicable than some had previously thought. Substantial testing of EULAG included application and extension of the Jablonowski-Williamson baroclinic wave test - an archetype of planetary weather - and further analysis of multi-scale interactions arising from collapse of temperature fronts in both the baroclinic wave test and simulations of the Held-Suarez idealized climate. These analyses revealed properties of atmospheric gravity waves not seen in previous work and further demonstrated the ability of EULAG to simulate realistic behavior over several orders of magnitude of length scales. Additional collaborative work enhanced capability for modeling atmospheric flows with adaptive moving meshes and demonstrated the ability of EULAG to move into petascale computing. 3b. CAM-EULAG Advances We have developed CAM-EULAG in collaboration with former project postdoc, now University of Cape Town Assistant Professor, Babatunde Abiodun. Initial study documented good model performance in aqua-planet simulations. In particular, we showed that the grid adaptivity (stretching) implemented in CAM-EULAG allows higher resolution in selected regions without causing anomalous behavior such as spurious wave reflection. We then used the stretched-grid version to analyze simulated extreme precipitation events in West Africa, comparing the precipitation and event environment with observed behavior. The model simulates fairly well the spatial scale and the interannual and intraseasonal variability of the extreme events, although its extreme precipitation intensity is weaker than observed. In addition, both observations and the simulations show possible forcing of extreme events by African easterly waves. 3c. Other Contributions Through our collaborations, we have made contributions to a wide range of outcomes. For research focused on terrestrial behavior, these have included (1) upwind schemes for gas dynamics

  7. The Development and Research on the Coordinate Control Strategy Between Turbine and Boiler in Fossil Power Plant

    Institute of Scientific and Technical Information of China (English)

    WEI Shuangying

    2006-01-01

    Based on the research on domestic and international automatic technical development in fossil power plant, the paper analyses the recent situation of the coordinate control system between turbine and boiler of domestic fossil Power Plant, provides the development thought of coordinate control system between turbine and boiler, and describes the application prospect in control system of fossil power plant combining with the application experience.

  8. A confirmatory research approach to the measurement of EMI/RFI in commercial nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kercel, S.W.

    1995-02-01

    The Oak Ridge National Laboratory (ORNL) is conducting confirmatory research on the measurement of electromagnetic/radio frequency interference (EMI/RFI) in nuclear power plants while it makes a good beginning, the currently available research data are not sufficient to characterize the EMI/RFI environment of the typical nuclear plant. Data collected over several weeks at each of several observation points are required to meet this need. To collect the required data, several approaches are examined, the most promising of which is the relatively new technology of application specific spectral receivers. While several spectral receiver designs have been described in the literature, none is well suited for nuclear power plant EMI/RFI surveys. This paper describes the development of two receivers specifically designed for nuclear power plant EMI/RFI surveys. One receiver surveys electric fields between 5 MHz and 8 GHz, while the other surveys magnetic fields between 305 Hz and 5 MHz. The results of field tests at TVA`s Bull Run Fossil Plant are reported.

  9. Research progress of plant population genomics based on high-throughput sequencing.

    Science.gov (United States)

    Yunsheng, Wang

    2016-08-01

    Population genomics, a new paradigm for population genetics, combine the concepts and techniques of genomics with the theoretical system of population genetics and improve our understanding of microevolution through identification of site-specific effect and genome-wide effects using genome-wide polymorphic sites genotypeing. With the appearance and improvement of the next generation high-throughput sequencing technology, the numbers of plant species with complete genome sequences increased rapidly and large scale resequencing has also been carried out in recent years. Parallel sequencing has also been done in some plant species without complete genome sequences. These studies have greatly promoted the development of population genomics and deepened our understanding of the genetic diversity, level of linking disequilibium, selection effect, demographical history and molecular mechanism of complex traits of relevant plant population at a genomic level. In this review, I briely introduced the concept and research methods of population genomics and summarized the research progress of plant population genomics based on high-throughput sequencing. I also discussed the prospect as well as existing problems of plant population genomics in order to provide references for related studies.

  10. A confirmatory research approach to the measurement of EMI/RFI in commercial nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kercel, S.W. [Oak Ridge National Lab., TN (United States)

    1995-04-01

    The Oak Ridge National Laboratory (ORNL) is conducting confirmatory research on the measurement of electromagnetic/radio frequency interference (EMI/RFI) in nuclear power plants. While it makes a good beginning, the currently available research data are not sufficient to characterize the EMI/RFI environment of the typical nuclear plant. Data collected over several weeks at each of several observation points are required to meet this need. To collect the required data, several approaches are examined, the most promising of which is the relatively new technology of application specific spectral receivers. While several spectral receiver designs have been described in the literature, none is well suited for nuclear power plant EMI/RFI surveys. This paper describes the development of two receivers specifically designed for nuclear power plant EMI/RFI surveys. One receiver surveys electric fields between 5 MHz and 8 GHz, while the other surveys magnetic fields between 305 Hz and 5 MHz. The results of field tests at TVA`s Bull Run Fossil Plant are reported.

  11. Basic versus applied research: Julius Sachs (1832-1897) and the experimental physiology of plants.

    Science.gov (United States)

    Kutschera, Ulrich

    2015-01-01

    The German biologist Julius Sachs was the first to introduce controlled, accurate, quantitative experimentation into the botanical sciences, and is regarded as the founder of modern plant physiology. His seminal monograph Experimental-Physiologie der Pflanzen (Experimental Physiology of Plants) was published 150 y ago (1865), when Sachs was employed as a lecturer at the Agricultural Academy in Poppelsdorf/Bonn (now part of the University). This book marks the beginning of a new era of basic and applied plant science. In this contribution, I summarize the achievements of Sachs and outline his lasting legacy. In addition, I show that Sachs was one of the first biologists who integrated bacteria, which he considered to be descendants of fungi, into the botanical sciences and discussed their interaction with land plants (degradation of wood etc.). This "plant-microbe-view" of green organisms was extended and elaborated by the laboratory botanist Wilhelm Pfeffer (1845-1920), so that the term "Sachs-Pfeffer-Principle of Experimental Plant Research" appears to be appropriate to characterize this novel way of performing scientific studies on green, photoautotrophic organisms (embryophytes, algae, cyanobacteria).

  12. Plant Virus–Insect Vector Interactions: Current and Potential Future Research Directions

    Directory of Open Access Journals (Sweden)

    Ralf G. Dietzgen

    2016-11-01

    Full Text Available Acquisition and transmission by an insect vector is central to the infection cycle of the majority of plant pathogenic viruses. Plant viruses can interact with their insect host in a variety of ways including both non-persistent and circulative transmission; in some cases, the latter involves virus replication in cells of the insect host. Replicating viruses can also elicit both innate and specific defense responses in the insect host. A consistent feature is that the interaction of the virus with its insect host/vector requires specific molecular interactions between virus and host, commonly via proteins. Understanding the interactions between plant viruses and their insect host can underpin approaches to protect plants from infection by interfering with virus uptake and transmission. Here, we provide a perspective focused on identifying novel approaches and research directions to facilitate control of plant viruses by better understanding and targeting virus–insect molecular interactions. We also draw parallels with molecular interactions in insect vectors of animal viruses, and consider technical advances for their control that may be more broadly applicable to plant virus vectors.

  13. Plant Virus-Insect Vector Interactions: Current and Potential Future Research Directions.

    Science.gov (United States)

    Dietzgen, Ralf G; Mann, Krin S; Johnson, Karyn N

    2016-11-09

    Acquisition and transmission by an insect vector is central to the infection cycle of the majority of plant pathogenic viruses. Plant viruses can interact with their insect host in a variety of ways including both non-persistent and circulative transmission; in some cases, the latter involves virus replication in cells of the insect host. Replicating viruses can also elicit both innate and specific defense responses in the insect host. A consistent feature is that the interaction of the virus with its insect host/vector requires specific molecular interactions between virus and host, commonly via proteins. Understanding the interactions between plant viruses and their insect host can underpin approaches to protect plants from infection by interfering with virus uptake and transmission. Here, we provide a perspective focused on identifying novel approaches and research directions to facilitate control of plant viruses by better understanding and targeting virus-insect molecular interactions. We also draw parallels with molecular interactions in insect vectors of animal viruses, and consider technical advances for their control that may be more broadly applicable to plant virus vectors.

  14. Mycorrhizal mediation of plant response to atmospheric change: Air quality concepts and research considerations.

    Science.gov (United States)

    Shafer, S R; Schoeneberger, M M

    1991-01-01

    The term 'global climate change' encompasses many physical and chemical changes in the atmosphere that have been induced by anthropogenic pollutants. Increases in concentrations of CO2 and CH4 enhance the 'greenhouse effect' of the atmosphere and may contribute to changes in temperature and precipitation patterns at the earth's surface. Nitrogen oxides and SO2 are phytotoxic and also react with other pollutants to produce other phytotoxins in the troposphere such as O3 and acidic substances. However, release of chlorofluorocarbons into the atmosphere may cause depletion of stratospheric O3, increasing the transmittance of ultraviolet-B (UV-B) radiation to the earth's surface. Increased intensities of UV-B could affect plants and enhance photochemical reactions that generate some phytotoxic pollutants. The role of mycorrhizae in plant responses to such stresses has received little attention. Although plans for several research programs have acknowledged the importance of drought tolerance and soil fertility in plant responses to atmospheric stresses, mycorrhizae are rarely targeted to receive specific investigation. Most vascular land plants form mycorrhizae, so the role of mycorrhizae in mediating plant responses to atmospheric change may be an important consideration in predicting effects of atmospheric changes on plants in managed and natural ecosystems.

  15. Trends in biological activity research of wild-growing aromatic plants from Central Balkans

    Directory of Open Access Journals (Sweden)

    Džamić, A.M.

    2016-12-01

    Full Text Available Flowering plants consists of more than 300.000 species around the world, out of which a small percentage has been sufficiently investigated from phytochemical and biological activity aspects. Plant diversity of the Balkans is very rich, but still poorly investigated. The aim of this paper is survey of current status and trends in research of wild-growing aromatic plants from Central Balkans. Many aromatic plants are investigated from morphological, physiological, ecological, systematic and phytochemical aspects. However, traditionally used medicinal and aromatic plants can also be considered from applicative aspects, concerning their health effects, and from wide range of usage in cosmetics, and as food, agrochemical and pharmaceutical products. In order to achieve all planned objectives, following methodology has been applied: field research, taxonomic authentication and, comparative biologically assayed phytochemical investigations. The total herbal extracts, postdistillation waste (deodorized extracts, essential oils and individual compounds of some autochthonous plants have been considered as potential source of antibacterial, antifungal, anti-biofilm, antioxidant and cytotoxic agents. In this manuscript, composition of essential oils and extracts were evaluated in a number of species, from the Apiaceae, Lamiaceae, Rosaceae and Asteraceae families. Extracts which were rich in phenols mostly of flavonoids, often showed high antioxidant potential. Also, phenolic compounds identified in essential oils and extracts were mostly responsible for expected antimicrobial activity. Current worldwide demand is to reduce or, if possible, eliminate chemically synthesized food additives. Plant-produced compounds are becoming of interest as a source of more effective and safe substances than synthetically produced antimicrobial agents (as inhibitors, growth reducers or even inactivators that control growth of microorganisms. Many different pathogens have

  16. Assessment of Nonnative Invasive Plants in the DOE Oak Ridge National Environmental Research Park

    Energy Technology Data Exchange (ETDEWEB)

    Drake, S.J.

    2002-11-05

    The Department of Energy (DOE) National Environmental Research Park at Oak Ridge, Tennessee, is composed of second-growth forest stands characteristic of much of the eastern deciduous forest of the Ridge and Valley Province of Tennessee. Human use of natural ecosystems in this region has facilitated the establishment of at least 167 nonnative, invasive plant species on the Research Park. Our objective was to assess the distribution, abundance, impact, and potential for control of the 18 most abundant invasive species on the Research Park. In 2000, field surveys were conducted of 16 management areas on the Research Park (14 Natural Areas, 1 Reference Area, and Walker Branch Watershed) and the Research Park as a whole to acquire qualitative and quantitative data on the distribution and abundance of these taxa. Data from the surveys were used to rank the relative importance of these species using the ''Alien Plant Ranking System, Version 5.1'' developed by the U.S. Geological Survey. Microstegium (Microstegium vimineum) was ranked highest, or most problematic, for the entire Research Park because of its potential impact on natural systems, its tendency to become a management problem, and how difficult it is to control. Microstegium was present in 12 of the 16 individual sites surveyed; when present, it consistently ranked as the most problematic invasive species, particularly in terms of its potential impact on natural systems. Japanese honeysuckle (Lonicera japonica) and Chinese privet (Ligustrum sinense) were the second- and third-most problematic plant species on the Research Park; these two species were present in 12 and 9 of the 16 sites surveyed, respectively, and often ranked second- or third-most problematic. Other nonnative, invasive species, in decreasing rank order, included kudzu (Pueraria montma), multiflora rose (Rosa multiflora), Chinese lespedeza (Lespedeza cuneara), and other species representing a variety of life forms and growth

  17. Introduction of soft X-ray spectromicroscopy as an advanced technique for plant biopolymers research.

    Directory of Open Access Journals (Sweden)

    Chithra Karunakaran

    Full Text Available Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed.

  18. Introduction of soft X-ray spectromicroscopy as an advanced technique for plant biopolymers research.

    Science.gov (United States)

    Karunakaran, Chithra; Christensen, Colleen R; Gaillard, Cedric; Lahlali, Rachid; Blair, Lisa M; Perumal, Vijayan; Miller, Shea S; Hitchcock, Adam P

    2015-01-01

    Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR) spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm) resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed.

  19. Introduction of Soft X-Ray Spectromicroscopy as an Advanced Technique for Plant Biopolymers Research

    Science.gov (United States)

    Karunakaran, Chithra; Christensen, Colleen R.; Gaillard, Cedric; Lahlali, Rachid; Blair, Lisa M.; Perumal, Vijayan; Miller, Shea S.; Hitchcock, Adam P.

    2015-01-01

    Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR) spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm) resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed. PMID:25811457

  20. Reminiscences of research on the chemistry and biology of natural sterols in insects, plants and humans.

    Science.gov (United States)

    Ikekawa, Nobuo; Fujimoto, Yoshinori; Ishiguro, Masaji

    2013-01-01

    Natural sterols often occur as a heterogeneous mixture of homologs, which had disturbed the progress of steroid research. Development and application of GC methodology overcame this difficulty and enabled us to obtain detailed sterol profiles. Together, fine synthesis of stereo-defined isomers and homologs of steroids having oxygenated side chains allowed us to compare them with natural samples as well as to investigate structure-activity relationship. Advance of HPLC technology also facilitated the determination of the stereochemical structure of naturally occurring steroidal compounds, which were obtained only in minute amounts. This review highlights three topics out of our steroid research that have been performed mainly at Tokyo Institute of Technology around 1970-1990. These are sterol metabolism in insects focusing on the mechanism of the conversion of plant sterols to cholesterol and ecdysone biosynthesis, the synthesis and biochemical research of active forms of vitamin D3 derivatives, and the synthesis and microanalysis of plant hormone brassinosteroids.