WorldWideScience

Sample records for planned space station

  1. A distributed planning concept for Space Station payload operations

    Science.gov (United States)

    Hagopian, Jeff; Maxwell, Theresa; Reed, Tracey

    1994-01-01

    The complex and diverse nature of the payload operations to be performed on the Space Station requires a robust and flexible planning approach. The planning approach for Space Station payload operations must support the phased development of the Space Station, as well as the geographically distributed users of the Space Station. To date, the planning approach for manned operations in space has been one of centralized planning to the n-th degree of detail. This approach, while valid for short duration flights, incurs high operations costs and is not conducive to long duration Space Station operations. The Space Station payload operations planning concept must reduce operations costs, accommodate phased station development, support distributed users, and provide flexibility. One way to meet these objectives is to distribute the planning functions across a hierarchy of payload planning organizations based on their particular needs and expertise. This paper presents a planning concept which satisfies all phases of the development of the Space Station (manned Shuttle flights, unmanned Station operations, and permanent manned operations), and the migration from centralized to distributed planning functions. Identified in this paper are the payload planning functions which can be distributed and the process by which these functions are performed.

  2. Automating Space Station operations planning

    Science.gov (United States)

    Ziemer, Kathleen A.

    1989-01-01

    The development and implementation of the operations planning processes for the Space Station are discussed. A three level planning process, consisting of strategic, tactical, and execution level planning, is being developed. The integration of the planning procedures into a tactical planning system is examined and the planning phases are illustrated.

  3. Space station evolution: Planning for the future

    Science.gov (United States)

    Diaz, Alphonso V.; Askins, Barbara S.

    1987-06-01

    The need for permanently manned presence in space has been recognized by the United States and its international partners for many years. The development of this capability was delayed due to the concurrent recognition that reusable earth-to-orbit transportation was also needed and should be developed first. While the decision to go ahead with a permanently manned Space Station was on hold, requirements for the use of the Station were accumulating as ground-based research and the data from unmanned spacecraft sparked the imagination of both scientists and entrepreneurs. Thus, by the time of the Space Station implementation decision in the early 1980's, a variety of disciplines, with a variety of requirements, needed to be accommodated on one Space Station. Additional future requirements could be forecast for advanced missions that were still in the early planning stages. The logical response was the development of a multi-purpose Space Station with the ability to evolve on-orbit to new capabilities as required by user needs and national or international decisions, i.e., to build an evolutionary Space Station. Planning for evolution is conducted in parallel with the design and development of the baseline Space Station. Evolution planning is a strategic management process to facilitate change and protect future decisions. The objective is not to forecast the future, but to understand the future options and the implications of these on today's decisions. The major actions required now are: (1) the incorporation of evolution provisions (hooks and scars) in the baseline Space Station; and (2) the initiation of an evolution advanced development program.

  4. Space station evolution: Planning for the future

    Science.gov (United States)

    Diaz, Alphonso V.; Askins, Barbara S.

    1987-01-01

    The need for permanently manned presence in space has been recognized by the United States and its international partners for many years. The development of this capability was delayed due to the concurrent recognition that reusable earth-to-orbit transportation was also needed and should be developed first. While the decision to go ahead with a permanently manned Space Station was on hold, requirements for the use of the Station were accumulating as ground-based research and the data from unmanned spacecraft sparked the imagination of both scientists and entrepreneurs. Thus, by the time of the Space Station implementation decision in the early 1980's, a variety of disciplines, with a variety of requirements, needed to be accommodated on one Space Station. Additional future requirements could be forecast for advanced missions that were still in the early planning stages. The logical response was the development of a multi-purpose Space Station with the ability to evolve on-orbit to new capabilities as required by user needs and national or international decisions, i.e., to build an evolutionary Space Station. Planning for evolution is conducted in parallel with the design and development of the baseline Space Station. Evolution planning is a strategic management process to facilitate change and protect future decisions. The objective is not to forecast the future, but to understand the future options and the implications of these on today's decisions. The major actions required now are: (1) the incorporation of evolution provisions (hooks and scars) in the baseline Space Station; and (2) the initiation of an evolution advanced development program.

  5. Space Station Freedom operations planning

    Science.gov (United States)

    Accola, Anne L.; Keith, Bryant

    1989-01-01

    The Space Station Freedom program is developing an operations planning structure which assigns responsibility for planning activities to three tiers of management. The strategic level develops the policy, goals and requirements for the program over a five-year horizon. Planning at the tactical level emphasizes program integration and planning for a two-year horizon. The tactical planning process, architecture, and products have been documented and discussed with the international partners. Tactical planning includes the assignment of user and system hardware as well as significant operational events to a time increment (the period of time from the arrival of one Shuttle to the manned base to the arrival of the next). Execution-level planning emphasizes implementation, and each organization produces detailed plans, by increment, that are specific to its function.

  6. Modular space station, phase B extension. Program operations plan

    Science.gov (United States)

    1971-01-01

    An organized approach is defined for establishing the most significant requirements pertaining to mission operations, information management, and computer program design and development for the modular space station program. The operations plan pertains to the space station and experiment module program elements and to the ground elements required for mission management and mission support operations.

  7. KSC ground operations planning for Space Station

    Science.gov (United States)

    Lyon, J. R.; Revesz, W., Jr.

    1993-01-01

    At the Kennedy Space Center (KSC) in Florida, processing facilities are being built and activated to support the processing, checkout, and launch of Space Station elements. The generic capability of these facilities will be utilized to support resupply missions for payloads, life support services, and propellants for the 30-year life of the program. Special Ground Support Equipment (GSE) is being designed for Space Station hardware special handling requirements, and a Test, Checkout, and Monitoring System (TCMS) is under development to verify that the flight elements are ready for launch. The facilities and equipment used at KSC, along with the testing required to accomplish the mission, are described in detail to provide an understanding of the complexity of operations at the launch site. Assessments of hardware processing flows through KSC are being conducted to minimize the processing flow times for each hardware element. Baseline operations plans and the changes made to improve operations and reduce costs are described, recognizing that efficient ground operations are a major key to success of the Space Station.

  8. Operations planning for Space Station Freedom - And beyond

    Science.gov (United States)

    Gibson, Stephen S.; Martin, Thomas E.; Durham, H. J.

    1992-01-01

    The potential of automated planning and electronic execution systems for enhancing operations on board Space Station Freedom (SSF) are discussed. To exploit this potential the Operations Planning and Scheduling Subsystem is being developed at the NASA Johnson Space Center. Such systems may also make valuable contributions to the operation of resource-constrained, long-duration space habitats of the future. Points that should be considered during the design of future long-duration manned space missions are discussed. Early development of a detailed operations concept as an end-to-end mission description offers a basis for iterative design evaluation, refinement, and option comparison, particularly when used with an advanced operations planning system capable of modeling the operations and resource constraints of the proposed designs.

  9. Physical sciences research plans for the International Space Station

    Science.gov (United States)

    Trinh, E. H.

    2003-01-01

    The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  10. Planning in the Continuous Operations Environment of the International Space Station

    Science.gov (United States)

    Maxwell, Theresa; Hagopian, Jeff

    1996-01-01

    The continuous operation planning approach developed for the operations planning of the International Space Station (ISS) is reported on. The approach was designed to be a robust and cost-effective method. It separates ISS planning into two planning functions: long-range planning for a fixed length planning horizon which continually moves forward as ISS operations progress, and short-range planning which takes a small segment of the long-range plan and develops a detailed operations schedule. The continuous approach is compared with the incremental approach, the short and long-range planning functions are described, and the benefits and challenges of implementing a continuous operations planning approach for the ISS are summarized.

  11. Space Station - Opportunity for international cooperation and utilization

    Science.gov (United States)

    Pedersen, K. S.

    1984-01-01

    In connection with his announcement regarding the development of a permanently manned Space Station, President Reagan invited the United States' friends and allies to join in the Space Station program. The President's invitation was preceded by more than two years of interaction between NASA and some of its potential partners in Space Station planning activities. Attention is given to international participation in Space Station planning, international cooperation on the Space Station, the guidelines for international cooperation, and the key challenges. Questions regarding quid pro quos are considered along with aspects of technology transfer, commercial use, problems of management, and the next steps concerning the Space Station program.

  12. 47 CFR 97.207 - Space station.

    Science.gov (United States)

    2010-10-01

    ... FCC. (c) The following frequency bands and segments are authorized to space stations: (1) The 17 m, 15... notifications to the International Bureau, FCC, Washington, DC 20554. (1) A pre-space notification within 30... risk of collision and a description of what measures the space station operator plans to take to avoid...

  13. Linking the space shuttle and space stations early docking technologies from concept to implementation

    CERN Document Server

    Shayler, David J

    2017-01-01

    How could the newly authorized space shuttle help in the U.S. quest to build a large research station in Earth orbit? As a means of transporting goods, the shuttle could help supply the parts to the station. But how would the two entitles be physically linked? Docking technologies had to constantly evolve as the designs of the early space stations changed. It was hoped the shuttle would make missions to the Russian Salyut and American Skylab stations, but these were postponed until the Mir station became available, while plans for getting a new U. S. space station underway were stalled. In Linking the Space Shuttle and Space Stations, the author delves into the rich history of the Space Shuttle and its connection to these early space stations, culminating in the nine missions to dock the shuttle to Mir. By 1998, after nearly three decades of planning and operations, shuttle missions to Mir had resulted in: • A proven system to link up the space shuttle to a space station • Equipment and hands-on experienc...

  14. NASA space station automation: AI-based technology review

    Science.gov (United States)

    Firschein, O.; Georgeff, M. P.; Park, W.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.

    1985-01-01

    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures.

  15. Space Station - An integrated approach to operational logistics support

    Science.gov (United States)

    Hosmer, G. J.

    1986-01-01

    Development of an efficient and cost effective operational logistics system for the Space Station will require logistics planning early in the program's design and development phase. This paper will focus on Integrated Logistics Support (ILS) Program techniques and their application to the Space Station program design, production and deployment phases to assure the development of an effective and cost efficient operational logistics system. The paper will provide the methodology and time-phased programmatic steps required to establish a Space Station ILS Program that will provide an operational logistics system based on planned Space Station program logistics support.

  16. U.S. Materials Science on the International Space Station: Status and Plans

    Science.gov (United States)

    Chiaramonte, Francis P.; Kelton, Kenneth F.; Matson, Douglas M.; Poirier, David R.; Trivedi, Rohit K.; Su, Ching-Hua; Volz, Martin P.; Voorhees, Peter W.

    2010-01-01

    This viewgraph presentation reviews the current status and NASA plans for materials science on the International Space Station. The contents include: 1) Investigations Launched in 2009; 2) DECLIC in an EXPRESS rack; 3) Dynamical Selection of Three-Dimensional Interface Patterns in Directional Solidification (DSIP); 4) Materials Science Research Rack (MSRR); 5) Materials Science Laboratory; 6) Comparison of Structure and Segregation in Alloys Directionally Solidified in Terrestrial and Microgravity Environments (MICAST/CETSOL); 7) Coarsening in Solid Liquid Mixtures 2 Reflight (CSLM 2R); 8) Crystal Growth Investigations; 9) Levitator Investigations; 10) Quasi Crystalline Undercooled Alloys for Space Investigation (QUASI); 11) The Role of Convection and Growth Competition in Phase Selection in Microgravity (LODESTARS); 12) Planned Additional Investigations; 13) SETA; 14) METCOMP; and 15) Materials Science NRA.

  17. A trajectory planning scheme for spacecraft in the space station environment. M.S. Thesis - University of California

    Science.gov (United States)

    Soller, Jeffrey Alan; Grunwald, Arthur J.; Ellis, Stephen R.

    1991-01-01

    Simulated annealing is used to solve a minimum fuel trajectory problem in the space station environment. The environment is special because the space station will define a multivehicle environment in space. The optimization surface is a complex nonlinear function of the initial conditions of the chase and target crafts. Small permutations in the input conditions can result in abrupt changes to the optimization surface. Since no prior knowledge about the number or location of local minima on the surface is available, the optimization must be capable of functioning on a multimodal surface. It was reported in the literature that the simulated annealing algorithm is more effective on such surfaces than descent techniques using random starting points. The simulated annealing optimization was found to be capable of identifying a minimum fuel, two-burn trajectory subject to four constraints which are integrated into the optimization using a barrier method. The computations required to solve the optimization are fast enough that missions could be planned on board the space station. Potential applications for on board planning of missions are numerous. Future research topics may include optimal planning of multi-waypoint maneuvers using a knowledge base to guide the optimization, and a study aimed at developing robust annealing schedules for potential on board missions.

  18. Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility

    Science.gov (United States)

    1986-01-01

    The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

  19. Accommodating life sciences on the Space Station

    Science.gov (United States)

    Arno, Roger D.

    1987-01-01

    The NASA Ames Research Center Biological Research Project (BRP) is responsible for identifying and accommodating high priority life science activities, utilizing nonhuman specimens, on the Space Station and is charged to bridge the gap between the science community and the Space Station Program. This paper discusses the approaches taken by the BRP in accomodating these research objectives to constraints imposed by the Space Station System, while maintaining a user-friendly environment. Consideration is given to the particular research disciplines which are given priority, the science objectives in each of these disciplines, the functions and activities required by these objectives, the research equipment, and the equipment suits. Life sciences programs planned by the Space Station participating partners (USA, Europe, Japan, and Canada) are compared.

  20. Space Station technology testbed: 2010 deep space transport

    Science.gov (United States)

    Holt, Alan C.

    1993-01-01

    A space station in a crew-tended or permanently crewed configuration will provide major R&D opportunities for innovative, technology and materials development and advanced space systems testing. A space station should be designed with the basic infrastructure elements required to grow into a major systems technology testbed. This space-based technology testbed can and should be used to support the development of technologies required to expand our utilization of near-Earth space, the Moon and the Earth-to-Jupiter region of the Solar System. Space station support of advanced technology and materials development will result in new techniques for high priority scientific research and the knowledge and R&D base needed for the development of major, new commercial product thrusts. To illustrate the technology testbed potential of a space station and to point the way to a bold, innovative approach to advanced space systems' development, a hypothetical deep space transport development and test plan is described. Key deep space transport R&D activities are described would lead to the readiness certification of an advanced, reusable interplanetary transport capable of supporting eight crewmembers or more. With the support of a focused and highly motivated, multi-agency ground R&D program, a deep space transport of this type could be assembled and tested by 2010. Key R&D activities on a space station would include: (1) experimental research investigating the microgravity assisted, restructuring of micro-engineered, materials (to develop and verify the in-space and in-situ 'tuning' of materials for use in debris and radiation shielding and other protective systems), (2) exposure of microengineered materials to the space environment for passive and operational performance tests (to develop in-situ maintenance and repair techniques and to support the development, enhancement, and implementation of protective systems, data and bio-processing systems, and virtual reality and

  1. NASA space station automation: AI-based technology review. Executive summary

    Science.gov (United States)

    Firschein, O.; Georgeff, M. P.; Park, W.; Cheeseman, P. C.; Goldberg, J.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.

    1985-01-01

    Research and Development projects in automation technology for the Space Station are described. Artificial Intelligence (AI) based technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics.

  2. Evolutionary growth for Space Station Freedom electrical power system

    Science.gov (United States)

    Marshall, Matthew Fisk; Mclallin, Kerry; Zernic, Mike

    1989-01-01

    Over an operational lifetime of at least 30 yr, Space Station Freedom will encounter increased Space Station user requirements and advancing technologies. The Space Station electrical power system is designed with the flexibility to accommodate these emerging technologies and expert systems and is being designed with the necessary software hooks and hardware scars to accommodate increased growth demand. The electrical power system is planned to grow from the initial 75 kW up to 300 kW. The Phase 1 station will utilize photovoltaic arrays to produce the electrical power; however, for growth to 300 kW, solar dynamic power modules will be utilized. Pairs of 25 kW solar dynamic power modules will be added to the station to reach the power growth level. The addition of solar dynamic power in the growth phase places constraints in the initial Space Station systems such as guidance, navigation, and control, external thermal, truss structural stiffness, computational capabilities and storage, which must be planned-in, in order to facilitate the addition of the solar dynamic modules.

  3. Space Station personal hygiene study

    Science.gov (United States)

    Prejean, Stephen E.; Booher, Cletis R.

    1986-01-01

    A personal hygiene system is currently under development for Space Station application that will provide capabilities equivalent to those found on earth. This paper addresses the study approach for specifying both primary and contingency personal hygiene systems and provisions for specified growth. Topics covered are system definition and subsystem descriptions. Subsystem interfaces are explored to determine which concurrent NASA study efforts must be monitored during future design phases to stay up-to-date on critical Space Station parameters. A design concept for a three (3) compartment personal hygiene facility is included as a baseline for planned test and verification activities.

  4. Space Station power system issues

    International Nuclear Information System (INIS)

    Giudici, R.J.

    1985-01-01

    Issues governing the selection of power systems for long-term manned Space Stations intended solely for earth orbital missions are covered briefly, drawing on trade study results from both in-house and contracted studies that have been conducted over nearly two decades. An involvement, from the Program Development Office at MSFC, with current Space Station concepts began in late 1982 with the NASA-wide Systems Definition Working Group and continued throughout 1984 in support of various planning activities. The premise for this discussion is that, within the confines of the current Space Station concept, there is good reason to consider photovoltaic power systems to be a venerable technology option for both the initial 75 kW and 300 kW (or much greater) growth stations. The issue of large physical size required by photovoltaic power systems is presented considering mass, atmospheric drag, launch packaging and power transmission voltage as being possible practicality limitations. The validity of searching for a cross-over point necessitating the introduction of solar thermal or nuclear power system options as enabling technologies is considered with reference to programs ranging from the 4.8 kW Skylab to the 9.5 gW Space Power Satellite

  5. Nuclear Station Facilities Improvement Planning

    International Nuclear Information System (INIS)

    Hooks, R. W.; Lunardini, A. L.; Zaben, O.

    1991-01-01

    An effective facilities improvement program will include a plan for the temporary relocation of personnel during the construction of an adjoining service building addition. Since the smooth continuation of plant operation is of paramount importance, the phasing plan is established to minimize the disruptions in day-to-day station operation and administration. This plan should consider the final occupancy arrangements and the transition to the new structure; for example, computer hookup and phase-in should be considered. The nuclear industry is placing more emphasis on safety and reliability of nuclear power plants. In order to do this, more emphasis is placed on operations and maintenance. This results in increased size of managerial, technical and maintenance staffs. This in turn requires improved office and service facilities. The facilities that require improvement may include training areas, rad waste processing and storage facilities, and maintenance facilities. This paper discusses an approach for developing an effective program to plan and implement these projects. These improvement projects can range in magnitude from modifying a simple system to building a new structure to allocating space for a future project. This paper addresses the planning required for the new structures with emphasis on site location, space allocation, and internal layout. Since facility planning has recently been completed by Sargent and Leyden at six U. S. nuclear stations, specific examples from some of those plants are presented. Site planning and the establishment of long-range goals are of the utmost importance when undertaking a facilities improvement program for a nuclear station. A plan that considers the total site usage will enhance the value of both the new and existing facilities. Proper planning at the beginning of the program can minimize costs and maximize the benefits of the program

  6. The Space Station Freedom - International cooperation and innovation in space safety

    Science.gov (United States)

    Rodney, George A.

    1989-01-01

    The Space Station Freedom (SSF) being developed by the United States, European Space Agency (ESA), Japan, and Canada poses novel safety challenges in design, operations, logistics, and program management. A brief overview discloses many features that make SSF a radical departure from earlier low earth orbit (LEO) space stations relative to safety management: size and power levels; multiphase manned assembly; 30-year planned lifetime, with embedded 'hooks and scars' forevolution; crew size and skill-mix variability; sustained logistical dependence; use of man, robotics and telepresence for on-orbit maintenance of station and free-flyer systems; closed-environment recycling; use of automation and expert systems; long-term operation of collocated life-sciences and materials-science experiments, requiring control and segregation of hazardous and chemically incompatible materials; and materials aging in space.

  7. Manned space stations - A perspective

    Science.gov (United States)

    Disher, J. H.

    1981-09-01

    The findings from the Skylab missions are discussed as they relate to the operations planning of future space stations such as Spacelab and the proposed Space Operations Center. Following a brief description of the Skylab spacecraft, the significance of the mission as a demonstration of the possibility of effecting emergency repairs in space is pointed out. Specific recommendations made by Skylab personnel concerning capabilities for future in-flight maintenance are presented relating to the areas of spacecraft design criteria, tool selection and spares carried. Attention is then given to relevant physiological findings, and to habitability considerations in the areas of sleep arrangements, hygiene, waste management, clothing, and food. The issue of contamination control is examined in detail as a potential major system to be integrated into future design criteria. The importance of the Skylab results to the designers of future space stations is emphasized.

  8. The Space Station as a Construction Base for Large Space Structures

    Science.gov (United States)

    Gates, R. M.

    1985-01-01

    The feasibility of using the Space Station as a construction site for large space structures is examined. An overview is presented of the results of a program entitled Definition of Technology Development Missions (TDM's) for Early Space Stations - Large Space Structures. The definition of LSS technology development missions must be responsive to the needs of future space missions which require large space structures. Long range plans for space were assembled by reviewing Space System Technology Models (SSTM) and other published sources. Those missions which will use large space structures were reviewed to determine the objectives which must be demonstrated by technology development missions. The three TDM's defined during this study are: (1) a construction storage/hangar facility; (2) a passive microwave radiometer; and (3) a precision optical system.

  9. A plan for time-phased incorporation of automation and robotics on the US space station

    Science.gov (United States)

    Purves, R. B.; Lin, P. S.; Fisher, E. M., Jr.

    1988-01-01

    A plan for the incorporation of Automation and Robotics technology on the Space Station is presented. The time phased introduction of twenty two selected candidates is set forth in accordance with a technology development forecast. Twenty candidates were chosed primarily for their potential to relieve the crew of mundane or dangerous operations and maintenance burdens, thus freeing crew time for mission duties and enhancing safety. Two candidates were chosen based on a potential for increasing the productivity of laboratory experiments and thus directly enhancing the scientific value of the Space Station. A technology assessment for each candidate investigates present state of the art, development timelines including space qualification considerations, and potential for technology transfer to earth applications. Each candidate is evaluated using a crew workload model driven by crew size, number of pressurized U.S. modules and external payloads, which makes it possible to assess the impact of automation during a growth scenario. Costs for each increment of implementation are estimated and accumulated.

  10. Application of modern tools and techniques to maximize engineering productivity in the development of orbital operations plans for the space station progrm

    Science.gov (United States)

    Manford, J. S.; Bennett, G. R.

    1985-01-01

    The Space Station Program will incorporate analysis of operations constraints and considerations in the early design phases to avoid the need for later modifications to the Space Station for operations. The application of modern tools and administrative techniques to minimize the cost of performing effective orbital operations planning and design analysis in the preliminary design phase of the Space Station Program is discussed. Tools and techniques discussed include: approach for rigorous analysis of operations functions, use of the resources of a large computer network, and providing for efficient research and access to information.

  11. Space Station services and design features for users

    Science.gov (United States)

    Kurzhals, Peter R.; Mckinney, Royce L.

    1987-01-01

    The operational design features and services planned for the NASA Space Station will furnish, in addition to novel opportunities and facilities, lower costs through interface standardization and automation and faster access by means of computer-aided integration and control processes. By furnishing a basis for large-scale space exploitation, the Space Station will possess industrial production and operational services capabilities that may be used by the private sector for commercial ventures; it could also ultimately support lunar and planetary exploration spacecraft assembly and launch facilities.

  12. Fluid Physical and Transport Phenomena Studies aboard the International Space Station: Planned Experiments

    Science.gov (United States)

    Singh, Bhim S.

    1999-01-01

    This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.

  13. Fifteen-foot diameter modular space station Kennedy Space Center launch site support definition (space station program Phase B extension definition)

    Science.gov (United States)

    Bjorn, L. C.; Martin, M. L.; Murphy, C. W.; Niebla, J. F., V

    1971-01-01

    This document defines the facilities, equipment, and operational plans required to support the MSS Program at KSC. Included is an analysis of KSC operations, a definition of flow plans, facility utilization and modifications, test plans and concepts, activation, and tradeoff studies. Existing GSE and facilities that have a potential utilization are identified, and new items are defined where possible. The study concludes that the existing facilities are suitable for use in the space station program without major modification from the Saturn-Apollo configuration.

  14. The Space Station Photovoltaic Panels Plasma Interaction Test Program: Test plan and results

    Science.gov (United States)

    Nahra, Henry K.; Felder, Marian C.; Sater, Bernard L.; Staskus, John V.

    1989-01-01

    The Plasma Interaction Test performed on two space station solar array panels is addressed. This includes a discussion of the test requirements, test plan, experimental set-up, and test results. It was found that parasitic current collection was insignificant (0.3 percent of the solar array delivered power). The measured arcing threshold ranged from -210 to -457 V with respect to the plasma potential. Furthermore, the dynamic response of the panels showed the panel time constant to range between 1 and 5 microsec, and the panel capacitance to be between .01 and .02 microF.

  15. The Space Station photovoltaic panels plasma interaction test program - Test plan and results

    Science.gov (United States)

    Nahra, Henry K.; Felder, Marian C.; Sater, Bernard L.; Staskus, John V.

    1990-01-01

    The plasma Interaction Test performed on two space station solar array panels is addressed. This includes a discussion of the test requirements, test plan, experimental set-up, and test results. It was found that parasitic current collection was insignificant (0.3 percent of the solar array delivered power). The measured arcing threshold ranged from -210 to -457 V with respect to the plasma potential. Furthermore, the dynamic response of the panels showed the panel time constant to range between 1 and 5 microsec, and the panel capacitance to be between .01 and .02 microF.

  16. Space station as a vital focus for advancing the technologies of automation and robotics

    Science.gov (United States)

    Varsi, Giulio; Herman, Daniel H.

    1988-01-01

    A major guideline for the design of the U.S. Space Station is that the Space Station address a wide variety of functions. These functions include the servicing of unmanned assets in space, the support of commercial labs in space and the efficient management of the Space Station itself; the largest space asset. The technologies of Automation and Robotics have the promise to help in reducing Space Station operating costs and to achieve a highly efficient use of the human in space. The use of advanced automation and artificial intelligence techniques, such as expert systems, in Space Station subsystems for activity planning and failure mode management will enable us to reduce dependency on a mission control center and could ultimately result in breaking the umbilical link from Earth to the Space Station. The application of robotic technologies with advanced perception capability and hierarchical intelligent control to servicing system will enable the servicing of assets either in space or in situ with a high degree of human efficiency. The results of studies leading toward the formulation of an automation and robotics plan for Space Station development are presented.

  17. Transceiver for Space Station Freedom

    Science.gov (United States)

    Fitzmaurice, M.; Bruno, R.

    1990-07-01

    This paper describes the design of the Laser Communication Transceiver (LCT) system which was planned to be flight tested as an attached payload on Space Station Freedom. The objective in building and flight-testing the LCT is to perform a broad class of tests addressing the critical aspects of space-based optical communications systems, providing a base of experience for applying laser communications technology toward future communications needs. The LCT's functional and performance requirements and capabilities with respect to acquisition, spatial tracking and pointing, communications, and attitude determination are discussed.

  18. Technical assessment of Mir-1 life support hardware for the international space station

    Science.gov (United States)

    Mitchell, K. L.; Bagdigian, R. M.; Carrasquillo, R. L.; Carter, D. L.; Franks, G. D.; Holder, D. W., Jr.; Hutchens, C. F.; Ogle, K. Y.; Perry, J. L.; Ray, C. D.

    1994-01-01

    NASA has been progressively learning the design and performance of the Russian life support systems utilized in their Mir space station. In 1992, a plan was implemented to assess the benefits of the Mir-1 life support systems to the Freedom program. Three primary tasks focused on: evaluating the operational Mir-1 support technologies and understanding if specific Russian systems could be directly utilized on the American space station and if Russian technology design information could prove useful in improving the current design of the planned American life support equipment; evaluating the ongoing Russian life support technology development activities to determine areas of potential long-term application to the U.S. space station; and utilizing the expertise of their space station life support systems to evaluate the benefits to the current U.S. space station program which included the integration of the Russian Mir-1 designs with the U.S. designs to support a crew of six.

  19. Space station automation and robotics study. Operator-systems interface

    Science.gov (United States)

    1984-01-01

    This is the final report of a Space Station Automation and Robotics Planning Study, which was a joint project of the Boeing Aerospace Company, Boeing Commercial Airplane Company, and Boeing Computer Services Company. The study is in support of the Advanced Technology Advisory Committee established by NASA in accordance with a mandate by the U.S. Congress. Boeing support complements that provided to the NASA Contractor study team by four aerospace contractors, the Stanford Research Institute (SRI), and the California Space Institute. This study identifies automation and robotics (A&R) technologies that can be advanced by requirements levied by the Space Station Program. The methodology used in the study is to establish functional requirements for the operator system interface (OSI), establish the technologies needed to meet these requirements, and to forecast the availability of these technologies. The OSI would perform path planning, tracking and control, object recognition, fault detection and correction, and plan modifications in connection with extravehicular (EV) robot operations.

  20. Development of a Space Station Operations Management System

    Science.gov (United States)

    Brandli, A. E.; McCandless, W. T.

    To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.

  1. Development of a Space Station Operations Management System

    Science.gov (United States)

    Brandli, A. E.; Mccandless, W. T.

    1988-01-01

    To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.

  2. Knowledge-based decision support for Space Station assembly sequence planning

    Science.gov (United States)

    1991-04-01

    A complete Personal Analysis Assistant (PAA) for Space Station Freedom (SSF) assembly sequence planning consists of three software components: the system infrastructure, intra-flight value added, and inter-flight value added. The system infrastructure is the substrate on which software elements providing inter-flight and intra-flight value-added functionality are built. It provides the capability for building representations of assembly sequence plans and specification of constraints and analysis options. Intra-flight value-added provides functionality that will, given the manifest for each flight, define cargo elements, place them in the National Space Transportation System (NSTS) cargo bay, compute performance measure values, and identify violated constraints. Inter-flight value-added provides functionality that will, given major milestone dates and capability requirements, determine the number and dates of required flights and develop a manifest for each flight. The current project is Phase 1 of a projected two phase program and delivers the system infrastructure. Intra- and inter-flight value-added were to be developed in Phase 2, which has not been funded. Based on experience derived from hundreds of projects conducted over the past seven years, ISX developed an Intelligent Systems Engineering (ISE) methodology that combines the methods of systems engineering and knowledge engineering to meet the special systems development requirements posed by intelligent systems, systems that blend artificial intelligence and other advanced technologies with more conventional computing technologies. The ISE methodology defines a phased program process that begins with an application assessment designed to provide a preliminary determination of the relative technical risks and payoffs associated with a potential application, and then moves through requirements analysis, system design, and development.

  3. Tether applications for space station

    Science.gov (United States)

    Nobles, W.

    1986-01-01

    A wide variety of space station applications for tethers were reviewed. Many will affect the operation of the station itself while others are in the category of research or scientific platforms. One of the most expensive aspects of operating the space station will be the continuing shuttle traffic to transport logistic supplies and payloads to the space station. If a means can be found to use tethers to improve the efficiency of that transportation operation, it will increase the operating efficiency of the system and reduce the overall cost of the space station. The concept studied consists of using a tether to lower the shuttle from the space station. This results in a transfer of angular momentum and energy from the orbiter to the space station. The consequences of this transfer is studied and how beneficial use can be made of it.

  4. The International Space Station: A Pathway to the Future

    Science.gov (United States)

    Kitmacher, Gary H.; Gerstenmaier, William H.; Bartoe, John-David F.; Mustachio, Nicholas

    2004-01-01

    Nearly six years after the launch of the first International Space Station element, and four years after its initial occupation, the United States and our 16 international partners have made great strides in operating this impressive Earth orbiting research facility. This past year we have done so in the face of the adversity of operating without the benefit of the Space Shuttle. In his January 14, 2004, speech announcing a new vision for America's space program, President Bush affirmed the United States' commitment to completing construction of the International Space Station by 2010. The President also stated that we would focus our future research aboard the Station on the longterm effects of space travel on human biology. This research will help enable human crews to venture through the vast voids of space for months at a time. In addition, ISS affords a unique opportunity to serve as an engineering test bed for hardware and operations critical to the exploration tasks. NASA looks forward to working with our partners on International Space Station research that will help open up new pathways for future exploration and discovery beyond low Earth orbit. This paper provides an overview of the International Space Station Program focusing on a review of the events of the past year, as well as plans for next year and the future.

  5. Space station propulsion requirements study

    Science.gov (United States)

    Wilkinson, C. L.; Brennan, S. M.

    1985-01-01

    Propulsion system requirements to support Low Earth Orbit (LEO) manned space station development and evolution over a wide range of potential capabilities and for a variety of STS servicing and space station operating strategies are described. The term space station and the overall space station configuration refers, for the purpose of this report, to a group of potential LEO spacecraft that support the overall space station mission. The group consisted of the central space station at 28.5 deg or 90 deg inclinations, unmanned free-flying spacecraft that are both tethered and untethered, a short-range servicing vehicle, and a longer range servicing vehicle capable of GEO payload transfer. The time phasing for preferred propulsion technology approaches is also investigated, as well as the high-leverage, state-of-the-art advancements needed, and the qualitative and quantitative benefits of these advancements on STS/space station operations. The time frame of propulsion technologies applicable to this study is the early 1990's to approximately the year 2000.

  6. Space station contamination control study: Internal combustion, phase 1

    Science.gov (United States)

    Ruggeri, Robert T.

    1987-01-01

    Contamination inside Space Station modules was studied to determine the best methods of controlling contamination. The work was conducted in five tasks that identified existing contamination control requirements, analyzed contamination levels, developed outgassing specification for materials, wrote a contamination control plan, and evaluated current materials of offgassing tests used by NASA. It is concluded that current contamination control methods can be made to function on the Space Station for up to 1000 days, but that current methods are deficient for periods longer than about 1000 days.

  7. A customer-friendly Space Station

    Science.gov (United States)

    Pivirotto, D. S.

    1984-01-01

    This paper discusses the relationship of customers to the Space Station Program currently being defined by NASA. Emphasis is on definition of the Program such that the Space Station will be conducive to use by customers, that is by people who utilize the services provided by the Space Station and its associated platforms and vehicles. Potential types of customers are identified. Scenarios are developed for ways in which different types of customers can utilize the Space Station. Both management and technical issues involved in making the Station 'customer friendly' are discussed.

  8. Space Station fluid management logistics

    Science.gov (United States)

    Dominick, Sam M.

    1990-01-01

    Viewgraphs and discussion on space station fluid management logistics are presented. Topics covered include: fluid management logistics - issues for Space Station Freedom evolution; current fluid logistics approach; evolution of Space Station Freedom fluid resupply; launch vehicle evolution; ELV logistics system approach; logistics carrier configuration; expendable fluid/propellant carrier description; fluid carrier design concept; logistics carrier orbital operations; carrier operations at space station; summary/status of orbital fluid transfer techniques; Soviet progress tanker system; and Soviet propellant resupply system observations.

  9. How the Station will operate. [operation, management, and maintenance in space

    Science.gov (United States)

    Cox, John T.

    1988-01-01

    Aspects of the upcoming operational phase of the Space Station (SS) are examined. What the crew members will do with their time in their specialized roles is addressed. SS maintenance and servicing and the interaction of the SS Control Center with Johnson Space Center is discussed. The planning of payload operations and strategic planning for the SS are examined.

  10. Radiation protection considerations in space station missions

    International Nuclear Information System (INIS)

    Peddicord, K.L.; Bolch, W.E.

    1991-01-01

    The National Aeronautics and Space Administration (NASA) is currently studying the degree to which the baseline design of space station Freedom (SSF) would permit its evolution to a transportation node for lunar or Mars expeditions. To accomplish NASA's more ambitious exploration goals, nuclear-powered vehicles could be used in SSF's vicinity. This enhanced radiation environment around SSF could necessitate additional crew shielding to maintain cumulative doses below recommended limits. This paper presents analysis of radiation doses received upon the return and subsequent unloading of Mars vehicles utilizing either nuclear electric propulsion (NEP) or nuclear thermal rocket (NTR) propulsion systems. No inherent shielding by the vehicle structure or space station is assumed; consequently, the only operational parameters available to control radiation doses are the source-to-target distance and the reactor shutdown time prior to the exposure period. For the operations planning, estimated doses are shown with respect to recommended dose limits and doses due solely to the natural space environment in low Earth orbit

  11. Space Station Freedom (SSF) Data Management System (DMS) performance model data base

    Science.gov (United States)

    Stovall, John R.

    1993-01-01

    The purpose of this document was originally to be a working document summarizing Space Station Freedom (SSF) Data Management System (DMS) hardware and software design, configuration, performance and estimated loading data from a myriad of source documents such that the parameters provided could be used to build a dynamic performance model of the DMS. The document is published at this time as a close-out of the DMS performance modeling effort resulting from the Clinton Administration mandated Space Station Redesign. The DMS as documented in this report is no longer a part of the redesigned Space Station. The performance modeling effort was a joint undertaking between the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) Flight Data Systems Division (FDSD) and the NASA Ames Research Center (ARC) Spacecraft Data Systems Research Branch. The scope of this document is limited to the DMS core network through the Man Tended Configuration (MTC) as it existed prior to the 1993 Clinton Administration mandated Space Station Redesign. Data is provided for the Standard Data Processors (SDP's), Multiplexer/Demultiplexers (MDM's) and Mass Storage Units (MSU's). Planned future releases would have added the additional hardware and software descriptions needed to describe the complete DMS. Performance and loading data through the Permanent Manned Configuration (PMC) was to have been included as it became available. No future releases of this document are presently planned pending completion of the present Space Station Redesign activities and task reassessment.

  12. Physics Research on the International Space Station

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The International Space Station (ISS) is orbiting Earth at an altitude of around 400 km. It has been manned since November 2000 and currently has a permanent crew of six. On-board ISS science is done in a wide field of sciences, from fundamental physics to biology and human physiology. Many of the experiments utilize the unique conditions of weightlessness, but also the views of space and the Earth are exploited. ESA’s (European Space Agency) ELIPS (European Programme Life and Physical sciences in Space) manages some 150 on-going and planned experiments for ISS, which is expected to be utilized at least to 2020. This presentation will give a short introduction to ISS, followed by an overview of the science field within ELIPS and some resent results. The emphasis, however, will be on ISS experiments which are close to the research performed at CERN. Silicon strip detectors like ALTEA are measuring the flux of ions inside the station. ACES (Atomic Clock Ensemble in Space) will provide unprecedented global ti...

  13. How Do Lessons Learned on the International Space Station (ISS) Help Plan Life Support for Mars?

    Science.gov (United States)

    Jones, Harry W.; Hodgson, Edward W.; Gentry, Gregory J.; Kliss, Mark H.

    2016-01-01

    How can our experience in developing and operating the International Space Station (ISS) guide the design, development, and operation of life support for the journey to Mars? The Mars deep space Environmental Control and Life Support System (ECLSS) must incorporate the knowledge and experience gained in developing ECLSS for low Earth orbit, but it must also meet the challenging new requirements of operation in deep space where there is no possibility of emergency resupply or quick crew return. The understanding gained by developing ISS flight hardware and successfully supporting a crew in orbit for many years is uniquely instructive. Different requirements for Mars life support suggest that different decisions may be made in design, testing, and operations planning, but the lessons learned developing the ECLSS for ISS provide valuable guidance.

  14. Space station automation: the role of robotics and artificial intelligence (Invited Paper)

    Science.gov (United States)

    Park, W. T.; Firschein, O.

    1985-12-01

    Automation of the space station is necessary to make more effective use of the crew, to carry out repairs that are impractical or dangerous, and to monitor and control the many space station subsystems. Intelligent robotics and expert systems play a strong role in automation, and both disciplines are highly dependent on a common artificial intelligence (Al) technology base. The AI technology base provides the reasoning and planning capabilities needed in robotic tasks, such as perception of the environment and planning a path to a goal, and in expert systems tasks, such as control of subsystems and maintenance of equipment. This paper describes automation concepts for the space station, the specific robotic and expert systems required to attain this automation, and the research and development required. It also presents an evolutionary development plan that leads to fully automatic mobile robots for servicing satellites. Finally, we indicate the sequence of demonstrations and the research and development needed to confirm the automation capabilities. We emphasize that advanced robotics requires AI, and that to advance, AI needs the "real-world" problems provided by robotics.

  15. Manager's assistant systems for space system planning

    Science.gov (United States)

    Bewley, William L.; Burnard, Robert; Edwards, Gary E.; Shoop, James

    1992-01-01

    This paper describes a class of knowledge-based 'assistant' systems for space system planning. Derived from technology produced for the DARPA/USAF Pilot's Associate program, these assistant systems help the human planner by doing the bookkeeping to maintain plan data and executing the procedures and heuristics currently used by the human planner to define, assess, diagnose, and revise plans. Intelligent systems for Space Station Freedom assembly sequence planning and Advanced Launch System modeling will be presented as examples. Ongoing NASA-funded work on a framework supporting the development of such tools will also be described.

  16. Definition of technology development missions for early space station satellite servicing, volume 1

    Science.gov (United States)

    1983-01-01

    The testbed role of an early manned space station in the context of a satellite servicing evolutionary development and flight demonstration technology plan which results in a satellite servicing operational capability is defined. A satellite servicing technology development mission (a set of missions) to be performed on an early manned space station is conceptually defined.

  17. Space Station Freedom pressurized element interior design process

    Science.gov (United States)

    Hopson, George D.; Aaron, John; Grant, Richard L.

    1990-01-01

    The process used to develop the on-orbit working and living environment of the Space Station Freedom has some very unique constraints and conditions to satisfy. The goal is to provide maximum efficiency and utilization of the available space, in on-orbit, zero G conditions that establishes a comfortable, productive, and safe working environment for the crew. The Space Station Freedom on-orbit living and working space can be divided into support for three major functions: (1) operations, maintenance, and management of the station; (2) conduct of experiments, both directly in the laboratories and remotely for experiments outside the pressurized environment; and (3) crew related functions for food preparation, housekeeping, storage, personal hygiene, health maintenance, zero G environment conditioning, and individual privacy, and rest. The process used to implement these functions, the major requirements driving the design, unique considerations and constraints that influence the design, and summaries of the analysis performed to establish the current configurations are described. Sketches and pictures showing the layout and internal arrangement of the Nodes, U.S. Laboratory and Habitation modules identify the current design relationships of the common and unique station housekeeping subsystems. The crew facilities, work stations, food preparation and eating areas (galley and wardroom), and exercise/health maintenance configurations, waste management and personal hygiene area configuration are shown. U.S. Laboratory experiment facilities and maintenance work areas planned to support the wide variety and mixtures of life science and materials processing payloads are described.

  18. Utilization of artificial intelligence techniques for the Space Station power system

    Science.gov (United States)

    Evatt, Thomas C.; Gholdston, Edward W.

    1988-01-01

    Due to the complexity of the Space Station Electrical Power System (EPS) as currently envisioned, artificial intelligence/expert system techniques are being investigated to automate operations, maintenance, and diagnostic functions. A study was conducted to investigate this technology as it applies to failure detection, isolation, and reconfiguration (FDIR) and health monitoring of power system components and of the total system. Control system utilization of expert systems for load scheduling and shedding operations was also researched. A discussion of the utilization of artificial intelligence/expert systems for Initial Operating Capability (IOC) for the Space Station effort is presented along with future plans at Rocketdyne for the utilization of this technology for enhanced Space Station power capability.

  19. CM Process Improvement and the International Space Station Program (ISSP)

    Science.gov (United States)

    Stephenson, Ginny

    2007-01-01

    This viewgraph presentation reviews the Configuration Management (CM) process improvements planned and undertaken for the International Space Station Program (ISSP). It reviews the 2004 findings and recommendations and the progress towards their implementation.

  20. Evolutionary space station fluids management strategies

    Science.gov (United States)

    1989-01-01

    Results are summarized for an 11-month study to define fluid storage and handling strategies and requirements for various specific mission case studies and their associated design impacts on the Space Station. There are a variety of fluid users which require a variety of fluids and use rates. Also, the cryogenic propellants required for NASA's STV, Planetary, and Code Z missions are enormous. The storage methods must accommodate fluids ranging from a high pressure gas or supercritical state fluid to a sub-cooled liquid (and superfluid helium). These requirements begin in the year 1994, reach a maximum of nearly 1800 metric tons in the year 2004, and trail off to the year 2018, as currently planned. It is conceivable that the cryogenic propellant needs for the STV and/or Lunar mission models will be met by LTCSF LH2/LO2 tanksets attached to the SS truss structure. Concepts and corresponding transfer and delivery operations have been presented for STV propellant provisioning from the SS. A growth orbit maneuvering vehicle (OMV) and associated servicing capability will be required to move tanksets from delivery launch vehicles to the SS or co-orbiting platforms. Also, appropriate changes to the software used for OMV operation are necessary to allow for the combined operation of the growth OMV. To support fluid management activities at the Space Station for the experimental payloads and propellant provisioning, there must be truss structure space allocated for fluid carriers and propellant tanksets, and substantial beam strengthening may be required. The Station must have two Mobile Remote Manipulator Systems (MRMS) and the growth OMV propellant handling operations for the STV at the SS. Propellant needs for the Planetary Initiatives and Code Z mission models will most likely be provided by co-orbiting propellant platform(s). Space Station impacts for Code Z mission fluid management activities will be minimal.

  1. Space station operations management

    Science.gov (United States)

    Cannon, Kathleen V.

    1989-01-01

    Space Station Freedom operations management concepts must be responsive to the unique challenges presented by the permanently manned international laboratory. Space Station Freedom will be assembled over a three year period where the operational environment will change as significant capability plateaus are reached. First Element Launch, Man-Tended Capability, and Permanent Manned Capability, represent milestones in operational capability that is increasing toward mature operations capability. Operations management concepts are being developed to accomodate the varying operational capabilities during assembly, as well as the mature operational environment. This paper describes operations management concepts designed to accomodate the uniqueness of Space Station Freedoom, utilizing tools and processes that seek to control operations costs.

  2. 33-Foot-Diameter Space Station Leading to Space Base

    Science.gov (United States)

    1969-01-01

    This picture illustrates a concept of a 33-Foot-Diameter Space Station Leading to a Space Base. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.

  3. Space Station Freedom - Approaching the critical design phase

    Science.gov (United States)

    Kohrs, Richard H.; Huckins, Earle, III

    1992-01-01

    The status and future developments of the Space Station Freedom are discussed. To date detailed design drawings are being produced to manufacture SSF hardware. A critical design review (CDR) for the man-tended capability configuration is planned to be performed in 1993 under the SSF program. The main objective of the CDR is to enable the program to make a full commitment to proceed to manufacture parts and assemblies. NASA recently signed a contract with the Russian space company, NPO Energia, to evaluate potential applications of various Russian space hardware for on-going NASA programs.

  4. Space Station Habitability Research

    Science.gov (United States)

    Clearwater, Yvonne A.

    1988-01-01

    The purpose and scope of the Habitability Research Group within the Space Human Factors Office at the NASA/Ames Research Center is described. Both near-term and long-term research objectives in the space human factors program pertaining to the U.S. manned Space Station are introduced. The concept of habitability and its relevancy to the U.S. space program is defined within a historical context. The relationship of habitability research to the optimization of environmental and operational determinants of productivity is discussed. Ongoing habitability research efforts pertaining to living and working on the Space Station are described.

  5. Space Station galley design

    Science.gov (United States)

    Trabanino, Rudy; Murphy, George L.; Yakut, M. M.

    1986-01-01

    An Advanced Food Hardware System galley for the initial operating capability (IOC) Space Station is discussed. Space Station will employ food hardware items that have never been flown in space, such as a dishwasher, microwave oven, blender/mixer, bulk food and beverage dispensers, automated food inventory management, a trash compactor, and an advanced technology refrigerator/freezer. These new technologies and designs are described and the trades, design, development, and testing associated with each are summarized.

  6. Developments of space station; Uchu station no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, H. [National Space Development Agency of Japan, Tokyo (Japan)

    1996-03-05

    This paper introduces the Japanese experiment module (JEM) in developing a space station. The JEM consists of systems of a pressurizing section, an exposure section, a pressurizing portion of a supply section, a manipulator and an exposure portion of the supply section. The pressurizing section circulates and controls air so that crews can perform experiments under pressurized environment. The exposure section is a part in which experiments are carried out under exposure environment. The supply section runs between a station and the ground, with required devices loaded on it. The manipulator performs attaching a payload for the exposure section and replaces experimental samples. The JEM undergoes a schedule of fabricating an engineering model, testing for a certification a prototype flight model, and putting the model on a flight. The pressurizing section, exposure section and manipulator are at the stage of system tests. Surveillance of the JEM and control of the experiments are carried out at the Tsukuba Space Center. The Center is composed of a space experiment building, a zero-gravity environment testing building, an astronaut training building, a space station operating building, and a space station testing building. 7 figs., 2 tabs.

  7. Space Station Engineering and Technology Development. Proceedings of the Panel on Program Performance and Onboard Mission Control

    Science.gov (United States)

    1985-01-01

    An ad-hoc committee was asked to review the following questions relevant to the space station program: (1) onboard maintainability and repair; (2) in-space research and technology program and facility plans; (3) solar thermodynamic research and technology development program planning; (4) program performance (cost estimating, management, and cost avoidance); (5) onboard versus ground-based mission control; and (6) technology development road maps from IOC to the growth station. The objective of these new assignments is to provide NASA with advice on ways and means for improving the content, performance, and/or effectiveness of these elements of the space station program.

  8. A shared-world conceptual model for integrating space station life sciences telescience operations

    Science.gov (United States)

    Johnson, Vicki; Bosley, John

    1988-01-01

    Mental models of the Space Station and its ancillary facilities will be employed by users of the Space Station as they draw upon past experiences, perform tasks, and collectively plan for future activities. The operational environment of the Space Station will incorporate telescience, a new set of operational modes. To investigate properties of the operational environment, distributed users, and the mental models they employ to manipulate resources while conducting telescience, an integrating shared-world conceptual model of Space Station telescience is proposed. The model comprises distributed users and resources (active elements); agents who mediate interactions among these elements on the basis of intelligent processing of shared information; and telescience protocols which structure the interactions of agents as they engage in cooperative, responsive interactions on behalf of users and resources distributed in space and time. Examples from the life sciences are used to instantiate and refine the model's principles. Implications for transaction management and autonomy are discussed. Experiments employing the model are described which the authors intend to conduct using the Space Station Life Sciences Telescience Testbed currently under development at Ames Research Center.

  9. Thermal management of space stations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Thermal management aims at making full use of energy resources available in the space station to reduce energy consumption, waste heat rejection and the weight of the station. It is an extension of the thermal control. This discussion introduces the concept and development of thermal management, presents the aspects of thermal management and further extends its application to subsystems of the space station.

  10. Space Station Environmental Control and Life Support System Test Facility at Marshall Space Flight Center

    Science.gov (United States)

    Springer, Darlene

    1989-01-01

    Different aspects of Space Station Environmental Control and Life Support System (ECLSS) testing are currently taking place at Marshall Space Flight Center (MSFC). Unique to this testing is the variety of test areas and the fact that all are located in one building. The north high bay of building 4755, the Core Module Integration Facility (CMIF), contains the following test areas: the Subsystem Test Area, the Comparative Test Area, the Process Material Management System (PMMS), the Core Module Simulator (CMS), the End-use Equipment Facility (EEF), and the Pre-development Operational System Test (POST) Area. This paper addresses the facility that supports these test areas and briefly describes the testing in each area. Future plans for the building and Space Station module configurations will also be discussed.

  11. Role of the Space Station in Private Development of Space

    Science.gov (United States)

    Uhran, M. L.

    2002-01-01

    by the ISS partnership today will effect the later outcome. This paper reviews the range of activities underway in the U.S., as well those being pursued on a multilateral basis across the partnership. It will report on the status of NASA planning for establishment of a non-governmental organization (NGO) to manage the U.S. share of ISS user resources and accommodations. This initiative is unprecedented for a human-rated space craft of ISS magnitude and represents an extraordinarily complex undertaking due to the multi-mission, multi-partner nature of the program. Nonetheless, major advances are scheduled for 2002, as a new NASA Administrator takes the helm and declares the study phase is over. On the global front, the ISS Partners have formed a Multilateral Commercialization Group (MCG) charged to develop Recommended Guidelines for ISS Commercial Activities. Areas such as advertising, merchandising, entertainment, and sponsorship are actively under consideration with plans to advance to the long-awaited decision phase. In conjunction with this project, the challenging issue of how to create, protect, and potentially market the ISS brand to the benefit of the Partners, as well as the scientific, technological and commercial users of the station, is approaching resolution. In the area of space product development, the NASA Commercial Space Centers are entering the era of the space station with new operating principles and practices that promise a focused and sustainable research and development program. This portfolio of seventeen cooperative agreements spans applications in biotechnology, agriculture, remote sensing, and advanced materials. The rate-limiting step has long been access to space and we now stand ready to seize the opportunities afforded by a continuously operating, full-service laboratory in orbit. Each of these initiatives will have a marked effect on evolution of the space station program from a commercial development perspective and each offers the

  12. Space Station Freedom food management

    Science.gov (United States)

    Whitehurst, Troy N., Jr.; Bourland, Charles T.

    1992-01-01

    This paper summarizes the specification requirements for the Space Station Food System, and describes the system that is being designed and developed to meet those requirements. Space Station Freedom will provide a mix of frozen, refrigerated, rehydratable, and shelf stable foods. The crew will pre-select preferred foods from an approved list, to the extent that proper nutrition balance is maintained. A galley with freezers, refrigerators, trash compactor, and combination microwave and convection ovens will improve crew efficiency and productivity during the long Space Station Freedom (SSF) missions.

  13. Biotechnology opportunities on Space Station

    Science.gov (United States)

    Deming, Jess; Henderson, Keith; Phillips, Robert W.; Dickey, Bernistine; Grounds, Phyllis

    1987-01-01

    Biotechnology applications which could be implemented on the Space Station are examined. The advances possible in biotechnology due to the favorable microgravity environment are discussed. The objectives of the Space Station Life Sciences Program are: (1) the study of human diseases, (2) biopolymer processing, and (3) the development of cryoprocessing and cryopreservation methods. The use of the microgravity environment for crystal growth, cell culturing, and the separation of biological materials is considered. The proposed Space Station research could provide benefits to the fields of medicine, pharmaceuticals, genetics, agriculture, and industrial waste management.

  14. Space stations systems and utilization

    CERN Document Server

    Messerschmid, Ernst

    1999-01-01

    The design of space stations like the recently launched ISS is a highly complex and interdisciplinary task. This book describes component technologies, system integration, and the potential usage of space stations in general and of the ISS in particular. It so adresses students and engineers in space technology. Ernst Messerschmid holds the chair of space systems at the University of Stuttgart and was one of the first German astronauts.

  15. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee

    Science.gov (United States)

    Nunamaker, Robert R.; Willshire, Kelli F.

    1988-01-01

    The reports of a committee established by Congress to identify specific systems of the Space Station which would advance automation and robotics technologies are reviewed. The history of the committee, its relation to NASA, and the reports which it has released are discussed. The committee's reports recommend the widespread use of automation and robotics for the Space Station, a program for technology development and transfer between industries and research and development communities, and the planned use of robots to service and repair satellites and their payloads which are accessible from the Space Station.

  16. Radiation dosimetry onboard the International Space Station ISS

    International Nuclear Information System (INIS)

    Berger, Thomas

    2008-01-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature front that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is accomplished to one part as ''operational'' dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on ''scientific'' dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities. (orig.)

  17. Large Deployable Reflector (LDR) system concept and technology definition study. Analysis of space station requirements for LDR

    Science.gov (United States)

    Agnew, Donald L.; Vinkey, Victor F.; Runge, Fritz C.

    1989-01-01

    A study was conducted to determine how the Large Deployable Reflector (LDR) might benefit from the use of the space station for assembly, checkout, deployment, servicing, refurbishment, and technology development. Requirements that must be met by the space station to supply benefits for a selected scenario are summarized. Quantitative and qualitative data are supplied. Space station requirements for LDR which may be utilized by other missions are identified. A technology development mission for LDR is outlined and requirements summarized. A preliminary experiment plan is included. Space Station Data Base SAA 0020 and TDM 2411 are updated.

  18. Large Deployable Reflector (LDR) system concept and technology definition study. Analysis of space station requirements for LDR

    Science.gov (United States)

    Agnew, Donald L.; Vinkey, Victor F.; Runge, Fritz C.

    1989-04-01

    A study was conducted to determine how the Large Deployable Reflector (LDR) might benefit from the use of the space station for assembly, checkout, deployment, servicing, refurbishment, and technology development. Requirements that must be met by the space station to supply benefits for a selected scenario are summarized. Quantitative and qualitative data are supplied. Space station requirements for LDR which may be utilized by other missions are identified. A technology development mission for LDR is outlined and requirements summarized. A preliminary experiment plan is included. Space Station Data Base SAA 0020 and TDM 2411 are updated.

  19. Lewis Research Center space station electric power system test facilities

    Science.gov (United States)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  20. International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update

    Science.gov (United States)

    Hernandez-Pellerano, Amri; Iannello, Christopher J.; Garrett, Henry B.; Ging, Andrew T.; Katz, Ira; Keith, R. Lloyd; Minow, Joseph I.; Willis, Emily M.; Schneider, Todd A.; Whittlesey, Edward J.; hide

    2014-01-01

    The International Space Station (ISS) vehicle undergoes spacecraft charging as it interacts with Earth's ionosphere and magnetic field. The interaction can result in a large potential difference developing between the ISS metal chassis and the local ionosphere plasma environment. If an astronaut conducting extravehicular activities (EVA) is exposed to the potential difference, then a possible electrical shock hazard arises. The control of this hazard was addressed by a number of documents within the ISS Program (ISSP) including Catastrophic Safety Hazard for Astronauts on EVA (ISS-EVA-312-4A_revE). The safety hazard identified the risk for an astronaut to experience an electrical shock in the event an arc was generated on an extravehicular mobility unit (EMU) surface. A catastrophic safety hazard, by the ISS requirements, necessitates mitigation by a two-fault tolerant system of hazard controls. Traditionally, the plasma contactor units (PCUs) on the ISS have been used to limit the charging and serve as a "ground strap" between the ISS structure and the surrounding ionospheric plasma. In 2009, a previous NASA Engineering and Safety Center (NESC) team evaluated the PCU utilization plan (NESC Request #07-054-E) with the objective to assess whether leaving PCUs off during non-EVA time periods presented risk to the ISS through assembly completion. For this study, in situ measurements of ISS charging, covering the installation of three of the four photovoltaic arrays, and laboratory testing results provided key data to underpin the assessment. The conclusion stated, "there appears to be no significant risk of damage to critical equipment nor excessive ISS thermal coating damage as a result of eliminating PCU operations during non- EVA times." In 2013, the ISSP was presented with recommendations from Boeing Space Environments for the "Conditional" Marginalization of Plasma Hazard. These recommendations include a plan that would keep the PCUs off during EVAs when the

  1. Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    Science.gov (United States)

    Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.

    1986-01-01

    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.

  2. Should the Space Station be an ark?

    Science.gov (United States)

    Wassersug, R

    1994-08-01

    This essay explores the pros and cons of maximizing the number of species that can be maintained on the Space Station. It reviews some of the history of comparative space biology to show that different cultures have different perspectives on the study of non-traditional research organisms (ie non-rodents) in space. Despite these differences, there are simple principles that all international partners in the Space Station endeavour should be able to uphold when deciding what facilities to build and what species to fly. As an argument for maximizing the taxonomic diversity on the Space Station, examples are given to show how very similar organisms may have different reactions to microgravity. At the same time the political pressure in the USA to make the Space Station an institution specifically servicing the 'health, well-being and economic benefits of people on earth', is acknowledged. Ultimately the justification for what species will be on the Space Station should rest with the quality of the scientific questions being asked.

  3. Space Station Environmental Control/Life Support System engineering

    Science.gov (United States)

    Miller, C. W.; Heppner, D. B.

    1985-01-01

    The present paper is concerned with a systems engineering study which has provided an understanding of the overall Space Station ECLSS (Environmental Control and Life Support System). ECLSS/functional partitioning is considered along with function criticality, technology alternatives, a technology description, single thread systems, Space Station architectures, ECLSS distribution, mechanical schematics per space station, and Space Station ECLSS characteristics. Attention is given to trade studies and system synergism. The Space Station functional description had been defined by NASA. The ECLSS will utilize technologies which embody regenerative concepts to minimize the use of expendables.

  4. The International Space Life Sciences Strategic Planning Working Group

    Science.gov (United States)

    White, Ronald J.; Rabin, Robert; Lujan, Barbara F.

    1993-01-01

    Throughout the 1980s, ESA and the space agencies of Canada, Germany, France, Japan, and the U.S. have pursued cooperative projects bilaterally and multilaterally to prepare for, and to respond to, opportunities in space life sciences research previously unapproachable in scale and sophistication. To cope effectively with likely future space research opportunities, broad, multilateral, coordinated strategic planning is required. Thus, life scientists from these agencies have allied to form the International Space Life Sciences Strategic Planning Working Group. This Group is formally organized under a charter that specifies the purpose of the Working Group as the development of an international strategic plan for the space life sciences, with periodic revisions as needed to keep the plan current. The plan will be policy-, not operations-oriented. The Working Group also may establish specific implementation teams to coordinate multilateral science policy in specific areas; such teams have been established for space station utilization, and for sharing of flight equipment.

  5. Radiation dosimetry onboard the International Space Station ISS

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Thomas [German Aerospace Center - DLR, Inst. of Aerospace Medicine, Radiation Biology, Cologne (Germany)

    2008-07-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature front that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is accomplished to one part as 'operational' dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on 'scientific' dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities. (orig.)

  6. Life Sciences Research Facility automation requirements and concepts for the Space Station

    Science.gov (United States)

    Rasmussen, Daryl N.

    1986-01-01

    An evaluation is made of the methods and preliminary results of a study on prospects for the automation of the NASA Space Station's Life Sciences Research Facility. In order to remain within current Space Station resource allocations, approximately 85 percent of planned life science experiment tasks must be automated; these tasks encompass specimen care and feeding, cage and instrument cleaning, data acquisition and control, sample analysis, waste management, instrument calibration, materials inventory and management, and janitorial work. Task automation will free crews for specimen manipulation, tissue sampling, data interpretation and communication with ground controllers, and experiment management.

  7. A facility for training Space Station astronauts

    Science.gov (United States)

    Hajare, Ankur R.; Schmidt, James R.

    1992-01-01

    The Space Station Training Facility (SSTF) will be the primary facility for training the Space Station Freedom astronauts and the Space Station Control Center ground support personnel. Conceptually, the SSTF will consist of two parts: a Student Environment and an Author Environment. The Student Environment will contain trainers, instructor stations, computers and other equipment necessary for training. The Author Environment will contain the systems that will be used to manage, develop, integrate, test and verify, operate and maintain the equipment and software in the Student Environment.

  8. Space Station data management system architecture

    Science.gov (United States)

    Mallary, William E.; Whitelaw, Virginia A.

    1987-01-01

    Within the Space Station program, the Data Management System (DMS) functions in a dual role. First, it provides the hardware resources and software services which support the data processing, data communications, and data storage functions of the onboard subsystems and payloads. Second, it functions as an integrating entity which provides a common operating environment and human-machine interface for the operation and control of the orbiting Space Station systems and payloads by both the crew and the ground operators. This paper discusses the evolution and derivation of the requirements and issues which have had significant effect on the design of the Space Station DMS, describes the DMS components and services which support system and payload operations, and presents the current architectural view of the system as it exists in October 1986; one-and-a-half years into the Space Station Phase B Definition and Preliminary Design Study.

  9. GSFC contamination monitors for Space Station

    Science.gov (United States)

    Carosso, P. A.; Tveekrem, J. L.; Coopersmith, J. D.

    1988-01-01

    This paper describes the Work Package 3 activities in the area of neutral contamination monitoring for the Space Station. Goddard Space Flight Center's responsibilities include the development of the Attached Payload Accommodations Equipment (APAE), the Polar Orbiting Platform (POP), and the Flight Telerobotic Servicer (FTS). GSFC will also develop the Customer Servicing Facility (CSF) in Phase 2 of the Space Station.

  10. Definition of technology development missions for early space station satellite servicing, volume 2

    Science.gov (United States)

    1983-01-01

    The results of all aspects of the early space station satellite servicing study tasks are presented. These results include identification of servicing tasks (and locations), identification of servicing mission system and detailed objectives, functional/operational requirements analyses of multiple servicing scenarios, assessment of critical servicing technology capabilities and development of an evolutionary capability plan, design and validation of selected servicing technology development missions (TDMs), identification of space station satellite servicing accommodation needs, and the cost and schedule implications of acquiring both required technology capability development and conducting the selected TDMs.

  11. Space Station Freedom operations costs

    Science.gov (United States)

    Accola, Anne L.; Williams, Gregory J.

    1988-01-01

    Measures to reduce the operation costs of the Space Station which can be implemented in the design and development stages are discussed. Operational functions are described in the context of an overall operations concept. The provisions for operations cost responsibilities among the partners in the Space Station program are presented. Cost estimating methodologies and the way in which operations costs affect the design and development process are examined.

  12. Managing NASA's International Space Station Logistics and Maintenance program

    Science.gov (United States)

    Butina, Anthony J.

    2001-02-01

    The International Space Station will be a permanently manned orbiting vehicle that has no landing gear, no international borders, and no organizational lines-it is one Station that must be supported by one crew, 24 hours a day, 7 days a week, 365 days a year. It flies partially assembled for a number of years before it is finally complete in April of 2006. Space logistics is a new concept that will have wide reaching consequences for both space travel and life on Earth. What is it like to do something that no one has done before? What challenges do you face? What kind of organization do you put together to perform this type of task? How do you optimize your resources to procure what you need? How do you change a paradigm within a space agency? How do you coordinate and manage a one of a kind system with approximately 5,700 Orbital Replaceable Units (ORUs)? How do you plan for preventive and corrective maintenance, when you need to procure spare parts which number into the hundreds of thousands, from 127 major US vendors and 70 major international vendors? How do you transport large sections of ISS hardware around the country? These are some of the topics discussed in this paper. From conception to operation, the ISS requires a unique approach in all aspects of development and operation. Today the dream is coming true; hardware is flying and hardware is failing. The system has been put into place to support the Station and only time will tell if we did it right. This paper discusses some of the experiences of the author after working 12 years on the International Space Station's integrated logistics & maintenance program. From his early days as a contractor supportability engineer and manager, to the NASA manager responsible for the entire ISS Logistics and Maintenance program. .

  13. Space Medicine: Shuttle - Space Station Crew Health and Safety Challenges for Exploration

    Science.gov (United States)

    Dervay, Joseph

    2010-01-01

    This slide presentation combines some views of the shuttle take off, and the shuttle and space station on orbit, and some views of the underwater astronaut training , with a general discussion of Space Medicine. It begins with a discussion of the some of the physiological issues of space flight. These include: Space Motion Sickness (SMS), Cardiovascular, Neurovestibular, Musculoskeletal, and Behavioral/Psycho-social. There is also discussion of the space environment and the issues that are posed including: Radiation, Toxic products and propellants, Habitability, Atmosphere, and Medical events. Included also is a discussion of the systems and crew training. There are also artists views of the Constellation vehicles, the planned lunar base, and extended lunar settlement. There are also slides showing the size of earth in perspective to the other planets, and the sun and the sun in perspective to other stars. There is also a discussion of the in-flight changes that occur in neural feedback that produces postural imbalance and loss of coordination after return.

  14. Artificial intelligence - NASA. [robotics for Space Station

    Science.gov (United States)

    Erickson, J. D.

    1985-01-01

    Artificial Intelligence (AI) represents a vital common space support element needed to enable the civil space program and commercial space program to perform their missions successfully. It is pointed out that advances in AI stimulated by the Space Station Program could benefit the U.S. in many ways. A fundamental challenge for the civil space program is to meet the needs of the customers and users of space with facilities enabling maximum productivity and having low start-up costs, and low annual operating costs. An effective way to meet this challenge may involve a man-machine system in which artificial intelligence, robotics, and advanced automation are integrated into high reliability organizations. Attention is given to the benefits, NASA strategy for AI, candidate space station systems, the Space Station as a stepping stone, and the commercialization of space.

  15. Gravitational biology on the space station

    Science.gov (United States)

    Keefe, J. R.; Krikorian, A. D.

    1983-01-01

    The current status of gravitational biology is summarized, future areas of required basic research in earth-based and spaceflight projects are presented, and potential applications of gravitational biology on a space station are demonstrated. Topics covered include vertebrate reproduction, prenatal/postnatal development, a review of plant space experiments, the facilities needed for growing plants, gravimorphogenesis, thigmomorphogenesis, centrifuges, maintaining a vivarium, tissue culture, and artificial human organ generation. It is proposed that space stations carrying out these types of long-term research be called the National Space Research Facility.

  16. Phase III Simplified Integrated Test (SIT) results - Space Station ECLSS testing

    Science.gov (United States)

    Roberts, Barry C.; Carrasquillo, Robyn L.; Dubiel, Melissa Y.; Ogle, Kathryn Y.; Perry, Jay L.; Whitley, Ken M.

    1990-01-01

    During 1989, phase III testing of Space Station Freedom Environmental Control and Life Support Systems (ECLSS) began at Marshall Space Flight Center (MSFC) with the Simplified Integrated Test. This test, conducted at the MSFC Core Module Integration Facility (CMIF), was the first time the four baseline air revitalization subsystems were integrated together. This paper details the results and lessons learned from the phase III SIT. Future plans for testing at the MSFC CMIF are also discussed.

  17. Space Station Freedom - Accommodation for technology R&D

    Science.gov (United States)

    Holt, Alan C.

    1989-01-01

    The paper examines the features of the accommodation equipment designed for the candidate technology payloads of the Space Station, which include magnetic plasma thruster systems and a hypothetical advanced electromagnetic propulsion system utilizing high-temperature superconductivity materials. The review of the accommodation-equipment concepts supports the assumption that some propulsion technologies can be tested on the Space Station while being attached externally to the station's truss structure. For testing technologies with inherent operation or performance hazards, space platforms and smaller free-flyers coordinated with the Space Station can be used. Diagrams illustrating typical accommodation equipment configurations are included.

  18. Space station interior design: Results of the NASA/AIA space station interior national design competition

    Science.gov (United States)

    Haines, R. F.

    1975-01-01

    The results of the NASA/AIA space station interior national design competition held during 1971 are presented in order to make available to those who work in the architectural, engineering, and interior design fields the results of this design activity in which the interiors of several space shuttle size modules were designed for optimal habitability. Each design entry also includes a final configuration of all modules into a complete space station. A brief history of the competition is presented with the competition guidelines and constraints. The first place award entry is presented in detail, and specific features from other selected designs are discussed. This is followed by a discussion of how some of these design features might be applied to terrestrial as well as space situations.

  19. International Space Station Configuration Analysis and Integration

    Science.gov (United States)

    Anchondo, Rebekah

    2016-01-01

    Ambitious engineering projects, such as NASA's International Space Station (ISS), require dependable modeling, analysis, visualization, and robotics to ensure that complex mission strategies are carried out cost effectively, sustainably, and safely. Learn how Booz Allen Hamilton's Modeling, Analysis, Visualization, and Robotics Integration Center (MAVRIC) team performs engineering analysis of the ISS Configuration based primarily on the use of 3D CAD models. To support mission planning and execution, the team tracks the configuration of ISS and maintains configuration requirements to ensure operational goals are met. The MAVRIC team performs multi-disciplinary integration and trade studies to ensure future configurations meet stakeholder needs.

  20. Solar water heater for NASA's Space Station

    Science.gov (United States)

    Somers, Richard E.; Haynes, R. Daniel

    1988-01-01

    The feasibility of using a solar water heater for NASA's Space Station is investigated using computer codes developed to model the Space Station configuration, orbit, and heating systems. Numerous orbit variations, system options, and geometries for the collector were analyzed. Results show that a solar water heater, which would provide 100 percent of the design heating load and would not impose a significant impact on the Space Station overall design is feasible. A heat pipe or pumped fluid radial plate collector of about 10-sq m, placed on top of the habitat module was found to be well suited for satisfying water demand of the Space Station. Due to the relatively small area required by a radial plate, a concentrator is unnecessary. The system would use only 7 to 10 percent as much electricity as an electric water-heating system.

  1. International Space Station exhibit

    Science.gov (United States)

    2000-01-01

    The International Space Station (ISS) exhibit in StenniSphere at John C. Stennis Space Center in Hancock County, Miss., gives visitors an up-close look at the largest international peacetime project in history. Step inside a module of the ISS and glimpse how astronauts will live and work in space. Currently, 16 countries contribute resources and hardware to the ISS. When complete, the orbiting research facility will be larger than a football field.

  2. Space Station - Risks and vision

    Science.gov (United States)

    Pedersen, K.

    1986-01-01

    In assessing the prospects of the NASA Space Station program, it is important to take account of the long term perspective embodied in the proposal; its international participants are seen as entering a complex web of developmental and operational interdependence of indefinite duration. It is noted to be rather unclear, however, to what extent this is contemplated by such potential partners as the ESA, which has its own program goals. These competing hopes for eventual autonomy in space station operations will have considerable economic, technological, and political consequences extending well into the next century.

  3. The International Space Station (ISS) Education Accomplishments and Opportunities

    Science.gov (United States)

    Alleyne, Camille W.; Blue, Regina; Mayo, Susan

    2012-01-01

    The International Space Station (ISS) has the unique ability to capture the imaginations of both students and teachers worldwide and thus stands as an invaluable learning platform for the advancement of proficiency in research and development and education. The presence of humans on board ISS for the past ten years has provided a foundation for numerous educational activities aimed at capturing that interest and motivating study in the sciences, technology, engineering and mathematics (STEM) disciplines which will lead to an increase in quality of teachers, advancements in research and development, an increase in the global reputation for intellectual achievement, and an expanded ability to pursue unchartered avenues towards a brighter future. Over 41 million students around the world have participated in ISS-related activities since the year 2000. Projects such as the Amateur Radio on International Space Station (ARISS) and Earth Knowledge Acquired by Middle School Students (EarthKAM), among others, have allowed for global student, teacher, and public access to space through radio contacts with crewmembers and student image acquisition respectively. . With planned ISS operations at least until 2020, projects like the aforementioned and their accompanying educational materials will be available to enable increased STEM literacy around the world. Since the launch of the first ISS element, a wide range of student experiments and educational activities have been performed by each of the international partner agencies: National Aeronautics and Space Administration (NASA), Canadian Space Agency (CSA), European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA) and Russian Federal Space Agency (Roscosmos). Additionally, a number of non-participating countries, some under commercial agreements, have also participated in Station-related activities. Many of these programs still continue while others are being developed and added to the station crewmembers tasks

  4. Prospects for Interdisciplinary Science Aboard the International Space Station

    Science.gov (United States)

    Robinson, Julie A.

    2011-01-01

    The assembly of the International Space Station was completed in early 2011, and is now embarking on its first year of the coming decade of use as a laboratory. Two key types of physical science research are enabled by ISS: studies of processes that are normally masked by gravity, and instruments that take advantage of its position as a powerful platform in orbit. The absence of buoyancy-driven convection enables experiments in diverse areas such as fluids near the critical point, Marangoni convection, combustion, and coarsening of metal alloys. The positioning of such a powerful platform in orbit with robotic transfer and instrument support also provides a unique alternative platform for astronomy and physics instruments. Some of the operating or planned instruments related to fundamental physics on the International Space Station include MAXI (Monitoring all-sky X-ray Instrument for ISS), the Alpha Magnetic Spectrometer, CALET (Calorimetric Electron Telescope), and ACES (Atomic Clock Experiment in Space). The presentation will conclude with an overview of pathways for funding different types of experiments from NASA funding to the ISS National Laboratory, and highlights of the streamlining of services to help scientists implement their experiments on ISS.

  5. Plant and animal accommodation for Space Station Laboratory

    Science.gov (United States)

    Olson, Richard L.; Gustan, Edith A.; Wiley, Lowell F.

    1986-01-01

    An extended study has been conducted with the goals of defining and analyzing relevant parameters and significant tradeoffs for the accommodation of nonhuman research aboard the NASA Space Station, as well as conducting tradeoff analyses for orbital reconfiguring or reoutfitting of the laboratory facility and developing laboratory designs and program plans. The two items exerting the greatest influence on nonhuman life sciences research were identified as the centrifuge and the specimen environmental control and life support system; both should be installed on the ground rather than in orbit.

  6. Networked simulation for team training of Space Station astronauts, ground controllers, and scientists - A training and development environment

    Science.gov (United States)

    Hajare, Ankur R.; Wick, Daniel T.; Bovenzi, James J.

    1991-01-01

    The purpose of this paper is to describe plans for the Space Station Training Facility (SSTF) which has been designed to meet the envisioned training needs for Space Station Freedom. To meet these needs, the SSTF will integrate networked simulators with real-world systems in five training modes: Stand-Alone, Combined, Joint-Combined, Integrated, and Joint-Integrated. This paper describes the five training modes within the context of three training scenaries. In addition, this paper describes an authoring system which will support the rapid integration of new real-world system changes in the Space Station Freedom Program.

  7. Definition of technology development missions for early Space Station satellite servicing. Volume 2: Technical

    Science.gov (United States)

    Cable, D. A.; Diewald, C. A.; Hills, T. C.; Parmentier, T. J.; Spencer, R. A.; Stone, G. E.

    1984-01-01

    Volume 2 contains the Technical Report of the approach and results of the Phase 2 study. The phase 2 servicing study was initiated in June 1983, and is being reported in this document. The scope of the contract was to: (1) define in detail five selected technology development missions (TDM); (2) conduct a design requirement analysis to refine definitions of satellite servicing requirements at the space station; and (3) develop a technology plan that would identify and schedule prerequisite precursor technology development, associated. STS flight experiments and space station experiments needed to provide onorbit validation of the evolving technology.

  8. Artificial intelligence for Space Station automation: Crew safety, productivity, autonomy, augmented capability

    Science.gov (United States)

    Firschein, O.; Georgeff, M. P.; Park, W.; Cheeseman, P. C.; Geldberg, J.

    1986-01-01

    Artificial intelligence (AI) R&D projects for the successful and efficient operation of the Space Station are described. The book explores the most advanced AI-based technologies, reviews the results of concept design studies to determine required AI capabilities, details demonstrations that would indicate the existence of these capabilities, and develops an R&D plan leading to such demonstrations. Particular attention is given to teleoperation and robotics, sensors, expert systems, computers, planning, and man-machine interface.

  9. Advisory Committee on the Redesign of the Space Station

    Science.gov (United States)

    1993-06-01

    The Space Station Program was initiated in 1984 to provide for permanent human presence in an orbiting laboratory. This program evolved into Space Station Freedom, later identified as a component to facilitate a return of astronauts to the Moon, followed by the exploration of Mars. In March 1993 the Clinton Administration directed NASA to undertake an intense effort to redesign the space station at a substantial cost savings relative to Space Station Freedom. The Advisory Committee on the Redesign of the Space Station was established in March 1993 to provide independent assessment of the advantages and disadvantages of the redesign options. The results of the Committee's work is described. Discussion describes the mission that the Administration has articulated for the Space Station Program and the scientific and technical characteristics that a redesigned station must possess to fulfill those objectives. A description of recommended management, operations, and acquisition strategies for the redesigned program is provided. The Committee's assessment of the redesign options against five criteria are presented. The five criteria are technical capabilities, research capabilities, schedule, cost, and risk. A discussion of general mission risk is included.

  10. Observation planning algorithm of a Japanese space-borne sensor: Hyperspectral Imager SUIte (HISUI) onboard International Space Station (ISS) as platform

    Science.gov (United States)

    Ogawa, Kenta; Konno, Yukiko; Yamamoto, Satoru; Matsunaga, Tsuneo; Tachikawa, Tetsushi; Komoda, Mako

    2017-09-01

    Hyperspectral Imager Suite (HISUI) is a Japanese future space-borne hyperspectral instrument being developed by Ministry of Economy, Trade, and Industry (METI). HISUI will be launched in 2019 or later onboard International Space Station (ISS) as platform. HISUI has 185 spectral band from 0.4 to 2.5 μm with 20 by 30 m spatial resolution with swath of 20 km. Swath is limited as such, however observations in continental scale area are requested in HISUI mission lifetime of three years. Therefore we are developing a scheduling algorithm to generate effective observation plans. HISUI scheduling algorithm is to generate observation plans automatically based on platform orbit, observation area maps (we say DAR; "Data Acquisition Request" in HISUI project), their priorities, and available resources and limitation of HISUI system such as instrument operation time per orbit and data transfer capability. Then next we need to set adequate DAR before start of HISUI observation, because years of observations are needed to cover continental scale wide area that is difficult to change after the mission started. To address these issues, we have developed observation simulator. The simulator's critical inputs are DAR and the ISS's orbit, HISUI limitations in observation minutes per orbit, data storage and past cloud coverage data for term of HISUI observations (3 years). Then the outputs of simulator are coverage map of each day. Areas with cloud free image are accumulated for the term of observation up to three years. We have successfully tested the simulator and tentative DAR and found that it is possible to estimate coverage for each of requests for the mission lifetime.

  11. Lesson Plan Prototype for International Space Station's Interactive Video Education Events

    Science.gov (United States)

    Zigon, Thomas

    1999-01-01

    The outreach and education components of the International Space Station Program are creating a number of materials, programs, and activities that educate and inform various groups as to the implementation and purposes of the International Space Station. One of the strategies for disseminating this information to K-12 students involves an electronic class room using state of the art video conferencing technology. K-12 classrooms are able to visit the JSC, via an electronic field trip. Students interact with outreach personnel as they are taken on a tour of ISS mockups. Currently these events can be generally characterized as: Being limited to a one shot events, providing only one opportunity for students to view the ISS mockups; Using a "one to many" mode of communications; Using a transmissive, lecture based method of presenting information; Having student interactions limited to Q&A during the live event; Making limited use of media; and Lacking any formal, performance based, demonstration of learning on the part of students. My project involved developing interactive lessons for K-12 students (specifically 7th grade) that will reflect a 2nd generation design for electronic field trips. The goal of this design will be to create electronic field trips that will: Conform to national education standards; More fully utilize existing information resources; Integrate media into field trip presentations; Make support media accessible to both presenters and students; Challenge students to actively participate in field trip related activities; and Provide students with opportunities to demonstrate learning

  12. International Space Station Medical Projects - Full Services to Mars

    Science.gov (United States)

    Pietrzyk, R. A.; Primeaux, L. L.; Wood, S. J.; Vessay, W. B.; Platts, S. H.

    2018-01-01

    The International Space Station Medical Projects (ISSMP) Element provides planning, integration, and implementation services for HRP research studies for both spaceflight and flight analog research. Through the implementation of these two efforts, ISSMP offers an innovative way of guiding research decisions to meet the unique challenges of understanding the human risks to space exploration. Flight services provided by ISSMP include leading informed consent briefings, developing and validating in-flight crew procedures, providing ISS crew and ground-controller training, real-time experiment monitoring, on-orbit experiment and hardware operations and facilitating data transfer to investigators. For analog studies at the NASA Human Exploration Research Analog (HERA), the ISSMP team provides subject recruitment and screening, science requirements integration, data collection schedules, data sharing agreements, mission scenarios and facilities to support investigators. The ISSMP also serves as the HRP interface to external analog providers including the :envihab bed rest facility (Cologne, Germany), NEK isolation chamber (Moscow, Russia) and the Antarctica research stations. Investigators working in either spaceflight or analog environments requires a coordinated effort between NASA and the investigators. The interdisciplinary nature of both flight and analog research requires investigators to be aware of concurrent research studies and take into account potential confounding factors that may impact their research objectives. Investigators must define clear research requirements, participate in Investigator Working Group meetings, obtain human use approvals, and provide study-specific training, sample and data collection and procedures all while adhering to schedule deadlines. These science requirements define the technical, functional and performance operations to meet the research objectives. The ISSMP maintains an expert team of professionals with the knowledge and

  13. Space Station Freedom Environmental Health Care Program

    Science.gov (United States)

    Richard, Elizabeth E.; Russo, Dane M.

    1992-01-01

    The paper discusses the environmental planning and monitoring aspects of the Space Station Freedom (SSF) Environmental Health Care Program, which encompasses all phases of the SSF assembly and operation from the first element entry at MB-6 through the Permanent Manned Capability and beyond. Environmental planning involves the definition of acceptability limits and monitoring requirements for the radiation dose barothermal parameters and potential contaminants in the SSF air and water and on internal surfaces. Inflight monitoring will be implemented through the Environmental Health System, which consists of five subsystems: Microbiology, Toxicology, Water Quality, Radiation, and Barothermal Physiology. In addition to the environmental data interpretation and analysis conducted after each mission, the new data will be compared to archived data for statistical and long-term trend analysis and determination of risk exposures. Results of these analyses will be used to modify the acceptability limits and monitoring requirements for the future.

  14. Efficient placement of structural dynamics sensors on the space station

    Science.gov (United States)

    Lepanto, Janet A.; Shepard, G. Dudley

    1987-01-01

    System identification of the space station dynamic model will require flight data from a finite number of judiciously placed sensors on it. The placement of structural dynamics sensors on the space station is a particularly challenging problem because the station will not be deployed in a single mission. Given that the build-up sequence and the final configuration for the space station are currently undetermined, a procedure for sensor placement was developed using the assembly flights 1 to 7 of the rephased dual keel space station as an example. The procedure presented approaches the problem of placing the sensors from an engineering, as opposed to a mathematical, point of view. In addition to locating a finite number of sensors, the procedure addresses the issues of unobserved structural modes, dominant structural modes, and the trade-offs involved in sensor placement for space station. This procedure for sensor placement will be applied to revised, and potentially more detailed, finite element models of the space station configuration and assembly sequence.

  15. Space station orbit maintenance

    Science.gov (United States)

    Kaplan, D. I.; Jones, R. M.

    1983-01-01

    The orbit maintenance problem is examined for two low-earth-orbiting space station concepts - the large, manned Space Operations Center (SOC) and the smaller, unmanned Science and Applications Space Platform (SASP). Atmospheric drag forces are calculated, and circular orbit altitudes are selected to assure a 90 day decay period in the event of catastrophic propulsion system failure. Several thrusting strategies for orbit maintenance are discussed. Various chemical and electric propulsion systems for orbit maintenance are compared on the basis of propellant resupply requirements, power requirements, Shuttle launch costs, and technology readiness.

  16. Constrained Burn Optimization for the International Space Station

    Science.gov (United States)

    Brown, Aaron J.; Jones, Brandon A.

    2017-01-01

    In long-term trajectory planning for the International Space Station (ISS), translational burns are currently targeted sequentially to meet the immediate trajectory constraints, rather than simultaneously to meet all constraints, do not employ gradient-based search techniques, and are not optimized for a minimum total deltav (v) solution. An analytic formulation of the constraint gradients is developed and used in an optimization solver to overcome these obstacles. Two trajectory examples are explored, highlighting the advantage of the proposed method over the current approach, as well as the potential v and propellant savings in the event of propellant shortages.

  17. Process material management in the Space Station environment

    Science.gov (United States)

    Perry, J. L.; Humphries, W. R.

    1988-01-01

    The Space Station will provide a unique facility for conducting material-processing and life-science experiments under microgravity conditions. These conditions place special requirements on the U.S. Laboratory for storing and transporting chemicals and process fluids, reclaiming water from selected experiments, treating and storing experiment wastes, and providing vacuum utilities. To meet these needs and provide a safe laboratory environment, the Process Material Management System (PMMS) is being developed. Preliminary design requirements and concepts related to the PMMS are addressed, and the MSFC PMMS breadboard test facility and a preliminary plan for validating the overall system design are discussed.

  18. Data collecting and treatment control system in the «Alpha-Electron» space experiment on board the International Space Station

    International Nuclear Information System (INIS)

    Galper, A M; Batischev, A G; Naumov, P P; Naumov, P Yu

    2017-01-01

    The fast multilayer scintillation detector of the new telescope-spectrometer for the ALFA-ELECTRON space experiment is in ground testing mode now. Modules of data control system for spectrometer are discussed. The structure of the main data format and functional blocks for data treatment are presented. The device will planned to install on the outer surface of the Russian Segment (RS) of the International Space Station (ISS) in 2018. (paper)

  19. Space Station Freedom power - A reliability, availability, and maintainability assessment of the proposed Space Station Freedom electric power system

    Science.gov (United States)

    Turnquist, S. R.; Twombly, M.; Hoffman, D.

    1989-01-01

    A preliminary reliability, availability, and maintainability (RAM) analysis of the proposed Space Station Freedom electric power system (EPS) was performed using the unit reliability, availability, and maintainability (UNIRAM) analysis methodology. Orbital replacement units (ORUs) having the most significant impact on EPS availability measures were identified. Also, the sensitivity of the EPS to variations in ORU RAM data was evaluated for each ORU. Estimates were made of average EPS power output levels and availability of power to the core area of the space station. The results of assessments of the availability of EPS power and power to load distribution points in the space stations are given. Some highlights of continuing studies being performed to understand EPS availability considerations are presented.

  20. Using computer graphics to design Space Station Freedom viewing

    Science.gov (United States)

    Goldsberry, Betty S.; Lippert, Buddy O.; Mckee, Sandra D.; Lewis, James L., Jr.; Mount, Francis E.

    1993-01-01

    Viewing requirements were identified early in the Space Station Freedom program for both direct viewing via windows and indirect viewing via cameras and closed-circuit television (CCTV). These requirements reside in NASA Program Definition and Requirements Document (PDRD), Section 3: Space Station Systems Requirements. Currently, analyses are addressing the feasibility of direct and indirect viewing. The goal of these analyses is to determine the optimum locations for the windows, cameras, and CCTV's in order to meet established requirements, to adequately support space station assembly, and to operate on-board equipment. PLAID, a three-dimensional computer graphics program developed at NASA JSC, was selected for use as the major tool in these analyses. PLAID provides the capability to simulate the assembly of the station as well as to examine operations as the station evolves. This program has been used successfully as a tool to analyze general viewing conditions for many Space Shuttle elements and can be used for virtually all Space Station components. Additionally, PLAID provides the ability to integrate an anthropometric scale-modeled human (representing a crew member) with interior and exterior architecture.

  1. Propagation Characteristics of International Space Station Wireless Local Area Network

    Science.gov (United States)

    Sham, Catherine C.; Hwn, Shian U.; Loh, Yin-Chung

    2005-01-01

    This paper describes the application of the Uniform Geometrical Theory of Diffraction (UTD) for Space Station Wireless Local Area Networks (WLANs) indoor propagation characteristics analysis. The verification results indicate good correlation between UTD computed and measured signal strength. It is observed that the propagation characteristics are quite different in the Space Station modules as compared with those in the typical indoor WLANs environment, such as an office building. The existing indoor propagation models are not readily applicable to the Space Station module environment. The Space Station modules can be regarded as oversized imperfect waveguides. Two distinct propagation regions separated by a breakpoint exist. The propagation exhibits the guided wave characteristics. The propagation loss in the Space Station, thus, is much smaller than that in the typical office building. The path loss model developed in this paper is applicable for Space Station WLAN RF coverage and link performance analysis.

  2. Space Shuttle and Space Station Radio Frequency (RF) Exposure Analysis

    Science.gov (United States)

    Hwu, Shian U.; Loh, Yin-Chung; Sham, Catherine C.; Kroll, Quin D.

    2005-01-01

    This paper outlines the modeling techniques and important parameters to define a rigorous but practical procedure that can verify the compliance of RF exposure to the NASA standards for astronauts and electronic equipment. The electromagnetic modeling techniques are applied to analyze RF exposure in Space Shuttle and Space Station environments with reasonable computing time and resources. The modeling techniques are capable of taking into account the field interactions with Space Shuttle and Space Station structures. The obtained results illustrate the multipath effects due to the presence of the space vehicle structures. It's necessary to include the field interactions with the space vehicle in the analysis for an accurate assessment of the RF exposure. Based on the obtained results, the RF keep out zones are identified for appropriate operational scenarios, flight rules and necessary RF transmitter constraints to ensure a safe operating environment and mission success.

  3. Enhanced science capability on the International Space Station

    Science.gov (United States)

    Felice, Ronald R.; Kienlen, Mike

    2002-12-01

    It is inevitable that the International Space Station (ISS) will play a significant role in the conduct of science in space. However, in order to provide this service to a wide and broad community and to perform it cost effectively, alternative concepts must be considered to complement NASA"s Institutional capability. Currently science payload forward and return data services must compete for higher priority ISS infrastructure support requirements. Furthermore, initial astronaut crews will be limited to a single shift. Much of their time and activities will be required to meet their physical needs (exercise, recreation, etc.), station maintenance, and station operations, leaving precious little time to actively conduct science payload operations. ISS construction plans include the provisioning of several truss mounted, space-hardened pallets, both zenith and nadir facing. The ISS pallets will provide a platform to conduct both earth and space sciences. Additionally, the same pallets can be used for life and material sciences, as astronauts could place and retrieve sealed canisters for long-term micro-gravity exposure. Thus the pallets provide great potential for enhancing ISS science return. This significant addition to ISS payload capacity has the potential to exacerbate priorities and service contention factors within the exiting institution. In order to have it all, i.e., more science and less contention, the pallets must be data smart and operate autonomously so that NASA institutional services are not additionally taxed. Specifically, the "Enhanced Science Capability on the International Space Station" concept involves placing data handling and spread spectrum X-band communications capabilities directly on ISS pallets. Spread spectrum techniques are considered as a means of discriminating between different pallets as well as to eliminate RFI. The data and RF systems, similar to that of "free flyers", include a fully functional command and data handling system

  4. Space Station Engineering Design Issues

    Science.gov (United States)

    Mcruer, Duane T.; Boehm, Barry W.; Debra, Daniel B.; Green, C. Cordell; Henry, Richard C.; Maycock, Paul D.; Mcelroy, John H.; Pierce, Chester M.; Stafford, Thomas P.; Young, Laurence R.

    1989-01-01

    Space Station Freedom topics addressed include: general design issues; issues related to utilization and operations; issues related to systems requirements and design; and management issues relevant to design.

  5. International Space Station End-of-Life Probabilistic Risk Assessment

    Science.gov (United States)

    Duncan, Gary W.

    2014-01-01

    The International Space Station (ISS) end-of-life (EOL) cycle is currently scheduled for 2020, although there are ongoing efforts to extend ISS life cycle through 2028. The EOL for the ISS will require deorbiting the ISS. This will be the largest manmade object ever to be de-orbited therefore safely deorbiting the station will be a very complex problem. This process is being planned by NASA and its international partners. Numerous factors will need to be considered to accomplish this such as target corridors, orbits, altitude, drag, maneuvering capabilities etc. The ISS EOL Probabilistic Risk Assessment (PRA) will play a part in this process by estimating the reliability of the hardware supplying the maneuvering capabilities. The PRA will model the probability of failure of the systems supplying and controlling the thrust needed to aid in the de-orbit maneuvering.

  6. Definition of technology development missions for early space stations. Large space structures, phase 2, midterm review

    Science.gov (United States)

    1984-01-01

    The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.

  7. Space Station Environmental Health System water quality monitoring

    Science.gov (United States)

    Vincze, Johanna E.; Sauer, Richard L.

    1990-01-01

    One of the unique aspects of the Space Station is that it will be a totally encapsulated environment and the air and water supplies will be reclaimed for reuse. The Environmental Health System, a subsystem of CHeCS (Crew Health Care System), must monitor the air and water on board the Space Station Freedom to verify that the quality is adequate for crew safety. Specifically, the Water Quality Subsystem will analyze the potable and hygiene water supplies regularly for organic, inorganic, particulate, and microbial contamination. The equipment selected to perform these analyses will be commercially available instruments which will be converted for use on board the Space Station Freedom. Therefore, the commercial hardware will be analyzed to identify the gravity dependent functions and modified to eliminate them. The selection, analysis, and conversion of the off-the-shelf equipment for monitoring the Space Station reclaimed water creates a challenging project for the Water Quality engineers and scientists.

  8. Predictive Attitude Maintenance For A Space Station

    Science.gov (United States)

    Hattis, Philip D.

    1989-01-01

    Paper provides mathematical basis for predictive management of angular momenta of control-moment gyroscopes (CMG's) to control attitude of orbiting space station. Numerical results presented for pitch control of proposed power-tower space station. Based on prior orbit history and mathematical model of density of atmosphere, predictions made of requirements on dumping and storage of angular momentum in relation to current loading state of CMG's and to acceptable attitude tolerances.

  9. 47 CFR 25.137 - Application requirements for earth stations operating with non-U.S. licensed space stations.

    Science.gov (United States)

    2010-10-01

    ... space stations. (a) Earth station applicants or entities filing a “letter of intent” or “Petition for... Union. (d) Earth station applicants requesting authority to operate with a non-U.S.-licensed space... 47 Telecommunication 2 2010-10-01 2010-10-01 false Application requirements for earth stations...

  10. Approach to transaction management for Space Station Freedom

    Science.gov (United States)

    Easton, C. R.; Cressy, Phil; Ohnesorge, T. E.; Hector, Garland

    1990-01-01

    The Space Station Freedom Manned Base (SSFMB) will support the operation of the many payloads that may be located within the pressurized modules or on external attachment points. The transaction management (TM) approach presented provides a set of overlapping features that will assure the effective and safe operation of the SSFMB and provide a schedule that makes potentially hazardous operations safe, allocates resources within the capability of the resource providers, and maintains an environment conducive to the operations planned. This approach provides for targets of opportunity and schedule adjustments that give the operators the flexibility to conduct a vast majority of their operations with no conscious involvement with the TM function.

  11. Live from Space Station Learning Technologies Project

    Science.gov (United States)

    2001-01-01

    This is the Final Report for the Live From Space Station (LFSS) project under the Learning Technologies Project FY 2001 of the MSFC Education Programs Department. AZ Technology, Inc. (AZTek) has developed and implemented science education software tools to support tasks under the LTP program. Initial audience consisted of 26 TreK in the Classroom schools and thousands of museum visitors to the International Space Station: The Earth Tour exhibit sponsored by Discovery Place museum.

  12. Gaseous Non-Premixed Flame Research Planned for the International Space Station

    Science.gov (United States)

    Stocker, Dennis P.; Takahashi, Fumiaki; Hickman, J. Mark; Suttles, Andrew C.

    2014-01-01

    Thus far, studies of gaseous diffusion flames on the International Space Station (ISS) have been limited to research conducted in the Microgravity Science Glovebox (MSG) in mid-2009 and early 2012. The research was performed with limited instrumentation, but novel techniques allowed for the determination of the soot temperature and volume fraction. Development is now underway for the next experiments of this type. The Advanced Combustion via Microgravity Experiments (ACME) project consists of five independent experiments that will be conducted with expanded instrumentation within the stations Combustion Integrated Rack (CIR). ACMEs goals are to improve our understanding of flame stability and extinction limits, soot control and reduction, oxygen-enriched combustion which could enable practical carbon sequestration, combustion at fuel lean conditions where both optimum performance and low emissions can be achieved, the use of electric fields for combustion control, and materials flammability. The microgravity environment provides longer residence times and larger length scales, yielding a broad range of flame conditions which are beneficial for simplified analysis, e.g., of limit behaviour where chemical kinetics are important. The detailed design of the modular ACME hardware, e.g., with exchangeable burners, is nearing completion, and it is expected that on-orbit testing will begin in 2016.

  13. Amateur Radio on the International Space Station (ARISS) - the First Educational Outreach Program on ISS

    Science.gov (United States)

    Conley, C. L.; Bauer, F. H.; Brown, D.; White, R.

    2002-01-01

    More than 40 missions over five years will be required to assemble the International Space Station in orbit. The astronauts and cosmonauts will work hard on these missions, but they plan to take some time off for educational activities with schools. Amateur Radio on the International Space Station represents the first Educational Outreach program that is flying on ISS. NASA's Division of Education is a major supporter and sponsor of this student outreach activity on the International Space Station. This meets NASA's educational mission objective: "To inspire the next generation of explorers...as only NASA can." As the International Space Station takes its place in the heavens, the amateur radio community is doing its part by helping to enrich the experience of those visiting and living on the station as well as the students on Earth. Through ARISS (Amateur Radio on the International Space Station), students on Earth have a once in a lifetime opportunity--to talk to the crew on-board ISS. Using amateur radio equipment set up in their classroom, students get a first-hand feel of what it is like to live and work in space. Each school gets a 10 minute question and answer interview with the on-orbit crew using a ground station located in their classroom or through a remote ground station. The ARISS opportunity has proven itself as a tremendous educational boon to teachers and students. Through ARISS, students learn about orbit dynamics, Doppler shift, radio communications, and working with the press. Since its first flight in 1983, amateur radio has flown on more than two-dozen space shuttle missions. Dozens of astronauts have used the predecessor program called SAREX (The Space Shuttle Amateur Radio Experiment) to talk to thousands of kids in school and to their families on Earth while they were in orbit. The primary goals of the ARISS program are fourfold: 1) educational outreach through crew contacts with schools, 2) random contacts with the amateur radio public, 3

  14. The US space station: Potential base for a spaceborne microwave facility

    Science.gov (United States)

    Mcconnell, D.

    1983-01-01

    Concepts for a U.S. space station were studied to achieve the full potential of the Space Shuttle and to provide a more permanent presence in space. The space station study is summarized in the following questions: Given a space station in orbit in the 1990's, how should it best be used to achieve science and applications objectives important at that time? To achieve those objectives, of what elements should the station be comprised and how should the elements be configured and equipped. These questions are addressed.

  15. Space Station solar water heater

    Science.gov (United States)

    Horan, D. C.; Somers, Richard E.; Haynes, R. D.

    1990-01-01

    The feasibility of directly converting solar energy for crew water heating on the Space Station Freedom (SSF) and other human-tended missions such as a geosynchronous space station, lunar base, or Mars spacecraft was investigated. Computer codes were developed to model the systems, and a proof-of-concept thermal vacuum test was conducted to evaluate system performance in an environment simulating the SSF. The results indicate that a solar water heater is feasible. It could provide up to 100 percent of the design heating load without a significant configuration change to the SSF or other missions. The solar heater system requires only 15 percent of the electricity that an all-electric system on the SSF would require. This allows a reduction in the solar array or a surplus of electricity for onboard experiments.

  16. Space Station tethered elevator system

    Science.gov (United States)

    Haddock, Michael H.; Anderson, Loren A.; Hosterman, K.; Decresie, E.; Miranda, P.; Hamilton, R.

    1989-01-01

    The optimized conceptual engineering design of a space station tethered elevator is presented. The tethered elevator is an unmanned, mobile structure which operates on a ten-kilometer tether spanning the distance between Space Station Freedom and a platform. Its capabilities include providing access to residual gravity levels, remote servicing, and transportation to any point along a tether. The report discusses the potential uses, parameters, and evolution of the spacecraft design. Emphasis is placed on the elevator's structural configuration and three major subsystem designs. First, the design of elevator robotics used to aid in elevator operations and tethered experimentation is presented. Second, the design of drive mechanisms used to propel the vehicle is discussed. Third, the design of an onboard self-sufficient power generation and transmission system is addressed.

  17. An Operations Management System for the Space Station

    Science.gov (United States)

    Rosenthal, H. G.

    1986-09-01

    This paper presents an overview of the conceptual design of an integrated onboard Operations Management System (OMS). Both hardware and software concepts are presented and the integrated space station network is discussed. It is shown that using currently available software technology, an integrated software solution for Space Station management and control, implemented with OMS software, is feasible.

  18. The Office of Space Science and Applications strategic plan, 1990: A strategy for leadership in space through excellence in space science and applications

    Science.gov (United States)

    1990-01-01

    A strategic plan for the U.S. space science and applications program during the next 5 to 10 years was developed and published in 1988. Based on the strategies developed by the advisory committees of both the National Academy of Science and NASA, the plan balances major, moderate, and small mission initiatives, the utilization of the Space Station Freedom, and the requirements for a vital research base. The Office of Space Science and Applications (OSSA) strategic plan is constructed around five actions: establish a set of programmatic themes; establish a set of decision rules; establish a set of priorities for missions and programs within each theme; demonstrate that the strategy will yield a viable program; and check the strategy for consistency within resource constraints. The OSSA plan is revised annually. This OSSA 1990 Strategic Plan refines the 1989 Plan and represents OSSA's initial plan for fulfilling its responsibilities in two major national initiatives. The Plan is now built on interrelated, complementary strategies for the core space science and applications program, for the U.S. Global Change Research Program, and for the Space Exploration Initiative. The challenge is to make sure that the current level of activity is sustained through the end of this century and into the next. The 1990 Plan presents OSSA's strategy to do this.

  19. Space information systems in the Space Station era; Proceedings of the AIAA/NASA International Symposium on Space Information Systems, Washington, DC and Greenbelt, MD, June 22, 23, 1987

    Science.gov (United States)

    Gerard, Mireille (Editor); Edwards, Pamela W. (Editor)

    1988-01-01

    Technological and planning issues for data management, processing, and communication on Space Station Freedom are discussed in reviews and reports by U.S., European, and Japanese experts. The space-information-system strategies of NASA, ESA, and NASDA are discussed; customer needs are analyzed; and particular attention is given to communication and data systems, standards and protocols, integrated system architectures, software and automation, and plans and approaches being developed on the basis of experience from past programs. Also included are the reports from workshop sessions on design to meet customer needs, the accommodation of growth and new technologies, and system interoperability.

  20. [STEM on Station Education

    Science.gov (United States)

    Lundebjerg, Kristen

    2016-01-01

    The STEM on Station team is part of Education which is part of the External Relations organization (ERO). ERO has traditional goals based around BHAG (Big Hairy Audacious Goal). The BHAG model is simplified to a saying: Everything we do stimulates actions by others to advance human space exploration. The STEM on Station education initiate is a project focused on bringing off the earth research and learning into classrooms. Educational resources such as lesson plans, activities to connect with the space station and STEM related contests are available and hosted by the STEM on Station team along with their partners such as Texas Instruments. These educational activities engage teachers and students in the current happenings aboard the international space station, inspiring the next generation of space explorers.

  1. Large Deployable Reflector (LDR) Requirements for Space Station Accommodations

    Science.gov (United States)

    Crowe, D. A.; Clayton, M. J.; Runge, F. C.

    1985-01-01

    Top level requirements for assembly and integration of the Large Deployable Reflector (LDR) Observatory at the Space Station are examined. Concepts are currently under study for LDR which will provide a sequel to the Infrared Astronomy Satellite and the Space Infrared Telescope Facility. LDR will provide a spectacular capability over a very broad spectral range. The Space Station will provide an essential facility for the initial assembly and check out of LDR, as well as a necessary base for refurbishment, repair and modification. By providing a manned platform, the Space Station will remove the time constraint on assembly associated with use of the Shuttle alone. Personnel safety during necessary EVA is enhanced by the presence of the manned facility.

  2. Large Deployable Reflector (LDR) requirements for space station accommodations

    Science.gov (United States)

    Crowe, D. A.; Clayton, M. J.; Runge, F. C.

    1985-04-01

    Top level requirements for assembly and integration of the Large Deployable Reflector (LDR) Observatory at the Space Station are examined. Concepts are currently under study for LDR which will provide a sequel to the Infrared Astronomy Satellite and the Space Infrared Telescope Facility. LDR will provide a spectacular capability over a very broad spectral range. The Space Station will provide an essential facility for the initial assembly and check out of LDR, as well as a necessary base for refurbishment, repair and modification. By providing a manned platform, the Space Station will remove the time constraint on assembly associated with use of the Shuttle alone. Personnel safety during necessary EVA is enhanced by the presence of the manned facility.

  3. Food Service and Nutrition for the Space Station

    Science.gov (United States)

    Sauer, R. L. (Editor)

    1985-01-01

    The proceedings of the Workshop on Food Service and Nutrition for the Space Station, held in Houston, Texas, on April 10 and 11, 1984 was given. The workshop was attended by experts in food technology from industry, government, and academia. Following a general definition of unique space flight requirements, oral presentations were made on state of the art food technology with the objective of using this technology to support the space flight requirements. Numerous areas are identified which in the opinion of the conferees, would have space flight application. But additional effort, evaluation, or testing to include Shuttle inflight testing will be required for the technology to be applied to the Space Station.

  4. Use of automation and robotics for the Space Station

    Science.gov (United States)

    Cohen, Aaron

    1987-01-01

    An overview is presented of the various possible applications of automation and robotics technology to the Space Station system. The benefits of such technology to the private sector and the national economy are addressed. NASA's overall approach to incorporating advanced technology into the Space Station is examined.

  5. Component Data Base for Space Station Resistojet Auxiliary Propulsion

    Science.gov (United States)

    Bader, Clayton H.

    1988-01-01

    The resistojet was baselined for Space Station auxiliary propulsion because of its operational versatility, efficiency, and durability. This report was conceived as a guide to designers and planners of the Space Station auxiliary propulsion system. It is directed to the low thrust resistojet concept, though it should have application to other station concepts or systems such as the Environmental Control and Life Support System (ECLSS), Manufacturing and Technology Laboratory (MTL), and the Waste Fluid Management System (WFMS). The information will likely be quite useful in the same capacity for other non-Space Station systems including satellite, freeflyers, explorers, and maneuvering vehicles. The report is a catalog of the most useful information for the most significant feed system components and is organized for the greatest convenience of the user.

  6. Work/control stations in Space Station weightlessness

    Science.gov (United States)

    Willits, Charles

    1990-01-01

    An ergonomic integration of controls, displays, and associated interfaces with an operator, whose body geometry and dynamics may be altered by the state of weightlessness, is noted to rank in importance with the optimal positioning of controls relative to the layout and architecture of 'body-ported' work/control stations applicable to the NASA Space Station Freedom. A long-term solution to this complex design problem is envisioned to encompass the following features: multiple imaging, virtual optics, screen displays controlled by a keyboard ergonomically designed for weightlessness, cursor control, a CCTV camera, and a hand-controller featuring 'no-grip' vernier/tactile positioning. This controller frees all fingers for multiple-switch actuations, while retaining index/register determination with the hand controller. A single architectural point attachment/restraint may be used which requires no residual muscle tension in either brief or prolonged operation.

  7. Definition of technology development missions for early space stations: Large space structures

    Science.gov (United States)

    Gates, R. M.; Reid, G.

    1984-01-01

    The objectives studied are the definition of the tested role of an early Space Station for the construction of large space structures. This is accomplished by defining the LSS technology development missions (TDMs) identified in phase 1. Design and operations trade studies are used to identify the best structural concepts and procedures for each TDMs. Details of the TDM designs are then developed along with their operational requirements. Space Station resources required for each mission, both human and physical, are identified. The costs and development schedules for the TDMs provide an indication of the programs needed to develop these missions.

  8. Space station operations task force. Panel 3 report: User development and integration

    Science.gov (United States)

    1987-01-01

    The User Development and Integration Panel of the Space Station Operations Task Force was chartered to develop concepts relating to the operations of the Space Station manned base and the platforms, user accommodation and integration activities. The needs of the user community are addressed in the context with the mature operations phase of the Space Station. Issues addressed include space station pricing options, marketing strategies, payload selection and resource allocation options, and manifesting techniques.

  9. Space station accommodations for lunar base elements: A study

    Science.gov (United States)

    Weidman, Deene J.; Cirillo, William; Llewellyn, Charles; Kaszubowski, Martin; Kienlen, E. Michael, Jr.

    1987-01-01

    The results of a study conducted at NASA-LaRC to assess the impact on the space station of accommodating a Manned Lunar Base are documented. Included in the study are assembly activities for all infrastructure components, resupply and operations support for lunar base elements, crew activity requirements, the effect of lunar activities on Cape Kennedy operations, and the effect on space station science missions. Technology needs to prepare for such missions are also defined. Results of the study indicate that the space station can support the manned lunar base missions with the addition of a Fuel Depot Facility and a heavy lift launch vehicle to support the large launch requirements.

  10. Station planning and design incorporating modern power system practice

    CERN Document Server

    Martin, PC

    1991-01-01

    The planning and design of new power stations can involve complex interaction between the many engineering disciplines involved as well as environmental, planning, economical, political and social pressures. This volume aims to provide a logical review of the procedures involved in power station development. The engineering aspects are outlined in detail, with examples, showing the basis of the relationships involved together with ""non-engineering"" factors so that the engineer can draw on the information provided for specific projects. The civil engineering and building of power stations are

  11. Dual keel Space Station payload pointing system design and analysis feasibility study

    Science.gov (United States)

    Smagala, Tom; Class, Brian F.; Bauer, Frank H.; Lebair, Deborah A.

    1988-01-01

    A Space Station attached Payload Pointing System (PPS) has been designed and analyzed. The PPS is responsible for maintaining fixed payload pointing in the presence of disturbance applied to the Space Station. The payload considered in this analysis is the Solar Optical Telescope. System performance is evaluated via digital time simulations by applying various disturbance forces to the Space Station. The PPS meets the Space Station articulated pointing requirement for all disturbances except Shuttle docking and some centrifuge cases.

  12. The +vbar breakout during approach to Space Station Freedom

    Science.gov (United States)

    Dunham, Scott D.

    1993-01-01

    A set of burn profiles was developed to provide bounding jet firing histories for a +vbar breakout during approaches to Space Station Freedom. The delta-v sequences were designed to place the Orbiter on a safe trajectory under worst case conditions and to try to minimize plume impingement on Space Station Freedom structure.

  13. Life Science on the International Space Station Using the Next Generation of Cargo Vehicles

    Science.gov (United States)

    Robinson, J. A.; Phillion, J. P.; Hart, A. T.; Comella, J.; Edeen, M.; Ruttley, T. M.

    2011-01-01

    With the retirement of the Space Shuttle and the transition of the International Space Station (ISS) from assembly to full laboratory capabilities, the opportunity to perform life science research in space has increased dramatically, while the operational considerations associated with transportation of the experiments has changed dramatically. US researchers have allocations on the European Automated Transfer Vehicle (ATV) and Japanese H-II Transfer Vehicle (HTV). In addition, the International Space Station (ISS) Cargo Resupply Services (CRS) contract will provide consumables and payloads to and from the ISS via the unmanned SpaceX (offers launch and return capabilities) and Orbital (offers only launch capabilities) resupply vehicles. Early requirements drove the capabilities of the vehicle providers; however, many other engineering considerations affect the actual design and operations plans. To better enable the use of the International Space Station as a National Laboratory, ground and on-orbit facility development can augment the vehicle capabilities to better support needs for cell biology, animal research, and conditioned sample return. NASA Life scientists with experience launching research on the space shuttle can find the trades between the capabilities of the many different vehicles to be confusing. In this presentation we will summarize vehicle and associated ground processing capabilities as well as key concepts of operations for different types of life sciences research being launched in the cargo vehicles. We will provide the latest status of vehicle capabilities and support hardware and facilities development being made to enable the broadest implementation of life sciences research on the ISS.

  14. Space Station view of the Pyramids at Giza

    Science.gov (United States)

    2002-01-01

    One of the world's most famous archaeological sites has been photographed in amazing detail by the astronauts onboard Space Station Alpha. This image, taken 15 August, 2001, represents the greatest detail of the Giza plateau captured from a human-occupied spacecraft (approximate 7 m resolution). Afternoon sun casts shadows that help the eye make out the large pyramids of Khufu, Khafre and Menkaure. Sets of three smaller queens' pyramids can be seen to the east of the Pyramid of Khufu and south of the Pyramid of Menkaure. The light-colored causeway stretching from the Mortuary Temple at the Pyramid of Khafre to the Valley Temple near the Sphinx (arrow) can also be seen. Because it is not tall enough to cast a deep shadow, the Sphinx itself cannot readily be distinguished. Although some commercial satellites, such as IKONOS, have imaged the Pyramids at Giza in greater detail (1 m resolution), this image highlights the potential of the International Space Station as a remote sensing platform. A commercial digital camera without space modifications was used to obtain this picture. Similarly, a variety of remote sensing instruments developed for use on aircraft can potentially be used from the Space Station. Currently, all photographs of Earth taken by astronauts from the Space Shuttle and Space Station are released to the public for scientific and educational benefit and can be accessed on the World Wide Web through the NASA-JSC Gateway to Astronaut Photography of Earth (http://eol/jsc.nasa.gov/sseop). Image ISS003-ESC-5120 was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center (http://eol.jsc.nasa.gov).

  15. Light Microscopy Module: International Space Station Premier Automated Microscope

    Science.gov (United States)

    Sicker, Ronald J.; Foster, William M.; Motil, Brian J.; Meyer, William V.; Chiaramonte, Francis P.; Abbott-Hearn, Amber; Atherton, Arthur; Beltram, Alexander; Bodzioney, Christopher; Brinkman, John; hide

    2016-01-01

    The Light Microscopy Module (LMM) was launched to the International Space Station (ISS) in 2009 and began hardware operations in 2010. It continues to support Physical and Biological scientific research on ISS. During 2016, if all goes as planned, three experiments will be completed: [1] Advanced Colloids Experiments with Heated base-2 (ACE-H2) and [2] Advanced Colloids Experiments with Temperature control (ACE-T1). Preliminary results, along with an overview of present and future LMM capabilities will be presented; this includes details on the planned data imaging processing and storage system, along with the confocal upgrade to the core microscope. [1] a consortium of universities from the State of Kentucky working through the Experimental Program to Stimulate Competitive Research (EPSCoR): Stuart Williams, Gerold Willing, Hemali Rathnayake, et al. and [2] from Chungnam National University, Daejeon, S. Korea: Chang-Soo Lee, et al.

  16. Space-Hotel EARLY BIRD - A Visionary Prospect of a Space Station

    Science.gov (United States)

    Amekrane, R.; Holze, C.

    2002-01-01

    rachid.amekrane@astrium-space.com/Fax: +49 421 539-24801, cholze@zarm.uni-bremen.de/Fax: The International Space Station was planed for research purposes. In 2001 the first private man, Denis Tito,visited the ISS and the second private man, Mark Shuttleworth is following him. Space pioneers as Wernher von Braun, Sir Arthur C. Clarke had the dream that one day a space station in earth orbit will host tourists. It is evident that the ISS is not designed to host tourists. Therefore this dream is still open. Asking the question "how should a space station should look like to host tourists?" the German Aerospace Society DGLR e.V. initiated in April 2001 a contest under the patronage of Mr. Joerg Feustel-Buechl, the Director of Manned Spaceflight and Microgravity, European Space Agency (ESA). Because the definition and design of living space is the content of architecture the approach was to gather new ideas from young architects in cooperation with space experts. This contest was directed at students of architecture and the task set was to design a hotel for the earth orbit and to accommodate 220 guests. The contest got the name "Early Bird - Visions of a Space Hotel". The results and models of the student's work were shown in an exhibition in Hamburg/Germany, which was open to the public from September 19th till October 20th 2001. During the summer term of 2001 seventeen designs were completed. Having specialists, as volunteers, in the field of space in charge meant that it could be ensured that the designs reflected a certain possibility of being able to be realized. Within this interdisciplinary project both parties learned from each other. The 17 different designs were focused on the expectations and needs of a future space tourist. The design are for sure not feasible today, but the designs are in that sense realistic that they could be built in future. This paper will present the overview of the 17 designs as visions of a future space hotel. The designs used

  17. Atmosphere composition monitor for space station and advanced missions application

    International Nuclear Information System (INIS)

    Wynveen, R.A.; Powell, F.T.

    1987-01-01

    Long-term human occupation of extraterrestrial locations may soon become a reality. The National Aeronautics and Space Administration (NASA) has recently completed the definition and preliminary design of the low earth orbit (LEO) space station. They are now currently moving into the detailed design and fabrication phase of this space station and are also beginning to analyze the requirements of several future missions that have been identified. These missions include, for example, Lunar and Mars sorties, outposts, bases, and settlements. A requirement of both the LEO space station and future missions are environmental control and life support systems (ECLSS), which provide a comfortable environment for humans to live and work. The ECLSS consists of several major systems, including atmosphere revitalization system (ARS), atmosphere pressure and composition control system, temperature and humidity control system, water reclamation system, and waste management system. Each of these major systems is broken down into subsystems, assemblies, units, and instruments. Many requirements and design drivers are different for the ECLSS of the LEO space station and the identified advanced missions (e.g., longer mission duration). This paper discusses one of the ARS assemblies, the atmosphere composition monitor assembly (ACMA), being developed for the LEO space station and addresses differences that will exist for the ACMA of future missions

  18. Cooperating expert systems for space station power distribution management

    International Nuclear Information System (INIS)

    Nguyen, T.A.; Chiou, W.C.

    1986-01-01

    In a complex system such as the manned Space Station, it is deemed necessary that many expert systems must perform tasks in a concurrent and cooperative manner. An important question to arise is: what cooperative-task-performing models are appropriate for multiple expert systems to jointly perform tasks. The solution to this question will provide a crucial automation design criteria for the Space Station complex systems architecture. Based on a client/server model for performing tasks, the authors have developed a system that acts as a front-end to support loosely-coupled communications between expert systems running on multiple Symbolics machines. As an example, they use the two ART*-based expert systems to demonstrate the concept of parallel symbolic manipulation for power distribution management and dynamic load planner/scheduler in the simulated Space Station environment. This on-going work will also explore other cooperative-task-performing models as alternatives which can evaluate inter and intra expert system communication mechanisms. It will serve as a testbed and a bench-marking tool for other Space Station expert subsystem communication and information exchange

  19. Cooperating Expert Systems For Space Station Power Distribution Management

    Science.gov (United States)

    Nguyen, T. A.; Chiou, W. C.

    1987-02-01

    In a complex system such as the manned Space Station, it is deem necessary that many expert systems must perform tasks in a concurrent and cooperative manner. An important question arise is: what cooperative-task-performing models are appropriate for multiple expert systems to jointly perform tasks. The solution to this question will provide a crucial automation design criteria for the Space Station complex systems architecture. Based on a client/server model for performing tasks, we have developed a system that acts as a front-end to support loosely-coupled communications between expert systems running on multiple Symbolics machines. As an example, we use two ART*-based expert systems to demonstrate the concept of parallel symbolic manipulation for power distribution management and dynamic load planner/scheduler in the simulated Space Station environment. This on-going work will also explore other cooperative-task-performing models as alternatives which can evaluate inter and intra expert system communication mechanisms. It will be served as a testbed and a bench-marking tool for other Space Station expert subsystem communication and information exchange.

  20. Live From Space Station Outreach Payload, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Live from Space Station? Outreach Payload (LFSSOP) is a technologically challenging, exciting opportunity for university students to conduct significant research...

  1. Space station operating system study

    Science.gov (United States)

    Horn, Albert E.; Harwell, Morris C.

    1988-01-01

    The current phase of the Space Station Operating System study is based on the analysis, evaluation, and comparison of the operating systems implemented on the computer systems and workstations in the software development laboratory. Primary emphasis has been placed on the DEC MicroVMS operating system as implemented on the MicroVax II computer, with comparative analysis of the SUN UNIX system on the SUN 3/260 workstation computer, and to a limited extent, the IBM PC/AT microcomputer running PC-DOS. Some benchmark development and testing was also done for the Motorola MC68010 (VM03 system) before the system was taken from the laboratory. These systems were studied with the objective of determining their capability to support Space Station software development requirements, specifically for multi-tasking and real-time applications. The methodology utilized consisted of development, execution, and analysis of benchmark programs and test software, and the experimentation and analysis of specific features of the system or compilers in the study.

  2. Toluene stability Space Station Rankine power system

    Science.gov (United States)

    Havens, V. N.; Ragaller, D. R.; Sibert, L.; Miller, D.

    1987-01-01

    A dynamic test loop is designed to evaluate the thermal stability of an organic Rankine cycle working fluid, toluene, for potential application to the Space Station power conversion unit. Samples of the noncondensible gases and the liquid toluene were taken periodically during the 3410 hour test at 750 F peak temperature. The results obtained from the toluene stability loop verify that toluene degradation will not lead to a loss of performance over the 30-year Space Station mission life requirement. The identity of the degradation products and the low rates of formation were as expected from toluene capsule test data.

  3. Implementation of Intellectual Property Law on the International Space Station

    Science.gov (United States)

    Mannix, John G.

    2002-01-01

    Because of the importance of intellectual property rights to the private sector, NASA has developed a reference guide to assist business leaders in understanding how the Intellectual Property Articles of the 1998 Intergovernmental Agreement on the International Space Station will be implemented. This reference guide discusses the statutory, regulatory and programmatic strictures on the deployment, utilization and ownership of intellectual property within the Space Station program. This guide presents an analysis of the intellectual property law aspects of the international agreements and documents pertaining to the International Space Station, and then relates them to NASA's authorities for entering into research and development agreements with private entities. This paper will discuss the reference guide and should aid potential agreement participants in understanding the legal environment for entering into agreements with NASA to fly research and development payloads on the International Space Station.

  4. Commercial opportunities utilizing the International Space Station

    Science.gov (United States)

    Kearney, Michael E.; Mongan, Phil; Overmyer, Carolyn M.; Jackson, Kenneth

    1998-01-01

    The International Space Station (ISS) has the unique capability of providing a low-g environment for both short- and long-duration experimentation. This environment can provide a unique and competitive research capability to industry; but until recently, utilization of this environment by the private sector has been limited if not totally unavailable. NASA has recently expressed an interest in the commercial development of space and this is now an integral part of the Agency's enabling legislation through the Space Act. NASA's objective is to foster the use of the space environment for the development of commercial products and processes. Through alliances and agreements with several commercial companies and universities, SPACEHAB, Inc., has built a comprehensive package of services designed to provide low-cost reliable access to space for experimenters. These services provide opportunities to support engineering test beds for materials exposure analysis, to mitigate structural failures as observed on the Hubble Space Telescope; materials processing, remote sensing; space environment definition; and electronic experiments. The intent of this paper is to identify commercial opportunities for utilizing the International Space Station and provide examples of several facilities currently being designed and manufactured by commercial companies with the purpose of providing access to the space environment for commercial users.

  5. An environmental testing facility for Space Station Freedom power management and distribution hardware

    Science.gov (United States)

    Jackola, Arthur S.; Hartjen, Gary L.

    1992-01-01

    The plans for a new test facility, including new environmental test systems, which are presently under construction, and the major environmental Test Support Equipment (TSE) used therein are addressed. This all-new Rocketdyne facility will perform space simulation environmental tests on Power Management and Distribution (PMAD) hardware to Space Station Freedom (SSF) at the Engineering Model, Qualification Model, and Flight Model levels of fidelity. Testing will include Random Vibration in three axes - Thermal Vacuum, Thermal Cycling and Thermal Burn-in - as well as numerous electrical functional tests. The facility is designed to support a relatively high throughput of hardware under test, while maintaining the high standards required for a man-rated space program.

  6. Planning of cascade stations on the Maotiao He detailed

    Energy Technology Data Exchange (ETDEWEB)

    Guan, W

    1984-09-20

    Details of the hydroelectric power stations on the Maotiao He cascades and examples of how some problems were resolved begin with a description of the river basin survey for topographical features, hydrometeorological conditions, and geological conditions. The river characteristics survey was the basis for planning the cascade power stations and the selection of installed capacity at each station. The review also covers discharge and flood control planning based on rainfall data and the composition of flood areas. The overall development program emphasizes power generation, but also includes irrigation, industrial water supply, and tourism. 2 figures, 1 table.

  7. The Austrian Space Plan

    Science.gov (United States)

    Pseiner, K.; Balogh, W.

    2002-01-01

    After several years of preparation and discussion among the involved players, the Austrian Space Plan was approved for implementation in November 2001. Based on careful benchmarking and analysis of the capabilities of the Austrian space sector it aims to create excellent conditions for the sector's further development. The new space strategy embraces Austria's participation in the mandatory and optional programmes of the European Space Agency and establishes a National Space Programme supported by separate funding opportunities. A set of clearly-defined indicators ensures that the progress in implementing the Space Plan can be objectively judged through independent, annual reviews. The National Space Programme promotes international cooperation in space research and space activities with the aim to strengthen the role of space science and to better prepare Austrian space industry for the commercial space market. In the framework of the Space Plan the Austrian Space Agency has been tasked with integrating the industry's growing involvement in aeronautics activities to better utilize synergies with the space sector. This paper reviews the various steps leading to the approval of the new space strategy and discusses the hurdles mastered in this process. It reports on the Space Plan's first results, specifically taking into account projects involving international cooperation. For the first the Austria aerospace-sector can rely on an integrated strategy for aeronautics- and space activities which is firmly rooted in the efforts to enhance the country's R&D activities. It may also act as a useful example for other small space- using countries planning to enhance their involvement in space activities.

  8. Medical impact analysis for the space station.

    Science.gov (United States)

    Nelson, B D; Gardner, R M; Ostler, D V; Schulz, J M; Logan, J S

    1990-02-01

    Since the Space Station Health Maintenance Facility can house only a relatively limited quantity of supplies and equipment, the decisions about what should be included must be based on documented research. In this study, Space Station medical care priorities were determined by a medical impact analysis of two analog populations, U.S. Army and U.S. Navy personnel. Diseases and injuries in the International Classification of Disease, 9th Revision, Clinical Modification (ICD-9-CM) were ranked, using a Medical Impact Score (MIS) combining modified incidence rate and a function of disease outcome. The validity of the analysis method was tested by measuring rank order correlation between the two analog populations. Despite virtually identical age and sex distributions, Army and Navy incidence rates differed significantly for half of the ICD-9-CM categories, p less than 0.05. Disability rates differed for 76%, p less than 0.05. Nevertheless, Army and Navy MIS rank orders for categories and sections were not significantly different, p less than 0.001. In critical ways, the Space Station will be a safer environment than Earth. Cardiac events, musculoskeletal injuries, affective psychoses, and renal calculi were among the highest scoring categories.

  9. The international space station: An opportunity for industry-sponsored global education

    Science.gov (United States)

    Shields, Cathleen E.

    1999-01-01

    The International Space Station provides an excellent opportunity for industry sponsorship of international space education. As a highly visible worldwide asset, the space station already commands our interest. It has captured the imagination of the world's researchers and connected the world's governments. Once operational, it can also be used to capture the dreams of the world's children and connect the world's industry through education. The space station's global heritage and ownership; its complex engineering, construction, and operation; its flexible research and technology demonstration capability; and its long duration make it the perfect educational platform. These things also make a space station education program attractive to industry. Such a program will give private industry the opportunity to sponsor space-related activities even though a particular industry may not have a research or technology-driven need for space utilization. Sponsors will benefit through public relations and goodwill, educational promotions and advertising, and the sale and marketing of related products. There is money to be made by supporting, fostering, and enabling education in space through the International Space Station. This paper will explore various ISS education program and sponsorship options and benefits, will examine early industry response to such an opportunity, and will make the case for moving forward with an ISS education program as a private sector initiative.

  10. Cultural factors and the international space station

    OpenAIRE

    Ritsher, Jennifer Boyd

    2005-01-01

    The American and Russian/Soviet space programs independently uncovered psychosocial risks inherent in long-duration space missions. Now that these two countries are working together on the International Space Station (ISS), American-Russian cultural differences pose an additional set of risk factors. These may echo cultural differences that have been observed in the general population of the two countries and in space analogue settings, but little is known about how relevant these are to the ...

  11. TEPCO plans to construct Higashidori Nuclear Power Station

    International Nuclear Information System (INIS)

    Tsuruta, Atsushi

    2008-01-01

    In 2006, TEPCO submitted to the government plans for the construction of Higashidori Nuclear Power Station. The application was filed 41 years after the project approved by the Higashidori Village Assembly. This nuclear power station will be the first new nuclear power plant constructed by TEPCO since the construction of Units No.6 and 7 at the Kashiwazaki Kariwa Nuclear Power Station 18 years ago. Higashidori Nuclear Power Station is to be constructed at a completely new site, which will become the fourth TEPCO nuclear power station. Higashidori Nuclear Power Station Unit No.1 will be TEPCO's 18th nuclear reactor. Unit No.1 will be an advanced boiling water reactor (ABWR), a reactor-type with a proven track record. It will be TEPCO's third ABWR. Alongside incorporating the latest technology, in Higashidori Nuclear Power Station Unit No.1, the most important requirement is for TEPCO to reflect in the new unit information and experience acquired from the operation of other reactors (information and experience acquired through the experience of operating TEPCO's 17 units at Fukushima Daiichi Nuclear Power Station, Fukushima Daini Nuclear Power Station and Kashiwazaki Kashiwa Nuclear Power Station in addition to information on non-conformities at nuclear power stations in Japan and around the world). Higashidori Nuclear Power Station is located in Higashidori-Village (Aomori Prefecture) and the selected site includes a rich natural environment. From an environmental perspective, we will implement the construction with due consideration for the land and sea environment, aiming to ensure that the plant can co-exist with its natural surroundings. The construction plans are currently being reviewed by the Nuclear and Industrial Safety Agency. We are committed to making progress in the project for the start of construction and subsequent commercial operation. (author)

  12. International Cooperation of Payload Operations on the International Space Station

    Science.gov (United States)

    Melton, Tina; Onken, Jay

    2003-01-01

    One of the primary goals of the International Space Station (ISS) is to provide an orbiting laboratory to be used to conduct scientific research and commercial products utilizing the unique environment of space. The ISS Program has united multiple nations into a coalition with the objective of developing and outfitting this orbiting laboratory and sharing in the utilization of the resources available. The primary objectives of the real- time integration of ISS payload operations are to ensure safe operations of payloads, to avoid mutual interference between payloads and onboard systems, to monitor the use of integrated station resources and to increase the total effectiveness of ISS. The ISS organizational architecture has provided for the distribution of operations planning and execution functions to the organizations with expertise to perform each function. Each IPP is responsible for the integration and operations of their payloads within their resource allocations and the safety requirements defined by the joint program. Another area of international cooperation is the sharing in the development and on- orbit utilization of unique payload facilities. An example of this cooperation is the Microgravity Science Glovebox. The hardware was developed by ESA and provided to NASA as part of a barter arrangement.

  13. Space station needs, attributes and architectural options study. Volume 3: Mission requirements

    Science.gov (United States)

    1983-04-01

    User missions that are enabled or enhanced by a manned space station are identified. The mission capability requirements imposed on the space station by these users are delineated. The accommodation facilities, equipment, and functional requirements necessary to achieve these capabilities are identified, and the economic, performance, and social benefits which accrue from the space station are defined.

  14. Automation and robotics for the Space Station - An ATAC perspective

    Science.gov (United States)

    Nunamaker, Robert R.

    1989-01-01

    The study of automation and robotics for the Space Station by the Advanced Technology Advisory Committee is surveyed. The formation of the committee and the methodology for the Space Station automation study are discussed. The committee's recommendations for automation and robotics research and development are listed.

  15. Space station electrical power distribution analysis using a load flow approach

    Science.gov (United States)

    Emanuel, Ervin M.

    1987-01-01

    The space station's electrical power system will evolve and grow in a manner much similar to the present terrestrial electrical power system utilities. The initial baseline reference configuration will contain more than 50 nodes or busses, inverters, transformers, overcurrent protection devices, distribution lines, solar arrays, and/or solar dynamic power generating sources. The system is designed to manage and distribute 75 KW of power single phase or three phase at 20 KHz, and grow to a level of 300 KW steady state, and must be capable of operating at a peak of 450 KW for 5 to 10 min. In order to plan far into the future and keep pace with load growth, a load flow power system analysis approach must be developed and utilized. This method is a well known energy assessment and management tool that is widely used throughout the Electrical Power Utility Industry. The results of a comprehensive evaluation and assessment of an Electrical Distribution System Analysis Program (EDSA) is discussed. Its potential use as an analysis and design tool for the 20 KHz space station electrical power system is addressed.

  16. STS-102 Astronaut Thomas Views International Space Station Through Shuttle Window

    Science.gov (United States)

    2001-01-01

    STS-102 astronaut and mission specialist, Andrew S.W. Thomas, gazes through an aft window of the Space Shuttle Orbiter Discovery as it approaches the docking bay of the International Space Station (ISS). Launched March 8, 2001, STS-102's primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  17. Selection of combined water electrolysis and resistojet propulsion for Space Station Freedom

    Science.gov (United States)

    Schmidt, George R.

    1988-01-01

    An analytical rationale is presented for the configuration of the NASA Space Station's two-element propulsion system, and attention is given to the cost benefits accruing to this system over the Space Station's service life. The principal system element uses gaseous oxygen and hydrogen obtained through water electrolysis to furnish attitude control, backup attitude control, and contingency maneuvering. The secondary element uses resistojets to augment Space Station reboost through the acceleration of waste gases in the direction opposite the Station's flight path.

  18. Life science research objectives and representative experiments for the space station

    Science.gov (United States)

    Johnson, Catherine C. (Editor); Arno, Roger D. (Editor); Mains, Richard (Editor)

    1989-01-01

    A workshop was convened to develop hypothetical experiments to be used as a baseline for space station designer and equipment specifiers to ensure responsiveness to the users, the life science community. Sixty-five intra- and extramural scientists were asked to describe scientific rationales, science objectives, and give brief representative experiment descriptions compatible with expected space station accommodations, capabilities, and performance envelopes. Experiment descriptions include hypothesis, subject types, approach, equipment requirements, and space station support requirements. The 171 experiments are divided into 14 disciplines.

  19. Medical Applications of Space Light-Emitting Diode Technology--Space Station and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, H.T.; Houle, J.M.; Donohoe, D.L.; Bajic, D.M.; Schmidt, M.H.; Reichert, K.W.; Weyenberg, G.T.; Larson, D.L.; Meyer, G.A.; Caviness, J.A.

    1999-06-01

    Space light-emitting diode (LED) technology has provided medicine with a new tool capable of delivering light deep into tissues of the body, at wavelengths which are biologically optimal for cancer treatment and wound healing. This LED technology has already flown on Space Shuttle missions, and shows promise for wound healing applications of benefit to Space Station astronauts.

  20. Centrifuge Facility for the International Space Station Alpha

    Science.gov (United States)

    Johnson, Catherine C.; Hargens, Alan R.

    1994-01-01

    The Centrifuge Facility planned for the International Space Station Alpha has under-one considerable redesign over the past year, primarily because the Station is now viewed as a 10 year mission rather than a 30 year mission and because of the need to simply the design to meet budget constraints and a 2000 launch date. The basic elements of the Centrifuge Facility remain the same, i.e., a 2.5 m diameter centrifuge, a micro-g holding unit, plant and animal habitats, a glovebox and a service unit. The centrifuge will still provide the full range of artificial gravity from 0.01 a to 2 - as originally planned; however, the extractor to permit withdrawal of habitats from the centrifuge without stopping the centrifuge has been eliminated. The specimen habitats have also been simplified and are derived from other NASA programs. The Plant Research Unit being developed by the Gravitational Biology Facility will be used to house plants in the Centrifuge Facility. Although not as ambitious as the Centrifuge Facility plant habitat, it will provide much better environmental control and lighting than the current Shuttle based Plant Growth Facility. Similarly, rodents will be housed in the Advanced Animal Habitat being developed for the Shuttle program. The Centrifuge Facility and ISSA will provide the opportunity to perform repeatable, high quality science. The long duration increments available on the Station will permit multigeneration studies on both plants and animals which have not previously been possible. The Centrifuge Facility will accommodate sufficient number of specimens to permit statistically significant sampling of specimens to investigate the time course of adaptation to altered gravity environments. The centrifuge will for the first time permit investigators to use gravity itself as a tool to investigate fundamental processes, to investigate the intensity and duration of gravity to maintain normal structure and function, to separate the effects of micro-g from

  1. Space station communications and tracking equipment management/control system

    Science.gov (United States)

    Kapell, M. H.; Seyl, J. W.

    1982-01-01

    Design details of a communications and tracking (C and T) local area network and the distribution system requirements for the prospective space station are described. The hardware will be constructed of LRUs, including those for baseband, RF, and antenna subsystems. It is noted that the C and T equipment must be routed throughout the station to accommodate growth of the station. Configurations of the C and T modules will therefore be dependent on the function of the space station module where they are located. A block diagram is provided of a sample C and T hardware distribution configuration. A topology and protocol will be needed to accommodate new terminals, wide bandwidths, bidirectional message transmission, and distributed functioning. Consideration will be given to collisions occurring in the data transmission channels.

  2. Space station common module power system network topology and hardware development

    Science.gov (United States)

    Landis, D. M.

    1985-01-01

    Candidate power system newtork topologies for the space station common module are defined and developed and the necessary hardware for test and evaluation is provided. Martin Marietta's approach to performing the proposed program is presented. Performance of the tasks described will assure systematic development and evaluation of program results, and will provide the necessary management tools, visibility, and control techniques for performance assessment. The plan is submitted in accordance with the data requirements given and includes a comprehensive task logic flow diagram, time phased manpower requirements, a program milestone schedule, and detailed descriptions of each program task.

  3. Energy consumption analysis of the Venus Deep Space Station (DSS-13)

    Science.gov (United States)

    Hayes, N. V.

    1983-01-01

    This report continues the energy consumption analysis and verification study of the tracking stations of the Goldstone Deep Space Communications Complex, and presents an audit of the Venus Deep Space Station (DSS 13). Due to the non-continuous radioastronomy research and development operations at the station, estimations of energy usage were employed in the energy consumption simulation of both the 9-meter and 26-meter antenna buildings. A 17.9% decrease in station energy consumption was experienced over the 1979-1981 years under study. A comparison of the ECP computer simulations and the station's main watt-hour meter readings showed good agreement.

  4. Space water electrolysis: Space Station through advance missions

    Science.gov (United States)

    Davenport, Ronald J.; Schubert, Franz H.; Grigger, David J.

    1991-01-01

    Static Feed Electrolyzer (SFE) technology can satisfy the need for oxygen (O2) and Hydrogen (H2) in the Space Station Freedom and future advanced missions. The efficiency with which the SFE technology can be used to generate O2 and H2 is one of its major advantages. In fact, the SFE is baselined for the Oxygen Generation Assembly within the Space Station Freedom's Environmental Control and Life Support System (ECLSS). In the conventional SFE process an alkaline electrolyte is contained within the matrix and is sandwiched between two porous electrodes. The electrodes and matrix make up a unitized cell core. The electrolyte provides the necessary path for the transport of water and ions between the electrodes, and forms a barrier to the diffusion of O2 and H2. A hydrophobic, microporous membrane permits water vapor to diffuse from the feed water to the cell core. This membrane separates the liquid feed water from the product H2, and, therefore, avoids direct contact of the electrodes by the feed water. The feed water is also circulated through an external heat exchanger to control the temperature of the cell.

  5. Establishing a Distance Learning Plan for International Space Station (ISS) Interactive Video Education Events (IVEE)

    Science.gov (United States)

    Wallington, Clint

    1999-01-01

    Educational outreach is an integral part of the International Space Station (ISS) mandate. In a few scant years, the International Space Station has already established a tradition of successful, general outreach activities. However, as the number of outreach events increased and began to reach school classrooms, those events came under greater scrutiny by the education community. Some of the ISS electronic field trips, while informative and helpful, did not meet the generally accepted criteria for education events, especially within the context of the classroom. To make classroom outreach events more acceptable to educators, the ISS outreach program must differentiate between communication events (meant to disseminate information to the general public) and education events (designed to facilitate student learning). In contrast to communication events, education events: are directed toward a relatively homogeneous audience who are gathered together for the purpose of learning, have specific performance objectives which the students are expected to master, include a method of assessing student performance, and include a series of structured activities that will help the students to master the desired skill(s). The core of the ISS education events is an interactive videoconference between students and ISS representatives. This interactive videoconference is to be preceded by and followed by classroom activities which help the students aftain the specified learning objectives. Using the interactive videoconference as the centerpiece of the education event lends a special excitement and allows students to ask questions about what they are learning and about the International Space Station and NASA. Whenever possible, the ISS outreach education events should be congruent with national guidelines for student achievement. ISS outreach staff should recognize that there are a number of different groups that will review the events, and that each group has different criteria

  6. On the use of Space Station Freedom in support of the SEI - Life science research

    Science.gov (United States)

    Leath, K.; Volosin, J.; Cookson, S.

    1992-01-01

    The use of the Space Station Freedom (SSF) for life sciences research is evaluated from the standpoint of requirements for the Space Exploration Initiative (SEI). SEI life sciences research encompasses: (1) biological growth and development in space; (2) life support and environmental health; (3) physiological/psychological factors of extended space travel; and (4) space environmental factors. The platforms required to support useful study in these areas are listed and include ground-based facilities, permanently manned spacecraft, and the Space Shuttle. The SSF is shown to be particularly applicable to the areas of research because its facilities can permit the study of gravitational biology, life-support systems, and crew health. The SSF can serve as an experimental vehicle to derive the required knowledge needed to establish a commitment to manned Mars missions and colonization plans.

  7. Space Station Workshop: Commercial Missions and User Requirements

    Science.gov (United States)

    1988-01-01

    The topics of discussion addressed during a three day workshop on commercial application in space are presented. Approximately half of the program was directed towards an overview and orientation to the Space Station Project; the technical attributes of space; and present and future potential commercial opportunities. The remaining time was spent addressing technological issues presented by previously-formed industry working groups, who attempted to identify the technology needs, problems or issues faced and/or anticipated by the following industries: extraction (mining, agriculture, petroleum, fishing, etc.); fabrication (manufacturing, automotive, aircraft, chemical, pharmaceutical and electronics); and services (communications, transportation and retail robotics). After the industry groups presented their technology issues, the workshop divided into smaller discussion groups composed of: space experts from NASA; academia; industry experts in the appropriate disciplines; and other workshop participants. The needs identified by the industry working groups, space station technical requirements, proposed commercial ventures and other issues related to space commercialization were discussed. The material summarized and reported are the consensus from the discussion groups.

  8. 47 CFR 25.140 - Qualifications of fixed-satellite space station licensees.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Qualifications of fixed-satellite space station licensees. 25.140 Section 25.140 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.140 Qualifications...

  9. A modular Space Station/Base electrical power system - Requirements and design study.

    Science.gov (United States)

    Eliason, J. T.; Adkisson, W. B.

    1972-01-01

    The requirements and procedures necessary for definition and specification of an electrical power system (EPS) for the future space station are discussed herein. The considered space station EPS consists of a replaceable main power module with self-contained auxiliary power, guidance, control, and communication subsystems. This independent power source may 'plug into' a space station module which has its own electrical distribution, control, power conditioning, and auxiliary power subsystems. Integration problems are discussed, and a transmission system selected with local floor-by-floor power conditioning and distribution in the station module. This technique eliminates the need for an immediate long range decision on the ultimate space base power sources by providing capability for almost any currently considered option.

  10. Lunar base mission technology issues and orbital demonstration requirements on space station

    Science.gov (United States)

    Llewellyn, Charles P.; Weidman, Deene J.

    1992-01-01

    The International Space Station has been the object of considerable design, redesign, and alteration since it was originally proposed in early 1984. In the intervening years the station has slowly evolved to a specific design that was thoroughly reviewed by a large agency-wide Critical Evaluation Task Force (CETF). As space station designs continue to evolve, studies must be conducted to determine the suitability of the current design for some of the primary purposes for which the station will be used. This paper concentrates on the technology requirements and issues, the on-orbit demonstration and verification program, and the space station focused support required prior to the establishment of a permanently manned lunar base as identified in the National Commission on Space report. Technology issues associated with the on-orbit assembly and processing of the lunar vehicle flight elements are also discussed.

  11. Space Station flight telerobotic servicer functional requirements development

    Science.gov (United States)

    Oberright, John; Mccain, Harry; Whitman, Ruth I.

    1987-01-01

    The Space Station flight telerobotic servicer (FTS), a flight robotic system for use on the first Space Station launch, is described. The objectives of the FTS program include: (1) the provision of an alternative crew EVA by supporting the crew in assembly, maintenance, and servicing activities, and (2) the improvement of crew safety by performing hazardous tasks such as spacecraft refueling or thermal and power system maintenance. The NASA/NBS Standard Reference Model provides the generic, hierarchical, structured functional control definition for the system. It is capable of accommodating additional degrees of machine intelligence in the future.

  12. International cooperation in the Space Station programme - Assessing the experience to date

    Science.gov (United States)

    Logsdon, John M.

    1991-01-01

    The origins and framework for cooperation in the Space Station program are outlined. Particular attention is paid to issues and commitments between the countries and to the political context of the Station partnership. A number of conclusions concerning international cooperation in space are drawn based on the Space Station experience. Among these conclusions is the assertion that an international partnership requires realistic assesments, mutual trust, and strong commitments in order to work.

  13. 78 FR 77502 - NASA International Space Station Advisory Committee; Meeting

    Science.gov (United States)

    2013-12-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (13-154)] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces a meeting of the NASA International Space...

  14. Space Station overall management approach for operations

    Science.gov (United States)

    Paules, G.

    1986-01-01

    An Operations Management Concept developed by NASA for its Space Station Program is discussed. The operational goals, themes, and design principles established during program development are summarized. The major operations functions are described, including: space systems operations, user support operations, prelaunch/postlanding operations, logistics support operations, market research, and cost/financial management. Strategic, tactical, and execution levels of operational decision-making are defined.

  15. The Logistic Path from the International Space Station to the Moon and Beyond

    Science.gov (United States)

    Watson, J. K.; Dempsey, C. A.; Butina, A. J., Sr.

    2005-01-01

    The period from the loss of the Space Shuttle Columbia in February 2003 to resumption of Space Shuttle flights, planned for May 2005, has presented significant challenges to International Space Station (ISS) maintenance operations. Sharply curtailed upmass capability has forced NASA to revise its support strategy and to undertake maintenance activities that have significantly expanded the envelope of the ISS maintenance concept. This experience has enhanced confidence in the ability to continue to support ISS in the period following the permanent retirement of the Space Shuttle fleet in 2010. Even greater challenges face NASA with the implementation of the Vision for Space Exploration that will introduce extended missions to the Moon beginning in the period of 2015 - 2020 and ultimately see human missions to more distant destinations such as Mars. The experience and capabilities acquired through meeting the maintenance challenges of ISS will serve as the foundation for the maintenance strategy that will be employed in support of these future missions.

  16. International Space Station USOS Waste and Hygiene Compartment Development

    Science.gov (United States)

    Link, Dwight E., Jr.; Broyan, James Lee, Jr.; Gelmis, Karen; Philistine, Cynthia; Balistreri, Steven

    2007-01-01

    The International Space Station (ISS) currently provides human waste collection and hygiene facilities in the Russian Segment Service Module (SM) which supports a three person crew. Additional hardware is planned for the United States Operational Segment (USOS) to support expansion of the crew to six person capability. The additional hardware will be integrated in an ISS standard equipment rack structure that was planned to be installed in the Node 3 element; however, the ISS Program Office recently directed implementation of the rack, or Waste and Hygiene Compartment (WHC), into the U.S. Laboratory element to provide early operational capability. In this configuration, preserved urine from the WHC waste collection system can be processed by the Urine Processor Assembly (UPA) in either the U.S. Lab or Node 3 to recover water for crew consumption or oxygen production. The human waste collection hardware is derived from the Service Module system and is provided by RSC-Energia. This paper describes the concepts, design, and integration of the WHC waste collection hardware into the USOS including integration with U.S. Lab and Node 3 systems.

  17. Scattering Effects of Solar Panels on Space Station Antenna Performance

    Science.gov (United States)

    Panneton, Robert J.; Ngo, John C.; Hwu, Shian U.; Johnson, Larry A.; Elmore, James D.; Lu, Ba P.; Kelley, James S.

    1994-01-01

    Characterizing the scattering properties of the solar array panels is important in predicting Space Station antenna performance. A series of far-field, near-field, and radar cross section (RCS) scattering measurements were performed at S-Band and Ku-Band microwave frequencies on Space Station solar array panels. Based on investigation of the measured scattering patterns, the solar array panels exhibit similar scattering properties to that of the same size aluminum or copper panel mockup. As a first order approximation, and for worse case interference simulation, the solar array panels may be modeled using perfect reflecting plates. Numerical results obtained using the Geometrical Theory of Diffraction (GTD) modeling technique are presented for Space Station antenna pattern degradation due to solar panel interference. The computational and experimental techniques presented in this paper are applicable for antennas mounted on other platforms such as ship, aircraft, satellite, and space or land vehicle.

  18. Space station operations task force. Panel 4 report: Management integration

    Science.gov (United States)

    1987-01-01

    The Management Integration Panel of the Space Station Operations Task Force was chartered to provide a structure and ground rules for integrating the efforts of the other three panels and to address a number of cross cutting issues that affect all areas of space station operations. Issues addressed include operations concept implementation, alternatives development and integration process, strategic policy issues and options, and program management emphasis areas.

  19. 77 FR 41203 - NASA International Space Station Advisory Committee; Meeting

    Science.gov (United States)

    2012-07-12

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-057] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  20. 77 FR 2765 - NASA International Space Station Advisory Committee; Meeting

    Science.gov (United States)

    2012-01-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-003)] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  1. 77 FR 66082 - NASA International Space Station Advisory Committee; Meeting

    Science.gov (United States)

    2012-11-01

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-090] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  2. Automating Stowage Operations for the International Space Station

    Science.gov (United States)

    Knight, Russell; Rabideau, Gregg; Mishkin, Andrew; Lee, Young

    2013-01-01

    A challenge for any proposed mission is to demonstrate convincingly that the proposed systems will in fact deliver the science promised. Funding agencies and mission design personnel are becoming ever more skeptical of the abstractions that form the basis of the current state of the practice with respect to approximating science return. To address this, we have been using automated planning and scheduling technology to provide actual coverage campaigns that provide better predictive performance with respect to science return for a given mission design and set of mission objectives given implementation uncertainties. Specifically, we have applied an adaptation of ASPEN and SPICE to the Eagle-Eye domain that demonstrates the performance of the mission design with respect to coverage of science imaging targets that address climate change and disaster response. Eagle-Eye is an Earth-imaging telescope that has been proposed to fly aboard the International Space Station (ISS).

  3. Live Ultra-High Definition from the International Space Station

    Science.gov (United States)

    Grubbs, Rodney; George, Sandy

    2017-01-01

    The first ever live downlink of Ultra-High Definition (UHD) video from the International Space Station (ISS) was the highlight of a 'Super Session' at the National Association of Broadcasters (NAB) in April 2017. The Ultra-High Definition video downlink from the ISS all the way to the Las Vegas Convention Center required considerable planning, pushed the limits of conventional video distribution from a space-craft, and was the first use of High Efficiency Video Coding (HEVC) from a space-craft. The live event at NAB will serve as a pathfinder for more routine downlinks of UHD as well as use of HEVC for conventional HD downlinks to save bandwidth. HEVC may also enable live Virtual Reality video downlinks from the ISS. This paper will describe the overall work flow and routing of the UHD video, how audio was synchronized even though the video and audio were received many seconds apart from each other, and how the demonstration paves the way for not only more efficient video distribution from the ISS, but also serves as a pathfinder for more complex video distribution from deep space. The paper will also describe how a 'live' event was staged when the UHD coming from the ISS had a latency of 10+ seconds. Finally, the paper will discuss how NASA is leveraging commercial technologies for use on-orbit vs. creating technology as was required during the Apollo Moon Program and early space age.

  4. Space Station Initial Operational Concept (IOC) operations and safety view - Automation and robotics for Space Station

    Science.gov (United States)

    Bates, William V., Jr.

    1989-01-01

    The automation and robotics requirements for the Space Station Initial Operational Concept (IOC) are discussed. The amount of tasks to be performed by an eight-person crew, the need for an automated or directed fault analysis capability, and ground support requirements are considered. Issues important in determining the role of automation for the IOC are listed.

  5. Strategic plan, 1991: A strategy for leadership in space through excellence in space science and applications

    Science.gov (United States)

    1991-01-01

    In 1988, the Office of Space Science and Applications (OSSA) developed and published a Strategic Plan for the United States' space science and applications program during the next 5 to 10 years. The Plan presented the proposed OSSA program for the next fiscal year and defined a flexible process that provides the basis for near-term decisions on the allocation of resources and the planning of future efforts. Based on the strategies that have been developed by the advisory committees both of the National Academy of Sciences and of NASA, the Plan balances major, moderate, and small mission initiatives, the utilization of Space Station Freedom, and the requirements for a vital research base. The Plan can be adjusted to accommodate varying budget levels, both those levels that provide opportunities for an expanded science and applications program, and those that constrain growth. SSA's strategic planning is constructed around five actions: establish a set of programmatic themes; establish a set of decision rules; establish a set of priorities for missions and programs within each theme; demonstrate that the strategy can yield a viable program; and check the strategy for consistency with resource constraints. The outcome of this process is a clear, coherent strategy that meets both NASA's and OSSA's goals, that assures realism in long-range planning and advanced technology development, and that provides sufficient resiliency to respond and adapt to both known and unexpected internal and external realities. The OSSA Strategic Plan is revised annually to reflect the approval of new programs, improved understanding of requirements and issues, and any major changes in the circumstances, both within NASA and external to NASA, in which OSSA initiatives are considered.

  6. Space Station data system analysis/architecture study. Task 1: Functional requirements definition, DR-5

    Science.gov (United States)

    1985-01-01

    The initial task in the Space Station Data System (SSDS) Analysis/Architecture Study is the definition of the functional and key performance requirements for the SSDS. The SSDS is the set of hardware and software, both on the ground and in space, that provides the basic data management services for Space Station customers and systems. The primary purpose of the requirements development activity was to provide a coordinated, documented requirements set as a basis for the system definition of the SSDS and for other subsequent study activities. These requirements should also prove useful to other Space Station activities in that they provide an indication of the scope of the information services and systems that will be needed in the Space Station program. The major results of the requirements development task are as follows: (1) identification of a conceptual topology and architecture for the end-to-end Space Station Information Systems (SSIS); (2) development of a complete set of functional requirements and design drivers for the SSIS; (3) development of functional requirements and key performance requirements for the Space Station Data System (SSDS); and (4) definition of an operating concept for the SSIS. The operating concept was developed both from a Space Station payload customer and operator perspective in order to allow a requirements practicality assessment.

  7. Soft Space Planning in Cities unbound

    DEFF Research Database (Denmark)

    Olesen, Kristian

    This paper analyses contemporary experiments of building governance capacity in new soft spaces in Denmark through processes of spatial strategy-making. The paper argues that new soft spaces are emerging in Danish spatial planning, which set out to promote more effective forms of strategic spatial...... planning, and how their obsession with promoting economic development at the expense of wider planning responsibilities support contemporary neoliberal transformations of strategic spatial planning....... planning. The Danish case of soft space planning demonstrates how Danish soft spaces at subnational scales fail to fill in the gaps between formal planning structures and provide the glue that binds formal scales of planning together as promised in the soft space literature. This raises a number...

  8. Omics Research on the International Space Station

    Science.gov (United States)

    Love, John

    2015-01-01

    The International Space Station (ISS) is an orbiting laboratory whose goals include advancing science and technology research. Completion of ISS assembly ushered a new era focused on utilization, encompassing multiple disciplines such as Biology and Biotechnology, Physical Sciences, Technology Development and Demonstration, Human Research, Earth and Space Sciences, and Educational Activities. The research complement planned for upcoming ISS Expeditions 45&46 includes several investigations in the new field of omics, which aims to collectively characterize sets of biomolecules (e.g., genomic, epigenomic, transcriptomic, proteomic, and metabolomic products) that translate into organismic structure and function. For example, Multi-Omics is a JAXA investigation that analyzes human microbial metabolic cross-talk in the space ecosystem by evaluating data from immune dysregulation biomarkers, metabolic profiles, and microbiota composition. The NASA OsteoOmics investigation studies gravitational regulation of osteoblast genomics and metabolism. Tissue Regeneration uses pan-omics approaches with cells cultured in bioreactors to characterize factors involved in mammalian bone tissue regeneration in microgravity. Rodent Research-3 includes an experiment that implements pan-omics to evaluate therapeutically significant molecular circuits, markers, and biomaterials associated with microgravity wound healing and tissue regeneration in bone defective rodents. The JAXA Mouse Epigenetics investigation examines molecular alterations in organ specific gene expression patterns and epigenetic modifications, and analyzes murine germ cell development during long term spaceflight. Lastly, Twins Study ("Differential effects of homozygous twin astronauts associated with differences in exposure to spaceflight factors"), NASA's first foray into human omics research, applies integrated analyses to assess biomolecular responses to physical, physiological, and environmental stressors associated

  9. International Space Station Earth Observations Working Group

    Science.gov (United States)

    Stefanov, William L.; Oikawa, Koki

    2015-01-01

    The multilateral Earth Observations Working Group (EOWG) was chartered in May 2012 in order to improve coordination and collaboration of Earth observing payloads, research, and applications on the International Space Station (ISS). The EOWG derives its authority from the ISS Program Science Forum, and a NASA representative serves as a permanent co-chair. A rotating co-chair position can be occupied by any of the international partners, following concurrence by the other partners; a JAXA representative is the current co-chair. Primary functions of the EOWG include, 1) the exchange of information on plans for payloads, from science and application objectives to instrument development, data collection, distribution and research; 2) recognition and facilitation of opportunities for international collaboration in order to optimize benefits from different instruments; and 3) provide a formal ISS Program interface for collection and application of remotely sensed data collected in response to natural disasters through the International Charter, Space and Major Disasters. Recent examples of EOWG activities include coordination of bilateral data sharing protocols between NASA and TsNIIMash for use of crew time and instruments in support of ATV5 reentry imaging activities; discussion of continued use and support of the Nightpod camera mount system by NASA and ESA; and review and revision of international partner contributions on Earth observations to the ISS Program Benefits to Humanity publication.

  10. Solar dynamic power systems for space station

    Science.gov (United States)

    Irvine, Thomas B.; Nall, Marsha M.; Seidel, Robert C.

    1986-01-01

    The Parabolic Offset Linearly Actuated Reflector (POLAR) solar dynamic module was selected as the baseline design for a solar dynamic power system aboard the space station. The POLAR concept was chosen over other candidate designs after extensive trade studies. The primary advantages of the POLAR concept are the low mass moment of inertia of the module about the transverse boom and the compactness of the stowed module which enables packaging of two complete modules in the Shuttle orbiter payload bay. The fine pointing control system required for the solar dynamic module has been studied and initial results indicate that if disturbances from the station are allowed to back drive the rotary alpha joint, pointing errors caused by transient loads on the space station can be minimized. This would allow pointing controls to operate in bandwidths near system structural frequencies. The incorporation of the fine pointing control system into the solar dynamic module is fairly straightforward for the three strut concentrator support structure. However, results of structural analyses indicate that this three strut support is not optimum. Incorporation of a vernier pointing system into the proposed six strut support structure is being studied.

  11. Space Station: NASA's software development approach increases safety and cost risks. Report to the Chairman, Committee on Science, Space, and Technology, House of Representatives

    Science.gov (United States)

    1992-06-01

    The House Committee on Science, Space, and Technology asked NASA to study software development issues for the space station. How well NASA has implemented key software engineering practices for the station was asked. Specifically, the objectives were to determine: (1) if independent verification and validation techniques are being used to ensure that critical software meets specified requirements and functions; (2) if NASA has incorporated software risk management techniques into program; (3) whether standards are in place that will prescribe a disciplined, uniform approach to software development; and (4) if software support tools will help, as intended, to maximize efficiency in developing and maintaining the software. To meet the objectives, NASA proceeded: (1) reviewing and analyzing software development objectives and strategies contained in NASA conference publications; (2) reviewing and analyzing NASA, other government, and industry guidelines for establishing good software development practices; (3) reviewing and analyzing technical proposals and contracts; (4) reviewing and analyzing software management plans, risk management plans, and program requirements; (4) reviewing and analyzing reports prepared by NASA and contractor officials that identified key issues and challenges facing the program; (5) obtaining expert opinions on what constitutes appropriate independent V-and-V and software risk management activities; (6) interviewing program officials at NASA headquarters in Washington, DC; at the Space Station Program Office in Reston, Virginia; and at the three work package centers; Johnson in Houston, Texas; Marshall in Huntsville, Alabama; and Lewis in Cleveland, Ohio; and (7) interviewing contractor officials doing work for NASA at Johnson and Marshall. The audit work was performed in accordance with generally accepted government auditing standards, between April 1991 and May 1992.

  12. Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage

    Science.gov (United States)

    Schubert, F. H.; Hoberecht, M. A.; Le, M.

    1986-01-01

    The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.

  13. Recent Successes and Future Plans for NASA's Space Communications and Navigation Testbed on the International Space Station

    Science.gov (United States)

    Reinhart, Richard C.; Sankovic, John M.; Johnson, Sandra K.; Lux, James P.; Chelmins, David T.

    2014-01-01

    Flexible and extensible space communications architectures and technology are essential to enable future space exploration and science activities. NASA has championed the development of the Space Telecommunications Radio System (STRS) software defined radio (SDR) standard and the application of SDR technology to reduce the costs and risks of using SDRs for space missions, and has developed an on-orbit testbed to validate these capabilities. The Space Communications and Navigation (SCaN) Testbed (previously known as the Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT)) is advancing SDR, on-board networking, and navigation technologies by conducting space experiments aboard the International Space Station. During its first year(s) on-orbit, the SCaN Testbed has achieved considerable accomplishments to better understand SDRs and their applications. The SDR platforms and software waveforms on each SDR have over 1500 hours of operation and are performing as designed. The Ka-band SDR on the SCaN Testbed is NASAs first space Ka-band transceiver and is NASA's first Ka-band mission using the Space Network. This has provided exciting opportunities to operate at Ka-band and assist with on-orbit tests of NASA newest Tracking and Data Relay Satellites (TDRS). During its first year, SCaN Testbed completed its first on-orbit SDR reconfigurations. SDR reconfigurations occur when implementing new waveforms on an SDR. SDR reconfigurations allow a radio to change minor parameters, such as data rate, or complete functionality. New waveforms which provide new capability and are reusable across different missions provide long term value for reconfigurable platforms such as SDRs. The STRS Standard provides guidelines for new waveform development by third parties. Waveform development by organizations other than the platform provider offers NASA the ability to develop waveforms itself and reduce its dependence and costs on the platform developer. Each of these

  14. Requirements, Resource Planning and Management for Decrewing/Recrewing Scenarios of the International Space Station

    Science.gov (United States)

    Bach, David A.; Brand, Susan N.; Hasbrook, Peter V.

    2013-09-01

    Following the failure of 44 Progress (44P) on launch in August 2011, and the subsequent grounding of all Russian Soyuz rocket based launches, the International Space Station (ISS) ground teams engaged in an effort to determine how long the ISS could remain crewed, what would be required to safely configure the ISS for decrewing, and what would be required to recrew the ISS upon resumption of Soyuz rocket launches if decrewing became necessary. This White Paper was written to capture the processes and lessons learned from real-time time events and to provide a reference and training document for ISS Program teams in the event decrewing of the ISS is needed.Through coordination meetings and assessments, teams identified six decrewing priorities for ground and crew operations. These priorities were integrated along with preflight priorities through the Increment re-planning process. Additionally, the teams reviewed, updated, and implemented changes to the governing documentation for the configuration of the ISS for a contingency decrewing event. Steps were taken to identify critical items for disposal prior to decrewing, as well as identifying the required items to be strategically staged or flown with the astronauts and cosmonauts who would eventually recrew the ISS.After the successful launches and dockings of both 45P and 28 Soyuz (28S), the decrewing team transitioned to finalizing and publishing the documentation for standardizing the decrewing flight rules. With the continued launching of crews and cargo to the ISS, utilization and science is again a high priority; both Increment pairs 29 and 30, and Increment 31 and 32 reaching the milestone of at least 35 hours per week average utilization.

  15. Requirements, Resource Planning, and Management for Decrewing/Recrewing Scenarios of the International Space Station

    Science.gov (United States)

    Bach, David A.; Brand, Susan N.; Hasbrook, Peter V.

    2013-01-01

    Following the failure of 44 Progress (44P) on launch in August 2011, and the subsequent grounding of all Russian Soyuz rocket based launches, the International Space Station (ISS) ground teams engaged in an effort to determine how long the ISS could remain crewed, what would be required to safely configure the ISS for decrewing, and what would be required to recrew the ISS upon resumption of Soyuz rocket launches if decrewing became necessary. This White Paper was written to capture the processes and lessons learned from real-time time events and to provide a reference and training document for ISS Program teams in the event decrewing of the ISS is needed. Through coordination meetings and assessments, teams identified six decrewing priorities for ground and crew operations. These priorities were integrated along with preflight priorities through the Increment re-planning process. Additionally, the teams reviewed, updated, and implemented changes to the governing documentation for the configuration of the ISS for a contingency decrewing event. Steps were taken to identify critical items for disposal prior to decrewing, as well as identifying the required items to be strategically staged or flown with the astronauts and cosmonauts who would eventually recrew the ISS. After the successful launches and dockings of both 45P and 28 Soyuz (28S), the decrewing team transitioned to finalizing and publishing the documentation for standardizing the decrewing flight rules. With the continued launching of crews and cargo to the ISS, utilization and science is again a high priority; both Increment pairs 29 and 30, and Increment 31 and 32 reaching the milestone of at least 35 hours per week average utilization.

  16. Space station astronauts discuss life in space during AGU interview

    Science.gov (United States)

    Showstack, Randy

    2012-07-01

    Just one day after China's Shenzhou-9 capsule, carrying three Chinese astronauts, docked with the Tiangong-1 space lab on 18 June, Donald Pettit, a NASA astronaut on the International Space Station (ISS), said it is “a step in the right direction” that more people are in space. “Before they launched, there were six people in space,” he said, referring to those on ISS, “and there are 7 billion people on Earth.” The astronauts were “like one in a billion. Now there are nine people in space,” Pettit said during a 19 June interview that he and two other astronauts onboard ISS had with AGU. Pettit continued, “So the gradient of human beings going into space is moving in the right direction. We need to change these numbers so that more and more human beings can call space their home so we can expand off of planet Earth and move out into our solar system.”

  17. Flight Planning Branch NASA Co-op Tour

    Science.gov (United States)

    Marr, Aja M.

    2013-01-01

    This semester I worked with the Flight Planning Branch at the NASA Johnson Space Center. I learned about the different aspects of flight planning for the International Space Station as well as the software that is used internally and ISSLive! which is used to help educate the public on the space program. I had the opportunity to do on the job training in the Mission Control Center with the planning team. I transferred old timeline records from the planning team's old software to the new software in order to preserve the data for the future when the software is retired. I learned about the operations of the International Space Station, the importance of good communication between the different parts of the planning team, and enrolled in professional development classes as well as technical classes to learn about the space station.

  18. Space Station: Key to the Future.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    The possible applications, advantages and features of an advanced space station to be developed are considered in a non-technical manner in this booklet. Some of the areas of application considered include the following: the detection of large scale dynamic earth processes such as changes in snow pack, crops, and air pollution levels; the…

  19. Managing NASA's International Space Station Logistics and Maintenance Program

    Science.gov (United States)

    Butina, Anthony

    2001-01-01

    The International Space Station's Logistics and Maintenance program has had to develop new technologies and a management approach for both space and ground operations. The ISS will be a permanently manned orbiting vehicle that has no landing gear, no international borders, and no organizational lines - it is one Station that must be supported by one crew, 24 hours a day, 7 days a week, 365 days a year. It flies partially assembled for a number of years before it is finally completed in 2006. It has over 6,000 orbital replaceable units (ORU), and spare parts which number into the hundreds of thousands, from 127 major US vendors and 70 major international vendors. From conception to operation, the ISS requires a unique approach in all aspects of development and operations. Today the dream is coming true; hardware is flying and hardware is failing. The system has been put into place to support the Station for both space and ground operations. It started with the basic support concept developed for Department of Defense systems, and then it was tailored for the unique requirements of a manned space vehicle. Space logistics is a new concept that has wide reaching consequences for both space travel and life on Earth. This paper discusses what type of organization has been put into place to support both space and ground operations and discusses each element of that organization. In addition, some of the unique operations approaches this organization has had to develop is discussed.

  20. The role of automation and robotics in space stations

    Science.gov (United States)

    Black, D. C.

    1985-01-01

    Automation and robotics have played important roles in space research, most notably in planetary exploration. While an increased need for automation and robotics in space research is anticipated, some of the major challenges and opportunities for automation and robotics will be provided by the Space Station. Examples of these challenges are briefly reviewed.

  1. Potential for remote sensing of agriculture from the international space station

    International Nuclear Information System (INIS)

    Morgenthaler, George W.; Khatib, Nader

    1999-01-01

    Today's spatial resolution of orbital sensing systems is too coarse to economically serve the yield-improvement/contamination-reduction needs of the small to mid-size farm enterprise. Remote sensing from aircraft is being pressed into service. However, satellite remote sensing constellations with greater resolution and more spectral bands, i.e., with resolutions of 1 m in the panchromatic, 4 m in the multi-spectral, and 8 m in the hyper-spectral are expected to be in orbit by the year 2000. Such systems coupled with Global Positioning System (GPS) capability will make 'precision agriculture', i.e., the identification of specific and timely fertilizer, irrigation, herbicide, and insecticide needs on an acre-by-acre basis and the ability to meet these needs with precision delivery systems at affordable costs, is what is needed and can be achieved. Current plans for remote sensing systems on the International Space Station (ISS) include externally attached payloads and a window observation platform. The planned orbit of the Space Station will result in overflight of a specific latitude and longitude at the same clock time every 3 months. However, a pass over a specific latitude and longitude during 'daylight hours' could occur much more frequently. The ISS might thus be a space platform for experimental and developmental testing of future commercial space remote sensing precision agriculture systems. There is also a need for agricultural 'truth' sites so that predictive crop yield and pollution models can be devised and corrective suggestions delivered to farmers at affordable costs. In Summer 1998, the University of Colorado at Boulder and the Center for the Study of Terrestrial and Extraterrestrial Atmospheres (CSTEA) at Howard University, under NASA Goddard Space Flight Center funding, established an agricultural 'truth' site in eastern Colorado. The 'truth' site was highly instrumented for measuring trace gas concentrations (NO x , SO x , CO 2 , O 3 , organics

  2. Impact of Base Station Cooperation on Cell Planning

    Directory of Open Access Journals (Sweden)

    Ian Dexter Garcia

    2010-01-01

    Full Text Available Base station cooperation (BSC has been identified as a key radio access technology for next-generation cellular networks such as LTE-Advanced. BSC impacts cell planning, which is the methodical selection of base station (BS sites, and BS equipment configuration for cost-effective cellular networks. In this paper, the impact of BSC on cell plan parameters (coverage, traffic, handover, and cost, as well as additional cell planning steps required for BSC are discussed. Results show that BSC maximizes its gains over noncooperation (NC in a network wherein interference from cooperating BSs is the main limitation. Locations exist where NC may produce higher throughputs, therefore dynamic or semistatic switching between BSC and NC, called fractional BSC, is recommended. Because of interference from noncooperating BSs, the gains of BSC over NC are upper bounded, and diminishes at greater intersite distances because of noise. This encourages smaller cell sizes, higher transmit powers, and dynamic clustering of cooperative BSs.

  3. An examination of automation and robotics in the context of Space Station operations

    Science.gov (United States)

    Criswell, David R.; Lee, Douglas S.; Ragusa, James; Starks, Scott A.; Woodruff, John; Paules, Granville

    1988-01-01

    A NASA-sponsored review of Space Station automation and robotics (A&R) applications from an operations and utilization perspective is presented. The goals of the A&R panel and this report are to identify major suggestions for advanced A&R operations application in Space Station as well as key technologies that have emerged or gained prominence since the completion of previous reports; to review and incorporate the range of possible Space Station A&R applications into a framework for evaluation of A&R opportunities; and to propose incentives for the government, work packages, and subcontractors to more aggressively identify, evaluate, and incorporate advanced A&R in Space Station Operations. The suggestions for A&R focused on narrow objectives using a conservative approach tuned to Space Station at IOC and limiting the Station's growth capabilities. A more aggressive stance is to identify functional needs over the Program's life, exploit and leverage available technology, and develop the key advanced technologies permitting effective use of A&R. The challenge is to systematically identify candidate functions to be automated, provide ways to create solutions resulting in savings or increased capabilities, and offer incentives that will promote the automation.

  4. Space Station Water Processor Process Pump

    Science.gov (United States)

    Parker, David

    1995-01-01

    This report presents the results of the development program conducted under contract NAS8-38250-12 related to the International Space Station (ISS) Water Processor (WP) Process Pump. The results of the Process Pumps evaluation conducted on this program indicates that further development is required in order to achieve the performance and life requirements for the ISSWP.

  5. Microgravity Science Glovebox Aboard the International Space Station

    Science.gov (United States)

    2003-01-01

    In the Destiny laboratory aboard the International Space Station (ISS), European Space Agency (ESA) astronaut Pedro Duque of Spain is seen working at the Microgravity Science Glovebox (MSG). He is working with the PROMISS experiment, which will investigate the growth processes of proteins during weightless conditions. The PROMISS is one of the Cervantes program of tests (consisting of 20 commercial experiments). The MSG is managed by NASA's Marshall Space Flight Center (MSFC).

  6. In-space research, technology and engineering experiments and Space Station

    Science.gov (United States)

    Tyson, Richard; Gartrell, Charles F.

    1988-01-01

    The NASA Space Station will serve as a technology research laboratory, a payload-servicing facility, and a large structure fabrication and assembly facility. Space structures research will encompass advanced structural concepts and their dynamics, advanced control concepts, sensors, and actuators. Experiments dealing with fluid management will gather data on such fundamentals as multiphase flow phenomena. As requirements for power systems and thermal management grow, experiments quantifying the performance of energy systems and thermal management concepts will be undertaken, together with expanded efforts in the fields of information systems, automation, and robotics.

  7. 76 FR 56362 - Removal of Approved Non-U.S.-Licensed Space Stations From the Section 214 Exclusion List

    Science.gov (United States)

    2011-09-13

    ...'s web page, the Bureau plans to insert a link entitled Space Stations Approved for U.S. Market Access. Once users click on that link, they will be taken to a page with that same title that provides... pursuant to the DISCO II procedures. The web page will include links to other lists already maintained for...

  8. Future uses of machine intelligence and robotics for the Space Station and implications for the U.S. economy

    Science.gov (United States)

    Cohen, A.; Erickson, J. D.

    1985-01-01

    The exciting possibilities for advancing the technologies of artificial intelligence, robotics, and automation on the Space Station is summarized. How these possibilities will be realized and how their realization can benefit the U.S. economy are described. Plans, research programs and preliminary designs that will lead to the realization of many of these possibilities are being formulated.

  9. Space station environmental control and life support systems test bed program - an overview

    Science.gov (United States)

    Behrend, Albert F.

    As the National Aeronautics and Space Administration (NASA) begins to intensify activities for development of the Space Station, decisions must be made concerning the technical state of the art that will be baselined for the initial Space Station system. These decisions are important because significant potential exists for enhancing system performance and for reducing life-cycle costs. However, intelligent decisions cannot be made without an adequate assessment of new and ready technologies, i.e., technologies which are sufficiently mature to allow predevelopment demonstrations to prove their application feasibility and to quantify the risk associated with their development. Therefore, the NASA has implemented a technology development program which includes the establishment of generic test bed capabilities in which these new technologies and approaches can be tested at the prototype level. One major Space Station subsystem discipline in which this program has been implemented is the environmental control and life support system (ECLSS). Previous manned space programs such as Gemini, Apollo, and Space Shuttle have relied heavily on consumables to provide environmental control and life support services. However, with the advent of a long-duration Space Station, consumables must be reduced within technological limits to minimize Space Station resupply penalties and operational costs. The use of advanced environmental control and life support approaches involving regenerative processes offers the best solution for significant consumables reduction while also providing system evolutionary growth capability. Consequently, the demonstration of these "new technologies" as viable options for inclusion in the baseline that will be available to support a Space Station initial operational capability in the early 1990's becomes of paramount importance. The mechanism by which the maturity of these new regenerative life support technologies will be demonstrated is the Space

  10. Development of the urban space surrounding selected railway stations in Poland

    Directory of Open Access Journals (Sweden)

    Dragan Weronika

    2017-12-01

    Full Text Available At present, many railway stations, in spite of being architecturally valuable, are subject to de-capitalization and degradation, which increasingly leads to demolition including elements or even entire railway stations of historical importance. Therefore, there arises a need to transform these facilities – as well as their nearby surroundings – into service areas not only for railway passengers but also for the consumer or tourist. This article presents an overview of the types of development of functional and spatial areas around a railway station, as well as the building itself, on selected examples in cities of Poland. In past historical periods, the surroundings of railway stations often became the new core of the studied centres, creating new urban structures. Train station forecourts, as well as access roads leading to railway stations, became specific links of railway infrastructure, the main points of which were railway stations, with the original urban layout. Unfortunately, the decline in the importance of rail transport has contributed to the recession and degradation of these spaces, and often to changes in their functions. This article refers to the concept of redevelopment of the railway station area, which emphasizes the creation of hubs integrating various modes of transport on the one hand, and transforming the area around the stations into an area of development of new business activities, on the other. Some of the discussed train stations have undergone a thorough renovation (e.g. Kraków Główny, Katowice and Poznań Główny, frequently in an attempt to allude to global trends in the commercialization of space and transport integration within station squares. However, this poses a problem and a challenge for decision-makers attempting to redevelop such facilities and the spaces associated with them.

  11. Putting ROSE to Work: A Proposed Application of a Request-Oriented Scheduling Engine for Space Station Operations

    Science.gov (United States)

    Jaap, John; Muery, Kim

    2000-01-01

    Scheduling engines are found at the core of software systems that plan and schedule activities and resources. A Request-Oriented Scheduling Engine (ROSE) is one that processes a single request (adding a task to a timeline) and then waits for another request. For the International Space Station, a robust ROSE-based system would support multiple, simultaneous users, each formulating requests (defining scheduling requirements), submitting these requests via the internet to a single scheduling engine operating on a single timeline, and immediately viewing the resulting timeline. ROSE is significantly different from the engine currently used to schedule Space Station operations. The current engine supports essentially one person at a time, with a pre-defined set of requirements from many payloads, working in either a "batch" scheduling mode or an interactive/manual scheduling mode. A planning and scheduling process that takes advantage of the features of ROSE could produce greater customer satisfaction at reduced cost and reduced flow time. This paper describes a possible ROSE-based scheduling process and identifies the additional software component required to support it. Resulting changes to the management and control of the process are also discussed.

  12. Nitrogen Oxygen Recharge System for the International Space Station

    Science.gov (United States)

    Williams, David E.; Dick, Brandon; Cook, Tony; Leonard, Dan

    2009-01-01

    The International Space Station (ISS) requires stores of Oxygen (O2) and Nitrogen (N2) to provide for atmosphere replenishment, direct crew member usage, and payload operations. Currently, supplies of N2/O2 are maintained by transfer from the Space Shuttle. Following Space Shuttle is retirement in 2010, an alternate means of resupplying N2/O2 to the ISS is needed. The National Aeronautics and Space Administration (NASA) has determined that the optimal method of supplying the ISS with O2/N2 is using tanks of high pressure N2/O2 carried to the station by a cargo vehicle capable of docking with the ISS. This paper will outline the architecture of the system selected by NASA and will discuss some of the design challenges associated with this use of high pressure oxygen and nitrogen in the human spaceflight environment.

  13. The Alpha Magnetic Spectrometer (AMS) experiment on the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Alpat, Behcet E-mail: behcet.alpat@pg.infn.it

    2001-04-01

    The Alpha Magnetic Spectrometer (AMS) is a detector designed to operate in space to search for antimatter components in cosmic ray, the annihilation products of darkmatter and to study the antiprotons, positrons and light nuclei. A 'baseline' version of the experiment has successfully completed the precursor flight on Space Shuttle Discovery (June 2-12, 1998). The complete AMS is programmed for installation on International Space Station in year 2003 for an operational period of 3 years. In this contribution we report on the experimental configuration of AMS that will be installed on International Space Station.

  14. Shielding requirements for the Space Station habitability modules

    Science.gov (United States)

    Avans, Sherman L.; Horn, Jennifer R.; Williamsen, Joel E.

    1990-01-01

    The design, analysis, development, and tests of the total meteoroid/debris protection system for the Space Station Freedom habitability modules, such as the habitation module, the laboratory module, and the node structures, are described. Design requirements are discussed along with development efforts, including a combination of hypervelocity testing and analyses. Computer hydrocode analysis of hypervelocity impact phenomena associated with Space Station habitability structures is covered and the use of optimization techniques, engineering models, and parametric analyses is assessed. Explosive rail gun development efforts and protective capability and damage tolerance of multilayer insulation due to meteoroid/debris impact are considered. It is concluded that anticipated changes in the debris environment definition and requirements will require rescoping the tests and analysis required to develop a protection system.

  15. Technology evaluation for space station atmospheric leakage

    Energy Technology Data Exchange (ETDEWEB)

    Lemon, D.K.; Friesel, M.A.; Griffin, J.W.; Skorpik, J.R.; Shepard, C.L.; Antoniak, Z.I.; Kurtz, R.J.

    1990-02-01

    A concern in operation of a space station is leakage of atmosphere through seal points and through the walls as a result of damage from particle (space debris and micrometeoroid) impacts. This report describes a concept for a monitoring system to detect atmosphere leakage and locate the leak point. The concept is based on analysis and testing of two basic methods selected from an initial technology survey of potential approaches. 18 refs., 58 figs., 5 tabs.

  16. Space Station Program threat and vulnerability analysis

    Science.gov (United States)

    Van Meter, Steven D.; Veatch, John D.

    1987-01-01

    An examination has been made of the physical security of the Space Station Program at the Kennedy Space Center in a peacetime environment, in order to furnish facility personnel with threat/vulnerability information. A risk-management approach is used to prioritize threat-target combinations that are characterized in terms of 'insiders' and 'outsiders'. Potential targets were identified and analyzed with a view to their attractiveness to an adversary, as well as to the consequentiality of the resulting damage.

  17. Reliability models for Space Station power system

    Science.gov (United States)

    Singh, C.; Patton, A. D.; Kim, Y.; Wagner, H.

    1987-01-01

    This paper presents a methodology for the reliability evaluation of Space Station power system. The two options considered are the photovoltaic system and the solar dynamic system. Reliability models for both of these options are described along with the methodology for calculating the reliability indices.

  18. Space Station - The base for tomorrow's electronic industry

    Science.gov (United States)

    Naumann, Robert J.

    1985-01-01

    The potential value of space material processing on the Space Station for the electronics industry is examined. The primary advantages of the space environment for producing high-purity semiconductors and electrooptical materials are identified as the virtual absence of gravity (suppressing buoyancy-driven convection in melts and density segregation of alloys) and the availabilty of high vacuum (with high pumping speed and heat rejection). The recent history of material development and processing technology in the electronics industry is reviewed, and the principal features of early space experiments are outlined.

  19. Observations of the Earth's magnetic field from the Space Station: Measurement at high and extremely low altitude using Space Station-controlled free-flyers

    Science.gov (United States)

    Webster, W., Jr.; Frawley, J. J.; Stefanik, M.

    1984-01-01

    Simulation studies established that the main (core), crustal and electrojet components of the Earth's magnetic field can be observed with greater resolution or over a longer time-base than is presently possible by using the capabilities provided by the space station. Two systems are studied. The first, a large lifetime, magnetic monitor would observe the main field and its time variation. The second, a remotely-piloted, magnetic probe would observe the crustal field at low altitude and the electrojet field in situ. The system design and the scientific performance of these systems is assessed. The advantages of the space station are reviewed.

  20. Psychological Selection of NASA Astronauts for International Space Station Missions

    Science.gov (United States)

    Galarza, Laura

    1999-01-01

    During the upcoming manned International Space Station (ISS) missions, astronauts will encounter the unique conditions of living and working with a multicultural crew in a confined and isolated space environment. The environmental, social, and mission-related challenges of these missions will require crewmembers to emphasize effective teamwork, leadership, group living and self-management to maintain the morale and productivity of the crew. The need for crew members to possess and display skills and behaviors needed for successful adaptability to ISS missions led us to upgrade the tools and procedures we use for astronaut selection. The upgraded tools include personality and biographical data measures. Content and construct-related validation techniques were used to link upgraded selection tools to critical skills needed for ISS missions. The results of these validation efforts showed that various personality and biographical data variables are related to expert and interview ratings of critical ISS skills. Upgraded and planned selection tools better address the critical skills, demands, and working conditions of ISS missions and facilitate the selection of astronauts who will more easily cope and adapt to ISS flights.

  1. The centrifuge facility - A life sciences research laboratory for Space Station Freedom

    Science.gov (United States)

    Fuller, Charles A.; Johnson, Catherine C.; Hargens, Alan R.

    1991-01-01

    The paper describes the centrifugal facility that is presently being developed by NASA for studies aboard the Space Station Freedom on the role of gravity, or its absence, at varying intensities for varying periods of time and with multiple model systems. Special attention is given to the design of the centrifuge system, the habitats designed to hold plants and animals, the glovebox system designed for experimental manipulations of the specimens, and the service unit. Studies planned for the facility will include experiments in the following disciplines: cell and developmental biology, plant biology, regulatory physiology, musculoskeletal physiology, behavior and performance, neurosciences, cardiopulmonary physiology, and environmental health and radiation.

  2. Solar panels for the International Space Station are uncrated and moved in the SSPF

    Science.gov (United States)

    1998-01-01

    In the Space Station Processing Facility, a worker (left) guides the lifting of solar panels for the International Space Station (ISS). The panels are the first set of U.S.-provided solar arrays and batteries for ISS, scheduled to be part of mission STS-97 in December 1999. The mission, fifth in the U.S. flights for construction of ISS, will build and enhance the capabilities of the Space Station. It will deliver the solar panels as well as radiators to provide cooling. The Shuttle will spend 5 days docked to the station, which at that time will be staffed by the first station crew. Two space walks will be conducted to complete assembly operations while the arrays are attached and unfurled. A communications system for voice and telemetry also will be installed.

  3. A home away from home. [life support system design for Space Station

    Science.gov (United States)

    Powell, L. E.; Hager, R. W.; Mccown, J. W.

    1985-01-01

    The role of the NASA-Marshall center in the development of the Space Station is discussed. The tasks of the center include the development of the life-support system; the design of the common module, which will form the basis for all pressurized Space Station modules; the design and outfit of a common module for the Material and Technology Laboratory (MTL) and logistics use; accommodations for operations of the Orbit Maneuvering Vehicle (OMV) and the Orbit Transfer Vehicle (OTV); and the Space Station propulsion system. A description of functions and design is given for each system, with particular emphasis on the goals of safety, efficiency, automation, and cost effectiveness.

  4. Planning and preparedness for radiological emergencies at nuclear power stations

    International Nuclear Information System (INIS)

    Thomson, R.; Muzzarelli, J.

    1996-01-01

    The Radiological Emergency Preparedness (REP) Program was created after the March 1979 accident at the Three Mile Island nuclear power station. The Federal Emergency Management Agency (FEMA) assists state and local governments in reviewing and evaluating state and local REP plans and preparedness for accidents at nuclear power plants, in partnership with the US Nuclear Regulatory Commission (NRC), which evaluates safety and emergency preparedness at the power stations themselves. Argonne National Laboratory provides support and technical assistance to FEMA in evaluating nuclear power plant emergency response exercises, radiological emergency plans, and preparedness

  5. Space power station. Uchu hatsuden

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, I. (Electrotechnical Laboratory, Tsukuba (Japan))

    1993-02-20

    A calculation tells that the amount of electric power the world will use in the future will require 100 to 500 power plants each with an output of 5-GW class. If this conception is true, it is beyond dispute that utilizing nuclear power will constitute a core of the power generation even though the geographical conditions are severe for nuclear power plants. It is also certain that power generation using clean solar energy will play important roles if power supply stability can be achieved. This paper describes plans to develop space solar power generation and space nuclear power generation that can supply power solving problems concerning geographical conditions and power supply stability. The space solar power generation is a system to arrest solar energy on a static orbit. According to a result of discussions in the U.S.A., the plan calls for solar cell sheets spread over the surface of a structure with a size of 5 km [times] 10 km [times] 0.5 km thick, and electric power obtained therefrom is transmitted to a rectenna with a size of 10 km [times] 13 km, a receiving antenna on the ground. The space nuclear power generation will be constructed similarly on a static orbit. Researches on space nuclear reactors have already begun. 10 refs., 8 figs., 1 tab.

  6. International Space Station Future Correlation Analysis Improvements

    Science.gov (United States)

    Laible, Michael R.; Pinnamaneni, Murthy; Sugavanam, Sujatha; Grygier, Michael

    2018-01-01

    Ongoing modal analyses and model correlation are performed on different configurations of the International Space Station (ISS). These analyses utilize on-orbit dynamic measurements collected using four main ISS instrumentation systems: External Wireless Instrumentation System (EWIS), Internal Wireless Instrumentation System (IWIS), Space Acceleration Measurement System (SAMS), and Structural Dynamic Measurement System (SDMS). Remote Sensor Units (RSUs) are network relay stations that acquire flight data from sensors. Measured data is stored in the Remote Sensor Unit (RSU) until it receives a command to download data via RF to the Network Control Unit (NCU). Since each RSU has its own clock, it is necessary to synchronize measurements before analysis. Imprecise synchronization impacts analysis results. A study was performed to evaluate three different synchronization techniques: (i) measurements visually aligned to analytical time-response data using model comparison, (ii) Frequency Domain Decomposition (FDD), and (iii) lag from cross-correlation to align measurements. This paper presents the results of this study.

  7. Requirements for modeling airborne microbial contamination in space stations

    Science.gov (United States)

    Van Houdt, Rob; Kokkonen, Eero; Lehtimäki, Matti; Pasanen, Pertti; Leys, Natalie; Kulmala, Ilpo

    2018-03-01

    Exposure to bioaerosols is one of the facets that affect indoor air quality, especially for people living in densely populated or confined habitats, and is associated to a wide range of health effects. Good indoor air quality is thus vital and a prerequisite for fully confined environments such as space habitats. Bioaerosols and microbial contamination in these confined space stations can have significant health impacts, considering the unique prevailing conditions and constraints of such habitats. Therefore, biocontamination in space stations is strictly monitored and controlled to ensure crew and mission safety. However, efficient bioaerosol control measures rely on solid understanding and knowledge on how these bioaerosols are created and dispersed, and which factors affect the survivability of the associated microorganisms. Here we review the current knowledge gained from relevant studies in this wide and multidisciplinary area of bioaerosol dispersion modeling and biological indoor air quality control, specifically taking into account the specific space conditions.

  8. Automated subsystems control development. [for life support systems of space station

    Science.gov (United States)

    Block, R. F.; Heppner, D. B.; Samonski, F. H., Jr.; Lance, N., Jr.

    1985-01-01

    NASA has the objective to launch a Space Station in the 1990s. It has been found that the success of the Space Station engineering development, the achievement of initial operational capability (IOC), and the operation of a productive Space Station will depend heavily on the implementation of an effective automation and control approach. For the development of technology needed to implement the required automation and control function, a contract entitled 'Automated Subsystems Control for Life Support Systems' (ASCLSS) was awarded to two American companies. The present paper provides a description of the ASCLSS program. Attention is given to an automation and control architecture study, a generic automation and control approach for hardware demonstration, a standard software approach, application of Air Revitalization Group (ARG) process simulators, and a generic man-machine interface.

  9. International Space Station Lithium-Ion Battery

    Science.gov (United States)

    Dalton, Penni J.; Schwanbeck, Eugene; North, Tim; Balcer, Sonia

    2016-01-01

    The International Space Station (ISS) primary Electric Power System (EPS) currently uses Nickel-Hydrogen (Ni-H2) batteries to store electrical energy. The electricity for the space station is generated by its solar arrays, which charge batteries during insolation for subsequent discharge during eclipse. The Ni-H2 batteries are designed to operate at a 35 depth of discharge (DOD) maximum during normal operation in a Low Earth Orbit. Since the oldest of the 48 Ni-H2 battery Orbital Replacement Units (ORUs) has been cycling since September 2006, these batteries are now approaching their end of useful life. In 2010, the ISS Program began the development of Lithium-Ion (Li-Ion) batteries to replace the Ni-H2 batteries and concurrently funded a Li-Ion ORU and cell life testing project. When deployed, they will be the largest Li-Ion batteries ever utilized for a human-rated spacecraft. This paper will include an overview of the ISS Li-Ion battery system architecture, the Li-Ion battery design and development, controls to limit potential hazards from the batteries, and the status of the Li-Ion cell and ORU life cycle testing.

  10. Engineering graphics data entry for space station data base

    Science.gov (United States)

    Lacovara, R. C.

    1986-01-01

    The entry of graphical engineering data into the Space Station Data Base was examined. Discussed were: representation of graphics objects; representation of connectivity data; graphics capture hardware; graphics display hardware; site-wide distribution of graphics, and consolidation of tools and hardware. A fundamental assumption was that existing equipment such as IBM based graphics capture software and VAX networked facilities would be exploited. Defensible conclusions reached after study and simulations of use of these systems at the engineering level are: (1) existing IBM based graphics capture software is an adequate and economical means of entry of schematic and block diagram data for present and anticipated electronic systems for Space Station; (2) connectivity data from the aforementioned system may be incorporated into the envisioned Space Station Data Base with modest effort; (3) graphics and connectivity data captured on the IBM based system may be exported to the VAX network in a simple and direct fashion; (4) graphics data may be displayed site-wide on VT-125 terminals and lookalikes; (5) graphics hard-copy may be produced site-wide on various dot-matrix printers; and (6) the system may provide integrated engineering services at both the engineering and engineering management level.

  11. Space Station Freedom - Configuration management approach to supporting concurrent engineering and total quality management. [for NASA Space Station Freedom Program

    Science.gov (United States)

    Gavert, Raymond B.

    1990-01-01

    Some experiences of NASA configuration management in providing concurrent engineering support to the Space Station Freedom program for the achievement of life cycle benefits and total quality are discussed. Three change decision experiences involving tracing requirements and automated information systems of the electrical power system are described. The potential benefits of concurrent engineering and total quality management include improved operational effectiveness, reduced logistics and support requirements, prevention of schedule slippages, and life cycle cost savings. It is shown how configuration management can influence the benefits attained through disciplined approaches and innovations that compel consideration of all the technical elements of engineering and quality factors that apply to the program development, transition to operations and in operations. Configuration management experiences involving the Space Station program's tiered management structure, the work package contractors, international partners, and the participating NASA centers are discussed.

  12. Space vehicle with customizable payload and docking station

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; McCabe, Kevin; Seitz, Daniel

    2018-01-30

    A "black box" space vehicle solution may allow a payload developer to define the mission space and provide mission hardware within a predetermined volume and with predetermined connectivity. Components such as the power module, radios and boards, attitude determination and control system (ADCS), command and data handling (C&DH), etc. may all be provided as part of a "stock" (i.e., core) space vehicle. The payload provided by the payload developer may be plugged into the space vehicle payload section, tested, and launched without custom development of core space vehicle components by the payload developer. A docking station may facilitate convenient development and testing of the space vehicle while reducing handling thereof.

  13. Advancing automation and robotics technology for the space station and the US economy

    Science.gov (United States)

    Cohen, A.

    1985-01-01

    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and rebotics for use in the space station. The Executive Overview, Volume 1 presents the major findings of the study and recommends to NASA principles for advancing automation and robotics technologies for the benefit of the space station and of the U.S. economy in general. As a result of its study, the Advanced Technology Advisory Committee believes that a key element of technology for the space station is extensive use of advanced general-purpose automation and robotics. These systems could provide the United States with important new methods of generating and exploiting space knowledge in commercial enterprises and thereby help preserve U.S. leadership in space.

  14. Definition of technology development missions for early space stations orbit transfer vehicle serving. Phase 2, task 1: Space station support of operational OTV servicing

    Science.gov (United States)

    1983-01-01

    Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.

  15. Planning for Crew Exercise for Future Deep Space Mission Scenarios

    Science.gov (United States)

    Moore, Cherice; Ryder, Jeff

    2015-01-01

    Providing the necessary exercise capability to protect crew health for deep space missions will bring new sets of engineering and research challenges. Exercise has been found to be a necessary mitigation for maintaining crew health on-orbit and preparing the crew for return to earth's gravity. Health and exercise data from Apollo, Space Lab, Shuttle, and International Space Station missions have provided insight into crew deconditioning and the types of activities that can minimize the impacts of microgravity on the physiological systems. The hardware systems required to implement exercise can be challenging to incorporate into spaceflight vehicles. Exercise system design requires encompassing the hardware required to provide mission specific anthropometrical movement ranges, desired loads, and frequencies of desired movements as well as the supporting control and monitoring systems, crew and vehicle interfaces, and vibration isolation and stabilization subsystems. The number of crew and operational constraints also contribute to defining the what exercise systems will be needed. All of these features require flight vehicle mass and volume integrated with multiple vehicle systems. The International Space Station exercise hardware requires over 1,800 kg of equipment and over 24 m3 of volume for hardware and crew operational space. Improvements towards providing equivalent or better capabilities with a smaller vehicle impact will facilitate future deep space missions. Deep space missions will require more understanding of the physiological responses to microgravity, understanding appropriate mitigations, designing the exercise systems to provide needed mitigations, and integrating effectively into vehicle design with a focus to support planned mission scenarios. Recognizing and addressing the constraints and challenges can facilitate improved vehicle design and exercise system incorporation.

  16. Close Range Photogrammetry in Space - Measuring the On-Orbit Clearance between Hardware on the International Space Station

    Science.gov (United States)

    Liddle, Donn

    2017-01-01

    When photogrammetrists read an article entitled "Photogrammetry in Space" they immediately think of terrestrial mapping using satellite imagery. However in the last 19 years the roll of close range photogrammetry in support of the manned space flight program has grown exponentially. Management and engineers have repeatedly entrusted the safety of the vehicles and their crews to the results of photogrammetric analysis. In February 2010, the Node 3 module was attached to the port side Common Berthing Mechanism (CBM) of the International Space Station (ISS). Since this was not the location at which the module was originally designed to be located on the ISS, coolant lines containing liquid ammonia, were installed externally from the US Lab to Node 3 during a spacewalk. During mission preparation I had developed a plan and a set of procedures to have the astronauts acquire stereo imagery of these coolant lines at the conclusion of the spacewalk to enable us to map their as-installed location relative to the rest of the space station. Unfortunately, the actual installation of the coolant lines took longer than expected and in an effort to wrap up the spacewalk on time, the mission director made a real-time call to drop the photography. My efforts to reschedule the photography on a later spacewalk never materialized, so rather than having an as-installed model for the location of coolant lines, the master ISS CAD database continued to display an as-designed model of the coolant lines. Fast forward to the summer of 2015, the ISS program planned to berth a Japanese cargo module to the nadir Common Berthing Mechanism (CBM), immediately adjacent to the Node 3 module. A CAD based clearance analysis revealed a negative four inch clearance between the ammonia lines and a thruster nozzle on the port side of the cargo vehicle. Recognizing that the model of the ammonia line used in the clearance analysis was "as-designed" rather than "as-installed", I was asked to determine the

  17. Doses due to extra-vehicular activity on space stations

    Energy Technology Data Exchange (ETDEWEB)

    Deme, S.; Apathy, I.; Feher, I. [KFKI Atomic Energy Research Institute, Budapest (Hungary); Akatov, Y.; Arkhanguelski, V. [Institute of Biomedical Problems, State Scientific Center, Moscow (Russian Federation); Reitz, G. [DLR Institute of Aerospace Medicine, Cologne, Linder Hohe (Germany)

    2006-07-01

    One of the many risks of long duration space flight is the dose from cosmic radiation, especially during periods of intensive solar activity. At such times, particularly during extra-vehicular activity (E.V.A.), when the astronauts are not protected by the wall of the spacecraft, cosmic radiation is a potentially serious health threat. Accurate dose measurement becomes increasingly important during the assembly of large space objects. Passive integrating detector systems such as thermoluminescent dosimeters (TLDs) are commonly used for dosimetric mapping and personal dosimetry on space vehicles. K.F.K.I. Atomic Energy Research Institute has developed and manufactured a series of thermoluminescent dosimeter systems, called Pille, for measuring cosmic radiation doses in the 3 {mu}Gy to 10 Gy range, consisting of a set of CaSO{sub 4}:Dy bulb dosimeters and a small, compact, TLD reader suitable for on-board evaluation of the dosimeters. Such a system offers a solution for E.V.A. dosimetry as well. By means of such a system, highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations, on the Space Shuttle, and most recently on several segments of the International Space Station (I.S.S.). The Pille system was used to make the first measurements of the radiation exposure of cosmonauts during E.V.A.. Such E.V.A. measurements were carried out twice (on June 12 and 16, 1987) by Y. Romanenko, the commander of the second crew of Mir. During the E.V.A. one of the dosimeters was fixed in a pocket on the outer surface of the left leg of his space-suit; a second dosimeter was located inside the station for reference measurements. The advanced TLD system Pille 96 was used during the Nasa-4 (1997) mission to monitor the cosmic radiation dose inside the Mir Space Station and to measure the exposure of two of the astronauts during their E.V.A. activities. The extra doses of two E.V.A. during the Euromir 95 and one E.V.A. during the Nasa4 experiment

  18. Doses due to extra-vehicular activity on space stations

    International Nuclear Information System (INIS)

    Deme, S.; Apathy, I.; Feher, I.; Akatov, Y.; Arkhanguelski, V.; Reitz, G.

    2006-01-01

    One of the many risks of long duration space flight is the dose from cosmic radiation, especially during periods of intensive solar activity. At such times, particularly during extra-vehicular activity (E.V.A.), when the astronauts are not protected by the wall of the spacecraft, cosmic radiation is a potentially serious health threat. Accurate dose measurement becomes increasingly important during the assembly of large space objects. Passive integrating detector systems such as thermoluminescent dosimeters (TLDs) are commonly used for dosimetric mapping and personal dosimetry on space vehicles. K.F.K.I. Atomic Energy Research Institute has developed and manufactured a series of thermoluminescent dosimeter systems, called Pille, for measuring cosmic radiation doses in the 3 μGy to 10 Gy range, consisting of a set of CaSO 4 :Dy bulb dosimeters and a small, compact, TLD reader suitable for on-board evaluation of the dosimeters. Such a system offers a solution for E.V.A. dosimetry as well. By means of such a system, highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations, on the Space Shuttle, and most recently on several segments of the International Space Station (I.S.S.). The Pille system was used to make the first measurements of the radiation exposure of cosmonauts during E.V.A.. Such E.V.A. measurements were carried out twice (on June 12 and 16, 1987) by Y. Romanenko, the commander of the second crew of Mir. During the E.V.A. one of the dosimeters was fixed in a pocket on the outer surface of the left leg of his space-suit; a second dosimeter was located inside the station for reference measurements. The advanced TLD system Pille 96 was used during the Nasa-4 (1997) mission to monitor the cosmic radiation dose inside the Mir Space Station and to measure the exposure of two of the astronauts during their E.V.A. activities. The extra doses of two E.V.A. during the Euromir 95 and one E.V.A. during the Nasa4 experiment were

  19. Performance of International Space Station Alpha Trace Contaminant Control Systems

    Science.gov (United States)

    Perry, J. L.

    2016-01-01

    The analysis presented herein was conducted during the early transitional period between the Space Station Freedom and the International Space Station programs as part of an effort to evaluate key design specifications and standards used by the United States and Russia. The analysis was originally documented under NASA cover letter ED62(36-94) dated August 16, 1994. The analysis was revised and rereleased under NASA cover letter ED62(51-94) dated November 14, 1994. These cover letters are provided here to guide programmatic context for the reader.

  20. Space-Based Reconfigurable Software Defined Radio Test Bed Aboard International Space Station

    Science.gov (United States)

    Reinhart, Richard C.; Lux, James P.

    2014-01-01

    The National Aeronautical and Space Administration (NASA) recently launched a new software defined radio research test bed to the International Space Station. The test bed, sponsored by the Space Communications and Navigation (SCaN) Office within NASA is referred to as the SCaN Testbed. The SCaN Testbed is a highly capable communications system, composed of three software defined radios, integrated into a flight system, and mounted to the truss of the International Space Station. Software defined radios offer the future promise of in-flight reconfigurability, autonomy, and eventually cognitive operation. The adoption of software defined radios offers space missions a new way to develop and operate space transceivers for communications and navigation. Reconfigurable or software defined radios with communications and navigation functions implemented in software or VHDL (Very High Speed Hardware Description Language) provide the capability to change the functionality of the radio during development or after launch. The ability to change the operating characteristics of a radio through software once deployed to space offers the flexibility to adapt to new science opportunities, recover from anomalies within the science payload or communication system, and potentially reduce development cost and risk by adapting generic space platforms to meet specific mission requirements. The software defined radios on the SCaN Testbed are each compliant to NASA's Space Telecommunications Radio System (STRS) Architecture. The STRS Architecture is an open, non-proprietary architecture that defines interfaces for the connections between radio components. It provides an operating environment to abstract the communication waveform application from the underlying platform specific hardware such as digital-to-analog converters, analog-to-digital converters, oscillators, RF attenuators, automatic gain control circuits, FPGAs, general-purpose processors, etc. and the interconnections among

  1. Fluid Studies on the International Space Station

    Science.gov (United States)

    Motil, Brian J.

    2016-01-01

    Will discuss the recent activities on the international space station, including the adiabatic two phase flow, capillary flow and interfacial phenomena, and boiling and condensation. Will also give a historic introduction to Microgravity Studies at Glenn Research Center. Talk will be given to students and faculty at University of Louisville.

  2. Summary of astronaut inputs on automation and robotics for Space Station Freedom

    Science.gov (United States)

    Weeks, David J.

    1990-01-01

    Astronauts and payload specialists present specific recommendations in the form of an overview that relate to the use of automation and robotics on the Space Station Freedom. The inputs are based on on-orbit operations experience, time requirements for crews, and similar crew-specific knowledge that address the impacts of automation and robotics on productivity. Interview techniques and specific questionnaire results are listed, and the majority of the responses indicate that incorporating automation and robotics to some extent and with human backup can improve productivity. Specific support is found for the use of advanced automation and EVA robotics on the Space Station Freedom and for the use of advanced automation on ground-based stations. Ground-based control of in-flight robotics is required, and Space Station activities and crew tasks should be analyzed to assess the systems engineering approach for incorporating automation and robotics.

  3. International Space Station External Contamination Environment for Space Science Utilization

    Science.gov (United States)

    Soares, Carlos E.; Mikatarian, Ronald R.; Steagall, Courtney A.; Huang, Alvin Y.; Koontz, Steven; Worthy, Erica

    2014-01-01

    The International Space Station (ISS) is the largest and most complex on-orbit platform for space science utilization in low Earth orbit. Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets. This paper addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on returned hardware, and contamination forecasting maps being generated to support external payload topology studies and science utilization.

  4. Consideration of adding a commercial module to the International Space Station

    Science.gov (United States)

    Friefeld, J.; Fugleberg, D.; Patel, J.; Subbaraman, G.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) is currently assembling the International Space Station in Low Earth Orbit. One of NASA's program objectives is to encourage space commercialization. Through NASA's Engineering Research and Technology Development program, Boeing is conducting a study to ascertain the feasibility of adding a commercial module to the International Space Station. This module (facility) that can be added, following on-orbit assembly is described. The facility would have the capability to test large, engineering scale payloads in a space environment. It would also have the capability to provide services to co-orbiting space vehicles as well as gathering data for commercial terrestrial applications. The types of industries to be serviced are described as are some of the technical and business considerations that need to be addressed in order to achieve commercial viability.

  5. Atmosphere and water quality monitoring on Space Station Freedom

    Science.gov (United States)

    Niu, William

    1990-01-01

    In Space Station Freedom air and water will be supplied in closed loop systems. The monitoring of air and water qualities will ensure the crew health for the long mission duration. The Atmosphere Composition Monitor consists of the following major instruments: (1) a single focusing mass spectrometer to monitor major air constituents and control the oxygen/nitrogen addition for the Space Station; (2) a gas chromatograph/mass spectrometer to detect trace contaminants; (3) a non-dispersive infrared spectrometer to determine carbon monoxide concentration; and (4) a laser particle counter for measuring particulates in the air. An overview of the design and development concepts for the air and water quality monitors is presented.

  6. Advancing automation and robotics technology for the space station and for the US economy

    Science.gov (United States)

    Nunamaker, Robert

    1988-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station. This material was documented in the initial report (NASA Technical Memo 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the sixth in a series of progress updates and covers the period between October 1, 1987 and March 1, 1988. NASA has accepted the basic recommendations of ATAC for its Space Station efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station program and serve as a highly visible stimulator affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Space Station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the Space Station.

  7. 78 FR 49296 - NASA International Space Station Advisory Committee; Meeting

    Science.gov (United States)

    2013-08-13

    .... Greg Mann, Office of International and Interagency Relations, (202) 358-5140, NASA Headquarters... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-091] NASA International Space Station... meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended...

  8. 75 FR 51852 - NASA International Space Station Advisory Committee; Meeting

    Science.gov (United States)

    2010-08-23

    .... Donald Miller, Office of International and Interagency Relations, (202) 358-1527, National Aeronautics... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-090)] NASA International Space Station... meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended...

  9. Space Station life science research facility - The vivarium/laboratory

    Science.gov (United States)

    Hilchey, J. D.; Arno, R. D.

    1985-01-01

    Research opportunities possible with the Space Station are discussed. The objective of the research program will be study gravity relationships for animal and plant species. The equipment necessary for space experiments including vivarium facilities are described. The cost of the development of research facilities such as the vivarium/laboratory and a bioresearch centrifuge is examined.

  10. Light Microsopy Module, International Space Station Premier Automated Microscope

    Science.gov (United States)

    Meyer, William V.; Sicker, Ronald J.; Chiaramonte, Francis P.; Brown, Daniel F.; O'Toole, Martin A.; Foster, William M.; Motil, Brian J.; Abbot-Hearn, Amber Ashley; Atherton, Arthur Johnson; Beltram, Alexander; hide

    2015-01-01

    The Light Microscopy Module (LMM) was launched to the International Space Station (ISS) in 2009 and began science operations in 2010. It continues to support Physical and Biological scientific research on ISS. During 2015, if all goes as planned, five experiments will be completed: [1] Advanced Colloids Experiments with a manual sample base -3 (ACE-M-3), [2] the Advanced Colloids Experiment with a Heated Base -1 (ACE-H-1), [3] (ACE-H-2), [4] the Advanced Plant Experiment -03 (APEX-03), and [5] the Microchannel Diffusion Experiment (MDE). Preliminary results, along with an overview of present and future LMM capabilities will be presented; this includes details on the planned data imaging processing and storage system, along with the confocal upgrade to the core microscope. [1] New York University: Paul Chaikin, Andrew Hollingsworth, and Stefano Sacanna, [2] University of Pennsylvania: Arjun Yodh and Matthew Gratale, [3] a consortium of universities from the State of Kentucky working through the Experimental Program to Stimulate Competitive Research (EPSCoR): Stuart Williams, Gerold Willing, Hemali Rathnayake, et al., [4] from the University of Florida and CASIS: Anna-Lisa Paul and Rob Ferl, and [5] from the Methodist Hospital Research Institute from CASIS: Alessandro Grattoni and Giancarlo Canavese.

  11. Environmental Control and Life Support Systems technology options for Space Station application

    Science.gov (United States)

    Hall, J. B., Jr.; Ferebee, M. J., Jr.; Sage, K. H.

    1985-01-01

    Continuous assessments regarding the suitability of candidate technologies for manned Space Stations will be needed over the next several years to obtain a basis for recommending the optimum system for an Initial Operating Capability (IOC) Space Station which is to be launched in the early 1990's. This paper has the objective to present analysis programs, the candidate recommendations, and the recommended approach for integration these candidates into the NASA Space Station reference configuration. Attention is given to ECLSS (Environmental Control and Life Support System) technology assessment program, an analysis approach for candidate technology recommendations, mission model variables, a candidate integration program, metabolic oxygen recovery, urine/flush water and all waste water recovery, wash water and condensate water recovery, and an integration analysis.

  12. Energy consumption analysis for the Mars deep space station

    Science.gov (United States)

    Hayes, N. V.

    1982-01-01

    Results for the energy consumption analysis at the Mars deep space station are presented. It is shown that the major energy consumers are the 64-Meter antenna building and the operations support building. Verification of the antenna's energy consumption is highly dependent on an accurate knowlege of the tracking operations. The importance of a regular maintenance schedule for the watt hour meters installed at the station is indicated.

  13. Habitability Assessment of International Space Station

    Science.gov (United States)

    Thaxton, Sherry

    2015-01-01

    The purpose of this study is to assess habitability during the International Space Station 1-year mission, and subsequent 6-month missions, in order to better prepare for future long-duration spaceflights to destinations such as Near Earth Asteroid (NEA) and Mars, which will require crewmembers to live and work in a confined spacecraft environment for over a year. Data collected using Space Habitability Observation Reporting Tool (iSHORT), crew-collected videos, questionnaires, and PI conferences will help characterize the current state of habitability for the ISS. These naturalistic techniques provide crewmembers with the opportunity to self-report habitability and human factors observations in near real-time, which is not systematically done during ISS missions at present.

  14. The International Space Station: Operations and Assembly - Learning From Experiences - Past, Present, and Future

    Science.gov (United States)

    Fuller, Sean; Dillon, William F.

    2006-01-01

    As the Space Shuttle continues flight, construction and assembly of the International Space Station (ISS) carries on as the United States and our International Partners resume the building, and continue to carry on the daily operations, of this impressive and historical Earth-orbiting research facility. In his January 14, 2004, speech announcing a new vision for America s space program, President Bush ratified the United States commitment to completing construction of the ISS by 2010. Since the launch and joining of the first two elements in 1998, the ISS and the partnership have experienced and overcome many challenges to assembly and operations, along with accomplishing many impressive achievements and historical firsts. These experiences and achievements over time have shaped our strategy, planning, and expectations. The continual operation and assembly of ISS leads to new knowledge about the design, development and operation of systems and hardware that will be utilized in the development of new deep-space vehicles needed to fulfill the Vision for Exploration and to generate the data and information that will enable our programs to return to the Moon and continue on to Mars. This paper will provide an overview of the complexity of the ISS Program, including a historical review of the major assembly events and operational milestones of the program, along with the upcoming assembly plans and scheduled missions of the space shuttle flights and ISS Assembly sequence.

  15. State-of-the art of dc components for secondary power distribution of Space Station Freedom

    International Nuclear Information System (INIS)

    Krauthamer, S.; Gangal, M.; Das, R.

    1991-01-01

    The National Aeronautics and Space Administration has selected 120-Vdc secondary power distribution for Space Station Freedom. Although this high voltage level is new for space applications, it is well within the bounds for components and subsystems being developed and in some cases being used in aerospace, defense, and terrestrial applications. In this paper state-of-the-art components and subsystems for Space Station Freedom in terms of performance, size, and topology are examined. One objective is to inform the users of Space Station Freedom about what is available in power supplies and power control devices. The other objective is to stimulate the interest in the component industry so that more focused product development can be started. Based on results of this study, it is estimated that, with some redesign, modifications, and space qualification, many of these components may be applied to Space Station Freedom needs

  16. Definition of satellite servicing technology development missions for early space stations. Volume 2: Technical

    Science.gov (United States)

    1983-01-01

    Early space station accommodation, build-up of space station manipulator capability, on-orbit spacecraft assembly test and launch, large antenna structure deployment, service/refurbish satellite, and servicing of free-flying materials processing platform are discussed.

  17. Numerical Study of Ammonia Leak and Dispersion in the International Space Station

    Science.gov (United States)

    Son, Chang H.

    2012-01-01

    Release of ammonia into the International Space Station (ISS) cabin atmosphere can occur if the water/ammonia barrier breach of the active thermal control system (ATCS) interface heat exchanger (IFHX) happens. After IFHX breach liquid ammonia is introduced into the water-filled internal thermal control system (ITCS) and then to the cabin environment through a ruptured gas trap. Once the liquid water/ammonia mixture exits ITCS, it instantly vaporizes and mixes with the U.S. Laboratory cabin air that results in rapid deterioration of the cabin conditions. The goal of the study is to assess ammonia propagation in the Station after IFHX breach to plan the operation procedure. A Computational Fluid Dynamics (CFD) model for accurate prediction of airflow and ammonia transport within each of the modules in the ISS cabin was developed. CFD data on ammonia content in the cabin aisle way of the ISS and, in particular, in the Russian On- Orbit Segment during the period of 15 minutes after gas trap rupture are presented for four scenarios of rupture response. Localized effects of ammonia dispersion and risk mitigation are discussed.

  18. The return of "Gasoline station-park" status into green-open space in DKI Jakarta Province

    Science.gov (United States)

    Kautsar, L. H. R.; Waryono, T.; Sobirin

    2017-07-01

    The development of gasoline stations in 1970 increased drastically due to the Government support through DKT Jaya Official Note (DKT Jakarta), resulting in a great number of the parks (green open space or RTH - Ruang Terbuka Hijau) converted into a gasoline station. Currently, to meet the RTH target (13.94 % RTH based RTRW [(Rencana Tata Ruang Wilayah) DKT Jakarta 2010], the policy was changed by Decree No.728 year 2009 and Governor Tnstruction No.75 year 2009. Land function of 27 gasoline stations unit must be returned. This study is to determine the appropriateness of gasoline Station-Park conversion into RTH based site and situation approach. The scope of this study was limited only to gasoline stations not converted into RTH. The methodology was the combination of AHP (Analytical Hierarchy Process) and ranking method. Site variables were meant for prone to flooding, the width of land for gasoline station, land status. Situation variables were meant for other public space, availability of other gasoline stations, gasoline stations service, road segments, and the proportions of built space. Analysis study used quantitative descriptive analysis. The results were three of the five gasoline stations were congruence to be converted into a green open space (RTH).

  19. Definition of technology development missions for early Space Station satellite servicing. Volume 1: Executive summary

    Science.gov (United States)

    1984-01-01

    The Executive Summary volume 1, includes an overview of both phases of the Definition of Technology Development Missions for Early Space Station Satellite Servicing. The primary purpose of Phase 1 of the Marshall Space Flight Center (MSFC) Satellite Servicing Phase 1 study was to establish requirements for demonstrating the capability of performing satellite servicing activities on a permanently manned Space Station in the early 1990s. The scope of Phase 1 included TDM definition, outlining of servicing objectives, derivation of initial Space Station servicing support requirements, and generation of the associated programmatic schedules and cost. The purpose of phase 2 of the satellite servicing study was to expand and refine the overall understanding of how best to use the manned space station as a test bed for demonstration of satellite servicing capabilities.

  20. Risk Management for the International Space Station

    Science.gov (United States)

    Sebastian, J.; Brezovic, Philip

    2002-01-01

    The International Space Station (ISS) is an extremely complex system, both technically and programmatically. The Space Station must support a wide range of payloads and missions. It must be launched in numerous launch packages and be safely assembled and operated in the harsh environment of space. It is being designed and manufactured by many organizations, including the prime contractor, Boeing, the NASA institutions, and international partners and their contractors. Finally, the ISS has multiple customers, (e.g., the Administration, Congress, users, public, international partners, etc.) with contrasting needs and constraints. It is the ISS Risk Management Office strategy to proactively and systematically manages risks to help ensure ISS Program success. ISS program follows integrated risk management process (both quantitative and qualitative) and is integrated into ISS project management. The process and tools are simple and seamless and permeate to the lowest levels (at a level where effective management can be realized) and follows the continuous risk management methodology. The risk process assesses continually what could go wrong (risks), determine which risks need to be managed, implement strategies to deal with those risks, and measure effectiveness of the implemented strategies. The process integrates all facets of risk including cost, schedule and technical aspects. Support analysis risk tools like PRA are used to support programatic decisions and assist in analyzing risks.

  1. Web Design for Space Operations: An Overview of the Challenges and New Technologies Used in Developing and Operating Web-Based Applications in Real-Time Operational Support Onboard the International Space Station, in Astronaut Mission Planning and Mission Control Operations

    Science.gov (United States)

    Khan, Ahmed

    2010-01-01

    The International Space Station (ISS) Operations Planning Team, Mission Control Centre and Mission Automation Support Network (MAS) have all evolved over the years to use commercial web-based technologies to create a configurable electronic infrastructure to manage the complex network of real-time planning, crew scheduling, resource and activity management as well as onboard document and procedure management required to co-ordinate ISS assembly, daily operations and mission support. While these Web technologies are classified as non-critical in nature, their use is part of an essential backbone of daily operations on the ISS and allows the crew to operate the ISS as a functioning science laboratory. The rapid evolution of the internet from 1998 (when ISS assembly began) to today, along with the nature of continuous manned operations in space, have presented a unique challenge in terms of software engineering and system development. In addition, the use of a wide array of competing internet technologies (including commercial technologies such as .NET and JAVA ) and the special requirements of having to support this network, both nationally among various control centres for International Partners (IPs), as well as onboard the station itself, have created special challenges for the MCC Web Tools Development Team, software engineers and flight controllers, who implement and maintain this system. This paper presents an overview of some of these operational challenges, and the evolving nature of the solutions and the future use of COTS based rich internet technologies in manned space flight operations. In particular this paper will focus on the use of Microsoft.s .NET API to develop Web-Based Operational tools, the use of XML based service oriented architectures (SOA) that needed to be customized to support Mission operations, the maintenance of a Microsoft IIS web server onboard the ISS, The OpsLan, functional-oriented Web Design with AJAX

  2. In the footsteps of Columbus European missions to the International Space Station

    CERN Document Server

    O'Sullivan, John

    2016-01-01

    The European Space Agency has a long history of cooperating with NASA in human spaceflight, having developed the Spacelab module for carrying in the payload bay of the Space Shuttle. This book tells of the development of ESA’s Columbus microgravity science laboratory of the International Space Station and the European astronauts who work in it. From the beginning, ESA has been in close collaboration on the ISS, making a significant contribution to the station hardware. Special focus is given to Columbus and Copula as well as station resupply using the ATV. Each mission is also examined individually, creating a comprehensive picture of ESA's crucial involvement over the years. Extensive use of color photographs from NASA and ESA to depict the experiments carried out, the phases of the ISS construction, and the personal stories of the astronauts in space highlights the crucial European work on human spaceflight.

  3. 76 FR 52016 - NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2011-08-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-074)] NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel...

  4. Space station pressurized laboratory safety guidelines

    Science.gov (United States)

    Mcgonigal, Les

    1990-01-01

    Before technical safety guidelines and requirements are established, a common understanding of their origin and importance must be shared between Space Station Program Management, the User Community, and the Safety organizations involved. Safety guidelines and requirements are driven by the nature of the experiments, and the degree of crew interaction. Hazard identification; development of technical safety requirements; operating procedures and constraints; provision of training and education; conduct of reviews and evaluations; and emergency preplanning are briefly discussed.

  5. Was Einstein wrong? Space station research may find out

    CERN Multimedia

    2002-01-01

    Experiments using ultra-precise clocks on the International Space Station will attempt to check if Einstein's Special Theory of Relativity is correct. Future experiments may also yield evidence of string theory (1 page).

  6. Rocky Mountain Research Station 2008-2012 National Fire Plan Investments

    Science.gov (United States)

    Erika Gallegos

    2013-01-01

    This report highlights selected accomplishments by the USDA Forest Service Rocky Mountain Research Station's Wildland Fire and Fuels Research & Development projects in support of the National Fire Plan from 2008 through 2012. These projects are examples of the broad range of knowledge and tools developed by National Fire Plan funding beginning in 2008.

  7. Man-systems distributed system for Space Station Freedom

    Science.gov (United States)

    Lewis, J. L.

    1990-01-01

    Viewgraphs on man-systems distributed system for Space Station Freedom are presented. Topics addressed include: description of man-systems (definition, requirements, scope, subsystems, and topologies); implementation (approach, tools); man-systems interfaces (system to element and system to system); prime/supporting development relationship; selected accomplishments; and technical challenges.

  8. Lunar Station: The Next Logical Step in Space Development

    Science.gov (United States)

    Pittman, Robert Bruce; Harper, Lynn; Newfield, Mark; Rasky, Daniel J.

    2014-01-01

    The International Space Station (ISS) is the product of the efforts of sixteen nations over the course of several decades. It is now complete, operational, and has been continuously occupied since November of 20001. Since then the ISS has been carrying out a wide variety of research and technology development experiments, and starting to produce some pleasantly startling results. The ISS has a mass of 420 metric tons, supports a crew of six with a yearly resupply requirement of around 30 metric tons, within a pressurized volume of 916 cubic meters, and a habitable volume of 388 cubic meters. Its solar arrays produce up to 84 kilowatts of power. In the course of developing the ISS, many lessons were learned and much valuable expertise was gained. Where do we go from here? The ISS offers an existence proof of the feasibility of sustained human occupation and operations in space over decades. It also demonstrates the ability of many countries to work collaboratively on a very complex and expensive project in space over an extended period of time to achieve a common goal. By harvesting best practices and lessons learned, the ISS can also serve as a useful model for exploring architectures for beyond low-­- earth-­-orbit (LEO) space development. This paper will explore the concept and feasibility for a Lunar Station. The Station concept can be implemented by either putting the equivalent capability of the ISS down on the surface of the Moon, or by developing the required capabilities through a combination of delivered materials and equipment and in situ resource utilization (ISRU). Scenarios that leverage existing technologies and capabilities as well as capabilities that are under development and are expected to be available within the next 3-­5 years, will be examined. This paper will explore how best practices and expertise gained from developing and operating the ISS and other relevant programs can be applied to effectively developing Lunar Station.

  9. Bigelow aerospace colonizing space one module at a time

    CERN Document Server

    Seedhouse, Erik

    2015-01-01

    Here for the first time you can read: how a space technology start-up is pioneering work on expandable space station modules how Robert Bigelow licensed the TransHab idea from NASA, and how his company developed the technology for more than a decade how, very soon, a Bigelow expandable module will be docked with the International Space Station. At the core of Bigelow's plan is the inflatable module technology. Tougher and more durable than their rigid counterparts, these inflatable modules are perfectly suited for use in the space, where Bigelow plans to link them together to form commercial space stations. This book describes how this new breed of space stations will be built and how the link between Bigelow Aerospace, NASA and private companies can lead to a new economy—a space economy. Finally, the book touches on Bigelow's aspirations beyond low Earth orbit, plans that include the landing of a base on the lunar surface and the prospect of missions to Mars.

  10. Space Station Freedom - What if...?

    Science.gov (United States)

    Grey, Jerry

    1992-10-01

    The use of novel structural designs and the Energia launch system of the Commonwealth of Independent States for the Space Station Freedom (SSF) program is evaluated by means of a concept analysis. The analysis assumes that: (1) Energia is used for all cargo and logistics resupply missions; (2) the shuttles are launched from the U.S.; and (3) an eight-person assured crew return vehicle is available. This launch/supply scenario reduces the deployment risk from 30 launches to a total of only eight launches reducing the cost by about 15 billion U.S. dollars. The scenario also significantly increases the expected habitable and storage volumes and decreases the deployment time by three years over previous scenarios. The specific payloads are given for Energia launches emphasizing a proposed design for the common module cluster that incorporates direct structural attachment to the truss at midspan. The design is shown to facilitate the accommodation of additional service hangars and to provide a more efficient program for spacecraft habitable space.

  11. Space Station automation and robotics

    Science.gov (United States)

    1987-01-01

    A group of fifteen students in the Electrical Engineering Department at the University of Maryland, College Park, has been involved in a design project under the sponsorship of NASA Headquarters, NASA Goddard Space Flight Center and the Systems Research Center (SRC) at UMCP. The goal of the NASA/USRA project was to first obtain a refinement of the design work done in Spring 1986 on the proposed Mobile Remote Manipulator System (MRMS) for the Space Station. This was followed by design exercises involving the OMV and two armed service vehicle. Three students worked on projects suggested by NASA Goddard scientists for ten weeks this past summer. The knowledge gained from the summer design exercise has been used to improve our current design of the MRMS. To this end, the following program was undertaken for the Fall semester 1986: (1) refinement of the MRMS design; and (2) addition of vision capability to our design.

  12. Expert-guided evolutionary algorithm for layout design of complex space stations

    Science.gov (United States)

    Qian, Zhiqin; Bi, Zhuming; Cao, Qun; Ju, Weiguo; Teng, Hongfei; Zheng, Yang; Zheng, Siyu

    2017-08-01

    The layout of a space station should be designed in such a way that different equipment and instruments are placed for the station as a whole to achieve the best overall performance. The station layout design is a typical nondeterministic polynomial problem. In particular, how to manage the design complexity to achieve an acceptable solution within a reasonable timeframe poses a great challenge. In this article, a new evolutionary algorithm has been proposed to meet such a challenge. It is called as the expert-guided evolutionary algorithm with a tree-like structure decomposition (EGEA-TSD). Two innovations in EGEA-TSD are (i) to deal with the design complexity, the entire design space is divided into subspaces with a tree-like structure; it reduces the computation and facilitates experts' involvement in the solving process. (ii) A human-intervention interface is developed to allow experts' involvement in avoiding local optimums and accelerating convergence. To validate the proposed algorithm, the layout design of one-space station is formulated as a multi-disciplinary design problem, the developed algorithm is programmed and executed, and the result is compared with those from other two algorithms; it has illustrated the superior performance of the proposed EGEA-TSD.

  13. Inspiring the Next Generation: The International Space Station Education Accomplishments

    Science.gov (United States)

    Alleyne, Camille W.; Hasbrook, Pete; Knowles, Carolyn; Chicoine, Ruth Ann; Miyagawa, Yayoi; Koyama, Masato; Savage, Nigel; Zell, Martin; Biryukova, Nataliya; Pinchuk, Vladimir; hide

    2014-01-01

    The International Space Station (ISS) has a unique ability to capture the imagination of both students and teachers worldwide. Since 2000, the presence of humans onboard ISS has provided a foundation for numerous educational activities aimed at capturing that interest and motivating study in the sciences, technology, engineering and mathematics (STEM). Over 43 million students around the world have participated in ISS-related educational activities. Projects such as YouTube Space Lab, Sally Ride Earth Knowledge-based Acquired by Middle Schools (EarthKAM), SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) Zero-Robotics, Tomatosphere, and MAI-75 events among others have allowed for global student, teacher and public access to space through student classroom investigations and real-time audio and video contacts with crewmembers. Educational activities are not limited to STEM but encompass all aspects of the human condition. This is well illustrated in the Uchu Renshi project, a chain poem initiated by an astronaut while in space and continued and completed by people on Earth. With ISS operations now extended to 2024, projects like these and their accompanying educational materials are available to more students around the world. From very early on in the program's history, students have been provided with a unique opportunity to get involved and participate in science and engineering projects. Many of these projects support inquiry-based learning that allows students to ask questions, develop hypothesis-derived experiments, obtain supporting evidence and identify solutions or explanations. This approach to learning is well-published as one of the most effective ways to inspire students to pursue careers in scientific and technology fields. Ever since the first space station element was launched, a wide range of student experiments and educational activities have been performed, both individually and collaboratively, by all the

  14. Benchmarks of programming languages for special purposes in the space station

    Science.gov (United States)

    Knoebel, Arthur

    1986-01-01

    Although Ada is likely to be chosen as the principal programming language for the Space Station, certain needs, such as expert systems and robotics, may be better developed in special languages. The languages, LISP and Prolog, are studied and some benchmarks derived. The mathematical foundations for these languages are reviewed. Likely areas of the space station are sought out where automation and robotics might be applicable. Benchmarks are designed which are functional, mathematical, relational, and expert in nature. The coding will depend on the particular versions of the languages which become available for testing.

  15. International cooperation in the Space Station

    Science.gov (United States)

    Raney, William P.

    1987-01-01

    The principles and policies governing participation in the International Space Station are examined from a NASA perspective. The history of the program is reviewed; the most important aspects of the partnership concept (functional allocation, shared access, and interface commonality) are considered in detail; and the ongoing outfitting studies are briefly characterized. Major issues remaining to be negotiated include (1) the overall management structure; (2) the division of responsibilities for system design, integration, operation, and utilization; and (3) the sharing of operating costs.

  16. Effects of a Closed Space Environment on Gene Expression in Hair Follicles of Astronauts in the International Space Station

    Data.gov (United States)

    National Aeronautics and Space Administration — In recent times long-term stay has become a common occurrence in the International Space Station (ISS). However adaptation to the space environment can sometimes...

  17. Technology development for laser-cooled clocks on the International Space Station

    Science.gov (United States)

    Klipstein, W. M.

    2003-01-01

    The PARCS experiment will use a laser-cooled cesium atomic clock operating in the microgravity environment aboard the International Space Station to provide both advanced tests of gravitational theory to demonstrate a new cold-atom clock technology for space.

  18. Gram staining apparatus for space station applications

    Science.gov (United States)

    Molina, T. C.; Brown, H. D.; Irbe, R. M.; Pierson, D. L.

    1990-01-01

    A self-contained, portable Gram staining apparatus (GSA) has been developed for use in the microgravity environment on board the Space Station Freedom. Accuracy and reproducibility of this apparatus compared with the conventional Gram staining method were evaluated by using gram-negative and gram-positive controls and different species of bacteria grown in pure cultures. A subsequent study was designed to assess the performance of the GSA with actual specimens. A set of 60 human and environmental specimens was evaluated with the GSA and the conventional Gram staining procedure. Data obtained from these studies indicated that the GSA will provide the Gram staining capability needed for the microgravity environment of space.

  19. Return from space: from the International Space Station to CERN

    CERN Multimedia

    2012-01-01

    On 16 May 2011, the space shuttle Endeavour took off for the last time from Cape Canaveral in Florida with six astronauts on board. Their mission (code-named STS-134) was to install the Alpha Magnetic Spectrometer (AMS), the dark matter and antimatter detector designed at CERN, on the International Space Station. Since then, AMS has been sending data to CERN from space.   On Wednesday 25 July do not miss a rare opportunity to meet the mission’s six astronauts at CERN: Mark E. Kelly, commander (NASA) Greg H. Johnson, pilot (NASA) and the mission’s specialists: Michael Fincke (NASA) Roberto Vittori (ESA and ASI) Andrew J. Feustel (NASA) Greg Chamitoff (NASA) 4:20 pm: the event will kick off with a photo and autograph session at the Globe of Science and Innovation. 5 pm: lecture given by the astronauts for CERN personnel and summer students in the Main Auditorium. (Seats reserved for the summer students - contact: summer.student.info@cern.ch). ...

  20. Space Radiation Peculiarities in the Extra Vehicular Environment of the International Space Station (ISS)

    Science.gov (United States)

    Dachev, Tsvetan; Bankov, Nikolay; Tomov, Borislav; Matviichuk, Yury; Dimitrov, Plamen

    2013-12-01

    The space weather and the connected with it ionizing radiation were recognized as a one of the main health concern to the International Space Station (ISS) crew. Estimation the effects of radiation on humans in ISS requires at first order accurate knowledge of the accumulated by them absorbed dose rates, which depend of the global space radiation distribution and the local variations generated by the 3D surrounding shielding distribution. The R3DE (Radiation Risks Radiometer-Dosimeter (R3D) for the EXPOSE-E platform on the European Technological Exposure Facility (EuTEF) worked successfully outside of the European Columbus module between February 2008 and September 2009. Very similar instrument named R3DR for the EXPOSE-R platform worked outside Russian Zvezda module of ISS between March 2009 and August 2010. Both are Liulin type, Bulgarian build miniature spectrometers-dosimeters. They accumulated about 5 million measurements of the flux and absorbed dose rate with 10 seconds resolution behind less than 0.41 g cm-2 shielding, which is very similar to the Russian and American space suits [1-3] average shielding. That is why all obtained data can be interpreted as possible doses during Extra Vehicular Activities (EVA) of the cosmonauts and astronauts. The paper first analyses the obtained long-term results in the different radiation environments of: Galactic Cosmic Rays (GCR), inner radiation belt trapped protons in the region of the South Atlantic Anomaly (SAA) and outer radiation belt (ORB) relativistic electrons. The large data base was used for development of an empirical model for calculation of the absorbed dose rates in the extra vehicular environment of ISS at 359 km altitude. The model approximate the averaged in a grid empirical dose rate values to predict the values at required from the user geographical point, station orbit or area in geographic coordinate system. Further in the paper it is presented an intercomparison between predicted by the model dose

  1. Advancing automation and robotics technology for the Space Station Freedom and for the U.S. economy

    Science.gov (United States)

    1993-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the sixteenth in a series of progress updates and covers the period between 15 Sep. 1992 - 16 Mar. 1993. The report describes the progress made by Levels 1, 2, and 3 of the Space Station Freedom in developing and applying advanced automation and robotics technology. Emphasis was placed upon the Space Station Freedom Program responses to specific recommendations made in ATAC Progress Report 15; and includes a status review of Space Station Freedom Launch Processing facilities at Kennedy Space Center. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for Space Station Freedom.

  2. Study of flywheel energy storage for space stations

    Science.gov (United States)

    Gross, S.

    1984-01-01

    The potential of flywheel systems for space stations using the Space Operations Center (SOC) as a point of reference is discussed. Comparisons with batteries and regenerative fuel cells are made. In the flywheel energy storage concept, energy is stored in the form of rotational kinetic energy using a spinning wheel. Energy is extracted from the flywheel using an attached electrical generator; energy is provided to spin the flywheel by a motor, which operates during sunlight using solar array power. The motor and the generator may or may not be the same device. Flywheel energy storage systems have a very good potential for use in space stations. This system can be superior to alkaline secondary batteries and regenerable fuel cells in most of the areas that are important in spacecraft applications. Of special impotance relative to batteries, are high energy density (lighter weight), longer cycle and operating life, and high efficiency which minimizes the amount of orbital makeup fuel required. In addition, flywheel systems have a long shelf life, give a precise state of charge indication, have modest thermal control needs, are capable of multiple discharges per orbit, have simple ground handling needs, and have the potential for very high discharge rate. Major disadvantages are noted.

  3. Effect of science laboratory centrifuge of space station environment

    Science.gov (United States)

    Searby, Nancy

    1990-01-01

    It is argued that it is essential to have a centrifuge operating during manned space station operations. Background information and a rationale for the research centrifuge are given. It is argued that we must provide a controlled acceleration environment for comparison with microgravity studies. The lack of control groups in previous studies throws into question whether the obseved effects were the result of microgravity or not. The centrifuge could be used to provide a 1-g environment to supply specimens free of launch effects for long-term studies. With the centrifuge, the specimens could be immediately transferred to microgravity without undergoing gradual acclimation. Also, the effects of artificial gravity on humans could be investigated. It is also argued that the presence of the centrifuge on the space station will not cause undo vibrations or other disturbing effects.

  4. Radiator selection for Space Station Solar Dynamic Power Systems

    Science.gov (United States)

    Fleming, Mike; Hoehn, Frank

    A study was conducted to define the best radiator for heat rejection of the Space Station Solar Dynamic Power System. Included in the study were radiators for both the Organic Rankine Cycle and Closed Brayton Cycle heat engines. A number of potential approaches were considered for the Organic Rankine Cycle and a constructable radiator was chosen. Detailed optimizations of this concept were conducted resulting in a baseline for inclusion into the ORC Preliminary Design. A number of approaches were also considered for the CBC radiator. For this application a deployed pumped liquid radiator was selected which was also refined resulting in a baseline for the CBC preliminary design. This paper reports the results and methodology of these studies and describes the preliminary designs of the Space Station Solar Dynamic Power System radiators for both of the candidate heat engine cycles.

  5. Interplanetary Transit Simulations Using the International Space Station

    Science.gov (United States)

    Charles, J. B.; Arya, Maneesh

    2010-01-01

    It has been suggested that the International Space Station (ISS) be utilized to simulate the transit portion of long-duration missions to Mars and near-Earth asteroids (NEA). The ISS offers a unique environment for such simulations, providing researchers with a high-fidelity platform to study, enhance, and validate technologies and countermeasures for these long-duration missions. From a space life sciences perspective, two major categories of human research activities have been identified that will harness the various capabilities of the ISS during the proposed simulations. The first category includes studies that require the use of the ISS, typically because of the need for prolonged weightlessness. The ISS is currently the only available platform capable of providing researchers with access to a weightless environment over an extended duration. In addition, the ISS offers high fidelity for other fundamental space environmental factors, such as isolation, distance, and accessibility. The second category includes studies that do not require use of the ISS in the strictest sense, but can exploit its use to maximize their scientific return more efficiently and productively than in ground-based simulations. In addition to conducting Mars and NEA simulations on the ISS, increasing the current increment duration on the ISS from 6 months to a longer duration will provide opportunities for enhanced and focused research relevant to long-duration Mars and NEA missions. Although it is currently believed that increasing the ISS crew increment duration to 9 or even 12 months will pose little additional risk to crewmembers, additional medical monitoring capabilities may be required beyond those currently used for the ISS operations. The use of the ISS to simulate aspects of Mars and NEA missions seems practical, and it is recommended that planning begin soon, in close consultation with all international partners.

  6. Dusty Plasma Physics Facility for the International Space Station

    Science.gov (United States)

    Goree, John; Hahn, Inseob

    2015-09-01

    The Dusty Plasma Physics Facility (DPPF) is an instrument planned for the International Space Station (ISS). If approved by NASA, JPL will build and operate the facility, and NASA will issue calls for proposals allowing investigators outside JPL to carry out research, public education, and outreach. Microgravity conditions on the ISS will be useful for eliminating two unwanted effects of gravity: sedimentation of dust particles to the bottom of a plasma chamber, and masking weak forces such as the ion drag force that act on dust particles. The DPPF facility is expected to support multiple scientific users. It will have a modular design, with a scientific locker, or insert, that can be exchanged without removing the entire facility. The first insert will use a parallel-plate radio-frequency discharge, polymer microspheres, and high-speed video cameras. This first insert will be designed for fundamental physics experiments. Possible future inserts could be designed for other purposes, such as engineering applications, and experimental simulations of astrophysical or geophysical conditions. The design of the facility will allow remote operation from ground-based laboratories, using telescience.

  7. Momentum management strategy during Space Station buildup

    Science.gov (United States)

    Bishop, Lynda; Malchow, Harvey; Hattis, Philip

    1988-01-01

    The use of momentum storage devices to control effectors for Space Station attitude control throughout the buildup sequence is discussed. Particular attention is given to the problem of providing satisfactory management of momentum storage effectors throughout buildup while experiencing variable torque loading. Continuous and discrete control strategies are compared and the effects of alternative control moment gyro strategies on peak momentum storage requirements and on commanded maneuver characteristics are described.

  8. Dungeness Power Station off-site emergency plan

    International Nuclear Information System (INIS)

    1993-01-01

    This off-site Emergency Plan in the event of an accidental release of radioactivity at the Dungeness Nuclear power station sets out the necessary management and coordination processes between Nuclear Electric, operators of the site, the emergency services and relevant local authorities. The objectives promoting the aim are identified and the activities which will be undertaken to protect the public and the environment in the event of an emergency are outlined. (UK)

  9. Low earth orbit environmental effects on the space station photovoltaic power generation systems

    International Nuclear Information System (INIS)

    Nahra, H.K.

    1977-01-01

    A summary of the Low Earth Orbital Environment, its impact on the photovoltaic power systems of the space station and the solutions implemented to resolve the environmental concerns or issues are described. Low Earth Orbital Environment (LEO) presents several concerns to the photovoltaic power systems of the space station. These concerns include atomic oxygen interaction with the polymeric substrate of the solar arrays, ionized environment effects on the array operating voltage, the effects of the meteoroids and debris impacts and penetration through the different layers of the solar cells and their circuits, and the high energy particle and radiation effects on the overall solar array performance. Potential solutions to some of the degrading environmental interactions that will provide the photovoltaic power system of the space station with the desired life are also summarized

  10. Space Station needs, attributes and architectural options. Volume 2, book 1, part 3: Manned Space Station relevance to commercial telecommunications satellites

    Science.gov (United States)

    1983-01-01

    A document containing a forecast of satellite traffic and revelant technology trends to the year 2000 was prepared which includes those space station capabilities and characteristics that should be provided to make the station useful to commercial satellite owners. The document was circulated to key representative organizations within the commercial telecommunications satellite and related communities of interest, including spacecraft manufacturers, commercial satellite owners, communications carriers, networks and risk insurers. The prospectus document is presented as well as the transmittal letter and the mailing list of the people and companies that were asked to review it. Key commercial telecommunications comments are summarized the actual response letters from the industry are included.

  11. Compatibility of the Space Station Freedom life sciences research centrifuge with microgravity requirements

    Science.gov (United States)

    Hasha, Martin D.

    1990-01-01

    NASA is developing a Life Sciences Centrifuge Facility for Space Station Freedom. In includes a 2.5-meter artificial gravity Bioresearch Centrifuge (BC), which is perhaps the most critical single element in the life sciences space research program. It rotates continuously at precise selectable rates, and utilizes advanced reliable technologies to reduce vibrations. Three disturbance types are analyzed using a current Space Station Freedom dynamic model in the 0.0 to 5.0 Hz range: sinusoidal, random, and transient. Results show that with proper selection of proven design techniques, BC vibrations are compatible with requirements.

  12. Solid waste treatment processes for space station

    Science.gov (United States)

    Marrero, T. R.

    1983-01-01

    The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.

  13. The Context for Food Service and Nutrition in the Space Station

    Science.gov (United States)

    Glaser, P. E.

    1985-01-01

    Commercial activities in space represent diverse markets where international competitors will be motivated by economic, technical and political considerations. These considerations are given and discussed. The space station program, industrial participation and the potential benefits of commercial activities in space are described. How food service and nutrition affects habitability, effects on physical condition, dietary goals, food preparation and meal service are detailed.

  14. Daya Bay Nuclear Power Station five-year business plan and operating results

    International Nuclear Information System (INIS)

    Zhang Shanming

    2000-01-01

    Guangdong Nuclear Power Joint Venture Company, Ltd. first 5-Year Business Plan (hereinafter referred to as 5-Year Business Plan) serves as guidance of both the operations and management of the company. Continuous performance improvement of the nuclear power station has been achieved through the fulfillment of goals and improvement plan defined by the 5-Year Business Plan, and through standard and systematic management. Daya Bay Nuclear Power Station (GNPS) has made great contributions to sustainable economic developments of both Guangdong and Hong Kong since its commercial operation in 1994. As of the end of 1999, the cumulative off-take electricity generated by GNPS had reached 69.9 billion kWh. Of the WANO indicators universally applied by nuclear power industry throughout the world, 6 indicators of Daya Bay performance entered the world top quartile while 9 the medium level

  15. Four men in a space station - To say nothing of the cow! The quest for finding respite and work in the ultimate frontier.

    Science.gov (United States)

    Kurien, Biji T; Dorri, Yaser; D'Souza, Anil; Scofield, R Hal

    2007-01-01

    Fed up with life on earth, four scientists attempt to make it to space to live in the International Space Station (ISS) and carry out experiments. The difficulties in getting selected by NASA, the rigourous training to fly and the risks of the journey to life and health are the rate limiting steps in their quest. They propose commercialization of space and also ferrying cows to space for food as well as generation of biogas. The anaerobic environment is particularly suitable for biogas generation and if successful they plan to get NASA to launch space vehicles to Mars using this natural fuel with the ISS as the staging area.

  16. Protection from Induced Space Environments Effects on the International Space Station

    Science.gov (United States)

    Soares, Carlos; Mikatarian, Ron; Stegall, Courtney; Schmidl, Danny; Huang, Alvin; Olsen, Randy; Koontz, Steven

    2010-01-01

    The International Space Station (ISS) is one of the largest, most complex multinational scientific projects in history and protection from induced space environments effects is critical to its long duration mission as well as to the health of the vehicle and safety of on-orbit operations. This paper discusses some of the unique challenges that were encountered during the design, assembly and operation of the ISS and how they were resolved. Examples are provided to illustrate the issues and the risk mitigation strategies that were developed to resolve these issues. Of particular importance are issues related with the interaction of multiple spacecraft as in the case of ISS and Visiting Vehicles transporting crew, hardware elements, cargo and scientific payloads. These strategies are applicable to the development of future long duration space systems, not only during design, but also during assembly and operation of these systems.

  17. The architecture of a video image processor for the space station

    Science.gov (United States)

    Yalamanchili, S.; Lee, D.; Fritze, K.; Carpenter, T.; Hoyme, K.; Murray, N.

    1987-01-01

    The architecture of a video image processor for space station applications is described. The architecture was derived from a study of the requirements of algorithms that are necessary to produce the desired functionality of many of these applications. Architectural options were selected based on a simulation of the execution of these algorithms on various architectural organizations. A great deal of emphasis was placed on the ability of the system to evolve and grow over the lifetime of the space station. The result is a hierarchical parallel architecture that is characterized by high level language programmability, modularity, extensibility and can meet the required performance goals.

  18. Engineering a Live UHD Program from the International Space Station

    Science.gov (United States)

    Grubbs, Rodney; George, Sandy

    2017-01-01

    The first-ever live downlink of Ultra-High Definition (UHD) video from the International Space Station (ISS) was the highlight of a “Super Session” at the National Association of Broadcasters (NAB) Show in April 2017. Ultra-High Definition is four times the resolution of “full HD” or “1080P” video. Also referred to as “4K”, the Ultra-High Definition video downlink from the ISS all the way to the Las Vegas Convention Center required considerable planning, pushed the limits of conventional video distribution from a space-craft, and was the first use of High Efficiency Video Coding (HEVC) from a space-craft. The live event at NAB will serve as a pathfinder for more routine downlinks of UHD as well as use of HEVC for conventional HD downlinks to save bandwidth. A similar demonstration was conducted in 2006 with the Discovery Channel to demonstrate the ability to stream HDTV from the ISS. This paper will describe the overall work flow and routing of the UHD video, how audio was synchronized even though the video and audio were received many seconds apart from each other, and how the demonstration paves the way for not only more efficient video distribution from the ISS, but also serves as a pathfinder for more complex video distribution from deep space. The paper will also describe how a “live” event was staged when the UHD video coming from the ISS had a latency of 10+ seconds. In addition, the paper will touch on the unique collaboration between the inherently governmental aspects of the ISS, commercial partners Amazon and Elemental, and the National Association of Broadcasters.

  19. A Data Management System for International Space Station Simulation Tools

    Science.gov (United States)

    Betts, Bradley J.; DelMundo, Rommel; Elcott, Sharif; McIntosh, Dawn; Niehaus, Brian; Papasin, Richard; Mah, Robert W.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Groups associated with the design, operational, and training aspects of the International Space Station make extensive use of modeling and simulation tools. Users of these tools often need to access and manipulate large quantities of data associated with the station, ranging from design documents to wiring diagrams. Retrieving and manipulating this data directly within the simulation and modeling environment can provide substantial benefit to users. An approach for providing these kinds of data management services, including a database schema and class structure, is presented. Implementation details are also provided as a data management system is integrated into the Intelligent Virtual Station, a modeling and simulation tool developed by the NASA Ames Smart Systems Research Laboratory. One use of the Intelligent Virtual Station is generating station-related training procedures in a virtual environment, The data management component allows users to quickly and easily retrieve information related to objects on the station, enhancing their ability to generate accurate procedures. Users can associate new information with objects and have that information stored in a database.

  20. Space Station Freedom automation and robotics: An assessment of the potential for increased productivity

    Science.gov (United States)

    Weeks, David J.; Zimmerman, Wayne F.; Swietek, Gregory E.; Reid, David H.; Hoffman, Ronald B.; Stammerjohn, Lambert W., Jr.; Stoney, William; Ghovanlou, Ali H.

    1990-01-01

    This report presents the results of a study performed in support of the Space Station Freedom Advanced Development Program, under the sponsorship of the Space Station Engineering (Code MT), Office of Space Flight. The study consisted of the collection, compilation, and analysis of lessons learned, crew time requirements, and other factors influencing the application of advanced automation and robotics, with emphasis on potential improvements in productivity. The lessons learned data collected were based primarily on Skylab, Spacelab, and other Space Shuttle experiences, consisting principally of interviews with current and former crew members and other NASA personnel with relevant experience. The objectives of this report are to present a summary of this data and its analysis, and to present conclusions regarding promising areas for the application of advanced automation and robotics technology to the Space Station Freedom and the potential benefits in terms of increased productivity. In this study, primary emphasis was placed on advanced automation technology because of its fairly extensive utilization within private industry including the aerospace sector. In contrast, other than the Remote Manipulator System (RMS), there has been relatively limited experience with advanced robotics technology applicable to the Space Station. This report should be used as a guide and is not intended to be used as a substitute for official Astronaut Office crew positions on specific issues.

  1. Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS)

    Science.gov (United States)

    Gasbarre, Joseph; Walker, Richard; Cisewski, Michael; Zawodny, Joseph; Cheek, Dianne; Thornton, Brooke

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will extend the SAGE data record from the ideal vantage point of the International Space Station (ISS). The ISS orbital inclination is ideal for SAGE measurements providing coverage between 70 deg north and 70 deg south latitude. The SAGE data record includes an extensively validated data set including aerosol optical depth data dating to the Stratospheric Aerosol Measurement (SAM) experiments in 1975 and 1978 and stratospheric ozone profile data dating to the Stratospheric Aerosol and Gas Experiment (SAGE) in 1979. These and subsequent data records, notably from the SAGE II experiment launched on the Earth Radiation Budget Satellite in 1984 and the SAGE III experiment launched on the Russian Meteor-3M satellite in 2001, have supported a robust, long-term assessment of key atmospheric constituents. These scientific measurements provide the basis for the analysis of five of the nine critical constituents (aerosols, ozone (O3), nitrogen dioxide (NO2), water vapor (H2O), and air density using O2) identified in the U.S. National Plan for Stratospheric Monitoring. SAGE III on ISS was originally scheduled to fly on the ISS in the same timeframe as the Meteor-3M mission, but was postponed due to delays in ISS construction. The project was re-established in 2009.

  2. Leadership issues with multicultural crews on the international space station: Lessons learned from Shuttle/Mir

    Science.gov (United States)

    Kanas, Nick; Ritsher, Jennifer

    2005-05-01

    In isolated and confined environments, two important leadership roles have been identified: the task/instrumental role (which focuses on work goals and operational needs), and the supportive/expressive role (which focuses on morale goals and emotional needs). On the International Space Station, the mission commander should be familiar with both of these aspects of leadership. In previous research involving a 135-day Mir space station simulation in Moscow and a series of on-orbit Mir space station missions during the Shuttle/Mir program, both these leadership roles were studied. In new analyses of the Shuttle/Mir data, we found that for crewmembers, the supportive role of the commander (but not the task role) related positively with crew cohesion. For mission control personnel on the ground, both the task and supportive roles of their leader were related positively to mission control cohesion. The implications of these findings are discussed in terms of leadership on board the International Space Station.

  3. Sustaining a Mature Risk Management Process: Ensuring the International Space Station for a Vibrant Future

    Science.gov (United States)

    Raftery, Michael; Carter-Journet, Katrina

    2013-01-01

    The International Space Station (ISS) risk management methodology is an example of a mature and sustainable process. Risk management is a systematic approach used to proactively identify, analyze, plan, track, control, communicate, and document risks to help management make risk-informed decisions that increase the likelihood of achieving program objectives. The ISS has been operating in space for over 14 years and permanently crewed for over 12 years. It is the longest surviving habitable vehicle in low Earth orbit history. Without a mature and proven risk management plan, it would be increasingly difficult to achieve mission success throughout the life of the ISS Program. A successful risk management process must be able to adapt to a dynamic program. As ISS program-level decision processes have evolved, so too has the ISS risk management process continued to innovate, improve, and adapt. Constant adaptation of risk management tools and an ever-improving process is essential to the continued success of the ISS Program. Above all, sustained support from program management is vital to risk management continued effectiveness. Risk management is valued and stressed as an important process by the ISS Program.

  4. Technology for Space Station Evolution. Volume 3: EVA/Manned Systems/Fluid Management System

    Science.gov (United States)

    1990-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution 16-19 Jan. 1990 in Dallas, Texas. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 3 consists of the technology discipline sections for Extravehicular Activity/Manned Systems and the Fluid Management System. For each technology discipline, there is a Level 3 subsystem description, along with the papers.

  5. ASTROMAG: A superconducting particle astrophysics magnet facility for the space station

    Science.gov (United States)

    Green, M. A.; Smoot, G. F.; Golden, R. L.; Israel, M. H.; Kephart, R.; Niemann, R.; Mewalt, R. A.; Ormes, J. F.; Spillantini, P.; Widenbeck, M. E.

    1986-01-01

    This paper describes a superconducting magnet system which is the heart of a particle astrophysics facility to be mounted on a portion of the proposed NASA space station. This facility will complete the studies done by the electromagnetic observatories now under development and construction by NASA. The paper outlines the selection process of the type of magnet to be used to analyze the energy and momentum of charged particles from deep space. The ASTROMAG superconducting magnet must meet all the criteria for a shuttle launch and landing, and it must meet safety standards for use in or near a manned environment such as the space station. The magnet facility must have a particle gathering aperture of at least 1 square meter steradian and the facility should be capable of resolving heavy nuclei with a total energy of 10 Tev or more.

  6. NASA Systems Autonomy Demonstration Project - Development of Space Station automation technology

    Science.gov (United States)

    Bull, John S.; Brown, Richard; Friedland, Peter; Wong, Carla M.; Bates, William

    1987-01-01

    A 1984 Congressional expansion of the 1958 National Aeronautics and Space Act mandated that NASA conduct programs, as part of the Space Station program, which will yield the U.S. material benefits, particularly in the areas of advanced automation and robotics systems. Demonstration programs are scheduled for automated systems such as the thermal control, expert system coordination of Station subsystems, and automation of multiple subsystems. The programs focus the R&D efforts and provide a gateway for transfer of technology to industry. The NASA Office of Aeronautics and Space Technology is responsible for directing, funding and evaluating the Systems Autonomy Demonstration Project, which will include simulated interactions between novice personnel and astronauts and several automated, expert subsystems to explore the effectiveness of the man-machine interface being developed. Features and progress on the TEXSYS prototype thermal control system expert system are outlined.

  7. 76 FR 65752 - International Space Station (ISS) National Laboratory Advisory Committee; Charter Renewal

    Science.gov (United States)

    2011-10-24

    ... International and Interagency Relations, (202) 358-0550, National Aeronautics and Space Administration... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-104)] International Space Station (ISS... National Laboratory Advisory Committee is in the public interest in connection with the performance of...

  8. Microwave energy transmission test toward the SPS using the space station

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, N.; Matsumoto, H.; Miyatake, S.; Kimura, I.; Nagatomo, M.

    1986-12-01

    An outline of a project METT (Microwave Energy Transmission Test) using the Space Station is described. The objectives of the METT are to develop and test the technology of microwave energy transmission for the future Solar Power Satellite (SPS), and to estimate the environmental effects of the high power microwaves on the ionosphere and the atmosphere. Energy generated with solar cells is transmitted from a transmitting antenna on the bus platform near the Space Station to a rectenna on the sub-satellite or the ground station in order to test the total efficiency and the functions of the developed system of the energy transmission. Plasma similar to that in the D and E layers in the ionosphere is produced in a large balloon opened on the sub-satellite in order to investigate possible interactions between the SPS microwave and the ionospheric plasma and to determine the maximum power density of the microwave beam which passes through the ionosphere.

  9. From 2001 to 1994: Political environment and the design of NASA's Space Station system

    Science.gov (United States)

    Fries, Sylvia Doughty

    1988-01-01

    The U.S. civilian space station, a hope of numerous NASA engineers since before the agency was founded in 1958 and promoted by NASA as the country's 'next logical step' into space, provides an excellent case study of the way public-sector research and development agencies continuously redefine new technologies in the absence of the market discipline that governs private-sector technological development. The number of space station design studies conducted since 1959, both internally by NASA or contracted by the agency to the aerospace industry, easily exceeds a hundred. Because of this, three clearly distinguishable examples are selected from the almost thirty-year history of space station design in NASA. Together these examples illustrate the difficulty of defining a new technological system in the public sector as that system becomes increasingly subject, for its development, to the vagaries of federal research and development politics.

  10. International Research Results and Accomplishments From the International Space Station

    Science.gov (United States)

    Ruttley, Tara M.; Robinson, Julie A.; Tate-Brown, Judy; Perkins, Nekisha; Cohen, Luchino; Marcil, Isabelle; Heppener, Marc; Hatton, Jason; Tasaki, Kazuyuki; Umemura, Sayaka; hide

    2016-01-01

    In 2016, the International Space Station (ISS) partnership published the first-ever compilation of international ISS research publications resulting from research performed on the ISS through 2011. The International Space Station Research Accomplishments: An Analysis of Results From 2000-2011 is a collection of summaries of over 1,200 journal publications that describe ISS research in the areas of biology and biotechnology; Earth and space science; educational activities and outreach; human research; physical sciences; technology development and demonstration; and, results from ISS operations. This paper will summarize the ISS results publications obtained through 2011 on behalf of the ISS Program Science Forum that is made up of senior science representatives across the international partnership. NASA's ISS Program Science office maintains an online experiment database (www.nasa.gov/issscience) that tracks and communicates ISS research activities across the entire ISS partnership, and it is continuously updated. It captures ISS experiment summaries and results and includes citations to the journals, conference proceedings, and patents as they become available. The International Space Station Research Accomplishments: An Analysis of Results From 2000-2011 is a testament to the research that was underway even as the ISS laboratory was being built. It reflects the scientific knowledge gained from ISS research, and how it impact the fields of science in both space and traditional science disciplines on Earth. Now, during a time when utilization is at its busiest, and with extension of the ISS through at least 2024, the ISS partners work together to track the accomplishments and the new knowledge gained in a way that will impact humanity like no laboratory on Earth. The ISS Program Science Forum will continue to capture and report on these results in the form of journal publications, conference proceedings, and patents. We anticipate that successful ISS research will

  11. Life support and internal thermal control system design for the Space Station Freedom

    Science.gov (United States)

    Humphries, R.; Mitchell, K.; Reuter, J.; Carrasquillo, R.; Beverly, B.

    1991-01-01

    A Review of the Space Station Freedom Environmental Control and Life Support System (ECLSS) as well as the Internal Thermal Control System (ITCS) design, including recent changes resulting from an activity to restructure the program, is provided. The development state of the original Space Station Freedom ECLSS through the restructured configuration is considered and the selection of regenerative subsystems for oxygen and water reclamation is addressed. A survey of the present ground development and verification program is given.

  12. Post-IOC space station: Models of operation and their implications for organizational behavior, performance and effectiveness

    Science.gov (United States)

    Danford, S.; Meindl, J.; Hunt, R.

    1985-01-01

    Issues of crew productivity during design work on space station are discussed. The crew productivity is defined almost exclusively in terms of human factors engineering and habitability design concerns. While such spatial environmental conditions are necessary to support crew performance and productivity, they are not sufficient to ensure high levels of crew performance and productivity on the post-Initial Operational Configurations (IOC) space station. The role of the organizational environment as a complement to the spatial environment for influencing crew performance in such isolated and confined work settings is examined. Three possible models of operation for post-IOC space station's organizational environment are identified and it is explained how they and space station's spatial environment will combine and interact to occasion patterns of crew behavior is suggested. A three phase program of research design: (1) identify patterns of crew behavior likely to be occasioned on post-IOC space station for each of the three models of operation; and (2) to determine proactive/preventative management strategies which could be adopted to maximize the emergence of preferred outcomes in crew behavior under each of the several spatial and organizational environment combinations.

  13. Operations Data Files, driving force behind International Space Station operations

    Science.gov (United States)

    Hoppenbrouwers, Tom; Ferra, Lionel; Markus, Michael; Wolff, Mikael

    2017-09-01

    Almost all tasks performed by the astronauts on-board the International Space Station (ISS) and by ground controllers in Mission Control Centre, from operation and maintenance of station systems to the execution of scientific experiments or high risk visiting vehicles docking manoeuvres, would not be possible without Operations Data Files (ODF). ODFs are the User Manuals of the Space Station and have multiple faces, going from traditional step-by-step procedures, scripts, cue cards, over displays, to software which guides the crew through the execution of certain tasks. Those key operational documents are standardized as they are used on-board the Space Station by an international crew constantly changing every 3 months. Furthermore this harmonization effort is paramount for consistency as the crew moves from one element to another in a matter of seconds, and from one activity to another. On ground, a significant large group of experts from all International Partners drafts, prepares reviews and approves on a daily basis all Operations Data Files, ensuring their timely availability on-board the ISS for all activities. Unavailability of these operational documents will halt the conduct of experiments or cancel milestone events. This paper will give an insight in the ground preparation work for the ODFs (with a focus on ESA ODF processes) and will present an overview on ODF formats and their usage within the ISS environment today and show how vital they are. Furthermore the focus will be on the recently implemented ODF features, which significantly ease the use of this documentation and improve the efficiency of the astronauts performing the tasks. Examples are short video demonstrations, interactive 3D animations, Execute Tailored Procedures (XTP-versions), tablet products, etc.

  14. ASTROMAG: A superconducting particle astrophysics magnet facility for the space station

    International Nuclear Information System (INIS)

    Green, M.A.; Smoot, G.F.; Golden, R.L.

    1986-09-01

    This paper describes a superconducting magnet system which is the heart of a particle astrophysics facility to be mounted on a portion of the proposed NASA space station. This facility will complete the studies done by the electromagnetic observatories now under development and construction by NASA. The paper outlines the selection process of the type of magnet to be used to analyze the energy and momentum of charged particles from deep space. The ASTROMAG superconducting magnet must meet all the criteria for a shuttle launch and landing, and it must meet safety standards for use in or near a manned environment such as the space station. The magnet facility must have a particle gathering aperture of at least 1 square meter steradian and the facility should be capable of resolving heavy nuclei with a total energy of 10 Tev or more. 4 refs., 3 figs

  15. Space Station thermal storage/refrigeration system research and development

    Science.gov (United States)

    Dean, W. G.; Karu, Z. S.

    1993-01-01

    Space Station thermal loading conditions represent an order of magnitude increase over current and previous spacecraft such as Skylab, Apollo, Pegasus III, Lunar Rover Vehicle, and Lockheed TRIDENT missiles. Thermal storage units (TSU's) were successfully used on these as well as many applications for ground based solar energy storage applications. It is desirable to store thermal energy during peak loading conditions as an alternative to providing increased radiator surface area which adds to the weight of the system. Basically, TSU's store heat by melting a phase change material (PCM) such as a paraffin. The physical property data for the PCM's used in the design of these TSU's is well defined in the literature. Design techniques are generally well established for the TSU's. However, the Space Station provides a new challenge in the application of these data and techniques because of three factors: the large size of the TSU required, the integration of the TSU for the Space Station thermal management concept with its diverse opportunities for storage application, and the TSU's interface with a two-phase (liquid/vapor) thermal bus/central heat rejection system. The objective in the thermal storage research and development task was to design, fabricate, and test a demonstration unit. One test article was to be a passive thermal storage unit capable of storing frozen food at -20 F for a minimum of 90 days. A second unit was to be capable of storing frozen biological samples at -94 F, again for a minimum of 90 days. The articles developed were compatible with shuttle mission conditions, including safety and handling by astronauts. Further, storage rack concepts were presented so that these units can be integrated into Space Station logistics module storage racks. The extreme sensitivity of spacecraft radiator systems design-to-heat rejection temperature requirements is well known. A large radiator area penalty is incurred if low temperatures are accommodated via a

  16. Life sciences space biology project planning

    Science.gov (United States)

    Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.

    1988-01-01

    The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.

  17. Plasma contactor development for Space Station

    Science.gov (United States)

    Patterson, Michael J.; Hamley, John A.; Sarmiento, Charles J.; Manzella, David H.; Sarver-Verhey, Timothy; Soulas, George C.; Nelson, Amy

    1993-01-01

    Plasma contactors have been baselined for the Space Station (SS) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development effort on ion thrustor systems. The plasma contactor subsystems include the plasma contactor unit, a power electronics unit, and an expellant management unit. Under this pre-flight development program these will all be brought to breadboard or engineering model status. Development efforts for the plasma contactor include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contactor unit design selected for the SS is an enclosed keeper, xenon hollow cathode plasma source. This paper discusses the test results and development status of the plasma contactor unit subsystem for the SS.

  18. Microgravity Science Glovebox (MSG) Space Science's Past, Present, and Future on the International Space Station (ISS)

    Science.gov (United States)

    Spivey, Reggie A.; Spearing, Scott F.; Jordan, Lee P.; McDaniel S. Greg

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas. The MSG is a very versatile and capable research facility on the ISS. The Microgravity Science Glovebox (MSG) on the International Space Station (ISS) has been used for a large body or research in material science, heat transfer, crystal growth, life sciences, smoke detection, combustion, plant growth, human health, and technology demonstration. MSG is an ideal platform for gravity-dependent phenomena related research. Moreover, the MSG provides engineers and scientists a platform for research in an environment similar to the one that spacecraft and crew members will actually experience during space travel and exploration. The MSG facility is ideally suited to provide quick, relatively inexpensive access to space for National Lab type investigations.

  19. Work continues on Destiny, the U.S. Lab module, in the Space Station Processing Facility

    Science.gov (United States)

    1999-01-01

    In the Space Station Processing Facility (SSPF), work continues on the U.S. Lab module, Destiny, which is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the International Space Station. Destiny shares space in the SSPF with the Shuttle Radar Topography Mission (SRTM) and Leonardo, the Multipurpose Logistics Module (MPLM) built by the Agenzia Spaziale Italiana (ASI). The SRTM is targeted for launch on mission STS-99 in September 1999. Leonardo is scheduled to launch on mission STS- 102 in June 2000.

  20. Modal Testing of Seven Shuttle Cargo Elements for Space Station

    Science.gov (United States)

    Kappus, Kathy O.; Driskill, Timothy C.; Parks, Russel A.; Patterson, Alan (Technical Monitor)

    2001-01-01

    From December 1996 to May 2001, the Modal and Control Dynamics Team at NASA's Marshall Space Flight Center (MSFC) conducted modal tests on seven large elements of the International Space Station. Each of these elements has been or will be launched as a Space Shuttle payload for transport to the International Space Station (ISS). Like other Shuttle payloads, modal testing of these elements was required for verification of the finite element models used in coupled loads analyses for launch and landing. The seven modal tests included three modules - Node, Laboratory, and Airlock, and four truss segments - P6, P3/P4, S1/P1, and P5. Each element was installed and tested in the Shuttle Payload Modal Test Bed at MSFC. This unique facility can accommodate any Shuttle cargo element for modal test qualification. Flexure assemblies were utilized at each Shuttle-to-payload interface to simulate a constrained boundary in the load carrying degrees of freedom. For each element, multiple-input, multiple-output burst random modal testing was the primary approach with controlled input sine sweeps for linearity assessments. The accelerometer channel counts ranged from 252 channels to 1251 channels. An overview of these tests, as well as some lessons learned, will be provided in this paper.

  1. The space station tethered elevator system

    Science.gov (United States)

    Anderson, Loren A.

    1989-01-01

    The optimized conceptual engineering design of a space station tethered elevator is presented. The elevator is an unmanned mobile structure which operates on a ten kilometer tether spanning the distance between the Space Station and a tethered platform. Elevator capabilities include providing access to residual gravity levels, remote servicing, and transportation to any point along a tether. The potential uses, parameters, and evolution of the spacecraft design are discussed. Engineering development of the tethered elevator is the result of work conducted in the following areas: structural configurations; robotics, drive mechanisms; and power generation and transmission systems. The structural configuration of the elevator is presented. The structure supports, houses, and protects all systems on board the elevator. The implementation of robotics on board the elevator is discussed. Elevator robotics allow for the deployment, retrieval, and manipulation of tethered objects. Robotic manipulators also aid in hooking the elevator on a tether. Critical to the operation of the tethered elevator is the design of its drive mechanisms, which are discussed. Two drivers, located internal to the elevator, propel the vehicle along a tether. These modular components consist of endless toothed belts, shunt-wound motors, regenerative power braking, and computer controlled linear actuators. The designs of self-sufficient power generation and transmission systems are reviewed. Thorough research indicates all components of the elevator will operate under power provided by fuel cells. The fuel cell systems will power the vehicle at seven kilowatts continuously and twelve kilowatts maximally. A set of secondary fuel cells provides redundancy in the unlikely event of a primary system failure. Power storage exists in the form of Nickel-Hydrogen batteries capable of powering the elevator under maximum loads.

  2. Cultural factors and the International Space Station.

    Science.gov (United States)

    Ritsher, Jennifer Boyd

    2005-06-01

    The American and Russian/Soviet space programs independently uncovered psychosocial risks inherent in long-duration space missions. Now that these two countries are working together on the International Space Station (ISS), American-Russian cultural differences pose an additional set of risk factors. These may echo cultural differences that have been observed in the general population of the two countries and in space analogue settings, but little is known about how relevant these are to the select population of space program personnel. The evidence for the existence of mission-relevant cultural differences is reviewed and includes cultural values, emotional expressivity, personal space norms, and personality characteristics. The review is focused primarily on Russia and the United States, but also includes other ISS partner countries. Cultural differences among space program personnel may have a wide range of effects. Moreover, culture-related strains may increase the probability of distress and impairment. Such factors could affect the individual and interpersonal functioning of both crewmembers and mission control personnel, whose performance is also critical for mission safety and success. Examples from the anecdotal and empirical literature are given to illustrate these points. The use of existing assessment strategies runs the risk of overlooking important early warning signs of behavioral health difficulties. By paying more attention to cultural differences and how they might be manifested, we are more likely to detect problems early while they are still mild and resolvable.

  3. A Technology Plan for Enabling Commercial Space Business

    Science.gov (United States)

    Lyles, Garry M.

    1997-01-01

    The National Aeronautics and Space Administration's (NASA) Advanced Space Transportation Program is a customer driven, focused technology program that supports the NASA Strategic Plan and considers future commercial space business projections. The initial cycle of the Advanced Space Transportation Program implementation planning was conducted from December 1995 through February 1996 and represented increased NASA emphasis on broad base technology development with the goal of dramatic reductions in the cost of space transportation. The second planning cycle, conducted in January and February 1997, updated the program implementation plan based on changes in the external environment, increased maturity of advanced concept studies, and current technology assessments. The program has taken a business-like approach to technology development with a balanced portfolio of near, medium, and long-term strategic targets. Strategic targets are influenced by Earth science, space science, and exploration objectives as well as commercial space markets. Commercial space markets include those that would be enhanced by lower cost transportation as well as potential markets resulting in major increases in space business induced by reductions in transportation cost. The program plan addresses earth-to-orbit space launch, earth orbit operations and deep space systems. It also addresses all critical transportation system elements; including structures, thermal protection systems, propulsion, avionics, and operations. As these technologies are matured, integrated technology flight experiments such as the X-33 and X-34 flight demonstrator programs support near-term (one to five years) development or operational decisions. The Advanced Space Transportation Program and the flight demonstrator programs combine business planning, ground-based technology demonstrations and flight demonstrations that will permit industry and NASA to commit to revolutionary new space transportation systems

  4. The Space Station Module Power Management and Distribution automation test bed

    Science.gov (United States)

    Lollar, Louis F.

    1991-01-01

    The Space Station Module Power Management And Distribution (SSM/PMAD) automation test bed project was begun at NASA/Marshall Space Flight Center (MSFC) in the mid-1980s to develop an autonomous, user-supportive power management and distribution test bed simulating the Space Station Freedom Hab/Lab modules. As the test bed has matured, many new technologies and projects have been added. The author focuses on three primary areas. The first area is the overall accomplishments of the test bed itself. These include a much-improved user interface, a more efficient expert system scheduler, improved communication among the three expert systems, and initial work on adding intermediate levels of autonomy. The second area is the addition of a more realistic power source to the SSM/PMAD test bed; this project is called the Large Autonomous Spacecraft Electrical Power System (LASEPS). The third area is the completion of a virtual link between the SSM/PMAD test bed at MSFC and the Autonomous Power Expert at Lewis Research Center.

  5. Space Station Furnace Facility. Volume 1: Requirements definition and conceptual design study, executive summary

    Science.gov (United States)

    1992-05-01

    The Space Station Freedom Furnace (SSFF) Study was awarded on June 2, 1989, to Teledyne Brown Engineering (TBE) to define an advanced facility for materials research in the microgravity environment of Space Station Freedom (SSF). The SSFF will be designed for research in the solidification of metals and alloys, the crystal growth of electronic and electro-optical materials, and research in glasses and ceramics. The SSFF is one of the first 'facility' class payloads planned by the Microgravity Science and Applications Division (MSAD) of the Office of Space Science and Applications of NASA Headquarters. This facility is planned for early deployment during man-tended operations of the SSF with continuing operations through the Permanently Manned Configuration (PMC). The SSFF will be built around a general 'Core' facility which provides common support functions not provided by SSF, common subsystems which are best centralized, and common subsystems which are best distributed with each experiment module. The intent of the facility approach is to reduce the overall cost associated with implementing and operating a variety of experiments. This is achieved by reducing the launch mass and simplifying the hardware development and qualification processes associated with each experiment. The Core will remain on orbit and will require only periodic maintenance and upgrading while new Furnace Modules, samples, and consumables are developed, qualified, and transported to the SSF. The SSFF Study was divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. The definition phase 1 is addressed. Phase 1 was divided into two parts. In the first part, the basic part of the effort, covered the preliminary definition and assessment of requirements; conceptual design of the SSFF; fabrication of mockups; and the preparation for and support of the Conceptual Design Review (CoDR). The second part, the option part, covered requirements update and

  6. CEGB nuclear power stations basic emergency plan

    International Nuclear Information System (INIS)

    1978-03-01

    The introduction states that this is a typical emergency plan for a nuclear power station employing about 500 people, having two reactors and a total electrical output of 500 Megawatts in an intensively farmed rural area. The document has the following headings: definitions ('site incident', etc); functions of the site emergency organization; conditions for taking emergency action; persons empowered to declare or cancel a site incident or an emergency; emergency actions by staff; control centres; communication; collaboration with other bodies; warnings; transport; house rules; public information centre. (U.K.)

  7. Analyzing mobile WiMAX base station deployment under different frequency planning strategies

    Science.gov (United States)

    Salman, M. K.; Ahmad, R. B.; Ali, Ziad G.; Aldhaibani, Jaafar A.; Fayadh, Rashid A.

    2015-05-01

    The frequency spectrum is a precious resource and scarce in the communication markets. Therefore, different techniques are adopted to utilize the available spectrum in deploying WiMAX base stations (BS) in cellular networks. In this paper several types of frequency planning techniques are illustrated, and a comprehensive comparative study between conventional frequency reuse of 1 (FR of 1) and fractional frequency reuse (FFR) is presented. These techniques are widely used in network deployment, because they employ universal frequency (using all the available bandwidth) in their base station installation/configuration within network system. This paper presents a network model of 19 base stations in order to be employed in the comparison of the aforesaid frequency planning techniques. Users are randomly distributed within base stations, users' resource mapping and their burst profile selection are based on the measured signal to interference plus-noise ratio (SINR). Simulation results reveal that the FFR has advantages over the conventional FR of 1 in various metrics. 98 % of downlink resources (slots) are exploited when FFR is applied, whilst it is 81 % at FR of 1. Data rate of FFR has been increased to 10.6 Mbps, while it is 7.98 Mbps at FR of 1. The spectral efficiency is better enhanced (1.072 bps/Hz) at FR of 1 than FFR (0.808 bps/Hz), since FR of 1 exploits all the Bandwidth. The subcarrier efficiency shows how many data bits that can be carried by subcarriers under different frequency planning techniques, the system can carry more data bits under FFR (2.40 bit/subcarrier) than FR of 1 (1.998 bit/subcarrier). This study confirms that FFR can perform better than conventional frequency planning (FR of 1) which made it a strong candidate for WiMAX BS deployment in cellular networks.

  8. Space station systems analysis study. Part 2, Volume 2. [technical report

    Science.gov (United States)

    1977-01-01

    Specific system options are defined and identified for a cost effective space station capable of orderly growth with regard to both function and orbit location. Selected program options are analyzed and configuration concepts are developed to meet objectives for the satellite power system, earth servicing, space processing, and supporting activities. Transportation systems are analyzed for both LEO and GEO orbits.

  9. Group structure and group process for effective space station astronaut teams

    Science.gov (United States)

    Nicholas, J. M.; Kagan, R. S.

    1985-01-01

    Space Station crews will encounter new problems, many derived from the social interaction of groups working in space for extended durations. Solutions to these problems must focus on the structure of groups and the interaction of individuals. A model of intervention is proposed to address problems of interpersonal relationships and emotional stress, and improve the morale, cohesiveness, and productivity of astronaut teams.

  10. Main-Reflector Manufacturing Technology for the Deep Space Optical Communications Ground Station

    Science.gov (United States)

    Britcliffe, M. J.; Hoppe, D. J.

    2001-01-01

    The Deep Space Network (DSN) has plans to develop a 10-m-diameter optical communications receiving station. The system uses the direct detection technique, which has much different requirements from a typical astronomical telescope. The receiver must operate in daylight and nighttime conditions. This imposes special requirements on the optical system to reject stray light from the Sun and other sources. One of the biggest challenges is designing a main-reflector surface that meets these requirements and can be produced at a reasonable cost. The requirements for the performance of the reflector are presented. To date, an aspherical primary reflector has been assumed. A reflector with a spherical reflector has a major cost advantage over an aspherical design, with no sacrifice in performance. A survey of current manufacturing techniques for optical mirrors of this type was performed. Techniques including solid glass, lightweight glass, diamond-turned aluminum, and composite mirrors were investigated.

  11. An Analytical Planning Model to Estimate the Optimal Density of Charging Stations for Electric Vehicles.

    Directory of Open Access Journals (Sweden)

    Yongjun Ahn

    Full Text Available The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive

  12. An Analytical Planning Model to Estimate the Optimal Density of Charging Stations for Electric Vehicles.

    Science.gov (United States)

    Ahn, Yongjun; Yeo, Hwasoo

    2015-01-01

    The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC) stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive adoption of electric

  13. Using the International Space Station (ISS) Oxygen Generation Assembly (OGA) Is Not Feasible for Mars Transit

    Science.gov (United States)

    Jones, Harry W.

    2016-01-01

    A review of two papers on improving the International Space Station (ISS) Oxygen Generation Assembly (OGA) shows that it would not save substantial mass on a Mars transit. The ISS OGA requires redesign for satisfactory operation, even for the ISS. The planned improvements of the OGA for ISS would not be sufficient to make it suitable for Mars, because Mars transit life support has significantly different requirements than ISS. The OGA for Mars should have lower mass, better reliability and maintainability, greater safety, radiation hardening, and capability for quiescent operation. NASA's methodical, disciplined systems engineering process should be used to develop the appropriate system.

  14. Minimum deltaV Burn Planning for the International Space Station Using a Hybrid Optimization Technique, Level 1

    Science.gov (United States)

    Brown, Aaron J.

    2015-01-01

    The International Space Station's (ISS) trajectory is coordinated and executed by the Trajectory Operations and Planning (TOPO) group at NASA's Johnson Space Center. TOPO group personnel routinely generate look-ahead trajectories for the ISS that incorporate translation burns needed to maintain its orbit over the next three to twelve months. The burns are modeled as in-plane, horizontal burns, and must meet operational trajectory constraints imposed by both NASA and the Russian Space Agency. In generating these trajectories, TOPO personnel must determine the number of burns to model, each burn's Time of Ignition (TIG), and magnitude (i.e. deltaV) that meet these constraints. The current process for targeting these burns is manually intensive, and does not take advantage of more modern techniques that can reduce the workload needed to find feasible burn solutions, i.e. solutions that simply meet the constraints, or provide optimal burn solutions that minimize the total DeltaV while simultaneously meeting the constraints. A two-level, hybrid optimization technique is proposed to find both feasible and globally optimal burn solutions for ISS trajectory planning. For optimal solutions, the technique breaks the optimization problem into two distinct sub-problems, one for choosing the optimal number of burns and each burn's optimal TIG, and the other for computing the minimum total deltaV burn solution that satisfies the trajectory constraints. Each of the two aforementioned levels uses a different optimization algorithm to solve one of the sub-problems, giving rise to a hybrid technique. Level 2, or the outer level, uses a genetic algorithm to select the number of burns and each burn's TIG. Level 1, or the inner level, uses the burn TIGs from Level 2 in a sequential quadratic programming (SQP) algorithm to compute a minimum total deltaV burn solution subject to the trajectory constraints. The total deltaV from Level 1 is then used as a fitness function by the genetic

  15. Space Station Freedom regenerative water recovery system configuration selection

    Science.gov (United States)

    Reysa, R.; Edwards, J.

    1991-01-01

    The Space Station Freedom (SSF) must recover water from various waste water sources to reduce 90 day water resupply demands for a four/eight person crew. The water recovery system options considered are summarized together with system configuration merits and demerits, resource advantages and disadvantages, and water quality considerations used to select the SSF water recovery system.

  16. Intelligent control of a planning system for astronaut training.

    Science.gov (United States)

    Ortiz, J; Chen, G

    1999-07-01

    This work intends to design, analyze and solve, from the systems control perspective, a complex, dynamic, and multiconstrained planning system for generating training plans for crew members of the NASA-led International Space Station. Various intelligent planning systems have been developed within the framework of artificial intelligence. These planning systems generally lack a rigorous mathematical formalism to allow a reliable and flexible methodology for their design, modeling, and performance analysis in a dynamical, time-critical, and multiconstrained environment. Formulating the planning problem in the domain of discrete-event systems under a unified framework such that it can be modeled, designed, and analyzed as a control system will provide a self-contained theory for such planning systems. This will also provide a means to certify various planning systems for operations in the dynamical and complex environments in space. The work presented here completes the design, development, and analysis of an intricate, large-scale, and representative mathematical formulation for intelligent control of a real planning system for Space Station crew training. This planning system has been tested and used at NASA-Johnson Space Center.

  17. NASA Glenn Research Center Solar Cell Experiment Onboard the International Space Station

    Science.gov (United States)

    Myers, Matthew G.; Wolford, David S.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies , William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; Mcnatt, Jeremiah S.; hide

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Missions (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  18. Space Station alpha joint bearing

    Science.gov (United States)

    Everman, Michael R.; Jones, P. Alan; Spencer, Porter A.

    1987-01-01

    Perhaps the most critical structural system aboard the Space Station is the Solar Alpha Rotary Joint which helps align the power generation system with the sun. The joint must provide structural support and controlled rotation to the outboard transverse booms as well as power and data transfer across the joint. The Solar Alpha Rotary Joint is composed of two transition sections and an integral, large diameter bearing. Alpha joint bearing design presents a particularly interesting problem because of its large size and need for high reliability, stiffness, and on orbit maintability. The discrete roller bearing developed is a novel refinement to cam follower technology. It offers thermal compensation and ease of on-orbit maintenance that are not found in conventional rolling element bearings. How the bearing design evolved is summarized. Driving requirements are reviewed, alternative concepts assessed, and the selected design is described.

  19. International Space Station (ISS) Emergency Mask (EM) Development

    Science.gov (United States)

    Toon, Katherine P.; Hahn, Jeffrey; Fowler, Michael; Young, Kevin

    2011-01-01

    The Emergency Mask (EM) is considered a secondary response emergency Personal Protective Equipment (PPE) designed to provide respiratory protection to the International Space Station (ISS) crewmembers in response to a post-fire event or ammonia leak. The EM is planned to be delivered to ISS in 2012 to replace the current air purifying respirator (APR) onboard ISS called the Ammonia Respirator (AR). The EM is a one ]size ]fits ]all model designed to fit any size crewmember, unlike the APR on ISS, and uses either two Fire Cartridges (FCs) or two Commercial Off-the-Shelf (COTS) 3M(Trademark). Ammonia Cartridges (ACs) to provide the crew with a minimum of 8 hours of respiratory protection with appropriate cartridge swap ]out. The EM is designed for a single exposure event, for either post ]fire or ammonia, and is a passive device that cannot help crewmembers who cannot breathe on their own. The EM fs primary and only seal is around the wearer fs neck to prevent a crewmember from inhaling contaminants. During the development of the ISS Emergency Mask, several design challenges were faced that focused around manufacturing a leak free mask. The description of those challenges are broadly discussed but focuses on one key design challenge area: bonding EPDM gasket material to Gore(Registered Trademark) fabric hood.

  20. Space Station Centrifuge: A Requirement for Life Science Research

    Science.gov (United States)

    Smith, Arthur H.; Fuller, Charles A.; Johnson, Catherine C.; Winget, Charles M.

    1992-01-01

    A centrifuge with the largest diameter that can be accommodated on Space Station Freedom is required to conduct life science research in the microgravity environment of space. (This was one of the findings of a group of life scientists convened at the University of California, Davis, by Ames Research Center.) The centrifuge will be used as a research tool to understand how gravity affects biological processes; to provide an on-orbit one-g control; and to assess the efficacy of using artificial gravity to counteract the deleterious biological effect of space flight. The rationale for the recommendation and examples of using ground-based centrifugation for animal and plant acceleration studies are presented. Included are four appendixes and an extensive bibliography of hypergravity studies.

  1. 13th Workshop on Radiation Monitoring for the International Space Station - Final Program

    International Nuclear Information System (INIS)

    2008-01-01

    The Workshop on Radiation Monitoring for the International Space Station (WRMISS) has been held annually since 1996. The major purpose of WRMISS is to provide a forum for discussion of technical issues concerning radiation dosimetry aboard the International Space Station. This includes discussion of new results, improved instrumentation, detector calibration, and radiation environment and transport models. The goal of WRMISS is to enhance international efforts to provide the best information on the space radiation environment in low-Earth orbit and on the exposure of astronauts and cosmonauts in order to optimize the radiation safety of the ISS crew. During the 13 th Annual WRMISS, held in the Institute of Nuclear Physics (Krakow, Poland) on 8-10 September 2008, participants presented 47 lectures

  2. NREL Research Takes Off for International Space Station | News | NREL

    Science.gov (United States)

    hydrogen. Research has proven that nitrate starvation triggers C. vulgaris to go into lipid production mode NREL Research Takes Off for International Space Station NREL Research Takes Off for International the other, Chlorella vulgaris, will make lipids. NREL research dating back to the late 1970s opened

  3. Photovoltaic Engineering Testbed: A Facility for Space Calibration and Measurement of Solar Cells on the International Space Station

    Science.gov (United States)

    Landis, Geoffrey A.; Bailey, Sheila G.; Jenkins, Phillip; Sexton, J. Andrew; Scheiman, David; Christie, Robert; Charpie, James; Gerber, Scott S.; Johnson, D. Bruce

    2001-01-01

    The Photovoltaic Engineering Testbed ("PET") is a facility to be flown on the International Space Station to perform calibration, measurement, and qualification of solar cells in the space environment and then returning the cells to Earth for laboratory use. PET will allow rapid turnaround testing of new photovoltaic technology under AM0 conditions.

  4. Advancing automation and robotics technology for the Space Station Freedom and for the U.S. Economy

    Science.gov (United States)

    1991-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the thirteenth in a series of progress updates and covers the period between 14 Feb. - 15 Aug. 1991. The progress made by Levels 1, 2, and 3 of the Space Station Freedom in developing and applying advanced automation and robotics technology is described. Emphasis was placed upon the Space Station Freedom Program responses to specific recommendations made in ATAC Progress Report 12, and issues of A&R implementation into Ground Mission Operations and A&R enhancement of science productivity. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for Space Station Freedom.

  5. Recent Pharmacology Studies on the International Space Station

    Science.gov (United States)

    Wotring, Virginia

    2014-01-01

    The environment on the International Space Station (ISS) includes a variety of potential stressors including the absence of Earth's gravity, elevated exposure to radiation, confined living and working quarters, a heavy workload, and high public visibility. The effects of this extreme environment on pharmacokinetics, pharmacodynamics, and even on stored medication doses, are not yet understood. Dr. Wotring will discuss recent analyses of medication doses that experienced long duration storage on the ISS and a recent retrospective examination of medication use during long-duration spaceflights. She will also describe new pharmacology experiments that are scheduled for upcoming ISS missions. Dr. Virginia E. Wotring is a Senior Scientist in the Division of Space Life Sciences in the Universities Space Research Association, and Pharmacology Discipline Lead at NASA's Johnson Space Center, Human Heath and Countermeasures Division. She received her doctorate in Pharmacological and Physiological Science from Saint Louis University after earning a B.S. in Chemistry at Florida State University. She has published multiple studies on ligand gated ion channels in the brain and spinal cord. Her research experience includes drug mechanisms of action, drug receptor structure/function relationships and gene & protein expression. She joined USRA (and spaceflight research) in 2009. In 2012, her book reviewing pharmacology in spaceflight was published by Springer: Space Pharmacology, Space Development Series.

  6. Report by the International Space Station (ISS) Management and Cost Evaluation (IMCE) Task Force

    Science.gov (United States)

    Young, A. Thomas; Kellogg, Yvonne (Technical Monitor)

    2001-01-01

    The International Space Station (ISS) Management and Cost Evaluation Task Force (IMCE) was chartered to conduct an independent external review and assessment of the ISS cost, budget, and management. In addition, the Task Force was asked to provide recommendations that could provide maximum benefit to the U.S. taxpayers and the International Partners within the President's budget request. The Task Force has made the following principal findings: (1) The ISS Program's technical achievements to date, as represented by on-orbit capability, are extraordinary; (2) The Existing ISS Program Plan for executing the FY 02-06 budget is not credible; (3) The existing deficiencies in management structure, institutional culture, cost estimating, and program control must be acknowledged and corrected for the Program to move forward in a credible fashion; (4) Additional budget flexibility, from within the Office of Space Flight (OSF) must be provided for a credible core complete program; (5) The research support program is proceeding assuming the budget that was in place before the FY02 budget runout reduction of $1B; (6) There are opportunities to maximize research on the core station program with modest cost impact; (7) The U.S. Core Complete configuration (three person crew) as an end-state will not achieve the unique research potential of the ISS; (8) The cost estimates for the U.S.-funded enhancement options (e.g., permanent seven person crew) are not sufficiently developed to assess credibility. After these findings, the Task Force has formulated several primary recommendations which are published here and include: (1) Major changes must be made in how the ISS program is managed; (2) Additional cost reductions are required within the baseline program; (3) Additional funds must be identified and applied from the Human Space Flight budget; (4) A clearly defined program with a credible end-state, agreed to by all stakeholders, must be developed and implemented.

  7. From city’s station to station city. An integrative spatial approach to the (redevelopment of station areas

    Directory of Open Access Journals (Sweden)

    Ana Luísa Martins da Conceição

    2014-12-01

    Full Text Available Since its origin, the railway station has had a complicated relationship with the city, demanding periodical updates, particularly regarding spatial issues. With the aim of improving the liveability of station areas, current redevelopment projects are reconceptualising them as balanced transport ‘nodes’ and ‘places’ in the city. However, the proposed spatial solutions do not fully support the sought after economic, social and environmental performances. These intentions continue to be predominantly bounded with the (abstract planological level, not finding appropriate translation at the (concrete spatial design level. Further, the interdisciplinary nature of the highly complex planning and design processes of station areas, which should contribute to enhance the performance of their spaces, reinforces constraints and relegates architecture to a marginal role in this quest. It is thus necessary to understand how architecture can contribute to the improvement of the spatial performance of contemporary stations areas, supporting their current reconceptualization. To gain this understanding, the research explored the factors which influence the spatial definition and performance of European High Speed Train station areas, using “design research” and “research by design”. Via a theoretical integrative framework, synthesized from knowledge developed by architecture and other sciences, case studies of ‘through’ stations were analysed and compared. Six cases, encapsulating the most recurrent relative positions of the railway (infrastructure and the station building towards the(ir direct built environment, were chosen out of a large sample. For each category (cases with railway tracks at (a ground level, (b elevated level and (c underground level, two cases, featuring an adapted station building and a newly built one, were studied. Their physical and functional characteristics were mapped at several scales and moments (in history, as

  8. Soft Spaces as Vehicles for Neoliberal Transformations of Strategic Spatial Planning?

    DEFF Research Database (Denmark)

    Olesen, Kristian

    2012-01-01

    This paper analyses how policy agendas are being shaped and reshaped in new soft spaces emerging in Danish spatial planning at subnational scales, and how policy-making in these soft spaces seeks to influence formal planning arenas. The paper demonstrates how the new soft planning spaces in Danis...... spatial planning, being used as vehicles for neoliberal transformations of strategic spatial planning. This paper therefore argues for a need to maintain a critical stance towards the emergence of soft spaces in spatial planning.......This paper analyses how policy agendas are being shaped and reshaped in new soft spaces emerging in Danish spatial planning at subnational scales, and how policy-making in these soft spaces seeks to influence formal planning arenas. The paper demonstrates how the new soft planning spaces in Danish...... spatial planning primarily are concerned with promoting policy agendas centred on economic development, whilst doing limited work in filling in the gaps between formal scales of planning, as envisaged in the planning literature. Instead, soft spaces seem to add to the increasing pressures on statutory...

  9. HZE dosimetry in space using plastic track detectors

    CERN Document Server

    Kopp, J; Reitz, G; Enge, W

    1999-01-01

    Plastic nuclear track detectors were used to measure the contribution of High charge Z and energy E (HZE) particles to the radiation exposure of manned space missions. Results from numerous space missions in the orbit planned for the International Space Station are compared. The measurements cover the declining phase of the last solar cycle during the past 7 years and various shielding conditions inside the US Space Shuttle and the Russian MIR-station.

  10. NRT Lightning Imaging Sensor (LIS) on International Space Station (ISS) Science Data Vb0

    Data.gov (United States)

    National Aeronautics and Space Administration — The NRT Lightning Imaging Sensor (LIS) on International Space Station (ISS) Science Data were collected by the LIS instrument on the ISS used to detect the...

  11. The space station window observational research facility; a high altitude imaging laboratory

    International Nuclear Information System (INIS)

    Runco, Susan K.; Eppler, Dean B.; Scott, Karen P.

    1999-01-01

    Earth Science will be one of the major research areas to be conducted on the International Space Station. The facilities from which this research will be accomplished are currently being constructed and will be described in this paper. By April 1999, the International Space Station nadir viewing research window fabrication will be completed and ready for installation. The window will provide a 20 inch (51 cm) diameter clear aperture. The three fused silica panes, which make up the window are fabricated such that the total peak-to-valley wavefront error in transmission through the three panes over any six inch diameter aperture does not exceed λ/7 where the reference wavelength is 632.8 nm. The window will have over 90% transmission between about 400 and 750, above 50% transmission between about 310 nm and 1375 nm and 40% transmission between 1386 nm and 2000 nm. The Window Operational Research Facility (WORF) is designed to accommodate payloads using this research window. The WORF will provide access to the International Space Station utilities such as data links, temperature cooling loops and power. Emphasis has been placed on the factors which will make this facility an optimum platform for conducting Earth science research

  12. NCERA-101 Station Report from Kennedy Space Center, FL, USA

    Science.gov (United States)

    Massa, Gioia D.; Wheeler, Raymond M.

    2014-01-01

    This is our annual report to the North Central Extension Research Activity, which is affiliated with the USDA and Land Grant University Agricultural Experiment Stations. I have been a member of this committee for 25 years. The presentation will be given by Dr. Gioia Massa, Kennedy Space Center

  13. Amateur Radio on the International Space Station - the First Operational Payload on the ISS

    Science.gov (United States)

    Bauer, F. H.; McFadin, L.; Steiner, M.; Conley, C. L.

    2002-01-01

    As astronauts and cosmonauts have adapted to life on the International Space Station (ISS), they have found Amateur Radio and its connection to life on Earth to be a constant companion and a substantial psychological boost. Since its first use in November 2000, the first five expedition crews have utilized the amateur radio station in the FGB to talk to thousands of students in schools, to their families on Earth, and to amateur radio operators around the world. Early in the development of ISS, an international organization called ARISS (Amateur Radio on the International Space Station) was formed to coordinate the construction and operation of amateur radio (ham radio) equipment on ISS. ARISS represents a melding of the volunteer teams that have pioneered the development and use of amateur radio equipment on human spaceflight vehicles. The Shuttle/Space Amateur Radio Experiment (SAREX) team enabled Owen Garriott to become the first astronaut ham to use amateur radio from space in 1983. Since then, amateur radio teams in the U.S. (SAREX), Germany, (SAFEX), and Russia (Mirex) have led the development and operation of amateur radio equipment on board NASA's Space Shuttle, Russia's Mir space station, and the International Space Station. The primary goals of the ARISS program are fourfold: 1) educational outreach through crew contacts with schools, 2) random contacts with the Amateur Radio public, 3) scheduled contacts with the astronauts' friends and families and 4) ISS-based communications experimentation. To date, over 65 schools have been selected from around the world for scheduled contacts with the orbiting ISS crew. Ten or more students at each school ask the astronauts questions, and the nature of these contacts embodies the primary goal of the ARISS program, -- to excite student's interest in science, technology and amateur radio. The ARISS team has developed various hardware elements for the ISS amateur radio station. These hardware elements have flown to ISS

  14. International Space Station Science Research Accomplishments During the Assembly Years: An Analysis of Results from 2000-2008

    Science.gov (United States)

    Evans, Cynthia A.; Robinson, Julie A.; Tate-Brown, Judy; Thumm, Tracy; Crespo-Richey, Jessica; Baumann, David; Rhatigan, Jennifer

    2009-01-01

    This report summarizes research accomplishments on the International Space Station (ISS) through the first 15 Expeditions. When research programs for early Expeditions were established, five administrative organizations were executing research on ISS: bioastronautics research, fundamental space biology, physical science, space product development, and space flight. The Vision for Space Exploration led to changes in NASA's administrative structures, so we have grouped experiments topically by scientific themes human research for exploration, physical and biological sciences, technology development, observing the Earth, and educating and inspiring the next generation even when these do not correspond to the administrative structure at the time at which they were completed. The research organizations at the time at which the experiments flew are preserved in the appendix of this document. These investigations on the ISS have laid the groundwork for research planning for Expeditions to come. Humans performing scientific investigations on ISS serve as a model for the goals of future Exploration missions. The success of a wide variety of investigations is an important hallmark of early research on ISS. Of the investigations summarized here, some are completed with results released, some are completed with preliminary results, and some remain ongoing.

  15. Information management system: A summary discussion. [for use in the space shuttle sortie, modular space station and TDR satellite

    Science.gov (United States)

    Sayers, R. S.

    1972-01-01

    An information management system is proposed for use in the space shuttle sortie, the modular space station, the tracking data relay satellite and associated ground support systems. Several different information management functions, including data acquisition, transfer, storage, processing, control and display are integrated in the system.

  16. International cooperation and competition in space - A current perspective

    Science.gov (United States)

    Pedersen, K. S.

    1983-01-01

    International cooperative efforts undertaken by NASA are evaluated and consideration is given to the proposed space station. The Shuttle RMS and Spacelab were constructed through efforts of Canadian and European companies and the ESA. Landsat, with its widely dispersed technology and data, has encouraged international access to its capabilities and start-up of follow-on programs in other countries. Space station planning is proceeding with a view to worldwide utilization of space and to the commitment and resources other nations are willing to place in the station. It is conceded that administrative difficulties will arise if the space station is a completely international effort guided by NASA. Additionally, concern will be present for technology leaks, national security implications on the space station, and reasonably fulfilling the benefits expected by those who become partners in the construction and operation of the station.

  17. The Bus Station Spacing Optimization Based on Game Theory

    Directory of Open Access Journals (Sweden)

    Changjiang Zheng

    2015-01-01

    Full Text Available With the development of city, the problem of traffic is becoming more and more serious. Developing public transportation has become the key to solving this problem in all countries. Based on the existing public transit network, how to improve the bus operation efficiency, and reduce the residents transit trip cost has become a simple and effective way to develop the public transportation. Bus stop spacing is an important factor affecting passengers’ travel time. How to set up bus stop spacing has become the key to reducing passengers’ travel time. According to comprehensive traffic survey, theoretical analysis, and summary of urban public transport characteristics, this paper analyzes the impact of bus stop spacing on passenger in-bus time cost and out-bus time cost and establishes in-bus time and out-bus time model. Finally, the paper gets the balance best station spacing by introducing the game theory.

  18. Economic benefits of the Space Station to commercial communication satellite operators

    Science.gov (United States)

    Price, Kent M.; Dixson, John E.; Weyandt, Charles J.

    1987-01-01

    The economic and financial aspects of newly defined space-based activities, procedures, and operations (APOs) and associated satellite system designs are presented that have the potential to improve economic performance of future geostationary communications satellites. Launch insurance, launch costs, and the economics of APOs are examined. Retrieval missions and various Space Station scenarios are addressed. The potential benefits of the new APOs to the commercial communications satellite system operator are quantified.

  19. On-Orbit Prospective Echocardiography on International Space Station

    Science.gov (United States)

    Hamilton, Douglas R.; Sargsyan, Ashot E.; Martin, David; Garcia, Kathleen M.; Melton, Shannon; Feiverson, Alan; Dulchavsky, Scott A.

    2010-01-01

    A number of echocardiographic research projects and experiments have been flown on almost every space vehicle since 1970, but validation of standard methods and the determination of Space Normal cardiac function has not been reported to date. Advanced Diagnostics in Microgravity (ADUM) -remote guided echocardiographic technique provides a novel and effective approach to on-board assessment of cardiac physiology and structure using a just-in-time training algorithm and real-time remote guidance aboard the International Space Station (ISS). The validation of remotely guided echocardiographic techniques provides the procedures and protocols to perform scientific and clinical echocardiography on the ISS and the Moon. The objectives of this study were: 1.To confirm the ability of non-physician astronaut/cosmonaut crewmembers to perform clinically relevant remotely guided echocardiography using the Human Research Facility on board the ISS. 2.To compare the preflight, postflight and in-flight echocardiographic parameters commonly used in clinical medicine.

  20. From CERN to the International Space Station and back

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    In December I flew on the Space Shuttle Discovery to ISS, the International Space Station. The main objectives were to continue building ISS, deliver consumables, spare parts and experiments and for the exchange of one crew member on ISS. During the 8-day stay at ISS, I participated in three space-walks, but also got the opportunity to perform one experiment, ALTEA, related to radiation in space and light flashes seen by many people in space. I will give a quick personal history, from when I was a Fellow at Cern in 1990 and learned that I could apply to become an ESA astronaut, to when I finally boarded a space craft to launch on Dec. 9th 2006. A 17 minute video will tell the story about the flight itself. The second half of the talk will be about research related to radiation in space that I have been involved in since joining ESA in 1992. In particular, about light flashes that were first reported on Apollo-11 in 1969, and the SilEye detectors flown on Mir and ISS to investigate fluxes of charged particles ...

  1. Space station needs, attributes and architectural options. Volume 4, task 2 and 3: Mission implementation and cost

    Science.gov (United States)

    1983-01-01

    An overview of the basic space station infrastructure is presented. A strong case is made for the evolution of the station using the basic Space Transportation System (STS) to achieve a smooth transition and cost effective implementation. The integrated logistics support (ILS) element of the overall station infrastructure is investigated. The need for an orbital transport system capability that is the key to servicing and spacecraft positioning scenarios and associated mission needs is examined. Communication is also an extremely important element and the basic issue of station autonomy versus ground support effects the system and subsystem architecture.

  2. Advancing automation and robotics technology for the Space Station and for the US economy, volume 2

    Science.gov (United States)

    1985-01-01

    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and robotics for use in the Space Station. The Technical Report, Volume 2, provides background information on automation and robotics technologies and their potential and documents: the relevant aspects of Space Station design; representative examples of automation and robotics; applications; the state of the technology and advances needed; and considerations for technology transfer to U.S. industry and for space commercialization.

  3. Planning Systems for Distributed Operations

    Science.gov (United States)

    Maxwell, Theresa G.

    2002-01-01

    This viewgraph representation presents an overview of the mission planning process involving distributed operations (such as the International Space Station (ISS)) and the computer hardware and software systems needed to support such an effort. Topics considered include: evolution of distributed planning systems, ISS distributed planning, the Payload Planning System (PPS), future developments in distributed planning systems, Request Oriented Scheduling Engine (ROSE) and Next Generation distributed planning systems.

  4. Space station common module network topology and hardware development

    Science.gov (United States)

    Anderson, P.; Braunagel, L.; Chwirka, S.; Fishman, M.; Freeman, K.; Eason, D.; Landis, D.; Lech, L.; Martin, J.; Mccorkle, J.

    1990-01-01

    Conceptual space station common module power management and distribution (SSM/PMAD) network layouts and detailed network evaluations were developed. Individual pieces of hardware to be developed for the SSM/PMAD test bed were identified. A technology assessment was developed to identify pieces of equipment requiring development effort. Equipment lists were developed from the previously selected network schematics. Additionally, functional requirements for the network equipment as well as other requirements which affected the suitability of specific items for use on the Space Station Program were identified. Assembly requirements were derived based on the SSM/PMAD developed requirements and on the selected SSM/PMAD network concepts. Basic requirements and simplified design block diagrams are included. DC remote power controllers were successfully integrated into the DC Marshall Space Flight Center breadboard. Two DC remote power controller (RPC) boards experienced mechanical failure of UES 706 stud-mounted diodes during mechanical installation of the boards into the system. These broken diodes caused input to output shorting of the RPC's. The UES 706 diodes were replaced on these RPC's which eliminated the problem. The DC RPC's as existing in the present breadboard configuration do not provide ground fault protection because the RPC was designed to only switch the hot side current. If ground fault protection were to be implemented, it would be necessary to design the system so the RPC switched both the hot and the return sides of power.

  5. Advancing automation and robotics technology for the Space Station and for the US economy. Volume 1: Executive overview

    Science.gov (United States)

    1985-01-01

    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and robotics for use in the Space Station. The Executive Overview, Volume 1 presents the major findings of the study and recommends to NASA principles for advancing automation and robotics technologies for the benefit of the Space Station and of the U.S. economy in general. As a result of its study, the Advanced Technology Advisory Committee believes that a key element of technology for the Space Station is extensive use of advanced general-purpose automation and robotics. These systems could provide the United States with important new methods of generating and exploiting space knowledge in commercial enterprises and thereby help preserve U.S. leadership in space.

  6. Packaging's Contribution for the Effectiveness of the Space Station's Food Service Operation

    Science.gov (United States)

    Rausch, B. A.

    1985-01-01

    Storage limitations will have a major effect on space station food service. For example: foods with low bulk density such as ice cream, bread, cake, standard type potato chips and other low density snacks, flaked cereals, etc., will exacerbate the problem of space limitations; package containers are inherently volume consuming and refuse creating; and the useful observation that the optimum package is no package at all leads to the tentative conclusion that the least amount of packaging per unit of food, consistent with storage, aesthetics, preservation, cleanliness, cost and disposal criteria, is the most practical food package for the space station. A series of trade offs may have to be made to arrive at the most appropriate package design for a particular type of food taking all the criteria into account. Some of these trade offs are: single serve vs. bulk; conventional oven vs. microwave oven; nonmetallic aseptically vs. non-aseptically packaged foods; and comparison of aseptic vs. nonaseptic food packages. The advantages and disadvantages are discussed.

  7. 76 FR 64122 - NASA Advisory Committee; Renewal of NASA's International Space Station Advisory Committee Charter

    Science.gov (United States)

    2011-10-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-095)] NASA Advisory Committee; Renewal of NASA's International Space Station Advisory Committee Charter AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal and amendment of the Charter of the International...

  8. Development of an automated checkout, service and maintenance system for a Space Station EVAS

    Science.gov (United States)

    Abeles, Fred J.; Tri, Terry; Blaser, Robert

    1988-01-01

    The development of a new operational system for the Space Station will minimize the time normally spent on performing on-orbit checkout, servicing, and maintenance of an extravehicular activity system of the Space Station. This system, the Checkout, Servicing, and Maintenance System (COSM), is composed of interactive control software interfacing with software simulations of hardware components. The major elements covered in detail include the controller, the EMU simulator and the regenerative life support system. The operational requirements and interactions of the individual elements as well as the protocols are also discussed.

  9. The Canadian space program from Black Brant to the International Space Station

    CERN Document Server

    Godefroy, Andrew B

    2017-01-01

    Canada’s space efforts from its origins towards the end of the Second World War through to its participation in the ISS today are revealed in full in this complete and carefully researched history. Employing recently declassified archives and many never previously used sources, author Andrew B. Godefroy explains the history of the program through its policy and many fascinating projects. He assesses its effectiveness as a major partner in both US and international space programs, examines its current national priorities and capabilities, and outlines the country’s plans for the future. Despite being the third nation to launch a satellite into space after the Soviet Union and the United States; being a major partner in the US space shuttle program with the iconic Canadarm; being an international leader in the development of space robotics; and acting as one of the five major partners in the ISS, the Canadian Space Program remains one of the least well-known national efforts of the space age. This book atte...

  10. Now calling at the International Space Station

    CERN Document Server

    Katarina Anthony

    2012-01-01

    On 31 July, an unmanned Russian Progress spacecraft was launched from the desert steppe of Kazakhstan. Its destination: the International Space Station (ISS). On board: five Timepix detectors developed by the Medipix2 Collaboration.   With the Timepix on board, Progress 48 was launched 31 July from the Baikonur Cosmodrome in Kazakhstan. Source: RSC Energia. Timepix detectors are small, USB powered particle trackers based on Medipix2 technology. The Timepix chip, which was developed at CERN, is coupled to a silicon sensor and incorporated into a minature readout system - developed at IEAP, Prague - which is about the size of a USB pen drive. These systems have been used across a variety of disciplines: from the study of cosmic rays to biomedical imaging. Now on board the ISS, they are providing highly accurate measurements of space radiation for dosimetry purposes. “There’s nothing else in the world that has quite the capability of Timepix detectors to ...

  11. NASDA knowledge-based network planning system

    Science.gov (United States)

    Yamaya, K.; Fujiwara, M.; Kosugi, S.; Yambe, M.; Ohmori, M.

    1993-01-01

    One of the SODS (space operation and data system) sub-systems, NP (network planning) was the first expert system used by NASDA (national space development agency of Japan) for tracking and control of satellite. The major responsibilities of the NP system are: first, the allocation of network and satellite control resources and, second, the generation of the network operation plan data (NOP) used in automated control of the stations and control center facilities. Up to now, the first task of network resource scheduling was done by network operators. NP system automatically generates schedules using its knowledge base, which contains information on satellite orbits, station availability, which computer is dedicated to which satellite, and how many stations must be available for a particular satellite pass or a certain time period. The NP system is introduced.

  12. International Space Station Centrifuge Rotor Models A Comparison of the Euler-Lagrange and the Bond Graph Modeling Approach

    Science.gov (United States)

    Nguyen, Louis H.; Ramakrishnan, Jayant; Granda, Jose J.

    2006-01-01

    The assembly and operation of the International Space Station (ISS) require extensive testing and engineering analysis to verify that the Space Station system of systems would work together without any adverse interactions. Since the dynamic behavior of an entire Space Station cannot be tested on earth, math models of the Space Station structures and mechanical systems have to be built and integrated in computer simulations and analysis tools to analyze and predict what will happen in space. The ISS Centrifuge Rotor (CR) is one of many mechanical systems that need to be modeled and analyzed to verify the ISS integrated system performance on-orbit. This study investigates using Bond Graph modeling techniques as quick and simplified ways to generate models of the ISS Centrifuge Rotor. This paper outlines the steps used to generate simple and more complex models of the CR using Bond Graph Computer Aided Modeling Program with Graphical Input (CAMP-G). Comparisons of the Bond Graph CR models with those derived from Euler-Lagrange equations in MATLAB and those developed using multibody dynamic simulation at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are presented to demonstrate the usefulness of the Bond Graph modeling approach for aeronautics and space applications.

  13. Applicability of Long Duration Exposure Facility environmental effects data to the design of Space Station Freedom electrical power system

    Science.gov (United States)

    Christie, Robert J.; Lu, Cheng-Yi; Aronoff, Irene

    1992-01-01

    Data defining space environmental effects on the Long Duration Exposure Facility (LDEF) are examined in terms of the design of the electrical power system (EPS) of the Space Station Freedom (SSF). The significant effects of long-term exposure to space are identified with respect to the performance of the LDEF's materials, components, and systems. A total of 57 experiments were conducted on the LDEF yielding information regarding coatings, thermal systems, electronics, optics, and power systems. The resulting database is analyzed in terms of the specifications of the SSF EPS materials and subsystems and is found to be valuable in the design of control and protection features. Specific applications are listed for findings regarding the thermal environment, atomic oxygen, UV and ionizing radiation, debris, and contamination. The LDEF data are shown to have a considerable number of applications to the design and planning of the SSF and its EPS.

  14. Underground space planning in Helsinki

    Directory of Open Access Journals (Sweden)

    Ilkka Vähäaho

    2014-10-01

    Full Text Available This paper gives insight into the use of underground space in Helsinki, Finland. The city has an underground master plan (UMP for its whole municipal area, not only for certain parts of the city. Further, the decision-making history of the UMP is described step-by-step. Some examples of underground space use in other cities are also given. The focus of this paper is on the sustainability issues related to urban underground space use, including its contribution to an environmentally sustainable and aesthetically acceptable landscape, anticipated structural longevity and maintaining the opportunity for urban development by future generations. Underground planning enhances overall safety and economy efficiency. The need for underground space use in city areas has grown rapidly since the 21st century; at the same time, the necessity to control construction work has also increased. The UMP of Helsinki reserves designated space for public and private utilities in various underground areas of bedrock over the long term. The plan also provides the framework for managing and controlling the city's underground construction work and allows suitable locations to be allocated for underground facilities. Tampere, the third most populated city in Finland and the biggest inland city in the Nordic countries, is also a good example of a city that is taking steps to utilise underground resources. Oulu, the capital city of northern Finland, has also started to ‘go underground’. An example of the possibility to combine two cities by an 80-km subsea tunnel is also discussed. A new fixed link would generate huge potential for the capital areas of Finland and Estonia to become a real Helsinki-Tallinn twin city.

  15. Application of Different Statistical Techniques in Integrated Logistics Support of the International Space Station Alpha

    Science.gov (United States)

    Sepehry-Fard, F.; Coulthard, Maurice H.

    1995-01-01

    The process to predict the values of the maintenance time dependent variable parameters such as mean time between failures (MTBF) over time must be one that will not in turn introduce uncontrolled deviation in the results of the ILS analysis such as life cycle cost spares calculation, etc. A minor deviation in the values of the maintenance time dependent variable parameters such as MTBF over time will have a significant impact on the logistics resources demands, International Space Station availability, and maintenance support costs. It is the objective of this report to identify the magnitude of the expected enhancement in the accuracy of the results for the International Space Station reliability and maintainability data packages by providing examples. These examples partially portray the necessary information hy evaluating the impact of the said enhancements on the life cycle cost and the availability of the International Space Station.

  16. Characteristics of trapped proton anisotropy at Space Station Freedom altitudes

    Science.gov (United States)

    Armstrong, T. W.; Colborn, B. L.; Watts, J. W.

    1990-01-01

    The ionizing radiation dose for spacecraft in low-Earth orbit (LEO) is produced mainly by protons trapped in the Earth's magnetic field. Current data bases describing this trapped radiation environment assume the protons to have an isotropic angular distribution, although the fluxes are actually highly anisotropic in LEO. The general nature of this directionality is understood theoretically and has been observed by several satellites. The anisotropy of the trapped proton exposure has not been an important practical consideration for most previous LEO missions because the random spacecraft orientation during passage through the radiation belt 'averages out' the anisotropy. Thus, in spite of the actual exposure anisotropy, cumulative radiation effects over many orbits can be predicted as if the environment were isotropic when the spacecraft orientation is variable during exposure. However, Space Station Freedom will be gravity gradient stabilized to reduce drag, and, due to this fixed orientation, the cumulative incident proton flux will remain anisotropic. The anisotropy could potentially influence several aspects of Space Station design and operation, such as the appropriate location for radiation sensitive components and experiments, location of workstations and sleeping quarters, and the design and placement of radiation monitors. Also, on-board mass could possible be utilized to counteract the anisotropy effects and reduce the dose exposure. Until recently only omnidirectional data bases for the trapped proton environment were available. However, a method to predict orbit-average, angular dependent ('vector') trapped proton flux spectra has been developed from the standard omnidirectional trapped proton data bases. This method was used to characterize the trapped proton anisotropy for the Space Station orbit (28.5 degree inclination, circular) in terms of its dependence on altitude, solar cycle modulation (solar minimum vs. solar maximum), shielding thickness

  17. Microbial Observatory (ISS-MO): Study of BSL-2 bacterial isolates from the International Space Station

    Data.gov (United States)

    National Aeronautics and Space Administration — In an on-going Microbial Observatory experimental investigation on the International Space Station (ISS) multiple bacterial isolates of Biosafety Level 2 (BSL-2)...

  18. Microbiomes of the Dust Particles Collected from the International Space Station and Spacecraft Assembly Facilities

    Data.gov (United States)

    National Aeronautics and Space Administration — The safety of the International Space Station (ISS) crewmembers and maintenance of ISS hardware are the primary rationale for monitoring microorganisms in this...

  19. International Space Station Crew Return Vehicle: X-38. Educational Brief.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    The International Space Station (ISS) will provide the world with an orbiting laboratory that will have long-duration micro-gravity experimentation capability. The crew size for this facility will depend upon the crew return capability. The first crews will consist of three astronauts from Russia and the United States. The crew is limited to three…

  20. Life sciences payloads analyses and technical program planning studies. [project planning of space missions of space shuttles in aerospace medicine and space biology

    Science.gov (United States)

    1976-01-01

    Contractural requirements, project planning, equipment specifications, and technical data for space shuttle biological experiment payloads are presented. Topics discussed are: (1) urine collection and processing on the space shuttle, (2) space processing of biochemical and biomedical materials, (3) mission simulations, and (4) biomedical equipment.

  1. Lab-on-a-Chip: From Astrobiology to the International Space Station

    Science.gov (United States)

    Maule, Jake; Wainwright, Nor; Steele, Andrew; Gunter, Dan; Monaco, Lisa A.; Wells, Mark E.; Morris, Heather C.; Boudreaux, Mark E.

    2008-01-01

    The continual and long-term habitation of enclosed environments, such as Antarctic stations, nuclear submarines and space stations, raises unique engineering, medical and operational challenges. There is no easy way out and no easy way to get supplies in. This situation elevates the importance of monitoring technology that can rapidly detect events within the habitat that affect crew safety such as fire, release of toxic chemicals and hazardous microorganisms. Traditional methods to monitor microorganisms on the International Space Station (ISS) have consisted of culturing samples for 3-5 days and eventual sample return to Earth. To augment these culture methods with new, rapid molecular techniques, we developed the Lab-on-a-Chip Application Development - Portable Test System (LOCAD-PTS). The system consists of a hand-held spectrophotometer, a series of interchangeable cartridges and a surface sampling/dilution kit that enables crew to collect samples and detect a range of biological molecules, all within 15 minutes. LOCAD-PTS was launched to the ISS aboard Space Shuttle Discovery in December 2006, where it was operated for the first time during March-May 2007. The surfaces of five separate sites in the US Lab and Node 1 of ISS were analyzed for endotoxin, using cartridges that employ the Limulus Amebocyte Lysate (LAL) assay; results of these tests will be presented. LOCAD-PTS will remain permanently onboard ISS with new cartridges scheduled for launch in February and October of 2008 for the detection of fungi (Beta-glucan) and Gram-positive bacteria (lipoteichoic acid), respectively.

  2. Potential enhanced risk for space-station astronauts

    International Nuclear Information System (INIS)

    Brenner, D.J.

    1991-01-01

    One of the limiting features of a low-orbital inclination space station will be the radiation dose to which astronauts will be exposed from fast protons trapped by the earth's magnetic field in the South Atlantic Anomaly (SAA). This dose, typically 5 cGy for a 90-day mission, will be delivered in many small, hourly fractions corresponding to the orbiting period of the space station. Protons in the energy range of those trapped in the SAA deposit dose as a mixture of sparsely-ionizing, proton-induced Coulomb interactions, and densely ionizing interactions from proton-induced nuclear fragmentation products. For protons in the SAA, about one third of the dose and the majority of the dose equivalent will be due to densely-ionizing interactions. Thus it is possible that fast protons will, like neutrons, exhibit an enhancement of risk when delivered in many small fractions over a long period. To quantify the potential extent of the problem, the authors use consistent modeling of the inverse dose rate effect as a function of dose, dose rate, and radiation quality. The basic notion is that cells in some period of their cycle are more sensitive to radiation than cells that are not in this period. Then, a single exposure of cycling cells to densely-ionizing radiation will result in some fraction of these sensitive cells receiving very large depositions of energy - much greater than required to produce the changes that lead to oncogenic transformation. On the other hand, if the exposure is fractionated, a larger proportion of sensitive cells will be exposed, though to smaller average numbers of energy depositions

  3. Assessment of Utilization of Food Variety on the International Space Station

    Science.gov (United States)

    Cooper, M. R.; Paradis, R.; Zwart, S. R.; Smith, S. M.; Kloeris, V. L.; Douglas, G. L.

    2018-01-01

    Long duration missions will require astronauts to subsist on a closed food system for at least three years. Resupply will not be an option, and the food supply will be older at the time of consumption and more static in variety than previous missions. The space food variety requirements that will both supply nutrition and support continued interest in adequate consumption for a mission of this duration is unknown. Limited food variety of past space programs (Gemini, Apollo, International Space Station) as well as in military operations resulted in monotony, food aversion, and weight loss despite relatively short mission durations of a few days up to several months. In this study, food consumption data from 10 crew members on 3-6-month International Space Station missions was assessed to determine what percentage of the existing food variety was used by crew members, if the food choices correlated to the amount of time in orbit, and whether commonalities in food selections existed across crew members. Complete mission diet logs were recorded on ISS flights from 2008 - 2014, a period in which space food menu variety was consistent, but the food system underwent an extensive reformulation to reduce sodium content. Food consumption data was correlated to the Food on Orbit by Week logs, archived Data Usage Charts, and a food list categorization table using TRIFACTA software and queries in a SQL SERVER 2012 database.

  4. Approach to transaction management for Space Station Freedom

    Science.gov (United States)

    Easton, C. R.; Cressy, Phil; Ohnesorge, T. E.; Hector, Garland

    1989-01-01

    An approach to managing the operations of the Space Station Freedom based on their external effects is described. It is assumed that there is a conflict-free schedule that, if followed, will allow only appropriate operations to occur. The problem is then reduced to that of ensuring that the operations initiated are within the limits allowed by the schedule, or that the external effects of such operations are within those allowed by the schedule. The main features of the currently adopted transaction management approach are discussed.

  5. NRT Lightning Imaging Sensor (LIS) on International Space Station (ISS) Provisional Science Data Vp0

    Data.gov (United States)

    National Aeronautics and Space Administration — The International Space Station (ISS) Lightning Imaging Sensor (LIS) datasets were collected by the LIS instrument on the ISS used to detect the distribution and...

  6. Space station high gain antenna concept definition and technology development

    Science.gov (United States)

    Wade, W. D.

    1972-01-01

    The layout of a technology base is reported from which a mechanically gimballed, directional antenna can be developed to support a manned space station proposed for the late 1970's. The effort includes the concept definition for the antenna assembly, an evaluation of available technology, the design of critical subassemblies and the design of critical subassembly tests.

  7. EAC training and medical support for International Space Station astronauts.

    Science.gov (United States)

    Messerschmid, E; Haignere, J P; Damian, K; Damann, V

    2000-11-01

    The operation of the International Space Station (ISS) will be a global multilateral endeavour. Each International Partner will be responsible for the operation of its elements and for providing a crew complement proportional to its share of the overall resources. The preparations of the European Astronaut Centre to furnish training and medical support for the ISS astronauts are described.

  8. Channel coding in the space station data system network

    Science.gov (United States)

    Healy, T.

    1982-01-01

    A detailed discussion of the use of channel coding for error correction, privacy/secrecy, channel separation, and synchronization is presented. Channel coding, in one form or another, is an established and common element in data systems. No analysis and design of a major new system would fail to consider ways in which channel coding could make the system more effective. The presence of channel coding on TDRS, Shuttle, the Advanced Communication Technology Satellite Program system, the JSC-proposed Space Operations Center, and the proposed 30/20 GHz Satellite Communication System strongly support the requirement for the utilization of coding for the communications channel. The designers of the space station data system have to consider the use of channel coding.

  9. Architecture for spacecraft operations planning

    Science.gov (United States)

    Davis, William S.

    1991-01-01

    A system which generates plans for the dynamic environment of space operations is discussed. This system synthesizes plans by combining known operations under a set of physical, functional, and temperal constraints from various plan entities, which are modeled independently but combine in a flexible manner to suit dynamic planning needs. This independence allows the generation of a single plan source which can be compiled and applied to a variety of agents. The architecture blends elements of temperal logic, nonlinear planning, and object oriented constraint modeling to achieve its flexibility. This system was applied to the domain of the Intravehicular Activity (IVA) maintenance and repair aboard Space Station Freedom testbed.

  10. Evaluating space station applications of automation and robotics technologies from a human productivity point of view

    Science.gov (United States)

    Bard, J. F.

    1986-01-01

    The role that automation, robotics, and artificial intelligence will play in Space Station operations is now beginning to take shape. Although there is only limited data on the precise nature of the payoffs that these technologies are likely to afford there is a general consensus that, at a minimum, the following benefits will be realized: increased responsiveness to innovation, lower operating costs, and reduction of exposure to hazards. Nevertheless, the question arises as to how much automation can be justified with the technical and economic constraints of the program? The purpose of this paper is to present a methodology which can be used to evaluate and rank different approaches to automating the functions and tasks planned for the Space Station. Special attention is given to the impact of advanced automation on human productivity. The methodology employed is based on the Analytic Hierarchy Process. This permits the introduction of individual judgements to resolve the confict that normally arises when incomparable criteria underly the selection process. Because of the large number of factors involved in the model, the overall problem is decomposed into four subproblems individually focusing on human productivity, economics, design, and operations, respectively. The results from each are then combined to yield the final rankings. To demonstrate the methodology, an example is developed based on the selection of an on-orbit assembly system. Five alternatives for performing this task are identified, ranging from an astronaut working in space, to a dexterous manipulator with sensory feedback. Computational results are presented along with their implications. A final parametric analysis shows that the outcome is locally insensitive to all but complete reversals in preference.

  11. Space Station Freedom electrical power system hardware commonality with the United States Polar Platform

    Science.gov (United States)

    Rieker, Lorra L.; Haraburda, Francis M.

    1989-01-01

    Information is presented on how the concept of commonality is being implemented with respect to electric power system hardware for the Space Station Freedom and the U.S. Polar Platform. Included is a historical account of the candidate common items which have the potential to serve the same power system functions on both Freedom and the Polar Platform. The Space Station program and objectives are described, focusing on the test and development responsibilities. The program definition and preliminary design phase and the design and development phase are discussed. The goal of this work is to reduce the program cost.

  12. Laboratory Calibration Studies in Support of ORGANICS on the International Space Station: Evolution of Organic Matter in Space

    Science.gov (United States)

    Ruiterkamp, R.; Ehrenfreund, P.; Halasinski, T.; Salama, F.; Foing, B.; Schmidt, W.

    2002-01-01

    This paper describes the scientific overview and current status of ORGANICS an exposure experiment performed on the International Space Station (ISS) to study the evolution of organic matter in space (PI: P. Ehrenfreund), with supporting laboratory experiments performed at NASA Ames. ORGANICS investigates the chemical evolution of samples submitted to long-duration exposure to space environment in near-Earth orbit. This experiment will provide information on the nature, evolution, and survival of carbon species in the interstellar medium (ISM) and in solar system targets.

  13. A virtual reality browser for Space Station models

    Science.gov (United States)

    Goldsby, Michael; Pandya, Abhilash; Aldridge, Ann; Maida, James

    1993-01-01

    The Graphics Analysis Facility at NASA/JSC has created a visualization and learning tool by merging its database of detailed geometric models with a virtual reality system. The system allows an interactive walk-through of models of the Space Station and other structures, providing detailed realistic stereo images. The user can activate audio messages describing the function and connectivity of selected components within his field of view. This paper presents the issues and trade-offs involved in the implementation of the VR system and discusses its suitability for its intended purposes.

  14. Optimal Charging Schedule Planning and Economic Analysis for Electric Bus Charging Stations

    Directory of Open Access Journals (Sweden)

    Rong-Ceng Leou

    2017-04-01

    Full Text Available The battery capacity of electric buses (EB used for public transportation is greater than that of electric cars, and the charging power is also several times greater than that used in electric cars; this can result in high energy consumption and negatively impact power distribution networks. This paper proposes a framework to determine the optimal contracted power capacity and charging schedule of an EB charging station in such a way that energy costs can be reduced. A mathematical model of controlled charging, which includes the capacity and energy charges of the station, was developed to minimize costs. The constraints of the model include the charging characteristics of an EB and the operational guidelines of the bus company. A practical EB charging station was used to verify the proposed model. The financial viability of this EB charging station is also studied in this paper. The economic analysis model for this charging station considers investment and operational costs, and the operational revenue. Sensitivity analyses with respect to some key parameters are also performed in this paper. Based on actual operational routes and EB charging schemes, test results indicate that the EB charging station investment is feasible, and the planning model proposed can be used to determine optimal station power capacity and minimize energy costs.

  15. Parking Space Occupancy at Rail Stations in Klang Valley

    Directory of Open Access Journals (Sweden)

    Ho Phooi Wai

    2017-01-01

    Full Text Available The development of Klang Valley Integrated Rapid Transit system in Klang Valley, Malaysia has been quickly gaining momentum during the recent years. There will be two new MRT lines (MRT Line 1 and MRT Line 2 and one new LRT line (LRT Line 3 extended from the current integrated rail transit system by year 2020 with more than 90 new rail stations. With the substantial addition of potential rail passengers, there are doubts whether the existing Park and Ride facilities in Klang Valley are able to accommodate the future parking space demand at rail stations. This research studies the parking occupancy at various Park and Ride facilities in Klang Valley namely Taman Jaya, Asia Jaya, Taman Paramount, Taman Bahagia and Kelana Jaya by applying the non-conventional method utilizing Google Earth imageries. Results showed that the parking occupancy rate at these LRT stations were 100% or more before the commencement of LRT extension (Kelana Jaya and Ampang Lines in 2016 and in the range of 36% to 100% after the commencement of LRT extension due to the additionally built car parks and changes in parking pattern with dispersed passenger traffic.

  16. NASA deep space network operations planning and preparation

    Science.gov (United States)

    Jensen, W. N.

    1982-01-01

    The responsibilities and structural organization of the Operations Planning Group of NASA Deep Space Network (DSN) Operations are outlined. The Operations Planning group establishes an early interface with a user's planning organization to educate the user on DSN capabilities and limitations for deep space tracking support. A team of one or two individuals works through all phases of the spacecraft launch and also provides planning and preparation for specific events such as planetary encounters. Coordinating interface is also provided for nonflight projects such as radio astronomy and VLBI experiments. The group is divided into a Long Range Support Planning element and a Near Term Operations Coordination element.

  17. Tests of shielding effectiveness of Kevlar and Nextel onboard the International Space Station and the Foton-M3 capsule.

    Science.gov (United States)

    Pugliese, M; Bengin, V; Casolino, M; Roca, V; Zanini, A; Durante, M

    2010-08-01

    Radiation assessment and protection in space is the first step in planning future missions to the Moon and Mars, where mission and number of space travelers will increase and the protection of the geomagnetic shielding against the cosmic radiation will be absent. In this framework, the shielding effectiveness of two flexible materials, Kevlar and Nextel, were tested, which are largely used in the construction of spacecrafts. Accelerator-based tests clearly demonstrated that Kevlar is an excellent shield for heavy ions, close to polyethylene, whereas Nextel shows poor shielding characteristics. Measurements on flight performed onboard of the International Space Station and of the Foton-M3 capsule have been carried out with special attention to the neutron component; shielded and unshielded detectors (thermoluminescence dosemeters, bubble detectors) were exposed to a real radiation environment to test the shielding properties of the materials under study. The results indicate no significant effects of shielding, suggesting that thin shields in low-Earth Orbit have little effect on absorbed dose.

  18. Space Station Freedom combustion research

    Science.gov (United States)

    Faeth, G. M.

    1992-01-01

    Extended operations in microgravity, on board spacecraft like Space Station Freedom, provide both unusual opportunities and unusual challenges for combustion science. On the one hand, eliminating the intrusion of buoyancy provides a valuable new perspective for fundamental studies of combustion phenomena. On the other hand, however, the absence of buoyancy creates new hazards of fires and explosions that must be understood to assure safe manned space activities. These considerations - and the relevance of combustion science to problems of pollutants, energy utilization, waste incineration, power and propulsion systems, and fire and explosion hazards, among others - provide strong motivation for microgravity combustion research. The intrusion of buoyancy is a greater impediment to fundamental combustion studies than to most other areas of science. Combustion intrinsically heats gases with the resulting buoyant motion at normal gravity either preventing or vastly complicating measurements. Perversely, this limitation is most evident for fundamental laboratory experiments; few practical combustion phenomena are significantly affected by buoyancy. Thus, we have never observed the most fundamental combustion phenomena - laminar premixed and diffusion flames, heterogeneous flames of particles and surfaces, low-speed turbulent flames, etc. - without substantial buoyant disturbances. This precludes rational merging of theory, where buoyancy is of little interest, and experiments, that always are contaminated by buoyancy, which is the traditional path for developing most areas of science. The current microgravity combustion program seeks to rectify this deficiency using both ground-based and space-based facilities, with experiments involving space-based facilities including: laminar premixed flames, soot processes in laminar jet diffusion flames, structure of laminar and turbulent jet diffusion flames, solid surface combustion, one-dimensional smoldering, ignition and flame

  19. Goal driven kinematic simulation of flexible arm robot for space station missions

    Science.gov (United States)

    Janssen, P.; Choudry, A.

    1987-01-01

    Flexible arms offer a great degree of flexibility in maneuvering in the space environment. The problem of transporting an astronaut for extra-vehicular activity using a space station based flexible arm robot was studied. Inverse kinematic solutions of the multilink structure were developed. The technique is goal driven and can support decision making for configuration selection as required for stability and obstacle avoidance. Details of this technique and results are given.

  20. Materials on the International Space Station - Forward Technology Solar Cell Experiment

    Science.gov (United States)

    Walters, R. J.; Garner, J. C.; Lam, S. N.; Vazquez, J. A.; Braun, W. R.; Ruth, R. E.; Lorentzen, J. R.; Bruninga, R.; Jenkins, P. P.; Flatico, J. M.

    2005-01-01

    This paper describes a space solar cell experiment currently being built by the Naval Research Laboratory (NRL) in collaboration with NASA Glenn Research Center (GRC), and the US Naval Academy (USNA). The experiment has been named the Forward Technology Solar Cell Experiment (FTSCE), and the purpose is to rapidly put current and future generation space solar cells on orbit and provide validation data for these technologies. The FTSCE is being fielded in response to recent on-orbit and ground test anomalies associated with space solar arrays that have raised concern over the survivability of new solar technologies in the space environment and the validity of present ground test protocols. The FTSCE is being built as part of the Fifth Materials on the International Space Station (MISSE) Experiment (MISSE-5), which is a NASA program to characterize the performance of new prospective spacecraft materials when subjected to the synergistic effects of the space environment. Telemetry, command, control, and communication (TNC) for the FTSCE will be achieved through the Amateur Satellite Service using the PCSat2 system, which is an Amateur Radio system designed and built by the USNA. In addition to providing an off-the-shelf solution for FTSCE TNC, PCSat2 will provide a communications node for the Amateur Radio satellite system. The FTSCE and PCSat2 will be housed within the passive experiment container (PEC), which is an approximately 2ft x2ft x 4in metal container built by NASA Langley Research Center (NASA LaRC) as part of the MISSE-5 program. NASA LaRC has also supplied a thin film materials experiment that will fly on the exterior of the thermal blanket covering the PCSat2. The PEC is planned to be transported to the ISS on a Shuttle flight. The PEC will be mounted on the exterior of the ISS by an astronaut during an extravehicular activity (EVA). After nominally one year, the PEC will be retrieved and returned to Earth. At the time of writing this paper, the

  1. A Decade of Life Sciences Experiment Unique Equipment Development for Spacelab and Space Station, 1990-1999

    Science.gov (United States)

    Savage, Paul D.; Connolly, J. P.; Navarro, B. J.

    1999-01-01

    Ames Research Center's Life Sciences Division has developed and flown an extensive array of spaceflight experiment unique equipment (EUE) during the last decade of the twentieth century. Over this ten year span, the EUE developed at ARC supported a vital gravitational biology flight research program executed on several different platforms, including the Space Shuttle, Spacelab, and Space Station Mir. This paper highlights some of the key EUE elements developed at ARC and flown during the period 1990-1999. Resulting lessons learned will be presented that can be applied to the development of similar equipment for the International Space Station.

  2. Keeping the dream alive: Managing the Space Station Program, 1982 to 1986

    Science.gov (United States)

    Lewin, Thomas J.; Narayanan, V. K.

    1990-01-01

    The management is described and analyzed of the formative years of the NASA Space Station Program (1982 to 1986), beginning with the successful initiative for program approval by Administrator James M. Beggs through to the decision to bring program management to Reston, Virginia. Emphasis is on internal management issues related to the implementation of the various phases of the program. Themes examined are the problem of bringing programmatic and institutional interests together and focusing them to forward the program; centralized versus decentralized control of the program; how the history of NASA and of the individual installations affected the decisions made; and the pressure from those outside NASA. The four sections are: (1) the decision to build the space station, (2) the design of the management experiment, (3) the experiment comes to life, and (4) the decision reversal.

  3. Space station wardroom habitability and equipment study

    Science.gov (United States)

    Nixon, David; Miller, Christopher; Fauquet, Regis

    1989-01-01

    Experimental designs in life-size mock-up form for the wardroom facility for the Space Station Habitability Module are explored and developed. In Phase 1, three preliminary concepts for the wardroom configuration are fabricated and evaluated. In Phase 2, the results of Phase 1 are combined with a specific range of program design requirements to provide the design criteria for the fabrication of an innovative medium-fidelity mock-up of a wardrobe configuration. The study also focuses on the design and preliminary prototyping of selected equipment items including crew exercise compartments, a meal/meeting table and a portable workstation. Design criteria and requirements are discussed and documented. Preliminary and final mock-ups and equipment prototypes are described and illustrated.

  4. National Aeronautics and Space Administration plans for space communication technology

    Science.gov (United States)

    Alexovich, R. E.

    1979-01-01

    A program plan is presented for a space communications application utilizing the 30/20 GHz frequency bands (30 GHz uplink and 20 GHz downlink). Results of market demand studies and spacecraft systems studies which significantly affect the supporting research and technology program are also presented, along with the scheduled activities of the program plan.

  5. Soft Spaces as Vehicles for Neoliberal Transformations of Strategic Spatial Planning?

    DEFF Research Database (Denmark)

    Olesen, Kristian

    focused on the lack of transparency and potential democratic deficits of contemporary spatial planning. Limited critical attention has been paid to how policy agendas are being shaped and reshaped in soft spaces, and how these agendas seek to influence formal planning arenas. These questions seem...... spatial planning practices. This paper seeks to broaden the soft space debate in a European context by offering an account of the emergence of soft spaces in Danish spatial planning. The paper analyses how spatial strategy-making is carried out at the scale of two new soft spaces emerging in Danish...... spatial planning at subnational scales. In these soft spaces, the paper explores how policy agendas are being shaped and reshaped, and how these agendas seek to influence formal planning arenas. The central argument running through this paper is that soft spaces in neoliberal political climates might...

  6. Shielding of manned space stations against Van Allen Belt protons: a preliminary scoping study

    International Nuclear Information System (INIS)

    Santoro, R.T.; Alsmiller, R.G. Jr.; Barnes, J.M.; Corbin, J.M.

    1986-09-01

    Calculated results are presented to aid in the design of the shielding required to protect astronauts in a space station that is orbiting through the Van Allen proton belt. The geometry considered - a spherical shell shield with a spherical tissue phantom at its center - is only a very approximate representation of an actual space station, but this simple geometry makes it possible to consider a wide range of possible shield materials. Both homogeneous and laminated shields are considered. Also, an approximation procedure - the equivalent thickness approximation - that allows dose rates to be estimated for any shield material or materials from the dose rates for an aluminum shield is presented and discussed

  7. Free-Flyer Capture - New Robotic Challenges from the International Space Station

    Science.gov (United States)

    Smith, C.; Seagram, J.

    The Japanese H-II Transfer Vehicle (HTV) will be the first free-flyer to visit the International Space Station (ISS) that will be captured by the Space Station Remote Manipulator System (SSRMS). Experience gained from the free-flyer captures completed previously by the Remote Manipulator System of the Space Shuttle has helped provide a foundation for the operational concept of capturing free-flyers. However, additional complications arise in the concept of free-flyer capture when carried out by the SSRMS from the ISS. Such issues include: ISS manoeuvrability and the difficulty of the ISS to quickly react to collision avoidance; current hardware and architecture design constraints of the SSRMS on-orbit; and HTV retreat and system limitations. This paper will discuss these issues and the numerous challenges they generate in trying to ensure that the safety of the ISS is maintained while trying to also guarantee the successful capture of the HTV; a vehicle containing potentially critical equipment and supplies for the ISS and its crew. As well, this paper will highlight the SSRMS system enhancements and innovative operational solutions that have enhanced the probability of mission success, and have been necessary to meet the failure tolerance and recovery requirements.

  8. Space station automation study: Automation requriements derived from space manufacturing concepts,volume 2

    Science.gov (United States)

    1984-01-01

    Automation reuirements were developed for two manufacturing concepts: (1) Gallium Arsenide Electroepitaxial Crystal Production and Wafer Manufacturing Facility, and (2) Gallium Arsenide VLSI Microelectronics Chip Processing Facility. A functional overview of the ultimate design concept incoporating the two manufacturing facilities on the space station are provided. The concepts were selected to facilitate an in-depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, sensors, and artificial intelligence. While the cost-effectiveness of these facilities was not analyzed, both appear entirely feasible for the year 2000 timeframe.

  9. Space Resource Utilization: Near-Term Missions and Long-Term Plans for Human Exploration

    Science.gov (United States)

    Sanders, Gerald B.

    2015-01-01

    A primary goal of all major space faring nations is to explore space: from the Earth with telescopes, with robotic probes and space telescopes, and with humans. For the US National Aeronautics and Space Administration (NASA), this pursuit is captured in three important strategic goals: 1. Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere, 2. Extend and sustain human activities across the solar system (especially the surface of Mars), and 3. Create innovative new space technologies for exploration, science, and economic future. While specific missions and destinations are still being discussed as to what comes first, it is imperative for NASA that it foster the development and implementation of new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable human exploration beyond low Earth orbit (LEO) is the development of technologies and systems to identify, extract, and use resources in space instead of bringing everything from Earth. To reduce the development and implementation costs for space resource utilization, often called In Situ Resource Utilization (ISRU), it is imperative to work with terrestrial mining companies to spin-in/spin-off technologies and capabilities, and space mining companies to expand our economy beyond Earth orbit. In the last two years, NASA has focused on developing and implementing a sustainable human space exploration program with the ultimate goal of exploring the surface of Mars with humans. The plan involves developing technology and capability building blocks critical for sustained exploration starting with the Space Launch System (SLS) and Orion crew spacecraft and utilizing the International Space Station as a springboard into the solar system. The evolvable plan develops and expands human exploration in phases starting with missions that are reliant on Earth, to performing ever more challenging and

  10. Statement of Aaron Cohen, Director, Research and Engineering, Johnson Space Center and Chairman, Space Station Advanced Technology Advisory Committee, National Aeronautics and Space Administration, before the Subcommittee on Science, Technology, and Space, Committee on Commerce, Science, and Transportation, United States Senate

    Science.gov (United States)

    Cohen, A.

    1985-01-01

    The activities of NASA's Space Station Advanced Technology Advisory Committee is discussed. Advanced Technology Advisory Committee (ATAC) activities over the last year are reviewed in preparation of the report to Congress on the potential for advancing automation and robotics technology for the space station and for the U.S. economy.

  11. Why Deep Space Habitats Should Be Different from the International Space Station

    Science.gov (United States)

    Griffin, Brand; Brown, MacAulay

    2016-01-01

    It is tempting to view the International Space Station (ISS) as a model for deep space habitats. This is not a good idea for many reasons. The ISS does not have a habitation module; instead the individual crew quarters are dispersed across several modules, the galley is in the US Laboratory and the waste hygiene compartment is in a Node. This distributed arrangement may be inconvenient but more important differences distinguish a deep space habitat from the ISS. First, the Space Shuttle launch system that shaped, sized, and delivered most ISS elements has been retired. Its replacement, the Space Launch System (SLS), is specifically designed for human exploration beyond low-Earth orbit and is capable of transporting more efficient, large diameter, heavy-lift payloads. Next, because of the Earth's protective geomagnetic field, ISS crews are naturally shielded from lethal radiation. Deep space habitat designs must include either a storm shelter or strategically positioned equipment and stowage for radiation protection. Another important difference is the increased transit time with no opportunity for an ISS-type emergency return. It takes 7 to 10 days to go between Earth and cis-lunar locations and 1000 days for the Mars habitat transit. This long commute calls for greater crew autonomy with habitats designed for the crew to fix their own problems. The ISS rack-enclosed, densely packaged subsystems are a product of the Shuttle era and not maintenance friendly. A solution better suited for deep space habitats spreads systems out allowing direct access to single-layer packaging and providing crew access to each component without having to remove another. Operational readiness is another important discriminator. The ISS required over 100 flights to build, resupply, and transport the crew, whereas SLS offers the capability to launch a fully provisioned habitat that is operational without additional outfitting or resupply flights.

  12. Improving Safety on the International Space Station: Transitioning to Electronic Emergency Procedure Books on the International Space Station

    Science.gov (United States)

    Carter-Journet, Katrina; Clahoun, Jessica; Morrow, Jason; Duncan, Gary

    2012-01-01

    The National Aeronautics and Space Administration (NASA) originally designed the International Space Station (ISS) to operate until 2015, but have extended operations until at least 2020. As part of this very dynamic Program, there is an effort underway to simplify the certification of Commercial ]of ]the ]Shelf (COTS) hardware. This change in paradigm allows the ISS Program to take advantage of technologically savvy and commercially available hardware, such as the iPad. The iPad, a line of tablet computers designed and marketed by Apple Inc., was chosen to support this endeavor. The iPad is functional, portable, and could be easily accessed in an emergency situation. The iPad Electronic Flight Bag (EFB), currently approved for use in flight by the Federal Aviation Administration (FAA), is a fraction of the cost of a traditional Class 2 EFB. In addition, the iPad fs ability to use electronic aeronautical data in lieu of paper in route charts and approach plates can cut the annual cost of paper data in half for commercial airlines. ISS may be able to benefit from this type of trade since one of the most important factors considered is information management. Emergency procedures onboard the ISS are currently available to the crew in paper form. Updates to the emergency books can either be launched on an upcoming visiting vehicle such as a Russian Soyuz flight or printed using the onboard ISS printer. In both cases, it is costly to update hardcopy procedures. A new operations concept was proposed to allow for the use of a tablet system that would provide a flexible platform to support space station crew operations. The purpose of the system would be to provide the crew the ability to view and maintain operational data, such as emergency procedures while also allowing Mission Control Houston to update the procedures. The ISS Program is currently evaluating the safety risks associated with the use of iPads versus paper. Paper products can contribute to the flammability

  13. Alpha Magnetic Spectrometer (AMS) for Extraterrestrial Study of Antimatter, Matter and Missing Matter on the International Space Station

    CERN Multimedia

    Lee, M W; Lipari, P; Berdugo perez, J F; Borgia, B; Lazzizzera, I; Battarbee, M C; Valente, V; Bartoloni, A

    2002-01-01

    % RE1\\\\ \\\\ AMS is the first magnetic particle physics spectrometer to be installed on the International Space Station. With a superconducting magnetic spectrometer, AMS will provide accurate measurements of electrons, positrons, protons, antiprotons and various nuclei up to TeV region. NASA has scheduled to install this detector on the International Space Station in May 2003. The first flight of AMS was done with a permanent magnet and this prototype detector has provided accurate information on the limit of the existence of antihelium. It also showed that proton and electron -positron spectra exhibited a complicated behavior in the near earth orbit. The construction of AMS is being carried out in Switzerland, Germany, Italy, France, Finland, Spain, Portugal, Romania, Russia, Taiwan, China and the United States. NASA provides the use of the space shuttle and the space station, as well as mission management.

  14. Student Pave Way for First Microgravity Experiments on International Space Station

    Science.gov (United States)

    1999-01-01

    Chemist Arna Holmes, left, from the University of Alabama in Huntsville, teaches NaLonda Moorer, center, and Maricar Bana, right, both from Terry Parker High School in Jacksonville, Fl, procedures for preparing protein crystal growth samples for flight aboard the International Space Station (ISS). NASA/Marshall Space Flight Center in Huntsville, AL, is a sponsor for this educational activity. The proteins are placed in plastic tubing that is heat-sealed at the ends, then flash-frozen and preserved in a liquid nitrogen Dewar. Aborad the ISS, the nitrogen will be allowed to evaporated so the samples thaw and then slowly crystallize. They will be analyzed after return to Earth. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  15. Deep Space Habitat Configurations Based on International Space Station Systems

    Science.gov (United States)

    Smitherman, David; Russell, Tiffany; Baysinger, Mike; Capizzo, Pete; Fabisinski, Leo; Griffin, Brand; Hornsby, Linda; Maples, Dauphne; Miernik, Janie

    2012-01-01

    A Deep Space Habitat (DSH) is the crew habitation module designed for long duration missions. Although humans have lived in space for many years, there has never been a habitat beyond low-Earth-orbit. As part of the Advanced Exploration Systems (AES) Habitation Project, a study was conducted to develop weightless habitat configurations using systems based on International Space Station (ISS) designs. Two mission sizes are described for a 4-crew 60-day mission, and a 4-crew 500-day mission using standard Node, Lab, and Multi-Purpose Logistics Module (MPLM) sized elements, and ISS derived habitation systems. These durations were selected to explore the lower and upper bound for the exploration missions under consideration including a range of excursions within the Earth-Moon vicinity, near earth asteroids, and Mars orbit. Current methods for sizing the mass and volume for habitats are based on mathematical models that assume the construction of a new single volume habitat. In contrast to that approach, this study explored the use of ISS designs based on existing hardware where available and construction of new hardware based on ISS designs where appropriate. Findings included a very robust design that could be reused if the DSH were assembled and based at the ISS and a transportation system were provided for its return after each mission. Mass estimates were found to be higher than mathematical models due primarily to the use of multiple ISS modules instead of one new large module, but the maturity of the designs using flight qualified systems have potential for improved cost, schedule, and risk benefits.

  16. Non-Quality Controlled Lightning Imaging Sensor (LIS) on International Space Station (ISS) Science Data Vb0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Non-Quality Controlled Lightning Imaging Sensor (LIS) on International Space Station (ISS) Science Data were collected by the LIS instrument on the ISS used to...

  17. Saltwell Leak Detector Station Programmable Logic Controller (PLC) Software Configuration Management Plan (SCMP)

    International Nuclear Information System (INIS)

    WHITE, K.A.

    2000-01-01

    This document provides the procedures and guidelines necessary for computer software configuration management activities during the operation and maintenance phases of the Saltwell Leak Detector Stations as required by HNF-PRO-309/Rev.1, Computer Software Quality Assurance, Section 2.4, Software Configuration Management. The software configuration management plan (SCMP) integrates technical and administrative controls to establish and maintain technical consistency among requirements, physical configuration, and documentation for the Saltwell Leak Detector Station Programmable Logic Controller (PLC) software during the Hanford application, operations and maintenance. This SCMP establishes the Saltwell Leak Detector Station PLC Software Baseline, status changes to that baseline, and ensures that software meets design and operational requirements and is tested in accordance with their design basis

  18. Candidate functions for advanced technology implementation in the Columbus mission planning environment

    Science.gov (United States)

    Loomis, Audrey; Kellner, Albrecht

    1988-01-01

    The Columbus Project is the European Space Agency's contribution to the International Space Station program. Columbus is planned to consist of three elements (a laboratory module attached to the Space Station base, a man-tended freeflyer orbiting with the Space Station base, and a platform in polar orbit). System definition and requirements analysis for Columbus are underway, scheduled for completion in mid-1990. An overview of the Columbus mission planning environment and operations concept as currently defined is given, and some of the challenges presented to software maintainers and ground segment personnel during mission operators are identified. The use of advanced technologies in system implementation is being explored. Both advantages of such solutions and potential problems they present are discussed, and the next steps to be taken by Columbus before targeting any functions for advanced technology implementation are summarized. Several functions in the mission planning process were identified as candidates for advanced technology implementation. These range from expert interaction with Columbus' data bases through activity scheduling and near-real-time response to departures from the planned timeline. Each function is described, and its potential for advanced technology implementation briefly assessed.

  19. The Stratospheric Aerosol and Gas Experiment (SAGE III) on the International Space Station (ISS) Mission

    Science.gov (United States)

    Cisewski, Michael; Zawodny, Joseph; Gasbarre, Joseph; Eckman, Richard; Topiwala, Nandkishore; Rodriquez-Alvarez, Otilia; Cheek, Dianne; Hall, Steve

    2014-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will provide the science community with high-vertical resolution and nearly global observations of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gas species in the stratosphere and upper-troposphere. SAGE III/ISS measurements will extend the long-term Stratospheric Aerosol Measurement (SAM) and SAGE data record begun in the 1970s. The multi-decadal SAGE ozone and aerosol data sets have undergone intense scrutiny and are considered the international standard for accuracy and stability. SAGE data have been used to monitor the effectiveness of the Montreal Protocol. Key objectives of the mission are to assess the state of the recovery in the distribution of ozone, to re-establish the aerosol measurements needed by both climate and ozone models, and to gain further insight into key processes contributing to ozone and aerosol variability. The space station mid-inclination orbit allows for a large range in latitude sampling and nearly continuous communications with payloads. The SAGE III instrument is the fifth in a series of instruments developed for monitoring atmospheric constituents with high vertical resolution. The SAGE III instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm. Science data is collected in solar occultation mode, lunar occultation mode, and limb scatter measurement mode. A SpaceX Falcon 9 launch vehicle will provide access to space. Mounted in the unpressurized section of the Dragon trunk, SAGE III will be robotically removed from the Dragon and installed on the space station. SAGE III/ISS will be mounted to the ExPRESS Logistics Carrier-4 (ELC-4) location on the starboard side of the station. To facilitate a nadir view from this location, a Nadir Viewing Platform (NVP) payload was developed which mounts between the carrier and the SAGE III Instrument Payload (IP).

  20. Planning for a space infrastructure for disposal of nuclear space power systems

    International Nuclear Information System (INIS)

    Angelo, J. Jr.; Albert, T.E.; Lee, J.

    1989-01-01

    The development of safe, reliable, and compact power systems is vital to humanity's exploration, development, and, ultimately, civilization of space. Nuclear power systems appear to present to offer the only practical option of compact high-power systems. From the very beginning of US space nuclear power activities, safety has been a paramount requirement. Assurance of nuclear safety has included prelaunch ground handling operations, launch, and space operations of nuclear power sources, and more recently serious attention has been given to postoperational disposal of spent or errant nuclear reactor systems. The purpose of this paper is to describe the progress of a project to utilize the capabilities of an evolving space infrastructure for planning for disposal of space nuclear systems. Project SIREN (Search, Intercept, Retrieve, Expulsion - Nuclear) is a project that has been initiated to consider post-operational disposal options for nuclear space power systems. The key finding of Project SIREN was that although no system currently exists to affect the disposal of a nuclear space power system, the requisite technologies for such a system either exist or are planned for part of the evolving space infrastructure

  1. Objective Lightning Forecasting at Kennedy Space Center and Cape Canaveral Air Force Station using Cloud-to-Ground Lightning Surveillance System Data

    Science.gov (United States)

    Lambert, Winfred; Wheeler, Mark; Roeder, William

    2005-01-01

    The 45th Weather Squadron (45 WS) at Cape Canaveral Air-Force Station (CCAFS)ln Florida issues a probability of lightning occurrence in their daily 24-hour and weekly planning forecasts. This information is used for general planning of operations at CCAFS and Kennedy Space Center (KSC). These facilities are located in east-central Florida at the east end of a corridor known as 'Lightning Alley', an indication that lightning has a large impact on space-lift operations. Much of the current lightning probability forecast is based on a subjective analysis of model and observational data and an objective forecast tool developed over 30 years ago. The 45 WS requested that a new lightning probability forecast tool based on statistical analysis of more recent historical warm season (May-September) data be developed in order to increase the objectivity of the daily thunderstorm probability forecast. The resulting tool is a set of statistical lightning forecast equations, one for each month of the warm season, that provide a lightning occurrence probability for the day by 1100 UTC (0700 EDT) during the warm season.

  2. Passive Thermal Design Approach for the Space Communications and Navigation (SCaN) Testbed Experiment on the International Space Station (ISS)

    Science.gov (United States)

    Siamidis, John; Yuko, Jim

    2014-01-01

    The Space Communications and Navigation (SCaN) Program Office at NASA Headquarters oversees all of NASAs space communications activities. SCaN manages and directs the ground-based facilities and services provided by the Deep Space Network (DSN), Near Earth Network (NEN), and the Space Network (SN). Through the SCaN Program Office, NASA GRC developed a Software Defined Radio (SDR) testbed experiment (SCaN testbed experiment) for use on the International Space Station (ISS). It is comprised of three different SDR radios, the Jet Propulsion Laboratory (JPL) radio, Harris Corporation radio, and the General Dynamics Corporation radio. The SCaN testbed experiment provides an on-orbit, adaptable, SDR Space Telecommunications Radio System (STRS) - based facility to conduct a suite of experiments to advance the Software Defined Radio, Space Telecommunications Radio Systems (STRS) standards, reduce risk (Technology Readiness Level (TRL) advancement) for candidate Constellation future space flight hardware software, and demonstrate space communication links critical to future NASA exploration missions. The SCaN testbed project provides NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, software defined radio platforms and the STRS Architecture.The SCaN testbed is resident on the P3 Express Logistics Carrier (ELC) on the exterior truss of the International Space Station (ISS). The SCaN testbed payload launched on the Japanese Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV) and was installed on the ISS P3 ELC located on the inboard RAM P3 site. The daily operations and testing are managed out of NASA GRC in the Telescience Support Center (TSC).

  3. International Space Station Nickel-Hydrogen Battery On-Orbit Performance

    Science.gov (United States)

    Dalton, Penni; Cohen, Fred

    2002-01-01

    International Space Station (ISS) Electric Power System (EPS) utilizes Nickel-Hydrogen (Ni-H2) batteries as part of its power system to store electrical energy. The batteries are charged during insolation and discharged during eclipse. The batteries are designed to operate at a 35 percent depth of discharge (DOD) maximum during normal operation. Thirty-eight individual pressure vessel (IPV) Ni-H2 battery cells are series-connected and packaged in an Orbital Replacement Unit (ORU). Two ORUs are series-connected utilizing a total of 76 cells to form one battery. The ISS is the first application for low earth orbit (LEO) cycling of this quantity of series-connected cells. The P6 (Port) Integrated Equipment Assembly (IEA) containing the initial ISS high-power components was successfully launched on November 30, 2000. The IEA contains 12 Battery Subassembly ORUs (6 batteries) that provide station power during eclipse periods. This paper will discuss the battery performance data after eighteen months of cycling.

  4. High-Rate Communications Outage Recorder Operations for Optimal Payload and Science Telemetry Management Onboard the International Space Station

    Science.gov (United States)

    Shell, Michael T.; McElyea, Richard M. (Technical Monitor)

    2002-01-01

    All International Space Station (ISS) Ku-band telemetry transmits through the High-Rate Communications Outage Recorder (HCOR). The HCOR provides the recording and playback capability for all payload, science, and International Partner data streams transmitting through NASA's Ku-band antenna system. The HCOR is a solid-state memory recorder that provides recording capability to record all eight ISS high-rate data during ISS Loss-of-Signal periods. NASA payloads in the Destiny module are prime users of the HCOR; however, NASDA and ESA will also utilize the HCOR for data capture and playback of their high data rate links from the Kibo and Columbus modules. Marshall Space Flight Center's Payload Operations Integration Center manages the HCOR for nominal functions, including system configurations and playback operations. The purpose of this paper is to present the nominal operations plan for the HCOR and the plans for handling contingency operations affecting payload operations. In addition, the paper will address HCOR operation limitations and the expected effects on payload operations. The HCOR is manifested for ISS delivery on flight 9A with the HCOR backup manifested on flight 11A. The HCOR replaces the Medium-Rate Communications Outage Recorder (MCOR), which has supported payloads since flight 5A.1.

  5. A methodology for automation and robotics evaluation applied to the space station telerobotic servicer

    Science.gov (United States)

    Smith, Jeffrey H.; Gyanfi, Max; Volkmer, Kent; Zimmerman, Wayne

    1988-01-01

    The efforts of a recent study aimed at identifying key issues and trade-offs associated with using a Flight Telerobotic Servicer (FTS) to aid in Space Station assembly-phase tasks is described. The use of automation and robotic (A and R) technologies for large space systems would involve a substitution of automation capabilities for human extravehicular or intravehicular activities (EVA, IVA). A methodology is presented that incorporates assessment of candidate assembly-phase tasks, telerobotic performance capabilities, development costs, and effect of operational constraints (space transportation system (STS), attached payload, and proximity operations). Changes in the region of cost-effectiveness are examined under a variety of systems design assumptions. A discussion of issues is presented with focus on three roles the FTS might serve: (1) as a research-oriented testbed to learn more about space usage of telerobotics; (2) as a research based testbed having an experimental demonstration orientation with limited assembly and servicing applications; or (3) as an operational system to augment EVA and to aid the construction of the Space Station and to reduce the programmatic (schedule) risk by increasing the flexibility of mission operations.

  6. Commercial Space Port Planning in Texas

    Science.gov (United States)

    Bell, L.; Looke, B.

    2002-01-01

    The Texas Legislature is providing funding to support research and planning activities aimed at creating a commercial spaceport in the state. These monies have been allocated to regional Spaceport Development Corporations that have been established in three countries containing candidate site locations: Willacy County (in South Texas); Brazoria County (East Texas); and Pecos County (West Texas). This program is being sponsored and coordinated by the Texas Aerospace Commission (TAC). The Sasakawa International Center for Space Architecture (SICSA) at the University of Houston is providing research, planning and design support to TAC and is a member of each of the three regional development teams. Planning must carefully consider special support requirements and operational characteristics of all prospective launch systems along with geographic, infrastructure and environmental factors at each site. Two of the candidate sites are in coastal areas; a priority for certain launch service providers; whereas the third inland site is more attractive to others. Candidate launch systems include winged horizontal takeoff air-launch vehicles, vertical multi-stage reusable launch vehicles, and expendable sub-orbital surrounding rockets. Important research and planning activities include environmental impact assessments, analyses of overflight hazards, investigations of economic impacts and business plan development. The results of these activities will guide master plan development for each site, including: a physical plan (site layout, infrastructure improvements and facility construction); and a strategic plan (user agreements, licenses, finance sources and participants). Commercial spaceport development demands compliance with stringent FAA regulations established by the Office of Commercial Space Transportation (OCST) which exceed minimum standards allowed for U.S. Government spaceport facilities. Key among these requirements are 15,000 ft. radius on-site clear zones

  7. Centralized vs. decentralized nursing stations: effects on nurses' functional use of space and work environment.

    Science.gov (United States)

    Zborowsky, Terri; Bunker-Hellmich, Lou; Morelli, Agneta; O'Neill, Mike

    2010-01-01

    Evidence-based findings of the effects of nursing station design on nurses' work environment and work behavior are essential to improve conditions and increase retention among these fundamental members of the healthcare delivery team. The purpose of this exploratory study was to investigate how nursing station design (i.e., centralized and decentralized nursing station layouts) affected nurses' use of space, patient visibility, noise levels, and perceptions of the work environment. Advances in information technology have enabled nurses to move away from traditional centralized paper-charting stations to smaller decentralized work stations and charting substations located closer to, or inside of, patient rooms. Improved understanding of the trade-offs presented by centralized and decentralized nursing station design has the potential to provide useful information for future nursing station layouts. This information will be critical for understanding the nurse environment "fit." The study used an exploratory design with both qualitative and quantitative methods. Qualitative data regarding the effects of nursing station design on nurses' health and work environment were gathered by means of focus group interviews. Quantitative data-gathering techniques included place- and person-centered space use observations, patient visibility assessments, sound level measurements, and an online questionnaire regarding perceptions of the work environment. Nurses on all units were observed most frequently performing telephone, computer, and administrative duties. Time spent using telephones, computers, and performing other administrative duties was significantly higher in the centralized nursing stations. Consultations with medical staff and social interactions were significantly less frequent in decentralized nursing stations. There were no indications that either centralized or decentralized nursing station designs resulted in superior visibility. Sound levels measured in all

  8. Great Ellipse Route Planning Based on Space Vector

    Directory of Open Access Journals (Sweden)

    LIU Wenchao

    2015-07-01

    Full Text Available Aiming at the problem of navigation error caused by unified earth model in great circle route planning using sphere model and modern navigation equipment using ellipsoid mode, a method of great ellipse route planning based on space vector is studied. By using space vector algebra method, the vertex of great ellipse is solved directly, and description of great ellipse based on major-axis vector and minor-axis vector is presented. Then calculation formulas of great ellipse azimuth and distance are deduced using two basic vectors. Finally, algorithms of great ellipse route planning are studied, especially equal distance route planning algorithm based on Newton-Raphson(N-R method. Comparative examples show that the difference of route planning between great circle and great ellipse is significant, using algorithms of great ellipse route planning can eliminate the navigation error caused by the great circle route planning, and effectively improve the accuracy of navigation calculation.

  9. International Space Station Research for the Next Decade: International Coordination and Research Accomplishments

    Science.gov (United States)

    Thumm, Tracy L.; Robinson, Julie A.; Johnson-Green, Perry; Buckley, Nicole; Karabadzhak, George; Nakamura, Tai; Sorokin, Igor V.; Zell, Martin; Sabbagh, Jean

    2011-01-01

    During 2011, the International Space Station reached an important milestone in the completion of assembly and the shift to the focus on a full and continuous utilization mission in space. The ISS partnership itself has also met a milestone in the coordination and cooperation of utilization activities including research, technology development and education. We plan and track all ISS utilization activities jointly and have structures in place to cooperate on common goals by sharing ISS assets and resources, and extend the impacts and efficiency of utilization activities. The basic utilization areas on the ISS include research, technology development and testing, and education/outreach. Research can be categorized as applied research for future exploration, basic research taking advantage of the microgravity and open space environment, and Industrial R&D / commercial research focused at industrial product development and improvement. Technology development activities range from testing of new spacecraft systems and materials to the use of ISS as an analogue for future exploration missions to destinations beyond Earth orbit. This presentation, made jointly by all ISS international partners, will highlight the ways that international cooperation in all of these areas is achieved, and the overall accomplishments that have come as well as future perspectives from the cooperation. Recently, the partnership has made special efforts to increase the coordination and impact of ISS utilization that has humanitarian benefits. In this context the paper will highlight tentative ISS utilization developments in the areas of Earth remote sensing, medical technology transfer, and education/outreach.

  10. An IBM PC-based math model for space station solar array simulation

    Science.gov (United States)

    Emanuel, E. M.

    1986-01-01

    This report discusses and documents the design, development, and verification of a microcomputer-based solar cell math model for simulating the Space Station's solar array Initial Operational Capability (IOC) reference configuration. The array model is developed utilizing a linear solar cell dc math model requiring only five input parameters: short circuit current, open circuit voltage, maximum power voltage, maximum power current, and orbit inclination. The accuracy of this model is investigated using actual solar array on orbit electrical data derived from the Solar Array Flight Experiment/Dynamic Augmentation Experiment (SAFE/DAE), conducted during the STS-41D mission. This simulator provides real-time simulated performance data during the steady state portion of the Space Station orbit (i.e., array fully exposed to sunlight). Eclipse to sunlight transients and shadowing effects are not included in the analysis, but are discussed briefly. Integrating the Solar Array Simulator (SAS) into the Power Management and Distribution (PMAD) subsystem is also discussed.

  11. A study of space station needs, attributes and architectural options, volume 2, technical. Book 3: Economic benefits, costs and programmatics

    Science.gov (United States)

    1983-01-01

    The economic benefits, cost analysis, and industrial uses of the manned space station are investigated. Mission payload costs are examined in relation to alternative architectures and projected technological evolution. Various approaches to industrial involvement for financing, development, and marketing of space station resources are described.

  12. Control of the Onboard Microgravity Environment and Extension of the Service Life of the Long-Term Space Station

    Science.gov (United States)

    Titov, V. A.

    2018-03-01

    The problem of control of the on-board microgravity environment in order to extend the service life of the long-term space station has been discussed. Software developed for the ISS and the results of identifying dynamic models and external impacts based on telemetry data have been presented. Proposals for controlling the onboard microgravity environment for future long-term space stations have been formulated.

  13. International Cooperation in the Field of International Space Station (ISS) Payload Safety

    Science.gov (United States)

    Heimann, Timothy; Larsen, Axel M.; Rose, Summer; Sgobba, Tommaso

    2005-01-01

    In the frame of the International Space Station (ISS) Program cooperation, in 1998, the European Space Agency (ESA) approached the National Aeronautics and Space Administration (NASA) with the unique concept of a Payload Safety Review Panel (PSRP) "franchise" based at the European Space Technology Center (ESTEC), where the panel would be capable of autonomously reviewing flight hardware for safety. This paper will recount the course of an ambitious idea as it progressed into a fully functional reality. It will show how a panel initially conceived at NASA to serve a national programme has evolved into an international safety cooperation asset. The PSRP established at NASA began reviewing ISS payloads approximately in late 1994 or early 1995 as an expansion of the pre-existing Shuttle Program PSRP. This paper briefly describes the fundamental Shuttle safety process and the establishment of the safety requirements for payloads intending to use the Space Transportation System and International Space Station (ISS). The paper will also offer some historical statistics about the experiments that completed the payload safety process for Shuttle and ISS. The paper 1 then presents the background of ISS agreements and international treaties that had to be taken into account when establishing the ESA PSRP. The detailed franchising model will be expounded upon, followed by an outline of the cooperation charter approved by the NASA Associate Administrator, Office of Space Flight, and ESA Director of Manned Spaceflight and Microgravity. The resulting ESA PSRP implementation and its success statistics to date will then be addressed. Additionally the paper presents the ongoing developments with the Japan Aerospace Exploration Agency. The discussion will conclude with ideas for future developments, such to achieve a fully integrated international system of payload safety panels for ISS.

  14. Comparison of Directionally Solidified Samples Solidified Terrestrially and Aboard the International Space Station

    Science.gov (United States)

    Angart, S.; Lauer, M.; Tewari, S. N.; Grugel, R. N.; Poirier, D. R.

    2014-01-01

    This article reports research that has been carried out under the aegis of NASA as part of a collaboration between ESA and NASA for solidification experiments on the International Space Station (ISS). The focus has been on the effect of convection on the microstructural evolution and macrosegregation in hypoeutectic Al-Si alloys during directional solidification (DS). Terrestrial DS-experiments have been carried out at Cleveland State University (CSU) and under microgravity on the International Space Station (ISS). The thermal processing-history of the experiments is well defined for both the terrestrially processed samples and the ISS-processed samples. As of this writing, two dendritic metrics was measured: primary dendrite arm spacings and primary dendrite trunk diameters. We have observed that these dendrite-metrics of two samples grown in the microgravity environment show good agreements with models based on diffusion controlled growth and diffusion controlled ripening, respectively. The gravity-driven convection (i.e., thermosolutal convection) in terrestrially grown samples has the effect of decreasing the primary dendrite arm spacings and causes macrosegregation. Dendrite trunk diameters also show differences between the earth- and space-grown samples. In order to process DS-samples aboard the ISS, the dendritic seed crystals were partially remelted in a stationary thermal gradient before the DS was carried out. Microstructural changes and macrosegregation effects during this period are described and have modeled.

  15. International Space Station-Based Electromagnetic Launcher for Space Science Payloads

    Science.gov (United States)

    Jones, Ross M.

    2013-01-01

    A method was developed of lowering the cost of planetary exploration missions by using an electromagnetic propulsion/launcher, rather than a chemical-fueled rocket for propulsion. An electromagnetic launcher (EML) based at the International Space Station (ISS) would be used to launch small science payloads to the Moon and near Earth asteroids (NEAs) for the science and exploration missions. An ISS-based electromagnetic launcher could also inject science payloads into orbits around the Earth and perhaps to Mars. The EML would replace rocket technology for certain missions. The EML is a high-energy system that uses electricity rather than propellant to accelerate payloads to high velocities. The most common type of EML is the rail gun. Other types are possible, e.g., a coil gun, also known as a Gauss gun or mass driver. The EML could also "drop" science payloads into the Earth's upper

  16. Cooperating expert systems for Space Station - Power/thermal subsystem testbeds

    Science.gov (United States)

    Wong, Carla M.; Weeks, David J.; Sundberg, Gale R.; Healey, Kathleen L.; Dominick, Jeffrey S.

    1988-01-01

    The Systems Autonomy Demonstration Project (SADP) is a NASA-sponsored series of increasingly complex demonstrations to show the benefits of integrating knowledge-based systems with conventional process control in real-time, real-world problem domains that can facilitate the operations and availability of major Space Station distributed systems. This paper describes the system design, objectives, approaches, and status of each of the testbed knowledge-based systems. Simplified schematics of the systems are shown.

  17. Energy and momentum management of the Space Station using magnetically suspended composite rotors

    Science.gov (United States)

    Eisenhaure, D. B.; Oglevie, R. E.; Keckler, C. R.

    1985-01-01

    The research addresses the feasibility of using magnetically suspended composite rotors to jointly perform the energy and momentum management functions of an advanced manned Space Station. Recent advancements in composite materials, magnetic suspensions, and power conversion electronics have given flywheel concepts the potential to simultaneously perform these functions for large, long duration spacecraft, while offering significant weight, volume, and cost savings over conventional approaches. The Space Station flywheel concept arising out of this study consists of a composite-material rotor, a large-angle magnetic suspension (LAMS) system, an ironless armature motor/generator, and high-efficiency power conversion electronics. The LAMS design permits the application of appropriate spacecraft control torques without the use of conventional mechanical gimbals. In addition, flywheel systems have the growth potential and modularity needed to play a key role in many future system developments.

  18. Operational considerations for the Space Station Life Science Glovebox

    Science.gov (United States)

    Rasmussen, Daryl N.; Bosley, John J.; Vogelsong, Kristofer; Schnepp, Tery A.; Phillips, Robert W.

    1988-01-01

    The U.S. Laboratory (USL) module on Space Station will house a biological research facility for multidisciplinary research using living plant and animal specimens. Environmentally closed chambers isolate the specimen habitats, but specimens must be removed from these chambers during research procedures as well as while the chambers are being cleaned. An enclosed, sealed Life Science Glovebox (LSG) is the only locale in the USL where specimens can be accessed by crew members. This paper discusses the key science, engineering and operational considerations and constraints involving the LSG, such as bioisolation, accessibility, and functional versatility.

  19. Macromolecular Crystallization in Microfluidics for the International Space Station

    Science.gov (United States)

    Monaco, Lisa A.; Spearing, Scott

    2003-01-01

    At NASA's Marshall Space Flight Center, the Iterative Biological Crystallization (IBC) project has begun development on scientific hardware for macromolecular crystallization on the International Space Station (ISS). Currently ISS crystallization research is limited to solution recipes that were prepared on the ground prior to launch. The proposed hardware will conduct solution mixing and dispensing on board the ISS, be fully automated, and have imaging functions via remote commanding from the ground. Utilizing microfluidic technology, IBC will allow for on orbit iterations. The microfluidics LabChip(R) devices that have been developed, along with Caliper Technologies, will greatly benefit researchers by allowing for precise fluid handling of nano/pico liter sized volumes. IBC will maximize the amount of science return by utilizing the microfluidic approach and be a valuable tool to structural biologists investigating medically relevant projects.

  20. An overview of the program to place advanced automation and robotics on the Space Station

    Science.gov (United States)

    Heydorn, Richard P.

    1987-01-01

    The preliminary design phase of the Space Station has uncovered a large number of potential uses of automation and robotics, most of which deal with the assembly and operation of the Station. If NASA were to vigorously push automation and robotics concepts in the design, the Station crew would probably be free to spend a substantial portion of time on payload activities. However, at this point NASA has taken a conservative attitude toward automation and robotics. For example, the belief is that robotics should evolve through telerobotics and that uses of artificial intelligence should be initially used in an advisory capacity. This conservativeness is in part due to the new and untested nature of automation and robotics; but, it is also due to emphases plased on designing the Station to the so-called upfront cost without thoroughly understanding the life cycle cost. Presumably automation and robotics has a tendency to increase the initial cost of the Space Station but could substantially reduce the life cycle cost. To insure that NASA will include some form of robotic capability, Congress directed to set aside funding. While this stimulates the development of robotics, it does not necessarily stimulate uses of artificial intelligence. However, since the initial development costs of some forms of artificial intelligence, such as expert systems, are in general lower than they are for robotics one is likely to see several expert systems being used on the Station.

  1. Addressing Challenges to the Design & Test of Operational Lighting Environments for the International Space Station

    Science.gov (United States)

    Clark, Toni A.

    2014-01-01

    In our day to day lives, the availability of light, with which to see our environment, is often taken for granted. The designers of land based lighting systems use sunlight and artificial light as their toolset. The availability of power, quantity of light sources, and variety of design options are often unlimited. The accessibility of most land based lighting systems makes it easy for the architect and engineer to verify and validate their design ideas. Failures with an implementation, while sometimes costly, can easily be addressed by renovation. Consider now, an architectural facility orbiting in space, 260 miles above the surface of the earth. This human rated architectural facility, the International Space Station (ISS) must maintain operations every day, including life support and appropriate human comforts without fail. The facility must also handle logistics of regular shipments of cargo, including new passengers. The ISS requires accommodations necessary for human control of machine systems. Additionally, the ISS is a research facility and supports investigations performed inside and outside its livable volume. Finally, the facility must support remote operations and observations by ground controllers. All of these architectural needs require a functional, safe, and even an aesthetic lighting environment. At Johnson Space Center, our Habitability and Human Factors team assists our diverse customers with their lighting environment challenges, via physical test and computer based analysis. Because of the complexity of ISS operational environment, our team has learned and developed processes that help ISS operate safely. Because of the dynamic exterior lighting environment, uses computational modeling to predict the lighting environment. The ISS' orbit exposes it to a sunrise every 90 minutes, causing work surfaces to quickly change from direct sunlight to earthshine to total darkness. Proper planning of vehicle approaches, robotics operations, and crewed

  2. 14 CFR 1214.403 - Code of Conduct for the International Space Station Crew.

    Science.gov (United States)

    2010-01-01

    ... (Space Station Crew) of the Memoranda of Understanding between, respectively, the National Aeronautics... telemetry, private medical communications, and medical investigation data. Nothing in this paragraph shall... postflight activities. VI. Protection of Human Research Subjects No research on human subjects shall be...

  3. Non-Quality Controlled Lightning Imaging Sensor (LIS) on International Space Station (ISS) Provisional Science Data Vp0

    Data.gov (United States)

    National Aeronautics and Space Administration — The International Space Station (ISS) Lightning Imaging Sensor (LIS) datasets were collected by the LIS instrument on the ISS used to detect the distribution and...

  4. Space biology research development

    Science.gov (United States)

    Bonting, Sjoerd L.

    1993-01-01

    The purpose of the Search for Extraterrestrial Intelligence (SETI) Institute is to conduct and promote research related activities regarding the search for extraterrestrial life, particularly intelligent life. Such research encompasses the broad discipline of 'Life in the Universe', including all scientific and technological aspects of astronomy and the planetary sciences, chemical evolution, the origin of life, biological evolution, and cultural evolution. The primary purpose was to provide funding for the Principal Investigator to collaborate with the personnel of the SETI Institute and the NASA-Ames Research center in order to plan and develop space biology research on and in connection with Space Station Freedom; to promote cooperation with the international partners in the space station; to conduct a study on the use of biosensors in space biology research and life support system operation; and to promote space biology research through the initiation of an annual publication 'Advances in Space Biology and Medicine'.

  5. State Estimation of International Space Station Centrifuge Rotor With Incomplete Knowledge of Disturbance Inputs

    National Research Council Canada - National Science Library

    Sullivan, Michael J

    2005-01-01

    This thesis develops a state estimation algorithm for the Centrifuge Rotor (CR) system where only relative measurements are available with limited knowledge of both rotor imbalance disturbances and International Space Station (ISS...

  6. Turnaround Operations Analysis for OTV. Volume 3: Technology Development Plan

    Science.gov (United States)

    1988-01-01

    An integrated technology development plan for the technologies required to process both GBOTVs and SBOTVs are described. The plan includes definition of the tests and experiments to be accomplished on the ground, in a Space Shuttle Sortie Mission, on an Expendable Launch Vehicle, or at the Space Station as a Technology Development Mission (TDM). The plan reflects and accommodates current and projected research and technology programs where appropriate.

  7. Training astronauts using three-dimensional visualisations of the International Space Station.

    Science.gov (United States)

    Rycroft, M; Houston, A; Barker, A; Dahlstron, E; Lewis, N; Maris, N; Nelles, D; Bagaoutdinov, R; Bodrikov, G; Borodin, Y; Cheburkov, M; Ivanov, D; Karpunin, P; Katargin, R; Kiselyev, A; Kotlayarevsky, Y; Schetinnikov, A; Tylerov, F

    1999-03-01

    Recent advances in personal computer technology have led to the development of relatively low-cost software to generate high-resolution three-dimensional images. The capability both to rotate and zoom in on these images superposed on appropriate background images enables high-quality movies to be created. These developments have been used to produce realistic simulations of the International Space Station on CD-ROM. This product is described and its potentialities demonstrated. With successive launches, the ISS is gradually built up, and visualised over a rotating Earth against the star background. It is anticipated that this product's capability will be useful when training astronauts to carry out EVAs around the ISS. Simulations inside the ISS are also very realistic. These should prove invaluable when familiarising the ISS crew with their future workplace and home. Operating procedures can be taught and perfected. "What if" scenario models can be explored and this facility should be useful when training the crew to deal with emergency situations which might arise. This CD-ROM product will also be used to make the general public more aware of, and hence enthusiastic about, the International Space Station programme.

  8. Expanded benefits for humanity from the International Space Station

    Science.gov (United States)

    Rai, Amelia; Robinson, Julie A.; Tate-Brown, Judy; Buckley, Nicole; Zell, Martin; Tasaki, Kazuyuki; Karabadzhak, Georgy; Sorokin, Igor V.; Pignataro, Salvatore

    2016-09-01

    In 2012, the International Space Station (ISS) (Fig. 1) partnership published the updated International Space Station Benefits for Humanity[1], a compilation of stories about the many benefits being realized in the areas of human health, Earth observations and disaster response, and global education. This compilation has recently been revised to include updated statistics on the impacts of the benefits, and new benefits that have developed since the first publication. Two new sections have also been added to the book, economic development of space and innovative technology. This paper will summarize the updates on behalf of the ISS Program Science Forum, made up of senior science representatives across the international partnership. The new section on "Economic Development of Space" highlights case studies from public-private partnerships that are leading to a new economy in low earth orbit (LEO). Businesses provide both transportation to the ISS as well as some research facilities and services. These relationships promote a paradigm shift of government-funded, contractor-provided goods and services to commercially-provided goods purchased by government agencies. Other examples include commercial firms spending research and development dollars to conduct investigations on ISS and commercial service providers selling services directly to ISS users. This section provides examples of ISS as a test bed for new business relationships, and illustrates successful partnerships. The second new section, "Innovative Technology," merges technology demonstration and physical science findings that promise to return Earth benefits through continued research. Robotic refueling concepts for life extensions of costly satellites in geo-synchronous orbit have applications to robotics in industry on Earth. Flame behavior experiments reveal insight into how fuel burns in microgravity leading to the possibility of improving engine efficiency on Earth. Nanostructures and smart fluids are

  9. Expanded Benefits for Humanity from the International Space Station

    Science.gov (United States)

    Rai, Amelia; Robinson, Julie A.; Tate-Brown, Judy; Buckley, Nicole; Zell, Martin; Tasaki, Kazuyuki; Karabadzhak, Georgy; Sorokin, Igor V.; Pignataro, Salvatore

    2016-01-01

    In 2012, the International Space Station (ISS) partnership published the updated International Space Station Benefits for Humanity, 2nd edition, a compilation of stories about the many benefits being realized in the areas of human health, Earth observations and disaster response, and global education. This compilation has recently been revised to include updated statistics on the impacts of the benefits, and new benefits that have developed since the first publication. Two new sections have also been added to the book, economic development of space and innovative technology. This paper will summarize the updates on behalf of the ISS Program Science Forum, made up of senior science representatives across the international partnership. The new section on "Economic Development of Space" highlights case studies from public-private partnerships that are leading to a new economy in low earth orbit (LEO). Businesses provide both transportation to the ISS as well as some research facilities and services. These relationships promote a paradigm shift of government-funded, contractor-provided goods and services to commercially-provided goods purchased by government agencies. Other examples include commercial firms spending research and development dollars to conduct investigations on ISS and commercial service providers selling services directly to ISS users. This section provides examples of ISS as a test bed for new business relationships, and illustrates successful partnerships. The second new section, Innovative Technology, merges technology demonstration and physical science findings that promise to return Earth benefits through continued research. Robotic refueling concepts for life extensions of costly satellites in geo-synchronous orbit have applications to robotics in industry on Earth. Flame behavior experiments reveal insight into how fuel burns in microgravity leading to the possibility of improving engine efficiency on Earth. Nanostructures and smart fluids are

  10. High data rate coding for the space station telemetry links.

    Science.gov (United States)

    Lumb, D. R.; Viterbi, A. J.

    1971-01-01

    Coding systems for high data rates were examined from the standpoint of potential application in space-station telemetry links. Approaches considered included convolutional codes with sequential, Viterbi, and cascaded-Viterbi decoding. It was concluded that a high-speed (40 Mbps) sequential decoding system best satisfies the requirements for the assumed growth potential and specified constraints. Trade-off studies leading to this conclusion are viewed, and some sequential (Fano) algorithm improvements are discussed, together with real-time simulation results.

  11. Analysis Methodology for Optimal Selection of Ground Station Site in Space Missions

    Science.gov (United States)

    Nieves-Chinchilla, J.; Farjas, M.; Martínez, R.

    2013-12-01

    Optimization of ground station sites is especially important in complex missions that include several small satellites (clusters or constellations) such as the QB50 project, where one ground station would be able to track several spatial vehicles, even simultaneously. In this regard the design of the communication system has to carefully take into account the ground station site and relevant signal phenomena, depending on the frequency band. To propose the optimal location of the ground station, these aspects become even more relevant to establish a trusted communication link due to the ground segment site in urban areas and/or selection of low orbits for the space segment. In addition, updated cartography with high resolution data of the location and its surroundings help to develop recommendations in the design of its location for spatial vehicles tracking and hence to improve effectiveness. The objectives of this analysis methodology are: completion of cartographic information, modelling the obstacles that hinder communication between the ground and space segment and representation in the generated 3D scene of the degree of impairment in the signal/noise of the phenomena that interferes with communication. The integration of new technologies of geographic data capture, such as 3D Laser Scan, determine that increased optimization of the antenna elevation mask, in its AOS and LOS azimuths along the horizon visible, maximizes visibility time with spatial vehicles. Furthermore, from the three-dimensional cloud of points captured, specific information is selected and, using 3D modeling techniques, the 3D scene of the antenna location site and surroundings is generated. The resulting 3D model evidences nearby obstacles related to the cartographic conditions such as mountain formations and buildings, and any additional obstacles that interfere with the operational quality of the antenna (other antennas and electronic devices that emit or receive in the same bandwidth

  12. The First Five Years of the Alpha Magnetic Spectrometer on the International Space Station

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    In the five years since its installation on the International Space Station, it has collected more than 90 billion cosmic rays. Some of the unexpected results and their possible interpretations will be presented.

  13. Private financing and operation of a space station: Investment requirements, risk, government support and other primary business management considerations

    Science.gov (United States)

    Simon, M.

    1982-01-01

    Private investment in a manned space station is considered as an alternative to complete government sponsorship of such a program. The implications of manned space operations are discussed from a business perspective. The most significant problems and risks which would be faced by a private company involved in a space station enterprise are outlined and possible government roles in helping to overcome these difficulties suggested. Economic factors such as inflation and the rate of interest are of primary concern, but less obvious conditions such as antitrust and appropriate regulatory laws, government appropriations for space activities, and national security are also considered.

  14. A simulation model for reliability evaluation of Space Station power systems

    Science.gov (United States)

    Singh, C.; Patton, A. D.; Kumar, Mudit; Wagner, H.

    1988-01-01

    A detailed simulation model for the hybrid Space Station power system is presented which allows photovoltaic and solar dynamic power sources to be mixed in varying proportions. The model considers the dependence of reliability and storage characteristics during the sun and eclipse periods, and makes it possible to model the charging and discharging of the energy storage modules in a relatively accurate manner on a continuous basis.

  15. Benefits of International Collaboration on the International Space Station

    Science.gov (United States)

    Hasbrook, Pete; Robinson, Julie A.; Brown Tate, Judy; Thumm, Tracy; Cohen, Luchino; Marcil, Isabelle; De Parolis, Lina; Hatton, Jason; Umezawa, Kazuo; Shirakawa, Masaki; hide

    2017-01-01

    The International Space Station is a valuable platform for research in space, but the benefits are limited if research is only conducted by individual countries. Through the efforts of the ISS Program Science Forum, international science working groups, and interagency cooperation, international collaboration on the ISS has expanded as ISS utilization has matured. Members of science teams benefit from working with counterparts in other countries. Scientists and institutions bring years of experience and specialized expertise to collaborative investigations, leading to new perspectives and approaches to scientific challenges. Combining new ideas and historical results brings synergy and improved peer-reviewed scientific methods and results. World-class research facilities can be expensive and logistically complicated, jeopardizing their full utilization. Experiments that would be prohibitively expensive for a single country can be achieved through contributions of resources from two or more countries, such as crew time, up- and downmass, and experiment hardware. Cooperation also avoids duplication of experiments and hardware among agencies. Biomedical experiments can be completed earlier if astronauts or cosmonauts from multiple agencies participate. Countries responding to natural disasters benefit from ISS imagery assets, even if the country has no space agency of its own. Students around the world participate in ISS educational opportunities, and work with students in other countries, through open curriculum packages and through international competitions. Even experiments conducted by a single country can benefit scientists around the world, through specimen sharing programs and publicly accessible "open data" repositories. For ISS data, these repositories include GeneLab and the Physical Science Informatics System. Scientists can conduct new research using ISS data without having to launch and execute their own experiments. Multilateral collections of research

  16. Symbol-stream Combiner: Description and Demonstration Plans

    Science.gov (United States)

    Hurd, W. J.; Reder, L. J.; Russell, M. D.

    1984-01-01

    A system is described and demonstration plans presented for antenna arraying by symbol stream combining. This system is used to enhance the signal-to-noise ratio of a spacecraft signals by combining the detected symbol streams from two or more receiving stations. Symbol stream combining has both cost and performance advantages over other arraying methods. Demonstrations are planned on Voyager 2 both prior to and during Uranus encounter. Operational use is possible for interagency arraying of non-Deep Space Network stations at Neptune encounter.

  17. The Space Station decision - Politics, bureaucracy, and the making of public policy

    Science.gov (United States)

    Mccurdy, Howard E.

    1991-01-01

    The lack of consensus that dominates the conception of major scientific and technological programs is demonstrated via a comparison of the decisions to build the Space Station and the Space Transportation System, and the decision to go to the moon. It is argued that the way political reality conditions administrative behavior in NASA is shown by the decision to promote international cooperation prior to program approval. It is concluded that so long as NASA remains a government agency, its officials will struggle to learn how to balance professional accountability with political reality.

  18. Tissue equivalent detector measurements on Mir space station. Comparison with other data

    Energy Technology Data Exchange (ETDEWEB)

    Bottollier-Depois, J.F. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Dept. de Protection de la Sante de l`Homme et de Dosimetrie; Siegrist, M. [Centre National d`Etudes Spatiales (CNES), 31 - Toulouse (France); Duvivier, E.; Almarcha, B. [STEEL Technologies, Mazeres sur Salat (France); Dachev, T.P.; Semkova, J.V. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Central Lab. of Solar Energy and New Energy Sources; Petrov, V.M.; Bengin, V.; Koslova, S.B. [Institute of Biomedical Problems, Moscow (Russian Federation)

    1995-12-31

    The measurement of the dose received by the cosmonauts, due to cosmic radiations, during a space mission is an important parameter to estimate the radiological risk. Tissue equivalent measurements of radiation environment inside the MIR space station were performed continuously since July 1992. Interesting results about radiation measurements show (a) the South Atlantic Anomaly (SAA) crossing, (c) the increase of radiation near the poles and (d) the effects of solar eruptions. These data are compared with solid state detector (SSD) and other tissue equivalent proportional counter (TEPC) results. (authors). 4 refs., 7 figs.

  19. Tissue equivalent detector measurements on Mir space station. Comparison with other data

    International Nuclear Information System (INIS)

    Bottollier-Depois, J.F.; Duvivier, E.; Almarcha, B.; Dachev, T.P.; Semkova, J.V.

    1995-01-01

    The measurement of the dose received by the cosmonauts, due to cosmic radiations, during a space mission is an important parameter to estimate the radiological risk. Tissue equivalent measurements of radiation environment inside the MIR space station were performed continuously since July 1992. Interesting results about radiation measurements show (a) the South Atlantic Anomaly (SAA) crossing, (c) the increase of radiation near the poles and (d) the effects of solar eruptions. These data are compared with solid state detector (SSD) and other tissue equivalent proportional counter (TEPC) results. (authors). 4 refs., 7 figs

  20. The International Space Station Research Opportunities and Accomplishments

    Science.gov (United States)

    Alleyne, Camille W.

    2011-01-01

    In 2010, the International Space Station (ISS) construction and assembly was completed to become a world-class scientific research laboratory. We are now in the era of utilization of this unique platform that facilitates ground-breaking research in the microgravity environment. There are opportunities for NASA-funded research; research funded under the auspice of the United States National Laboratory; and research funded by the International Partners - Japan, Europe, Russia and Canada. The ISS facilities offer an opportunity to conduct research in a multitude of disciplines such as biology and biotechnology, physical science, human research, technology demonstration and development; and earth and space science. The ISS is also a unique resource for educational activities that serve to motivate and inspire students to pursue careers in Science, Technology, Engineering and Mathematics. Even though we have just commenced full utilization of the ISS as a science laboratory, early investigations are yielding major results that are leading to such things as vaccine development, improved cancer drug delivery methods and treatment for debilitating diseases, such as Duchenne's Muscular Dystrophy. This paper

  1. Neutron dose study with bubble detectors aboard the International Space Station as part of the Matroshka-R experiment

    International Nuclear Information System (INIS)

    Machrafi, R.; Garrow, K.; Ing, H.; Smith, M. B.; Andrews, H. R.; Akatov, Yu; Arkhangelsky, V.; Chernykh, I.; Mitrikas, V.; Petrov, V.; Shurshakov, V.; Tomi, L.; Kartsev, I.; Lyagushin, V.

    2009-01-01

    As part of the Matroshka-R experiments, a spherical phantom and space bubble detectors (SBDs) were used on board the International Space Station to characterise the neutron radiation field. Seven experimental sessions with SBDs were carried out during expeditions ISS-13, ISS-14 and ISS-15. The detectors were positioned at various places throughout the Space Station, in order to determine dose variations with location and on/in the phantom in order to establish the relationship between the neutron dose measured externally to the body and the dose received internally. Experimental data on/in the phantom and at different locations are presented. (authors)

  2. CETF Space Station payload pointing system design and analysis feasibility study. [Critical Evaluation Task Force

    Science.gov (United States)

    Smagala, Tom; Mcglew, Dave

    1988-01-01

    The expected pointing performance of an attached payload coupled to the Critical Evaluation Task Force Space Station via a payload pointing system (PPS) is determined. The PPS is a 3-axis gimbal which provides the capability for maintaining inertial pointing of a payload in the presence of disturbances associated with the Space Station environment. A system where the axes of rotation were offset from the payload center of mass (CM) by 10 in. in the Z axis was studied as well as a system having the payload CM offset by only 1 inch. There is a significant improvement in pointing performance when going from the 10 in. to the 1 in. gimbal offset.

  3. Land use planning using transit oriented development concept: Case study: Salaya station

    Science.gov (United States)

    Jarritthai, Supanee; Techpeeraparnich, Wasaporn

    2017-10-01

    The urban sprawl of Bangkok has increased with a motorization rate along with the expansion of the road network to adjacent cities. Nakhonpathom province, located at the southern edge of Bangkok has been affected by the urban sprawl. One of Nakhonpathom's Districts named "Salaya" Salaya has been quickly urbanized due to the establishment of many large academic institutes, such as universities, colleges and high schools as well as many commercial shopping malls. The period of 2013-2017, the Thai government introduced sustainable urban planning policy and promoted the use of public transportation systems. The Light Red Line railway extension of the Bangkok Metro Transit system will soon be constructed and the current Salaya Station will be replaced with new station. Many railway expansion projects will be built, should be designed by using transit-oriented development (TOD) scheme. This paper explores demographic information of the area, the demands of the community and relevant stakeholders for designing of the area using TOD. The proposed land use planning is designed based on the existing condition of the area as much as possible to meet the TOD standard and stakeholders' requirement. The result revealed that the guidelines of transit oriented development concept were of importance not only for planning of urban land use, supporting public transport, but also improving the quality of life.

  4. The planning of areas near nuclear power stations

    International Nuclear Information System (INIS)

    1977-01-01

    During the past five years national physical planning has been initiated by the Swedish Parliament. Guidelines have been given to the communities how to consider national interests when drawing up local planning and how to produce maps and descriptions of the planning. For the planning of the areas near the nuclear power stations the municipalities have certain guidelines from The Nuclear Power Inspectorate and The National Institute of Radiation Protection. It is advised to keep a low population density near the power plants, to avoid the type of harbour or industry which could have disturbing effects on the power plant and also to avoid to concentrate people, who are difficult to move from the area in case of an accident (i.e., homes for old people, maternity homes and prisons). The plants on the East Coast, Forsmark and Oskarshamn, are located in wooded areas with a very low population density. On the West Coast, near Ringhals and Barsebaeck, the population density is higher, and there is one village with about 2,000 inhabitants, situated at a distance of two (2) km from the Ringhals power plant. The Control Boards are now reluctant to concentrate more people in this village, where schools and shops were earlier planned for 3,000 inhabitants. The building activity near power plants is regulated by law. New buildings are prohibited within a distance of two (2) km from the plants. Some exeptions can be granted by the County Administrative Board after guidance from the Central Board. In a zone reaching 10 kilometers from the power plants there are no regulations by law about new buildings, except the earlier mentioned guidelines from the Central Boards to maintain a low population. (L.E.)

  5. User manual of the CATSS system (version 1.0) communication analysis tool for space station

    Science.gov (United States)

    Tsang, C. S.; Su, Y. T.; Lindsey, W. C.

    1983-01-01

    The Communication Analysis Tool for the Space Station (CATSS) is a FORTRAN language software package capable of predicting the communications links performance for the Space Station (SS) communication and tracking (C & T) system. An interactive software package was currently developed to run on the DEC/VAX computers. The CATSS models and evaluates the various C & T links of the SS, which includes the modulation schemes such as Binary-Phase-Shift-Keying (BPSK), BPSK with Direct Sequence Spread Spectrum (PN/BPSK), and M-ary Frequency-Shift-Keying with Frequency Hopping (FH/MFSK). Optical Space Communication link is also included. CATSS is a C & T system engineering tool used to predict and analyze the system performance for different link environment. Identification of system weaknesses is achieved through evaluation of performance with varying system parameters. System tradeoff for different values of system parameters are made based on the performance prediction.

  6. Joint operations planning for space surveillance missions on the MSX satellite

    Science.gov (United States)

    Stokes, Grant; Good, Andrew

    1994-01-01

    The Midcourse Space Experiment (MSX) satellite, sponsored by BMDO, is intended to gather broad-band phenomenology data on missiles, plumes, naturally occurring earthlimb backgrounds and deep space backgrounds. In addition the MSX will be used to conduct functional demonstrations of space-based space surveillance. The JHU/Applied Physics Laboratory (APL), located in Laurel, MD, is the integrator and operator of the MSX satellite. APL will conduct all operations related to the MSX and is charged with the detailed operations planning required to implement all of the experiments run on the MSX except the space surveillance experiments. The non-surveillance operations are generally amenable to being defined months ahead of time and being scheduled on a monthly basis. Lincoln Laboratory, Massachusetts Institute of Technology (LL), located in Lexington, MA, is the provider of one of the principle MSX instruments, the Space-Based Visible (SBV) sensor, and the agency charged with implementing the space surveillance demonstrations on the MSX. The planning timelines for the space surveillance demonstrations are fundamentally different from those for the other experiments. They are generally amenable to being scheduled on a monthly basis, but the specific experiment sequence and pointing must be refined shortly before execution. This allocation of responsibilities to different organizations implies the need for a joint mission planning system for conducting space surveillance demonstrations. This paper details the iterative, joint planning system, based on passing responsibility for generating MSX commands for surveillance operations from APL to LL for specific scheduled operations. The joint planning system, including the generation of a budget for spacecraft resources to be used for surveillance events, has been successfully demonstrated during ground testing of the MSX and is being validated for MSX launch within the year. The planning system developed for the MSX forms a

  7. Development and Deployment of Robonaut 2 to the International Space Station

    Science.gov (United States)

    Ambrose, Robert O.

    2011-01-01

    The development of the Robonaut 2 (R2) system was a joint endeavor with NASA and General Motors, producing robots strong enough to do work, yet safe enough to be trusted to work near humans. To date two R2 units have been produced, designated as R2A and R2B. This follows more than a decade of work on the Robonaut 1 units that produced advances in dexterity, tele-presence, remote supervision across time delay, combining mobility with manipulation, human-robot interaction, force control and autonomous grasping. Design challenges for the R2 included higher speed, smaller packaging, more dexterous fingers, more sensitive perception, soft drivetrain design, and the overall implementation of a system software approach for human safety, At the time of this writing the R2B unit was poised for launch to the International Space Station (ISS) aboard STS-133. R2 will be the first humanoid robot in space, and is arguably the most sophisticated robot in the world, bringing NASA into the 21st century as the world's leader in this field. Joining the other robots already on ISS, the station is now an exciting lab for robot experiments and utilization. A particular challenge for this project has been the design and certification of the robot and its software for work near humans. The 3 layer software systems will be described, and the path to ISS certification will be reviewed. R2 will go through a series of ISS checkout tests during 2011. A taskboard was shipped with the robot that will be used to compare R2B's dexterous manipulation in zero gravity with the ground robot s ability to handle similar objects in Earth s gravity. R2's taskboard has panels with increasingly difficult tasks, starting with switches, progressing to connectors and eventually handling softgoods. The taskboard is modular, and new interfaces and experiments will be built up using equipment already on ISS. Since the objective is to test R2 performing tasks with human interfaces, hardware abounds on ISS and the

  8. Performance issues in management of the Space Station Information System

    Science.gov (United States)

    Johnson, Marjory J.

    1988-01-01

    The onboard segment of the Space Station Information System (SSIS), called the Data Management System (DMS), will consist of a Fiber Distributed Data Interface (FDDI) token-ring network. The performance of the DMS in scenarios involving two kinds of network management is analyzed. In the first scenario, how the transmission of routine management messages impacts performance of the DMS is examined. In the second scenario, techniques for ensuring low latency of real-time control messages in an emergency are examined.

  9. INTERACT Management planning for arctic and northern alpine stations - Examples of good practices

    DEFF Research Database (Denmark)

    of visitors, outreach, science plans, data management and education. The target audience for the book is mainly managers of research stations in arctic and alpine areas, but it is our hope that it will also be a useful tool for others being involved in science coordination and logistics....

  10. High pressure water electrolysis for space station EMU recharge

    Science.gov (United States)

    Lance, Nick; Puskar, Michael; Moulthrop, Lawrence; Zagaja, John

    1988-01-01

    A high pressure oxygen recharge system (HPORS), is being developed for application on board the Space Station. This electrolytic system can provide oxygen at up to 6000 psia without a mechanical compressor. The Hamilton standard HPORS based on a solid polymer electrolyte system is an extension of the much larger and succesful 3000 psia system of the U.S. Navy. Cell modules have been successfully tested under conditions beyond which spacecraft may encounter during launch. The control system with double redundancy and mechanical backups for all electronically controlled components is designed to ensure a safe shutdown.

  11. Environmental Development Plan (EDP): space applications

    International Nuclear Information System (INIS)

    1978-04-01

    This Environmental Development Plan (EDP) identifies and examines the environmental, safety, health, and socioeconomic (ES and H) issues associated with the ongoing DOE Space Applications Program and the associated research, development, and demonstration programs. The EDP presents an ES and H research and development (R/D) program and strategy for timely resolutions of the issues and satisfaction of the associated requirements necessary for precluding impediments to the space nuclear systems technology. The EDP has been limited to the consideration of: (1) space nuclear power system nuclear fuel fabrication; (2) space nuclear power system heat source fabrication; (3) testing of subsystems and assembled systems; (4) R and D in support of space nuclear system development; (5) nuclear system responses to launch and reentry accidents; and (6) nuclear system environmental behavior and recovery

  12. Integrated Logistics Support Analysis of the International Space Station Alpha: An Overview of the Maintenance Time Dependent Parameter Prediction Methods Enhancement

    Science.gov (United States)

    Sepehry-Fard, F.; Coulthard, Maurice H.

    1995-01-01

    The objective of this publication is to introduce the enhancement methods for the overall reliability and maintainability methods of assessment on the International Space Station. It is essential that the process to predict the values of the maintenance time dependent variable parameters such as mean time between failure (MTBF) over time do not in themselves generate uncontrolled deviation in the results of the ILS analysis such as life cycle costs, spares calculation, etc. Furthermore, the very acute problems of micrometeorite, Cosmic rays, flares, atomic oxygen, ionization effects, orbital plumes and all the other factors that differentiate maintainable space operations from non-maintainable space operations and/or ground operations must be accounted for. Therefore, these parameters need be subjected to a special and complex process. Since reliability and maintainability strongly depend on the operating conditions that are encountered during the entire life of the International Space Station, it is important that such conditions are accurately identified at the beginning of the logistics support requirements process. Environmental conditions which exert a strong influence on International Space Station will be discussed in this report. Concurrent (combined) space environments may be more detrimental to the reliability and maintainability of the International Space Station than the effects of a single environment. In characterizing the logistics support requirements process, the developed design/test criteria must consider both the single and/or combined environments in anticipation of providing hardware capability to withstand the hazards of the International Space Station profile. The effects of the combined environments (typical) in a matrix relationship on the International Space Station will be shown. The combinations of the environments where the total effect is more damaging than the cumulative effects of the environments acting singly, may include a

  13. Plasma Hazards and Acceptance for International Space Station Extravehicular Activities

    Science.gov (United States)

    Patton, Thomas

    2010-09-01

    Extravehicular activity(EVA) is accepted by NASA and other space faring agencies as a necessary risk in order to build and maintain a safe and efficient laboratory in space. EVAs are used for standard construction and as contingency operations to repair critical equipment for vehicle sustainability and safety of the entire crew in the habitable volume. There are many hazards that are assessed for even the most mundane EVA for astronauts, and the vast majority of these are adequately controlled per the rules of the International Space Station Program. The need for EVA repair and construction has driven acceptance of a possible catastrophic hazard to the EVA crewmember which cannot currently be controlled adequately. That hazard is electrical shock from the very environment in which they work. This paper describes the environment, causes and contributors to the shock of EVA crewmembers attributed to the ionospheric plasma environment in low Earth orbit. It will detail the hazard history, and acceptance process for the risk associated with these hazards that give assurance to a safe EVA. In addition to the hazard acceptance process this paper will explore other factors that go into the decision to accept a risk including criticality of task, hardware design and capability, and the probability of hazard occurrence. Also included will be the required interaction between organizations at NASA(EVA Office, Environments, Engineering, Mission Operations, Safety) in order to build and eventually gain adequate acceptance rationale for a hazard of this kind. During the course of the discussion, all current methods of mitigating the hazard will be identified. This paper will capture the history of the plasma hazard analysis and processes used by the International Space Station Program to formally assess and qualify the risk. The paper will discuss steps that have been taken to identify and perform required analysis of the floating potential shock hazard from the ISS environment

  14. Design and Development of a CPCI-Based Electronics Package for Space Station Experiments

    Science.gov (United States)

    Kolacz, John S.; Clapper, Randy S.; Wade, Raymond P.

    2006-01-01

    The NASA John H. Glenn Research Center is developing a Compact-PCI (CPCI) based electronics package for controlling space experiment hardware on the International Space Station. Goals of this effort include an easily modified, modular design that allows for changes in experiment requirements. Unique aspects of the experiment package include a flexible circuit used for internal interconnections and a separate enclosure (box in a box) for controlling 1 kW of power for experiment fuel heating requirements. This electronics package was developed as part of the FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) mini-facility which is part of the Fluids and Combustion Facility s Combustion Integrated Rack (CIR). The CIR will be the platform for future microgravity combustion experiments and will reside on the Destiny Module of the International Space Station (ISS). The FEANICS mini-facility will be the primary means for conducting solid fuel combustion experiments in the CIR on ISS. The main focus of many of these solid combustion experiments will be to conduct applied scientific investigations in fire-safety to support NASA s future space missions. A description of the electronics package and the results of functional testing are the subjects of this report. The report concludes that the use of innovative packaging methods combined with readily available COTS hardware can provide a modular electronics package which is easily modified for changing experiment requirements.

  15. Monographs in Aerospace History Series No. 11. Together in Orbit: The Origins of International Participation in the Space Station

    Science.gov (United States)

    Logsdon, John M.

    1998-01-01

    This essay is a history and analysis of the steps leading to the origins of the space station partnership between the United States and its closest allies. It traces the process that led to the decision to invite other countries to participate in the project and their reasons for accepting that invitation. Not covered in this account are the difficult negotiations during the 1984-1988 period that led first to an initial set of agreements that allowed the prospective partners to work together during the early stages of the space station program and then to the final set of agreements creating the original space station partnership. Also, the 1993 invitation to the Russian Federation to join the original partners is not discussed, nor are the subsequent negotiations to revise the 1988 agreements.

  16. NASA's Next Generation Space Geodesy Network

    Science.gov (United States)

    Desai, S. D.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Merkowitz, S. M.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    NASA's Space Geodesy Project (SGP) is developing a prototype core site for a next generation Space Geodetic Network (SGN). Each of the sites in this planned network co-locate current state-of-the-art stations from all four space geodetic observing systems, GNSS, SLR, VLBI, and DORIS, with the goal of achieving modern requirements for the International Terrestrial Reference Frame (ITRF). In particular, the driving ITRF requirements for this network are 1.0 mm in accuracy and 0.1 mm/yr in stability, a factor of 10-20 beyond current capabilities. Development of the prototype core site, located at NASA's Geophysical and Astronomical Observatory at the Goddard Space Flight Center, started in 2011 and will be completed by the end of 2013. In January 2012, two operational GNSS stations, GODS and GOON, were established at the prototype site within 100 m of each other. Both stations are being proposed for inclusion into the IGS network. In addition, work is underway for the inclusion of next generation SLR and VLBI stations along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vectorties, and network design studies are being performed to define the appropriate number and distribution of these next generation space geodetic core sites that are required to achieve the driving ITRF requirements. We present the status of this prototype next generation space geodetic core site, results from the analysis of data from the established geodetic stations, and results from the ongoing network design studies.

  17. Automation and robotics for Space Station in the twenty-first century

    Science.gov (United States)

    Willshire, K. F.; Pivirotto, D. L.

    1986-01-01

    Space Station telerobotics will evolve beyond the initial capability into a smarter and more capable system as we enter the twenty-first century. Current technology programs including several proposed ground and flight experiments to enable development of this system are described. Advancements in the areas of machine vision, smart sensors, advanced control architecture, manipulator joint design, end effector design, and artificial intelligence will provide increasingly more autonomous telerobotic systems.

  18. Six-man, self-contained carbon dioxide concentrator subsystem for Space Station Prototype (SSP) application

    Science.gov (United States)

    Kostell, G. D.; Schubert, F. H.; Shumar, J. W.; Hallick, T. M.; Jensen, F. C.

    1974-01-01

    A six man, self contained, electrochemical carbon dioxide concentrating subsystem for space station prototype use was successfully designed, fabricated, and tested. A test program was successfully completed which covered shakedown testing, design verification testing, and acceptance testing.

  19. SU-F-BRD-08: Guaranteed Epsilon-Optimal Treatment Plans with Minimum Number of Beams for SBRT Using RayStation

    International Nuclear Information System (INIS)

    Yarmand, H; Winey, B; Craft, D

    2014-01-01

    Purpose: To efficiently find quality-guaranteed treatment plans with the minimum number of beams for stereotactic body radiation therapy using RayStation. Methods: For a pre-specified pool of candidate beams we use RayStation (a treatment planning software for clinical use) to identify the deliverable plan which uses all the beams with the minimum dose to organs at risk (OARs) and dose to the tumor and other structures in specified ranges. Then use the dose matrix information for the generated apertures from RayStation to solve a linear program to find the ideal plan with the same objective and constraints allowing use of all beams. Finally we solve a mixed integer programming formulation of the beam angle optimization problem (BAO) with the objective of minimizing the number of beams while remaining in a predetermined epsilon-optimality of the ideal plan with respect to the dose to OARs. Since the treatment plan optimization is a multicriteria optimization problem, the planner can exploit the multicriteria optimization capability of RayStation to navigate the ideal dose distribution Pareto surface and select a plan of desired target coverage versus OARs sparing, and then use the proposed technique to reduce the number of beams while guaranteeing quality. For the numerical experiments two liver cases and one lung case with 33 non-coplanar beams are considered. Results: The ideal plan uses an impractically large number of beams. The proposed technique reduces the number of beams to the range of practical application (5 to 9 beams) while remaining in the epsilon-optimal range of 1% to 5% optimality gap. Conclusion: The proposed method can be integrated into a general algorithm for fast navigation of the ideal dose distribution Pareto surface and finding the treatment plan with the minimum number of beams, which corresponds to the delivery time, in epsilon-optimality range of the desired ideal plan. The project was supported by the Federal Share of program income

  20. SU-F-BRD-08: Guaranteed Epsilon-Optimal Treatment Plans with Minimum Number of Beams for SBRT Using RayStation

    Energy Technology Data Exchange (ETDEWEB)

    Yarmand, H; Winey, B; Craft, D [Massachusetts General Hospital, Boston, MA (United States)

    2014-06-15

    Purpose: To efficiently find quality-guaranteed treatment plans with the minimum number of beams for stereotactic body radiation therapy using RayStation. Methods: For a pre-specified pool of candidate beams we use RayStation (a treatment planning software for clinical use) to identify the deliverable plan which uses all the beams with the minimum dose to organs at risk (OARs) and dose to the tumor and other structures in specified ranges. Then use the dose matrix information for the generated apertures from RayStation to solve a linear program to find the ideal plan with the same objective and constraints allowing use of all beams. Finally we solve a mixed integer programming formulation of the beam angle optimization problem (BAO) with the objective of minimizing the number of beams while remaining in a predetermined epsilon-optimality of the ideal plan with respect to the dose to OARs. Since the treatment plan optimization is a multicriteria optimization problem, the planner can exploit the multicriteria optimization capability of RayStation to navigate the ideal dose distribution Pareto surface and select a plan of desired target coverage versus OARs sparing, and then use the proposed technique to reduce the number of beams while guaranteeing quality. For the numerical experiments two liver cases and one lung case with 33 non-coplanar beams are considered. Results: The ideal plan uses an impractically large number of beams. The proposed technique reduces the number of beams to the range of practical application (5 to 9 beams) while remaining in the epsilon-optimal range of 1% to 5% optimality gap. Conclusion: The proposed method can be integrated into a general algorithm for fast navigation of the ideal dose distribution Pareto surface and finding the treatment plan with the minimum number of beams, which corresponds to the delivery time, in epsilon-optimality range of the desired ideal plan. The project was supported by the Federal Share of program income