WorldWideScience

Sample records for planing

  1. Gravitational Couplings for Gop-Planes and y-Op-Planes

    OpenAIRE

    Giraldo, Juan Fernando Ospina

    2000-01-01

    The Wess-Zumino actions for generalized orientifold planes (GOp-planes) and y-deformed orientifold planes (yOp-planes) are presented and two series power expantions are realized from whiches processes that involves GOp-planes,yOp-planes, RR-forms, gravitons and gaugeons, are obtained. Finally non-standard GOp-planes and y-Op-planes are showed.

  2. Colliding almost-plane gravitational waves: Colliding plane waves and general properties of almost-plane-wave spacetimes

    International Nuclear Information System (INIS)

    Yurtsever, U.

    1988-01-01

    It is well known that when two precisely plane-symmetric gravitational waves propagating in an otherwise flat background collide, they focus each other so strongly as to produce a curvature singularity. This paper is the first of several devoted to almost-plane gravitational waves and their collisions. Such waves are more realistic than plane waves in having a finite but very large transverse size. In this paper we review some crucial features of the well-known exact solutions for colliding plane waves and we argue that one of these features, the breakdown of ''local inextendibility'' can be regarded as nongeneric. We then introduce a new framework for analyzing general colliding plane-wave spacetimes; we give an alternative proof of a theorem due to Tipler implying the existence of singularities in all generic colliding plane-wave solutions; and we discuss the fact that the recently constructed Chandrasekhar-Xanthopoulos colliding plane-wave solutions are not strictly plane symmetric and thus do not satisfy the conditions and the conclusion of Tipler's theorem

  3. In-plane and cross-plane thermal conductivities of molybdenum disulfide

    International Nuclear Information System (INIS)

    Ding, Zhiwei; Pei, Qing-Xiang; Zhang, Yong-Wei; Jiang, Jin-Wu

    2015-01-01

    We investigate the in-plane and cross-plane thermal conductivities of molybdenum disulfide (MoS 2 ) using non-equilibrium molecular dynamics simulations. We find that the in-plane thermal conductivity of monolayer MoS 2 is about 19.76 W mK −1 . Interestingly, the in-plane thermal conductivity of multilayer MoS 2 is insensitive to the number of layers, which is in strong contrast to the in-plane thermal conductivity of graphene where the interlayer interaction strongly affects the in-plane thermal conductivity. This layer number insensitivity is attributable to the finite energy gap in the phonon spectrum of MoS 2 , which makes the phonon–phonon scattering channel almost unchanged with increasing layer number. For the cross-plane thermal transport, we find that the cross-plane thermal conductivity of multilayer MoS 2 can be effectively tuned by applying cross-plane strain. More specifically, a 10% cross-plane compressive strain can enhance the thermal conductivity by a factor of 10, while a 5% cross-plane tensile strain can reduce the thermal conductivity by 90%. Our findings are important for thermal management in MoS 2 based nanodevices and for thermoelectric applications of MoS 2 . (paper)

  4. Nearaffine planes

    NARCIS (Netherlands)

    Wilbrink, H.A.

    1982-01-01

    In this paper we develop a theory for nearaffine planes analogous to the theory of ordinary affine translation planes. In a subsequent paper we shall use this theory to give a characterization of a certain class of Minkowski planes.

  5. Some Considerations Regarding Plane to Plane Parallelism Error Effects in Robotic Systems

    Directory of Open Access Journals (Sweden)

    Stelian Alaci

    2015-06-01

    Full Text Available The paper shows that by imposing the parallelism constraint between the measured plane and the reference plane, the position of the current plane is not univocal specified and is impossible to specify the way to attain the parallelism errors imposed by accuracy constrains. The parameters involved in the calculus of plane to plane parallelism error can be used to set univocal the relative position between the two planes.

  6. Instability of in-plane vortices in two-dimensional easy-plane ferromagnets

    International Nuclear Information System (INIS)

    Wysin, G.M.

    1994-01-01

    An analysis of the core region of an in-plane vortex in the two-dimensional Heisenberg model with easy-plane anisotropy λ=J z /J xy leads to a clear understanding of the instability towards transformation into an out-of-plane vortex as a function of anisotropy. The anisotropy parameter λ c at which the in-plane vortex becomes unstable and develops into an out-of-plane vortex is determined with an accuracy comparable to computer simulations for square, hexagonal, and triangular lattices. For λ c , the in-plane vortex is stable but exhibits a normal mode whose frequency goes to zero as ω∝(λ c -λ) 1/2 as λ approaches λ c . For λ>λ c , the static nonzero out-of-plane spin components grow as (λ-λ c ) 1/2 . The lattice dependence of λ c is determined strongly by the number of spins in the core plaquette, is fundamentally a discreteness effect, and cannot be obtained in a continuum theory

  7. Heteroepitaxial growth of basal plane stacking fault free a-plane GaN

    Energy Technology Data Exchange (ETDEWEB)

    Wieneke, Matthias; Hempel, Thomas; Noltemeyer, Martin; Witte, Hartmut; Dadgar, Armin; Blaesing, Juergen; Christen, Juergen; Krost, Alois [Otto-von-Guericke Universitaet Magdeburg, FNW/IEP, Magdeburg (Germany)

    2010-07-01

    Growth of light emitting quantum-wells based on a-plane GaN is a possibility to reduce or even to avoid polarization correlated luminescence red shift and reduction of radiative recombination efficiency. But until now heteroepitaxially grown a-plane GaN films are characterized by a poor crystalline quality expressed by a high density of basal plane stacking faults (BSF) and partial dislocations. We present Si doped a-plane GaN films grown on r-plane sapphire substrates by metal organic vapor phase epitaxy using high temperature AlGaN nucleation layers. FE-SEM images revealed three dimensionally grown GaN crystallites sized up to tenth micrometer in the basal plane and a few tenth micrometers along the c-axes. Though, the full width at half maxima of the X-ray diffraction {omega}-scans of the in-plane GaN(1 anti 100) and GaN(0002) Bragg reflections exhibited a very high crystal quality. Furthermore, luminescence spectra were dominated by near band gap emission, while there was no separated peak of the basal plane stacking fault. In summary we present heteroepitaxially grown a-plane GaN without an evidence of basal plane stacking faults in X-ray diffraction measurements and luminescence spectra.

  8. Affine planes, ternary rings, and examples of non-Desarguesian planes

    OpenAIRE

    Ivanov, Nikolai V.

    2016-01-01

    The paper is devoted to a detailed self-contained exposition of a part of the theory of affine planes leading to a construction of affine (or, equivalently, projective) planes not satisfying the Desarques axiom. It is intended to complement the introductory expositions of the theory of affine and projective planes. A novelty of our exposition is a new notation for the ternary operation in a ternary ring, much more suggestive than the standard one.

  9. An Algorithm for constructing Hjelmslev planes

    OpenAIRE

    Hall, Joanne L.; Rao, Asha

    2013-01-01

    Projective Hjelmslev planes and Affine Hjelmselv planes are generalisations of projective planes and affine planes. We present an algorithm for constructing a projective Hjelmslev planes and affine Hjelsmelv planes using projective planes, affine planes and orthogonal arrays. We show that all 2-uniform projective Hjelmslev planes, and all 2-uniform affine Hjelsmelv planes can be constructed in this way. As a corollary it is shown that all 2-uniform Affine Hjelmselv planes are sub-geometries o...

  10. Ultrasound-Guided Out-of-Plane vs. In-Plane Interscalene Catheters: A Randomized, Prospective Study.

    Science.gov (United States)

    Schwenk, Eric S; Gandhi, Kishor; Baratta, Jaime L; Torjman, Marc; Epstein, Richard H; Chung, Jaeyoon; Vaghari, Benjamin A; Beausang, David; Bojaxhi, Elird; Grady, Bernadette

    2015-12-01

    Continuous interscalene blocks provide excellent analgesia after shoulder surgery. Although the safety of the ultrasound-guided in-plane approach has been touted, technical and patient factors can limit this approach. We developed a caudad-to-cephalad out-of-plane approach and hypothesized that it would decrease pain ratings due to better catheter alignment with the brachial plexus compared to the in-plane technique in a randomized, controlled study. To compare an out-of-plane interscalene catheter technique to the in-plane technique in a randomized clinical trial. Eighty-four patients undergoing open shoulder surgery were randomized to either the in-plane or out-of-plane ultrasound-guided continuous interscalene technique. The primary outcome was VAS pain rating at 24 hours. Secondary outcomes included pain ratings in the recovery room and at 48 hours, morphine consumption, the incidence of catheter dislodgments, procedure time, and block difficulty. Procedural data and all pain ratings were collected by blinded observers. There were no differences in the primary outcome of median VAS pain rating at 24 hours between the out-of-plane and in-plane groups (1.50; IQR, [0 - 4.38] vs. 1.25; IQR, [0 - 3.75]; P = 0.57). There were also no differences, respectively, between out-of-plane and in-plane median PACU pain ratings (1.0; IQR, [0 - 3.5] vs. 0.25; IQR, [0 - 2.5]; P = 0.08) and median 48-hour pain ratings (1.25; IQR, [1.25 - 2.63] vs. 0.50; IQR, [0 - 1.88]; P = 0.30). There were no differences in any other secondary endpoint. Our out-of-plane technique did not provide superior analgesia to the in-plane technique. It did not increase the number of complications. Our technique is an acceptable alternative in situations where the in-plane technique is difficult to perform.

  11. Cross plane scattering correction

    International Nuclear Information System (INIS)

    Shao, L.; Karp, J.S.

    1990-01-01

    Most previous scattering correction techniques for PET are based on assumptions made for a single transaxial plane and are independent of axial variations. These techniques will incorrectly estimate the scattering fraction for volumetric PET imaging systems since they do not take the cross-plane scattering into account. In this paper, the authors propose a new point source scattering deconvolution method (2-D). The cross-plane scattering is incorporated into the algorithm by modeling a scattering point source function. In the model, the scattering dependence both on axial and transaxial directions is reflected in the exponential fitting parameters and these parameters are directly estimated from a limited number of measured point response functions. The authors' results comparing the standard in-plane point source deconvolution to the authors' cross-plane source deconvolution show that for a small source, the former technique overestimates the scatter fraction in the plane of the source and underestimate the scatter fraction in adjacent planes. In addition, the authors also propose a simple approximation technique for deconvolution

  12. Algebraic Structures on MOD Planes

    OpenAIRE

    Kandasamy, Vasantha; Ilanthenral, K.; Smarandache, Florentin

    2015-01-01

    Study of MOD planes happens to a very recent one. In this book, systematically algebraic structures on MOD planes like, MOD semigroups, MOD groups and MOD rings of different types are defined and studied. Such study is innovative for a large four quadrant planes are made into a small MOD planes. Several distinct features enjoyed by these MOD planes are defined, developed and described.

  13. In-plane and out-of-plane emission of nuclear matter in Au+Au collisions

    International Nuclear Information System (INIS)

    Bastid, N.; Dupieux, P.; Ramillien, V.; Alard, J.P.; Amouroux, V.; Berger, L.; Boussange, S.; Fraysse, L.; Ibnouzahir, M.; Montarou, G.

    1995-01-01

    Collective flow effects in Au (E/A = 150 to 800 MeV) on Au collisions measured with the phase I setup of the FOPI detector at GSI - Darmstadt are presented. Directed side ward flow is studied, by the mean transverse momentum in the reaction plane x (y)>, without reaction plane reconstruction. A more quantitative measurement of the global amount of directed side ward flow is also made and some comparisons with the predictions of different QMD versions are given. Experimental results concerning the preferential emission of particles in a direction perpendicular to the reaction plane are also presented. Azimuthal distributions of fragments around the beam axis, with respect to the reaction plane are studied in the mid-rapidity region and the associated R N (out-of-plane/in-plane ratios) are extracted. The dependence of R N upon transverse momentum, centrality, fragment charge and bombarding energy is studied. (authors). 24 refs., 10 figs., 1 tab

  14. Influence of mandibular fixation method on stability of the maxillary occlusal plane after occlusal plane alteration.

    Science.gov (United States)

    Yosano, Akira; Katakura, Akira; Takaki, Takashi; Shibahara, Takahiko

    2009-05-01

    In this study, we investigated how method of mandibular fixation influenced longterm postoperative stability of the maxilla in Class III cases. In particular, we investigated change in the maxillary occlusal plane after Occlusal Plane Alteration. Therefore, we focused on change in the palatal plane to evaluate stability of the maxillary occlusal plane, as the position of the palatal plane affects the maxillary occlusal plane. This study included 16 patients diagnosed with mandibular protrusion. Alteration of the occlusal plane was achieved by clockwise rotation of the maxilla by Le Fort I osteotomy and mandibular setback was performed by bilateral sagittal split ramus osteotomy. We analyzed and examined lateral cephalometric radiographs taken at 1 month, 3 months, 6 months, and 1 year after surgery. Stability achieved by two methods of mandibular fixation was compared. In one group of patients (group S) titanium screws were used, and in the other group (group P) titanium-locking mini-plates were used. No significant displacement was recognized in group S, whereas an approximately 0.7mm upward vertical displacement was recognized in the anterior nasal spine in group P. As a result, not only the angle of the palatal plane and S-N plane, but also occlusal plane angle in group P showed a greater decrease than that in group S. The results suggest that fixing the mandible with screws yielded greater stability of the maxilla and maxillary occlusal plane than fixing the mandible with titanium plates.

  15. Topologically protected edge states for out-of-plane and in-plane bulk elastic waves

    Science.gov (United States)

    Huo, Shao-Yong; Chen, Jiu-Jiu; Huang, Hong-Bo

    2018-04-01

    Topological phononic insulators (TPnIs) show promise for application in the manipulation of acoustic waves for the design of low-loss transmission and perfectly integrated communication devices. Since solid phononic crystals exist as a transverse polarization mode and a mixed longitudinal-transverse polarization mode, the realization of topological edge states for both out-of-plane and in-plane bulk elastic waves is desirable to enhance the controllability of the edge waves in solid systems. In this paper, a two-dimensional (2D) solid/solid hexagonal-latticed phononic system that simultaneously supports the topologically protected edge states for out-of-plane and in-plane bulk elastic waves is investigated. Firstly, two pairs of two-fold Dirac cones, respectively corresponding to the out-of-plane and in-plane waves, are obtained at the same frequency by tuning the crystal parameters. Then, a strategy of zone folding is invoked to form double Dirac cones. By shrinking and expanding the steel scatterer, the lattice symmetry is broken, and band inversions induced, giving rise to an intriguing topological phase transition. Finally, the topologically protected edge states for both out-of-plane and in-plane bulk elastic waves, which can be simultaneously located at the frequency range from 1.223 to 1.251 MHz, are numerically observed. Robust pseudospin-dependent elastic edge wave propagation along arbitrary paths is further demonstrated. Our results will significantly broaden its practical application in the engineering field.

  16. Existence of Projective Planes

    OpenAIRE

    Perrott, Xander

    2016-01-01

    This report gives an overview of the history of finite projective planes and their properties before going on to outline the proof that no projective plane of order 10 exists. The report also investigates the search carried out by MacWilliams, Sloane and Thompson in 1970 [12] and confirms their result by providing independent verification that there is no vector of weight 15 in the code generated by the projective plane of order 10.

  17. Gravitational Couplings for Generalized Orientifold Planes

    OpenAIRE

    Giraldo, Juan Fernando Ospina

    2000-01-01

    The Wess-Zumino action for generalized orientifold planes (GOp-planes) is presented and a series power expantion is realized from which processes that involves GOp-planes, RR-forms, gravitons and gaugeons, are obtained. Finally non-standard GOp-planes are showed.

  18. Gravitational Couplings for y-Gop-Planes

    OpenAIRE

    Giraldo, Juan Fernando Ospina

    2000-01-01

    The Wess-Zumino action for y deformed and generalized orientifold planes (yGOp-planes) is presented and one power expantion is realized from which processes that involves yGOp-planes, RR-forms, gravitons and gaugeons, are obtained. Finally non-standard yGOp-planes are showed.

  19. Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity.

    Science.gov (United States)

    Basu, Koli; Garnham, Christopher P; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter

    2014-01-15

    Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms.

  20. Transformational plane geometry

    CERN Document Server

    Umble, Ronald N

    2014-01-01

    Axioms of Euclidean Plane Geometry The Existence and Incidence Postulates The Distance and Ruler Postulates The Plane Separation Postulate The Protractor Postulate The Side-Angle-Side Postulate and the Euclidean Parallel Postulate Theorems of Euclidean Plane Geometry The Exterior Angle Theorem Triangle Congruence Theorems The Alternate Interior Angles Theorem and the Angle Sum Theorem Similar Triangles Introduction to Transformations, Isometries, and Similarities Transformations Isometries and SimilaritiesAppendix: Proof of Surjectivity Translations, Rotations, and Reflections Translations Rotations Reflections Appendix: Geometer's Sketchpad Commands Required by Exploratory Activities Compositions of Translations, Rotations, and Reflections The Three Points Theorem Rotations as Compositions of Two Reflections Translations as Compositions of Two Halfturns or Two Reflections The Angle Addition Theorem Glide Reflections Classification of Isometries The Fundamental Theorem and Congruence Classification of Isometr...

  1. "A Tale of Two Planes": Deep Versus Superficial Serratus Plane Block for Postmastectomy Pain Syndrome.

    Science.gov (United States)

    Piracha, Mohammad M; Thorp, Stephen L; Puttanniah, Vinay; Gulati, Amitabh

    Postmastectomy pain syndrome (PMPS) is a significant burden for breast cancer survivors. Although multiple therapies have been described, an evolving field of serratus anterior plane blocks has been described in this population. We describe the addition of the deep serratus anterior plane block (DSPB) for PMPS. Four patients with history of PMPS underwent DSPB for anterior chest wall pain. A retrospective review of these patients' outcomes was obtained through postprocedure interviews. Three of the patients previously had a superficial serratus anterior plane block, which was not as efficacious as the DSPB. The fourth patient had a superficial serratus anterior plane that was difficult to separate with hydrodissection but had improved pain control with a DSPB. We illustrate 4 patients who have benefitted from a DSPB and describe indications that this block may be more efficacious than a superficial serratus plane block. Further study is recommended to understand the intercostal nerve branches within the lateral and anterior muscular chest wall planes.

  2. An introduction to finite projective planes

    CERN Document Server

    Albert, Abraham Adrian

    2015-01-01

    Geared toward both beginning and advanced undergraduate and graduate students, this self-contained treatment offers an elementary approach to finite projective planes. Following a review of the basics of projective geometry, the text examines finite planes, field planes, and coordinates in an arbitrary plane. Additional topics include central collineations and the little Desargues' property, the fundamental theorem, and examples of finite non-Desarguesian planes.Virtually no knowledge or sophistication on the part of the student is assumed, and every algebraic system that arises is defined and

  3. Mobility-Aware Modeling and Analysis of Dense Cellular Networks With $C$ -Plane/ $U$ -Plane Split Architecture

    KAUST Repository

    Ibrahim, Hazem

    2016-09-19

    The unrelenting increase in the population of mobile users and their traffic demands drive cellular network operators to densify their network infrastructure. Network densification shrinks the footprint of base stations (BSs) and reduces the number of users associated with each BS, leading to an improved spatial frequency reuse and spectral efficiency, and thus, higher network capacity. However, the densification gain comes at the expense of higher handover rates and network control overhead. Hence, user’s mobility can diminish or even nullifies the foreseen densification gain. In this context, splitting the control plane ( C -plane) and user plane ( U -plane) is proposed as a potential solution to harvest densification gain with reduced cost in terms of handover rate and network control overhead. In this paper, we use stochastic geometry to develop a tractable mobility-aware model for a two-tier downlink cellular network with ultra-dense small cells and C -plane/ U -plane split architecture. The developed model is then used to quantify the effect of mobility on the foreseen densification gain with and without C -plane/ U -plane split. To this end, we shed light on the handover problem in dense cellular environments, show scenarios where the network fails to support certain mobility profiles, and obtain network design insights.

  4. Ultrasound-Guided Out-of-Plane vs. In-Plane Interscalene Catheters: A Randomized, Prospective Study

    OpenAIRE

    Schwenk, Eric S.; Gandhi, Kishor; Baratta, Jaime L.; Torjman, Marc; Epstein, Richard H.; Chung, Jaeyoon; Vaghari, Benjamin A.; Beausang, David; Bojaxhi, Elird; Grady, Bernadette

    2015-01-01

    Background: Continuous interscalene blocks provide excellent analgesia after shoulder surgery. Although the safety of the ultrasound-guided in-plane approach has been touted, technical and patient factors can limit this approach. We developed a caudad-to-cephalad out-of-plane approach and hypothesized that it would decrease pain ratings due to better catheter alignment with the brachial plexus compared to the in-plane technique in a randomized, controlled study. Objectives: To compare an out-...

  5. Fourier plane imaging microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, Daniel, E-mail: daniel.dominguez@ttu.edu; Peralta, Luis Grave de [Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 (United States); Alharbi, Nouf; Alhusain, Mdhaoui [Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Bernussi, Ayrton A. [Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 (United States); Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2014-09-14

    We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonic crystals.

  6. Systems considerations in mosaic focal planes

    Science.gov (United States)

    White, K. P., III

    1983-08-01

    Two key reasons for pursuing the development of mosaic focal planes are reviewed and it is shown that rapid frame repetition rate is the only requirement that can be solved no other way than through mosaic focal planes. With the view that spaceborne mosaic focal plane sensors are necessarily 'smart sensors' requiring a lot of onboard processing just to function, it is pointed out that various artificial intelligence techniques may be the most appropriate to incorporate in the data processing. Finally, a novel mosaic focal plane design is proposed, termed a virtual mosaic focal plane, in response to other system constraints.

  7. Estimates of plastic loads for pipe bends under combined in-plane and out-of-plane bending moment

    International Nuclear Information System (INIS)

    Kim, Nak Hyun; Oh, Chang Sik; Kim, Yun Jae

    2008-01-01

    This paper provides a method to estimate plastic loads (defined by twice-elastic-slope) for pipe bends under combined in-plane and out-of-plane bending moment, based on detailed 3-D FE limit analyses using elastic-perfectly plastic materials. Because closing bending moment is always lower than opening bending moment, the combination of in-plane closing bending and out-of-plane bending moment becomes the most significant case. Due to conservatism of each bending moments, the resultant moment provided by ASME B and PV code is unduly conservative. However, the concept of the resultant moment is still valid. In this paper, FE results show that the accurate solutions of bending moments provide better estimates of plastic loads of pipe bend under combined in-plane bending and out-of-plane bending moment

  8. NUMERICAL DERIVATIONS OF A MACROSCOPIC MODEL FOR REINFORCED CONCRETE WALLS CONSIDERING IN-PLANE AND OUT-OF-PLANE BEHAVIOR

    OpenAIRE

    LATCHAROTE; Panon KAI, Yoshiro

    2015-01-01

    A macroscopic model, macro plate model, was proposed to represent a wall member of RC walls. Both in-plane and out-of-plane behavior were considered for numerical derivations of macro plate model. For out-of-plane behavior, bending deformation was incorporated with shear deformation to consider out-of-plane deformation as same as in-plane behavior. The hysteretic behavior of macro plate model can be directly expressed by stress-strain relationships in any conventional hysteretic rules, which ...

  9. Efficient Closed Form Cut-Off Planes and Propagation Planes Characteristics for Dielectric Slab Loaded Boundary Value Problems

    OpenAIRE

    Zafar, Junaid

    2012-01-01

    The geometrical relationship between the cut-off and propagating planes of any waveguide system is a prerequisite for any design process. The characterization of cut-off planes and optimisation are challenging for numerical methods, closed-form solutions are always preferred. In this paper Maxwells coupled field equations are used to characterise twin E-plane and H-plane slab loaded boundary value problems. The single mode bandwidths and dispersion characteristics of these structures are pres...

  10. Generating asymptotically plane wave spacetimes

    International Nuclear Information System (INIS)

    Hubeny, Veronika E.; Rangamani, Mukund

    2003-01-01

    In an attempt to study asymptotically plane wave spacetimes which admit an event horizon, we find solutions to vacuum Einstein's equations in arbitrary dimension which have a globally null Killing field and rotational symmetry. We show that while such solutions can be deformed to include ones which are asymptotically plane wave, they do not posses a regular event horizon. If we allow for additional matter, such as in supergravity theories, we show that it is possible to have extremal solutions with globally null Killing field, a regular horizon, and which, in addition, are asymptotically plane wave. In particular, we deform the extremal M2-brane solution in 11-dimensional supergravity so that it behaves asymptotically as a 10-dimensional vacuum plane wave times a real line. (author)

  11. Semantic Versus Syntactic Cutting Planes

    OpenAIRE

    Filmus, Yuval; Hrubeš, Pavel; Lauria, Massimo

    2016-01-01

    In this paper, we compare the strength of the semantic and syntactic version of the cutting planes proof system. First, we show that the lower bound technique of Pudlák applies also to semantic cutting planes: the proof system has feasible interpolation via monotone real circuits, which gives an exponential lower bound on lengths of semantic cutting planes refutations. Second, we show that semantic refutations are stronger than syntactic ones. In particular, we give a formula for whic...

  12. Evaluation of uterine peristalsis using cine MRI on the coronal plane in comparison with the sagittal plane.

    Science.gov (United States)

    Shitano, Fuki; Kido, Aki; Kataoka, Masako; Fujimoto, Koji; Kiguchi, Kayo; Fushimi, Yasutaka; Togashi, Kaori

    2016-01-01

    Uterine peristalsis is supposed to be closely related to the early stages of reproduction. Sperms are preferentially transported from the uterine cervix to the side of the tube with the dominant follicle. However, with respect to magnetic resonance imaging (MRI), uterine peristalsis has only been evaluated at the sagittal plane of cine MRI. To evaluate and compare uterine peristalsis both on sagittal and coronal planes using cine MRI. Internal ethics committee approval was obtained, and subjects provided informed written consent. Thirty-one women underwent MRI scans in the periovulatory phase of the menstrual cycle. Cine MR images obtained by fast advanced spin echo sequence at 3-T field strength magnet (Toshiba Medical Systems) were visually evaluated by two independent radiologists. The frequency and the direction of peristalsis, and the presence of outer myometrium conduction of signal intensities (OMC), were evaluated. The laterality of the dominant follicle was determined on axial images and compared with the peristaltic direction in fundus. The subjects in which peristaltic directions were more clearly recognized were significantly frequent in coronal planes than in sagittal planes (P < 0.05). There was no significant difference in the peristaltic frequency between the sagittal and the coronal plane. However, the OMC was more recognized in the coronal plane than in the sagittal plane (P < 0.05). Peristaltic waves conducted toward the possible ovulation side were observed in only three of the 10 subjects. OMC of uterine peristalsis was better demonstrated in the coronal plane compared to the sagittal plane. © The Foundation Acta Radiologica 2015.

  13. On the determination of general plane stress states in orthotropic materials from ultrasonic velocity data in non symmetry planes

    International Nuclear Information System (INIS)

    Goncalves Filho, Orlando J.A.

    2015-01-01

    This work reports the progress in the development of a new experimental protocol for plane stress determination in orthotropic materials based on the ultrasonic velocity of bulk waves propagating in non symmetry planes with oblique incidence. The presence of stress-induced deformation introduces an acoustic anisotropy in the material in addition to that defined by its texture. Orthotropic materials under general plane stress states become acoustically monoclic and its orthotropic planes orthogonal to the stress plane become non symmetry planes. The inverse solution of the generalized Christoffel equation for ultrasonic bulk waves propagating in non symmetry planes of anisotropic bodies is known to be numerically unstable. The suggested protocol deals with this numerical instability without recourse to bulk wave propagation in the stress plane as proposed in the literature. Hence, it should be useful for plane stress analysis of thin wall pressure vessels where ultrasonic measurements in the direction of the wall plane are not possible. For the initial validation of the suggested protocol and verification of the stability of the inversion algorithm, computer simulation of stress determination have been performed from synthetic sets of velocity data obtained by the forward solution of the generalized Christoffel equation. Preliminary results for slightly orthotropic aluminium highlight the potential of the suggested protocol. (author)

  14. Lower incisor inclination regarding different reference planes.

    Science.gov (United States)

    Zataráin, Brenda; Avila, Josué; Moyaho, Angeles; Carrasco, Rosendo; Velasco, Carmen

    2016-09-01

    The purpose of this study was to assess the degree of lower incisor inclination with respect to different reference planes. It was an observational, analytical, longitudinal, prospective study conducted on 100 lateral cephalograms which were corrected according to the photograph in natural head position in order to draw the true vertical plane (TVP). The incisor mandibular plane angle (IMPA) was compensated to eliminate the variation of the mandibular plane growth type with the formula "FMApx.- 25 (FMA) + IMPApx. = compensated IMPA (IMPACOM)". As the data followed normal distribution determined by the KolmogorovSmirnov test, parametric tests were used for the statistical analysis, Ttest, ANOVA and Pearson coefficient correlation test. Statistical analysis was performed using a statistical significance of p planes. There were statistically significant differences among the means of the planes measured, except for IMPACOM, FMIA and TVP. The IMPA differed significantly from the IMPACOM. The compensated IMPA and the FMIA did not differ significantly from the TVP. The true horizontal plane was mismatched with Frankfort plane in 84% of the sample with a range of 19°. The true vertical plane is adequate for measuring lower incisor inclination. Sociedad Argentina de Investigación Odontológica.

  15. The position of the occlusal plane in natural and artificial dentitions as related to other craniofacial planes.

    Science.gov (United States)

    Al Quran, Firas A M; Hazza'a, Abdalla; Al Nahass, Nabeel

    2010-12-01

    This study aimed at determining the most reliable ala-tragus line as a guide for the orientation of the occlusal plane in complete denture patients by use of cephalometric landmarks on dentate volunteers. Analysis was made for prosthodontically related craniofacial reference lines and angles of lateral cephalometric radiographs taken for 47 dentate adults. Variables were determined and data were analyzed using SPSS (SPSS, Inc., Chicago, IL). Occlusal plane angle formed between the occlusal plane and Camper's plane had the lowest mean value in the angle formed with Camper's I, which represents the measure taken from the superior border of the tragus of the ear with a score of 2.1°. The highest was measured in the angle formed with Camper's III with a score of 6.1°, while the angle formed with Camper's II was 3.2°. The differences between the three planes in relation to the occlusal plane was significant (p < 0.001). The superior border of the tragus with the inferior border of the ala of the nose was most accurate in orienting the occlusal plane. © 2010 by The American College of Prosthodontists.

  16. Study the Z-Plane Strip Capacitance

    International Nuclear Information System (INIS)

    Parikh, H.; Swain, S.

    2005-01-01

    The BaBaR detector at the Stanford Linear Accelerator Center is currently undergoing an upgrade to improve its muon and neutral hadron detection system. The Resistive Plate Chambers (RPCs) that had been used till now have deteriorated in performance over the past few years and are being replaced by Limited Streamer Tube (LSTs). Each layer of the system consists of a set of up to 10 streamer tube modules which provide one coordinate (φ coordinate) and a single ''Z-plane'' which provides the Z coordinate of the hit. The large area Z-planes (up to 12m 2 ) are 1mm thick and contain 96 copper strips that detect the induced charge from avalanches created in the streamer tube wires. All the Z-planes needed for the upgrade have already been constructed, but only a third of the planes were installed last summer. After installing the 24 Z-planes last year, it was learned that 0.7% of the strips were dead when put inside the detector. This was mainly due to the delicate solder joint between the read-out cable and the strip, and since it is difficult to access or replace the Z-planes inside the detector, it is very important to perform various tests to make sure that the Z-planes will be efficient and effective in the long term. We measure the capacitance between the copper strips and the ground plane, and compare it to the theoretical value that we expect. Instead of measuring the capacitance channel by channel, which would be a very tedious job, we developed a more effective method of measuring the capacitance. Since all the Z-planes were built at SLAC, we also built a smaller 46 cm by 30 cm Z-plane with 12 strips just to see how they were constructed and to gain a better understanding about the solder joints

  17. Coherent field propagation between tilted planes.

    Science.gov (United States)

    Stock, Johannes; Worku, Norman Girma; Gross, Herbert

    2017-10-01

    Propagating electromagnetic light fields between nonparallel planes is of special importance, e.g., within the design of novel computer-generated holograms or the simulation of optical systems. In contrast to the extensively discussed evaluation between parallel planes, the diffraction-based propagation of light onto a tilted plane is more burdensome, since discrete fast Fourier transforms cannot be applied directly. In this work, we propose a quasi-fast algorithm (O(N 3  log N)) that deals with this problem. Based on a proper decomposition into three rotations, the vectorial field distribution is calculated on a tilted plane using the spectrum of plane waves. The algorithm works on equidistant grids, so neither nonuniform Fourier transforms nor an explicit complex interpolation is necessary. The proposed algorithm is discussed in detail and applied to several examples of practical interest.

  18. Materials, devices, techniques, and applications for Z-plane focal plane array technology; Proceedings of the Meeting, Orlando, FL, Mar. 29, 30, 1989

    Science.gov (United States)

    Carson, John C.

    1989-09-01

    The papers contained in this volume focus on the implementation and application of Z-plane focal array technology. Topics discussed include civil and military applications of Z-plane technology, electronic design and technology for on-scale plane signal processing, detector development and fabrication technology, and Z-plane module development and producibility. Papers are presented on future capabilities of Z-plane technology, comparison of planar and Z-plane focal plane technologies for dim target detection, Z-plane modules as target extraction engines, and high complexity tape automated bonding application for space hardware.

  19. On the necessity of connection between plane and curve space metrics in gravity theory on a plane background

    International Nuclear Information System (INIS)

    Vlasov, A.A.

    1988-01-01

    The necessity of covariant connection of plane space metrics in the gravity theory ''on a plane background'' is underlined. It is shown that this connection in the relativistic gravity theory results in its difference from the general relativity theory ''on a plane background''

  20. Open Cluster Dynamics via Fundamental Plane

    Science.gov (United States)

    Lin, Chien-Cheng; Pang, Xiao-Ying

    2018-04-01

    Open clusters (OCs) are important objects for stellar dynamics studies. The short survival timescale of OCs makes them closely related to the formation of Galactic field stars. We motivate to investigate the dynamical evolution of OCs on the aspect of internal effect and the external influence. Firstly, we make use of the known OC catalog to obtain OCs masses, effective radii. Additionally, we estimate OCs kinematics properties by OC members cross-matched with radial velocity and metallicity from SDSSIV/APOGEE2. We then establish the fundamental plane of OCs based on the radial velocity dispersion, the effective radius, and average surface brightness. The deviation of the fundamental plane from the Virial Plane, so called the tilt, and the r.m.s. dispersion of OCs around the average plane are used to indicate the dynamical status of OCs. Parameters of the fitted plane will vary with cluster age and distance.

  1. Plane-wave least-squares reverse-time migration

    KAUST Repository

    Dai, Wei

    2013-06-03

    A plane-wave least-squares reverse-time migration (LSRTM) is formulated with a new parameterization, where the migration image of each shot gather is updated separately and an ensemble of prestack images is produced along with common image gathers. The merits of plane-wave prestack LSRTM are the following: (1) plane-wave prestack LSRTM can sometimes offer stable convergence even when the migration velocity has bulk errors of up to 5%; (2) to significantly reduce computation cost, linear phase-shift encoding is applied to hundreds of shot gathers to produce dozens of plane waves. Unlike phase-shift encoding with random time shifts applied to each shot gather, plane-wave encoding can be effectively applied to data with a marine streamer geometry. (3) Plane-wave prestack LSRTM can provide higher-quality images than standard reverse-time migration. Numerical tests on the Marmousi2 model and a marine field data set are performed to illustrate the benefits of plane-wave LSRTM. Empirical results show that LSRTM in the plane-wave domain, compared to standard reversetime migration, produces images efficiently with fewer artifacts and better spatial resolution. Moreover, the prestack image ensemble accommodates more unknowns to makes it more robust than conventional least-squares migration in the presence of migration velocity errors. © 2013 Society of Exploration Geophysicists.

  2. Slip patterns and preferred dislocation boundary planes

    DEFF Research Database (Denmark)

    Winther, G.

    2003-01-01

    The planes of deformation induced extended planar dislocation boundaries are analysed in two different co-ordinate systems, namely the macroscopic system defined by the deformation axes and the crystallographic system given by the crystallographic lattice. The analysis covers single and polycryst......The planes of deformation induced extended planar dislocation boundaries are analysed in two different co-ordinate systems, namely the macroscopic system defined by the deformation axes and the crystallographic system given by the crystallographic lattice. The analysis covers single...... and polycrystals of fcc metals in three deformation modes (rolling, tension and torsion). In the macroscopic system, boundaries lie close to the macroscopically most stressed planes. In the crystallographic system, the boundary plane depends on the grain/crystal orientation. The boundary planes in both co......-ordinate systems are rationalised based on the slip. The more the slip is concentrated on a slip plane, the closer the boundaries lie to this. The macroscopic preference arises from the macroscopic directionality of the slip. The established relations are applied to (a) prediction of boundary planes from slip...

  3. Fast Plane Wave Imaging

    DEFF Research Database (Denmark)

    Jensen, Jonas

    This PhD project investigates and further develops methods for ultrasound plane wave imaging and blood flow estimation with the objective of overcoming some of the major limitations in conventional ultrasound systems, which are related to low frame rates and only estimation of velocities along...... the ultrasound beam. The first part of the contribution investigates the compromise between frame rate and plane wave image quality including the influence of grating lobes from a λ-pitch transducer. A method for optimizing the image quality is suggested, and it is shown that the frame rate can be increased...... healthy volunteers. Complex flow patterns were measured in an anthropomorphic flow phantom and showed good agreement with the velocity field simulated using computational fluid dynamics. The last part of the contribution investigates two clinical applications. Plane wave imaging was used for slow velocity...

  4. Evaluation of planar 3D electrical capacitance tomography: from single-plane to dual-plane configuration

    International Nuclear Information System (INIS)

    Wei, Hsin-Yu; Qiu, Chang-Hua; Soleimani, Manuchehr

    2015-01-01

    Electrical capacitance tomography (ECT) is a non-invasive imaging technique that is sensitive to the dielectric permittivity property of an object. Conventional ECT systems have a circular/cylindrical or rectangular geometry, in which the electrode plates are usually spaced equally around the tank. It is the most common configuration as it can be easily applied to industrial pipelines. However, under some circumstances, the full access to the imaging geometry may not be applicable due to the limitation of the process area. In those cases, and with limited access, planar ECT sensors can fit the process structure if access to only one side is possible. A single-plane ECT configuration has been proposed for such applications. However, the planar array often suffers from a lack of sensitivity and difficulty with depth detection. To better understand these limitations we investigate the imaging performance from the single-plane ECT to dual-plane ECT structure. The limitations and constraints of the planar configuration will also be discussed. Several experiments were conducted using both single-plane and dual-plane configurations to evaluate the potential applications. The initial results are promising, and the quality of the reconstructed images are compared with the real condition for process validation. (paper)

  5. Guide-Plane Retention in Designing Removable Partial Dentures.

    Science.gov (United States)

    Mothopi-Peri, Matshediso; Owen, C Peter

    To compare the influence of abutment teeth guide planes and guiding surfaces on retention of a removable partial denture (RPD). Extracted teeth embedded into a maxillary cast in the first premolar and second molar positions simulated two bounded saddles. Acrylic resin RPDs were made with no guide planes, then with guide planes, then with guiding surfaces added to directly contact the guide planes. The maximum loads on removal from the cast were recorded. There was a significant increase in retention force of 1.6 times when only guide planes were present and of 10.2 times when guiding surfaces intimately contacted the guide planes. The retention of acrylic resin RPDs can be substantially increased by making their guiding surfaces intimately contact the guide planes of the teeth.

  6. A Collaborative Knowledge Plane for Autonomic Networks

    Science.gov (United States)

    Mbaye, Maïssa; Krief, Francine

    Autonomic networking aims to give network components self-managing capabilities. Several autonomic architectures have been proposed. Each of these architectures includes sort of a knowledge plane which is very important to mimic an autonomic behavior. Knowledge plane has a central role for self-functions by providing suitable knowledge to equipment and needs to learn new strategies for more accuracy.However, defining knowledge plane's architecture is still a challenge for researchers. Specially, defining the way cognitive supports interact each other in knowledge plane and implementing them. Decision making process depends on these interactions between reasoning and learning parts of knowledge plane. In this paper we propose a knowledge plane's architecture based on machine learning (inductive logic programming) paradigm and situated view to deal with distributed environment. This architecture is focused on two self-functions that include all other self-functions: self-adaptation and self-organization. Study cases are given and implemented.

  7. Conceptual Design of Wave Plane

    DEFF Research Database (Denmark)

    Frigaard, Peter; Trewers, Andrew; Kofoed, Jens Peter

    The Wave Plane is a patented Wave Energy device of the overtopping type, designed to capture potential as well as kinetic energy. This is as such different to other overtopping devices, who usually only focus on potential energy. If Wave Plane A/S can deliver the turbine technology to utilize both...

  8. Fermi system with planes and charge reservoir: Anisotropic in-plane resistivity

    International Nuclear Information System (INIS)

    Levin, G.A.; Quader, K.F.

    1992-01-01

    The authors explore the normal state in-plane resistivity of a model Fermi system with two planes and a charge reservoir. When the Fermi energy lies near the top of one of the resulting sub-bands, the system can be described by two types of quasiparticle excitations with different energy spectra and relaxation times. They show that for certain stoichiometry, ρ ab is linear in temperature with positive or negative intercepts. A relation between the slopes and intercepts of resistivities in the a and b directions in untwinned crystals is derived. The results are in good agreement with experimental data on YBCO. 7 refs., 1 tab

  9. Work Planing Automation at Mechanical Subdivision

    OpenAIRE

    Dzindzelėta, Vytautas

    2005-01-01

    Work planing automation, installation possibilities and future outlook at mechanical subdivision. To study how the work planing has changed before and after automation process and to analyse automation process methodology.

  10. In-plane and out-of-plane nonlinear dynamics of an axially moving beam

    International Nuclear Information System (INIS)

    Farokhi, Hamed; Ghayesh, Mergen H.; Amabili, Marco

    2013-01-01

    In the present study, the nonlinear forced dynamics of an axially moving beam is investigated numerically taking into account the in-plane and out-of-plane motions. The nonlinear partial differential equations governing the motion of the system are derived via Hamilton’s principle. The Galerkin scheme is then introduced to these partial differential equations yielding a set of second-order nonlinear ordinary differential equations with coupled terms. This set is transformed into a new set of first-order nonlinear ordinary differential equations by means of a change of variables. A direct time integration technique is conducted upon the new set of equations resulting in the bifurcation diagrams of Poincaré maps of the system. The dynamical characteristics of the system are investigated for different system parameters and presented through use of time histories, phase-plane portraits, Poincaré sections, and fast Fourier transforms

  11. The horizontal plane appearances of scoliosis

    DEFF Research Database (Denmark)

    Illés, Tamás S.; Burkus, Máté; Somoskeőy, Szabolcs

    2017-01-01

    Purpose: A posterior-anterior vertebral vector is proposed to facilitate visualization and understanding of scoliosis. The aim of this study was to highlight the interest of using vertebral vectors, especially in the horizontal plane, in clinical practice. Methods: We used an EOS two-/three-dimen......Purpose: A posterior-anterior vertebral vector is proposed to facilitate visualization and understanding of scoliosis. The aim of this study was to highlight the interest of using vertebral vectors, especially in the horizontal plane, in clinical practice. Methods: We used an EOS two...... cases of a normal spine and a thoracic scoliosis are presented. Results: For a normal spine, vector projections in the transverse plane are aligned with the posterior-anterior anatomical axis. For a scoliotic spine, vector projections in the horizontal plane provide information on the lateral...... decompensation of the spine and the lateral displacement of vertebrae. In the horizontal plane view, vertebral rotation and projections of the sagittal curves can also be analyzed simultaneously. Conclusions: The use of posterior-anterior vertebral vector facilitates the understanding of the 3D nature...

  12. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3

    KAUST Repository

    Cui, Chaojie; Hu, Weijin; Yan, Xingxu; Addiego, Christopher; Gao, Wenpei; Wang, Yao; Wang, Zhe; Li, Linze; Cheng, Yingchun; Li, Peng; Zhang, Xixiang; Alshareef, Husam N.; Wu, Tao; Zhu, Wenguang; Pan, Xiaoqing; Li, Lain-Jong

    2018-01-01

    Enriching the functionality of ferroelectric materials with visible-light sensitivity and multiaxial switching capability would open up new opportunities for their applications in advanced information storage with diverse signal manipulation functions. We report experimental observations of robust intra-layer ferroelectricity in two-dimensional (2D) van der Waals layered -In2Se3 ultrathin flakes at room temperature. Distinct from other 2D and conventional ferroelectrics, In2Se3 exhibits intrinsically intercorrelated out-of-plane and in-plane polarization, where the reversal of the out-of-plane polarization by a vertical electric field also induces the rotation of the in-plane polarization. Based on the in-plane switchable diode effect and the narrow bandgap (~1.3 eV) of ferroelectric In2Se3, a prototypical non-volatile memory device, which can be manipulated both by electric field and visible light illumination, is demonstrated for advancing data storage technologies.

  13. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3

    KAUST Repository

    Cui, Chaojie

    2018-01-30

    Enriching the functionality of ferroelectric materials with visible-light sensitivity and multiaxial switching capability would open up new opportunities for their applications in advanced information storage with diverse signal manipulation functions. We report experimental observations of robust intra-layer ferroelectricity in two-dimensional (2D) van der Waals layered -In2Se3 ultrathin flakes at room temperature. Distinct from other 2D and conventional ferroelectrics, In2Se3 exhibits intrinsically intercorrelated out-of-plane and in-plane polarization, where the reversal of the out-of-plane polarization by a vertical electric field also induces the rotation of the in-plane polarization. Based on the in-plane switchable diode effect and the narrow bandgap (~1.3 eV) of ferroelectric In2Se3, a prototypical non-volatile memory device, which can be manipulated both by electric field and visible light illumination, is demonstrated for advancing data storage technologies.

  14. Causal inheritance in plane wave quotients

    International Nuclear Information System (INIS)

    Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.

    2003-01-01

    We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general spacetime to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp-waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave spacetimes. We show that all other quotients preserve stable causality

  15. Causal inheritance in plane wave quotients

    Science.gov (United States)

    Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.

    2004-01-01

    We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general space-time to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave space-times. We show that all other quotients preserve stable causality.

  16. Ultrasound Guided Transversus Thoracic Plane block, Parasternal block and fascial planes hydrodissection for internal mammary post thoracotomy pain syndrome.

    Science.gov (United States)

    Piraccini, E; Biondi, G; Byrne, H; Calli, M; Bellantonio, D; Musetti, G; Maitan, S

    2018-05-16

    Pectoral Nerves Block (PECS) and Serratus Plane Block (SPB) have been used to treat persistent post-surgical pain after breast and thoracic surgery; however, they cannot block the internal mammary region, so a residual pain may occur in that region. Parasternal block (PSB) and Thoracic Transversus Plane Block (TTP) anaesthetize the anterior branches of T2-6 intercostal nerves thus they can provide analgesia to the internal mammary region. We describe a 60-year-old man suffering from right post-thoracotomy pain syndrome with residual pain located in the internal mammary region after a successful treatment with PECS and SPB. We performed a PSB and TTP and hydrodissection of fascial planes with triamcinolone and Ropivacaine. Pain disappeared and the result was maintained 3 months later. This report suggests that PSB and TTP with local anaesthetic and corticosteroid with hydrodissection of fascial planes might be useful to treat a post thoracotomy pain syndrome located in the internal mammary region. The use of Transversus Thoracic Plane and Parasternal Blocks and fascial planes hydrodissection as a novel therapeutic approach to treat a residual post thoracotomy pain syndrome even when already treated with Pectoral Nerves Block and Serratus Plane Block. © 2018 European Pain Federation - EFIC®.

  17. Intercorrelated In-Plane and Out-of-Plane Ferroelectricity in Ultrathin Two-Dimensional Layered Semiconductor In2Se3.

    Science.gov (United States)

    Cui, Chaojie; Hu, Wei-Jin; Yan, Xingxu; Addiego, Christopher; Gao, Wenpei; Wang, Yao; Wang, Zhe; Li, Linze; Cheng, Yingchun; Li, Peng; Zhang, Xixiang; Alshareef, Husam N; Wu, Tom; Zhu, Wenguang; Pan, Xiaoqing; Li, Lain-Jong

    2018-02-14

    Enriching the functionality of ferroelectric materials with visible-light sensitivity and multiaxial switching capability would open up new opportunities for their applications in advanced information storage with diverse signal manipulation functions. We report experimental observations of robust intralayer ferroelectricity in two-dimensional (2D) van der Waals layered α-In 2 Se 3 ultrathin flakes at room temperature. Distinct from other 2D and conventional ferroelectrics, In 2 Se 3 exhibits intrinsically intercorrelated out-of-plane and in-plane polarization, where the reversal of the out-of-plane polarization by a vertical electric field also induces the rotation of the in-plane polarization. On the basis of the in-plane switchable diode effect and the narrow bandgap (∼1.3 eV) of ferroelectric In 2 Se 3 , a prototypical nonvolatile memory device, which can be manipulated both by electric field and visible light illumination, is demonstrated for advancing data storage technologies.

  18. First results from the INTEGRAL galactic plane scans

    DEFF Research Database (Denmark)

    Winkler, C.; Gehrels, N.; Schonfelder, V.

    2003-01-01

    Scans of the Galactic plane performed at regular intervals constitute a key element of the guaranteed time observations of the INTEGRAL observing programme. These scans are done for two reasons: frequent monitoring of the Galactic plane in order to detect transient sources, and time resolved mapp...... mapping of the Galactic plane in continuum and diffuse line emission. This paper describes first results obtained from the Galactic plane scans executed so far during the early phase (Dec. 2002-May 2003) of the nominal mission.......Scans of the Galactic plane performed at regular intervals constitute a key element of the guaranteed time observations of the INTEGRAL observing programme. These scans are done for two reasons: frequent monitoring of the Galactic plane in order to detect transient sources, and time resolved...

  19. Error Analysis on Plane-to-Plane Linear Approximate Coordinate ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, the error analysis has been done for the linear approximate transformation between two tangent planes in celestial sphere in a simple case. The results demonstrate that the error from the linear transformation does not meet the requirement of high-precision astrometry under some conditions, so the ...

  20. Nanostructured carbon films with oriented graphitic planes

    International Nuclear Information System (INIS)

    Teo, E. H. T.; Kalish, R.; Kulik, J.; Kauffmann, Y.; Lifshitz, Y.

    2011-01-01

    Nanostructured carbon films with oriented graphitic planes can be deposited by applying energetic carbon bombardment. The present work shows the possibility of structuring graphitic planes perpendicular to the substrate in following two distinct ways: (i) applying sufficiently large carbon energies for deposition at room temperature (E>10 keV), (ii) utilizing much lower energies for deposition at elevated substrate temperatures (T>200 deg. C). High resolution transmission electron microscopy is used to probe the graphitic planes. The alignment achieved at elevated temperatures does not depend on the deposition angle. The data provides insight into the mechanisms leading to the growth of oriented graphitic planes under different conditions.

  1. Compact planes, mostly 8-dimensional. A retrospect

    OpenAIRE

    Salzmann, Helmut R.

    2014-01-01

    Results on $8$-dimensional topological planes are scattered in the literature. It is the aim of the present paper to give a survey of these geometries, in particular of information obtained after the appearance of the treatise Compact Projective Planes or not included in this book. For some theorems new proofs are given and a few related results concerning planes of other dimensions are presented.

  2. Competition between invariant habit plane and compatible junction plane in TiNb-based shape memory alloy

    International Nuclear Information System (INIS)

    Inamura, T.; Kim, H.Y.; Hosoda, H.; Miyazaki, S.

    2013-01-01

    Highlights: ► Kinematic compatibility (KC) among martensite variants in Ti-Nb-Al is evaluated. ► Rotation Q is necessary to keep KC at any junction plane (JP). ► The rotation Q is equivalent to the rotation to form the exact twin-relationship. ► The JP preferentially observed in experiment is the JP with the smaller Q. ► We propose two preferential JPs with {1 1 1} type I and 〈2 1 1〉 type II twin in Ti-Nb-Al. -- Abstract: The invariant plane (IP) condition at a habit plane (HP) and the kinematic compatibility (KC) condition at a junction plane (JP) are quantitatively evaluated by the geometrically nonlinear theory of martensite and the origin of the twin orientation relationship (OR) at a JP is revealed in a β titanium shape memory alloy. Exact twin OR at a JP is impossible among the habit plane variants (HPVs). A nonzero rotation is necessary to maintain the compatibility at a JP between the HPVs. The fully compatible HPV cluster in which IP at a HP and KC at a JP are maintained simultaneously is impossible in this alloy. However, it was found that twin OR and KC can be maintained simultaneously. The preferentially observed HPV clusters in transmission electron microscopy are the clusters with a smaller rotation to maintain KC at a JP

  3. Nonpolar a-plane GaN grown on r-plane sapphire using multilayer AlN buffer by metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Chiang, C.H.; Chen, K.M.; Wu, Y.H.; Yeh, Y.S.; Lee, W.I.; Chen, J.F.; Lin, K.L.; Hsiao, Y.L.; Huang, W.C.; Chang, E.Y.

    2011-01-01

    Mirror-like and pit-free non-polar a-plane (1 1 -2 0) GaN films are grown on r-plane (1 -1 0 2) sapphire substrates using metalorganic chemical vapor deposition (MOCVD) with multilayer high-low-high temperature AlN buffer layers. The buffer layer structure and film quality are essential to the growth of a flat, crack-free and pit-free a-plane GaN film. The multilayer AlN buffer structure includes a thin low-temperature-deposited AlN (LT-AlN) layer inserted into the high-temperature-deposited AlN (HT-AlN) layer. The results demonstrate that the multilayer AlN buffer structure can improve the surface morphology of the upper a-plane GaN film. The grown multilayer AlN buffer structure reduced the tensile stress on the AlN buffer layers and increased the compressive stress on the a-plane GaN film. The multilayer AlN buffer structure markedly improves the surface morphology of the a-plane GaN film, as revealed by scanning electron microscopy. The effects of various growth V/III ratios was investigated to obtain a-plane GaN films with better surface morphology. The mean roughness of the surface was 1.02 nm, as revealed by atomic force microscopy. Accordingly, the multilayer AlN buffer structure improves the surface morphology and facilitates the complete coalescence of the a-plane GaN layer.

  4. Computed tomography of peripancreatic fat planes

    International Nuclear Information System (INIS)

    Wittich, G.R.; Van Sonnenberg, E.; Willson, S.A.; Tobin, R.S.; Cubberley, D.A.; Marx, M.Q.

    1987-01-01

    Obliteration of peripancreatic fat planes usually is considered an indicator of peripancreatic tumour infiltration in the presence of a malignant mass, or of inflammation of peripancreatic tissues in patients with pancreatitis. However, absence of peripancreatic fat planes also may be found in patients without evidence of pancreatic disease. Hence, CT scans of 125 patients without clinical or computed tomographic evidence of pancreatic disease were evaluated to assess normal variations in the anatomy of the pancreas and its relation to surrounding vessels and bowel loops. The fat plane separating the superior mesenteric artery from the pancreas was preserved in 100% of patients. Conversely, fat planes between the pancreas and the superior mesenteric vein, inferior vena cava, and adjacent bowel loops were partially or totally obliterated in 13% to 50% of patients. It is concluded that the absence of fat around the superior mesenteric artery is highly suggestive of pathologic changes of the pancreas, while the lack of fat planes between the pancreas and other splanchnic vessels or bowel loops frequently is normal, and therefore, is an unreliable sign of pancreatic disease. The applications of these findings to the assessment of tumour resectability by CT, and to CT scanning techniques, are discussed. (orig.)

  5. Slipping and rolling on an inclined plane

    International Nuclear Information System (INIS)

    Aghamohammadi, Cina; Aghamohammadi, Amir

    2011-01-01

    In the first part of the paper, using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient (μ). A parametric equation for the trajectory of the particle is also obtained. In the second part of the paper, the motion of a sphere on the inclined plane is studied. It is shown that the evolution equation for the contact point of a sliding sphere is similar to that of a point particle sliding on an inclined plane whose friction coefficient is 7/2 μ. If μ > 2/7 tan θ, for any arbitrary initial velocity and angular velocity, the sphere will roll on the inclined plane after some finite time. In other cases, it will slip on the inclined plane. In the case of rolling, the centre of the sphere moves on a parabola. Finally the velocity and angular velocity of the sphere are exactly computed.

  6. Deflection of electron beams by ground planes

    International Nuclear Information System (INIS)

    Fernsler, R.F.; Lampe, M.

    1991-01-01

    Analytic methods are used to determine the effect of a nearby ground plane on the trajectory of a relativistic electron beam passing through dense gas. The beam is shown to respond to the ground plane in one of two distinct modes, determined by beam current and energy. Low-power beams deflect from the ground plane and tear longitudinally. High-power beams do not deflect or tear but tilt, i.e., the beam axis is no longer parallel to the direction of propagation. This conclusion is reached by computing the net beam force as a superposition of the ''bare'' ground-plane forces, the shielding forces from the beam-generated plasma, the body coupling forces induced by beam tilt, and the force that arises as the beam separates from the plasma. Effects from electromagnetic retardation and ground resistivity are shown to be negligible in typical cases of interest, and the interaction between ground planes and other external forces is discussed as well

  7. Quantum Mechanics on the h-deformed Quantum Plane

    OpenAIRE

    Cho, Sunggoo

    1998-01-01

    We find the covariant deformed Heisenberg algebra and the Laplace-Beltrami operator on the extended $h$-deformed quantum plane and solve the Schr\\"odinger equations explicitly for some physical systems on the quantum plane. In the commutative limit the behaviour of a quantum particle on the quantum plane becomes that of the quantum particle on the Poincar\\'e half-plane, a surface of constant negative Gaussian curvature. We show the bound state energy spectra for particles under specific poten...

  8. Anatomical planes: are we teaching accurate surface anatomy?

    Science.gov (United States)

    Mirjalili, S Ali; McFadden, Sarah L; Buckenham, Tim; Wilson, Ben; Stringer, Mark D

    2012-10-01

    Anatomical planes used in clinical practice and teaching anatomy are largely derived from cadaver studies. Numerous inconsistencies in clinically important surface markings exist between and within anatomical reference texts. The aim of this study was to reassess the accuracy of common anatomical planes in vivo using computed tomographic (CT) imaging. CT scans of the trunk in supine adults at end tidal inspiration were analyzed by dual consensus reporting to determine the anatomy of five anatomical planes: sternal angle, transpyloric, subcostal, supracristal, and the plane of the pubic crest. Patients with kyphosis, scoliosis, or abnormal lordosis, distorting space-occupying lesions, or visceromegaly were excluded. Among 153 thoracic CT scans (mean age 63 years, 53% female), the sternal angle was most common at T4 (females) or T4/5 (males) vertebral level, and the tracheal bifurcation, aortic arch, and pulmonary trunk were most often below this plane. In 108 abdominal CT scans (mean age 60 years, 59% female), the subcostal and supracristal planes were most often at L2 (58%) and L4 (69%), respectively. In 52 thoracoabdominal CT scans (mean age 61 years, 56% female), the transpyloric plane was between lower L1 and upper L2 (75%); in this plane were the superior mesenteric artery (56%), formation of the portal vein (53%), tip of the ninth rib (60%), and the left renal hilum (54%), but the right renal hilum and gallbladder fundus were more often below. The surface anatomy of anatomical planes needs revising in the light of results from living subjects using modern imaging techniques. Copyright © 2012 Wiley Periodicals, Inc.

  9. Regularized plane-wave least-squares Kirchhoff migration

    KAUST Repository

    Wang, Xin

    2013-09-22

    A Kirchhoff least-squares migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images. A regularization term is included that accounts for mispositioning of reflectors due to errors in the velocity model. Both synthetic and field results show that: 1) LSM with a reflectivity model common for all the plane-wave gathers provides the best image when the migration velocity model is accurate, but it is more sensitive to the velocity errors, 2) the regularized plane-wave LSM is more robust in the presence of velocity errors, and 3) LSM achieves both computational and IO saving by plane-wave encoding compared to shot-domain LSM for the models tested.

  10. Study of combined cycle engine for aerospace plane

    OpenAIRE

    苅田, 丈士; KANDA, Takeshi; 工藤, 賢司; KUDO, Kenji

    2002-01-01

    At the Ramjet Propulsion Research Center, the scramjet engine for an aerospace plane has been studied. Other engines are required for the plane to go into orbit. Recently, a combined cycle engine including scramjet mode has been also studied to complete the engine system for the plane. The scramjet and the combined cycle engine are most effective with application to the Single-Stage-to-Orbit (SSTO) aerospace plane, as shown in Figure 1. Recent activity on the combined cycle engine and the SST...

  11. Neuromorphic infrared focal plane performs sensor fusion on-plane local-contrast-enhancement spatial and temporal filtering

    Science.gov (United States)

    Massie, Mark A.; Woolaway, James T., II; Curzan, Jon P.; McCarley, Paul L.

    1993-08-01

    An infrared focal plane has been simulated, designed and fabricated which mimics the form and function of the vertebrate retina. The `Neuromorphic' focal plane has the capability of performing pixel-based sensor fusion and real-time local contrast enhancement, much like the response of the human eye. The device makes use of an indium antimonide detector array with a 3 - 5 micrometers spectral response, and a switched capacitor resistive network to compute a real-time 2D spatial average. This device permits the summation of other sensor outputs to be combined on-chip with the infrared detections of the focal plane itself. The resulting real-time analog processed information thus represents the combined information of many sensors with the advantage that analog spatial and temporal signal processing is performed at the focal plane. A Gaussian subtraction method is used to produce the pixel output which when displayed produces an image with enhanced edges, representing spatial and temporal derivatives in the scene. The spatial and temporal responses of the device are tunable during operation, permitting the operator to `peak up' the response of the array to spatial and temporally varying signals. Such an array adapts to ambient illumination conditions without loss of detection performance. This paper reviews the Neuromorphic infrared focal plane from initial operational simulations to detailed design characteristics, and concludes with a presentation of preliminary operational data for the device as well as videotaped imagery.

  12. Streptococcus anginosus infections: crossing tissue planes.

    Science.gov (United States)

    Sunwoo, Bernie Y; Miller, Wallace T

    2014-10-01

    Streptococcus anginosus has long been recognized to cause invasive pyogenic infections. This holds true for thoracic infections where S. anginosus has a propensity for abscess and empyema formation. Early diagnosis is important given the significant morbidity and mortality associated with thoracic S. anginosus infections. Yet, distinguishing thoracic S. anginosus clinically is difficult. We present three cases of thoracic S. anginosus that demonstrated radiographic extension across tissue planes, including the interlobar fissure, diaphragm, and chest wall. Few infectious etiologies are known to cross tissue planes. Accordingly, we propose S. anginosus be considered among the differential diagnosis of potential infectious etiologies causing radiographic extension across tissue planes.

  13. Effect of twinning plane on superconductor magnetic properties

    International Nuclear Information System (INIS)

    Buzdin, A.I.; Kuptsov, D.A.

    1989-01-01

    Effect of twinning planes on pinning of the Abrikosov vortices in superconductors of the second order with the Ginsburg-Landau parameter, κ >> 1, is considered. The modified Ginsburg-Landau functional, where the effect of superconducting properties improvement near the twinning plane is taken into account by adding the additional δ-function component, is used to descibe superconductivity of twinning plane. Force of interaction of a vortex filament and the twinning plane is calculated. It is shown that in case of the twinning plane opaque to electrons, additional attractive force, being analogous to that occurring in the problem on the surface Been-Livingston barrier, affects the vortex filament. The results can explain anisotropy of vortex pinning observed in the periodic twinning structure in high-temperature superconductors

  14. Comparison of Skeletal and Dental Reference Planes with the Hamulus-Incisive-Papilla Plane: A Pilot Study on 3D Reconstructed Tomographies of the Skull.

    Science.gov (United States)

    Pittschieler, Elisabeth; Foltin, Andrea; Falkensammer, Frank; Figl, Michael; Birkfellner, Wolfgang; Jonke, Erwin; Bantleon, Hans-Peter

    2016-01-01

    The aim of this study was to investigate the hamulus-incisive-papilla (HIP) plane as an alternative for transferring the three-dimensional position of a patient's maxilla to an articulator. Camper, Frankfurt horizontal, occlusal, and HIP planes were evaluated in 21 patients' computed tomography scans and compared to one another. Analysis of variance showed significant differences between all planes, with the HIP plane being closest to the occlusal plane (HIP-OP: 0.6 ± 4.0 degrees). Frankfurt and Camper planes, being more peripheral, showed higher geometric asymmetries. The HIP plane, when used for articulator mounting, results in a closer and more technically reliable patient relationship in a clinical and laboratory context.

  15. Off-plane x-ray reflection grating fabrication

    Science.gov (United States)

    Peterson, Thomas J.; DeRoo, Casey T.; Marlowe, Hannah; McEntaffer, Randall L.; Miles, Drew M.; Tutt, James H.; Schultz, Ted B.

    2015-09-01

    Off-plane X-ray diffraction gratings with precision groove profiles at the submicron scale will be used in next generation X-ray spectrometers. Such gratings will be used on a current NASA suborbital rocket mission, the Off-plane Grating Rocket Experiment (OGRE), and have application for future grating missions. The fabrication of these gratings does not come without challenges. High performance off-plane gratings must be fabricated with precise radial grating patterns, optically at surfaces, and specific facet angles. Such gratings can be made using a series of common micro-fabrication techniques. The resulting process is highly customizable, making it useful for a variety of different mission architectures. In this paper, we detail the fabrication method used to produce high performance off-plane gratings and report the results of a preliminary qualification test of a grating fabricated in this manner. The grating was tested in the off-plane `Littrow' configuration, for which the grating is most efficient for a given diffraction order, and found to achieve 42% relative efficiency in the blaze order with respect to all diffracted light.

  16. Plane-Casting: 3D Cursor Control with a SmartPhone

    OpenAIRE

    Katzakis, Nicholas; Kiyokawa, Kiyoshi; Hori, Masahiro; Takemura, Haruo

    2018-01-01

    We present Plane-Casting, a novel technique for 3D object manipulation from a distance that is especially suitable for smartphones. We describe two variations of Plane-Casting, Pivot and Free Plane-Casting, and present results from a pilot study. Results suggest that Pivot Plane-Casting is more suitable for quick, coarse movements whereas Free Plane-Casting is more suited to slower, precise motion. In a 3D movement task, Pivot Plane-Casting performed better quantitatively, but subjects prefer...

  17. Moving vertices to make drawings plane

    NARCIS (Netherlands)

    Goaoc, X.; Kratochvil, J.; Okamoto, Y.; Shin, C.S.; Wolff, A.; Hong, S.K.; Nishizeki, T.; Quan, W.

    2008-01-01

    In John Tantalo’s on-line game Planarity the player is given a non-plane straight-line drawing of a planar graph. The aim is to make the drawing plane as quickly as possible by moving vertices. In this paper we investigate the related problem MinMovedVertices which asks for the minimum number of

  18. 3D plane-wave least-squares Kirchhoff migration

    KAUST Repository

    Wang, Xin

    2014-08-05

    A three dimensional least-squares Kirchhoff migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images and the computational efficiency. Due to the limitation of current 3D marine acquisition geometries, a cylindrical-wave encoding is adopted for the narrow azimuth streamer data. To account for the mispositioning of reflectors due to errors in the velocity model, a regularized LSM is devised so that each plane-wave or cylindrical-wave gather gives rise to an individual migration image, and a regularization term is included to encourage the similarities between the migration images of similar encoding schemes. Both synthetic and field results show that: 1) plane-wave or cylindrical-wave encoding LSM can achieve both computational and IO saving, compared to shot-domain LSM, however, plane-wave LSM is still about 5 times more expensive than plane-wave migration; 2) the regularized LSM is more robust compared to LSM with one reflectivity model common for all the plane-wave or cylindrical-wave gathers.

  19. The in-focus variable line spacing plane grating monochromator

    International Nuclear Information System (INIS)

    Reininger, R.

    2011-01-01

    The in-focus variable line spacing plane grating monochromator is based on only two plane optical elements, a variable line spacing plane grating and a plane pre-mirror that illuminates the grating at the angle of incidence that will focus the required photon energy. A high throughput beamline requires only a third optical element after the exit slit, an aberration corrected elliptical toroid. Since plane elements can be manufactured with the smallest figure errors, this monochromator design can achieve very high resolving power. Furthermore, this optical design can correct the deformations induced by the heat load on the optics along the dispersion plane. This should allow obtaining a resolution of 10 meV at 1 keV with currently achievable figure errors on plane optics. The position of the photon source when an insertion device center is not located at the center of the straight section, a common occurrence in new insertion device beamlines, is investigated.

  20. A Viewpoint on the Quantity "Plane Angle"

    Science.gov (United States)

    Eder, W. E.

    1982-01-01

    Properties of the quantity "plane angle" are explored under the hypothesis that it is a dimensional quantity. The exploration proceeds especially with respect to the physical concept, its mathematical treatment, vector concepts, measurement theory, units of related quantities, engineering pragmatism, and SI. An attempt is made to bring these different relations into a rational, logical and consistent framework, and thus to justify the hypothesis. Various types of vectorial quantities are recognized, and their properties described with an outline of the necessary algebraic manipulations. The concept of plane angle is amplified, and its interdependence with the circular arc is explored. The resulting units of plane angle form a class of similar scales of measurement. Consequences of the confirmed hypothesis are developed for mathematical expressions involving trigonometric functions, rotational volumes and areas, mathematical limits, differentiation and series expansion. Consequences for mechanical rotational quantities are developed, with proposals for revisions to a number of expressions for derived units within SI. A revised definition for the quantity "plane angle" is stated to take account of the developed insights. There is a clear need to reconsider the status of plane angle and some other quantities within the international framework of SI.

  1. Molecular cloning of plane pollen allergen Pla a 3 and its utility as diagnostic marker for peach associated plane pollen allergy.

    Science.gov (United States)

    Wangorsch, A; Larsson, H; Messmer, M; García-Moral, A; Lauer, I; Wolfheimer, S; Schülke, S; Bartra, J; Vieths, S; Lidholm, J; Scheurer, S

    2016-05-01

    Non-specific lipid transfer proteins (nsLTP) are considered to provoke allergic symptoms to plane tree pollen, which are frequently associated with peach allergy. The objective was to clone the cDNA of plane pollen nsLTP Pla a 3, to characterize IgE-binding and allergenic potency of recombinant Pla a 3 in comparison to its natural counterpart and peach nsLTP Pru p 3. Natural Pla a 3 was purified from plane pollen and analysed by mass spectrometry (MS). Recombinant Pla a 3 was characterized by SDS-PAGE and CD spectroscopy. Specific IgE to extract, components of plane pollen and Pru p 3 was measured by ImmunoCAP in sera of patients allergic to either plane pollen (n = 10), peach (n = 15) or both (n = 15). Biological potency of the proteins was investigated by in vitro mediator release assays and IgE cross-reactivity by competitive ELISA. Two Pla a 3 isoforms were identified. Recombinant Pla a 3 showed high purity, structural integrity, IgE-binding capacity comparable to nPla a 3 and biological potency. Sensitization to plane pollen extract was confirmed in 24/25 plane pollen allergics. The frequency of sensitization to Pla a 3 was 53% among patients allergic to both plane pollen and peach and 10% among plane pollen allergics tolerating peach where most patients were sensitized to Pla a 1. Pla a 3 and Pru p 3 showed strong bi-directional IgE cross-reactivity in patients allergic to peach and plane pollen, but not in peach allergics tolerating plane pollen. Levels of IgE-binding were generally higher to Pru p 3 than to Pla a 3. Sensitization to Pla a 3 is relevant in a subgroup of plane pollen allergics with concomitant peach allergy. IgE testing with Pla a 3 may serve as a marker to identify plane pollen allergic patients at risk of LTP-mediated food reactions and thereby improve in vitro diagnostic procedures. © 2016 John Wiley & Sons Ltd.

  2. Dose distributions of pendulum fields in the field border plane

    International Nuclear Information System (INIS)

    Schrader, R.

    1986-01-01

    Calculations (program SIDOS-U2) and LiF measurements taken in a cylindric water phantom are used to investigate the isodose distributions of different pendulum irradiation methods (Co-60) in a plane which is parallel to the central ray plane and crosses the field borders at the depth of the axis. The dose values compared to the maximum values of the central ray plane are completely different for each pendulum method. In case of monoaxial pendulum methods around small angles, the maximum dose value found in the border plane is less than 50% of the dose in the central ray plane. The relative maximum of the border plane moves to tissues laying in a greater depth. In case of bi-axial methods, the maximum value of the border plane can be much more than 50% of the maximum dose measured in the central ray plane. (orig.) [de

  3. Transparency in stereopsis: parallel encoding of overlapping depth planes.

    Science.gov (United States)

    Reeves, Adam; Lynch, David

    2017-08-01

    We report that after extensive training, expert adults can accurately report the number, up to six, of transparent overlapping depth planes portrayed by brief (400 ms or 200 ms) random-element stereoscopic displays, and can well discriminate six from seven planes. Naïve subjects did poorly above three planes. Displays contained seven rows of 12 randomly located ×'s or +'s; jittering the disparities and number in each row to remove spurious cues had little effect on accuracy. Removing the central 3° of the 10° display to eliminate foveal vision hardly reduced the number of reportable planes. Experts could report how many of six planes contained +'s when the remainder contained ×'s, and most learned to report up to six planes in reverse contrast (left eye white +'s; right eye black +'s). Long-term training allowed some experts to reach eight depth planes. Results suggest that adult stereoscopic vision can learn to distinguish the outputs of six or more statistically independent, contrast-insensitive, narrowly tuned, asymmetric disparity channels in parallel.

  4. Plane-wave least-squares reverse-time migration

    KAUST Repository

    Dai, Wei; Schuster, Gerard T.

    2013-01-01

    . The merits of plane-wave prestack LSRTM are the following: (1) plane-wave prestack LSRTM can sometimes offer stable convergence even when the migration velocity has bulk errors of up to 5%; (2) to significantly reduce computation cost, linear phase

  5. A zonal wavefront sensor with multiple detector planes

    Science.gov (United States)

    Pathak, Biswajit; Boruah, Bosanta R.

    2018-03-01

    A conventional zonal wavefront sensor estimates the wavefront from the data captured in a single detector plane using a single camera. In this paper, we introduce a zonal wavefront sensor which comprises multiple detector planes instead of a single detector plane. The proposed sensor is based on an array of custom designed plane diffraction gratings followed by a single focusing lens. The laser beam whose wavefront is to be estimated is incident on the grating array and one of the diffracted orders from each grating is focused on the detector plane. The setup, by employing a beam splitter arrangement, facilitates focusing of the diffracted beams on multiple detector planes where multiple cameras can be placed. The use of multiple cameras in the sensor can offer several advantages in the wavefront estimation. For instance, the proposed sensor can provide superior inherent centroid detection accuracy that can not be achieved by the conventional system. It can also provide enhanced dynamic range and reduced crosstalk performance. We present here the results from a proof of principle experimental arrangement that demonstrate the advantages of the proposed wavefront sensing scheme.

  6. Three-dimensional Frankfort horizontal plane for 3D cephalometry: a comparative assessment of conventional versus novel landmarks and horizontal planes.

    Science.gov (United States)

    Pittayapat, Pisha; Jacobs, Reinhilde; Bornstein, Michael M; Odri, Guillaume A; Lambrichts, Ivo; Willems, Guy; Politis, Constantinus; Olszewski, Raphael

    2018-05-25

    To assess the reproducibility of landmarks in three dimensions that determine the Frankfort horizontal plane (FH) as well as two new landmarks, and to evaluate the angular differences of newly introduced planes to the FH. Three-dimensional (3D) surface models were created from CBCT scans of 26 dry human skulls. Porion (Po), orbitale (Or), internal acoustic foramen (IAF), and zygomatico-maxillary suture (ZyMS) were indicated in the software by three observers twice with a 4-week interval. Angles between two FHs (FH 1: Or-R, Or-L, mid-Po; FH 2: Po-R, Po-L, mid-Or) and between FHs and new planes (Plane 1-6) were measured. Coordinates were exported to a spreadsheet. A statistical analysis was performed to define the landmark reproducibility and 3D angles. Intra- and inter-observer landmark reproducibility showed mean difference more than 1 mm for x-coordinates of all landmarks except IAF. IAF showed significantly better reproducibility than other landmarks (P Plane 3, connecting Or-R, Or-L and mid-IAF, and Plane 4, connecting Po-R, Po-L and mid-ZyMS, both showed an angular difference of less than 1 degree when compared to FHs. This study revealed poor reproducibility of the traditional FH landmarks on the x-axis and good reproducibility of a new landmark tested to replace Po, the IAF. Yet, Or showed superior results compared to ZyMS. The potential of using new horizontal planes was demonstrated. Future studies should focus on identification of a valid alternative for Or and ZyMS and on clinical implementation of the findings.

  7. Crystallographic tilt and in-plane anisotropies of an a-plane InGaN/GaN layered structure grown by MOCVD on r-plane sapphire using a ZnO buffer

    International Nuclear Information System (INIS)

    Liu, H F; Chi, D Z; Liu, W; Guo, S

    2016-01-01

    High-resolution x-ray diffraction (HRXRD) was used to investigate the crystallographic tilts and structural anisotropies in epitaxial nonpolar a-plane InGaN/GaN grown by metal–organic chemical vapor deposition on r-plane sapphire using a ZnO buffer. The substrate had an unintentional miscut of 0.14° towards its [–4 2 2 3] axis. However, HRXRD revealed a tilt of 0.26° (0.20°) between the ZnO (GaN) (11-20) and the Al 2 O 3 (1-102) atomic planes, with the (11-20) axis of ZnO (GaN) tilted towards its c-axis, which has a difference of 163° in azimuth from that of the substrate’s miscut. Excess broadenings in the GaN/ZnO (11-20) rocking curves (RCs) were observed along its c-axis. Specific analyses revealed that partial dislocations and anisotropic in-plane strains, rather than surface-related effects, wafer curvature or stacking faults, are the dominant factors for the structural anisotropy. The orientation of the partial dislocations is most likely affected by the miscut of the substrate, e.g. via tilting of the misfit dislocation gliding planes created during island coalescences. Their Burgers vector components in the growth direction, in turn, gave rise to crystallographic tilts in the same direction as that of the excess RC-broadenings. (paper)

  8. Crystallographic tilt and in-plane anisotropies of an a-plane InGaN/GaN layered structure grown by MOCVD on r-plane sapphire using a ZnO buffer

    Science.gov (United States)

    Liu, H. F.; Liu, W.; Guo, S.; Chi, D. Z.

    2016-03-01

    High-resolution x-ray diffraction (HRXRD) was used to investigate the crystallographic tilts and structural anisotropies in epitaxial nonpolar a-plane InGaN/GaN grown by metal-organic chemical vapor deposition on r-plane sapphire using a ZnO buffer. The substrate had an unintentional miscut of 0.14° towards its [-4 2 2 3] axis. However, HRXRD revealed a tilt of 0.26° (0.20°) between the ZnO (GaN) (11-20) and the Al2O3 (1-102) atomic planes, with the (11-20) axis of ZnO (GaN) tilted towards its c-axis, which has a difference of 163° in azimuth from that of the substrate’s miscut. Excess broadenings in the GaN/ZnO (11-20) rocking curves (RCs) were observed along its c-axis. Specific analyses revealed that partial dislocations and anisotropic in-plane strains, rather than surface-related effects, wafer curvature or stacking faults, are the dominant factors for the structural anisotropy. The orientation of the partial dislocations is most likely affected by the miscut of the substrate, e.g. via tilting of the misfit dislocation gliding planes created during island coalescences. Their Burgers vector components in the growth direction, in turn, gave rise to crystallographic tilts in the same direction as that of the excess RC-broadenings.

  9. Robust micromachining of compliant mechanisms for out-of-plane microsensors

    OpenAIRE

    Khosraviani, Kourosh

    2013-01-01

    Micro-Electro-Mechanical-Systems (MEMS) take advantage of a wide range of very reliable, and well established existing microelectronics fabrication techniques. Due to the planar nature of these techniques, out-of-plane MEMS devices must be fabricated in-plane and assembled afterwards in order to create out-of-plane three-dimensional structures. Out-of-plane microstructures extend the design space of the MEMS based devices and overcome many limitations of the in-plane processing. Nevertheless,...

  10. In-plane and out-of-plane bending tests on carbon steel pipe bends

    International Nuclear Information System (INIS)

    Brouard, D.; Tremblais, A.; Vrillon, B.

    1979-01-01

    The objectives of these tests were to obtain experimental results on bends behaviour in elastic and plastic regime by in plane and out of plane bending. Results were used to improve the computer model, for large distorsion of bends, to be used in a simplified beam type computer code for piping calculations. Tests were made on type ANSI B 169 DN 5 bends in ASTM A 106 Grade B carbon steel. These tests made it possible to measure, for identical bends, in elastic regime, the flexibility factors and, in plastic regime, the total evolution in opening, in closing and out of plane. Flexibility factors of 180 0 bend without flanges are approximately the same in opening and in closing. The end effect due to flanges is not very significant, but it is important for 90 0 bends. In plastic regime, collapse loads or collapse moments of bends depends also of both the end effects and the angle bend. The end effects and the angle bend are more sensitive in opening than in closing. The interest of these tests is to procure some precise evolution curves of identical bends well characterized in geometry and metal strength, deflected in large distorsions. (orig./HP)

  11. Orientifold Planes, Type I Wilson Lines and Non-BPS D-branes

    International Nuclear Information System (INIS)

    Hyakutake, Y.; Imamura, Y.; Sugimoto, S.

    2000-01-01

    There is a longstanding puzzle concerned with the existence of Op-planes with p≥6, which are orientifold p-planes of negative charge with stuck Dp-branes. We study the consistency of configurations with various orientifold planes and propose a resolution to this puzzle. It is argued that O6-planes are possible in massive IIA theory with odd cosmological constant, while O7-planes and O8-planes are not allowed. Various relations between orientifold planes and non-BPS D-branes are also addressed. (author)

  12. Orientifold Planes, Type I Wilson Lines and Non-BPS D-branes

    OpenAIRE

    Hyakutake, Yoshifumi; Imamura, Yosuke; Sugimoto, Shigeki

    2000-01-01

    There is a longstanding puzzle concerned with the existence of Op~-planes with p>=6, which are orientifold p-planes of negative charge with stuck Dp-branes. We study the consistency of configurations with various orientifold planes and propose a resolution to this puzzle. It is argued that O6~-planes are possible in massive IIA theory with odd cosmological constant, while O7~-planes and O8~-planes are not allowed. Various relations between orientifold planes and non-BPS D-branes are also addr...

  13. Miniaturized Fourier-plane fiber scanner for OCT endoscopy

    International Nuclear Information System (INIS)

    Vilches, Sergio; Kretschmer, Simon; Ataman, Çağlar; Zappe, Hans

    2017-01-01

    A forward-looking endoscopic optical coherence tomography (OCT) probe featuring a Fourier-plane fiber scanner is designed, manufactured and characterized. In contrast to common image-plane fiber scanners, the Fourier-plane scanner is a telecentric arrangement that eliminates vignetting and spatial resolution variations across the image plane. To scan the OCT beam in a spiral pattern, a tubular piezoelectric actuator is used to resonate an optical fiber bearing a collimating GRIN lens at its tip. The free-end of the GRIN lens sits at the back focal plane of an objective lens, such that its rotation replicates the beam angles in the collimated region of a classical telecentric 4f optical system. Such an optical arrangement inherently has a low numerical aperture combined with a relatively large field-of-view, rendering it particularly useful for endoscopic OCT imaging. Furthermore, the optical train of the Fourier-plane scanner is shorter than that of a comparable image-plane scanner by one focal length of the objective lens, significantly shortening the final arrangement. As a result, enclosed within a 3D printed housing of 2.5 mm outer diameter and 15 mm total length, the developed probe is the most compact forward-looking endoscopic OCT imager to date. Due to its compact form factor and compatibility with real-time OCT imaging, the developed probe is also ideal for use in the working channel of flexible endoscopes as a potential optical biopsy tool. (paper)

  14. Miniaturized Fourier-plane fiber scanner for OCT endoscopy

    Science.gov (United States)

    Vilches, Sergio; Kretschmer, Simon; Ataman, Çağlar; Zappe, Hans

    2017-10-01

    A forward-looking endoscopic optical coherence tomography (OCT) probe featuring a Fourier-plane fiber scanner is designed, manufactured and characterized. In contrast to common image-plane fiber scanners, the Fourier-plane scanner is a telecentric arrangement that eliminates vignetting and spatial resolution variations across the image plane. To scan the OCT beam in a spiral pattern, a tubular piezoelectric actuator is used to resonate an optical fiber bearing a collimating GRIN lens at its tip. The free-end of the GRIN lens sits at the back focal plane of an objective lens, such that its rotation replicates the beam angles in the collimated region of a classical telecentric 4f optical system. Such an optical arrangement inherently has a low numerical aperture combined with a relatively large field-of-view, rendering it particularly useful for endoscopic OCT imaging. Furthermore, the optical train of the Fourier-plane scanner is shorter than that of a comparable image-plane scanner by one focal length of the objective lens, significantly shortening the final arrangement. As a result, enclosed within a 3D printed housing of 2.5 mm outer diameter and 15 mm total length, the developed probe is the most compact forward-looking endoscopic OCT imager to date. Due to its compact form factor and compatibility with real-time OCT imaging, the developed probe is also ideal for use in the working channel of flexible endoscopes as a potential optical biopsy tool.

  15. An optimized microstructure to minimizing in-plane and through-plane pressure drops of fibrous materials: Counter-intuitive reduction of gas diffusion layer permeability with porosity

    Science.gov (United States)

    Sadeghifar, Hamidreza

    2018-05-01

    The present study experimentally investigates the realistic functionality of in-plane and through-plane pressure drops of layered fibrous media with porosity, fiber diameter, fiber spacing, fiber-fiber angles and fiber-flow angles. The study also reveals that pressure drop may increase with porosity and fiber diameter under specific circumstances. This counter-intuitive point narrows down the validity range of widely-used permeability-porosity-diameter models or correlations. It is found that, for fibrous materials, the most important parameter that impacts the in-plane pressure drop is not their porosities but the number of fibers extended in the flow direction. It is also concluded that in-plane pressure drop is highly dependent upon the flow direction (fiber-flow angles), especially at lower porosities. Contrary to in-plane pressure drop, through-plane pressure drop is a weak function of fiber-fiber angles but is strongly impacted by fiber spacing, especially at lower porosities. At a given porosity, low through-plane pressure drops occur if fiber spacing does not change practically from one layer to another. Through-plane pressure drop also, insignificantly, increases with the intersecting angles between fibers. An optimized microstructure of fibrous media resulting in minimal in-plane and through-plane pressure drops is also offered for the first time in this work.

  16. Constructive curves in non-Euclidean planes

    OpenAIRE

    Horváth, Ákos G.

    2016-01-01

    In this paper we overview the theory of conics and roulettes in four non-Euclidean planes. We collect the literature about these classical concepts, from the eighteenth century to the present, including papers available only on arXiv. The comparison of the four non-Euclidean planes, in terms of the known results on conics and roulettes, reflects only the very subjective view of the author.

  17. A Study of the Gamma-Ray Burst Fundamental Plane

    International Nuclear Information System (INIS)

    Dainotti, M. G.; Hernandez, X.; Postnikov, S.; Nagataki, S.; O’brien, P.; Willingale, R.; Striegel, S.

    2017-01-01

    Long gamma-ray bursts (GRBs) with a plateau phase in their X-ray afterglows obey a 3D relation, between the rest-frame time at the end of the plateau, T a , its corresponding X-ray luminosity, L a , and the peak luminosity in the prompt emission, L peak . This 3D relation identifies a GRB fundamental plane whose existence we here confirm. Here we include the most recent GRBs observed by Swift to define a “gold sample” (45 GRBs) and obtain an intrinsic scatter about the plane compatible within 1 σ with the previous result. We compare GRB categories, such as short GRBs with extended emission (SEE), X-ray flashes, GRBs associated with supernovae, a sample of only long-duration GRBs (132), selected from the total sample by excluding GRBs of the previous categories, and the gold sample, composed by GRBs with light curves with good data coverage and relatively flat plateaus. We find that the relation planes for each of these categories are not statistically different from the gold fundamental plane, with the exception of the SSE, which are hence identified as a physically distinct class. The gold fundamental plane has an intrinsic scatter smaller than any plane derived from the other sample categories. Thus, the distance of any particular GRB category from this plane becomes a key parameter. We computed the several category planes with T a as a dependent parameter obtaining for each category smaller intrinsic scatters (reaching a reduction of 24% for the long GRBs). The fundamental plane is independent from several prompt and afterglow parameters.

  18. Phase Plane Analysis Method of Nonlinear Traffic Phenomena

    Directory of Open Access Journals (Sweden)

    Wenhuan Ai

    2015-01-01

    Full Text Available A new phase plane analysis method for analyzing the complex nonlinear traffic phenomena is presented in this paper. This method makes use of variable substitution to transform a traditional traffic flow model into a new model which is suitable for the analysis in phase plane. According to the new model, various traffic phenomena, such as the well-known shock waves, rarefaction waves, and stop-and-go waves, are analyzed in the phase plane. From the phase plane diagrams, we can see the relationship between traffic jams and system instability. So the problem of traffic flow could be converted into that of system stability. The results show that the traffic phenomena described by the new method is consistent with that described by traditional methods. Moreover, the phase plane analysis highlights the unstable traffic phenomena we are chiefly concerned about and describes the variation of density or velocity with time or sections more clearly.

  19. Plane wave limits and T-duality

    International Nuclear Information System (INIS)

    Guven, R.

    2000-04-01

    The Penrose limit is generalized to show that, any leading order solution of the low-energy field equations in any one of the five string theories has a plane wave solution as a limit. This limiting procedure takes into account all the massless fields that may arise and commutes with the T-duality so that any dual solution has again a plane wave limit. The scaling rules used in the limit are unique and stem from the scaling property of the D = 11 supergravity action. Although the leading order dual solutions need not be exact or supersymmetric, their plane wave limits always preserve some portion of the Poincare supersymmetry and solve the relevant field equations in all powers of the string tension parameter. Further properties of the limiting procedure are discussed. (author)

  20. Optically sectioned imaging by oblique plane microscopy

    Science.gov (United States)

    Kumar, Sunil; Lin, Ziduo; Lyon, Alex R.; MacLeod, Ken T.; Dunsby, Chris

    2011-03-01

    Oblique Plane Microscopy (OPM) is a light sheet microscopy technique that combines oblique illumination with correction optics that tilt the focal plane of the collection system. OPM can be used to image conventionally mounted specimens on coverslips or tissue culture dishes and has low out-of-plane photobleaching and phototoxicity. No moving parts are required to achieve an optically sectioned image and so high speed optically sectioned imaging is possible. The first OPM results obtained using a high NA water immersion lens on a commercially available inverted microscope frame are presented, together with a measurement of the achievable optical resolution.

  1. Occlusal plane location in edentulous patients: a review.

    Science.gov (United States)

    Shetty, Sanath; Zargar, Nazia Majeed; Shenoy, Kamalakanth; Rekha, V

    2013-09-01

    Occlusal plane orientation is an important factor in the construction of a complete denture. Occlusal plane could be oriented using landmarks in the mandibular arch as well as in the maxillary arch. In the mandibular arch there are few landmarks which could be used to orient the occlusal plane like the retromolar pad, corner of the lips (lower lip length) whereas the maxillary arch has a number of landmarks, of which the ala-tragal line is the most commonly used and the same being the most controversial. In the following article different landmarks and its accuracy for orientating the occlusal plane in an edentulous subject as studied by various authors has been discussed.

  2. 16-dimensional smooth projective planes with large collineation groups

    OpenAIRE

    Bödi, Richard

    1998-01-01

    Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch) Smooth projective planes are projective planes defined on smooth manifolds (i.e. the set of points and the set of lines are smooth manifolds) such that the geometric operations of join and intersection are smooth. A systematic study of such planes and of their collineation groups can be found in previous works of the author. We prove in this paper that a 16-dimensional smooth projective plane which admits a ...

  3. A comprehensive model for in-plane and out-of-plane vibration of CANDU fuel endplate rings

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.D., E-mail: syu@ryerson.ca; Fadaee, M.

    2016-08-01

    Highlights: • Proposed an effective method for modelling bending and torsional vibration of CANDU fuel endplate rings. • Applied successfully the thick plate theory to curved structural members by accounting for the transverse shear effect. • The proposed method is computationally more efficient compared to the 3D finite element. - Abstract: In this paper, a comprehensive vibration model is developed for analysing in-plane and out-of-plane vibration of CANDU fuel endplate rings by taking into consideration the effects of in-plane extension in the circumferential and radial directions, shear, and rotatory inertia. The model is based on Reddy’s thick plate theory and the nine-node isoparametric Lagrangian plate finite elements. Natural frequencies of various modes of vibration of circular rings obtained using the proposed method are compared with 3D finite element results, experimental data and results available in the literature. Excellent agreement was achieved.

  4. Coupled Chiral Structure in Graphene-Based Film for Ultrahigh Thermal Conductivity in Both In-Plane and Through-Plane Directions.

    Science.gov (United States)

    Meng, Xin; Pan, Hui; Zhu, Chengling; Chen, Zhixin; Lu, Tao; Xu, Da; Li, Yao; Zhu, Shenmin

    2018-06-21

    The development of high-performance thermal management materials to dissipate excessive heat both in plane and through plane is of special interest to maintain efficient operation and prolong the life of electronic devices. Herein, we designed and constructed a graphene-based composite film, which contains chiral liquid crystals (cellulose nanocrystals, CNCs) inside graphene oxide (GO). The composite film was prepared by annealing and compacting of self-assembled GO-CNC, which contains chiral smectic liquid crystal structures. The helical arranged nanorods of carbonized CNC act as in-plane connections, which bridge neighboring graphene sheets. More interestingly, the chiral structures also act as through-plane connections, which bridge the upper and lower graphene layers. As a result, the graphene-based composite film shows extraordinary thermal conductivity, in both in-plane (1820.4 W m -1 K -1 ) and through-plane (4.596 W m -1 K -1 ) directions. As a thermal management material, the heat dissipation and transportation behaviors of the composite film were investigated using a self-heating system and the results showed that the real-time temperature of the heater covered with the film was 44.5 °C lower than a naked heater. The prepared film shows a much higher efficiency of heat transportation than the commonly used thermal conductive Cu foil. Additionally, this graphene-based composite film exhibits excellent mechanical strength of 31.6 MPa and an electrical conductivity of 667.4 S cm -1 . The strategy reported here may open a new avenue to the development of high-performance thermal management films.

  5. Data-plane Defenses against Routing Attacks on Tor

    Directory of Open Access Journals (Sweden)

    Tan Henry

    2016-10-01

    Full Text Available Tor is susceptible to traffic correlation attacks in which an adversary who observes flows entering and leaving the anonymity network can apply statistical techniques to correlate flows and de-anonymize their endpoints. While an adversary may not be naturally positioned to conduct such attacks, a recent study shows that the Internet’s control-plane can be manipulated to increase an adversary’s view of the network, and consequently, improve its ability to perform traffic correlation. This paper explores, in-depth, the effects of control-plane attacks on the security of the Tor network. Using accurate models of the live Tor network, we quantify Tor’s susceptibility to these attacks by measuring the fraction of the Tor network that is vulnerable and the advantage to the adversary of performing the attacks. We further propose defense mechanisms that protect Tor users from manipulations at the control-plane. Perhaps surprisingly, we show that by leveraging existing trust anchors in Tor, defenses deployed only in the data-plane are sufficient to detect most control-plane attacks. Our defenses do not assume the active participation of Internet Service Providers, and require only very small changes to Tor. We show that our defenses result in a more than tenfold decrease in the effectiveness of certain control-plane attacks.

  6. Positivity properties of phase-plane distribution functions

    NARCIS (Netherlands)

    Janssen, A.J.E.M.

    1984-01-01

    The aim of this paper is to compare the members of Cohen's class of phase-plane distributions with respect to positivity properties. It is known that certain averages (which are in a sense compatible with Heisenberg's uncertainty principle) of the Wigner distribution over the phase-plane yield

  7. Bilinear phase-plane distribution functions and positivity

    NARCIS (Netherlands)

    Janssen, A.J.E.M.

    1985-01-01

    There is a theorem of Wigner that states that phase-plane distribution functions involving the state bilinearly and having correct marginals must take negative values for certain states. The purpose of this paper is to support the statement that these phase-plane distribution functions are for

  8. Simultaneous orthogonal plane imaging.

    Science.gov (United States)

    Mickevicius, Nikolai J; Paulson, Eric S

    2017-11-01

    Intrafraction motion can result in a smearing of planned external beam radiation therapy dose distributions, resulting in an uncertainty in dose actually deposited in tissue. The purpose of this paper is to present a pulse sequence that is capable of imaging a moving target at a high frame rate in two orthogonal planes simultaneously for MR-guided radiotherapy. By balancing the zero gradient moment on all axes, slices in two orthogonal planes may be spatially encoded simultaneously. The orthogonal slice groups may be acquired with equal or nonequal echo times. A Cartesian spoiled gradient echo simultaneous orthogonal plane imaging (SOPI) sequence was tested in phantom and in vivo. Multiplexed SOPI acquisitions were performed in which two parallel slices were imaged along two orthogonal axes simultaneously. An autocalibrating phase-constrained 2D-SENSE-GRAPPA (generalized autocalibrating partially parallel acquisition) algorithm was implemented to reconstruct the multiplexed data. SOPI images without intraslice motion artifacts were reconstructed at a maximum frame rate of 8.16 Hz. The 2D-SENSE-GRAPPA reconstruction separated the parallel slices aliased along each orthogonal axis. The high spatiotemporal resolution provided by SOPI has the potential to be beneficial for intrafraction motion management during MR-guided radiation therapy or other MRI-guided interventions. Magn Reson Med 78:1700-1710, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  9. Study on the unified constraint parameter for characterizing in-plane and out-of-plane constraint based on the equivalent plastic strain

    International Nuclear Information System (INIS)

    Yang Jie; Wang Guozhen; Xuan Fuzhen; Tu Shandong

    2013-01-01

    Background: Constraint can significantly alter the material's fracture toughness. Purpose: In order to increase accuracy of the structural integrity assessment. It needs to consider the effect of constraint on the fracture toughness of nuclear power materials and structures. A unified measure which can reflect both in-plane and out-of-plane constraint is needed. Methods: In this paper, the finite element numerical simulation method was used, a unified measure and characterization parameter of in-plane and out-of-plane constraint based on crack-tip equivalent plastic strain have been investigated. Results: The results show that the area surrounded by ε p isoline has a good relevance with the material's fracture toughness on different constraint conditions, so it may be a suitable parameter. Based on the area A PEEQ , a unified constraint characterization parameter √A p is defined. It was found that there exists a sole linear relation between the normalized fracture toughness J IC /J re f and √A p regardless of the in-plane, out-of-plane constraint and the selection of the p isolines. The sole J IC /J re f-√A p line exists for a certain material. For different materials, the slope of J IC /J re f-√A p reference line is different. The material whose slope is larger has a higher J IC /J re f and is more sensitive to constraint at the same magnitude of normalized unified parameter. Conclusions: The unified J IC /J re f -√A p reference line may be used to assess the safety of a cracked component with any constraint levels regardless of in-plane or out-of-plane constraint or both. (authors)

  10. The Curious Out-of-Plane Conductivity of PEDOT : PSS

    NARCIS (Netherlands)

    van de Ruit, Kevin; Katsouras, Ilias; Bollen, Dirk; van Mol, Ton; Janssen, Rene A. J.; de Leeuw, Dago M.; Kemerink, Martijn

    2013-01-01

    For its application as transparent conductor in light-emitting diodes and photovoltaic cells, both the in-plane and out-of-plane conductivity of PEDOT:PSS are important. However, studies into the conductivity of PEDOT:PSS rarely address the out-of-plane conductivity and those that do, report widely

  11. A Study of the Gamma-Ray Burst Fundamental Plane

    Energy Technology Data Exchange (ETDEWEB)

    Dainotti, M. G. [Department of Physics and Astronomy, Stanford University, Via Pueblo Mall 382, Stanford, CA 94305-4060 (United States); Hernandez, X. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ciudad de México 04510, México (Mexico); Postnikov, S. [The Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47405 (United States); Nagataki, S. [RIKEN, Hirosawa, Wako Saitama (Japan); O’brien, P.; Willingale, R. [Department of Physics and Astronomy, University of Leicester, Road Leicester LE1 7RH (United Kingdom); Striegel, S., E-mail: mdainott@stanford.edu, E-mail: dainotti@oa.uj.edu.pl, E-mail: mariagiovannadainotti@yahoo.it, E-mail: xavier@astro.unam.mx, E-mail: postsergey@gmail.com, E-mail: shigehiro.nagataki@riken.jp, E-mail: zrw@le.ac.uk, E-mail: stephanie.striegel@sjsu.edu [Department of Physics and Astronomy, San Jose State University, One Washington Square, San Jose, CA 95192 (United States)

    2017-10-20

    Long gamma-ray bursts (GRBs) with a plateau phase in their X-ray afterglows obey a 3D relation, between the rest-frame time at the end of the plateau, T {sub a} , its corresponding X-ray luminosity, L {sub a} , and the peak luminosity in the prompt emission, L {sub peak}. This 3D relation identifies a GRB fundamental plane whose existence we here confirm. Here we include the most recent GRBs observed by Swift to define a “gold sample” (45 GRBs) and obtain an intrinsic scatter about the plane compatible within 1 σ with the previous result. We compare GRB categories, such as short GRBs with extended emission (SEE), X-ray flashes, GRBs associated with supernovae, a sample of only long-duration GRBs (132), selected from the total sample by excluding GRBs of the previous categories, and the gold sample, composed by GRBs with light curves with good data coverage and relatively flat plateaus. We find that the relation planes for each of these categories are not statistically different from the gold fundamental plane, with the exception of the SSE, which are hence identified as a physically distinct class. The gold fundamental plane has an intrinsic scatter smaller than any plane derived from the other sample categories. Thus, the distance of any particular GRB category from this plane becomes a key parameter. We computed the several category planes with T {sub a} as a dependent parameter obtaining for each category smaller intrinsic scatters (reaching a reduction of 24% for the long GRBs). The fundamental plane is independent from several prompt and afterglow parameters.

  12. Testing of focal plane arrays

    International Nuclear Information System (INIS)

    Merriam, J.D.

    1988-01-01

    Problems associated with the testing of focal plane arrays are briefly examined with reference to the instrumentation and measurement procedures. In particular, the approach and instrumentation used as the Naval Ocean Systems Center is presented. Most of the measurements are made with flooded illumination on the focal plane array. The array is treated as an ensemble of individual pixels, data being taken on each pixel and array averages and standard deviations computed for the entire array. Data maps are generated, showing the pixel data in the proper spatial position on the array and the array statistics

  13. Experimental investigation on in-plane/out-of-plane vortex-induced vibrations of curved cylinder in parallel and perpendicular flows

    Science.gov (United States)

    Srinil, Narakorn; Ma, Bowen; Zhang, Licong

    2018-05-01

    This study is motivated by an industrial need to better understand the vortex-induced vibration (VIV) of a curved structure subject to current flows with varying directions whose data for model calibration and validation are lacking. In this paper, new experimental investigations on the two-degree-of-freedom in-plane/out-of-plane VIV of a rigid curved circular cylinder immersed in steady and uniform free-stream flows are presented. The principal objective is to examine how the approaching flow direction versus the cylinder curvature plane affects cross-flow and in-line VIV and the associated hydrodynamic properties. This is achieved by testing the curved cylinder in 3 different flow orientations comprising the parallel flows aligned with the curvature vertical plane in convex and concave configurations, and the flows perpendicular to the curvature plane. The case of varying flow velocities in a subcritical flow range with a maximum Reynolds number of about 50,000 is considered for the curved cylinder with a low mass ratio and damping ratio. Experimental results are presented and discussed in terms of the cylinder response amplitudes, inclination angles, mean displacements, motion trajectories, oscillation frequencies, hydrodynamic forces, relative phases, fluid excitation and added inertia coefficients. Comparisons with other experimental results of curved and straight cylinder VIV are also presented. The experiments highlight the important effects of cylinder curvature versus flow orientation on the combined cross-flow/in-line VIV. The maximum (minimum) responses occur in the perpendicular (convex) flow case whereas the extended lower-branch responses occur in the concave flow case. For perpendicular flows, some meaningful features are observed, including the appearances of cross-flow mean displacements and asymmetric eight-shaped motion trajectories due to multiple 2:1:1 resonances where two out-of-plane and one in-plane dominant frequencies are simultaneously

  14. Phase formation and strain relaxation of Ga2O3 on c-plane and a-plane sapphire substrates as studied by synchrotron-based x-ray diffraction

    Science.gov (United States)

    Cheng, Zongzhe; Hanke, Michael; Vogt, Patrick; Bierwagen, Oliver; Trampert, Achim

    2017-10-01

    Heteroepitaxial Ga2O3 was deposited on c-plane and a-plane oriented sapphire by plasma-assisted molecular beam epitaxy and probed by ex-situ and in-situ synchrotron-based x-ray diffraction. The investigation on c-plane sapphire determined a critical thickness of around 33 Å, at which the monoclinic β-phase forms on top of the hexagonal α-phase. A 143 Å thick single phase α-Ga2O3 was observed on a-plane sapphire, much thicker than the α-Ga2O3 on c-plane sapphire. The α-Ga2O3 relaxed very fast in the first 30 Å in both out-of-plane and in-plane directions as measured by the in-situ study.

  15. On Finite Hjelmslev Planes of Parameters (pk−1, p)

    OpenAIRE

    Atilla Akpinar

    2010-01-01

    In this paper, we study on finite projective Hjelmslev planes M(Zq) coordinatized by Hjelmslev ring Zq (where prime power q = pk). We obtain finite hyperbolic Klingenberg planes from these planes under certain conditions. Also, we give a combinatorical result on M(Zq), related by deleting a line from lines in same neighbour.

  16. Two-transitive MInkowski planes

    NARCIS (Netherlands)

    Wilbrink, H.A.

    1982-01-01

    In this paper we determine all finite Minkowski planes with an automorphism group which satisfies the following transitivity property: any ordered pair of nonparallel points can be mapped onto any other ordered pair of nonparallel points.

  17. Two-plane symmetry in the structural organization of man.

    Science.gov (United States)

    Ermolenko, A E

    2005-01-01

    Manifestations of symmetry in the human structural organization in ontogenesis and phylogenetic development are analysed. A concept of macrobiocrystalloid with inherent complex symmetry is proposed for the description of the human organism in its integrity. The symmetry can be characterized as two-plane radial (quadrilateral), where the planar symmetry is predominant while the layout of organs of radial symmetry is subordinated to it. Out of the two planes of symmetry (sagittal and horizontal), the sagittal plane is predominant: (a) the location of the organs is governed by two principles: in compliance with the symmetry planes and in compliance with the radial symmetry around cavities; (b) the location of the radial symmetry organs is also governed by the principle of two-plane symmetry; (c) out of the four antimeres of two-plane symmetry, two are paired while the other two have merged into one organ; (d) some organs which are antimeres relative to the horizontal plane are located at the cranial end of the organism (sensory organs, cerebrum-cerebellum, heart-spleen and others). The two-plane symmetry is formed by two mechanisms--(a) the impact of morphogenetic fields of the whole crystalloid organism during embriogenesis and (b) genetic mechanisms of the development of chromosomes having two-plane symmetry. When comparing mineral and biological entities we should consider not the whole immobile crystal but only the active superficial part of a growing or dissolving crystal, the interface between the crystal surface and the crystal-forming environment which directly controls crystal growth and adapts itself to it, as well as crystal feed stock expressed in the structure of concentration flows. The symmetry of the chromosome, of the embrion at the early stages of cell cleavage as well as of some organs and systems in their phylogenetic development is described.

  18. ARC Code TI: X-Plane Communications Toolbox (XPC)

    Data.gov (United States)

    National Aeronautics and Space Administration — The X-Plane Communications Toolbox (XPC) is an open source research tool used to interact with the commercial flight simulator software X-Plane. XPC allows users to...

  19. Instabilities of Kirkendall planes

    NARCIS (Netherlands)

    Dal, van M.J.H.; Gusak, A.M.; Cserhati, C.; Kodentsov, A.; Loo, van F.J.J.

    2001-01-01

    Reconsideration of the Kirkendall effect is presented. It is demonstrated (experimentally as well as theoretically) that Kirkendall planes can be multiple, stable or unstable within a single-phase reaction zone. A general criterion of instabilty is given.

  20. In-plane fluidelastic instability analysis for large steam generators

    International Nuclear Information System (INIS)

    Mureithi, Njuki; Olala, Stephen; Hadji, Abdallah

    2015-01-01

    Fluidelastic instability remains the most important vibration excitation mechanism in nuclear steam generators (SGs). Design guidelines, aimed at eliminating the possibility of fluidelastic instability, have been developed over the past 40 years. The design guidelines, based on the Connors equation, depend on a large database on cross-flow fluidelastic instability i.e. instability in the direction transverse to the flow. Past experience had shown that for an axi-symmetrically flexible tube, instability generally occurred in the transverse direction, at least at first. Although often not explicitly stated, there has been an implicit assumption that the in-plane direction was either stable, or would only suffer instability at velocities significantly higher than the transverse direction. This explains why SGs are fitted with anti-vibrations bars (AVBs) to mitigate transverse (out-of-plane) vibrations with no equivalent consideration for potential in-plane instability. This 'oversight' recently came to a head when SG at the San-Onofre NPP suffered in-plane fluidelastic instability. The present paper addresses the question of in-plane fluidelastic instability in large SGs. A historical review is presented to explain why this potential problem was left unresolved (or ignored) over the past 40+ years, and why engineers got away with it - at least until recently. Following the review, some recent work on in-plane fluidelastic instability modeling, using the quasi-steady model is presented. It is shown that in-plane fluidelastic instability can be fully modelled using this approach. The model results are used to propose some changes to existing design guidelines to cover the case of in-plane fluidelastic instability. (author)

  1. DLCQ and plane wave matrix Big Bang models

    Science.gov (United States)

    Blau, Matthias; O'Loughlin, Martin

    2008-09-01

    We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.

  2. DLCQ and plane wave matrix Big Bang models

    International Nuclear Information System (INIS)

    Blau, Matthias; O'Loughlin, Martin

    2008-01-01

    We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.

  3. Plane waves and spacelike infinity

    International Nuclear Information System (INIS)

    Marolf, Donald; Ross, Simon F

    2003-01-01

    In an earlier paper, we showed that the causal boundary of any homogeneous plane wave satisfying the null convergence condition consists of a single null curve. In Einstein-Hilbert gravity, this would include any homogeneous plane wave satisfying the weak null energy condition. For conformally flat plane waves such as the Penrose limit of AdS 5 x S 5 , all spacelike curves that reach infinity also end on this boundary and the completion is Hausdorff. However, the more generic case (including, e.g., the Penrose limits of AdS 4 x S 7 and AdS 7 x S 4 ) is more complicated. In one natural topology, not all spacelike curves have limit points in the causal completion, indicating the need to introduce additional points at 'spacelike infinity' - the endpoints of spacelike curves. We classify the distinct ways in which spacelike curves can approach infinity, finding a two-dimensional set of distinct limits. The dimensionality of the set of points at spacelike infinity is not, however, fixed from this argument. In an alternative topology, the causal completion is already compact, but the completion is non-Hausdorff

  4. Angle measures, general rotations, and roulettes in normed planes

    Science.gov (United States)

    Balestro, Vitor; Horváth, Ákos G.; Martini, Horst

    2017-12-01

    In this paper a special group of bijective maps of a normed plane (or, more generally, even of a plane with a suitable Jordan curve as unit circle) is introduced which we call the group of general rotations of that plane. It contains the isometry group as a subgroup. The concept of general rotations leads to the notion of flexible motions of the plane, and to the concept of Minkowskian roulettes. As a nice consequence of this new approach to motions the validity of strong analogues to the Euler-Savary equations for Minkowskian roulettes is proved.

  5. Vacuum Predisperser For A Large Plane-Grating Spectrograph

    Science.gov (United States)

    Engleman, R.; Palmer, B. A.; Steinhaus, D. W.

    1980-11-01

    A plane grating predisperser has been constructed which acts as an "order-sorter" for a large plane-grating spectrograph. This combination can photograph relatively wide regions of spectra in a single exposure with no loss of resolution.

  6. Vectorial and plane energy fluences - useful concepts in radiation physics

    International Nuclear Information System (INIS)

    Carlsson, C.A.

    1977-06-01

    The vectorial physical quantities describing the radiation field are defined in this report. The use of these quantities is rare in the radiation dosimetry literature since a knowledge of the directions of motion of the ionizing particle is often uninteresting when determining absorbed doses. However the plane energy fluence rate is a useful quantity in cases with plane irradiation geometries. The plane energy fluence rate is closely related to the vectorial energy fluence rate. The backscattering properties of a medium can be expressed in terms either of its albedo or its reflection-coefficient (backscatter-coefficient). These quantities are discussed in order to derive useful relations between the plane energy fluence and the energy fluence at points on an extended plane surface. Examples are also given of erroneous use of energy fluence instead of vectorial or plane energy fluence. The examples are taken from roentgen diagnostic examinations. To prevent further mistakes it could be valuable if the quantities of vectorial and plane fluences were introduced in text books in radiation dosimetry. Awaiting for this, this report may hopefully be useful. (E.R.)

  7. Quantitative compositional analysis and field-evaporation behavior of ordered Ni4Mo on an atomic plane-by-plane basis: an atom-probe field-ion microscope study. MSC report No. 4802

    International Nuclear Information System (INIS)

    Yamamoto, M.; Seidman, D.N.

    1982-10-01

    The (211) fundamental and (101) superlattice planes, of the bct lattice, were analysed chemically on an atomic plane-by-plane basis. It was demonstrated that the composition of each individual plane can be determined as a function of depth without any ambiguity. The overall average Mo concentration was measured to be 17.1 at. % for the (211) fundamental plane. Details of the field evaporation behavior of the (211) fundamental and (101) superlattice planes were studied. The field-evaporation behavior is described in terms of the field-evaporation rate, the order of the field evaporated ions, etc. Each individual atomic plane field evaporated on an atomic plane-by-plane basis for the (211) fundamental plane. While for (101) superlattice plane a group of planes consisting of one plane of Mo atoms and four planes of Ni atoms field-evaporated as a unit. An abnormal increase in the number of Mo atoms was found in the central portion of the (211) fundamental plane. Possible mechanisms for the abnormal field evaporation rate are discussed. It is concluded that the atom probe technique can be used to follow the physics and chemistry of the field-evaporation process and the chemistry of the alloy as a function of position, on a subnanometer scale, throughout the specimen. 13 figures

  8. Identification of Critical Transmission Limits in Injection Impedance Plane

    DEFF Research Database (Denmark)

    Jóhannsson, Hjörtur; Østergaard, Jacob; Nielsen, Arne Hejde

    2012-01-01

    In this paper, equations are derived that describe the mapping of critical boundaries and characteristic lines from the three dimensionalPQV-surface into the two-dimensional injection impedance plane (load impedance plane for both positive and negativeresistance). The expressions derived....... The situational awareness method will bedescribed in a later paper, where this paper focuses on the derivations of some system characteristics in the injection (or load)impedance plane. The critical lines from the PQV-surface that are mapped into the impedance plane are the ones representing theconditions where...... the partial derivatives of the variables P,Q and V in respect to each other become zero. In addition to the mappingof the critical lines, some characteristic lines are mapped as well. These include the mapping of the lines of constant P,Q,Vand d from the PQV-surface into the impedance plane. All of the mapped...

  9. On spin and matrix models in the complex plane

    International Nuclear Information System (INIS)

    Damgaard, P.H.; Heller, U.M.

    1993-01-01

    We describe various aspects of statistical mechanics defined in the complex temperature or coupling-constant plane. Using exactly solvable models, we analyse such aspects as renormalization group flows in the complex plane, the distribution of partition function zeros, and the question of new coupling-constant symmetries of complex-plane spin models. The double-scaling form of matrix models is shown to be exactly equivalent to finite-size scaling of two-dimensional spin systems. This is used to show that the string susceptibility exponents derived from matrix models can be obtained numerically with very high accuracy from the scaling of finite-N partition function zeros in the complex plane. (orig.)

  10. Basic examination of in-plane spatial resolution in multi-slice CT

    International Nuclear Information System (INIS)

    Hara, Takanori; Kato, Hideki; Akiyama, Mitsutoshi; Murata, Katsutoshi

    2002-01-01

    In computed tomography (single-slice spiral CT, conventional CT), in-plane (x-y plane) spatial resolution is consistently identified as depending on the detector density of the in-plane (x-y plane). However, we considered that the in-plane (x-y plane) spatial resolution of multi-slice CT (MSCT) was influenced by an error in the detector's sensitivity to the Z-axis and by the frequency of use of direct row data and complementary row data when the image of spiral pitches (SP) was reconstructed. Our goal in this experiment was to analyze the relationship of the in-plane (x-y plane) spatial resolution of an asymmetric-type detector in MSCT to SP, tube current, and rotation time. By employing a tungsten wire phantom of 0.2 mm in diameter, we examined modulation transfer functions (MTF) by point-spread functions (PSF) of CT-images. Next, using the mean-square-root bandwidth theory, we analyzed the MTF of wire phantoms. The analysis of in-plane (x-y plane) spatial resolution revealed that various tube currents had no effect on the value of the mean-square-root bandwidth. However, rotation time and high spiral pitch did have an effect on mean-square-root bandwidth. Considering the results mentioned above, spiral pitch (z-axis reconstruction algorithm) had a slight effect on in-plane (x-y plane) spatial resolution of asymmetric-type detectors in MSCT. Accordingly, we proposed a new general view of VDDz (view/mm) in MSCT that considered view data density on the Z-axis according to spiral pitch (mm/rotation), rotation time (view/rotation), and slice collimation. (author)

  11. Discretization of superintegrable systems on a plane

    Science.gov (United States)

    Kabát, Z.

    2012-02-01

    We construct difference analogues of so called Smorodinsky-Winternitz superintegrable systems in the Euclidean plane. Using methods of umbral calculus, we obtain difference equations for generalized isotropic harmonic oscillator on the uniform lattice, and also its solution in terms of power series. In the case of gauge-rotated Hamiltonian, the solution is a polynomial, well-defined in the whole plane.

  12. Slipping and Rolling on an Inclined Plane

    Science.gov (United States)

    Aghamohammadi, Cina; Aghamohammadi, Amir

    2011-01-01

    In the first part of the paper, using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient ([mu]). A parametric equation for the trajectory of the particle is also obtained. In the second part of the paper, the motion of a sphere on the inclined plane is…

  13. Multispectral linear array (MLA) focal plane mechanical and thermal design

    Science.gov (United States)

    Mitchell, A. S.; Kaminski, E. F.

    1982-01-01

    The mechanical and thermal design of an integrated focal plane subsystem of a Multispectral Linear Array (MLA) instrument is discussed in terms of focal-plane alignment, thermoelastic performance, and thermal requirements. The modular construction and thermal control of the focal plane array are discussed.

  14. Peptidoglycan architecture can specify division planes in Staphylococcus aureus.

    Science.gov (United States)

    Turner, Robert D; Ratcliffe, Emma C; Wheeler, Richard; Golestanian, Ramin; Hobbs, Jamie K; Foster, Simon J

    2010-06-15

    Division in Staphylococci occurs equatorially and on specific sequentially orthogonal planes in three dimensions, resulting, after incomplete cell separation, in the 'bunch of grapes' cluster organization that defines the genus. The shape of Staphylococci is principally maintained by peptidoglycan. In this study, we use Atomic Force Microscopy (AFM) and fluorescence microscopy with vancomycin labelling to examine purified peptidoglycan architecture and its dynamics in Staphylococcus aureus and correlate these with the cell cycle. At the presumptive septum, cells were found to form a large belt of peptidoglycan in the division plane before the centripetal formation of the septal disc; this often had a 'piecrust' texture. After division, the structures remain as orthogonal ribs, encoding the location of past division planes in the cell wall. We propose that this epigenetic information is used to enable S. aureus to divide in sequentially orthogonal planes, explaining how a spherical organism can maintain division plane localization with fidelity over many generations.

  15. Multiple fracture planes in deuteron irradiated metals

    International Nuclear Information System (INIS)

    Jones, W.R.; Johnson, P.B.

    1987-01-01

    Evidence has been found of multiple fracture planes in the blistering and flaking of metals observed at room temperature following irradiation at 120 K with 200 keV deuterons. In particular, two fracture planes are identified in copper, gold and stainless steel and three in aluminium. In nickel only one fracture plane is found. Qualitative models are proposed which explain the different fracture planes that are observed. In these models it is proposed that several mechanisms are important. (i) High levels of compressional stress in the implanted layer inhibits bubble nucleation and bubble growth in the depth region near the maxima in the damage and gas deposition profiles. (ii) The lateral stress varies from compression in the implant region to tension in the material below. In the region of tension bubble growth is enhanced. The vertical gradient in the lateral stress may also assist gas to move deeper into the target to further enhance bubble growth in this region. (iii) Shear resulting from differential expansion due to a combination of radiation induced swelling and localised heating is an important mechanism leading to fracture. (orig.)

  16. Hand-Eye LRF-Based Iterative Plane Detection Method for Autonomous Robotic Welding

    Directory of Open Access Journals (Sweden)

    Sungmin Lee

    2015-12-01

    Full Text Available This paper proposes a hand-eye LRF-based (laser range finder welding plane-detection method for autonomous robotic welding in the field of shipbuilding. The hand-eye LRF system consists of a 6 DOF manipulator and an LRF attached to the wrist of the manipulator. The welding plane is detected by the LRF with only the wrist's rotation to minimize a mechanical error caused by the manipulator's motion. A position on the plane is determined as an average position of the detected points on the plane, and a normal vector to the plane is determined by applying PCA (principal component analysis to the detected points. In this case, the accuracy of the detected plane is analysed by simulations with respect to the wrist's angle interval and the plane angle. As a result of the analysis, an iterative plane-detection method with the manipulator's alignment motion is proposed to improve the performance of plane detection. For verifying the feasibility and effectiveness of the proposed plane-detection method, experiments are carried out with a prototype of the hand-eye LRF-based system, which consists of a 1 DOF wrist's joint, an LRF system and a rotatable plane. In addition, the experimental results of the PCA-based plane detection method are compared with those of the two representative plane-detection methods, based on RANSAC (RANdom SAmple Consensus and the 3D Hough transform in both accuracy and computation time's points of view.

  17. Towards the design of a RF-harvesting EBG ground plane

    NARCIS (Netherlands)

    Visser, H.J.; Keyrouz, S.

    2015-01-01

    Electromagnetic Band Gap (EBG) structures may be used to create magnetic conductors that can be used as ground planes for dipole and loop-like antennas without annihilating the radiation as electrically conducting ground planes would do. An EBG ground plane may be created by placing a Frequency

  18. 47 CFR 73.160 - Vertical plane radiation characteristics, f(θ).

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Vertical plane radiation characteristics, f(Î... SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.160 Vertical plane radiation characteristics, f(θ). (a) The vertical plane radiation characteristics show the relative field being radiated at a...

  19. Laplace plane modifications arising from solar radiation pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rosengren, Aaron J.; Scheeres, Daniel J., E-mail: aaron.rosengren@colorado.edu [ADepartment of Aerospace Engineering Sciences, University of Colorado at Boulder, Boulder, CO 80309 (United States)

    2014-05-01

    The dynamical effects of solar radiation pressure (SRP) in the solar system have been rigorously studied since the early 1900s. This non-gravitational perturbation plays a significant role in the evolution of dust particles in circumplanetary orbits, as well as in the orbital motion about asteroids and comets. For gravitationally dominated orbits, SRP is negligible and the resulting motion is largely governed by the oblateness of the primary and the attraction of the Sun. The interplay between these gravitational perturbations gives rise to three mutually perpendicular planes of equilibrium for circular satellite orbits. The classical Laplace plane lies between the equatorial and orbital planes of the primary, and is the mean reference plane about whose axis the pole of a satellite's orbit precesses. From a previously derived solution for the secular motion of an orbiter about a small body in a SRP dominated environment, we find that SRP acting alone will cause an initially circular orbit to precess around the pole of the primary's heliocentric orbital plane. When the gravitational and non-gravitational perturbations act in concert, the resulting equilibrium planes turn out to be qualitatively different, in some cases, from those obtained without considering the radiation pressure. The warping of the surfaces swept out by the modified equilibria as the semi-major axis varies depends critically on the cross-sectional area of the body exposed. These results, together with an adiabatic invariance argument on Poynting-Robertson drag, provide a natural qualitative explanation for the initial albedo dichotomy of Saturn's moon, Iapetus.

  20. BKP plane partitions

    International Nuclear Information System (INIS)

    Foda, Omar; Wheeler, Michael

    2007-01-01

    Using BKP neutral fermions, we derive a product expression for the generating function of volume-weighted plane partitions that satisfy two conditions. If we call a set of adjacent equal height-h columns, h > 0, an h-path, then 1. Every h-path can assume one of two possible colours. 2. There is a unique way to move along an h-path from any column to another

  1. BKP plane partitions

    Energy Technology Data Exchange (ETDEWEB)

    Foda, Omar; Wheeler, Michael [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)

    2007-01-15

    Using BKP neutral fermions, we derive a product expression for the generating function of volume-weighted plane partitions that satisfy two conditions. If we call a set of adjacent equal height-h columns, h > 0, an h-path, then 1. Every h-path can assume one of two possible colours. 2. There is a unique way to move along an h-path from any column to another.

  2. Proof of Polyakov conjecture on supercomplex plane

    International Nuclear Information System (INIS)

    Kachkachi, M.; Kouadik, S.

    1994-10-01

    Using Neumann series, we solve iteratively SBE to arbitrary order. Then applying this, we compute the energy momentum tensor and n points functions for generic n starting from WZP action on the supercomplex plane. We solve the superconformal Ward identity and we show that the iterative solution to arbitrary order is resumed by WZP action. This proves the Polyakov conjecture on supercomplex plane. (author). 8 refs

  3. Long-range current flow and percolation in Rabbits-type conductors and the relative importance of out-of-plane and in-plane mis orientations in determining J {sub c}

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, A. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6116 (United States)]. E-mail: goyala@ornl.gov; Rutter, N. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6116 (United States); University of Cambridge, Pembroke St., Cambridge CB2 3QZ (United Kingdom); Cantoni, C. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6116 (United States); Lee, D.F. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6116 (United States)

    2005-10-01

    Calculations of long-range current flow using an advanced percolation model show that with the presently observed texture in RABiTS substrates, the dependence of J {sub c} on length as a function of width is greatly reduced. Furthermore, this dependence becomes almost negligible in applied fields. These results suggest that sub-division of a wide conductor into narrow filaments should be possible without loss in J {sub c}. The relative importance of the out-of-plane texture in affecting intergranular J {sub c} was also explored by fabricating RABiTS substrates with different out-of-plane textures but approximately the same in-plane texture. This was accomplished by using TiN as a seed layer for which significant sharpening of the out-of-plane texture is observed. Similar J {sub c} was found for samples with differing out-of-plane texture but almost the same in-plane texture. Finally, separation of the total misorientation in GB networks into in-plane and out-of-plane misorientations using manipulations in Rodrigues space shows that J {sub c} correlates best with in-plane texture.

  4. Out-of-plane coercive field of Ni80Fe20 antidot arrays

    International Nuclear Information System (INIS)

    Gao Chunhong; Chen Ke; Lue Ling; Zhao Jianwei; Chen Peng

    2010-01-01

    The out-of-plane magnetic anisotropy and out-of-plane magnetization reversal process of nanoscale Ni 80 Fe 20 antidot arrays deposited by magnetron sputtering technique on an anodic aluminum oxide (AAO) membrane are investigated. The angular dependence of out-of-plane remanent magnetization of Ni 80 Fe 20 antidot arrays shows that the maximum remanence is in-plane and the squareness of the out-of-plane hysteresis loop follow a |cos θ| dependence. The angular dependence of out-of-plane coercivity of Ni 80 Fe 20 antidot arrays shows that the maximum coercivity lies on the surface of a cone with its symmetric axis normal to the sample plane, which indicates a transition of magnetic reversal from curling to coherent rotation when changing the angle between the applied magnetic field and the sample plane.

  5. Out-of-plane coercive field of Ni 80Fe 20 antidot arrays

    Science.gov (United States)

    Gao, Chunhong; Chen, Ke; Lü, Ling; Zhao, Jianwei; Chen, Peng

    2010-11-01

    The out-of-plane magnetic anisotropy and out-of-plane magnetization reversal process of nanoscale Ni 80Fe 20 antidot arrays deposited by magnetron sputtering technique on an anodic aluminum oxide (AAO) membrane are investigated. The angular dependence of out-of-plane remanent magnetization of Ni 80Fe 20 antidot arrays shows that the maximum remanence is in-plane and the squareness of the out-of-plane hysteresis loop follow a |cos θ| dependence. The angular dependence of out-of-plane coercivity of Ni 80Fe 20 antidot arrays shows that the maximum coercivity lies on the surface of a cone with its symmetric axis normal to the sample plane, which indicates a transition of magnetic reversal from curling to coherent rotation when changing the angle between the applied magnetic field and the sample plane.

  6. Surface anatomy and anatomical planes in the adult turkish population.

    Science.gov (United States)

    Uzun, C; Atman, E D; Ustuner, E; Mirjalili, S A; Oztuna, D; Esmer, T S

    2016-03-01

    Surface anatomy and anatomical planes are widely used in education and clinical practice. The planes are largely derived from cadaveric studies and their projections on the skin show discrepancies between and within anatomical reference textbooks. In this study, we reassessed the accuracy of common thoracic and abdominopelvic anatomical planes using computed tomography (CT) imaging in the live adult Turkish population. After patients with distorting pathologies had been excluded, CT images of 150 supine patients at the end tidal inspiration were analyzed. Sternal angle, transpyloric, subcostal, supracristal and pubic crest planes and their relationships to anatomical structures were established by dual consensus. The tracheal bifurcation, azygos vein/superior vena cava (SVC) junction and pulmonary bifurcation were usually below the sternal angle while the concavity of the aortic arch was generally within the plane. The tip of the tenth rib, the superior mesenteric artery and the portal vein were usually within the transpyloric plane while the renal hila and the fundus of the gallbladder were below it. The inferior mesenteric artery was below the subcostal plane and the aortic bifurcation was below the supracristal plane in most adults. Projectional surface anatomy is fundamental to medical education and clinical practice. Modern cross-sectional imaging techniques allow large groups of live patients to be examined. Classic textbook information regarding anatomy needs to be reviewed and updated using the data gathered from these recent studies, taking ethnic differences into consideration. © 2015 Wiley Periodicals, Inc.

  7. Comparing trapezius muscle activity in the different planes of shoulder elevation.

    Science.gov (United States)

    Ishigaki, Tomonobu; Ishida, Tomoya; Samukawa, Mina; Saito, Hiroshi; Hirokawa, Motoki; Ezawa, Yuya; Sugawara, Makoto; Tohyama, Harukazu; Yamanaka, Masanori

    2015-05-01

    [Purpose] The purpose of this study was to compare the upper, middle, and lower trapezius muscles' activity in the different planes of shoulder elevation. [Subjects] Twenty male subjects volunteered for this study. [Methods] Surface electromyographic (EMG) activity for each of the three regions of the trapezius muscles in the three different planes of elevation were collected while the participants maintained 30, 60, and 90 degrees of elevation in each plane. The EMG data were normalized with maximum voluntary isometric contraction (%MVIC), and compared among the planes at each angle of elevation. [Results] There were significantly different muscle activities among the elevation planes at each angle. [Conclusion] This study found that the three regions of the trapezius muscles changed their activity depending on the planes of shoulder elevation. These changes in the trapezius muscles could induce appropriate scapular motion to face the glenoid cavity in the correct directions in different planes of shoulder elevation.

  8. The elastic strain energy of crystallographic shear planes in reduced tungsten trioxide

    International Nuclear Information System (INIS)

    Iguchi, E.; Tilley, R.J.D.

    1977-01-01

    Calculations of the elastic strain energy due to crystallographic shear (c.s.) planes lying upon 102, 103 and 001 planes in reduced tungsten trioxide crystals have been made. The cases analysed in detail are for both isolated c.s. planes and for pairs of c.s. planes. These results are used to determine the elastic strain energy per unit volume for crystals containing ordered arrays of c.s. planes. It was found that the magnitude of the elastic strain energy was in the sequence 001 < 102 < 103 and that at relatively small inter-c.s. spacings the curves of elastic strain energy against c.s. plane separation take the form of a series of peaks and valleys. These results are compared with experimental observations of c.s. plane spacings in substantially reduced crystals containing quasi-ordered arrays of c.s. planes and with observations of c.s. plane nucleation and growth in both slightly and more appreciably reduced crystals. It was found that the elastic strain energy plays a significant part in controlling the microstructure of c.s. plane arrays in such cases. (author)

  9. Analysis of Relative Parallelism Between Hamular-Incisive-Papilla Plane and Campers Plane in Edentulous Subjects: A Comparative Study.

    Science.gov (United States)

    Tambake, Deepti; Shetty, Shilpa; Satish Babu, C L; Fulari, Sangamesh G

    2014-12-01

    The study was undertaken to evaluate the parallelism between hamular-incisive-papilla plane (HIP) and the Campers plane. And to determine which part of the posterior reference of the tragus i.e., the superior, middle or the inferior of the Camper's plane is parallel to HIP using digital lateral cephalograms. Fifty edentulous subjects with well formed ridges were selected for the study. The master casts were obtained using the standard selective pressure impression procedure. On the deepest point of the hamular notches and the centre of the incisive papilla stainless steel spherical bearings were glued to the cast at the marked points. The study templates were fabricated with autopolymerizing acrylic resin. The subjects were prepared for the lateral cephalograms. Stainless steel spherical bearings were adhered to the superior, middle, inferior points of the tragus of the ear and inferior border of the ala of the nose using surgical adhesive tape. The subjects with study templates were subjected to lateral cephalograms. Cephalometric tracings were done using Autocad 2010 software. Lines were drawn connecting the incisive papilla and hamular notch and the stainless steel spherical bearings placed on the superior, middle and inferior points on the tragus and the ala of the nose i.e., the Campers line S, Campers line M, Campers line I. The angles between the three Camper's line and the HIP were measured and recorded. Higher mean angulation was recorded in Campers line S -HIP (8.03) followed by Campers line M-HIP (4.60). Campers line I-HIP recorded the least angulation (3.80). The HIP is parallel to the Camper's plane. The Camper's plane formed with the posterior reference point as inferior point of the tragus is relatively parallel to the HIP.

  10. Three-dimensional sheaf of ultrasound planes reconstruction (SOUPR) of ablated volumes.

    Science.gov (United States)

    Ingle, Atul; Varghese, Tomy

    2014-08-01

    This paper presents an algorithm for 3-D reconstruction of tumor ablations using ultrasound shear wave imaging with electrode vibration elastography. Radio-frequency ultrasound data frames are acquired over imaging planes that form a subset of a sheaf of planes sharing a common axis of intersection. Shear wave velocity is estimated separately on each imaging plane using a piecewise linear function fitting technique with a fast optimization routine. An interpolation algorithm then computes velocity maps on a fine grid over a set of C-planes that are perpendicular to the axis of the sheaf. A full 3-D rendering of the ablation can then be created from this stack of C-planes; hence the name "Sheaf Of Ultrasound Planes Reconstruction" or SOUPR. The algorithm is evaluated through numerical simulations and also using data acquired from a tissue mimicking phantom. Reconstruction quality is gauged using contrast and contrast-to-noise ratio measurements and changes in quality from using increasing number of planes in the sheaf are quantified. The highest contrast of 5 dB is seen between the stiffest and softest regions of the phantom. Under certain idealizing assumptions on the true shape of the ablation, good reconstruction quality while maintaining fast processing rate can be obtained with as few as six imaging planes suggesting that the method is suited for parsimonious data acquisitions with very few sparsely chosen imaging planes.

  11. The Off-plane Grating Rocket Experiment

    Science.gov (United States)

    Donovan, Benjamin

    2018-01-01

    The next generation of X-ray spectrometers necessitate significant increases in both resolution and effective area to achieve the science goals set forth in the 2010 Decadal Survey and the 2013 Astrophysics Roadmap. The Off-plane Grating Rocket Experiment (OGRE), an X-ray spectroscopy suborbital rocket payload currently scheduled for launch in Q3 2020, will serve as a testbed for several key technologies which can help achieve the desired performance increases of future spectrometers. OGRE will be the first instrument to fly mono-crystalline silicon X-ray mirrors developed at NASA Goddard Space Flight Center. The payload will also utilize an array of off-plane gratings manufactured at The Pennsylvania State University. Additionally, the focal plane will be populated with an array of four electron-multiplying CCDs developed by the Open University and XCAM Ltd. With these key technologies, OGRE hopes to achieve the highest resolution on-sky soft X-ray spectrum to date. We discuss the optical design, expected performance, and the current status of the payload.

  12. Pulmonary intersegmental planes: imaging appearance and possible reasons leading to their visualization.

    Science.gov (United States)

    Zuo, Yi-Zhi; Liu, Chao; Liu, Shu-Wei

    2013-04-01

    To describe the normal imaging appearance of pulmonary intersegmental planes on thoracic computed tomographic (CT) scans and determine the possible reasons related to their visualization in terms of aging and anatomy. The study was approved by the internal ethics review board. Informed consent was obtained. A retrospective review was undertaken of 104 thoracic multidetector CT scans of an older group (>65 years) and younger group (planes were assessed. Group comparisons were made, and linear regression analysis was used to assess relationships between age and visualization of intersegmental planes. Thirty lung samples (10 × 10 × 10 mm(3)) from autopsy were scanned by using micro-CT. Thicknesses of intersegmental planes were measured. Significant differences of the thickness between visible and invisible intersegmental planes were assessed with the independent t test. In five fetal specimens (17-21 weeks in gestational age), 7.0-T magnetic resonance (MR) imaging was performed to determine the congenital difference of thickness of intersegmental planes. Within the right lung, appearance rates of visible intersegmental planes were 71.2% at S1-S3, 54.8% at S4-S5, and 70.2% at S7-S10. Within the left lung, appearance rates of visible intersegmental planes were 39.4% at S1+2 to S3, 64.4% at S4-S5, 18.3% at S7-S8, and 89.4% at S7-S10. Appearance rates of visible intersegmental planes on thoracic CT scans were not significantly different (P ≥ .38) between younger and older groups. Mean thicknesses of visible and invisible intersegmental planes were 681.3 μm ± 75.3 (standard deviation) and 221.7 μm ± 54.1, respectively. Visible intersegmental planes were significantly thicker than invisible intersegmental planes (P planes were also seen on fetal lung 7.0-T MR images. The thickness of pulmonary intersegmental planes and variation of intersegmental veins were closely related to visualization of intersegmental planes on thoracic CT scans. Aging was excluded as the

  13. The OBS control plane

    DEFF Research Database (Denmark)

    Manolova, Anna Vasileva; Ruepp, Sarah Renée

    2010-01-01

    . The applicability analysis carried out here focuses on the actual feasibility of the integration and the potential trade-offs which appear when two contradicting principles are combined. Taking advantage of the flexibility of the GMPLS control plane does not seem to be as easy and as straightforward as expected...

  14. Projecting non-diffracting waves with intermediate-plane holography.

    Science.gov (United States)

    Mondal, Argha; Yevick, Aaron; Blackburn, Lauren C; Kanellakopoulos, Nikitas; Grier, David G

    2018-02-19

    We introduce intermediate-plane holography, which substantially improves the ability of holographic trapping systems to project propagation-invariant modes of light using phase-only diffractive optical elements. Translating the mode-forming hologram to an intermediate plane in the optical train can reduce the need to encode amplitude variations in the field, and therefore complements well-established techniques for encoding complex-valued transfer functions into phase-only holograms. Compared to standard holographic trapping implementations, intermediate-plane holograms greatly improve diffraction efficiency and mode purity of propagation-invariant modes, and so increase their useful non-diffracting range. We demonstrate this technique through experimental realizations of accelerating modes and long-range tractor beams.

  15. Origin of the Local Group satellite planes

    Science.gov (United States)

    Banik, Indranil; O'Ryan, David; Zhao, Hongsheng

    2018-04-01

    We attempt to understand the planes of satellite galaxies orbiting the Milky Way (MW) and M31 in the context of Modified Newtonian Dynamics (MOND), which implies a close MW-M31 flyby occurred ≈8 Gyr ago. Using the timing argument, we obtain MW-M31 trajectories consistent with cosmological initial conditions and present observations. We adjust the present M31 proper motion within its uncertainty in order to simulate a range of orbital geometries and closest approach distances. Treating the MW and M31 as point masses, we follow the trajectories of surrounding test particle disks, thereby mapping out the tidal debris distribution. Around each galaxy, the resulting tidal debris tends to cluster around a particular orbital pole. We find some models in which these preferred spin vectors align fairly well with those of the corresponding observed satellite planes. The radial distributions of material in the simulated satellite planes are similar to what we observe. Around the MW, our best-fitting model yields a significant fraction (0.22) of counter-rotating material, perhaps explaining why Sculptor counter-rotates within the MW satellite plane. In contrast, our model yields no counter-rotating material around M31. This is testable with proper motions of M31 satellites. In our best model, the MW disk is thickened by the flyby 7.65 Gyr ago to a root mean square height of 0.75 kpc. This is similar to the observed age and thickness of the Galactic thick disk. Thus, the MW thick disk may have formed together with the MW and M31 satellite planes during a past MW-M31 flyby.

  16. Crack initiation under generalized plane strain conditions

    International Nuclear Information System (INIS)

    Shum, D.K.M.; Merkle, J.G.

    1991-01-01

    A method for estimating the decrease in crack-initiation toughness, from a reference plane strain value, due to positive straining along the crack front of a circumferential flaw in a reactor pressure vessel is presented in this study. This method relates crack initiation under generalized plane strain conditions with material failure at points within a distance of a few crack-tip-opening displacements ahead of a crack front, and involves the formulation of a micromechanical crack-initiation model. While this study is intended to address concerns regarding the effects of positive out-of- plane straining on ductile crack initiation, the approach adopted in this work can be extended in a straightforward fashion to examine conditions of macroscopic cleavage crack initiation. Provided single- parameter dominance of near-tip fields exists in the flawed structure, results from this study could be used to examine the appropriateness of applying plane strain fracture toughness to the evaluation of circumferential flaws, in particular to those in ring-forged vessels which have no longitudinal welds. In addition, results from this study could also be applied toward the analysis of the effects of thermal streaming on the fracture resistance of circumferentially oriented flaws in a pressure vessel. 37 refs., 8 figs., 1 tab

  17. Thermomechanical architecture of the VIS focal plane for Euclid

    International Nuclear Information System (INIS)

    Martignac, Jerome; Carty, Michael; Tourette, Thierry; Bachet, Damien; Berthe, Michel; Augueres, Jean-Louis; Amiaux, Jerome; Fontignie, Jean; Horeau, Benoit; Renaud, Diana

    2014-01-01

    One of the main challenges for current and near future space experiments is the increase of focal plane complexity in terms of amount of pixels. In the frame work of the ESA Euclid mission to be launched in 2020, the Euclid Consortium is developing an extremely large and stable focal plane for the VIS instrument. CEA has developed the thermomechanical architecture of that Focal Plane taking into account all the very stringent performance and mission related requirements. The VIS Focal Plane Assembly integrates 36 CCDs (operated at 150 K) connected to their front end electronics (operated at 280 K) as to obtain one of the largest focal plane (0.6 billion pixels) ever built for space application after the GAIA one. The CCDs are CCD273 type specially designed and provided by the e2v company under ESA contract, front end electronics is studied and provided by MSSL. In this paper we first recall the specific requirements that have driven the overall architecture of the VIS-FPA and especially the solutions proposed to cope with the scientific needs of an extremely stable focal plane, both mechanically and thermally. The mechanical structure based on SiC material used for the cold sub assembly supporting the CCDs is detailed. We describe also the modular architecture concept that we have selected taking into account AIT-AIV and programmatic constraints. (authors)

  18. Influence of the narrow {111} planes on axial and planar ion channeling.

    Science.gov (United States)

    Motapothula, M; Dang, Z Y; Venkatesan, T; Breese, M B H; Rana, M A; Osman, A

    2012-05-11

    We report channeling patterns where clearly resolved effects of the narrow {111} planes are observed in axial and planar alignments for 2 MeV protons passing through a 55 nm [001] silicon membrane. At certain axes, such as and , the offset in atomic rows forming the narrow {111} planes results in shielding from the large potential at the wide {111} planes, producing a region of shallow, asymmetric potential from which axial channeling patterns have no plane of symmetry. At small tilts from such axes, different behavior is observed from the wide and narrow {111} planes. At planar alignment, distinctive channeling effects due to the narrow planes are observed. As a consequence of the shallow potential well at the narrow planes, incident protons suffer dechanneled trajectories which are excluded from channeling within the wide planes, resulting in an anomalously large scattered beam at {111} alignment.

  19. On the theory of twinning plane superconductivity

    International Nuclear Information System (INIS)

    Mishonov, T.M.

    1988-01-01

    The thermodynamic potential of the superconducting layer in the twinning plane (TP) vicinity for the type I superconductors is found. The corrections to the surface tension in powers of the Ginsburg-Landau parameter κ are obtained. The corresponding states law for the supercooling field for the type I twinning plane superconductivity (TPS) is obtained, as well as the critical field law for the type II TPS. A review of experimental and theoretical works on TPS and some similar systems is given. The conditions for the Berezinski-Kosterlitz-Thouless transition for the proximity effect are discussed, as well as the possible mechanisms for the conducting phase transition TPS in Nb and the pinning forces close to the twinning plane. The obtained order parameter distribution can be used for description of the superlattices from normal and superconducting metals as well. 6 figs., 44 refs

  20. A study of parallelism of the occlusal plane and ala-tragus line.

    Science.gov (United States)

    Sadr, Katayoun; Sadr, Makan

    2009-01-01

    Orientation of the occlusal plane is one of the most important clinical procedures in prostho-dontic rehabilitation of edentulous patients. The aim of this study was to define the best posterior reference point of ala-tragus line for orientation of occlusal plane for complete denture fabrication. Fifty-three dental students (27 females and 26 males) with complete natural dentition and Angel's Class I occlusal relationship were selected. The subjects were photographed in natural head position while clenching on a Fox plane. After tracing the photographs, the angles between the following lines were measured: the occlusal plane (Fox plane) and the superior border of ala-tragus, the occlusal plane (Fox plane) and the middle of ala-tragus as well as the occlusal plane (Fox plane) and the inferior border of ala-tragus. Descriptive statistics, one sample t-test and independent t-test were used. P value less than 0.05 was considered significant. There was no parallelism between the occlusal plane and ala-tragus line with three different posterior ends and one sample t-test showed that the angles between them were significantly different from zero (pplane. The superior border of the tragus is suggested as the posterior reference for ala-tragus line.

  1. Plane Transformations in a Complex Setting III: Similarities

    Science.gov (United States)

    Dana-Picard, Thierry

    2009-01-01

    This is the third part of a study of plane transformations described in a complex setting. After the study of homotheties, translations, rotations and reflections, we proceed now to the study of plane similarities, either direct or inverse. Their group theoretical properties are described, and their action on classical geometrical objects is…

  2. Three Dimensional Sheaf of Ultrasound Planes Reconstruction (SOUPR) of Ablated Volumes

    Science.gov (United States)

    Ingle, Atul; Varghese, Tomy

    2014-01-01

    This paper presents an algorithm for three dimensional reconstruction of tumor ablations using ultrasound shear wave imaging with electrode vibration elastography. Radiofrequency ultrasound data frames are acquired over imaging planes that form a subset of a sheaf of planes sharing a common axis of intersection. Shear wave velocity is estimated separately on each imaging plane using a piecewise linear function fitting technique with a fast optimization routine. An interpolation algorithm then computes velocity maps on a fine grid over a set of C-planes that are perpendicular to the axis of the sheaf. A full three dimensional rendering of the ablation can then be created from this stack of C-planes; hence the name “Sheaf Of Ultrasound Planes Reconstruction” or SOUPR. The algorithm is evaluated through numerical simulations and also using data acquired from a tissue mimicking phantom. Reconstruction quality is gauged using contrast and contrast-to-noise ratio measurements and changes in quality from using increasing number of planes in the sheaf are quantified. The highest contrast of 5 dB is seen between the stiffest and softest regions of the phantom. Under certain idealizing assumptions on the true shape of the ablation, good reconstruction quality while maintaining fast processing rate can be obtained with as few as 6 imaging planes suggesting that the method is suited for parsimonious data acquisitions with very few sparsely chosen imaging planes. PMID:24808405

  3. C-plane Reconstructions from Sheaf Acquisition for Ultrasound Electrode Vibration Elastography.

    Science.gov (United States)

    Ingle, Atul; Varghese, Tomy

    2014-09-03

    This paper presents a novel algorithm for reconstructing and visualizing ablated volumes using radiofrequency ultrasound echo data acquired with the electrode vibration elastography approach. The ablation needle is vibrated using an actuator to generate shear wave pulses that are tracked in the ultrasound image plane at different locations away from the needle. This data is used for reconstructing shear wave velocity maps for each imaging plane. A C-plane reconstruction algorithm is proposed which estimates shear wave velocity values on a collection of transverse planes that are perpendicular to the imaging planes. The algorithm utilizes shear wave velocity maps from different imaging planes that share a common axis of intersection. These C-planes can be used to generate a 3D visualization of the ablated region. Experimental validation of this approach was carried out using data from a tissue mimicking phantom. The shear wave velocity estimates were within 20% of those obtained from a clinical scanner, and a contrast of over 4 dB was obtained between the stiff and soft regions of the phantom.

  4. Mechanical design aspects of a soft X-ray plane grating monochromator

    CERN Document Server

    Vasina, R; Dolezel, P; Mynar, M; Vondracek, M; Chab, V; Slezak, J A; Comicioli, C; Prince, K C

    2001-01-01

    A plane grating monochromator based on the SX-700 concept has been constructed for the Materials Science Beamline, Elettra, which is attached to a bending magnet. The tuning range is from 35 to 800 eV with calculated spectral resolving power epsilon/DELTA epsilon better than 4000 in the whole range. The optical elements consist of a toroidal prefocusing mirror, polarization aperture, entrance slit, plane pre-mirror, single plane grating (blazed), spherical mirror, exit slit and toroidal refocusing mirror. The plane grating is operated in the fixed focus mode with C sub f sub f =2.4. Energy scanning is performed by rotation of the plane grating and simultaneous translation and rotation of the plane pre-mirror. A novel solution is applied for the motion of the plane pre-mirror, namely by a translation and mechanically coupling the rotation by a cam. The slits have no moving parts in vacuum to reduce cost and increase ruggedness, and can be fully closed without risk of damage. In the first tests, a resolving pow...

  5. In-plane heterostructures of Sb/Bi with high carrier mobility

    Science.gov (United States)

    Zhao, Pei; Wei, Wei; Sun, Qilong; Yu, Lin; Huang, Baibiao; Dai, Ying

    2017-06-01

    In-plane two-dimensional (2D) heterostructures have been attracting public attention due to their distinctive properties. However, the pristine materials that can form in-plane heterostructures are reported only for graphene, hexagonal BN, transition-metal dichalcogenides. It will be of great significance to explore more suitable 2D materials for constructing such ingenious heterostructures. Here, we demonstrate two types of novel seamless in-plane heterostructures combined by pristine Sb and Bi monolayers by means of first-principle approach based on density functional theory. Our results indicate that external strain can serve as an effective strategy for bandgap engineering, and the transition from semiconductor to metal occurs when a compressive strain of -8% is applied. In addition, the designed heterostructures possess direct band gaps with high carrier mobility (˜4000 cm2 V-1 s-1). And the mobility of electrons and holes have huge disparity along the direction perpendicular to the interface of Sb/Bi in-plane heterostructures. It is favorable for carriers to separate spatially. Finally, we find that the band edge positions of Sb/Bi in-plane heterostructures can meet the reduction potential of hydrogen generation in photocatalysis. Our results not only offer alternative materials to construct versatile in-plane heterostructures, but also highlight the applications of 2D in-plane heterostructures in diverse nanodevices and photocatalysis.

  6. A study on the central plane of image layer in panoramic radiograph

    International Nuclear Information System (INIS)

    Lee, Moon Bai; Park, Chang Seo

    1986-01-01

    The purpose of this investigation was to locate the plane of the image layer on the panoramic machine relative to a specific point on the machine. In the study of the central plane of the image layer of panoramic radiograph, using the Morrita Company PANEX-EC a series of 33 exposures were taken with the 4-5 experimental pins placed in the holes of the plastic model plate, then evaluated by human eye. The author analyzed the central plane of the image layer by Mitutoy-A-221 and calculated horizontal and vertical magnification ratio in central plane of the image layer determined experimentally. The results were as follows: 1. The location of the central plane of the image layer determined experimentally was to lateral compared with manufactural central plane. 2. Horizontal magnification ratio in the central plane of image layer determined experimentally was 9.25%. 3. Vertical magnification ratio in the central plane of the image layer determined experimentally was 9.17%.

  7. Position sensitive proportional counters as focal plane detectors

    International Nuclear Information System (INIS)

    Ford, J.L.C. Jr.

    1979-01-01

    The rise time and charge division techniques for position decoding with RC-line proportional counters are reviewed. The advantages that these detectors offer as focal plane counters for nuclear spectroscopy performed with magnetic spectrographs are discussed. The theory of operation of proportional counters as position sensing devices is summarized, as well as practical aspects affecting their application. Factors limiting the position and energy resolutions obtainable with a focal plane proportional counter are evaluated and measured position and energy loss values are presented for comparison. Detector systems capable of the multiparameter measurements required for particle identification, background suppression and ray-tracing are described in order to illustrate the wide applicability of proportional counters within complex focal plane systems. Examples of the use of these counters other than with magnetic spectrographs are given in order to demonstrate their usefulness in not only nuclear physics but also in fields such as solid state physics, biology, and medicine. The influence of the new focal plane detector systems on future magnetic spectrograph designs is discussed. (Auth.)

  8. NCC-RANSAC: a fast plane extraction method for 3-D range data segmentation.

    Science.gov (United States)

    Qian, Xiangfei; Ye, Cang

    2014-12-01

    This paper presents a new plane extraction (PE) method based on the random sample consensus (RANSAC) approach. The generic RANSAC-based PE algorithm may over-extract a plane, and it may fail in case of a multistep scene where the RANSAC procedure results in multiple inlier patches that form a slant plane straddling the steps. The CC-RANSAC PE algorithm successfully overcomes the latter limitation if the inlier patches are separate. However, it fails if the inlier patches are connected. A typical scenario is a stairway with a stair wall where the RANSAC plane-fitting procedure results in inliers patches in the tread, riser, and stair wall planes. They connect together and form a plane. The proposed method, called normal-coherence CC-RANSAC (NCC-RANSAC), performs a normal coherence check to all data points of the inlier patches and removes the data points whose normal directions are contradictory to that of the fitted plane. This process results in separate inlier patches, each of which is treated as a candidate plane. A recursive plane clustering process is then executed to grow each of the candidate planes until all planes are extracted in their entireties. The RANSAC plane-fitting and the recursive plane clustering processes are repeated until no more planes are found. A probabilistic model is introduced to predict the success probability of the NCC-RANSAC algorithm and validated with real data of a 3-D time-of-flight camera-SwissRanger SR4000. Experimental results demonstrate that the proposed method extracts more accurate planes with less computational time than the existing RANSAC-based methods.

  9. Polarization sensitivity testing of off-plane reflection gratings

    Science.gov (United States)

    Marlowe, Hannah; McEntaffer, Randal L.; DeRoo, Casey T.; Miles, Drew M.; Tutt, James H.; Laubis, Christian; Soltwisch, Victor

    2015-09-01

    Off-Plane reflection gratings were previously predicted to have different efficiencies when the incident light is polarized in the transverse-magnetic (TM) versus transverse-electric (TE) orientations with respect to the grating grooves. However, more recent theoretical calculations which rigorously account for finitely conducting, rather than perfectly conducting, grating materials no longer predict significant polarization sensitivity. We present the first empirical results for radially ruled, laminar groove profile gratings in the off-plane mount which demonstrate no difference in TM versus TE efficiency across our entire 300-1500 eV bandpass. These measurements together with the recent theoretical results confirm that grazing incidence off-plane reflection gratings using real, not perfectly conducting, materials are not polarization sensitive.

  10. Statistical framework for the utilization of simultaneous pupil plane and focal plane telemetry for exoplanet imaging. I. Accounting for aberrations in multiple planes.

    Science.gov (United States)

    Frazin, Richard A

    2016-04-01

    A new generation of telescopes with mirror diameters of 20 m or more, called extremely large telescopes (ELTs), has the potential to provide unprecedented imaging and spectroscopy of exoplanetary systems, if the difficulties in achieving the extremely high dynamic range required to differentiate the planetary signal from the star can be overcome to a sufficient degree. Fully utilizing the potential of ELTs for exoplanet imaging will likely require simultaneous and self-consistent determination of both the planetary image and the unknown aberrations in multiple planes of the optical system, using statistical inference based on the wavefront sensor and science camera data streams. This approach promises to overcome the most important systematic errors inherent in the various schemes based on differential imaging, such as angular differential imaging and spectral differential imaging. This paper is the first in a series on this subject, in which a formalism is established for the exoplanet imaging problem, setting the stage for the statistical inference methods to follow in the future. Every effort has been made to be rigorous and complete, so that validity of approximations to be made later can be assessed. Here, the polarimetric image is expressed in terms of aberrations in the various planes of a polarizing telescope with an adaptive optics system. Further, it is shown that current methods that utilize focal plane sensing to correct the speckle field, e.g., electric field conjugation, rely on the tacit assumption that aberrations on multiple optical surfaces can be represented as aberration on a single optical surface, ultimately limiting their potential effectiveness for ground-based astronomy.

  11. High-quality nonpolar a-plane GaN epitaxial films grown on r-plane sapphire substrates by the combination of pulsed laser deposition and metal–organic chemical vapor deposition

    Science.gov (United States)

    Yang, Weijia; Zhang, Zichen; Wang, Wenliang; Zheng, Yulin; Wang, Haiyan; Li, Guoqiang

    2018-05-01

    High-quality a-plane GaN epitaxial films have been grown on r-plane sapphire substrates by the combination of pulsed laser deposition (PLD) and metal–organic chemical vapor deposition (MOCVD). PLD is employed to epitaxial growth of a-plane GaN templates on r-plane sapphire substrates, and then MOCVD is used. The nonpolar a-plane GaN epitaxial films with relatively small thickness (2.9 µm) show high quality, with the full-width at half-maximum values of GaN(11\\bar{2}0) along [1\\bar{1}00] direction and GaN(10\\bar{1}1) of 0.11 and 0.30°, and a root-mean-square surface roughness of 1.7 nm. This result is equivalent to the quality of the films grown by MOCVD with a thickness of 10 µm. This work provides a new and effective approach for achieving high-quality nonpolar a-plane GaN epitaxial films on r-plane sapphire substrates.

  12. Linearized motion estimation for articulated planes.

    Science.gov (United States)

    Datta, Ankur; Sheikh, Yaser; Kanade, Takeo

    2011-04-01

    In this paper, we describe the explicit application of articulation constraints for estimating the motion of a system of articulated planes. We relate articulations to the relative homography between planes and show that these articulations translate into linearized equality constraints on a linear least-squares system, which can be solved efficiently using a Karush-Kuhn-Tucker system. The articulation constraints can be applied for both gradient-based and feature-based motion estimation algorithms and to illustrate this, we describe a gradient-based motion estimation algorithm for an affine camera and a feature-based motion estimation algorithm for a projective camera that explicitly enforces articulation constraints. We show that explicit application of articulation constraints leads to numerically stable estimates of motion. The simultaneous computation of motion estimates for all of the articulated planes in a scene allows us to handle scene areas where there is limited texture information and areas that leave the field of view. Our results demonstrate the wide applicability of the algorithm in a variety of challenging real-world cases such as human body tracking, motion estimation of rigid, piecewise planar scenes, and motion estimation of triangulated meshes.

  13. Large In-Plane and Vertical Piezoelectricity in Janus Transition Metal Dichalchogenides.

    Science.gov (United States)

    Dong, Liang; Lou, Jun; Shenoy, Vivek B

    2017-08-22

    Piezoelectricity in 2D van der Waals materials has received considerable interest because of potential applications in nanoscale energy harvesting, sensors, and actuators. However, in all the systems studied to date, strain and electric polarization are confined to the basal plane, limiting the operation of piezoelectric devices. In this paper, based on ab initio calculations, we report a 2D materials system, namely, the recently synthesized Janus MXY (M = Mo or W, X/Y = S, Se, or Te) monolayer and multilayer structures, with large out-of-plane piezoelectric polarization. For MXY monolayers, both strong in-plane and much weaker out-of-plane piezoelectric polarizations can be induced by a uniaxial strain in the basal plane. For multilayer MXY, we obtain a very strong out-of-plane piezoelectric polarization when strained transverse to the basal plane, regardless of the stacking sequence. The out-of-plane piezoelectric coefficient d 33 is found to be strongest in multilayer MoSTe (5.7-13.5 pm/V depending on the stacking sequence), which is larger than that of the commonly used 3D piezoelectric material AlN (d 33 = 5.6 pm/V); d 33 in other multilayer MXY structures are a bit smaller, but still comparable. Our study reveals the potential for utilizing piezoelectric 2D materials and their van der Waals multilayers in device applications.

  14. Null-plane quantization of fermions

    International Nuclear Information System (INIS)

    Mustaki, D.

    1990-01-01

    Massive Dirac fermions are canonically quantized on the null plane using the Dirac-Bergmann algorithm. The procedure is carried out in the framework of quantum electrodynamics as an illustration of a rigorous treatment of interacting fermion fields

  15. Intervertebral anticollision constraints improve out-of-plane translation accuracy of a single-plane fluoroscopy-to-CT registration method for measuring spinal motion

    International Nuclear Information System (INIS)

    Lin, Cheng-Chung; Tsai, Tsung-Yuan; Hsu, Shih-Jung; Lu, Tung-Wu; Shih, Ting-Fang; Wang, Ting-Ming

    2013-01-01

    Purpose: The study aimed to propose a new single-plane fluoroscopy-to-CT registration method integrated with intervertebral anticollision constraints for measuring three-dimensional (3D) intervertebral kinematics of the spine; and to evaluate the performance of the method without anticollision and with three variations of the anticollision constraints via an in vitro experiment. Methods: The proposed fluoroscopy-to-CT registration approach, called the weighted edge-matching with anticollision (WEMAC) method, was based on the integration of geometrical anticollision constraints for adjacent vertebrae and the weighted edge-matching score (WEMS) method that matched the digitally reconstructed radiographs of the CT models of the vertebrae and the measured single-plane fluoroscopy images. Three variations of the anticollision constraints, namely, T-DOF, R-DOF, and A-DOF methods, were proposed. An in vitro experiment using four porcine cervical spines in different postures was performed to evaluate the performance of the WEMS and the WEMAC methods. Results: The WEMS method gave high precision and small bias in all components for both vertebral pose and intervertebral pose measurements, except for relatively large errors for the out-of-plane translation component. The WEMAC method successfully reduced the out-of-plane translation errors for intervertebral kinematic measurements while keeping the measurement accuracies for the other five degrees of freedom (DOF) more or less unaltered. The means (standard deviations) of the out-of-plane translational errors were less than −0.5 (0.6) and −0.3 (0.8) mm for the T-DOF method and the R-DOF method, respectively. Conclusions: The proposed single-plane fluoroscopy-to-CT registration method reduced the out-of-plane translation errors for intervertebral kinematic measurements while keeping the measurement accuracies for the other five DOF more or less unaltered. With the submillimeter and subdegree accuracy, the WEMAC method was

  16. The geometry of plane waves in spaces of constant curvature

    International Nuclear Information System (INIS)

    Tran, H.V.

    1988-01-01

    We examined the geometry of possible plane wave fronts in spaces of constant curvature for three cases in which the cosmological constant is positive, zero, or negative. The cosmological constant and a second-order invariant determined by a congruence of null rays were used in the investigation. We embedded the spaces under investigation in a flat five-dimensional space, and studied the null hyperplanes passing through the origin of the flat five-dimensional space. The embedded spaces are represented by quadrics in the five-dimensional space. The plane wave fronts are represented by the intersection of the quadric with null hyperplanes passing through the origin of the five-dimensional space. We concluded that in Minkowski spaces (zero cosmological constant), the plane-fronted waves will intersect if and only if the second-order invariant mentioned above is non-zero. For deSitter spaces (positive cosmological constant), plane-fronted waves will always intersect. For anti-deSitter spaces (negative cosmological constant), plane-fronted waves may but need not intersect

  17. Models of Quantum Space Time: Quantum Field Planes

    OpenAIRE

    Mack, G.; Schomerus, V.

    1994-01-01

    Quantum field planes furnish a noncommutative differential algebra $\\Omega$ which substitutes for the commutative algebra of functions and forms on a contractible manifold. The data required in their construction come from a quantum field theory. The basic idea is to replace the ground field ${\\bf C}$ of quantum planes by the noncommutative algebra ${\\cal A}$ of observables of the quantum field theory.

  18. Selection of planes in nuclear magnetic resonance tomography

    International Nuclear Information System (INIS)

    Bonagamba, T.J.

    1986-01-01

    A prototype aiming to obtain images in nuclear magnetic resonance tomography was developed, by adjusting NMR spectrometer in the IFQSC Laboratory. The techniques for selecting planes were analysed by a set of computer codes, which were elaborated from Bloch equation solutions to simulate the spin system behaviour. Images were obtained using planes with thickness inferior to 1 cm. (M.C.K.)

  19. Plane-wave Least-squares Reverse Time Migration

    KAUST Repository

    Dai, Wei

    2012-11-04

    Least-squares reverse time migration is formulated with a new parameterization, where the migration image of each shot is updated separately and a prestack image is produced with common image gathers. The advantage is that it can offer stable convergence for least-squares migration even when the migration velocity is not completely accurate. To significantly reduce computation cost, linear phase shift encoding is applied to hundreds of shot gathers to produce dozens of planes waves. A regularization term which penalizes the image difference between nearby angles are used to keep the prestack image consistent through all the angles. Numerical tests on a marine dataset is performed to illustrate the advantages of least-squares reverse time migration in the plane-wave domain. Through iterations of least-squares migration, the migration artifacts are reduced and the image resolution is improved. Empirical results suggest that the LSRTM in plane wave domain is an efficient method to improve the image quality and produce common image gathers.

  20. [A cephalometric study on determining the orientation of occlusal plane].

    Science.gov (United States)

    Xie, J; Zhao, Y; Chao, Y; Luo, W

    1993-12-01

    A study of the parallel relationship between the occlusal plane and the line connecting nasal alar and tragus was made in 90 dentulous cases by using cephalometry. The results show that the line connecting the inferior point of nasal alar and the mid-point of tragus runs much more parallel with the occlusal plane. The regression equation reveals a "line of closest fitting". It was used in the prosthetic treatment for 50 edentulous patients with good clinical results. The line connecting the inferior point of nasal alar and the mid-point of tragus therefore represents a proper reference plane for determining occlusal plane and hence should be still a valuable index in clinical dentistry.

  1. Influence of Si-doping on heteroepitaxially grown a-plane GaN

    Energy Technology Data Exchange (ETDEWEB)

    Wieneke, Matthias; Bastek, Barbara; Noltemeyer, Martin; Hempel, Thomas; Rohrbeck, Antje; Witte, Hartmut; Veit, Peter; Blaesing, Juergen; Dadgar, Armin; Christen, Juergen; Krost, Alois [Otto-von-Guericke-Universitaet Magdeburg, FNW/IEP, Universitaetsplatz 2, 39106 Magdeburg (Germany)

    2011-07-01

    Si-doped a-plane GaN samples with nominal doping levels up to 10{sup 20} cm{sup -3} were grown on r-plane sapphire by metal organic vapor phase epitaxy. Silane flow rates higher than 59 nmol/min lead to three dimensional grown crystallites as revealed by scanning electron microscopy. High resolution X-ray diffraction, photoluminescence and cathodoluminescence suggest considerably reduced defect densities in the large micrometer-sized GaN crystallites. Especially, transmission electron microscopy images verify a very low density of basal plane stacking faults less than 10{sup 4} cm{sup -1} in these crystallites consisting of heteroepitaxially grown a-plane GaN. In our presentation the influence of the Si doping on the basal plane stacking faults will be discussed.

  2. Interaction of gravitational plane waves

    International Nuclear Information System (INIS)

    Ferrari, V.

    1988-01-01

    The mathematical theory of colliding, infinite-fronted, plane gravitational waves is presented. The process of focusing, the creation of singularities and horizons, due to the interaction, and the lens effect due to a beam-like gravitational wave are discussed

  3. A cephalometric study to determine the plane of occlusion in completely edentulous patients.

    Science.gov (United States)

    Hindocha, Amit D; Vartak, Vikas N; Bhandari, Aruna J; Dudani, Mohit T

    2013-01-01

    Determination of the plane of occlusion in completely edentulous patients with the help of the ala-tragus line (Camper's plane) may be questioned. An attempt to devise an alternative method to determine the orientation of the plane of occlusion was made. Cephalometric analysis was used to identify whether a correlation exists between the plane of occlusion of dentulous Indian individuals and other stable cranial landmarks. A negative correlation was found to exist between the occlusal Plane-FH plane angle and the porion-nasion-anterior nasal spine (PoNANS) angle. From the derived mathematical correlation, it was concluded that the angulation of the occlusal plane in completely edentulous subjects may be determined by taking a cephalogram at the diagnostic stage. Further, the clinical applicability of the derived mathematical formula (while determining the plane of occlusion) was tested on completely edentulous patients.

  4. Facial rejuvenation with fillers: The dual plane technique

    Directory of Open Access Journals (Sweden)

    Giovanni Salti

    2015-01-01

    Full Text Available Background: Facial aging is characterized by skin changes, sagging and volume loss. Volume is frequently addressed with reabsorbable fillers like hyaluronic acid gels. Materials and Methods: From an anatomical point of view, the deep and superficial fat compartments evolve differently with aging in a rather predictable manner. Volume can therefore be restored following a technique based on restoring first the deep volumes and there after the superficial volumes. We called this strategy "dual plane". A series of 147 consecutive patients have been treated with fillers using the dual plane technique in the last five years. Results: An average of 4.25 session per patient has been carried out for a total of 625 treatment sessions. The average total amount of products used has been 12 ml per patient with an average amount per session of 3.75 ml. We had few and limited adverse events with this technique. Conclusion: The dual plane technique is an injection technique based on anatomical logics. Different types of products can be used according to the plane of injection and their rheology in order to obtain a natural result and few side effects.

  5. Plane-Wave Imaging Challenge in Medical Ultrasound

    DEFF Research Database (Denmark)

    Liebgott, Herve; Molares, Alfonso Rodriguez; Jensen, Jørgen Arendt

    2016-01-01

    for this effect, but comparing the different methods is difficult due to the lack of appropriate tools. PICMUS, the Plane-Wave Imaging Challenge in Medical Ultrasound aims to provide these tools. This paper describes the PICMUS challenge, its motivation, implementation, and metrics.......Plane-Wave imaging enables very high frame rates, up to several thousand frames per second. Unfortunately the lack of transmit focusing leads to reduced image quality, both in terms of resolution and contrast. Recently, numerous beamforming techniques have been proposed to compensate...

  6. Anomalies and inflow on D-branes and O-planes

    International Nuclear Information System (INIS)

    Scrucca, Claudio A.; Serone, Marco

    1999-01-01

    We derive the general form of the anomaly for chiral spinors and self-dual antisymmetric tensors living on D-brane and O-plane intersections, using both path-integral and index theorem methods. We then show that the anomalous couplings to RR forms of D-branes and O-planes in a general background are precisely those required to cancel these anomalies through the inflow mechanism. This allows, for instance, for local anomaly cancellation in generic orientifold models, the relevant Green-Schwarz term being given by the sum of the anomalous couplings of all the D-branes and O-planes in the model

  7. Acceleration of planes segmentation using normals from previous frame

    Science.gov (United States)

    Gritsenko, Pavel; Gritsenko, Igor; Seidakhmet, Askar; Abduraimov, Azizbek

    2017-12-01

    One of the major problem in integration process of robots is to make them able to function in a human environment. In terms of computer vision, the major feature of human made rooms is the presence of planes [1, 2, 20, 21, 23]. In this article, we will present an algorithm dedicated to increase speed of a plane segmentation. The algorithm uses information about location of a plane and its normal vector to speed up the segmentation process in the next frame. In conjunction with it, we will address such aspects of ICP SLAM as performance and map representation.

  8. Subcostal Transverse Abdominis Plane Block for Acute Pain Management: A Review.

    Science.gov (United States)

    Soliz, Jose M; Lipski, Ian; Hancher-Hodges, Shannon; Speer, Barbra Bryce; Popat, Keyuri

    2017-10-01

    The subcostal transverse abdominis plane (SCTAP) block is the deposition of local anesthetic in the transverse abdominis plane inferior and parallel to the costal margin. There is a growing consensus that the SCTAP block provides better analgesia for upper abdominal incisions than the traditional transverse abdominis plane block. In addition, when used as part of a four-quadrant transverse abdominis plane block, the SCTAP block may provide adequate analgesia for major abdominal surgery. The purpose of this review is to discuss the SCTAP block, including its indications, technique, local anesthetic solutions, and outcomes.

  9. Positioning of electrode plane systematically influences EIT imaging.

    Science.gov (United States)

    Krueger-Ziolek, Sabine; Schullcke, Benjamin; Kretschmer, Jörn; Müller-Lisse, Ullrich; Möller, Knut; Zhao, Zhanqi

    2015-06-01

    Up to now, the impact of electrode positioning on electrical impedance tomography (EIT) had not been systematically analyzed due to the lack of a reference method. The aim of the study was to determine the impact of electrode positioning on EIT imaging in spontaneously breathing subjects at different ventilation levels with our novel lung function measurement setup combining EIT and body plethysmography. EIT measurements were conducted in three transverse planes between the 3rd and 4th intercostal space (ICS), at the 5th ICS and between the 6th and 7th ICS (named as cranial, middle and caudal) on 12 healthy subjects. Pulmonary function tests were performed simultaneously by body plethysmography to determine functional residual capacity (FRC), vital capacity (VC), tidal volume (VT), expiratory reserve volume (ERV), and inspiratory reserve volume (IRV). Ratios of impedance changes and body plethysmographic volumes were calculated for every thorax plane (ΔIERV/ERV, ΔIVT/VT and ΔIIRV/IRV). In all measurements of a subject, FRC values and VC values differed ≤5%, which confirmed that subjects were breathing at comparable end-expiratory levels and with similar efforts. In the cranial thorax plane the normalized ΔIERV/ERV ratio in all subjects was significantly higher than the normalized ΔIIRV/IRV ratio whereas the opposite was found in the caudal chest plane. No significant difference between the two normalized ratios was found in the middle thoracic plane. Depending on electrode positioning, impedance to volume ratios may either increase or decrease in the same lung condition, which may lead to opposite clinical decisions.

  10. Crack Propagation in Plane Strain under Variable Amplitude Loading

    DEFF Research Database (Denmark)

    Ricardo, Luiz Carlos Hernandes

    2010-01-01

    . In this paper procedures to determine the crack opening and closure by finite elements analyses in plane strain will be presented. The objective of this paper is also provide a review of retardation models under variable spectrum loading considering plane strain constraint as well as their correlation...

  11. Mid-callosal plane determination using preferred directions from diffusion tensor images

    Science.gov (United States)

    Costa, André L.; Rittner, Letícia; Lotufo, Roberto A.; Appenzeller, Simone

    2015-03-01

    The corpus callosum is the major brain structure responsible for inter{hemispheric communication between neurons. Many studies seek to relate corpus callosum attributes to patient characteristics, cerebral diseases and psychological disorders. Most of those studies rely on 2D analysis of the corpus callosum in the mid-sagittal plane. However, it is common to find conflicting results among studies, once many ignore methodological issues and define the mid-sagittal plane based on precary or invalid criteria with respect to the corpus callosum. In this work we propose a novel method to determine the mid-callosal plane using the corpus callosum internal preferred diffusion directions obtained from diffusion tensor images. This plane is analogous to the mid-sagittal plane, but intended to serve exclusively as the corpus callosum reference. Our method elucidates the great potential the directional information of the corpus callosum fibers have to indicate its own referential. Results from experiments with five image pairs from distinct subjects, obtained under the same conditions, demonstrate the method effectiveness to find the corpus callosum symmetric axis relative to the axial plane.

  12. Context based Coding of Quantized Alpha Planes for Video Objects

    DEFF Research Database (Denmark)

    Aghito, Shankar Manuel; Forchhammer, Søren

    2002-01-01

    In object based video, each frame is a composition of objects that are coded separately. The composition is performed through the alpha plane that represents the transparency of the object. We present an alternative to MPEG-4 for coding of alpha planes that considers their specific properties....... Comparisons in terms of rate and distortion are provided, showing that the proposed coding scheme for still alpha planes is better than the algorithms for I-frames used in MPEG-4....

  13. Blackfolds, plane waves and minimal surfaces

    Science.gov (United States)

    Armas, Jay; Blau, Matthias

    2015-07-01

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.

  14. Blackfolds, plane waves and minimal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Armas, Jay [Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay Institutes, ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); Blau, Matthias [Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland)

    2015-07-29

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.

  15. Multi-planed unified switching topologies

    Science.gov (United States)

    Chen, Dong; Heidelberger, Philip; Sugawara, Yutaka

    2017-07-04

    An apparatus and method for extending the scalability and improving the partitionability of networks that contain all-to-all links for transporting packet traffic from a source endpoint to a destination endpoint with low per-endpoint (per-server) cost and a small number of hops. An all-to-all wiring in the baseline topology is decomposed into smaller all-to-all components in which each smaller all-to-all connection is replaced with star topology by using global switches. Stacking multiple copies of the star topology baseline network creates a multi-planed switching topology for transporting packet traffic. Point-to-point unified stacking method using global switch wiring methods connects multiple planes of a baseline topology by using the global switches to create a large network size with a low number of hops, i.e., low network latency. Grouped unified stacking method increases the scalability (network size) of a stacked topology.

  16. Hydrodynamics of planing monohull watercraft

    CERN Document Server

    Vorus, William S

    2017-01-01

    This book addresses the principles involved in the design and engineering of planing monohull power boats, with an emphasis on the theoretical fundamentals that readers need in order to be fully functional in marine design and engineering. Author William Vorus focuses on three topics: boat resistance, seaway response, and propulsion and explains the physical principles, mathematical details, and theoretical details that support physical understanding. In particular, he explains the approximations and simplifications in mathematics that lead to success in the applications of planing craft design engineering, and begins with the simplest configuration that embodies the basic physics. He leads readers, step-by-step, through the physical complications that occur, leading to a useful working knowledge of marine design and engineering. Included in the book are a wealth of examples that exemplify some of the most important naval architecture and marine engineering problems that challenge many of today’s engineers.

  17. Plane waves with weak singularities

    International Nuclear Information System (INIS)

    David, Justin R.

    2003-03-01

    We study a class of time dependent solutions of the vacuum Einstein equations which are plane waves with weak null singularities. This singularity is weak in the sense that though the tidal forces diverge at the singularity, the rate of divergence is such that the distortion suffered by a freely falling observer remains finite. Among such weak singular plane waves there is a sub-class which does not exhibit large back reaction in the presence of test scalar probes. String propagation in these backgrounds is smooth and there is a natural way to continue the metric beyond the singularity. This continued metric admits string propagation without the string becoming infinitely excited. We construct a one parameter family of smooth metrics which are at a finite distance in the space of metrics from the extended metric and a well defined operator in the string sigma model which resolves the singularity. (author)

  18. NeuroSeek dual-color image processing infrared focal plane array

    Science.gov (United States)

    McCarley, Paul L.; Massie, Mark A.; Baxter, Christopher R.; Huynh, Buu L.

    1998-09-01

    Several technologies have been developed in recent years to advance the state of the art of IR sensor systems including dual color affordable focal planes, on-focal plane array biologically inspired image and signal processing techniques and spectral sensing techniques. Pacific Advanced Technology (PAT) and the Air Force Research Lab Munitions Directorate have developed a system which incorporates the best of these capabilities into a single device. The 'NeuroSeek' device integrates these technologies into an IR focal plane array (FPA) which combines multicolor Midwave IR/Longwave IR radiometric response with on-focal plane 'smart' neuromorphic analog image processing. The readout and processing integrated circuit very large scale integration chip which was developed under this effort will be hybridized to a dual color detector array to produce the NeuroSeek FPA, which will have the capability to fuse multiple pixel-based sensor inputs directly on the focal plane. Great advantages are afforded by application of massively parallel processing algorithms to image data in the analog domain; the high speed and low power consumption of this device mimic operations performed in the human retina.

  19. Dynamics of plane-symmetric thin walls in general relativity

    International Nuclear Information System (INIS)

    Wang, A.

    1992-01-01

    Plane walls (including plane domain walls) without reflection symmetry are studied in the framework of Einstein's general relativity. Using the distribution theory, all the Einstein field equations and Bianchi identities are split into two groups: one holding in the regions outside of the wall and the other holding at the wall. The Einstein field equations at the wall are found to take a very simple form, and given explicitly in terms of the discontinuities of the metric coefficients and their derivatives. The Bianchi identities at the wall are also given explicitly. Using the latter, the interaction of a plane wall with gravitational waves and some specific matter fields is studied. In particular, it is found that, when a gravitational plane wave passes through a wall, if the wall has no reflection symmetry, the phenomena, such as reflection, stimulation, or absorption, in general, occur. It is also found that, unlike for gravitational waves, a massless scalar wave or an electromagnetic wave continuously passes through a wall without any reflection. The repulsion and attraction of a plane wall are also studied. It is found that the acceleration of an observer who is at rest relative to the wall usually consists of three parts: one is due to the force produced by the wall, the second is due to the force produced by the space-time curvature, which is zero if the wall has reflection symmetry, and the last is due to the accelerated motion of the wall. As a result, a repulsive (attractive) plane wall may not be repulsive (attractive) at all. Finally, the collision and interaction among the walls are studied

  20. A novel fabrication process for out-of-plane microneedle sheets of biocompatible polymer

    Science.gov (United States)

    Han, Manhee; Hyun, Dong-Hun; Park, Hyoun-Hyang; Lee, Seung S.; Kim, Chang-Hyeon; Kim, Changgyou

    2007-06-01

    This paper presents a novel process for fabricating out-of-plane microneedle sheets of biocompatible polymer using in-plane microneedles. This process comprises four steps: (1) fabrication of in-plane microneedles using inclined UV lithography and electroforming, (2) conversion of the in-plane microneedles to an out-of-plane microneedle array, (3) fabrication of a negative PDMS mold and (4) fabrication of out-of-plane microneedle sheets of biocompatible polymer by hot embossing. The in-plane microneedles are fabricated with a sharp tip for low insertion forces and are made long to ensure sufficient penetration depth. The in-plane microneedles are converted into an out-of-plane microneedle array to increase the needle density. The negative mold is fabricated for mass-production using a polymer molding technique. The final out-of-plane microneedle sheets are produced using polycarbonate for biocompatibility by employing the hot embossing process. The height of the fabricated needles ranges from 500 to 1500 µm, and the distance between the needles is 500 to 2000 µm. The radii of curvature are approximately 2 µm, while the tip angles are in the range of 39-56°. Most of the geometrical characteristics of the out-of-plane microneedles can be freely controlled for real life applications such as drug delivery, cosmetic delivery and mesotherapy. Since it is also possible to mass-produce the microneedles, this novel process holds sufficient potential for applications in industrial fields.

  1. Apodised aperture using rotation of plane of polarization

    International Nuclear Information System (INIS)

    Simmons, W.W.; Leppelmeier, G.W.; Johnson, B.C.

    1975-01-01

    An apodised aperture based on the rotation of plane of polarization producing desirable characteristics on a transmitted light beam such as beam profiling in high flux laser amplifier chains is described. The apodised aperture is made with a lossless element by using one or more polarizers and/or analyzers and magneto-optical Faraday means for selectively rotating the plane of polarized radiation over the cross section to effect the desired apodisation

  2. Optimal distance of multi-plane sensor in three-dimensional electrical impedance tomography.

    Science.gov (United States)

    Hao, Zhenhua; Yue, Shihong; Sun, Benyuan; Wang, Huaxiang

    2017-12-01

    Electrical impedance tomography (EIT) is a visual imaging technique for obtaining the conductivity and permittivity distributions in the domain of interest. As an advanced technique, EIT has the potential to be a valuable tool for continuously bedside monitoring of pulmonary function. The EIT applications in any three-dimensional (3 D) field are very limited to the 3 D effects, i.e. the distribution of electric field spreads far beyond the electrode plane. The 3 D effects can result in measurement errors and image distortion. An important way to overcome the 3 D effect is to use the multiple groups of sensors. The aim of this paper is to find the best space resolution of EIT image over various electrode planes and select an optimal plane spacing in a 3 D EIT sensor, and provide guidance for 3 D EIT electrodes placement in monitoring lung function. In simulation and experiment, several typical conductivity distribution models, such as one rod (central, midway and edge), two rods and three rods, are set at different plane spacings between the two electrode planes. A Tikhonov regularization algorithm is utilized for reconstructing the images; the relative error and the correlation coefficient are utilized for evaluating the image quality. Based on numerical simulation and experimental results, the image performance at different spacing conditions is evaluated. The results demonstrate that there exists an optimal plane spacing between the two electrode planes for 3 D EIT sensor. And then the selection of the optimal plane spacing between the electrode planes is suggested for the electrodes placement of multi-plane EIT sensor.

  3. Goedel, Penrose, anti-Mach: extra supersymmetries of time-dependent plane waves

    International Nuclear Information System (INIS)

    Blau, Matthias; O'Loughlin, Martin; Meessen, Patrick

    2003-01-01

    We prove that M-theory plane waves with extra supersymmetries are necessarily homogeneous (but possibly time-dependent), and we show by explicit construction that such time-dependent plane waves can admit extra supersymmetries. To that end we study the Penrose limits of Goedel-like metrics, show that the Penrose limit of the M-theory Goedel metric (with 20 supercharges) is generically a time-dependent homogeneous plane wave of the anti-Mach type, and display the four extra Killings spinors in that case. We conclude with some general remarks on the Killing spinor equations for homogeneous plane waves. (author)

  4. The deployment of routing protocols in distributed control plane of SDN.

    Science.gov (United States)

    Jingjing, Zhou; Di, Cheng; Weiming, Wang; Rong, Jin; Xiaochun, Wu

    2014-01-01

    Software defined network (SDN) provides a programmable network through decoupling the data plane, control plane, and application plane from the original closed system, thus revolutionizing the existing network architecture to improve the performance and scalability. In this paper, we learned about the distributed characteristics of Kandoo architecture and, meanwhile, improved and optimized Kandoo's two levels of controllers based on ideological inspiration of RCP (routing control platform). Finally, we analyzed the deployment strategies of BGP and OSPF protocol in a distributed control plane of SDN. The simulation results show that our deployment strategies are superior to the traditional routing strategies.

  5. Goedel, Penrose, anti-Mach: extra supersymmetries of time-dependent plane waves

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Matthias; O' Loughlin, Martin; Meessen, Patrick [SISSA/ISAS, Via Beirut 2-4, 34014 Trieste (Italy)]. E-mail: meessen@sissa.it

    2003-09-01

    We prove that M-theory plane waves with extra supersymmetries are necessarily homogeneous (but possibly time-dependent), and we show by explicit construction that such time-dependent plane waves can admit extra supersymmetries. To that end we study the Penrose limits of Goedel-like metrics, show that the Penrose limit of the M-theory Goedel metric (with 20 supercharges) is generically a time-dependent homogeneous plane wave of the anti-Mach type, and display the four extra Killings spinors in that case. We conclude with some general remarks on the Killing spinor equations for homogeneous plane waves. (author)

  6. The Deployment of Routing Protocols in Distributed Control Plane of SDN

    Directory of Open Access Journals (Sweden)

    Zhou Jingjing

    2014-01-01

    Full Text Available Software defined network (SDN provides a programmable network through decoupling the data plane, control plane, and application plane from the original closed system, thus revolutionizing the existing network architecture to improve the performance and scalability. In this paper, we learned about the distributed characteristics of Kandoo architecture and, meanwhile, improved and optimized Kandoo’s two levels of controllers based on ideological inspiration of RCP (routing control platform. Finally, we analyzed the deployment strategies of BGP and OSPF protocol in a distributed control plane of SDN. The simulation results show that our deployment strategies are superior to the traditional routing strategies.

  7. Geometric Structure of 3D Spinal Curves: Plane Regions and Connecting Zones

    Science.gov (United States)

    Berthonnaud, E.; Hilmi, R.; Dimnet, J.

    2012-01-01

    This paper presents a new study of the geometric structure of 3D spinal curves. The spine is considered as an heterogeneous beam, compound of vertebrae and intervertebral discs. The spine is modeled as a deformable wire along which vertebrae are beads rotating about the wire. 3D spinal curves are compound of plane regions connected together by zones of transition. The 3D spinal curve is uniquely flexed along the plane regions. The angular offsets between adjacent regions are concentrated at level of the middle zones of transition, so illustrating the heterogeneity of the spinal geometric structure. The plane regions along the 3D spinal curve must satisfy two criteria: (i) a criterion of minimum distance between the curve and the regional plane and (ii) a criterion controlling that the curve is continuously plane at the level of the region. The geometric structure of each 3D spinal curve is characterized by the sizes and orientations of regional planes, by the parameters representing flexed regions and by the sizes and functions of zones of transition. Spinal curves of asymptomatic subjects show three plane regions corresponding to spinal curvatures: lumbar, thoracic and cervical curvatures. In some scoliotic spines, four plane regions may be detected. PMID:25031873

  8. Blocking sets in Desarguesian planes

    NARCIS (Netherlands)

    Blokhuis, A.; Miklós, D.; Sós, V.T.; Szönyi, T.

    1996-01-01

    We survey recent results concerning the size of blocking sets in desarguesian projective and affine planes, and implications of these results and the technique to prove them, to related problemis, such as the size of maximal partial spreads, small complete arcs, small strong representative systems

  9. Wave-equation Migration Velocity Analysis Using Plane-wave Common Image Gathers

    KAUST Repository

    Guo, Bowen

    2017-06-01

    Wave-equation migration velocity analysis (WEMVA) based on subsurface-offset, angle domain or time-lag common image gathers (CIGs) requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, a WEMVA method using plane-wave CIGs is presented. Plane-wave CIGs reduce the computational cost and memory storage because they are directly calculated from prestack plane-wave migration, and the number of plane waves is often much smaller than the number of shots. In the case of an inaccurate migration velocity, the moveout of plane-wave CIGs is automatically picked by a semblance analysis method, which is then linked to the migration velocity update by a connective function. Numerical tests on two synthetic datasets and a field dataset validate the efficiency and effectiveness of this method.

  10. Elastography for Thyroid Nodules: The Comparison of Diagnostic Performance on Transverse and Longitudinal Planes

    International Nuclear Information System (INIS)

    Moon, Hee Jung; Kwak, Jin Young; Kim, Eun Kyung

    2012-01-01

    To evaluate the diagnostic performance of elastography for thyroid nodules on the transverse and longitudinal planes. Gray scale ultrasonography (US), elastography on trans- verse and longitudinal planes, and fine needle aspiration biopsy for 78 thyroid nodules (malignant: 34 cases, benign: 44 cases) were performed. According to the Asteria criteria of elastography, scores 1 and 2 were classified as probably benign and scores 3 and 4 were classified as suspicious. Strain ratios on transverse and longitudinal planes were measured. Sensitivity, specificity, positive predictive value, negative predictive value, accuracy, and Az value (under the receiver operating characteristics curve) of elastography on transverse and longitudinal planes were calculated and compared. Scores 3 and 4 were more frequently seen in malignant nodules on the longitudinal plane (p value = 0.007), but not significantly seen on the transverse plane (p value = 0.160). Sensitivity, specificity, positive predictive value, negative predictive value, accuracy, and the Az value of elastography on the longitudinal plane were higher than those on the transverse plane, although Az values on the transverse and longtudinal planes were not statistically significant. Diagnostic performance of thyroid elastography, especially sensitivity, were higher on the longitudinal plane than the transverse plane

  11. Positioning of electrode plane systematically influences EIT imaging

    International Nuclear Information System (INIS)

    Krueger-Ziolek, Sabine; Schullcke, Benjamin; Kretschmer, Jörn; Möller, Knut; Zhao, Zhanqi; Müller-Lisse, Ullrich

    2015-01-01

    Up to now, the impact of electrode positioning on electrical impedance tomography (EIT) had not been systematically analyzed due to the lack of a reference method. The aim of the study was to determine the impact of electrode positioning on EIT imaging in spontaneously breathing subjects at different ventilation levels with our novel lung function measurement setup combining EIT and body plethysmography. EIT measurements were conducted in three transverse planes between the 3rd and 4th intercostal space (ICS), at the 5th ICS and between the 6th and 7th ICS (named as cranial, middle and caudal) on 12 healthy subjects. Pulmonary function tests were performed simultaneously by body plethysmography to determine functional residual capacity (FRC), vital capacity (VC), tidal volume (VT), expiratory reserve volume (ERV), and inspiratory reserve volume (IRV). Ratios of impedance changes and body plethysmographic volumes were calculated for every thorax plane (ΔI_E_R_V/ERV, ΔI_V_T/VT and ΔI_I_R_V/IRV). In all measurements of a subject, FRC values and VC values differed ≤5%, which confirmed that subjects were breathing at comparable end-expiratory levels and with similar efforts. In the cranial thorax plane the normalized ΔI_E_R_V/ERV ratio in all subjects was significantly higher than the normalized ΔI_I_R_V/IRV ratio whereas the opposite was found in the caudal chest plane. No significant difference between the two normalized ratios was found in the middle thoracic plane. Depending on electrode positioning, impedance to volume ratios may either increase or decrease in the same lung condition, which may lead to opposite clinical decisions. (paper)

  12. A plane-wave final-state theory of ATI

    International Nuclear Information System (INIS)

    Parker, J.S.; Clark, C.W.

    1993-01-01

    A Fermi Golden Rule calculation of ionization cross-sections provides us with the simplest example of a plane-wave final-state theory. In this method the final (unbound) state is modeled as a plane wave, an approximation that generally gives best results in the high energy limit in which the affect of the atomic potential on the final state can be neglected. A cross-section is then calculated from the matrix element connecting the bound initial state with the final state. The idea of generalizing this method to model transitions among unbound states is credited to L.V. Keldysh, and a number of related formalisms have been proposed that are consistent with the general features of experimental data. Here we describe a plane-wave final-state model of ATI that is in the spirit of these theories, but differs significantly in its implementation and predictions. We will present a comparison of the predictions of the plane-wave model with those of a full numerical integration of the time-dependent Schrodinger equation for atomic hydrogen in a radiation field. The theory and the numerical integration give good qualitative agreement in their predictions of photoelectron spectra over about 14 orders of magnitude

  13. Conquest of the Plane

    OpenAIRE

    Colignatus, Thomas

    2011-01-01

    CONQUEST OF THE PLANE provides: an integrated course for geometry and analysis a didactic build-up that avoids traditional clutter use of only the essentials for good understanding proper place for vectors, complex numbers, linear algebra and trigonometry an original and elegant development of trigonometry an original and elegant foundation for calculus examples from physics, economics and statistics integration within the dynamic environment of Mathematica ...

  14. 16 CFR Figure 1 to Part 1203 - Anatomical Planes

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Anatomical Planes 1 Figure 1 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 1 Figure 1 to Part 1203—Anatomical Planes ER10MR98.001 ...

  15. Plane partition vesicles

    International Nuclear Information System (INIS)

    Rensburg, E J Janse van; Ma, J

    2006-01-01

    We examine partitions and their natural three-dimensional generalizations, plane partitions, as models of vesicles undergoing an inflation-deflation transition. The phase diagrams of these models include a critical point corresponding to an inflation-deflation transition, and exhibits multicritical scaling in the vicinity of a multicritical point located elsewhere on the critical curve. We determine the locations of the multicritical points by analysing the generating functions using analytic and numerical means. In addition, we determine the numerical values of the multicritical scaling exponents associated with the multicritical scaling regimes in these models

  16. In-plane user positioning indoors

    NARCIS (Netherlands)

    Jovanovic, N.; Özçelebi, T.; Lukkien, J.J.; Skoric, B.; Ignatenko, T.

    2014-01-01

    Indoor positioning is a service required by many smart environment applications for various purposes, such as activity classification, indoor navigation and context awareness. In this paper, we present a novel approach to the user positioning problem based on in-plane detection enabled by a set of

  17. Plane-wave scattering from half-wave dipole arrays

    DEFF Research Database (Denmark)

    Jensen, Niels E.

    1970-01-01

    A matrix equation for determination of plane-wave scattering from arrays of thin short-circuited dipoles of lengths about half a wavelength is derived. Numerical and experimental results are presented for linear, circular, and concentric circular arrays.......A matrix equation for determination of plane-wave scattering from arrays of thin short-circuited dipoles of lengths about half a wavelength is derived. Numerical and experimental results are presented for linear, circular, and concentric circular arrays....

  18. Tunnelling of plane waves through a square barrier

    Energy Technology Data Exchange (ETDEWEB)

    Julve, J [IMAFF, Consejo Superior de Investigaciones CientIficas, Serrano 113 bis, Madrid 28006 (Spain); UrrIes, F J de [Departamento de Fisica, Universidad de Alcala de Henares, Alcala de Henares, Madrid (Spain)], E-mail: julve@imaff.cfmac.csic.es, E-mail: fernando.urries@uah.es

    2008-08-01

    The time evolution of plane waves in the presence of a one-dimensional square quantum barrier is considered. Comparison is made between the cases of an infinite and a cut-off (shutter) initial plane wave. The difference is relevant when the results are applied to the analysis of the tunnelling regime. This work is focused on the analytical calculation of the time-evolved solution and highlights the contribution of the resonant (Gamow) states.

  19. Nonlinear differential equations for the wavefront surface at arbitrary Hartmann-plane distances.

    Science.gov (United States)

    Téllez-Quiñones, Alejandro; Malacara-Doblado, Daniel; Flores-Hernández, Ricardo; Gutiérrez-Hernández, David A; León-Rodríguez, Miguel

    2016-03-20

    In the Hartmann test, a wave aberration function W is estimated from the information of the spot diagram drawn in an observation plane. The distance from a reference plane to the observation plane, the Hartmann-plane distance, is typically chosen as z=f, where f is the radius of a reference sphere. The function W and the transversal aberrations {X,Y} calculated at the plane z=f are related by two well-known linear differential equations. Here, we propose two nonlinear differential equations to denote a more general relation between W and the transversal aberrations {U,V} calculated at any arbitrary Hartmann-plane distance z=r. We also show how to directly estimate the wavefront surface w from the information of {U,V}. The use of arbitrary r values could improve the reliability of the measurements of W, or w, when finding difficulties in adequate ray identification at z=f.

  20. Nonpolar a-plane light-emitting diode with an in-situ SiNx interlayer on r-plane sapphire grown by metal-organic chemical vapour deposition

    International Nuclear Information System (INIS)

    Fang Hao; Long Hao; Sang Li-Wen; Qi Sheng-Li; Xiong Chang; Yu Tong-Jun; Yang Zhi-Jian; Zhang Guo-Yi

    2011-01-01

    We report on the growth and fabrication of nonpolar a-plane light emitting diodes with an in-situ SiN x interlayer grown between the undoped a-plane GaN buffer and Si-doped GaN layer. X-ray diffraction shows that the crystalline quality of the GaN buffer layer is greatly improved with the introduction of the SiN x interlayer. The electrical properties are also improved. For example, electron mobility and sheet resistance are reduced from high resistance to 31.6 cm 2 /(V·s) and 460 Ω/□ respectively. Owing to the significant effect of the SiN x interlayer, a-plane LEDs are realized. Electroluminescence of a nonpolar a-plane light-emitting diode with a wavelength of 488nm is demonstrated. The emission peak remains constant when the injection current increases to over 20 mA. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. Plane-wave electronic structure calculations on a parallel supercomputer

    International Nuclear Information System (INIS)

    Nelson, J.S.; Plimpton, S.J.; Sears, M.P.

    1993-01-01

    The development of iterative solutions of Schrodinger's equation in a plane-wave (pw) basis over the last several years has coincided with great advances in the computational power available for performing the calculations. These dual developments have enabled many new and interesting condensed matter phenomena to be studied from a first-principles approach. The authors present a detailed description of the implementation on a parallel supercomputer (hypercube) of the first-order equation-of-motion solution to Schrodinger's equation, using plane-wave basis functions and ab initio separable pseudopotentials. By distributing the plane-waves across the processors of the hypercube many of the computations can be performed in parallel, resulting in decreases in the overall computation time relative to conventional vector supercomputers. This partitioning also provides ample memory for large Fast Fourier Transform (FFT) meshes and the storage of plane-wave coefficients for many hundreds of energy bands. The usefulness of the parallel techniques is demonstrated by benchmark timings for both the FFT's and iterations of the self-consistent solution of Schrodinger's equation for different sized Si unit cells of up to 512 atoms

  2. A 1.3 giga pixels focal plane for GAIA

    Science.gov (United States)

    Laborie, Anouk; Pouny, Pierre; Vetel, Cyril; Collados, Emmanuel; Rougier, Gilles; Davancens, Robert; Zayer, Igor; Perryman, Michael; Pace, Oscar

    2004-06-01

    The astrometric mission GAIA is a cornerstone mission of the European Space Agency, due for launch in the 2010 time frame. Requiring extremely demanding performance GAIA calls for the development of an unprecedented large focal plane featuring innovative technologies. For securing the very challenging GAIA development, a significant number of technology activities have been initiated by ESA through a competitive selection process. In this context, an industrial consortium led by EADS-Astrium (France) with e2v technologies (UK) as major subcontractor was selected for the GAIA CCD and Focal Plane Technology Demonstrators programme, which is by far the most significant and the most critical GAIA pre-development for all aspects: science performance, development schedule and cost. This programme has started since August 2002 and will end early 2005 prior to commencement of the GAIA Phase B. While the GAIA payload will host three instruments and related focal planes, the major mission objectives are assigned to the Astrometric (ASTRO) Focal Plane, which is the subject of this presentation.

  3. 3-D Velocity Estimation for Two Planes in vivo

    DEFF Research Database (Denmark)

    Holbek, Simon; Pihl, Michael Johannes; Ewertsen, Caroline

    2014-01-01

    3-D velocity vectors can provide additional flow information applicable for diagnosing cardiovascular diseases e.g. by estimating the out-of-plane velocity component. A 3-D version of the Transverse Oscillation (TO) method has previously been used to obtain this information in a carotid flow...... and stored on the experimental scanner SARUS. The full 3-D velocity profile can be created and examined at peak-systole and end-diastole without ECG gating in two planes. Maximum out-of-plane velocities for the three peak-systoles and end-diastoles were 68.5 5.1 cm/s and 26.3 3.3 cm/s, respectively....... In the longitudinal plane, average maximum peak velocity in flow direction was 65.2 14.0 cm/s at peak-systole and 33.6 4.3 cm/s at end-diastole. A commercial BK Medical ProFocus UltraView scanner using a spectral estimator gave 79.3 cm/s and 14.6 cm/s for the same volunteer. This demonstrates that real-time 3-D...

  4. 3D-Structured Stretchable Strain Sensors for Out-of-Plane Force Detection.

    Science.gov (United States)

    Liu, Zhiyuan; Qi, Dianpeng; Leow, Wan Ru; Yu, Jiancan; Xiloyannnis, Michele; Cappello, Leonardo; Liu, Yaqing; Zhu, Bowen; Jiang, Ying; Chen, Geng; Masia, Lorenzo; Liedberg, Bo; Chen, Xiaodong

    2018-05-17

    Stretchable strain sensors, as the soft mechanical interface, provide the key mechanical information of the systems for healthcare monitoring, rehabilitation assistance, soft exoskeletal devices, and soft robotics. Stretchable strain sensors based on 2D flat film have been widely developed to monitor the in-plane force applied within the plane where the sensor is placed. However, to comprehensively obtain the mechanical feedback, the capability to detect the out-of-plane force, caused by the interaction outside of the plane where the senor is located, is needed. Herein, a 3D-structured stretchable strain sensor is reported to monitor the out-of-plane force by employing 3D printing in conjunction with out-of-plane capillary force-assisted self-pinning of carbon nanotubes. The 3D-structured sensor possesses large stretchability, multistrain detection, and strain-direction recognition by one single sensor. It is demonstrated that out-of-plane forces induced by the air/fluid flow are reliably monitored and intricate flow details are clearly recorded. The development opens up for the exploration of next-generation 3D stretchable sensors for electronic skin and soft robotics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Modelling out-of-plane and in-plane resonant modes of microplates in liquid media

    International Nuclear Information System (INIS)

    Ruiz-Díez, V; Hernando-García, J; Manzaneque, T; Sánchez-Rojas, J L; Kucera, M; Schmid, U

    2015-01-01

    In this article, the quality factor and the resonant frequency of different vibrating modes of microplates immersed in liquid are simulated by means of a finite element method (FEM) and compared with experimental data. For the in-plane modes, we studied the first extensional mode of mid-point supported microplates, which may be efficiently actuated by a thin piezoelectric film on top of the structure. A comparison of different approaches to account for the viscous loading in computationally efficient 2D finite element models is presented. As an alternative to the harmonic response, a novel multitone excitation in the fluid–structure interaction model allows for the calculation of the frequency response of the structure. For the out-of-plane modes, different modes were simulated and compared to analytical models to validate our approach. Our 2D FEM model yields more accurate estimations of the experimental resonance frequency and quality factors than the available analytical models. With the help of these tools, the applicability of the micro-resonators as viscosity and density sensors is discussed. (paper)

  6. In-Plane Vibrations of Circular Curved Beams with a Transverse Open Crack

    OpenAIRE

    Öz, H. R.; Daş, M. T.

    2006-01-01

    In this study, the in plane vibrations of cracked circular curved beams is investigated. The beam is an Euler-Bernoulli beam. Only bending and extension effects are included. The curvature is in a single plane. In plane vibrations is analyzed using FEM. In the analysis, elongation, bending and rotary inertia effects are included. Four degrees of freedom for in-plane vibrations is assumed. Natural frequencies of the beam with a crack in different locations and depths are calculated using FEM. ...

  7. An Image Encryption Method Based on Bit Plane Hiding Technology

    Institute of Scientific and Technical Information of China (English)

    LIU Bin; LI Zhitang; TU Hao

    2006-01-01

    A novel image hiding method based on the correlation analysis of bit plane is described in this paper. Firstly, based on the correlation analysis, different bit plane of a secret image is hided in different bit plane of several different open images. And then a new hiding image is acquired by a nesting "Exclusive-OR" operation on those images obtained from the first step. At last, by employing image fusion technique, the final hiding result is achieved. The experimental result shows that the method proposed in this paper is effective.

  8. Efficient Return Algorithms For Associated Plasticity With Multiple Yield Planes

    DEFF Research Database (Denmark)

    Clausen, Johan Christian; Damkilde, Lars; Andersen, Lars

    2006-01-01

    of such criteria. The return formulae are in closed form and no iteration is required. The method accounts for three types of stress return: Return to a single yield plane, to a discontinuity line at the intersection of two yield planes and to a discontinuity point at the intersection between three or more yield...... planes. The infinitesimal and the consistent elastoplastic constitutive matrix are calculated for each type of stress return, as are the conditions to ascertain which type of return is required. The method is exemplified with the Mohr-Coulomb yield criterion....

  9. Spatial judgments in the horizontal and vertical planes from different vantage points.

    Science.gov (United States)

    Prytz, Erik; Scerbo, Mark W

    2012-01-01

    Todorović (2008 Perception 37 106-125) reported that there are systematic errors in the perception of 3-D space when viewing 2-D linear perspective drawings depending on the observer's vantage point. Because these findings were restricted to the horizontal plane, the current study was designed to determine the nature of these errors in the vertical plane. Participants viewed an image containing multiple colonnades aligned on parallel converging lines receding to a vanishing point. They were asked to judge where, in the physical room, the next column should be placed. The results support Todorović in that systematic deviations in the spatial judgments depended on vantage point for both the horizontal and vertical planes. However, there are also marked differences between the two planes. While judgments in both planes failed to compensate adequately for the vantage-point shift, the vertical plane induced greater distortions of the stimulus image itself within each vantage point.

  10. Thermal properties of self-gravitating plane-symmetric configuration

    Energy Technology Data Exchange (ETDEWEB)

    Hara, T; Ikeuchi, S [Kyoto Univ. (Japan). Dept. of Physics; Sugimoto, D

    1976-09-01

    As a limiting case of rotating stars, thermal properties of infinite plane-symmetric self-gravitating gas are investigated. Such a configuration is characterized by surface density of the plane instead of stellar mass. In the Kelvin contraction, temperature of the interior decreases, if the surface density is kept constant. If the accretion of matter takes place, or if the angular momenta are transferred outward, the surface density will increase. In this case, the temperature of the interior may increase. When a nuclear burning is ignited, it is thermally unstable in most cases, even when electrons are non-degenerate. This thermal instability is one of the essential differences of the plane-symmetric configuration from the spherical star. Such instabilities are computed for different cases of nuclear fuels. This type of nuclear instability is the same phenomenon as thermal instability of a thin shell burning in a spherical star.

  11. Out-of-plane coercive field of Ni{sub 80}Fe{sub 20} antidot arrays

    Energy Technology Data Exchange (ETDEWEB)

    Chunhong, Gao [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Ke, Chen [Chongqing Electric Power College, Chongqing (China); Ling, Lue; Jianwei, Zhao [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Chen Peng, E-mail: pchen@swu.edu.c [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China)

    2010-11-15

    The out-of-plane magnetic anisotropy and out-of-plane magnetization reversal process of nanoscale Ni{sub 80}Fe{sub 20} antidot arrays deposited by magnetron sputtering technique on an anodic aluminum oxide (AAO) membrane are investigated. The angular dependence of out-of-plane remanent magnetization of Ni{sub 80}Fe{sub 20} antidot arrays shows that the maximum remanence is in-plane and the squareness of the out-of-plane hysteresis loop follow a |cos {theta}| dependence. The angular dependence of out-of-plane coercivity of Ni{sub 80}Fe{sub 20} antidot arrays shows that the maximum coercivity lies on the surface of a cone with its symmetric axis normal to the sample plane, which indicates a transition of magnetic reversal from curling to coherent rotation when changing the angle between the applied magnetic field and the sample plane.

  12. A differentiated plane wave: its passage through a slab

    International Nuclear Information System (INIS)

    Hannay, J H; Nye, J F

    2013-01-01

    Differentiating a monochromatic uniform plane electromagnetic wavefield with respect to its direction produces, from a field that is completely lacking in localized specific features, one that contains a straight vortex-like line, a ‘C-line’ of defined circular polarization. There is also a second separate C-line of opposite handedness; indeed, in a sense, a straight line of every polarization is realized. Because of its primitive construction it is analytically simple to study the passage of a differentiated wave obliquely through a plane interface into a medium of different refractive index, to trace its C-line. This was done in an earlier paper. Here we extend the method to passage through a parallel-sided transparent slab. There are multiple reflections within the slab, as in a Fabry–Pérot interferometer. The exiting wave, as a single differentiated plane wave, has a straight oblique C-line. Inside the slab, and in front of it, there is wave interference. The result is a coiled, helix-like, C-line in front of the slab and another inside it. The two coils wrap around separate hyperboloids of one sheet, like cooling towers. The emerging straight C-line is shifted (with respect to a C-line in a notional undisturbed incident plane wave) both in the plane of incidence and transversely to it, and the second C-line behaves similarly. The analysis is exact and could be extended in a straightforward way to a general stratified medium. (paper)

  13. Investigation of the in-plane and out-of-plane electrical properties of metallic nanoparticles in dielectric matrix thin films elaborated by atomic layer deposition

    Science.gov (United States)

    Thomas, D.; Puyoo, E.; Le Berre, M.; Militaru, L.; Koneti, S.; Malchère, A.; Epicier, T.; Roiban, L.; Albertini, D.; Sabac, A.; Calmon, F.

    2017-11-01

    Pt nanoparticles in a Al2O3 dielectric matrix thin films are elaborated by means of atomic layer deposition. These nanostructured thin films are integrated in vertical and planar test structures in order to assess both their in-plane and out-of-plane electrical properties. A shadow edge evaporation process is used to develop planar devices with electrode separation distances in the range of 30 nm. Both vertical and planar test structures show a Poole-Frenkel conduction mechanism. Low trap energy levels (<0.1 eV) are identified for the two test structures which indicates that the Pt islands themselves are not acting as traps in the PF mechanism. Furthermore, a more than three order of magnitude current density difference is observed between the two geometries. This electrical anisotropy is attributed to a large electron mobility difference in the in-plane and out-of-plane directions which can be related to different trap distributions in both directions.

  14. Across plane ionic conductivity of highly oriented neodymium doped ceria thin films.

    Science.gov (United States)

    Baure, G; Kasse, R M; Rudawski, N G; Nino, J C

    2015-05-14

    A methodology to limit interfacial effects in thin films is proposed and explained. The strategy is to reduce the impact of the electrode interfaces and eliminate cross grain boundaries that impede ionic motion. To this end, highly oriented Nd0.1Ce0.9O2-δ (NDC) nanocrystalline thin films were grown using pulsed laser deposition (PLD) on platinized single crystal a-plane sapphire substrates. High resolution cross-sectional transmission electron microscopy (HR-XTEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) verified the films were textured with columnar grains. The average widths of the columns were approximately 40 nm and not significantly changed by film thickness between 100 and 300 nm. HR-XTEM and XRD determined the {111} planes of NDC were grown preferentially on top of the {111} planes of platinum despite the large lattice mismatch between the two planes. From the XRD patterns, the out of plane strains on the platinum and NDC layers were less than 1%. This can be explained by the coincident site lattice (CSL) theory. Rotating the {111} ceria planes 19.11° with respect to the {111} platinum planes forms a Σ7 boundary where 1 in 7 cerium lattice sites are coincident with the platinum lattice sites. This orientation lowers interfacial energy promoting the preferential alignment of those two planes. The across plane ionic conductivity was measured at low temperatures (<350 °C) for the various film thicknesses. It is here shown that columnar grain growth of ceria can be induced on platinized substrates allowing pathways that are clear of blocking grain boundaries that cause conductivities to diminish as film thickness decreases.

  15. A differentiated plane wave as an electromagnetic vortex

    International Nuclear Information System (INIS)

    Hannay, J H; Nye, J F

    2015-01-01

    Differentiating a complex scalar plane wave with respect to its direction produces an isolated straight vortex line and has a natural extension, described in earlier papers, to the vector waves of electromagnetism—a differentiated plane wave (DPW). It epitomizes destructive interference and will be shown to have the local structure of an electromagnetic vortex. In this paper its polarization structure and Poynting vector field are compared and contrasted with that of the family of linear polynomial waves, of which it is a special member. By definition this wider family has a general linear complex vector function of position multiplying a plane wave, but the function must be such that the combination satisfies Maxwell’s equations. This forces translational invariance of the function along the wavevector direction—in other words the wave is ‘non-diffracting’. In a natural sense all possible polarizations are exhibited once only. But the DPW has a distinctive polarization structure only partly explored previously. Both classes of waves share similar Poynting vector fields, which can be ‘elliptic’ (helix-like flow lines) or ‘hyperbolic’, of a repulsive nature, unexpected for a vortex. Both classes can be considered as a limit in the superposition of three closely parallel ordinary plane waves in destructive interference, and this derivation is supplied in full here. (paper)

  16. STRUCTURAL ANALYSIS OF IN-PLANE LOADED CLT BEAMS

    Directory of Open Access Journals (Sweden)

    Mario Jeleč

    2017-01-01

    Full Text Available Cross laminated timber (CLT is a versatile engineered timber product that is increasingly well-known and of global interest in several applications such as full size plane or linear timber elements. The aim of this study involves investigating the performance of CLT beams loaded in-plane by considering bending and shear stress analysis with a special emphasis on the in-plane shear behavior including the complex internal structure of CLT. Numerical analysis based on 3D-FE models was used and compared with two existing analytical approaches, namely representative volume sub element (method I and composite beam theory (method II. The separate verification of bending and shear stresses including tree different shear failure modes was performed, and a good agreement was obtained. The main difference between the results relates to shear failure mode in the crossing areas between the orthogonally bonded lamellas in which the distribution of shear stresses τzx over the crossing areas per height of the CLT beam is not in accordance with the analytical assumptions. The presented analyses constitute the first attempt to contribute to the on-going review process of Eurocode 5 with respect to CLT beams loaded-in plane. Currently, regulations on designing these types of beams do not exist, and thus experimental and numerical investigations are planned in the future.

  17. Control of in-plane texture of body centered cubic metal thin films

    International Nuclear Information System (INIS)

    Harper, J.M.; Rodbell, K.P.; Colgan, E.G.; Hammond, R.H.

    1997-01-01

    We show that dramatically different in-plane textures can be produced in body centered cubic (bcc) metal thin films deposited on amorphous substrates under different deposition conditions. The crystallographic orientation distribution of polycrystalline bcc metal thin films on amorphous substrates often has a strong left-angle 110 right-angle fiber texture, indicating that {110} planes are parallel to the substrate plane. When deposition takes place under bombardment by energetic ions or atoms at an off-normal angle of incidence, the left-angle 110 right-angle fiber texture develops an in-plane texture, indicating nonrandom azimuthal orientations of the crystallites. Three orientations in Nb films have been observed under different deposition geometries, in which the energetic particle flux coincides with channeling directions in the bcc crystal structure. In-plane orientations in Mo films have also been obtained in magnetron sputtering systems with various configurations. These are described, and an example is given in which the in-plane orientation of Mo films deposited in two different in-line magnetron sputtering systems differs by a 90 degree rotation. In these two cases, there is a strong left-angle 110 right-angle fiber texture, but the in-plane left-angle 100 right-angle direction is oriented parallel to the scan direction in one system, and perpendicular to the scan direction in the other system. The conditions which produce such different in-plane textures in two apparently similar sputtering systems are discussed. copyright 1997 American Institute of Physics

  18. Epitaxial growth of Sb-doped nonpolar a-plane ZnO thin films on r-plane sapphire substrates by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hou-Guang, E-mail: houguang@isu.edu.tw [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China); Hung, Sung-Po [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China)

    2014-02-15

    Highlights: ► Sb-doped nonpolar a-plane ZnO layers were epitaxially grown on sapphire substrates. ► Crystallinity and electrical properties were studied upon growth condition and doping concentration. ► The out-of-plane lattice spacing of ZnO films reduces monotonically with increasing Sb doping level. ► The p-type conductivity of ZnO:Sb film is closely correlated with annealing condition and Sb doping level. -- Abstract: In this study, the epitaxial growth of Sb-doped nonpolar a-plane (112{sup ¯}0) ZnO thin films on r-plane (11{sup ¯}02) sapphire substrates was performed by radio-frequency magnetron sputtering. The influence of the sputter deposition conditions and Sb doping concentration on the microstructural and electrical properties of Sb-doped ZnO epitaxial films was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and the Hall-effect measurement. The measurement of the XRD phi-scan indicated that the epitaxial relationship between the ZnO:Sb layer and sapphire substrate was (112{sup ¯}0){sub ZnO}//(11{sup ¯}02){sub Al{sub 2O{sub 3}}} and [11{sup ¯}00]{sub ZnO}//[112{sup ¯}0]{sub Al{sub 2O{sub 3}}}. The out-of-plane a-axis lattice parameter of ZnO films was reduced monotonically with the increasing Sb doping level. The cross-sectional transmission electron microscopy (XTEM) observation confirmed the absence of any significant antimony oxide phase segregation across the thickness of the Sb-doped ZnO epitaxial film. However, the epitaxial quality of the films deteriorated as the level of Sb dopant increased. The electrical properties of ZnO:Sb film are closely correlated with post-annealing conditions and Sb doping concentrations.

  19. Wood working: planing and moulding in the last frontier

    Science.gov (United States)

    David Nicholls

    2007-01-01

    Planing and moulding is an important step in the value-added manufacture of wood products, and recent advances in Alaska have been noteworthy. Just a few years ago, most planing occurred on simple shop planers, producing lumber for retail sale or for wood working uses such as cabinet stock. Currently there are at least 26 planers and 13 moulders in-production at...

  20. Identifying logical planes formed of compute nodes of a subcommunicator in a parallel computer

    Science.gov (United States)

    Davis, Kristan D.; Faraj, Daniel A.

    2016-03-01

    In a parallel computer, a plurality of logical planes formed of compute nodes of a subcommunicator may be identified by: for each compute node of the subcommunicator and for a number of dimensions beginning with a first dimension: establishing, by a plane building node, in a positive direction of the first dimension, all logical planes that include the plane building node and compute nodes of the subcommunicator in a positive direction of a second dimension, where the second dimension is orthogonal to the first dimension; and establishing, by the plane building node, in a negative direction of the first dimension, all logical planes that include the plane building node and compute nodes of the subcommunicator in the positive direction of the second dimension.

  1. Improvement of image quality of holographic projection on tilted plane using iterative algorithm

    Science.gov (United States)

    Pang, Hui; Cao, Axiu; Wang, Jiazhou; Zhang, Man; Deng, Qiling

    2017-12-01

    Holographic image projection on tilted plane has an important application prospect. In this paper, we propose a method to compute the phase-only hologram that can reconstruct a clear image on tilted plane. By adding a constant phase to the target image of the inclined plane, the corresponding light field distribution on the plane that is parallel to the hologram plane is derived through the titled diffraction calculation. Then the phase distribution of the hologram is obtained by the iterative algorithm with amplitude and phase constrain. Simulation and optical experiment are performed to show the effectiveness of the proposed method.

  2. Force Lines in Plane Stress

    DEFF Research Database (Denmark)

    Rathkjen, Arne

    A state of plane stress is illustrated by means of two families of curves, each family representing constant values of a derivative of Airy's stress function. The two families of curves form a map giving in the first place an overall picture of regions of high and low stress, and in the second...

  3. Infinite periodic minimal surfaces and their crystallography in the hyperbolic plane

    International Nuclear Information System (INIS)

    Sadoc, J.F.; Charvolin, J.

    1989-01-01

    Infinite periodic minimal surfaces are now being introduced to describe some complex structures with large cells, formed by inorganic and organic materials, which can be considered as crystals of surfaces or films. Among them are the spectacular cubic crystalline structures built by amphiphilic molecules in the presence of water. The crystallographic properties of these surfaces are studied from an intrinsic point of view, using operations of groups of symmetry defined by displacements on their surface. This approach takes advantage of the relation existing between these groups and those characterizing the tilings of the hyperbolic plane. First, the general bases of the particular crystallography of the hyperbolic plane are presented. Then the translation subgroups of the hyperbolic plane are determined in one particular case, that of the tiling involved in the problem of cubic structures of liquid crystals. Finally, it is shown that the infinite periodic minimal surfaces used to describe these structures can be obtained from the hyperbolic plane when some translations are forced to identity. This is indeed formally analogous to the simple process of transformation of a Euclidean plane into a cylinder, when a translation of the plane is forced to identity by rolling the plane onto itself. Thus, this approach transforms the 3D problem of infinite periodic minimal surfaces into a 2D problem and, although the latter is to be treated in a non-Euclidean space, provides a relatively simple formalism for the investigation of infinite periodic surfaces in general and the study of the geometrical transformations relating them. (orig.)

  4. Endoscopic facelift of the frontal and temporal areas in multiple planes.

    Science.gov (United States)

    Hu, Xiaogen; Ma, Haihuan; Xue, Zhiqiang; Qi, Huijie; Chen, Bo

    2017-02-01

    The detachment planes used in endoscopic facelifts play an important role in determining the results of facial rejuvenation. In this study, we introduced the use of multiple detachment planes for endoscopic facelifts of the frontal and temporal areas, and examined its outcome. This study included 47 patients (38 female, 9 male) who requested frontal and temporal facelifts from January 2009 to January 2014. The technique of dissection in multiple planes was used for all 47 patients. In this technique, the frontal dissection was first carried out in the subgaleal plane, before being changed to the subperiosteal plane about 2 cm above the eyebrow line. Temporal dissection was carried out in both the subcutaneous and subgaleal planes. After detachment, frontal and temporal fixations were achieved using nonabsorbable sutures, and the incisions were closed. During follow-up (ranging from 6-24 months after surgery), the patients were shown their pre- and postoperative images, and asked to rate their satisfaction with the procedure. Complications encountered were documented. All 47 patients had complete recovery without any serious complications. The patient satisfaction rate was 93.6%. Minor complications included dimpling at the suture site, asymmetry, overcorrection, transitory paralysis, late oedema, haematoma, infection, scarring and hair loss. These complications resolved spontaneously and were negligible after complete recovery. Dissection in multiple planes is valuable in frontal and temporal endoscopic facelifts. It may be worthwhile to introduce the use of this technique in frontal and temporal facelifts, as it may lead to improved outcomes. Copyright: © Singapore Medical Association

  5. Lower bound plane stress element for modelling 3D structures

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao

    2017-01-01

    In-plane action is often the primary load-carrying mechanism of reinforced concrete structures. The plate bending action will be secondary, and the behaviour of the structure can be modelled with a reasonable accuracy using a generalised three-dimensional plane stress element. In this paper...

  6. Three-dimensional microstructural effects on plane strain ductile crack growth

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, Alan

    2006-01-01

    Ductile crack growth under mode 1, plane strain, small scale yielding conditions is analyzed. Overall plane strain loading is prescribed, but a full 3D analysis is carried out to model three dimensional microstructural effects. An elastic-viscoplastic constitutive relation for a porous plastic...

  7. Carbon nanotube plane fastener

    Directory of Open Access Journals (Sweden)

    Kaori Hirahara

    2011-12-01

    Full Text Available We report a feature of carbon nanotubes (CNTs that arises when the surfaces of two vertically-aligned CNT brushes are pressed together. Adhesion between the CNTs creates a plane fastener-like device. Observations from scanning electron microscopy and measurements of adhesion properties indicate a device-dependence on CNT density and shape near the tip region. Among other applications, such fasteners have the potential to attach small components onto micron-sized electronic devices.

  8. Scattering on plane waves and the double copy

    Science.gov (United States)

    Adamo, Tim; Casali, Eduardo; Mason, Lionel; Nekovar, Stefan

    2018-01-01

    Perturbatively around flat space, the scattering amplitudes of gravity are related to those of Yang–Mills by colour-kinematic duality, under which gravitational amplitudes are obtained as the ‘double copy’ of the corresponding gauge theory amplitudes. We consider the question of how to extend this relationship to curved scattering backgrounds, focusing on certain ‘sandwich’ plane waves. We calculate the 3-point amplitudes on these backgrounds and find that a notion of double copy remains in the presence of background curvature: graviton amplitudes on a gravitational plane wave are the double copy of gluon amplitudes on a gauge field plane wave. This is non-trivial in that it requires a non-local replacement rule for the background fields and the momenta and polarization vectors of the fields scattering on the backgrounds. It must also account for new ‘tail’ terms arising from scattering off the background. These encode a memory effect in the scattering amplitudes, which naturally double copies as well.

  9. On deformation of complex continuum immersed in a plane space

    Science.gov (United States)

    Kovalev, V. A.; Murashkin, E. V.; Radayev, Y. N.

    2018-05-01

    The present paper is devoted to mathematical modelling of complex continua deformations considered as immersed in an external plane space. The complex continuum is defined as a differential manifold supplied with metrics induced by the external space. A systematic derivation of strain tensors by notion of isometric immersion of the complex continuum into a plane space of a higher dimension is proposed. Problem of establishing complete systems of irreducible objective strain and extrastrain tensors for complex continuum immersed in an external plane space is resolved. The solution to the problem is obtained by methods of the field theory and the theory of rational algebraic invariants. Strain tensors of the complex continuum are derived as irreducible algebraic invariants of contravariant vectors of the external space emerging as functional arguments in the complex continuum action density. Present analysis is restricted to rational algebraic invariants. Completeness of the considered systems of rational algebraic invariants is established for micropolar elastic continua. Rational syzygies for non-quadratic invariants are discussed. Objective strain tensors (indifferent to frame rotations in the external plane space) for micropolar continuum are alternatively obtained by properly combining multipliers of polar decompositions of deformation and extra-deformation gradients. The latter is realized only for continua immersed in a plane space of the equal mathematical dimension.

  10. A collapse pressure prediction model for horizontal shale gas wells with multiple weak planes

    Directory of Open Access Journals (Sweden)

    Ping Chen

    2015-01-01

    Full Text Available Since collapse of horizontal wellbore through long brittle shale interval is a major problem, the occurrence characteristics of weak planes were analyzed according to outcrop, core, and SEM and FMI data of shale rocks. A strength analysis method was developed for shale rocks with multiple weak planes based on weak-plane strength theory. An analysis was also conducted of the strength characteristics of shale rocks with uniform distribution of multiple weak planes. A collapse pressure prediction model for horizontal wells in shale formation with multiple weak planes was established, which takes into consideration the occurrence of each weak plane, wellbore stress condition, borehole azimuth, and in-situ stress azimuth. Finally, a case study of a horizontal shale gas well in southern Sichuan Basin was conducted. The results show that the intersection angle between the shale bedding plane and the structural fracture is generally large (nearly orthogonal; with the increase of weak plane number, the strength of rock mass declines sharply and is more heavily influenced by weak planes; when there are more than four weak planes, the rock strength tends to be isotropic and the whole strength of rock mass is greatly weakened, significantly increasing the risk of wellbore collapse. With the increase of weak plane number, the drilling fluid density (collapse pressure to keep borehole stability goes up gradually. For instance, the collapse pressure is 1.04 g/cm3 when there are no weak planes, and 1.55 g/cm3 when there is one weak plane, and 1.84 g/cm3 when there are two weak planes. The collapse pressure prediction model for horizontal wells proposed in this paper presented results in better agreement with those in actual situation. This model, more accurate and practical than traditional models, can effectively improve the accuracy of wellbore collapse pressure prediction of horizontal shale gas wells.

  11. Numerical Study on the In-Plane and Out-of-Plane Resistance of Brick Masonry Infill Panels in Steel Frames

    Directory of Open Access Journals (Sweden)

    Vahid Bahreini

    2017-01-01

    Full Text Available Masonry infill walls are one of the main forms of interior partitions and exterior walls in many parts of the world. Nevertheless, serious damage and loss of stability of many masonry infill walls had been reported during recent earthquakes. To improve their performance, the interaction between these infill walls and the bounding frames needs to be properly investigated. Such interaction can dramatically increase the stiffness of the frame in the in-plane direction. To avoid the negative aspects of inappropriate interactions between the frame and infill wall, some kind of isolation needs to be introduced. In this paper, three different configurations have been evaluated by using the general finite element software, ABAQUS. Nonlinear pushover and time history analyses have been conducted for each of the three configurations. Results showed that isolation of the infill from the frame has a significant effect on the in-plane response of infilled frames. Furthermore, adequate out-of-plane stability of the infill wall has been achieved. The results show that masonry infill walls that have full contact at the top of the wall but isolated from columns have shown acceptable performance.

  12. SAFE-PLANE, Stress Analysis of Planar Structure by Finite Elements Method

    International Nuclear Information System (INIS)

    Cornell, D.C.; Reich, Morris

    1967-01-01

    1 - Description of problem or function: SAFE-PLANE is applied to two- dimensional structures of arbitrary geometry under in-plane loads. Either plane stress or plane strain conditions may be imposed. Mechanical and thermal loads are permitted. 2 - Method of solution: The finite-element method is used to construct a mathematical model by assembling discrete elements. The total potential energy of the structure is determined and subsequently minimized by iteration on components of the displacement field until static equilibrium of the structure is attained. Strains and stresses are computed from the resulting displacements. 3 - Restrictions on the complexity of the problem: Multi-material structures with varying rigidities converge very slowly. Not valid for incompressible materials. Maximum number of nodal points = 675. Maximum number of elements = 1350

  13. Influence of temperature on δ-hydride habit plane in α-Zirconium

    International Nuclear Information System (INIS)

    Singh, R. N.; Stahle, P.; Banerjee, S.; Ristmanaa, Matti; Sauramd, K.

    2008-01-01

    Dilute Zr-alloy with hcp α-Zr as major phase is used as pressure boundary for hot coolant in CANDU, PHWR and RBMK reactors. Hydrogen / deuterium ingress during service makes the pressure boundary components like pressure tubes of the aforementioned reactors susceptible to hydride embrittlement. Hydride acquires plate shaped morphology and the broad face of the hydride plate coincides with certain crystallographic plane of α-Zr crystal, which is called habit plane. Hydride plate oriented normal to tensile stress significantly increases the degree of embrittlement. Thus key to mitigating the damage due to hydride embrittlement is to avoid the formation of hydride plates normal to tensile stress. Two different theoretical approaches are used to determine the habit plane of precipitates viz., geometrical and solid mechanics. For the geometrical approach invariant plane and invariant-line criteria have been applied successfully and for the solid mechanics approach strain energy minimization criteria have been used successfully. Solid mechanics approach using strain energy computed by FEM technique has been applied to hydride precipitation in Zr-alloys, but the emphasis has been to understand the solvus hysteresis. The objective of the present investigation is to predict the habit plane of δ-hydride precipitating in α-Zr at 25, 300, 400 and 450 .deg. C. using strain energy minimization technique. The δ-hydride phase is modeled to undergo isotropic elastic and plastic deformation. The α-Zr phase was modeled to undergo transverse isotropic elastic deformation. Both isotropic plastic and transverse isotropic plastic deformations of α-Zr were considered. Further, both perfect and linear work-hardening plastic behaviors were considered. Accommodation strain energy of δ-hydrides forming in α-Zr crystal was computed using initial strain method as a function of hydride nuclei orientation. Hydride was modeled as disk with circular edge. The simulation was carried out

  14. ANALYSIS OF A RIGID WALL IN AN ELASTIC WEIGHTY HALF-PLANE

    Directory of Open Access Journals (Sweden)

    K. V. Dmitrieva

    2016-01-01

    Full Text Available The analysis of stress-strain state of a rigid wall in an elastic weighty half-plane with a broken outline is carried out. To this end, the auxiliary problem of displacements definition in an elastic weighty quarter-plane was solved. Ritz method derived a formula to determine the displacements of elastic flat wedge boundaries in view of its own weight. On the basis of the received expressions the algorithm of displacements definition of a crack in an elastic weighty half-plane with a broken outline is developed. Analytical calculation of a rigid vertical wall located in an elastic weighty half-plane under the influence of a horizontal load, carried out by two methods: by Zhemochkin's method and finite difference method. In the problem statement an elastic half-plane is considered a model of the soil medium, therefore, only compressive normal stresses can arise on the connection of the wall with the elastic base. This assumption implies occurrence of discontinuities soil medium, and leads for the wall to an emergence of two dividing points of boundary conditions. The determination of the boundaries contact of the wall with the elastic half-plane, are not known in advance, is performed by iteratively way at each step set the position of dividing points of boundary conditions and the system of canonical equations of a corresponding method is written.  If tensile stresses appear in wall-base contact and/or there is overlap of the crack edges occurs, then proceeds to the next iteration. Analysis of the results shows that the bending moment and shear forces in sections of the rigid wall in a broken weighty half-plane differ slightly from the same diagrams constructed for a rigid wall in an elastic weightless half-plane. The verification of the results of analytical calculation with the results received by using the LIRA 9.6 that implements the finite element method is obtained. The calculation results for the rigid wall in an elastic weighty half-plane

  15. Random skew plane partitions with a piecewise periodic back wall

    DEFF Research Database (Denmark)

    Boutillier, Cedric; Mkrtchyan, Sevak; Reshetikhin, Nicolai

    Random skew plane partitions of large size distributed according to an appropriately scaled Schur process develop limit shapes. In the present work we consider the limit of large random skew plane partitions where the inner boundary approaches a piecewise linear curve with non-lattice slopes. Muc...

  16. Ground penetrating radar antenna measurements based on plane-wave expansions

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2005-01-01

    The plane-wave transmitting spectrum of the system consisting of the ground penetrating radar (GPR) antenna and the air-soil interface is measured using a loop buried in the soil. The plane-wave spectrum is used to determine various parameters characterizing the radiation of the GPR antenna...

  17. Plane-Wave Characterization of Antennas Close to a Planar Interface

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    The plane-wave scattering matrix is used to characterize antennas that are located just above a planar interface that separates two media. The plane-wave transmitting spectrum for the field radiated downwards into the lower medium is expressed directly in terms of the current distribution of the ...

  18. Preliminary embryological study of the radiological concept of retroperitoneal interfascial planes: what are the interfascial planes?

    Science.gov (United States)

    Ishikawa, Kazuo; Nakao, Shota; Murakami, Gen; Rodríguez-Vázquez, Jose Francisco; Matsuoka, Tetsuya; Nakamuro, Makoto; Shimazu, Takeshi

    2014-12-01

    Recently, the radiological concept of retroperitoneal interfascial planes has been widely accepted to explain the extension of retroperitoneal pathologies. This study aimed to explore embryologically based corroborative evidence, which remains to be elucidated, for this concept. Using serial or semi-serial transverse sections from 29 human fetuses at the 5th-25th week of fetal age, we microscopically observed the development of the retroperitoneal fasciae and other structures in the retroperitoneal connective tissue. A hypothesis for the formation of the interfascial planes was generated from the developmental study and analysis of retroperitoneal fasciae in computed tomography images from 224 patients. Whereas the loose connective tissue was uniformly distributed in the retroperitoneum by the 9th week, the primitive renal and transversalis fasciae appeared at the 10th-12th week, as previous research has noted. By the 23rd week, the renal fascia, transversalis fascia, and primitive adipose tissue of the flank pad emerged. In addition, the primitive lateroconal fascia, which runs parallel to and close to the posterior renal fascia, emerged between the renal fascia and the adipose tissue of the flank pad. Conversely, pre-existing loose connective tissue was sandwiched between the opposing fasciae and was compressed and narrowed by the developing organs and fatty tissues. Through this developmental study, we provided the hypothesis that the compressed loose connective tissue and both opposed fasciae compose the interfascial planes. Analysis of the thickened retroperitoneal fasciae in computed tomography images supported this hypothesis. Further developmental or histological studies are required to verify our hypothesis.

  19. Tibiofibular syndesmosis in acute ankle fractures: additional value of an oblique MR image plane

    International Nuclear Information System (INIS)

    Hermans, John J.; Ginai, Abida Z.; Beumer, Annechien; Moonen, Adrianus F.C.M.; Hop, Wim C.J.

    2012-01-01

    To evaluate the additional value of a 45 oblique MRI scan plane for assessing the anterior and posterior distal tibiofibular syndesmotic ligaments in patients with an acute ankle fracture. Prospectively, data were collected for 44 consecutive patients with an acute ankle fracture who underwent a radiograph (AP, lateral, and mortise view) as well as an MRI in both the standard three orthogonal planes and in an additional 45 oblique plane. The fractures on the radiographs were classified according to Lauge-Hansen (LH). The anterior (ATIFL) and posterior (PTIFL) distal tibiofibular ligaments, as well as the presence of a bony avulsion in both the axial and oblique planes was evaluated on MRI. MRI findings regarding syndesmotic injury in the axial and oblique planes were compared to syndesmotic injury predicted by LH. Kappa and the agreement score were calculated to determine the interobserver agreement. The Wilcoxon signed rank test and McNemar's test were used to compare the two scan planes. The interobserver agreement (κ) and agreement score [AS (%)] regarding injury of the ATIFL and PTIFL and the presence of a fibular or tibial avulsion fracture were good to excellent in both the axial and oblique image planes (κ 0.61-0.92, AS 84-95%). For both ligaments the oblique image plane indicated significantly less injury than the axial plane (p < 0.001). There was no significant difference in detection of an avulsion fracture in the axial or oblique plane, neither anteriorly (p=0.50) nor posteriorly (p=1.00). With syndesmotic injury as predicted by LH as comparison, the specificity in the oblique MR plane increased for both anterior (to 86% from 7%) and posterior (to 86% from 48%) syndesmotic injury when compared to the axial plane. Our results show the additional value of an 45 oblique MR image plane for detection of injury of the anterior and posterior distal tibiofibular syndesmoses in acute ankle fractures. Findings of syndesmotic injury in the oblique MRI plane were

  20. Tibiofibular syndesmosis in acute ankle fractures: additional value of an oblique MR image plane

    Energy Technology Data Exchange (ETDEWEB)

    Hermans, John J.; Ginai, Abida Z. [Erasmus University Medical Center, Department of Radiology, Rotterdam (Netherlands); Beumer, Annechien; Moonen, Adrianus F.C.M. [Amphia Hospital, Department of Orthopaedics, Breda (Netherlands); Hop, Wim C.J. [Erasmus University Medical Center, Department of Biostatistics, Rotterdam (Netherlands)

    2012-02-15

    To evaluate the additional value of a 45 oblique MRI scan plane for assessing the anterior and posterior distal tibiofibular syndesmotic ligaments in patients with an acute ankle fracture. Prospectively, data were collected for 44 consecutive patients with an acute ankle fracture who underwent a radiograph (AP, lateral, and mortise view) as well as an MRI in both the standard three orthogonal planes and in an additional 45 oblique plane. The fractures on the radiographs were classified according to Lauge-Hansen (LH). The anterior (ATIFL) and posterior (PTIFL) distal tibiofibular ligaments, as well as the presence of a bony avulsion in both the axial and oblique planes was evaluated on MRI. MRI findings regarding syndesmotic injury in the axial and oblique planes were compared to syndesmotic injury predicted by LH. Kappa and the agreement score were calculated to determine the interobserver agreement. The Wilcoxon signed rank test and McNemar's test were used to compare the two scan planes. The interobserver agreement ({kappa}) and agreement score [AS (%)] regarding injury of the ATIFL and PTIFL and the presence of a fibular or tibial avulsion fracture were good to excellent in both the axial and oblique image planes ({kappa} 0.61-0.92, AS 84-95%). For both ligaments the oblique image plane indicated significantly less injury than the axial plane (p < 0.001). There was no significant difference in detection of an avulsion fracture in the axial or oblique plane, neither anteriorly (p=0.50) nor posteriorly (p=1.00). With syndesmotic injury as predicted by LH as comparison, the specificity in the oblique MR plane increased for both anterior (to 86% from 7%) and posterior (to 86% from 48%) syndesmotic injury when compared to the axial plane. Our results show the additional value of an 45 oblique MR image plane for detection of injury of the anterior and posterior distal tibiofibular syndesmoses in acute ankle fractures. Findings of syndesmotic injury in the oblique

  1. Evaluation of an improved mixing plane interface for OpenFOAM

    International Nuclear Information System (INIS)

    Beaudoin, M; Page, M; Magnan, R; Nilsson, H; Jasak, H

    2014-01-01

    A mixing plane interface provides a circumferentially averaging rotor-stator coupling interface, which is extremely useful in practical turbomachinery simulations. It allows fundamentally transient problems to be studied in steady-state, using simplified mesh components having periodic properties, and with the help of a multiple reference frames (MRF) approach. An improved version of the mixing plane interface for the community-driven version of OpenFOAM is presented. This new version of the mixing plane introduces a per- field, user-selectable mixing option for the flow fields at the interface, including the possibility to use a mass-flow averaging algorithm for the velocity field. We show that the quality of the mass-flow transfer can be improved by a proper selection of the mixing options at the interface. This paper focuses on the evaluation of the improved mixing plane interface for various steady-state simulations of incompressible flows, applied to a simple 2D validation test case, and to more complex 3D turbomachinery cases

  2. Deriving the effective focal plane for the CBM-RICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Kres, Ievgenii [Wuppertal University (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR complex will investigate the phase diagram of strongly interacting matter at high baryon density and moderate temperatures in A+A collisions from 2-11 AGeV (SIS100). A central component of the proposed detector setup is a ring imaging Cherenkov detector (RICH) using CO2 as radiator gas, and a focussing optic with a large spherical mirror. In the present design, the optimal focal plane is approximated using four individual, flat detection surfaces. However, the exact shape and position of the ideal focal plane is subject to further optimization due to effects from tilting the focussing mirror and from momentum dependant deflection of the electron tracks in the magnetic stray field. In this talk, we present a new approach to derive the effective 3-dimensional shape of the focal plane based on a set of Monte Carlo simulations, comparing the ring sharpness at each point of a preliminary focal plane as function of z-position.

  3. COMPARING THE OBSERVABLE PROPERTIES OF DWARF GALAXIES ON AND OFF THE ANDROMEDA PLANE

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Michelle L. M.; Martin, Nicolas F. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Rich, R. M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Ibata, Rodrigo A. [Observatoire de Strasbourg, 11, Rue de l' Université, F-67000 Strasbourg (France); Chapman, Scott C. [Department of Physics and Atmospheric Science, Dalhousie University, Coburg Road, Halifax B3H1A6 (Canada); McConnachie, Alan W. [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, British Columbia, Victoria V9E 2E7 (Canada); Ferguson, Annette M. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Irwin, Michael J. [Institute of Astronomy, Madingley Rise, Cambridge CB3 0HA (United Kingdom); Lewis, Geraint F., E-mail: michelle.collins@yale.edu [Sydney Institute for Astronomy, School of Physics, A28, University of Sydney, NSW 2006 (Australia)

    2015-01-20

    The thin, extended planes of satellite galaxies detected around both the Milky Way and Andromeda are not a natural prediction of the Λ-cold dark matter paradigm. Galaxies in these distinct planes may have formed and evolved in a different way (e.g., tidally) from their off-plane neighbors. If this were the case, one would expect the on- and off-plane dwarf galaxies in Andromeda to have experienced different evolutionary histories, which should be reflected by the chemistries, dynamics, and star formation histories of the two populations. In this work, we present new, robust kinematic observations for two on-plane M31 dwarf spheroidal galaxies (And XVI and XVII) and compile and compare all available observational metrics for the on- and off-plane dwarfs to search for a signal that would corroborate such a hypothesis. We find that, barring their spatial alignment, the on- and off-plane Andromeda dwarf galaxies are indistinguishable from one another, arguing against vastly different formative and evolutionary histories for these two populations.

  4. COMPARING THE OBSERVABLE PROPERTIES OF DWARF GALAXIES ON AND OFF THE ANDROMEDA PLANE

    International Nuclear Information System (INIS)

    Collins, Michelle L. M.; Martin, Nicolas F.; Rich, R. M.; Ibata, Rodrigo A.; Chapman, Scott C.; McConnachie, Alan W.; Ferguson, Annette M.; Irwin, Michael J.; Lewis, Geraint F.

    2015-01-01

    The thin, extended planes of satellite galaxies detected around both the Milky Way and Andromeda are not a natural prediction of the Λ-cold dark matter paradigm. Galaxies in these distinct planes may have formed and evolved in a different way (e.g., tidally) from their off-plane neighbors. If this were the case, one would expect the on- and off-plane dwarf galaxies in Andromeda to have experienced different evolutionary histories, which should be reflected by the chemistries, dynamics, and star formation histories of the two populations. In this work, we present new, robust kinematic observations for two on-plane M31 dwarf spheroidal galaxies (And XVI and XVII) and compile and compare all available observational metrics for the on- and off-plane dwarfs to search for a signal that would corroborate such a hypothesis. We find that, barring their spatial alignment, the on- and off-plane Andromeda dwarf galaxies are indistinguishable from one another, arguing against vastly different formative and evolutionary histories for these two populations

  5. Communication: Two types of flat-planes conditions in density functional theory.

    Science.gov (United States)

    Yang, Xiaotian Derrick; Patel, Anand H G; Miranda-Quintana, Ramón Alain; Heidar-Zadeh, Farnaz; González-Espinoza, Cristina E; Ayers, Paul W

    2016-07-21

    Using results from atomic spectroscopy, we show that there are two types of flat-planes conditions. The first type of flat-planes condition occurs when the energy as a function of the number of electrons of each spin, Nα and Nβ, has a derivative discontinuity on a line segment where the number of electrons, Nα + Nβ, is an integer. The second type of flat-planes condition occurs when the energy has a derivative discontinuity on a line segment where the spin polarization, Nα - Nβ, is an integer, but does not have a discontinuity associated with an integer number of electrons. Type 2 flat planes are rare-we observed just 15 type 2 flat-planes conditions out of the 4884 cases we tested-but their mere existence has implications for the design of exchange-correlation energy density functionals. To facilitate the development of functionals that have the correct behavior with respect to both fractional number of electrons and fractional spin polarization, we present a dataset for the chromium atom and its ions that can be used to test new functionals.

  6. A three-dimensional comparison of a morphometric and conventional cephalometric midsagittal planes for craniofacial asymmetry.

    Science.gov (United States)

    Damstra, Janalt; Fourie, Zacharias; De Wit, Marnix; Ren, Yijin

    2012-02-01

    Morphometric methods are used in biology to study object symmetry in living organisms and to determine the true plane of symmetry. The aim of this study was to determine if there are clinical differences between three-dimensional (3D) cephalometric midsagittal planes used to describe craniofacial asymmetry and a true symmetry plane derived from a morphometric method based on visible facial features. The sample consisted of 14 dry skulls (9 symmetric and 5 asymmetric) with metallic markers which were imaged with cone-beam computed tomography. An error study and statistical analysis were performed to validate the morphometric method. The morphometric and conventional cephalometric planes were constructed and compared. The 3D cephalometric planes constructed as perpendiculars to the Frankfort horizontal plane resembled the morphometric plane the most in both the symmetric and asymmetric groups with mean differences of less than 1.00 mm for most variables. However, the standard deviations were often large and clinically significant for these variables. There were clinically relevant differences (>1.00 mm) between the different 3D cephalometric midsagittal planes and the true plane of symmetry determined by the visible facial features. The difference between 3D cephalometric midsagittal planes and the true plane of symmetry determined by the visible facial features were clinically relevant. Care has to be taken using cephalometric midsagittal planes for diagnosis and treatment planning of craniofacial asymmetry as they might differ from the true plane of symmetry as determined by morphometrics.

  7. Epidemic Propagation of Control Plane Failures in GMPLS Controlled Optical Transport Networks

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Fagertun, Anna Manolova

    2013-01-01

    In this paper, we investigate the behaviour of a dataplane-decoupled GMPLS control plane, when it is affected by failures that spread in the network in an epidemic manner. In particular, we consider network nodes to be either fully functional, or having a failed control plane, or having both...... a failed control and data plane. Through large-scale network simulation, we evaluate the effect of epidemically spreading control plane failures in terms of blocked connections requests and the amount of stranded capacity due to a dysfunctional control plane. Furthermore, we investigate the effect...... of the epidemic and the epidemic spreading intensity. In particular, networks with long epidemic durations do not necessarily result in worst performance in terms of blocked requests and capacity. Also epidemic scenarios, resulting in worst impact on the network availability does not necessarily result in worst...

  8. Plane Stratified Flow in a Room Ventilated by Displacement Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Nickel, J.; Baron, D. J. G.

    2004-01-01

    The air movement in the occupied zone of a room ventilated by displacement ventilation exists as a stratified flow along the floor. This flow can be radial or plane according to the number of wall-mounted diffusers and the room geometry. The paper addresses the situations where plane flow...

  9. Flow of Dense Granular Suspensions on an Inclined Plane

    Science.gov (United States)

    Bonnoit, C.; Lanuza, J.; Lindner, A.; Clément, E.

    2008-07-01

    We investigate the flow behavior of dense granular suspensions, by the use of an inclined plane. The suspensions are prepared at high packing fractions and consist of spherical non-Brownian particles density matched with the suspending fluid. On the inclined plane, we perform a systematic study of the surface velocity as a function of the layer thickness for various flow rates and tilt angles. We perform measurements on a classical rheometer (parallel-plate rheometer) that is shown to be in good agreement with existing models, up to a volume fraction of 50%. Comparing these results, we show that the flow on an inclined plane can, up to a volume fraction of 50%, indeed be described by a purely viscous model in agreement with the results from classical rheometry.

  10. Apparatus and methods for memory using in-plane polarization

    Science.gov (United States)

    Liu, Junwei; Chang, Kai; Ji, Shuai-Hua; Chen, Xi; Fu, Liang

    2018-05-01

    A memory device includes a semiconductor layer with an in-plane polarization component switchable between a first direction and a second direction. A writing electrode is employed to apply a writing voltage to the semiconductor layer to change the in-plane polarization component between the first direction and the second direction. A reading electrode is employed to apply a reading voltage to the semiconductor layer to measure a tunneling current substantially perpendicular to the polarization direction of the in-plane polarization component. The directions of the reading voltage and the writing voltage are substantially perpendicular to each other. Therefore, the reading process is non-destructive. Thin films (e.g., one unit cell thick) of ferroelectric material can be used in the memory device to increase the miniaturization of the device.

  11. Lieb's correlation inequality for plane rotors

    International Nuclear Information System (INIS)

    Rivasseau, V.

    1980-01-01

    We prove a conjecture by E. Lieb, which leads to the Lieb inequality for plane rotors. As in the Ising model case, this inequality implies the existence of an algorithm to compute the transition temperature of this model. (orig.)

  12. Subcostal transversus abdominis plane block can improve analgesia after laparoscopic cholecystectomy

    Directory of Open Access Journals (Sweden)

    Vladimir Vrsajkov

    Full Text Available Abstract Background and goal of study: After laparoscopic cholecystectomy, patients have moderate pain in the early postoperative period. Some studies shown beneficial effects of subcostal transversus abdominis plane block on reducing this pain. Our goal was to investigate influence of subcostal transversus abdominis plane block on postoperative pain scores and opioid consumption. Materials and methods: We have randomized 76 patients undergoing laparoscopic cholecystectomy to receive either subcostal transversus abdominis plane block (n = 38 or standard postoperative analgesia (n = 38. First group received bilateral ultrasound guided subcostal transversus abdominis plane block with 20 mL of 0.33% bupivacaine per side before operation and tramadol 1 mg.kg−1 IV for pain breakthrough (≥6. Second group received after operation tramadol 1 mg.kg−1/6 h as standard hospital analgesia protocol. Both groups received acetaminophen 1 g/8 h IV and metamizole 2.5 g/12 h. Pain at rest was recorded for each patient using NR scale (0–10 in period of 10 min, 30 min, 2 h, 4 h, 8 h, 12 h and 16 h after the surgery. Results and discussion: We obtained no difference between groups according age, weight, intraoperative fentanyl consumption and duration of surgery. Subcostal transversus abdominis plane block significantly reduced postoperative pain scores compared to standard analgesia in all periods after surgery. Tramadol consumption was significantly lower in the subcostal transversus abdominis plane (24.29 ± 47.54 g than in the standard analgesia group (270.2 ± 81.9 g (p = 0.000. Conclusion: Our results show that subcostal transversus abdominis plane block can provide superior postoperative analgesia and reduction in opioid requirements after laparoscopic cholecystectomy.

  13. [Subcostal transversus abdominis plane block can improve analgesia after laparoscopic cholecystectomy].

    Science.gov (United States)

    Vrsajkov, Vladimir; Mančić, Nedjica; Mihajlović, Dunja; Milićević, Suzana Tonković; Uvelin, Arsen; Vrsajkov, Jelena Pantić

    After laparoscopic cholecystectomy, patients have moderate pain in the early postoperative period. Some studies shown beneficial effects of subcostal transversus abdominis plane block on reducing this pain. Our goal was to investigate influence of subcostal transversus abdominis plane block on postoperative pain scores and opioid consumption. We have randomized 76 patients undergoing laparoscopic cholecystectomy to receive either subcostal transversus abdominis plane block (n=38) or standard postoperative analgesia (n=38). First group received bilateral ultrasound guided subcostal transversus abdominis plane block with 20mL of 0.33% bupivacaine per side before operation and tramadol 1mg.kg -1 IV for pain breakthrough (≥6). Second group received after operation tramadol 1mg.kg -1 /6h as standard hospital analgesia protocol. Both groups received acetaminophen 1g/8h IV and metamizole 2.5g/12h. Pain at rest was recorded for each patient using NR scale (0-10) in period of 10min, 30min, 2h, 4h, 8h, 12h and 16h after the surgery. We obtained no difference between groups according age, weight, intraoperative fentanyl consumption and duration of surgery. Subcostal transversus abdominis plane block significantly reduced postoperative pain scores compared to standard analgesia in all periods after surgery. Tramadol consumption was significantly lower in the subcostal transversus abdominis plane (24.29±47.54g) than in the standard analgesia group (270.2±81.9g) (p=0.000). Our results show that subcostal transversus abdominis plane block can provide superior postoperative analgesia and reduction in opioid requirements after laparoscopic cholecystectomy. Copyright © 2017 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  14. Quantum-Well Infrared Photodetector (QWIP) Focal Plane Assembly

    Science.gov (United States)

    Jhabvala, Murzy; Jhabvala, Christine A.; Ewin, Audrey J.; Hess, Larry A.; Hartmann, Thomas M.; La, Anh T.

    2012-01-01

    A paper describes the Thermal Infrared Sensor (TIRS), a QWIP-based instrument intended to supplement the Operational Land Imager (OLI) for the Landsat Data Continuity Mission (LDCM). The TIRS instrument is a far-infrared imager operating in the pushbroom mode with two IR channels: 10.8 and 12 microns. The focal plane will contain three 640x512 QWIP arrays mounted on a silicon substrate. The silicon substrate is a custom-fabricated carrier board with a single layer of aluminum interconnects. The general fabrication process starts with a 4-in. (approx.10-cm) diameter silicon wafer. The wafer is oxidized, a single substrate contact is etched, and aluminum is deposited, patterned, and alloyed. This technology development is aimed at incorporating three large-format infrared detecting arrays based on GaAs QWIP technology onto a common focal plane with precision alignment of all three arrays. This focal plane must survive the rigors of flight qualification and operate at a temperature of 43 K (-230 C) for five years while orbiting the Earth. The challenges presented include ensuring thermal compatibility among all the components, designing and building a compact, somewhat modular system and ensuring alignment to very tight levels. The multi-array focal plane integrated onto a single silicon substrate is a new application of both QWIP array development and silicon wafer scale integration. The Invar-based assembly has been tested to ensure thermal reliability.

  15. Metal-core pad-plane development for ACTAR TPC

    Science.gov (United States)

    Giovinazzo, J.; Pibernat, J.; Goigoux, T.; de Oliveira, R.; Grinyer, G. F.; Huss, C.; Mauss, B.; Pancin, J.; Pedroza, J. L.; Rebii, A.; Roger, T.; Rosier, P.; Saillant, F.; Wittwer, G.

    2018-06-01

    With the recent development of active targets and time projection chambers (ACTAR TPC) as detectors for fundamental nuclear physics experiments, the need arose for charge collection planes with a high density of readout channels. In order to fulfill the mechanical constraints for the ACTAR TPC device, we designed a pad-plane based on a metal-core circuit with an conceptually simple design and routing for signal readout, named FAKIR (in reference to a fakir bed of nails). A test circuit has been equipped with a micro mesh gaseous structure (micromegas) for signal amplification and a dedicated readout electronics. Test measurements have been performed with an 55Fe X-ray source giving an intrinsic energy resolution (FWHM) of 22 ± 1% at 5 . 9 keV, and with a 3-alpha source for which a resolution of about 130 ± 20 keV at 4 . 8 MeV has been estimated. The pad-plane has been mounted into a reduced size demonstrator version of the ACTAR TPC detector, in order to illustrate charged particle track reconstruction. The tests preformed with the X-ray and the 3-alpha sources shows that results obtained from pads signals are comparable to the intrinsic result from the micro-mesh signal. In addition, a simple alpha particle tracks analysis is performed to demonstrate that the pad plane allows a precise reconstruction of the direction and length of the trajectories.

  16. Processing vertical size disparities in distinct depth planes.

    Science.gov (United States)

    Duke, Philip A; Howard, Ian P

    2012-08-17

    A textured surface appears slanted about a vertical axis when the image in one eye is horizontally enlarged relative to the image in the other eye. The surface appears slanted in the opposite direction when the same image is vertically enlarged. Two superimposed textured surfaces with different horizontal size disparities appear as two surfaces that differ in slant. Superimposed textured surfaces with equal and opposite vertical size disparities appear as a single frontal surface. The vertical disparities are averaged. We investigated whether vertical size disparities are averaged across two superimposed textured surfaces in different depth planes or whether they induce distinct slants in the two depth planes. In Experiment 1, two superimposed textured surfaces with different vertical size disparities were presented in two depth planes defined by horizontal disparity. The surfaces induced distinct slants when the horizontal disparity was more than ±5 arcmin. Thus, vertical size disparities are not averaged over surfaces with different horizontal disparities. In Experiment 2 we confirmed that vertical size disparities are processed in surfaces away from the horopter, so the results of Experiment 1 cannot be explained by the processing of vertical size disparities in a fixated surface only. Together, these results show that vertical size disparities are processed separately in distinct depth planes. The results also suggest that vertical size disparities are not used to register slant globally by their effect on the registration of binocular direction of gaze.

  17. Wafer plane inspection for advanced reticle defects

    Science.gov (United States)

    Nagpal, Rajesh; Ghadiali, Firoz; Kim, Jun; Huang, Tracy; Pang, Song

    2008-05-01

    Readiness of new mask defect inspection technology is one of the key enablers for insertion & transition of the next generation technology from development into production. High volume production in mask shops and wafer fabs demands a reticle inspection system with superior sensitivity complemented by a low false defect rate to ensure fast turnaround of reticle repair and defect disposition (W. Chou et al 2007). Wafer Plane Inspection (WPI) is a novel approach to mask defect inspection, complementing the high resolution inspection capabilities of the TeraScanHR defect inspection system. WPI is accomplished by using the high resolution mask images to construct a physical mask model (D. Pettibone et al 1999). This mask model is then used to create the mask image in the wafer aerial plane. A threshold model is applied to enhance the inspectability of printing defects. WPI can eliminate the mask restrictions imposed on OPC solutions by inspection tool limitations in the past. Historically, minimum image restrictions were required to avoid nuisance inspection stops and/or subsequent loss of sensitivity to defects. WPI has the potential to eliminate these limitations by moving the mask defect inspections to the wafer plane. This paper outlines Wafer Plane Inspection technology, and explores the application of this technology to advanced reticle inspection. A total of twelve representative critical layers were inspected using WPI die-to-die mode. The results from scanning these advanced reticles have shown that applying WPI with a pixel size of 90nm (WPI P90) captures all the defects of interest (DOI) with low false defect detection rates. In validating CD predictions, the delta CDs from WPI are compared against Aerial Imaging Measurement System (AIMS), where a good correlation is established between WPI and AIMSTM.

  18. New family of exact solutions for colliding plane gravitational waves

    International Nuclear Information System (INIS)

    Yurtsever, U.

    1988-01-01

    We construct an infinite-parameter family of exact solutions to the vacuum Einstein field equations describing colliding gravitational plane waves with parallel polarizations. The interaction regions of the solutions in this family are locally isometric to the interiors of those static axisymmetric (Weyl) black-hole solutions which admit both a nonsingular horizon, and an analytic extension of the exterior metric to the interior of the horizon. As a member of this family of solutions we also obtain, for the first time, a colliding plane-wave solution where both of the two incoming plane waves are purely anastigmatic, i.e., where both incoming waves have equal focal lengths

  19. Techniques to measure complex-plane fields

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2014-09-25

    Full Text Available In this work we construct coherent superpositions of Gaussian and vortex modes which can be described to occupy the complex-plane. We demonstrate how these fields can be experimentally constructed in a digital, controllable manner with a spatial...

  20. The Uniform geometrical Theory of Diffraction for elastodynamics: Plane wave scattering from a half-plane.

    Science.gov (United States)

    Djakou, Audrey Kamta; Darmon, Michel; Fradkin, Larissa; Potel, Catherine

    2015-11-01

    Diffraction phenomena studied in electromagnetism, acoustics, and elastodynamics are often modeled using integrals, such as the well-known Sommerfeld integral. The far field asymptotic evaluation of such integrals obtained using the method of steepest descent leads to the classical Geometrical Theory of Diffraction (GTD). It is well known that the method of steepest descent is inapplicable when the integrand's stationary phase point coalesces with its pole, explaining why GTD fails in zones where edge diffracted waves interfere with incident or reflected waves. To overcome this drawback, the Uniform geometrical Theory of Diffraction (UTD) has been developed previously in electromagnetism, based on a ray theory, which is particularly easy to implement. In this paper, UTD is developed for the canonical elastodynamic problem of the scattering of a plane wave by a half-plane. UTD is then compared to another uniform extension of GTD, the Uniform Asymptotic Theory (UAT) of diffraction, based on a more cumbersome ray theory. A good agreement between the two methods is obtained in the far field.

  1. Exploring plane-symmetric solutions in f(R) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Shamir, M. F., E-mail: farasat.shamir@nu.edu.pk [National University of Computer and Emerging Sciences, Department of Sciences and Humanities (Pakistan)

    2016-02-15

    The modified theories of gravity, especially the f(R) gravity, have attracted much attention in the last decade. This paper is devoted to exploring plane-symmetric solutions in the context of metric f(R) gravity. We extend the work on static plane-symmetric vacuum solutions in f(R) gravity already available in the literature [1, 2]. The modified field equations are solved using the assumptions of both constant and nonconstant scalar curvature. Some well-known solutions are recovered with power-law and logarithmic forms of f(R) models.

  2. The Groenewold-Moyal Plane and its Quantum Physics

    International Nuclear Information System (INIS)

    Balachandran, A. P.; Padmanabhan, Pramod

    2009-01-01

    Quantum theories constructed on the noncommutative spacetime called the Groenewold-Moyal(GM) plane exhibit many interesting properties such as causality violation, Lorentz and CPT non-invariance and twisted statistics. Such violations lead to many striking features that may be tested experimentally. Thus these theories predict Pauli-forbidden transitions due to twisted statistics, anisotropies and acausal effects in the cosmic microwave background radiation in correlations of observables and Lorentz and CPT violations in scattering amplitudes. Such features of quantum physics on the GM plane are surveyed in this review.

  3. Hi-GAL: The Herschel Infrared Galactic Plane Survey

    OpenAIRE

    Molinari, S.; Swinyard, B.; Bally, J.; Barlow, M.; Bernard, J.-P.; Martin, P.; Moore, T.; Noriega-Crespo, A.; Plume, R.; Testi, L.; Zavagno, A.; Abergel, A.; Ali, B.; André, P.; Baluteau, J.-P.

    2010-01-01

    Hi-GAL, the Herschel infrared Galactic Plane Survey, is an Open Time Key Project of the Herschel Space Observatory. It will make an unbiased photometric survey of the inner Galactic plane by mapping a 2° wide strip in the longitude range ∣l∣ < 60° in five wavebands between 70 μm and 500 μm. The aim of Hi-GAL is to detect the earliest phases of the formation of molecular clouds and high-mass stars and to use the optimum combination of Herschel wavelength coverage, sensitivity, mapping strategy...

  4. Vertical-Cavity In-plane Heterostructures: Physics and Applications

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug

    2015-01-01

    We show that the in-plane heterostructures realized in vertical cavities with high contrast grating(HCG) reflector enables exotic configurations of heterostructure and photonic wells. In photonic crystal heterostructures forming a photonic well, the property of a confined mode is determined...... by the well width and barrier height. We show that in vertical-cavity in-plane heterostructures, anisotropic dispersion curvatures plays a key role as well, leading to exotic effects such as a photonic well with conduction band like well and a valence band like barrier. We investigate three examples...

  5. On the topology of real algebraic plane curves

    DEFF Research Database (Denmark)

    Cheng, Jinsan; Lazard, Sylvain; Peñaranda, Luis

    2010-01-01

    We revisit the problem of computing the topology and geometry of a real algebraic plane curve. The topology is of prime interest but geometric information, such as the position of singular and critical points, is also relevant. A challenge is to compute efficiently this information for the given...... and isolation with rational univariate representations. This has the advantage of avoiding computations with polynomials with algebraic coefficients, even in non-generic positions. Our algorithm isolates critical points in boxes and computes a decomposition of the plane by rectangular boxes. This decomposition...

  6. Aquantis C-Plane Ocean Current Turbine Project

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Alex [Dehlsen Associates, LLC, Santa Barbara, CA (United States)

    2015-09-16

    The Aquantis 2.5 MW Ocean Current Generation Device technology developed by Dehlsen Associates, LLC (DA) is a derivation of wind power generating technology (a means of harnessing a slow moving fluid) adapted to the ocean environment. The Aquantis Project provides an opportunity for accelerated technological development and early commercialization, since it involves the joining of two mature disciplines: ocean engineering and wind turbine design. The Aquantis Current Plane (C-Plane) technology is an ocean current turbine designed to extract kinetic energy from a current flow. The technology is capable of achieving competitively priced, continuous, base-load, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  7. Preliminary Design and Analysis of an In-plane PRSEUS Joint

    Science.gov (United States)

    Lovejoy, Andrew E.; Poplawski, Steven

    2013-01-01

    As part of the National Aeronautics and Space Administration's (NASA's) Environmentally Responsible Aviation (ERA) program, the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) has been designed, developed and tested. However, PRSEUS development efforts to date have only addressed joints required to transfer bending moments between PRSEUS panels. Development of in-plane joints for the PRSEUS concept is necessary to facilitate in-plane transfer of load from PRSEUS panels to an adjacent structure, such as from a wing panel into a fuselage. This paper presents preliminary design and analysis of an in-plane PRSEUS joint for connecting PRSEUS panels at the termination of the rod-stiffened stringers. Design requirements are provided, the PRSEUS blade joint concept is presented, and preliminary design changes and analyses are carried out to examine the feasibility of the proposed in-plane PRSEUS blade joint. The study conducted herein focuses mainly on the PRSEUS structure on one side of the joint. In particular, the design requirements for the rod shear stress and bolt bearing stress are examined. A PRSEUS blade joint design was developed that demonstrates the feasibility of this in-plane PRSEUS joint concept to terminate the rod-stiffened stringers. The presented design only demonstrates feasibility, therefore, some areas of refinement are presented that would lead to a more optimum and realistic design.

  8. Occlusal plane rotation: aesthetic enhancement in mandibular micrognathia.

    Science.gov (United States)

    Rosen, H M

    1993-06-01

    Patients afflicted with extreme degrees of mandibular micrognathia typically have vertically deficient rami as well as sagittally deficient mandibular bodies. This results in deficient posterior facial height, an obtuse gonial angle, excessively steep occlusal and mandibular planes, and a compensatory increase in anterior facial height. The entire maxillomandibular complex is overrotated in a clockwise direction. Standard orthognathic surgical correction fails to address this rotational deformity. As a consequence, the achieved projection of the lower face is inadequate, posterior facial height is further reduced, and occlusal and mandibular planes remain steep. Eleven patients with severe mandibular micrognathia underwent a surgical correction involving occlusal plane rotation to its normal orientation relative to Frankfort horizontal. This was accomplished by Le Fort I osteotomy to shorten the anterior maxilla (creating open bites in seven patients and making preexisting open bites worse in four patients) and sagittal split ramus osteotomies to advance and rotate the mandibular body counterclockwise, thus closing the surgically produced open bite. Counterclockwise rotation of the mandible afforded significantly greater sagittal displacement at the B point (mean 17 mm) than at the first molar (mean 10 mm) and produced adequate degrees of projection of the lower face when accompanied by a modest sliding genioplasty (mean 6.9 mm). Total advancement at the pogonion was a mean of 25.2 mm. In addition, posterior facial height was preserved, and mandibular and occlusal planes were normalized to mean angles of 27 and 10 degrees, respectively. At follow-up, which ranged from 9 to 24 months with a mean of 14.1 months, the mean sagittal relapse at the B point was 1.9 mm. Although heretofore considered unstable and therefore not clinically accepted, maxillomandibular counterclockwise rotation to normalize the occlusal plane rotational deformity provides stable, aesthetically

  9. The plane strain tests in the PROMETRA program

    International Nuclear Information System (INIS)

    Cazalis, B.; Desquines, J.; Carassou, S.; Le Jolu, T.; Bernaudat, C.

    2016-01-01

    A fuel cladding mechanical test, performed under conditions of plane strain deformation in the transverse direction of tube axis, was originally developed at Pennsylvania State University. It was decided to implement this original test within the PROMETRA program using the same experimental procedure and its optimization for a ring mechanical testing on plane strain conditions (PST tests) in hot cells laboratory. This paper presents a detailed description and an interpretation of the Plane Strain Tensile (PST) tests performed in the framework of the PROMETRA program on fresh and irradiated claddings. At first, the context of the PST tests is situated and the specificities of these tests implemented at CEA are justified. Indeed, a significant adjustment of the original experimental procedure is carried out in order to test the irradiated fuel cladding in the best possible conditions. Then, the tests results on fresh Zircaloy-4 and on irradiated Zircaloy-4, M5™ and ZIRLO ® specimens are gathered. The main analyses in support of these tests, such as metallographies, fractographic examinations and finite element simulations are detailed. Finally, a synthesis of the interpretation of the tests is proposed. The PST test seems only representative of plane strain fracture conditions when the test material is very ductile (fresh or high temperature or low hydride material like M5TM). However, it provides a relevant representation of the RIA rupture initiation which is observed in irradiated cladding resulting from hydride rim damage due to the strong irradiation of a fuel rod. - Highlights: • A plane strain mechanical test performed on fuel rod claddings is described. • The tests are performed in the framework of the French PROMETRA program. • Fresh Zircaloy-4 and irradiated Zircaloy-4, M5 and ZIRLO specimens are tested. • The main analyses in support of these tests are detailed. • A synthesis of the interpretation of the PST tests is proposed.

  10. The plane strain tests in the PROMETRA program

    Energy Technology Data Exchange (ETDEWEB)

    Cazalis, B., E-mail: bernard.cazalis@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, IRSN/PSN-RES, F-13115 Saint-Paul Lez Durance BP3 (France); Desquines, J. [Institut de Radioprotection et de Sûreté Nucléaire, IRSN/PSN-RES, F-13115 Saint-Paul Lez Durance BP3 (France); Carassou, S.; Le Jolu, T. [Commissariat à l' Energie Atomique, CEA/DEN/DMN, F- 91191 Gif-sur-Yvette (France); Bernaudat, C. [Electricité de France, EDF/SEPTEN, F-69628 Villeurbanne (France)

    2016-04-15

    A fuel cladding mechanical test, performed under conditions of plane strain deformation in the transverse direction of tube axis, was originally developed at Pennsylvania State University. It was decided to implement this original test within the PROMETRA program using the same experimental procedure and its optimization for a ring mechanical testing on plane strain conditions (PST tests) in hot cells laboratory. This paper presents a detailed description and an interpretation of the Plane Strain Tensile (PST) tests performed in the framework of the PROMETRA program on fresh and irradiated claddings. At first, the context of the PST tests is situated and the specificities of these tests implemented at CEA are justified. Indeed, a significant adjustment of the original experimental procedure is carried out in order to test the irradiated fuel cladding in the best possible conditions. Then, the tests results on fresh Zircaloy-4 and on irradiated Zircaloy-4, M5™ and ZIRLO{sup ®} specimens are gathered. The main analyses in support of these tests, such as metallographies, fractographic examinations and finite element simulations are detailed. Finally, a synthesis of the interpretation of the tests is proposed. The PST test seems only representative of plane strain fracture conditions when the test material is very ductile (fresh or high temperature or low hydride material like M5TM). However, it provides a relevant representation of the RIA rupture initiation which is observed in irradiated cladding resulting from hydride rim damage due to the strong irradiation of a fuel rod. - Highlights: • A plane strain mechanical test performed on fuel rod claddings is described. • The tests are performed in the framework of the French PROMETRA program. • Fresh Zircaloy-4 and irradiated Zircaloy-4, M5 and ZIRLO specimens are tested. • The main analyses in support of these tests are detailed. • A synthesis of the interpretation of the PST tests is proposed.

  11. Flux dynamics in ultrasensitive superconducting focal planes

    Data.gov (United States)

    National Aeronautics and Space Administration — The performance of superconducting focal planes will drive the achievable specifications of ultrasensitive instruments for NASA astrophysics missions, yet they have...

  12. Reverse-mode PSLC multi-plane optical see-through display for AR applications.

    Science.gov (United States)

    Liu, Shuxin; Li, Yan; Zhou, Pengcheng; Chen, Quanming; Su, Yikai

    2018-02-05

    In this paper we propose an optical see-through multi-plane display with reverse-mode polymer-stabilized liquid crystal (PSLC). Our design solves the problem of accommodation-vergence conflict with correct focus cues. In the reverse mode PSLC system, power consumption could be reduced to ~1/(N-1) of that in a normal mode system if N planes are displayed. The PSLC films fabricated in our experiment exhibit a low saturation voltage ~20 V rms , a high transparent-state transmittance (92%), and a fast switching time within 2 ms and polarization insensitivity. A proof-of-concept two-plane color display prototype and a four-plane monocolor display prototype were implemented.

  13. Computing half-plane and strip discrepancy of planar point sets

    NARCIS (Netherlands)

    Berg, de M.

    1996-01-01

    We present efficient algorithms for two problems concerning the discrepancy of a set S of n points in the unit square in the plane. First, we describe an algorithm for maintaining the half-plane discrepancy of S under insertions and deletions of points. The algorithm runs in O(nlogn) worst-case time

  14. Copernican Revolution in the Complex Plane

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 11. Copernican Revolution in the Complex Plane - An Algebraic Way to Show the "Chief Point" of Copernican Innovation. Giorgio Goldoni. General Article Volume 17 Issue 11 November 2012 pp 1065-1084 ...

  15. Elastic Constants of Plane Orthotropic Elasticity

    DEFF Research Database (Denmark)

    Krenk, Steen

    1979-01-01

    The four independent material parameters of plane orthotropic elasti city are introduced as the effective stiffness, the effective Poisson ratio, the stiffness ratio and the shear parameter. It is proved that stress boundary value problems with zero resulting force on internal contours lead...

  16. 16 CFR Figure 3 to Part 1203 - Location of Reference Plane

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Location of Reference Plane 3 Figure 3 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT... Plane ER10MR98.003 ...

  17. 40 CFR 429.120 - Applicability; description of the sawmills and planing mills subcategory.

    Science.gov (United States)

    2010-07-01

    ... sawmills and planing mills subcategory. 429.120 Section 429.120 Protection of Environment ENVIRONMENTAL... CATEGORY Sawmills and Planing Mills Subcategory § 429.120 Applicability; description of the sawmills and planing mills subcategory. This subpart applies to discharges to waters of the United States and to the...

  18. Designing broad phononic band gaps for in-plane modes

    Science.gov (United States)

    Li, Yang Fan; Meng, Fei; Li, Shuo; Jia, Baohua; Zhou, Shiwei; Huang, Xiaodong

    2018-03-01

    Phononic crystals are known as artificial materials that can manipulate the propagation of elastic waves, and one essential feature of phononic crystals is the existence of forbidden frequency range of traveling waves called band gaps. In this paper, we have proposed an easy way to design phononic crystals with large in-plane band gaps. We demonstrated that the gap between two arbitrarily appointed bands of in-plane mode can be formed by employing a certain number of solid or hollow circular rods embedded in a matrix material. Topology optimization has been applied to find the best material distributions within the primitive unit cell with maximal band gap width. Our results reveal that the centroids of optimized rods coincide with the point positions generated by Lloyd's algorithm, which deepens our understandings on the formation mechanism of phononic in-plane band gaps.

  19. Research on spatial-variant property of bistatic ISAR imaging plane of space target

    International Nuclear Information System (INIS)

    Guo Bao-Feng; Wang Jun-Ling; Gao Mei-Guo

    2015-01-01

    The imaging plane of inverse synthetic aperture radar (ISAR) is the projection plane of the target. When taking an image using the range-Doppler theory, the imaging plane may have a spatial-variant property, which causes the change of scatter’s projection position and results in migration through resolution cells. In this study, we focus on the spatial-variant property of the imaging plane of a three-axis-stabilized space target. The innovative contributions are as follows. 1) The target motion model in orbit is provided based on a two-body model. 2) The instantaneous imaging plane is determined by the method of vector analysis. 3) Three Euler angles are introduced to describe the spatial-variant property of the imaging plane, and the image quality is analyzed. The simulation results confirm the analysis of the spatial-variant property. The research in this study is significant for the selection of the imaging segment, and provides the evidence for the following data processing and compensation algorithm. (paper)

  20. The effects of femoral external derotational osteotomy on frontal plane alignment.

    Science.gov (United States)

    Nelitz, M; Wehner, T; Steiner, M; Dürselen, L; Lippacher, S

    2014-11-01

    Femoral osteotomies are the preferred treatment in significant torsional deformity of the femur. The influence of torsional osteotomies on frontal plane alignment is poorly understood. Therefore, the aim of the present study was to evaluate the effects of external derotational osteotomies on proximal, mid-shaft and distal levels onto frontal plane alignment. The effect of rotation around the anatomical axis of the femur on frontal plane alignment was determined with a 3D computer model, created from CT data of a right human cadaver femur. Virtual torsional osteotomies of 10°, 20° and 30° were performed at proximal, mid-shaft and distal levels under five antecurvatum angles of the femur. The change of the frontal plane alignment was expressed by the mechanical lateral femoral angle. Proximal derotational osteotomies resulted in an increased mechanical lateral distal femoral angle (mLDFA) of 0.8°-2.6° for 10°, of 1.6°-5.1° for 20° and of 2.3-7.9° for 30° derotational osteotomy, indicating an increased varus angulation. Supracondylar derotational osteotomy resulted in a decreased mLDFA of -0.1° to -1.7° for 10°, of -0.2 to -3.7° for 20° and of -0.7 to -6.9° for 30° derotational osteotomy, indicating an increased valgus angulation. The effect increased with the amount of torsional correction and virtually increased antecurvatum angles. Mid-shaft torsional osteotomies had the smallest effect on frontal plane alignment. This three-dimensional computer model study demonstrates the relationship between femoral torsional osteotomies and frontal plane alignment. Proximal external derotational osteotomies tend to result in an increased varus angulation, whilst distal external derotational osteotomies tend to result in an increased valgus angulation. As a clinical consequence, torsional osteotomies have an increased risk of unintentional implications on frontal plane alignment.

  1. Performance of an Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    Science.gov (United States)

    Newman, Kevin; Belikov, Ruslan; Pluzhnik, Eugene; Balasubramanian, Kunjithapatham; Wilson, Dan

    2014-01-01

    Coronagraph technology combined with wavefront control is close to achieving the contrast and inner working angle requirements in the lab necessary to observe the faint signal of an Earth-like exoplanet in monochromatic light. An important remaining technological challenge is to achieve high contrast in broadband light. Coronagraph bandwidth is largely limited by chromaticity of the focal plane mask, which is responsible for blocking the stellar PSF. The size of a stellar PSF scales linearly with wavelength; ideally, the size of the focal plane mask would also scale with wavelength. A conventional hard-edge focal plane mask has a fixed size, normally sized for the longest wavelength in the observational band to avoid starlight leakage. The conventional mask is oversized for shorter wavelengths and blocks useful discovery space. Recently we presented a solution to the size chromaticity challenge with a focal plane mask designed to scale its effective size with wavelength. In this paper, we analyze performance of the achromatic size-scaling focal plane mask within a Phase Induced Amplitude Apodization (PIAA) coronagraph. We present results from wavefront control around the achromatic focal plane mask, and demonstrate the size-scaling effect of the mask with wavelength. The edge of the dark zone, and therefore the inner working angle of the coronagraph, scale with wavelength. The achromatic mask enables operation in a wider band of wavelengths compared with a conventional hard-edge occulter.

  2. Alignment in the transverse plane, but not sagittal or coronal plane, affects the risk of recurrent patella dislocation.

    Science.gov (United States)

    Takagi, Shigeru; Sato, Takashi; Watanabe, Satoshi; Tanifuji, Osamu; Mochizuki, Tomoharu; Omori, Go; Endo, Naoto

    2017-11-17

    Abnormalities of lower extremity alignment (LEA) in recurrent patella dislocation (RPD) have been studied mostly by two-dimensional (2D) procedures leaving three-dimensional (3D) factors unknown. This study aimed to three-dimensionally examine risk factors for RPD in lower extremity alignment under the weight-bearing conditions. The alignment of 21 limbs in 15 RPD subjects was compared to the alignment of 24 limbs of 12 healthy young control subjects by an our previously reported 2D-3D image-matching technique. The sagittal, coronal, and transverse alignment in full extension as well as the torsional position of the femur (anteversion) and tibia (tibial torsion) under weight-bearing standing conditions were assessed by our previously reported 3D technique. The correlations between lower extremity alignment and RPD were assessed using multiple logistic regression analysis. The difference of lower extremity alignment in RPD between under the weight-bearing conditions and under the non-weight-bearing conditions was assessed. In the sagittal and coronal planes, there was no relationship (statistically or by clinically important difference) between lower extremity alignment angle and RPD. However, in the transverse plane, increased external tibial rotation [odds ratio (OR) 1.819; 95% confidence interval (CI) 1.282-2.581], increased femoral anteversion (OR 1.183; 95% CI 1.029-1.360), and increased external tibial torsion (OR 0.880; 95% CI 0.782-0.991) were all correlated with RPD. The tibia was more rotated relative to femur at the knee joint in the RPD group under the weight-bearing conditions compared to under the non-weight-bearing conditions (p alignment parameters in the transverse plane related to the risk of RPD, while in the sagittal and coronal plane alignment parameters did not correlate with RPD. The clinical importance of this study is that the 3D measurements more directly, precisely, and sensitively detect rotational parameters associated with RPD and

  3. Communication: Two types of flat-planes conditions in density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaotian Derrick; Patel, Anand H. G.; González-Espinoza, Cristina E.; Ayers, Paul W. [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario LBS 4M1 (Canada); Miranda-Quintana, Ramón Alain [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario LBS 4M1 (Canada); Laboratory of Computational and Theoretical Chemistry, Faculty of Chemistry, University of Havana, Havana (Cuba); Heidar-Zadeh, Farnaz [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario LBS 4M1 (Canada); Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3), 9000 Gent (Belgium); Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium)

    2016-07-21

    Using results from atomic spectroscopy, we show that there are two types of flat-planes conditions. The first type of flat-planes condition occurs when the energy as a function of the number of electrons of each spin, N{sub α} and N{sub β}, has a derivative discontinuity on a line segment where the number of electrons, N{sub α} + N{sub β}, is an integer. The second type of flat-planes condition occurs when the energy has a derivative discontinuity on a line segment where the spin polarization, N{sub α} – N{sub β}, is an integer, but does not have a discontinuity associated with an integer number of electrons. Type 2 flat planes are rare—we observed just 15 type 2 flat-planes conditions out of the 4884 cases we tested—but their mere existence has implications for the design of exchange-correlation energy density functionals. To facilitate the development of functionals that have the correct behavior with respect to both fractional number of electrons and fractional spin polarization, we present a dataset for the chromium atom and its ions that can be used to test new functionals.

  4. Simulation Exploration through Immersive Parallel Planes

    Energy Technology Data Exchange (ETDEWEB)

    Brunhart-Lupo, Nicholas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bush, Brian W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gruchalla, Kenny M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Smith, Steve [Los Alamos Visualization Associates

    2017-05-25

    We present a visualization-driven simulation system that tightly couples systems dynamics simulations with an immersive virtual environment to allow analysts to rapidly develop and test hypotheses in a high-dimensional parameter space. To accomplish this, we generalize the two-dimensional parallel-coordinates statistical graphic as an immersive 'parallel-planes' visualization for multivariate time series emitted by simulations running in parallel with the visualization. In contrast to traditional parallel coordinate's mapping the multivariate dimensions onto coordinate axes represented by a series of parallel lines, we map pairs of the multivariate dimensions onto a series of parallel rectangles. As in the case of parallel coordinates, each individual observation in the dataset is mapped to a polyline whose vertices coincide with its coordinate values. Regions of the rectangles can be 'brushed' to highlight and select observations of interest: a 'slider' control allows the user to filter the observations by their time coordinate. In an immersive virtual environment, users interact with the parallel planes using a joystick that can select regions on the planes, manipulate selection, and filter time. The brushing and selection actions are used to both explore existing data as well as to launch additional simulations corresponding to the visually selected portions of the input parameter space. As soon as the new simulations complete, their resulting observations are displayed in the virtual environment. This tight feedback loop between simulation and immersive analytics accelerates users' realization of insights about the simulation and its output.

  5. Pull-out test of stud bolts embedded in concrete under an in-plane force

    International Nuclear Information System (INIS)

    Inada, Y.; Saito, H.; Torita, H.; Takiguchi, K.; Ibe, Y.; Taira, T.

    1995-01-01

    There are many steel plates with stud bolts embedded in the R C walls of a nuclear reactor building to support equipment and piping. Under a earthquake, the steel plates are submitted to an out-of-plane force due to the inertia force acting upon equipment and piping. Furthermore, the walls are submitted to an in-plane force, and cracks may occur. A large number of experimental studies have been carried out on the pull-out strength of stud bolts embedded in concrete. Few studies have been performed to understand the strength of stud bolts embedded in concrete under an in-plane force and, further, not any one on the strength for concrete under in-plane force simultaneously to stud bolts under out-of-plane force. This paper describes a test performed to understand the pull-out strength determined by this interaction of in-plane and out-of-plane forces. (author). 5 refs., 9 figs., 5 tabs

  6. Semipolar GaN grown on m-plane sapphire using MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Wernicke, Tim; Netzel, Carsten; Weyers, Markus [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Berlin (Germany); Kneissl, Michael [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Berlin (Germany); Institute of Solid State Physics, Technical University of Berlin (Germany)

    2008-07-01

    We have investigated the MOVPE growth of semipolar gallium nitride (GaN) films on (10 anti 1 0) m-plane sapphire substrates. Specular GaN films with a RMS roughness (10 x 10 {mu}m{sup 2}) of 15.2 nm were obtained and an arrowhead like structure aligned along[ anti 2 113] is prevailing. The orientation relationship was determined by XRD and yielded (212){sub GaN} parallel (10 anti 10){sub sapphire} and [anti 2113]{sub GaN} parallel [0001]{sub sapphire} as well as [anti 2113]{sub GaN} parallel [000 anti 1]{sub sapphire}. PL spectra exhibited near band edge emission accompanied by a strong basal plane stacking fault emission. In addition lower energy peaks attributed to prismatic plane stacking faults and donor acceptor pair emission appeared in the spectrum. With similar growth conditions also (1013) GaN films on m-plane sapphire were obtained. In the later case we found that the layer was twinned, crystallites with different c-axis orientation were present. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Application of oblique plane microscopy to high speed live cell imaging

    Science.gov (United States)

    Kumar, Sunil; Wilding, Dean; Sikkel, Markus B.; Lyon, Alexander R.; MacLeod, Ken T.; Dunsby, Chris

    2011-07-01

    Oblique Plane Microscopy (OPM) is a light sheet microscopy technique that combines oblique illumination with correction optics that tilt the focal plane of the collection system. OPM can be used to image conventionally mounted specimens on coverslips or tissue culture dishes and has low out-of-plane photobleaching and phototoxicity. No moving parts are required to achieve an optically sectioned image and so high speed optically sectioned imaging is possible. We present high speed 2D and 3D optically sectioned OPM imaging of live cells using a high NA water immersion lens.

  8. Determination of midsagittal plane for evaluation of facial asymmetry using three-dimensional computed tomography

    International Nuclear Information System (INIS)

    Kim, Tae Young; Huh, Kyung Hoe; Choi, Soon Chul; Baik, Jee Seon; Park, Joo Young; Chae, Hwa Sung

    2011-01-01

    The aim of the present study was to investigate the disagreement of cephalometric analysis depending on the reference determination of midsagittal plane on three-dimensional computed tomography. A total of 102 young women with class III dentofacial deformity were evaluated using three-dimensional computed tomography. The cranial and facial midsagittal planes were defined and the amounts of jaw deviation were calculated. The amounts of jaw deviation were compared with paired t-test (2-tailed) and Bland-Altman plot was drawn. The landmark tracing were reproducible (r≥.978). The jaws relative to the cranial midsagittal plane were 10-17 times more significantly deviated than to the facial midsagittal plane (P<.001). Bland-Altman plot demonstrated that the differences between the amounts of jaw deviation from two midsagittal planes were not normally distributed versus the average of the amounts of jaw deviation from two midsagittal planes. The cephalometric analyses of facial asymmetry were significantly inconsistent depending on the reference determination of midsagittal plane. The reference for midsagittal plane should be carefully determined in three-dimensional cephalometric analysis of facial asymmetry of patients with class III dentofacial deformity.

  9. Model of Dirac field interacting with material plane within Symanzik’s approach

    Directory of Open Access Journals (Sweden)

    Pismak Yu. M.

    2016-01-01

    Full Text Available The model for the interaction of a spinor field with a material plane is constructed in the framework of the Symanzik’s approach. The characteristics of scattering process of Dirac particles on the plane are calculated. The bounced states localized near the plane are investigated.The model can find application to a wide class of phenomena arising by the interaction of quantum electrodynamics fields with two-dimensional materials.

  10. MEMS mass-spring-damper systems using an out-of-plane suspension scheme

    KAUST Repository

    Abdel Aziz, Ahmed Kamal Said; Sharaf, Abdel Hameed; Serry, Mohamed Yousef; Sedky, Sherif Salah

    2014-01-01

    MEMS mass-spring-damper systems (including MEMS gyroscopes and accelerometers) using an out-of-plane (or vertical) suspension scheme, wherein the suspensions are normal to the proof mass, are disclosed. Such out-of-plane suspension scheme helps such MEMS mass-spring-damper systems achieve inertial grade performance. Methods of fabricating out-of-plane suspensions in MEMS mass-spring-damper systems (including MEMS gyroscopes and accelerometers) are also disclosed.

  11. MEMS mass-spring-damper systems using an out-of-plane suspension scheme

    KAUST Repository

    Abdel Aziz, Ahmed Kamal Said

    2014-02-04

    MEMS mass-spring-damper systems (including MEMS gyroscopes and accelerometers) using an out-of-plane (or vertical) suspension scheme, wherein the suspensions are normal to the proof mass, are disclosed. Such out-of-plane suspension scheme helps such MEMS mass-spring-damper systems achieve inertial grade performance. Methods of fabricating out-of-plane suspensions in MEMS mass-spring-damper systems (including MEMS gyroscopes and accelerometers) are also disclosed.

  12. Eight plane IPND [Integration Prototype Near Detector] mechanical testing

    International Nuclear Information System (INIS)

    Zhao, A.; Guarino, V.; Wood, K.; Nephew, T.; Ayres, D.

    2008-01-01

    A mechanical test of an 8 plane IPND mechanical prototype, which was constructed using extrusions from the testing/tryout of the 16 cell prototype extrusion die in Argonne National Laboratory, was conducted. There were 4 vertical and 4 horizontal planes in this 8 plane IPND prototype. Each vertical plane had four 16 cell extrusions, while each horizontal plane had six 16 cell extrusions. Each plane was glued together using the formulation of Devcon adhesive, Devcon 60. The vertical extrusions used in the vertical planes shares the same dimensions as the horizontal extrusions in the horizontal planes with the average web thickness of 2.1 mm and the average wall thickness of 3.1 mm. This mechanical prototype was constructed with end-seals on the both ends of the vertical extrusions. The gaps were filled with epoxy between extrusions and end-seals. The overall dimension of IPND is 154.8 by 103.1 by 21.7 inches with the weight of approximately 1200 kg, as shown in a figure. Two similar mechanical tests of 3 layer and 11 layer prototypes have been done in order to evaluate the strength of the adhesive joint between extrusions in the NOvA detector. The test showed that the IPND prototype was able to sustain under the loading of weight of itself and scintillator. Two FEA models were built to verify the measurement data from the test. The prediction from FEA slice model seems correlated reasonably well to the test result, even under a 'rough' estimated condition for the wall thickness (from an untuned die) and an unknown property of 'garage type' extrusion. A full size of FEA 3-D model also agrees very well with the test data from strain gage readings. It is worthy to point out that the stress distribution of the structure is predominantly determined by the internal pressure, while the buckling stability relies more on the loading weight from the extrusions themselves and scintillate. Results of conducted internal pressure tests, including 3- cell, 11-cell and the IPND

  13. On Out of Plane Equilibrium Points in Photo-Gravitational Restricted ...

    Indian Academy of Sciences (India)

    Abstract. We have investigated the out of plane equilibrium points of a passive micron size particle and their stability in the field of radiating binary stellar systems Krüger-60, RW-Monocerotis within the framework of photo-gravitational circular restricted three-body problem. We find that the out of plane equilibrium points (Li,i ...

  14. Pristine Basal- and Edge-Plane-Oriented Molybdenite MoS2 Exhibiting Highly Anisotropic Properties.

    Science.gov (United States)

    Tan, Shu Min; Ambrosi, Adriano; Sofer, Zdenĕk; Huber, Štěpán; Sedmidubský, David; Pumera, Martin

    2015-05-04

    The layered structure of molybdenum disulfide (MoS2 ) is structurally similar to that of graphite, with individual sheets strongly covalently bonded within but held together through weak van der Waals interactions. This results in two distinct surfaces of MoS2 : basal and edge planes. The edge plane was theoretically predicted to be more electroactive than the basal plane, but evidence from direct experimental comparison is elusive. Herein, the first study comparing the two surfaces of MoS2 by using macroscopic crystals is presented. A careful investigation of the electrochemical properties of macroscopic MoS2 pristine crystals with precise control over the exposure of one plane surface, that is, basal plane or edge plane, was performed. These crystals were characterized thoroughly by AFM, Raman spectroscopy, X-ray photoelectron spectroscopy, voltammetry, digital simulation, and DFT calculations. In the Raman spectra, the basal and edge planes show anisotropy in the preferred excitation of E2g and A1g phonon modes, respectively. The edge plane exhibits a much larger heterogeneous electron transfer rate constant k(0) of 4.96×10(-5) and 1.1×10(-3)  cm s(-1) for [Fe(CN)6 ](3-/4-) and [Ru(NH3 )6 ](3+/2+) redox probes, respectively, compared to the basal plane, which yielded k(0) tending towards zero for [Fe(CN)6 ](3-/4-) and about 9.3×10(-4)  cm s(-1) for [Ru(NH3 )6 ](3+/2+) . The industrially important hydrogen evolution reaction follows the trend observed for [Fe(CN)6 ](3-/4-) in that the basal plane is basically inactive. The experimental comparison of the edge and basal planes of MoS2 crystals is supported by DFT calculations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Plane waves and structures in turbulent channel flow

    Science.gov (United States)

    Sirovich, L.; Ball, K. S.; Keefe, L. R.

    1990-01-01

    A direct simulation of turbulent flow in a channel is analyzed by the method of empirical eigenfunctions (Karhunen-Loeve procedure, proper orthogonal decomposition). This analysis reveals the presence of propagating plane waves in the turbulent flow. The velocity of propagation is determined by the flow velocity at the location of maximal Reynolds stress. The analysis further suggests that the interaction of these waves appears to be essential to the local production of turbulence via bursting or sweeping events in the turbulent boundary layer, with the additional suggestion that the fast acting plane waves act as triggers.

  16. Problems of the orthogonalized plane wave method. 1

    International Nuclear Information System (INIS)

    Farberovich, O.V.; Kurganskii, S.I.; Domashevskaya, E.P.

    1979-01-01

    The main problems of the orthogonalized plane wave method are discussed including (a) consideration of core states; (b) effect of overlap of wave functions of external core states upon the band structure; (c) calculation of d-type states. The modified orthogonal plane wave method (MOPW method) of Deegan and Twose is applied in a general form to solve the problems of the usual OPW method. For the first time the influence on the spectrum of the main parameters of the MOPW method is studied systematically by calculating the electronic energy spectrum in the transition metals Nb and V. (author)

  17. Electrostatic instability of some jellium model lattices of high symmetry to their plane cleavage

    International Nuclear Information System (INIS)

    Kholopov, Eugene V; Kalashnikova, Vita V

    2007-01-01

    Jellium model structures composed of regular lattices of equal point charges immersed in a neutralizing uniform background are considered. The symmetric description eliminating the effect of potentials without transverse structural modulation is extended to the events specified by alternating distances between point-charge planes. Based on modulated potentials typical of plane-wise lattice summation, the energy of interaction between two semi-infinite hemi-crystals divided by a plane is obtained for cubic and hexagonal crystals, where all the characteristic orientations of the cleavage plane are taken into account. We found that simple cubic and hexagonal lattices, as well as cubic and hexagonal diamond structures, turn out to be unstable for certain cleavage planes. The most favourable cleavage planes for the bcc, fcc and hcp structures are also emphasized

  18. Roof planes detection via a second-order variational model

    Science.gov (United States)

    Benciolini, Battista; Ruggiero, Valeria; Vitti, Alfonso; Zanetti, Massimo

    2018-04-01

    The paper describes a unified automatic procedure for the detection of roof planes in gridded height data. The procedure exploits the Blake-Zisserman (BZ) model for segmentation in both 2D and 1D, and aims to detect, to model and to label roof planes. The BZ model relies on the minimization of a functional that depends on first- and second-order derivatives, free discontinuities and free gradient discontinuities. During the minimization, the relative strength of each competitor is controlled by a set of weight parameters. By finding the minimum of the approximated BZ functional, one obtains: (1) an approximation of the data that is smoothed solely within regions of homogeneous gradient, and (2) an explicit detection of the discontinuities and gradient discontinuities of the approximation. Firstly, input data is segmented using the 2D BZ. The maps of data and gradient discontinuities are used to isolate building candidates and planar patches (i.e. regions with homogeneous gradient) that correspond to roof planes. Connected regions that can not be considered as buildings are filtered according to both patch dimension and distribution of the directions of the normals to the boundary. The 1D BZ model is applied to the curvilinear coordinates of boundary points of building candidates in order to reduce the effect of data granularity when the normals are evaluated. In particular, corners are preserved and can be detected by means of gradient discontinuity. Lastly, a total least squares model is applied to estimate the parameters of the plane that best fits the points of each planar patch (orthogonal regression with planar model). Refinement of planar patches is performed by assigning those points that are close to the boundaries to the planar patch for which a given proximity measure assumes the smallest value. The proximity measure is defined to account for the variance of a fitting plane and a weighted distance of a point from the plane. The effectiveness of the

  19. Simulation of in-plane distribution of beam irradiation amount in ion implantation

    International Nuclear Information System (INIS)

    Sone, Yuki; Sato, Masataka; Yamamoto, Yasuhiro

    1994-01-01

    In the ion implantation process which is one of the important technologies for making devices, the good controllability and the implantation in a short time aiming at high through put have been demanded. Therefore, the increase of current in implantation beam is planned, but such short time implantation is to worsen the uniformity of dose in wafer plane. The method of quantitatively determining this in-plane uniformity by computer simulation has been established, therefore, it is reported. In the simulation, the method of beam scan was made into raster scan, and the in-plane uniformity of dose was determined when the time of implantation, the with of overscan, and the band width of beam scanning waveform were taken as the parameters. As the result, in the case of assuming the scan waveform being ideal triangular wave, under the supposed condition, by taking the time of implantation as longer than 30s, the in-plane uniformity within 1% was able to be attained. It was found that the scanning device having 175 kHz band must be used for the above conditions. The simulation and as the results, the relation of the time of implantation with the in-plane uniformity, the scanning waveform and the in-plane uniformity and so on are reported. (K.I.)

  20. Esthetic smile preferences and the orientation of the maxillary occlusal plane.

    Science.gov (United States)

    Kattadiyil, Mathew T; Goodacre, Charles J; Naylor, W Patrick; Maveli, Thomas C

    2012-12-01

    The anteroposterior orientation of the maxillary occlusal plane has an important role in the creation, assessment, and perception of an esthetic smile. However, the effect of the angle at which this plane is visualized (the viewing angle) in a broad smile has not been quantified. The purpose of this study was to assess the esthetic preferences of dental professionals and nondentists by using 3 viewing angles of the anteroposterior orientation of the maxillary occlusal plane. After Institutional Review Board approval, standardized digital photographic images of the smiles of 100 participants were recorded by simultaneously triggering 3 cameras set at different viewing angles. The top camera was positioned 10 degrees above the occlusal plane (camera #1, Top view); the center camera was positioned at the level of the occlusal plane (camera #2, Center view); and the bottom camera was located 10 degrees below the occlusal plane (camera #3, Bottom view). Forty-two dental professionals and 31 nondentists (persons from the general population) independently evaluated digital images of each participant's smile captured from the Top view, Center view, and Bottom view. The 73 evaluators were asked individually through a questionnaire to rank the 3 photographic images of each patient as 'most pleasing,' 'somewhat pleasing,' or 'least pleasing,' with most pleasing being the most esthetic view and the preferred orientation of the occlusal plane. The resulting esthetic preferences were statistically analyzed by using the Friedman test. In addition, the participants were asked to rank their own images from the 3 viewing angles as 'most pleasing,' 'somewhat pleasing,' and 'least pleasing.' The 73 evaluators found statistically significant differences in the esthetic preferences between the Top and Bottom views and between the Center and Bottom views (Pgender, profession, and race. The esthetic preference for the maxillary occlusal plane was influenced by the viewing angle with the

  1. Diffraction by a plane angular sector, a new derivation

    DEFF Research Database (Denmark)

    Hansen, Thokild B.

    1990-01-01

    An alternative derivation is given for the exact solution to the scattering problem in which a Hertz dipole illuminates a perfectly conducting plane angular sector. Specifically, the Ohm-Rayleigh method is used rather than that of Satterwhite (1969)......An alternative derivation is given for the exact solution to the scattering problem in which a Hertz dipole illuminates a perfectly conducting plane angular sector. Specifically, the Ohm-Rayleigh method is used rather than that of Satterwhite (1969)...

  2. Transversus abdominis plane block: a cadaveric and radiological evaluation.

    LENUS (Irish Health Repository)

    McDonnell, John G

    2011-04-11

    The abdominal wall is a significant source of pain after abdominal surgery. Anterior abdominal wall analgesia may assist in improving postoperative analgesia. We have recently described a novel approach to block the abdominal wall neural afferents via the bilateral lumbar triangles of Petit, which we have termed a transversus abdominis plane block. The clinical efficacy of the transversus abdominis plane block has recently been demonstrated in a randomized controlled clinical trial of adults undergoing abdominal surgery.

  3. Klasifikasi Bit-Plane Noise untuk Penyisipan Pesan pada Teknik Steganography BPCS Menggunakan Fuzzy Inference Sistem Mamdani

    Directory of Open Access Journals (Sweden)

    Rahmad Hidayat

    2015-04-01

    Full Text Available Bit-Plane Complexity Segmentation (BPCS is a fairly new steganography technique. The most important process in BPCS is the calculation of complexity value of a bit-plane. The bit-plane complexity is calculated by looking at the amount of bit changes contained in a bit-plane. If a bit-plane has a high complexity, the bi-plane is categorized as a noise bit-plane that does not contain valuable information on the image. Classification of the bit-plane using the set cripst set (noise/not is not fair, where a little difference of the value will significantly change the status of the bit-plane. The purpose of this study is to apply the principles of fuzzy sets to classify the bit-plane into three sets that are informative, partly informative, and the noise region. Classification of the bit-plane into a fuzzy set is expected to classify the bit-plane in a more objective approach and ultimately message capacity of the images can be improved by using the Mamdani fuzzy inference to take decisions which bit-plane will be replaced with a message based on the classification of bit-plane and the size of the message that will be inserted. This research is able to increase the capability of BPCS steganography techniques to insert a message in bit-pane with more precise so that the container image quality would be better. It can be seen that the PSNR value of original image and stego-image is only slightly different.

  4. Implementing digital holograms to create and measure complex-plane optical fields

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2016-02-01

    Full Text Available The coherent superposition of a Gaussian beam with an optical vortex can be mathematically described to occupy the complex plane. The authors provide a simple analogy between the mathematics, in the form of the complex plane, and the visual...

  5. Spatial filtering velocimetry for real-time out-of-plane displacement measurements

    DEFF Research Database (Denmark)

    Olesen, Anders Sig; Yura, H.T.; Jakobsen, Michael Linde

    2016-01-01

    power spectrum of the photocurrent produced by this filter. This main contribution of this paper is a model, which describe the selectivity of the sensor, applied to speckle dynamics generated by an object moving out-of-plane. To motivate our interest in these filters we also present an all optical......We probe the dynamics of objective laser speckles as the axial distance between the object and the observation plane changes. With the purpose of measuring out-of-plane motion in real time, we apply optical spatial filtering velocimetry to the speckle dynamics. To achieve this, a rotationally...... symmetric spatial filter is designed. The spatial filter converts the speckle dynamics into a photocurrent with a quasi-sinusoidal response to the out-of-plane motion. The selectivity of the sensor relates directly to the uncertainty on sensor measurements. The selectivity most be derived from a temporal...

  6. Controlled multiple neutral planes by low elastic modulus adhesive for flexible organic photovoltaics.

    Science.gov (United States)

    Kim, Wansun; Lee, Inhwa; Yoon Kim, Dong; Yu, Youn-Yeol; Jung, Hae-Yoon; Kwon, Seyeoul; Seo Park, Weon; Kim, Taek-Soo

    2017-05-12

    To protect brittle layers in organic photovoltaic devices, the mechanical neutral plane strategy can be adopted through placing the brittle functional materials close to the neutral plane where stress and strain are zero during bending. However, previous research has been significantly limited in the location and number of materials to protect through using a single neutral plane. In this study, multiple neutral planes are generated using low elastic modulus adhesives and are controlled through quantitative analyses in order to protect the multiple brittle materials at various locations. Moreover, the protection of multiple brittle layers at various locations under both concave and convex bending directions is demonstrated. Multilayer structures that have soft adhesives are further analyzed using the finite element method analysis in order to propose guidelines for structural design when employing multiple neutral planes.

  7. The Sentinel 4 focal plane subsystem

    Science.gov (United States)

    Hohn, Rüdiger; Skegg, Michael P.; Hermsen, Markus; Hinger, Jürgen; Williges, Christian; Reulke, Ralf

    2017-09-01

    The Sentinel 4 instrument is an imaging spectrometer, developed by Airbus under ESA contract in the frame of the joint European Union (EU)/ESA COPERNICUS program with the objective of monitoring trace gas concentrations. Sentinel 4 will provide accurate measurements of key atmospheric constituents such as ozone, nitrogen dioxide, sulfur dioxide, formaldehyde, as well as aerosol and cloud properties. Sentinel 4 is unique in being the first geostationary UVN mission. The SENTINEL 4 space segment will be integrated on EUMETSAT's Meteosat Third Generation Sounder satellite (MTG-S). Sentinel 4 will provide coverage of Europe and adjacent regions. The Sentinel 4 instrument comprises as a major element two Focal Plane Subsystems (FPS) covering the wavelength ranges 305 nm to 500 nm (UVVIS) and 750 nm to 775 nm (NIR) respectively. The paper describes the Focal Plane Subsystems, comprising the detectors, the optical bench and the control electronics. Further the design and development approach will be presented as well as first measurement results of FPS Qualification Model.

  8. A Single-Element Plane Grating Monochromator

    Directory of Open Access Journals (Sweden)

    Michael C. Hettrick

    2016-01-01

    Full Text Available Concerted rotations of a self-focused varied line-space diffraction grating about its groove axis and surface normal define a new geometric class of monochromator. Defocusing is canceled, while the scanned wavelength is reinforced at fixed conjugate distances and horizontal deviation angle. This enables high spectral resolution over a wide band, and is of particular advantage at grazing reflection angles. A new, rigorous light-path formulation employs non-paraxial reference points to isolate the lateral ray aberrations, with those of power-sum ≤ 3 explicitly expanded for a plane grating. Each of these 14 Fermat equations agrees precisely with the value extracted from numerical raytrace simulations. An example soft X-ray design (6° deviation angle and 2 × 4 mrad aperture attains a resolving power > 25 , 000 over a three octave scan range. The proposed rotation scheme is not limited to plane surfaces or monochromators, providing a new degree of freedom in optical design.

  9. Graphical Representation of Complex Solutions of the Quadratic Equation in the "xy" Plane

    Science.gov (United States)

    McDonald, Todd

    2006-01-01

    This paper presents a visual representation of complex solutions of quadratic equations in the xy plane. Rather than moving to the complex plane, students are able to experience a geometric interpretation of the solutions in the xy plane. I am also working on these types of representations with higher order polynomials with some success.

  10. Proportion quantitative analysis and etching of {110} planes on tungsten single crystal coating surface

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Rende, E-mail: dallasbiam@163.com [Beijing Institute of Aeronautical Materials, Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, Department 5, P.O. Box 81-5, Beijing 100095 (China); Tan, Chengwen; Yu, Xiaodong [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2016-05-05

    Tungsten single crystal and poly crystal were treated by electrolytic etching in a 3% by weight solution of NaOH in distilled water. The method for determining the proportion of {110} planes and characteristic morphology on the coating surface after electrolytic etching were investigated using EBSD and auto-focusing microscope. Then the optimization of process parameters for electrolytic etching is achieved. In order to compare the effect of process parameters, three process parameters were selected for the tungsten single crystal electrolytic etching. Through analyzing the change of {110} planes' proportion, we found that when the coatings are etched with 1.4 amp/cm{sup 2} and 3 min, {110} planes can be exposed in the greatest degree that can reach 61.4% on tubular surfaces. The proposed approach greatly improves the proportion of {110} planes relative to the original surface. - Highlights: • Tungsten single/poly crystals treated by electrolytic etching in solution of NaOH. • The {110} planes have the lower surface free energy than {112}. • Some {112} planes etched firstly, the {110} planes exposed at last during etching. • {110} planes exposed to the greatest extent with 1.4 amp/cm{sup 2} and 3 min.

  11. Three surgical planes identified in laparoscopic complete mesocolic excision for right-sided colon cancer.

    Science.gov (United States)

    Zhu, Da-Jian; Chen, Xiao-Wu; OuYang, Man-Zhao; Lu, Yan

    2016-01-12

    Complete mesocolic excision provides a correct anatomical plane for colon cancer surgery. However, manifestation of the surgical plane during laparoscopic complete mesocolic excision versus in computed tomography images remains to be examined. Patients who underwent laparoscopic complete mesocolic excision for right-sided colon cancer underwent an abdominal computed tomography scan. The spatial relationship of the intraoperative surgical planes were examined, and then computed tomography reconstruction methods were applied. The resulting images were analyzed. In 44 right-sided colon cancer patients, the surgical plane for laparoscopic complete mesocolic excision was found to be composed of three surgical planes that were identified by computed tomography imaging with cross-sectional multiplanar reconstruction, maximum intensity projection, and volume reconstruction. For the operations performed, the mean bleeding volume was 73±32.3 ml and the mean number of harvested lymph nodes was 22±9.7. The follow-up period ranged from 6-40 months (mean 21.2), and only two patients had distant metastases. The laparoscopic complete mesocolic excision surgical plane for right-sided colon cancer is composed of three surgical planes. When these surgical planes were identified, laparoscopic complete mesocolic excision was a safe and effective procedure for the resection of colon cancer.

  12. From in-plane to out-of-plane enhancement of the directed flow in 64Zn on 58Ni collisions between 35 and 79 MeV/u

    International Nuclear Information System (INIS)

    Angelique, J.C.; Bizard, G.; Brou, R.; Cussol, D.; Kerambrun, A.; Patry, J.P.; Peter, J.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Cabot, C.; Rosato, E.

    1994-05-01

    The azimuthal distributions of light particles relative to the reaction plane have been measured for several bins of experimentally estimated impact parameter in the reactions of 64 Zn + 58 Ni at energies between 35 and 79 MeV/u. An in-plane enhancement for mid-rapidity Z = 1, 2, 3 particles is observed at low incident energy but gradually evolves to out-of plane enhancement (squeeze-out effect) with increasing energy. This evolution depends on the impact parameter in a way similar to the flow parameter. The energies for this system at which the azimuthal distribution is uniform are lower than the corresponding balance energies. (authors)

  13. 6. Label-free selective plane illumination microscopy of tissue samples

    Directory of Open Access Journals (Sweden)

    Muteb Alharbi

    2017-10-01

    Conclusion: Overall this method meets the demands of the current needs for 3D imaging tissue samples in a label-free manner. Label-free Selective Plane Microscopy directly provides excellent information about the structure of the tissue samples. This work has highlighted the superiority of Label-free Selective Plane Microscopy to current approaches to label-free 3D imaging of tissue.

  14. Focal plane for the next generation of earth observation instruments

    Science.gov (United States)

    Pranyies, P.; Toubhans, I.; Badoil, B.; Tanguy, F.; Descours, Francis

    2017-09-01

    Sodern is the French focal plane provider for Earth Observation (EO) satellites. Since the 1980's, Sodern has played an active role first in the SPOT program. Within the two-spacecraft constellation Pleiades 1A/1B over the next years, Sodern introduced advanced technologies as Silicon Carbide (SiC) focal plane structure and multispectral strip filters dedicated to multiple-lines detectors.

  15. The effect of averaging adjacent planes for artifact reduction in matrix inversion tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Godfrey, Devon J. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Page McAdams, H. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Dobbins, James T. III [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Department of Biomedical Engineering, Department of Physics, and Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States)

    2013-02-15

    Purpose: Matrix inversion tomosynthesis (MITS) uses linear systems theory and knowledge of the imaging geometry to remove tomographic blur that is present in conventional backprojection tomosynthesis reconstructions, leaving in-plane detail rendered clearly. The use of partial-pixel interpolation during the backprojection process introduces imprecision in the MITS modeling of tomographic blur, and creates low-contrast artifacts in some MITS planes. This paper examines the use of MITS slabs, created by averaging several adjacent MITS planes, as a method for suppressing partial-pixel artifacts. Methods: Human chest tomosynthesis projection data, acquired as part of an IRB-approved pilot study, were used to generate MITS planes, three-plane MITS slabs (MITSa3), five-plane MITS slabs (MITSa5), and seven-plane MITS slabs (MITSa7). These were qualitatively examined for partial-pixel artifacts and the visibility of normal and abnormal anatomy. Additionally, small (5 mm) subtle pulmonary nodules were simulated and digitally superimposed upon human chest tomosynthesis projection images, and their visibility was qualitatively assessed in the different reconstruction techniques. Simulated images of a thin wire were used to generate modulation transfer function (MTF) and slice-sensitivity profile curves for the different MITS and MITS slab techniques, and these were examined for indications of partial-pixel artifacts and frequency response uniformity. Finally, mean-subtracted, exposure-normalized noise power spectra (ENNPS) estimates were computed and compared for MITS and MITS slab reconstructions, generated from 10 sets of tomosynthesis projection data of an acrylic slab. The simulated in-plane MTF response of each technique was also combined with the square root of the ENNPS estimate to yield stochastic signal-to-noise ratio (SNR) information about the different reconstruction techniques. Results: For scan angles of 20 Degree-Sign and 5 mm plane separation, seven MITS

  16. The effect of averaging adjacent planes for artifact reduction in matrix inversion tomosynthesis

    Science.gov (United States)

    Godfrey, Devon J.; Page McAdams, H.; Dobbins, James T.

    2013-01-01

    Purpose: Matrix inversion tomosynthesis (MITS) uses linear systems theory and knowledge of the imaging geometry to remove tomographic blur that is present in conventional backprojection tomosynthesis reconstructions, leaving in-plane detail rendered clearly. The use of partial-pixel interpolation during the backprojection process introduces imprecision in the MITS modeling of tomographic blur, and creates low-contrast artifacts in some MITS planes. This paper examines the use of MITS slabs, created by averaging several adjacent MITS planes, as a method for suppressing partial-pixel artifacts. Methods: Human chest tomosynthesis projection data, acquired as part of an IRB-approved pilot study, were used to generate MITS planes, three-plane MITS slabs (MITSa3), five-plane MITS slabs (MITSa5), and seven-plane MITS slabs (MITSa7). These were qualitatively examined for partial-pixel artifacts and the visibility of normal and abnormal anatomy. Additionally, small (5 mm) subtle pulmonary nodules were simulated and digitally superimposed upon human chest tomosynthesis projection images, and their visibility was qualitatively assessed in the different reconstruction techniques. Simulated images of a thin wire were used to generate modulation transfer function (MTF) and slice-sensitivity profile curves for the different MITS and MITS slab techniques, and these were examined for indications of partial-pixel artifacts and frequency response uniformity. Finally, mean-subtracted, exposure-normalized noise power spectra (ENNPS) estimates were computed and compared for MITS and MITS slab reconstructions, generated from 10 sets of tomosynthesis projection data of an acrylic slab. The simulated in-plane MTF response of each technique was also combined with the square root of the ENNPS estimate to yield stochastic signal-to-noise ratio (SNR) information about the different reconstruction techniques. Results: For scan angles of 20° and 5 mm plane separation, seven MITS planes must be

  17. The effect of averaging adjacent planes for artifact reduction in matrix inversion tomosynthesis.

    Science.gov (United States)

    Godfrey, Devon J; McAdams, H Page; Dobbins, James T

    2013-02-01

    Matrix inversion tomosynthesis (MITS) uses linear systems theory and knowledge of the imaging geometry to remove tomographic blur that is present in conventional backprojection tomosynthesis reconstructions, leaving in-plane detail rendered clearly. The use of partial-pixel interpolation during the backprojection process introduces imprecision in the MITS modeling of tomographic blur, and creates low-contrast artifacts in some MITS planes. This paper examines the use of MITS slabs, created by averaging several adjacent MITS planes, as a method for suppressing partial-pixel artifacts. Human chest tomosynthesis projection data, acquired as part of an IRB-approved pilot study, were used to generate MITS planes, three-plane MITS slabs (MITSa3), five-plane MITS slabs (MITSa5), and seven-plane MITS slabs (MITSa7). These were qualitatively examined for partial-pixel artifacts and the visibility of normal and abnormal anatomy. Additionally, small (5 mm) subtle pulmonary nodules were simulated and digitally superimposed upon human chest tomosynthesis projection images, and their visibility was qualitatively assessed in the different reconstruction techniques. Simulated images of a thin wire were used to generate modulation transfer function (MTF) and slice-sensitivity profile curves for the different MITS and MITS slab techniques, and these were examined for indications of partial-pixel artifacts and frequency response uniformity. Finally, mean-subtracted, exposure-normalized noise power spectra (ENNPS) estimates were computed and compared for MITS and MITS slab reconstructions, generated from 10 sets of tomosynthesis projection data of an acrylic slab. The simulated in-plane MTF response of each technique was also combined with the square root of the ENNPS estimate to yield stochastic signal-to-noise ratio (SNR) information about the different reconstruction techniques. For scan angles of 20° and 5 mm plane separation, seven MITS planes must be averaged to sufficiently

  18. The effect of averaging adjacent planes for artifact reduction in matrix inversion tomosynthesis

    International Nuclear Information System (INIS)

    Godfrey, Devon J.; Page McAdams, H.; Dobbins, James T. III

    2013-01-01

    Purpose: Matrix inversion tomosynthesis (MITS) uses linear systems theory and knowledge of the imaging geometry to remove tomographic blur that is present in conventional backprojection tomosynthesis reconstructions, leaving in-plane detail rendered clearly. The use of partial-pixel interpolation during the backprojection process introduces imprecision in the MITS modeling of tomographic blur, and creates low-contrast artifacts in some MITS planes. This paper examines the use of MITS slabs, created by averaging several adjacent MITS planes, as a method for suppressing partial-pixel artifacts. Methods: Human chest tomosynthesis projection data, acquired as part of an IRB-approved pilot study, were used to generate MITS planes, three-plane MITS slabs (MITSa3), five-plane MITS slabs (MITSa5), and seven-plane MITS slabs (MITSa7). These were qualitatively examined for partial-pixel artifacts and the visibility of normal and abnormal anatomy. Additionally, small (5 mm) subtle pulmonary nodules were simulated and digitally superimposed upon human chest tomosynthesis projection images, and their visibility was qualitatively assessed in the different reconstruction techniques. Simulated images of a thin wire were used to generate modulation transfer function (MTF) and slice-sensitivity profile curves for the different MITS and MITS slab techniques, and these were examined for indications of partial-pixel artifacts and frequency response uniformity. Finally, mean-subtracted, exposure-normalized noise power spectra (ENNPS) estimates were computed and compared for MITS and MITS slab reconstructions, generated from 10 sets of tomosynthesis projection data of an acrylic slab. The simulated in-plane MTF response of each technique was also combined with the square root of the ENNPS estimate to yield stochastic signal-to-noise ratio (SNR) information about the different reconstruction techniques. Results: For scan angles of 20° and 5 mm plane separation, seven MITS planes must be

  19. Detection of trans–cis flips and peptide-plane flips in protein structures

    Energy Technology Data Exchange (ETDEWEB)

    Touw, Wouter G., E-mail: wouter.touw@radboudumc.nl [Radboud University Medical Center, Geert Grooteplein-Zuid 26-28, 6525 GA Nijmegen (Netherlands); Joosten, Robbie P. [Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Vriend, Gert, E-mail: wouter.touw@radboudumc.nl [Radboud University Medical Center, Geert Grooteplein-Zuid 26-28, 6525 GA Nijmegen (Netherlands)

    2015-07-28

    A method is presented to detect peptide bonds that need either a trans–cis flip or a peptide-plane flip. A coordinate-based method is presented to detect peptide bonds that need correction either by a peptide-plane flip or by a trans–cis inversion of the peptide bond. When applied to the whole Protein Data Bank, the method predicts 4617 trans–cis flips and many thousands of hitherto unknown peptide-plane flips. A few examples are highlighted for which a correction of the peptide-plane geometry leads to a correction of the understanding of the structure–function relation. All data, including 1088 manually validated cases, are freely available and the method is available from a web server, a web-service interface and through WHAT-CHECK.

  20. Detection of trans–cis flips and peptide-plane flips in protein structures

    International Nuclear Information System (INIS)

    Touw, Wouter G.; Joosten, Robbie P.; Vriend, Gert

    2015-01-01

    A method is presented to detect peptide bonds that need either a trans–cis flip or a peptide-plane flip. A coordinate-based method is presented to detect peptide bonds that need correction either by a peptide-plane flip or by a trans–cis inversion of the peptide bond. When applied to the whole Protein Data Bank, the method predicts 4617 trans–cis flips and many thousands of hitherto unknown peptide-plane flips. A few examples are highlighted for which a correction of the peptide-plane geometry leads to a correction of the understanding of the structure–function relation. All data, including 1088 manually validated cases, are freely available and the method is available from a web server, a web-service interface and through WHAT-CHECK

  1. Thermal Analysis of a Cracked Half-plane under Moving Point Heat Source

    Directory of Open Access Journals (Sweden)

    He Kuanfang

    2017-09-01

    Full Text Available The heat conduction in half-plane with an insulated crack subjected to moving point heat source is investigated. The analytical solution and the numerical means are combined to analyze the transient temperature distribution of a cracked half-plane under moving point heat source. The transient temperature distribution of the half plane structure under moving point heat source is obtained by the moving coordinate method firstly, then the heat conduction equation with thermal boundary of an insulated crack face is changed to singular integral equation by applying Fourier transforms and solved by the numerical method. The numerical examples of the temperature distribution on the cracked half-plane structure under moving point heat source are presented and discussed in detail.

  2. Titanium Heat Pipe Thermal Plane, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase II program is to complete the development of the titanium heat pipe thermal plane and establish all necessary steps for production of this...

  3. Kinetics of transformations nucleated on random parallel planes: analytical modelling and computer simulation

    International Nuclear Information System (INIS)

    Rios, Paulo R; Assis, Weslley L S; Ribeiro, Tatiana C S; Villa, Elena

    2012-01-01

    In a classical paper, Cahn derived expressions for the kinetics of transformations nucleated on random planes and lines. He used those as a model for nucleation on the boundaries, edges and vertices of a polycrystal consisting of equiaxed grains. In this paper it is demonstrated that Cahn's expression for random planes may be used in situations beyond the scope envisaged in Cahn's original paper. For instance, we derived an expression for the kinetics of transformations nucleated on random parallel planes that is identical to that formerly obtained by Cahn considering random planes. Computer simulation of transformations nucleated on random parallel planes is carried out. It is shown that there is excellent agreement between simulated results and analytical solutions. Such an agreement is to be expected if both the simulation and the analytical solution are correct. (paper)

  4. A Comparative Evaluation between Cheiloscopic Patterns and Terminal Planes in Primary Dentition.

    Science.gov (United States)

    Vignesh, R; Rekha, C Vishnu; Annamalai, Sankar; Norouzi, Parisa; Sharmin, Ditto

    2017-01-01

    To assess the correlation between different cheiloscopic patterns with the terminal planes in deciduous dentition. Three hundred children who are 3-6 years old with complete primary dentition were recruited, and the pattern of molar terminal plane was recorded in the pro forma. Lip prints of these children were recorded with lipstick-cellophane method, and the middle 10 mm of lower lip was analyzed for the lip print pattern as suggested by Sivapathasundharam et al . The pattern was classified based on Tsuchihashi and Suzuki classification. Type II (branched) pattern was the most predominant cheiloscopic pattern. The predominant patterns which related to the terminal planes were as follows: Type IV (reticular) and Type V (irregular) pattern for mesial step, Type IV (reticular) pattern for distal step, and Type I (complete vertical) pattern for flush terminal plane. No significant relationship was obtained on gender comparison. Lip prints can provide an alternative to dermatoglyphics to predict the terminal plane in primary dentition. Further studies with larger sample size are required to provide an insight into its significant correlations.

  5. Estimating the Value of the Inclination Angle of the Lunar Plane to the Ecliptic Plane

    Science.gov (United States)

    Isildak, R. Suat; Isik, Hakan; Küçüközer, H. Asuman

    2018-01-01

    Sky appears to our students as a vast volume surrounding the Earth. The most striking astronomical events that they can witness in the sky are lunar phases and eclipses. However, eclipses do not occur as often as full and new phases of the Moon. This difference is due to the fact that the orbital planes of the Moon and the Earth do not overlap.…

  6. Suicide plane crash against nuclear power plants

    International Nuclear Information System (INIS)

    Richard, A.

    2002-01-01

    Cea (French atomic energy commission) and EDF (Electricity of France) are reassessing their safety standards concerning suicide plane attacks against nuclear facilities. The general idea is to study the non-linear behaviour of reinforced concrete in case of mechanical impact. American studies carried out in 1988 show that a F-14 phantom crashing into a 3,6 meter thick wall at a speed of 774 km/h penetrates only the first 5 cm of the wall. More recent studies performed in Germany and based on computerized simulations show that the reactor containment can sustain impacts from a F15 plane or even from a 747-Boeing but contiguous buildings like the one which houses spent fuels might be more easily damaged because of their metal roofing. (A.C.)

  7. Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes

    Energy Technology Data Exchange (ETDEWEB)

    Grin, A. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2014-09-01

    The goal of this research is to provide durable and long-term water management solutions using exterior insulating sheathing as part of the water management system. It is possible to tape or seal the joints in insulating sheathing to create a drainage plane and even an air control layer. There exists the material durability component of the tape as well as the system durability component being the taped insulating sheathing as the drainage plane. This measure guideline provides best practice and product recommendations from the interviewed contractors and homebuilders who collectively have a vast amount of experience. Three significant issues were discussed with the group, which are required to make taped insulating sheathing a simple, long-term, and durable drainage plane: horizontal joints should be limited or eliminated wherever possible; where a horizontal joint exists use superior materials; and frequent installation inspection and regular trade training are required to maintain proper installation.

  8. Generation of tunable terahertz out-of-plane radiation using Josephson vortices in modulated layered superconductors

    International Nuclear Information System (INIS)

    Savel'ev, Sergey; Yampol'skii, Valery; Rakhmanov, Alexander; Nori, Franco

    2005-01-01

    We show that a moving Josephson vortex in spatially modulated layered superconductors generates out-of-plane THz radiation. Remarkably, the magnetic and in-plane electric fields radiated are of the same order, which is very unusual for any good-conducting medium. Therefore, the out-of-plane radiation can be emitted to the vacuum without the standard impedance mismatch problem. Thus, the proposed tunable THz emitter for out-of-plane radiation can be more efficient than the standard one which radiates only along the ab-plane

  9. Locating a general minisum 'circle' on a plane

    DEFF Research Database (Denmark)

    Brimberg, Jack; Juel, Henrik; Körner, Mark-Christoph

    2011-01-01

    We approximate a set of given points in the plane by the boundary of a convex and symmetric set which is the unit circle of some norm. This generalizes previous work on the subject which considers Euclidean circles only. More precisely, we examine the problem of locating and scaling the unit circle...... of some given norm k with respect to given points on the plane such that the sum of weighted distances (as measured by the same norm k) between the circumference of the circle and the points is minimized. We present general results and are able to identify a finite dominating set in the case that k...

  10. Role of moving planes and moving spheres following Dupin cyclides

    KAUST Repository

    Jia, Xiaohong

    2014-03-01

    We provide explicit representations of three moving planes that form a μ-basis for a standard Dupin cyclide. We also show how to compute μ-bases for Dupin cyclides in general position and orientation from their implicit equations. In addition, we describe the role of moving planes and moving spheres in bridging between the implicit and rational parametric representations of these cyclides. © 2014 Elsevier B.V.

  11. Precession of a Spinning Ball Rolling down an Inclined Plane

    Science.gov (United States)

    Cross, Rod

    2015-01-01

    A routine problem in an introductory physics course considers a rectangular block at rest on a plane inclined at angle a to the horizontal. In order for the block not to slide down the incline, the coefficient of sliding friction, µ, must be at least tan a. The situation is similar for the case of a ball rolling down an inclined plane. In order…

  12. Role of moving planes and moving spheres following Dupin cyclides

    KAUST Repository

    Jia, Xiaohong

    2014-01-01

    We provide explicit representations of three moving planes that form a μ-basis for a standard Dupin cyclide. We also show how to compute μ-bases for Dupin cyclides in general position and orientation from their implicit equations. In addition, we describe the role of moving planes and moving spheres in bridging between the implicit and rational parametric representations of these cyclides. © 2014 Elsevier B.V.

  13. Personnel thermoluminescent dosimetry of plane pilots

    International Nuclear Information System (INIS)

    Azorin V, J.C.; Rivera M, T.; Azorin N, J.

    1999-01-01

    In this work are presented the results of the research realized in the pilots of commercial planes of the different flight equipment existing. The results obtained show that the pilots receive during their work, doses of ionizing radiation greater than the limit recommended by the International Commission of Radiological Protection. (Author)

  14. Assessment of the out-plane and in-plane ordering of high quality ZnO nanorods by X-ray multiple diffraction

    International Nuclear Information System (INIS)

    Martínez-Tomás, M.C.; Montenegro, D.N.; Agouram, S.; Sallet, V.; Muñoz-Sanjosé, V.

    2013-01-01

    ZnO nanorods grown on buffered and non buffered sapphire substrates have been investigated by X-ray multiple diffraction using Renninger scans of the ZnO(0001) and ZnO(0003) forbidden reflections. In this technique the diffracted X-ray beam is simultaneously diffracted by several sets of planes, providing information on the broadening in different directions, as well as from nanorods, and from the layer on which they grow. The intensities and angular widths of peaks obtained by azimuthal and omega scans have been analyzed, making a direct comparison with conventional measurements of the full width at half-maximum of symmetric and asymmetric reflections. The analysis leads to establish that the peaks of the Renninger scan are highly sensitive to structural characteristics, providing information related with both the out-plane and in-plane ordering of nanostructured samples with a single scan. - Highlights: ► Structural characteristics of ZnO nanorods have been analyzed by X-ray multiple diffraction. ► X-ray multiple diffraction can provide mosaic structure characteristics from a single scan. ► Peaks of Renninger scan result to be very sensitive to structural characteristics. ► X-ray multiple diffraction can be an alternative analysis method to X-ray diffraction

  15. Assessment of the out-plane and in-plane ordering of high quality ZnO nanorods by X-ray multiple diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Tomás, M.C., E-mail: Carmen.Martinez-tomas@uv.es [Departamento de Física Aplicada y Electromagnetismo, Universitat de Valencia, Dr. Moliner 50, 46100 Burjassot (Spain); Montenegro, D.N.; Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de Valencia, Dr. Moliner 50, 46100 Burjassot (Spain); Sallet, V. [Groupe d' Etude de la Matière Condensée (GEMAC), CNRS-Université de Versailles St-Quentin, 45 avenue des Etats-Unis, 78035 Versailles Cedex (France); Muñoz-Sanjosé, V. [Departamento de Física Aplicada y Electromagnetismo, Universitat de Valencia, Dr. Moliner 50, 46100 Burjassot (Spain)

    2013-08-31

    ZnO nanorods grown on buffered and non buffered sapphire substrates have been investigated by X-ray multiple diffraction using Renninger scans of the ZnO(0001) and ZnO(0003) forbidden reflections. In this technique the diffracted X-ray beam is simultaneously diffracted by several sets of planes, providing information on the broadening in different directions, as well as from nanorods, and from the layer on which they grow. The intensities and angular widths of peaks obtained by azimuthal and omega scans have been analyzed, making a direct comparison with conventional measurements of the full width at half-maximum of symmetric and asymmetric reflections. The analysis leads to establish that the peaks of the Renninger scan are highly sensitive to structural characteristics, providing information related with both the out-plane and in-plane ordering of nanostructured samples with a single scan. - Highlights: ► Structural characteristics of ZnO nanorods have been analyzed by X-ray multiple diffraction. ► X-ray multiple diffraction can provide mosaic structure characteristics from a single scan. ► Peaks of Renninger scan result to be very sensitive to structural characteristics. ► X-ray multiple diffraction can be an alternative analysis method to X-ray diffraction.

  16. Analytic study of plastic instabilities during tension or compression tests on a metallic plate bi-axially loaded in its plane: symmetric and antisymmetric modes with respect to the median plane

    International Nuclear Information System (INIS)

    Jouve, Dominique

    2012-01-01

    This report is a continuation of the thesis [23], devoted to the onset of necking plastic instabilities during tension tests on metallic plates bi-axially loaded in their plane. We are also interested here in compression tests, and in the development of antisymmetric defects with respect to the median plane of the plate. As in the thesis, we search for the dominant mode, i.e. the most unstable pair of wavelengths (λ1, λ2) in the loading plane. An approximate analytical formulation for the growth rate is proposed, especially for plane-strain tests in the absence of viscous effects, and for static tests in tension in the x1 and x2 loading directions. In that latter case, we retrieve published results [14][15]. For plane-strain tests, we show that infinitely dense networks of shear bands inclined at 45 deg. with respect to the loading direction instantaneously occur when heat softening prevails over work-hardening. (author)

  17. State-plane analysis of zero-voltage-switching resonant dc/dc power converters

    Science.gov (United States)

    Kazimierczuk, Marian K.; Morse, William D.

    The state-plane analysis technique for the zero-voltage-switching resonant dc/dc power converter family of topologies, namely the buck, boost, buck-boost, and Cuk converters is established. The state plane provides a compression of information that allows the designer to uniquely examine the nonlinear dynamics of resonant converter operation. Utilizing the state plane, resonant converter modes of operation are examined and the switching frequencies are derived for the boundaries between these modes, including the boundary of energy conversion.

  18. Measuring the Flatness of Focal Plane for Very Large Mosaic CCD Camera

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jiangang; Estrada, Juan; Cease, Herman; Diehl, H.Thomas; Flaugher, Brenna L.; Kubik, Donna; Kuk, Keivin; Kuropatkine, Nickolai; Lin, Huan; Montes, Jorge; Scarpine, Vic; /Fermilab

    2010-06-08

    Large mosaic multiCCD camera is the key instrument for modern digital sky survey. DECam is an extremely red sensitive 520 Megapixel camera designed for the incoming Dark Energy Survey (DES). It is consist of sixty two 4k x 2k and twelve 2k x 2k 250-micron thick fully-depleted CCDs, with a focal plane of 44 cm in diameter and a field of view of 2.2 square degree. It will be attached to the Blanco 4-meter telescope at CTIO. The DES will cover 5000 square-degrees of the southern galactic cap in 5 color bands (g, r, i, z, Y) in 5 years starting from 2011. To achieve the science goal of constraining the Dark Energy evolution, stringent requirements are laid down for the design of DECam. Among them, the flatness of the focal plane needs to be controlled within a 60-micron envelope in order to achieve the specified PSF variation limit. It is very challenging to measure the flatness of the focal plane to such precision when it is placed in a high vacuum dewar at 173 K. We developed two image based techniques to measure the flatness of the focal plane. By imaging a regular grid of dots on the focal plane, the CCD offset along the optical axis is converted to the variation the grid spacings at different positions on the focal plane. After extracting the patterns and comparing the change in spacings, we can measure the flatness to high precision. In method 1, the regular dots are kept in high sub micron precision and cover the whole focal plane. In method 2, no high precision for the grid is required. Instead, we use a precise XY stage moves the pattern across the whole focal plane and comparing the variations of the spacing when it is imaged by different CCDs. Simulation and real measurements show that the two methods work very well for our purpose, and are in good agreement with the direct optical measurements.

  19. METHOD FOR DETERMINATION OF FOCAL PLANE LOCATION OF FOCUSING COMPONENTS

    Directory of Open Access Journals (Sweden)

    A. I. Ivashko

    2017-01-01

    Full Text Available Mass-production of different laser systems often requires utilization of the focal spot size method for determination of output laser beam spatial characteristics. The main challenge of this method is high accuracy maintenance of a CCD camera beam profiler in the collecting lens focal plane. The aim of our work is development of new method for placing of photodetector array in the collecting lens focal plane with high accuracy.Proposed technique is based on focusing of several parallel laser beams. Determination of the focal plane position requires only longitudinal translation of the CCD-camera to find a point of laser beams intersection. Continuous-wave (CW diode-pumped laser emitting in the spectral region near 1μm was created to satisfy the requirements of the developed technique. Designed microchip laser generates two stigmatic Gaussian beams with automatically parallel beam axes due to independent pumping of different areas of the one microchip crystal having the same cavity mirrors.It was theoretically demonstrated that developed method provides possibility of the lenses focal plane determination with 1 % accuracy. The microchip laser generates two parallel Gaussian beams with divergence of about 10 mrad. Laser output power can be varied in the range of 0.1–1.5 W by changing the pumping laser diode electrical current. The distance between two beam axes can be changed in the range of 0.5–5.0 mm.We have proposed method for determination of positive lens focal plane location by using of CCDcamera and two laser beams with parallel axes without utilization of additional optical devices. We have developed CW longitudinally diode pumped microchip laser emitting in the 1-μm spectral region that can be used in the measuring instrument that doesn’t require precision mechanical components for determination of focal plane location with 1 % accuracy. The overall dimensions of laser head was 70 × 40 × 40 mm3 and maximum power consumption was

  20. Limit load solutions for piping branch junctions under out-of-plane bending

    International Nuclear Information System (INIS)

    Xu, Ying Hu; Lee, Kuk Hee; Jeon, Jun Young; Kim, Yun Jae

    2009-01-01

    Approximate plastic limit load solutions for piping branch junctions under out-of plane bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. Two types of bending are considered; out-of-plane bending to the branch pipe and out-of-plane bending to the run pipe. Accordingly closed-form approximations are proposed for piping branch junctions under out-of-plane bending based on the FE results. The proposed solutions are valid for the branch-to-run pipe radius and thickness from 0.0 to 1.0, and the mean radius-to-thickness ratio of the run pipe from 2.0 to 20.0. And, this study provides effects of reinforcement area on plastic limit loads.

  1. Some Features of the Plane Couette Flow

    National Research Council Canada - National Science Library

    Skovorodko, Petr

    2000-01-01

    In the previous paper 1 it was found, in particular, that in the transition regime of the plane Couette flow the values of total energy flux and shear stress may exceed the corresponding free molecular values...

  2. Advanced x-ray stress analysis method for a single crystal using different diffraction plane families

    International Nuclear Information System (INIS)

    Imafuku, Muneyuki; Suzuki, Hiroshi; Sueyoshi, Kazuyuki; Akita, Koichi; Ohya, Shin-ichi

    2008-01-01

    Generalized formula of the x-ray stress analysis for a single crystal with unknown stress-free lattice parameter was proposed. This method enables us to evaluate the plane stress states with any combination of diffraction planes. We can choose and combine the appropriate x-ray sources and diffraction plane families, depending on the sample orientation and the apparatus, whenever diffraction condition is satisfied. The analysis of plane stress distributions in an iron single crystal was demonstrated combining with the diffraction data for Fe{211} and Fe{310} plane families

  3. The elementary discussion of volumetric modulated arc therapy using the orthogonal plane dose verification

    International Nuclear Information System (INIS)

    Shi Jinping; Chen Lixin; Xie Qiuying; Zhang Liwen; Teng Jianjian

    2012-01-01

    Objective: This study was to explore the feasibility of using the orthogonal plane dose formed by the coronal and sagittal plane to verify the volumetric modulated arc therapy (VMAT) plan. Methods: The VMAT plans of 12 patients were included in this study. The orthogonal plane dose formed by the coronal and sagittal plane were measured based on the combination of 2D ionization chamber array and multicube phantom, and the point dose were measured based on a multiple hole cylindrical phantom attached with two 0.125 cm 3 ionization chamber probes. Results: In the measurement of the point dose, the average error was 1.5% in high dose area (more than 80% of maximum), and 1.7% in low dose area (less than 80% of maximum), respectively. The discrepancy of point dose measurement was 1.3% between the 2D ionization chamber array and the VMAT planning system. In the measurement of the orthogonal plane dose, the pass rate of γ were 93.7% for 2%/2 mm and 97.2% for 3%/3 mm. Conclusion: It is reliable for using the orthogonal plane dose formed by the coronal and sagittal plane to verify the VMAT plan. (authors)

  4. Measurement of in-plane strain with dual beam spatial phase-shift digital shearography

    International Nuclear Information System (INIS)

    Xie, Xin; Chen, Xu; Li, Junrui; Yang, Lianxiang; Wang, Yonghong

    2015-01-01

    Full-field in-plane strain measurement under dynamic loading by digital shearography remains a big challenge in practice. A phase measurement for in-plane strain information within one time frame has to be achieved to solve this problem. This paper presents a dual beam spatial phase-shift digital shearography system with the capacity to measure phase distribution corresponding to in-plane strain information within a single time frame. Two laser beams with different wavelengths are symmetrically arranged to illuminate the object under test, and two cameras with corresponding filters, which enable simultaneous recording of two shearograms, are utilized for data acquisition. The phase information from the recorded shearograms, which corresponds to the in-plane strain, is evaluated by the spatial phase-shift method. The spatial phase-shift shearography system realizes a measurement of the in-plane strain through the introduction of the spatial phase-shift technique, using one frame after the loading and one frame before loading. This paper presents the theory of the spatial phase-shift digital shearography for in-plane strain measurement and its derivation, experimental results, and the technique’s potential. (paper)

  5. Simultaneous application of two independent EIT devices for real-time multi-plane imaging.

    Science.gov (United States)

    Schullcke, B; Krueger-Ziolek, S; Gong, B; Mueller-Lisse, U; Moeller, K

    2016-09-01

    Diagnosis and treatment of many lung diseases like cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD) could benefit from 3D ventilation information. Applying two EIT systems concurrently is a simple approach without specialized hardware that allows monitoring of regional changes of ventilation distribution inside the thorax at different planes with the high temporal resolution much valued in common single plane EIT. Effects of two simultaneously operated EIT devices on one subject were investigated to monitor rapid processes inside the thorax with a multi-plane approach. Results obtained by simulations with a virtual phantom and measurements with a phantom tank reveal that the distance of electrode planes has an important influence on the signal quality. Band-pass filters adapted according to the distance of the planes, can be used to reduce the crosstalk of the concurrent EIT systems. Besides simulations and phantom tank experiments measurements were also taken from a lung healthy volunteer to demonstrate the operation under realistic conditions. Reconstructed images indicate that it is possible to simultaneously visualize regional ventilation at different planes if settings of the EIT devices are chosen appropriately.

  6. Carrier ethernet network control plane based on the Next Generation Network

    DEFF Research Database (Denmark)

    Fu, Rong; Wang, Yanmeng; Berger, Michael Stubert

    2008-01-01

    This paper contributes on presenting a step towards the realization of Carrier Ethernet control plane based on the next generation network (NGN). Specifically, transport MPLS (T-MPLS) is taken as the transport technology in Carrier Ethernet. It begins with providing an overview of the evolving...... architecture of the next generation network (NGN). As an essential candidate among the NGN transport technologies, the definition of Carrier Ethernet (CE) is also introduced here. The second part of this paper depicts the contribution on the T-MPLS based Carrier Ethernet network with control plane based on NGN...... at illustrating the improvement of the Carrier Ethernet network with the NGN control plane....

  7. Design and characterization of AlN-based in-plane microplate resonators

    International Nuclear Information System (INIS)

    Ruiz-Díez, V; Manzaneque, T; Hernando-García, J; Sánchez-Rojas, J L; Ababneh, A; Kucera, M; Schmid, U; Seidel, H

    2013-01-01

    In this paper, a design procedure to perform an efficient actuation of in-plane modes in piezoelectric resonators is presented. This procedure is applied to different microplate structures, paying attention to two in-plane mode families: contour modes and flexure-actuated modes. A representative set of devices from both families were used as illustrative examples. These devices were characterized electrically by measuring the impedance and their in-plane modal shapes were measured with a novel technique based on speckle-pattern interferometry. Figures of merit such as the quality factor or the motional resistance were obtained and used to evaluate the different design approaches. (paper)

  8. Diffraction of love waves by two parallel perfectly weak half planes

    International Nuclear Information System (INIS)

    Asghar, S.; Zaman, F.D.; Ayub, M.

    1986-04-01

    We consider the diffraction of Love waves by two parallel perfectly weak half planes in a layer overlying a half space. The problem is formulated in terms of the Wiener-Hopf equations in the transformed plane. The transmitted waves are then calculated using the Wiener-Hopf procedure and inverse transforms. (author)

  9. Modelling the Impact of Ground Planes on Antenna Radiation Using the Method of Auxiliary Sources

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2007-01-01

    The Method of Auxiliary Sources is employed to model the impact of finite ground planes on the radiation from antennas. In many cases the computational cost of available commercial tools restricts the simulations to include only a small ground plane or, by use of the image principle, the infinitely...... large ground plane. The method proposed here makes use of results from such simulations to model large and moderate-sized finite ground planes. The method is applied to 3 different antenna test cases and a total of 5 different ground planes. Firstly it is validated through comparison with reference...... and measured reference solutions and the method is thus found to be a useful tool in determining the impact of finite ground planes....

  10. Trigonometric Characterization of Some Plane Curves

    Indian Academy of Sciences (India)

    IAS Admin

    (Figure 1). A relation between tan θ and tanψ gives the trigonometric equation of the family of curves. In this article, trigonometric equations of some known plane curves are deduced and it is shown that these equations reveal some geometric characteristics of the families of the curves under consideration. In Section 2,.

  11. Does monocular visual space contain planes?

    NARCIS (Netherlands)

    Koenderink, Jan J.; Albertazzi, Liliana; van Doorn, Andrea J.; van Ee, Raymond; van de Grind, Wim A.; Kappers, Astrid M L; Lappin, Joe S.; Farley Norman, J.; (Stijn) Oomes, A. H J; te Pas, Susan P.; Phillips, Flip; Pont, Sylvia C.; Richards, Whitman A.; Todd, James T.; Verstraten, Frans A J; de Vries, Sjoerd

    The issue of the existence of planes-understood as the carriers of a nexus of straight lines-in the monocular visual space of a stationary human observer has never been addressed. The most recent empirical data apply to binocular visual space and date from the 1960s (Foley, 1964). This appears to be

  12. 3D synthetic aperture imaging using a virtual source element in the elevation plane

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2000-01-01

    . However, the resolution in the elevation plane is determined by the fixed mechanical elevation focus. This paper suggests to post-focus the RF lines from several adjacent planes in the elevation direction using the elevation focal point of the transducer as a virtual source element, in order to obtain...... dynamic focusing in the elevation plane. A 0.1 mm point scatterer was mounted in an agar block and scanned in a water bath. The transducer is a 64 elements linear array with a pitch of 209 μm. The transducer height is 4 mm in the elevation plane and it is focused at 20 mm giving a F-number of 5. The point...... are passed through a second beamformer, in which the fixed focal points in the elevation plane are treated as virtual sources of spherical waves. Synthetic aperture focusing is applied on them. The -6 dB resolution in the elevation plane is increased from 7 mm to 2 mm. This gives a uniform point spread...

  13. Plane-wave Least-squares Reverse Time Migration

    KAUST Repository

    Dai, Wei; Schuster, Gerard T.

    2012-01-01

    convergence for least-squares migration even when the migration velocity is not completely accurate. To significantly reduce computation cost, linear phase shift encoding is applied to hundreds of shot gathers to produce dozens of planes waves. A

  14. Growth of M-plane (10-10)InN on LiAlO2(100) substrate

    International Nuclear Information System (INIS)

    Takagi, Yusuke; Muto, Daisuke; Araki, Tsutomu; Nanishi, Yasushi; Yamaguchi, Tomohiro

    2009-01-01

    In this study, we report the growth and characterization of M-plane InN films on LiAlO 2 (100) substrates by radio-frequency plasma assisted molecular beam epitaxy (RF-MBE). InN films were grown at various temperatures and under various V/III ratios on the substrates. Pure M -plane InN films were successfully grown at a high temperature of 450 C and under a slightly In-rich condition, while the incorporation of C-plane phase was observed in M -plane InN films grown at low temperatures of less than 400 C or under a N-rich condition. These indicate that controls of growth temperature and V/III ratio are important for the growth of pure M-plane InN films. The in-plane epitaxial relationships of M -plane InN on LiAlO 2 (100) were[0001] InN //[010] LiAlO 2 and[1-210] InN //[001] LiAlO 2 . A surface electron accumulation layer on the obtained M-plane InN film is also discussed. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Focal plane scanner with reciprocating spatial window

    Science.gov (United States)

    Mao, Chengye (Inventor)

    2000-01-01

    A focal plane scanner having a front objective lens, a spatial window for selectively passing a portion of the image therethrough, and a CCD array for receiving the passed portion of the image. All embodiments have a common feature whereby the spatial window and CCD array are mounted for simultaneous relative reciprocating movement with respect to the front objective lens, and the spatial window is mounted within the focal plane of the front objective. In a first embodiment, the spatial window is a slit and the CCD array is one-dimensional, and successive rows of the image in the focal plane of the front objective lens are passed to the CCD array by an image relay lens interposed between the slit and the CCD array. In a second embodiment, the spatial window is a slit, the CCD array is two-dimensional, and a prism-grating-prism optical spectrometer is interposed between the slit and the CCD array so as to cause the scanned row to be split into a plurality of spectral separations onto the CCD array. In a third embodiment, the CCD array is two-dimensional and the spatial window is a rectangular linear variable filter (LVF) window, so as to cause the scanned rows impinging on the LVF to be bandpass filtered into spectral components onto the CCD array through an image relay lens interposed between the LVF and the CCD array.

  16. Active point out-of-plane ultrasound calibration

    Science.gov (United States)

    Cheng, Alexis; Guo, Xiaoyu; Zhang, Haichong K.; Kang, Hyunjae; Etienne-Cummings, Ralph; Boctor, Emad M.

    2015-03-01

    Image-guided surgery systems are often used to provide surgeons with informational support. Due to several unique advantages such as ease of use, real-time image acquisition, and no ionizing radiation, ultrasound is a common intraoperative medical imaging modality used in image-guided surgery systems. To perform advanced forms of guidance with ultrasound, such as virtual image overlays or automated robotic actuation, an ultrasound calibration process must be performed. This process recovers the rigid body transformation between a tracked marker attached to the transducer and the ultrasound image. Point-based phantoms are considered to be accurate, but their calibration framework assumes that the point is in the image plane. In this work, we present the use of an active point phantom and a calibration framework that accounts for the elevational uncertainty of the point. Given the lateral and axial position of the point in the ultrasound image, we approximate a circle in the axial-elevational plane with a radius equal to the axial position. The standard approach transforms all of the imaged points to be a single physical point. In our approach, we minimize the distances between the circular subsets of each image, with them ideally intersecting at a single point. We simulated in noiseless and noisy cases, presenting results on out-of-plane estimation errors, calibration estimation errors, and point reconstruction precision. We also performed an experiment using a robot arm as the tracker, resulting in a point reconstruction precision of 0.64mm.

  17. Regularized plane-wave least-squares Kirchhoff migration

    KAUST Repository

    Wang, Xin; Dai, Wei; Schuster, Gerard T.

    2013-01-01

    A Kirchhoff least-squares migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images. A regularization term is included that accounts for mispositioning of reflectors due to errors in the velocity

  18. Geometric characteristics of aberrations of plane-symmetric optical systems

    International Nuclear Information System (INIS)

    Lu Lijun; Deng Zhiyong

    2009-01-01

    The geometric characteristics of aberrations of plane-symmetric optical systems are studied in detail with a wave-aberration theory. It is dealt with as an extension of the Seidel aberrations to realize a consistent aberration theory from axially symmetric to plane-symmetric systems. The aberration distribution is analyzed with the spot diagram of a ray and an aberration curve. Moreover, the root-mean-square value and the centroid of aberration distribution are discussed. The numerical results are obtained with the focusing optics of a toroidal mirror at grazing incidence.

  19. Tidal Friction in the Earth-Moon System and Laplace Planes: Darwin Redux

    Science.gov (United States)

    Rubincam, David P.

    2015-01-01

    The dynamical evolution of the Earth-Moon system due to tidal friction is treated here. George H. Darwin used Laplace planes (also called proper planes) in his study of tidal evolution. The Laplace plane approach is adapted here to the formalisms of W.M. Kaula and P. Goldreich. Like Darwin, the approach assumes a three-body problem: Earth, Moon, and Sun, where the Moon and Sun are point-masses. The tidal potential is written in terms of the Laplace plane angles. The resulting secular equations of motion can be easily integrated numerically assuming the Moon is in a circular orbit about the Earth and the Earth is in a circular orbit about the Sun. For Earth-Moon distances greater than 10 Earth radii, the Earth's approximate tidal response can be characterized with a single parameter, which is a ratio: a Love number times the sine of a lag angle divided by another such product. For low parameter values it can be shown that Darwin's low-viscosity molten Earth, M. Ross's and G. Schubert's model of an Earth near melting, and Goldreich's equal tidal lag angles must all give similar histories. For higher parameter values, as perhaps has been the case at times with the ocean tides, the Earth's obliquity may have decreased slightly instead of increased once the Moon's orbit evolved further than 50 Earth radii from the Earth, with possible implications for climate. This is contrast to the other tidal friction models mentioned, which have the obliquity always increasing with time. As for the Moon, its orbit is presently tilted to its Laplace plane by 5.2deg. The equations do not allow the Moon to evolve out of its Laplace plane by tidal friction alone, so that if it was originally in its Laplace plane, the tilt arose with the addition of other mechanisms, such as resonance passages.

  20. Parallel Multi-Focusing Using Plane Wave Decomposition

    DEFF Research Database (Denmark)

    Misaridis, Thanassis; Munk, Peter; Jensen, Jørgen Arendt

    2003-01-01

    of desired 2-D sensitivity functions is specified, for multi-focusing in a number of directions. The field along these directions is decomposed to a sufficiently large (for accurate specification) number of plane waves, which are then back-propagated to all transducer elements. The contributions of all plane...... waves result in one time function per element. The numerical solution is presented and discussed. It contains pulses with a variation in central frequency and time-varying apodization across the aperture (dynamic apodization). The RMS difference between the transmitted field using the calculated pulse...... of the transmitted pulses is based on the directivity spectrum method, a generalization of the angular spectrum method, a generalization of the angular spectrum method, containing no evanescent waves. The underlying theory is based on the Fourier slice theorem, and field reconstruction from projections. First a set...

  1. Use of digital photography in the reconstruction of the occlusal plane orientation

    Directory of Open Access Journals (Sweden)

    Robert Antonić,

    2009-08-01

    Full Text Available Aim This study evaluated whether the occlusal plane measurementson digital photographs were reliable for the reconstructionof occlusal plane.Methods Forty-two subjects (25 female and 17 male subjects,aged 19 to 30 years with all teeth and Angle Class I participated.Irreversible hydrocolloid impressions were made and the castswere poured in dental stone (ISO Type I and finally mounted inthe S.A.M. 2 “P”, articulator (S.A.M. Praezisiontechnik, GmbH,Munich, Germany by a quick mount face-bow transfer. Lateraldigital photographs were taken from a distance of 1.5 m in a naturalhead position with a subject in erect posture. A Fox plane wasplaced over the maxillary dental arch. A quick-mounting face-bowwas positioned. The angles between the articulator horizontalplane and the occlusal plane (AHP-OP, as well as those betweenthe face bow and the Fox plane (FB-FP were measured, and thesignificance of the difference between the means was tested by thet-test (p<0.05.Results The mean value of AHP-OP angle was 8.56 ± 3.1 degreesand the mean value of FB-FP angle was 8.80 ± 4.2 degrees. Therewas no significant difference between the male and the female subjects(p<0.05. There was no significant difference between AHPOPand FB-FP angles (p<0.05.Conclusion Measurements of occlusal plane inclination fromdigital photographs could be helpful in future prosthodontic reconstructiontreatment.

  2. Enhanced emission of high-energy photons perpendicular to the reaction plane in α+Th reactions

    International Nuclear Information System (INIS)

    Tegner, P.; Marianski, B.; Morsch, H.P.; Rogge, M.; Bargholtz, C.; Decowski, P.; Zemlo, L.

    1991-01-01

    High-energy photon and neutron emission has been measured in coincidence with fission fragments in α+ 232 Th reactions at 170 MeV. From measurements parallel and perpendicular to the fission plane, anisotropies relative to the reaction plane were determined. The in-plane/out-of-plane intensity ratio is 0.72(7) for photons with energies above 20 MeV and 11(3) for neutrons at 35 MeV. The result for high-energy photons can be explained by nucleon-nucleon bremsstrahlung if the initial flow of nucleons has a correlation to the reaction plane similar to the one observed for fast neutrons

  3. Motion of a carrier with a mobile load along a rough inclined plane

    Science.gov (United States)

    Bilchenko, G. G.

    2018-03-01

    The mechanical system consisting of a carrier and a load is considered. The load can move respectively the carrier according to the preset given motion law. The carrier motion from rest caused the load motion is investigated. The carrier can move translationally along rectilinear trajectory along rough inclined plane. The trajectory is the line of the greatest descent. The axis of rectilinear channel along which the load moves is situated in vertical plane containing the carrier trajectory. The Coulomb model is taken to describe the friction forces on sloped plane. Differential equations of motion of carrier with load are obtained. The sufficient condition of the carrier motion without detachment from inclined plane is given. For two special cases of the channel installation angle and the plane inclination angle combination the motion types are described. The computation experiments results are presented: the carrier motions in the special cases are illustrated, the phase portraits for some types of motions are constructed.

  4. Fault plane solutions as related to known geological faults in and near India

    Directory of Open Access Journals (Sweden)

    N. SRIVASTAVA

    1975-05-01

    Full Text Available Based on the focal mechanism solutions of newly determined solutions, and other recent workers the correlation between one of the nodal planes and the geological faults has been discussed for three regions namely Kashmir, Central Himalayas and northeast India including Assam. The variability between multiple solutions reported for some earthquakes and the limitations in the choice of the nodal plane from /'-wave solutions have been brought out. It is seen that no standard criteria either on the basis of isoseismals or of aftershocks can be used to distinguish the fault plane from the auxiliary plane. It has been found that in general there is good agreement between one of the nodal planes and the geological faults in Kashmir and the Central Himalayas. In northeast India, the strike directions obtained from the mechanism solutions generally agree with the trends of the main thrusts but the dip direction for shocks originating in the India-Burma border

  5. Creating large out-of-plane displacement electrothermal motion stage by incorporating beams with step features

    International Nuclear Information System (INIS)

    Kim, Yong-Sik; Dagalakis, Nicholas G; Gupta, Satyandra K

    2013-01-01

    Realizing out-of-plane actuation in micro-electro-mechanical systems (MEMS) is still a challenging task. In this paper, the design, fabrication methods and experimental results for a MEMS-based out-of-plane motion stage are presented based on bulk micromachining technologies. This stage is electrothermally actuated for out-of-plane motion by incorporating beams with step features. The fabricated motion stage has demonstrated displacements of 85 µm with 0.4 µm (mA) −1 rates and generated up to 11.8 mN forces with stiffness of 138.8 N m −1 . These properties obtained from the presented stage are comparable to those for in-plane motion stages, therefore making this out-of-plane stage useful when used in combination with in-plane motion stages. (paper)

  6. Spatial filtering velocimetry of objective speckles for measuring out-of-plane motion

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Yura, H. T.; Hanson, Steen Grüner

    2012-01-01

    This paper analyzes the dynamics of objective laser speckles as the distance between the object and the observation plane continuously changes. With the purpose of applying optical spatial filtering velocimetry to the speckle dynamics, in order to measure out-of-plane motion in real time......, a rotational symmetric spatial filter is designed. The spatial filter converts the speckle dynamics into a photocurrent with a quasi-sinusoidal response to the out-of-plane motion. The spatial filter is here emulated with a CCD camera, and is tested on speckles arising from a real application. The analysis...

  7. Cutting solid figures by plane - analytical solution and spreadsheet implementation

    Science.gov (United States)

    Benacka, Jan

    2012-07-01

    In some secondary mathematics curricula, there is a topic called Stereometry that deals with investigating the position and finding the intersection, angle, and distance of lines and planes defined within a prism or pyramid. Coordinate system is not used. The metric tasks are solved using Pythagoras' theorem, trigonometric functions, and sine and cosine rules. The basic problem is to find the section of the figure by a plane that is defined by three points related to the figure. In this article, a formula is derived that gives the positions of the intersection points of such a plane and the figure edges, that is, the vertices of the section polygon. Spreadsheet implementations of the formula for cuboid and right rectangular pyramids are presented. The user can check his/her graphical solution, or proceed if he/she is not able to complete the section.

  8. Exploring machine-learning-based control plane intrusion detection techniques in software defined optical networks

    Science.gov (United States)

    Zhang, Huibin; Wang, Yuqiao; Chen, Haoran; Zhao, Yongli; Zhang, Jie

    2017-12-01

    In software defined optical networks (SDON), the centralized control plane may encounter numerous intrusion threatens which compromise the security level of provisioned services. In this paper, the issue of control plane security is studied and two machine-learning-based control plane intrusion detection techniques are proposed for SDON with properly selected features such as bandwidth, route length, etc. We validate the feasibility and efficiency of the proposed techniques by simulations. Results show an accuracy of 83% for intrusion detection can be achieved with the proposed machine-learning-based control plane intrusion detection techniques.

  9. Optical and x-ray alignment approaches for off-plane reflection gratings

    Science.gov (United States)

    Allured, Ryan; Donovan, Benjamin D.; DeRoo, Casey T.; Marlowe, Hannah R.; McEntaffer, Randall L.; Tutt, James H.; Cheimets, Peter N.; Hertz, Edward; Smith, Randall K.; Burwitz, Vadim; Hartner, Gisela; Menz, Benedikt

    2015-09-01

    Off-plane reflection gratings offer the potential for high-resolution, high-throughput X-ray spectroscopy on future missions. Typically, the gratings are placed in the path of a converging beam from an X-ray telescope. In the off-plane reflection grating case, these gratings must be co-aligned such that their diffracted spectra overlap at the focal plane. Misalignments degrade spectral resolution and effective area. In-situ X-ray alignment of a pair of off-plane reflection gratings in the path of a silicon pore optics module has been performed at the MPE PANTER beamline in Germany. However, in-situ X-ray alignment may not be feasible when assembling all of the gratings required for a satellite mission. In that event, optical methods must be developed to achieve spectral alignment. We have developed an alignment approach utilizing a Shack-Hartmann wavefront sensor and diffraction of an ultraviolet laser. We are fabricating the necessary hardware, and will be taking a prototype grating module to an X-ray beamline for performance testing following assembly and alignment.

  10. Frequency Equations for the In-Plane Vibration of Circular Annular Disks

    Directory of Open Access Journals (Sweden)

    S. Bashmal

    2010-01-01

    Full Text Available This paper deals with the in-plane vibration of circular annular disks under combinations of different boundary conditions at the inner and outer edges. The in-plane free vibration of an elastic and isotropic disk is studied on the basis of the two-dimensional linear plane stress theory of elasticity. The exact solution of the in-plane equation of equilibrium of annular disk is attainable, in terms of Bessel functions, for uniform boundary conditions. The frequency equations for different modes can be obtained from the general solutions by applying the appropriate boundary conditions at the inner and outer edges. The presented frequency equations provide the frequency parameters for the required number of modes for a wide range of radius ratios and Poisson's ratios of annular disks under clamped, free, or flexible boundary conditions. Simplified forms of frequency equations are presented for solid disks and axisymmetric modes of annular disks. Frequency parameters are computed and compared with those available in literature. The frequency equations can be used as a reference to assess the accuracy of approximate methods.

  11. On harmonicity in some Moufang-Klingenberg planes

    OpenAIRE

    ÇELİK, Basri; AKPINAR, Atilla; ÇİFTÇİ, Süleyman

    2010-01-01

    In this paper we study Moufang-Klingenberg planes M (A) defined over a local alternative ring A of dual numbers. We show that some collineations of M (A) preserve cross-ratio and thus establish a relation between harmonicity and harmonic position.

  12. The application of digital image plane holography technology to identify Chinese herbal medicine

    Science.gov (United States)

    Wang, Huaying; Guo, Zhongjia; Liao, Wei; Zhang, Zhihui

    2012-03-01

    In this paper, the imaging technology of digital image plane holography to identify the Chinese herbal medicine is studied. The optical experiment system of digital image plane holography which is the special case of pre-magnification digital holography was built. In the record system, one is an object light by using plane waves which illuminates the object, and the other one is recording hologram by using spherical light wave as reference light. There is a Micro objective lens behind the object. The second phase factor which caus ed by the Micro objective lens can be eliminated by choosing the proper position of the reference point source when digital image plane holography is recorded by spherical light. In this experiment, we use the Lygodium cells and Onion cells as the object. The experiment results with Lygodium cells and Onion cells show that digital image plane holography avoid the process of finding recording distance by using auto-focusing approach, and the phase information of the object can be reconstructed more accurately. The digital image plane holography is applied to the microscopic imaging of cells more effectively, and it is suit to apply for the identify of Chinese Herbal Medicine. And it promotes the application of digital holographic in practice.

  13. Development of Ray Tracing Algorithms for Scanning Plane and Transverse Plane Analysis for Satellite Multibeam Application

    Directory of Open Access Journals (Sweden)

    N. H. Abd Rahman

    2014-01-01

    Full Text Available Reflector antennas have been widely used in many areas. In the implementation of parabolic reflector antenna for broadcasting satellite applications, it is essential for the spacecraft antenna to provide precise contoured beam to effectively serve the required region. For this purpose, combinations of more than one beam are required. Therefore, a tool utilizing ray tracing method is developed to calculate precise off-axis beams for multibeam antenna system. In the multibeam system, each beam will be fed from different feed positions to allow the main beam to be radiated at the exact direction on the coverage area. Thus, detailed study on caustics of a parabolic reflector antenna is performed and presented in this paper, which is to investigate the behaviour of the rays and its relation to various antenna parameters. In order to produce accurate data for the analysis, the caustic behaviours are investigated in two distinctive modes: scanning plane and transverse plane. This paper presents the detailed discussions on the derivation of the ray tracing algorithms, the establishment of the equations of caustic loci, and the verification of the method through calculation of radiation pattern.

  14. Parallax handling of image stitching using dominant-plane homography

    Science.gov (United States)

    Pang, Zhaofeng; Li, Cheng; Zhao, Baojun; Tang, Linbo

    2015-10-01

    In this paper, we present a novel image stitching method to handle parallax in practical application. For images with significant amount of parallax, the more effective approach is to align roughly and globally the overlapping regions and then apply a seam-cutting method to composite naturally stitched images. It is well known that images can be modeled by various planes result from the projective parallax under non-ideal imaging condition. The dominant-plane homography has important advantages of warping an image globally and avoiding some local distortions. The proposed method primarily addresses large parallax problem through two steps: (1) selecting matching point pairs located on the dominant plane, by clustering matching correspondences and then measuring the cost of each cluster; and (2) in order to obtain a plausible seam, edge maps of overlapped area incorporation arithmetic is adopted to modify the standard seam-cutting method. Furthermore, our approach is demonstrated to achieve reliable performance of handling parallax through a mass of experimental comparisons with state-of-the-art methods.

  15. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    International Nuclear Information System (INIS)

    Stoyanov, D G

    2007-01-01

    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is obtained

  16. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanov, D G [Faculty of Engineering and Pedagogy in Sliven, Technical University of Sofia, 59, Bourgasko Shaussee Blvd, 8800 Sliven (Bulgaria)

    2007-08-15

    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is obtained.

  17. Fault plane orientations of deep earthquakes in the Izu-Bonin-Marianas subduction zone system

    Science.gov (United States)

    Myhill, R.; Warren, L. M.

    2011-12-01

    We present the results of directivity analysis on 45 deep earthquakes within the Izu-Bonin-Marianas subduction zone between 1993 and 2011. The age of the subducting Pacific plate increases from north to south along the trench, from 120 Ma offshore Tokyo to over 150 Ma east of the Mariana Islands. The dip of the deep slab generally increases from north to south, and is steep to overturned beneath the southern Bonin Islands and Marianas. Between 34 and 26 degrees north, a peak in seismicity at 350-450 km depth marks a decrease in dip as the slab approaches the base of the upper mantle. We observe directivity for around 60 percent of the analysed earthquakes, and use the propagation characteristics to find the best fitting rupture vector. In 60-70 percent of cases with well constrained rupture directivity, the best fitting rupture vector allows discrimination of the fault plane and the auxiliary plane of the focal mechanism. The identified fault planes between 100 km and 500 km are predominantly near-horizontal or south-southwest dipping. Rotated into the plane of the slab, the fault plane poles form a single cluster, since the more steeply dipping fault planes are found within more steeply dipping sections of slab. The dominance of near-horizontal fault planes at intermediate depth agrees with results from previous studies of the Tonga and Middle-America subduction zones. However, the presence of a single preferred fault plane orientation for large deep-focus earthquakes has not been previously reported, and contrasts with the situation for deep-focus earthquakes in the Tonga-Kermadec subduction system. Ruptures tend to propagate away from the top surface of the slab. We discuss potential causes of preferred fault plane orientations within subducting slabs in the light of existing available data, and the implications for mechanisms of faulting at great depths within the Earth.

  18. Focal plane detector for QDD spectrography in Institute of Nuclear Study and detector for SMART 2nd focal plane in RIKEN

    Energy Technology Data Exchange (ETDEWEB)

    Fuchi, Yoshihide [Tokyo Univ., Tanashi (Japan). Inst. for Nuclear Study

    1996-09-01

    The focal plane detector for QDD spectrography in Institute of Nuclear Study was composed of drift space and a proportional counter tube, and the latter is composed of position detector and two delta E detector for recognizing the particles. In this detector, a uniform parallel electric field can be obtained by placing a guard plate at the same height as that of a drift plate outer place of the detector. On the other hand, the detector for SMART 2nd focal plate in RIKEN is composed of drift space and a single wire proportional counter, and has two cathode read out single wire drift counters set so as to hold the focal plane. (G.K.)

  19. Crossed-Plane Imaging of Premixed Turbulent Combustion Processes

    National Research Council Canada - National Science Library

    Gouldin, F

    2003-01-01

    .... Rayleigh scattering from premixed flames can be used for temperature imaging, and we have developed crossed-plane Rayleigh imaging in order to measure with high-resolution instantaneous temperature...

  20. Investigations on the necessity of dose calculations for several planes of the target volume

    International Nuclear Information System (INIS)

    Richter, E.

    1987-01-01

    In radiotherapy planning, the shape of a target volume can at present be exactly delimited by means of computed tomography. A method often applied is to project the largest target volume scan on the plane of the central ray and to calculate the dose in this plane. This method does not allow to take into account any change of the target volume scan which will be mainly due to the body contours of the patient. The results of dose calculations made in several planes for pharyngeal and laryngeal tumors are presented. With this procedure, 33 out of 60 irradiation techniques for nine tumor sites meet the requirements with regard to the central ray plane. If several planes are regarded, this is only true for ten irradiation plans. If is therefore absolutely necessary to calculate the doses of several planes if the target volume has an irregular shape or if the body contours vary considerably. This is the only way to prevent a false treatment caused by possibly severe dose excesses or dose insufficiencies in radiotherapy. (orig.) [de

  1. Express penetration of hydrogen on Mg(10͞13) along the close-packed-planes.

    Science.gov (United States)

    Ouyang, Liuzhang; Tang, Jiajun; Zhao, Yujun; Wang, Hui; Yao, Xiangdong; Liu, Jiangwen; Zou, Jin; Zhu, Min

    2015-06-01

    Metal atoms often locate in energetically favorite close-packed planes, leading to a relatively high penetration barrier for other atoms. Naturally, the penetration would be much easier through non-close-packed planes, i.e. high-index planes. Hydrogen penetration from surface to the bulk (or reversely) across the packed planes is the key step for hydrogen diffusion, thus influences significantly hydrogen sorption behaviors. In this paper, we report a successful synthesis of Mg films in preferential orientations with both close- and non-close-packed planes, i.e. (0001) and a mix of (0001) and (10͞13), by controlling the magnetron sputtering conditions. Experimental investigations confirmed a remarkable decrease in the hydrogen absorption temperature in the Mg (10͞13), down to 392 K from 592 K of the Mg film (0001), determined by the pressure-composition-isothermal (PCI) measurement. The ab initio calculations reveal that non-close-packed Mg(10͞13) slab is advantageous for hydrogen sorption, attributing to the tilted close-packed-planes in the Mg(10͞13) slab.

  2. Spatial-temporal three-dimensional ultrasound plane-by-plane active cavitation mapping for high-intensity focused ultrasound in free field and pulsatile flow.

    Science.gov (United States)

    Ding, Ting; Hu, Hong; Bai, Chen; Guo, Shifang; Yang, Miao; Wang, Supin; Wan, Mingxi

    2016-07-01

    Cavitation plays important roles in almost all high-intensity focused ultrasound (HIFU) applications. However, current two-dimensional (2D) cavitation mapping could only provide cavitation activity in one plane. This study proposed a three-dimensional (3D) ultrasound plane-by-plane active cavitation mapping (3D-UPACM) for HIFU in free field and pulsatile flow. The acquisition of channel-domain raw radio-frequency (RF) data in 3D space was performed by sequential plane-by-plane 2D ultrafast active cavitation mapping. Between two adjacent unit locations, there was a waiting time to make cavitation nuclei distribution of the liquid back to the original state. The 3D cavitation map equivalent to the one detected at one time and over the entire volume could be reconstructed by Marching Cube algorithm. Minimum variance (MV) adaptive beamforming was combined with coherence factor (CF) weighting (MVCF) or compressive sensing (CS) method (MVCS) to process the raw RF data for improved beamforming or more rapid data processing. The feasibility of 3D-UPACM was demonstrated in tap-water and a phantom vessel with pulsatile flow. The time interval between temporal evolutions of cavitation bubble cloud could be several microseconds. MVCF beamformer had a signal-to-noise ratio (SNR) at 14.17dB higher, lateral and axial resolution at 2.88times and 1.88times, respectively, which were compared with those of B-mode active cavitation mapping. MVCS beamformer had only 14.94% time penalty of that of MVCF beamformer. This 3D-UPACM technique employs the linear array of a current ultrasound diagnosis system rather than a 2D array transducer to decrease the cost of the instrument. Moreover, although the application is limited by the requirement for a gassy fluid medium or a constant supply of new cavitation nuclei that allows replenishment of nuclei between HIFU exposures, this technique may exhibit a useful tool in 3D cavitation mapping for HIFU with high speed, precision and resolution

  3. Quantum scattering beyond the plane-wave approximation

    Science.gov (United States)

    Karlovets, Dmitry

    2017-12-01

    While a plane-wave approximation in high-energy physics works well in a majority of practical cases, it becomes inapplicable for scattering of the vortex particles carrying orbital angular momentum, of Airy beams, of the so-called Schrödinger cat states, and their generalizations. Such quantum states of photons, electrons and neutrons have been generated experimentally in recent years, opening up new perspectives in quantum optics, electron microscopy, particle physics, and so forth. Here we discuss the non-plane-wave effects in scattering brought about by the novel quantum numbers of these wave packets. For the well-focused electrons of intermediate energies, already available at electron microscopes, the corresponding contribution can surpass that of the radiative corrections. Moreover, collisions of the cat-like superpositions of such focused beams with atoms allow one to probe effects of the quantum interference, which have never played any role in particle scattering.

  4. MBE growth and characterization of ZnTe epilayers on m-plane sapphire substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nakasu, Taizo; Sun, Wei-Che; Yamashita, Sotaro; Aiba, Takayuki; Taguri, Kosuke [Department of Electrical Engineering and Bioscience, Waseda University, Tokyo 169-8555 (Japan); Kobayashi, Masakazu [Department of Electrical Engineering and Bioscience, Waseda University, Tokyo 169-8555 (Japan); Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26, Tokyo 169-0051 (Japan); Asahi, Toshiaki [Technology Development Center, JX Nippon Mining and Metals Corporation, Hitachi 317-0056 (Japan); Togo, Hiroyoshi [NTT Microsystem Integration Laboratories, Atsugi 243-0198 (Japan)

    2014-07-15

    ZnTe epilayers were grown on transparent (10-10) oriented (m -plane) sapphire substrates by molecular beam epitaxy (MBE). Pole figure imaging was used to study the domain distribution within the layer. (211)-oriented ZnTe domains were formed on m -plane sapphire. The presence of only one kind of (211) ZnTe domain formed on the 2 -tilted m -plane sapphire substrates was confirmed. Thus, single domain (211) ZnTe epilayers can be grown on the m -plane sapphire using MBE. Although differences in the crystal structure and lattice mismatch are large, precise control of the substrate surface lattice arrangement result in the formation of high-quality epitaxial layers. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. On the classification of plane graphs representing structurally stable rational Newton flows

    NARCIS (Netherlands)

    Jongen, H.Th.; Jonker, P.; Twilt, F.

    1991-01-01

    We study certain plane graphs, called Newton graphs, representing a special class of dynamical systems which are closely related to Newton's iteration method for finding zeros of (rational) functions defined on the complex plane. These Newton graphs are defined in terms of nonvanishing angles

  6. Combinatorics associated with inflections and bitangents of plane quartics

    International Nuclear Information System (INIS)

    Gizatullin, M Kh

    2013-01-01

    After a preliminary survey and a description of some small Steiner systems from the standpoint of the theory of invariants of binary forms, we construct a binary Golay code (of length 24) using ideas from J. Grassmann's thesis of 1875. One of our tools is a pair of disjoint Fano planes. Another application of such pairs and properties of plane quartics is a construction of a new block design on 28 objects. This block design is a part of a dissection of the set of 288 Aronhold sevens. The dissection distributes the Aronhold sevens into 8 disjoint block designs of this type

  7. Dynamics of polynomials in finite and infinite Benz planes

    OpenAIRE

    Rafael Artzy

    1992-01-01

    The classical Benz planes, that is, Möbius, Minkowski, and Laguerre planes, can be coordinatized [cf. 1], respectively, by the field C of complex numbers, the ring of “double numbers” z=x+jy (x,y ∊ R) where an element j  not in R, with j2=1 is adjoined, and the ring of “dual numbers” z=x+ye where an element e not in R with e2=0 is adjoined to R. When the field R is replaced by another field, in our case finite prime fields Fp (p a prime), one also obtains co...

  8. From in-plane to out-of-plane enhancement of the directed flow in {sup 64}Zn on {sup 58}Ni collisions between 35 and 79 MeV/u

    Energy Technology Data Exchange (ETDEWEB)

    Angelique, J.C.; Bizard, G.; Brou, R.; Cussol, D.; Kerambrun, A.; Patry, J.P.; Peter, J.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Popescu, R.; Buta, A. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire]|[Central Inst. of Physics, Bucharest (Romania). Inst. of Physics and Nuclear Engineering; He, Z.Y. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire]|[Lanzhou Univ., GS (China). Dept. of Modern Physics; Auger, G.; Peghaire, A.; Saint-Laurent, F. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Cabot, C. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)]|[Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Crema, E. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)]|[Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Hagel, K.; Wada, R. [Texas A and M Univ., College Station, TX (United States). Cyclotron Inst.; Gonin, M. [Texas A and M Univ., College Station, TX (United States). Cyclotron Inst.]|[Brooklyn Coll., NY (United States). Dept. of Chemistry; Eudes, P.; Lebrun, C. [Nantes Univ., 44 (France). Lab. de Physique Nucleaire; El Masri, Y. [Universite Catholique de Louvain (UCL), Louvain-la-Neuve (Belgium); Rosato, E. [Istituto Nazionale di Fisica Nucleare, Naples (Italy)

    1994-05-01

    The azimuthal distributions of light particles relative to the reaction plane have been measured for several bins of experimentally estimated impact parameter in the reactions of {sup 64}Zn + {sup 58}Ni at energies between 35 and 79 MeV/u. An in-plane enhancement for mid-rapidity Z = 1, 2, 3 particles is observed at low incident energy but gradually evolves to out-of plane enhancement (squeeze-out effect) with increasing energy. This evolution depends on the impact parameter in a way similar to the flow parameter. The energies for this system at which the azimuthal distribution is uniform are lower than the corresponding balance energies. (authors). 22 refs.

  9. Dirac particle in a plane wave field and the semi-classical approximation

    Energy Technology Data Exchange (ETDEWEB)

    Bourouaine, S. [Department of Physics, Faculty of Sciences, Mentouri University, Constantine (Algeria)

    2005-04-01

    In this paper we investigate the influence of photon represented by plane wave field on Dirac particle in the context of path integral approach given by Fradkin and Gitman formalism. In our case, although the action relative to Dirac particle in plane wave field seems to be non quadratic, the result obtained by semi-classical approach is the same as that found by an exact calculation. Hence; when we add the plane wave field to any quadratic actions related to Fradkin and Gitman approach, the total action behaves like quadratic. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  10. Dirac particle in a plane wave field and the semi-classical approximation

    International Nuclear Information System (INIS)

    Bourouaine, S.

    2005-01-01

    In this paper we investigate the influence of photon represented by plane wave field on Dirac particle in the context of path integral approach given by Fradkin and Gitman formalism. In our case, although the action relative to Dirac particle in plane wave field seems to be non quadratic, the result obtained by semi-classical approach is the same as that found by an exact calculation. Hence; when we add the plane wave field to any quadratic actions related to Fradkin and Gitman approach, the total action behaves like quadratic. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  11. In-plane anisotropic strain of elastically and plastically deformed III-nitrides on lithium gallate

    Energy Technology Data Exchange (ETDEWEB)

    Namkoong, Gon, E-mail: gnamkoon@odu.ed [Old Dominion University, Electrical and Computer Engineering, Applied Research Center, 12050 Jefferson Avenue, Newport News, VA 23606 (United States); Huang, Sa; Moseley, Michael; Doolittle, W. Alan [Georgia Institute of Technology, School of Electrical and Computer Engineering, 777 Atlantic Dr., Atlanta, GA 30332 (United States)

    2009-10-30

    We have investigated both elastically and plastically deformed GaN films on lithium gallate, LiGaO{sub 2}, by molecular beam epitaxy. The in-plane lattice parameters were determined from high resolution X-ray diffraction and indicated two different groups of in-plane lattice parameters, influenced by the a- and b-axis of LiGaO{sub 2}. The measured in-plane lattice parameters indicate that there exist both compressive and tensile strains of in-plane GaN along the a- and b-axis of LiGaO{sub 2}, respectively. This anisotropic strain in GaN films forms a slight distortion of the basal-plane hexagonal structure of GaN films, leading to a different critical thickness of 4.0 {+-} 0.17 and 7.8 {+-} 0.7 nm along the a- and b-axis of LiGaO{sub 2}, respectively.

  12. In-plane anisotropic strain of elastically and plastically deformed III-nitrides on lithium gallate

    International Nuclear Information System (INIS)

    Namkoong, Gon; Huang, Sa; Moseley, Michael; Doolittle, W. Alan

    2009-01-01

    We have investigated both elastically and plastically deformed GaN films on lithium gallate, LiGaO 2 , by molecular beam epitaxy. The in-plane lattice parameters were determined from high resolution X-ray diffraction and indicated two different groups of in-plane lattice parameters, influenced by the a- and b-axis of LiGaO 2 . The measured in-plane lattice parameters indicate that there exist both compressive and tensile strains of in-plane GaN along the a- and b-axis of LiGaO 2 , respectively. This anisotropic strain in GaN films forms a slight distortion of the basal-plane hexagonal structure of GaN films, leading to a different critical thickness of 4.0 ± 0.17 and 7.8 ± 0.7 nm along the a- and b-axis of LiGaO 2 , respectively.

  13. Deviation of landmarks in accordance with methods of establishing reference planes in three-dimensional facial CT evaluation.

    Science.gov (United States)

    Yoon, Kaeng Won; Yoon, Suk-Ja; Kang, Byung-Cheol; Kim, Young-Hee; Kook, Min Suk; Lee, Jae-Seo; Palomo, Juan Martin

    2014-09-01

    This study aimed to investigate the deviation of landmarks from horizontal or midsagittal reference planes according to the methods of establishing reference planes. Computed tomography (CT) scans of 18 patients who received orthodontic and orthognathic surgical treatment were reviewed. Each CT scan was reconstructed by three methods for establishing three orthogonal reference planes (namely, the horizontal, midsagittal, and coronal reference planes). The horizontal (bilateral porions and bilateral orbitales) and midsagittal (crista galli, nasion, prechiasmatic point, opisthion, and anterior nasal spine) landmarks were identified on each CT scan. Vertical deviation of the horizontal landmarks and horizontal deviation of the midsagittal landmarks were measured. The porion and orbitale, which were not involved in establishing the horizontal reference plane, were found to deviate vertically from the horizontal reference plane in the three methods. The midsagittal landmarks, which were not used for the midsagittal reference plane, deviated horizontally from the midsagittal reference plane in the three methods. In a three-dimensional facial analysis, the vertical and horizontal deviations of the landmarks from the horizontal and midsagittal reference planes could vary depending on the methods of establishing reference planes.

  14. Deviation of landmarks in accordance with methods of establishing reference planes in three-dimensional facial CT evaluation

    International Nuclear Information System (INIS)

    Yoon, Kaeng Won; Yoon, Suk Ja; Kang, Byung Cheol; Kook, Min Suk; Lee, Jae Seo; Kim, Young Hee; Palomo, Juan Martin

    2014-01-01

    This study aimed to investigate the deviation of landmarks from horizontal or midsagittal reference planes according to the methods of establishing reference planes. Computed tomography (CT) scans of 18 patients who received orthodontic and orthognathic surgical treatment were reviewed. Each CT scan was reconstructed by three methods for establishing three orthogonal reference planes (namely, the horizontal, midsagittal, and coronal reference planes). The horizontal (bilateral porions and bilateral orbitales) and midsagittal (crista galli, nasion, prechiasmatic point, opisthion, and anterior nasal spine) landmarks were identified on each CT scan. Vertical deviation of the horizontal landmarks and horizontal deviation of the midsagittal landmarks were measured. The porion and orbitale, which were not involved in establishing the horizontal reference plane, were found to deviate vertically from the horizontal reference plane in the three methods. The midsagittal landmarks, which were not used for the midsagittal reference plane, deviated horizontally from the midsagittal reference plane in the three methods. In a three-dimensional facial analysis, the vertical and horizontal deviations of the landmarks from the horizontal and midsagittal reference planes could vary depending on the methods of establishing reference planes.

  15. Deviation of landmarks in accordance with methods of establishing reference planes in three-dimensional facial CT evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kaeng Won; Yoon, Suk Ja; Kang, Byung Cheol; Kook, Min Suk; Lee, Jae Seo [School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju (Korea, Republic of); Kim, Young Hee [Dept. of Oral and Maxillofacial Radiology, Hallym University Sacred Heart Hospital, Anyang (Korea, Republic of); Palomo, Juan Martin [Dept. of Orthodontics, School of Dental Medicine, Case Western Reserve University, Cleveland (Korea, Republic of)

    2014-09-15

    This study aimed to investigate the deviation of landmarks from horizontal or midsagittal reference planes according to the methods of establishing reference planes. Computed tomography (CT) scans of 18 patients who received orthodontic and orthognathic surgical treatment were reviewed. Each CT scan was reconstructed by three methods for establishing three orthogonal reference planes (namely, the horizontal, midsagittal, and coronal reference planes). The horizontal (bilateral porions and bilateral orbitales) and midsagittal (crista galli, nasion, prechiasmatic point, opisthion, and anterior nasal spine) landmarks were identified on each CT scan. Vertical deviation of the horizontal landmarks and horizontal deviation of the midsagittal landmarks were measured. The porion and orbitale, which were not involved in establishing the horizontal reference plane, were found to deviate vertically from the horizontal reference plane in the three methods. The midsagittal landmarks, which were not used for the midsagittal reference plane, deviated horizontally from the midsagittal reference plane in the three methods. In a three-dimensional facial analysis, the vertical and horizontal deviations of the landmarks from the horizontal and midsagittal reference planes could vary depending on the methods of establishing reference planes.

  16. Simulation Exploration through Immersive Parallel Planes: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Brunhart-Lupo, Nicholas; Bush, Brian W.; Gruchalla, Kenny; Smith, Steve

    2016-03-01

    We present a visualization-driven simulation system that tightly couples systems dynamics simulations with an immersive virtual environment to allow analysts to rapidly develop and test hypotheses in a high-dimensional parameter space. To accomplish this, we generalize the two-dimensional parallel-coordinates statistical graphic as an immersive 'parallel-planes' visualization for multivariate time series emitted by simulations running in parallel with the visualization. In contrast to traditional parallel coordinate's mapping the multivariate dimensions onto coordinate axes represented by a series of parallel lines, we map pairs of the multivariate dimensions onto a series of parallel rectangles. As in the case of parallel coordinates, each individual observation in the dataset is mapped to a polyline whose vertices coincide with its coordinate values. Regions of the rectangles can be 'brushed' to highlight and select observations of interest: a 'slider' control allows the user to filter the observations by their time coordinate. In an immersive virtual environment, users interact with the parallel planes using a joystick that can select regions on the planes, manipulate selection, and filter time. The brushing and selection actions are used to both explore existing data as well as to launch additional simulations corresponding to the visually selected portions of the input parameter space. As soon as the new simulations complete, their resulting observations are displayed in the virtual environment. This tight feedback loop between simulation and immersive analytics accelerates users' realization of insights about the simulation and its output.

  17. Multi-purpose mid-plane manipulator for plasma surface interaction research in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Son, S.H., E-mail: ssh0609@nfri.re.kr [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Hong, S.-H. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Department of Electrical Engineering, HanYang University, Seoul 133-791 (Korea, Republic of); Department of Accelerator and Nuclear Fusion Physics and Engineering, Korea University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Kim, Junghee [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Kim, Jun Young [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Department of Accelerator and Nuclear Fusion Physics and Engineering, Korea University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Kim, H.S. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Ding, F.; Luo, G.-N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 1126 (China); Németh, J.; Zoletnik, S. [Institute for Particle and Nuclear Physics (RMI), Wigner RCP, Hungarian Academy of Sciences, Budapest (Hungary); Fenyvesi, A. [Institute for Nuclear Physis (MTA Atomki), Hungarian Academy of Sciences, Devrecent (Hungary); Pitts, R. [ITER Organization, Route de Vinon-surVerdon, 13115 Saint Paul-lez-Durance (France)

    2016-11-01

    Highlights: • A multi-purpose mid-plane manipulator system has been developed and installed at the mid-plane of the KSTAR vacuum vessel. • It presents mechanial structure and function for multi-purpose manipulator system. • The changeable head part allows change the samples and probe during inter-shot/day without breaking vacuum system in KSTAR which gives flexibility for various PSI studies in a campaign. - Abstract: A multi-purpose mid-plane manipulator system has been developed and installed at the mid-plane of the KSTAR vacuum vessel. The system serves as user facility which allows to cover various topics of researches in plasma-surface interaction (PSI) including material sample test and PSI diagnostic. The multi-purpose mid-plane manipulator system has a 4 m long cantilever structure with a 3 m long moving shaft. The system is equipped with a differential pumping system for the independent installation and removal of samples and diagnostic without vacuum break of KSTAR. The sample mounting head at the end of the shaft can reach the position of the outer boundary of ∼10 cm away from the last closed flux surface (LCFS). In this paper, selected PSI related experiments by using the manipulator are introduced.

  18. Multi-purpose mid-plane manipulator for plasma surface interaction research in KSTAR

    International Nuclear Information System (INIS)

    Son, S.H.; Hong, S.-H.; Kim, Junghee; Kim, Jun Young; Kim, H.S.; Ding, F.; Luo, G.-N.; Németh, J.; Zoletnik, S.; Fenyvesi, A.; Pitts, R.

    2016-01-01

    Highlights: • A multi-purpose mid-plane manipulator system has been developed and installed at the mid-plane of the KSTAR vacuum vessel. • It presents mechanial structure and function for multi-purpose manipulator system. • The changeable head part allows change the samples and probe during inter-shot/day without breaking vacuum system in KSTAR which gives flexibility for various PSI studies in a campaign. - Abstract: A multi-purpose mid-plane manipulator system has been developed and installed at the mid-plane of the KSTAR vacuum vessel. The system serves as user facility which allows to cover various topics of researches in plasma-surface interaction (PSI) including material sample test and PSI diagnostic. The multi-purpose mid-plane manipulator system has a 4 m long cantilever structure with a 3 m long moving shaft. The system is equipped with a differential pumping system for the independent installation and removal of samples and diagnostic without vacuum break of KSTAR. The sample mounting head at the end of the shaft can reach the position of the outer boundary of ∼10 cm away from the last closed flux surface (LCFS). In this paper, selected PSI related experiments by using the manipulator are introduced.

  19. Correlations in quantum systems and branch points in the complex plane

    OpenAIRE

    Rotter, I.

    2001-01-01

    Branch points in the complex plane are responsible for avoided level crossings in closed and open quantum systems. They create not only an exchange of the wave functions but also a mixing of the states of a quantum system at high level density. The influence of branch points in the complex plane on the low-lying states of the system is small.

  20. Surface polarization, rumpling, and domain ordering of strained ultrathin BaTiO_3(001) films with in-plane and out-of-plane polarization

    International Nuclear Information System (INIS)

    Dionot, Jelle; Mathieu, Claire; Barrett, Nick; Geneste, Gregory

    2014-01-01

    BaTiO_3 ultrathin films (thickness ≅1.6 nm) with in- and out-of-plane polarization are studied by first-principles calculations. Out-of-plane polarization is simulated using the method proposed by Shimada et al. [Phys. Rev. B 81, 144116 (2010)], which consists in building a supercell containing small domains with alternating up and down polarization. This allows one to investigate the properties of defect free BaTiO_3 ultrathin films with polarization perpendicular to the surface, as a function of in-plane lattice constant, i.e., epitaxial strain. The configurations with polarization perpendicular to the surface (c phase) are found stable under compressive strain, while under tensile strain, the polarization tends to lie in-plane (aa phase), along [110]. In the c phase, the most stable domain width is predicted to be 1 to 2 lattice constants, and the magnitude of the surface rumpling varies according to the direction of the polarization (upwards versus downwards), though its sign is unchanged, the oxygen anions pointing in all cases outwards. Finally, all the surfaces studied are found to be insulating. Analysis of the atom-projected electronic density of states gives insight into the surface contributions to the electronic structure. An important reduction of the Kohn-Sham band gap is predicted at TiO_2 terminations in the c phase (≅1 eV with respect to the aa phase). The Madelung potential at the surface plays the dominant role in modifications of the surface electronic structure. (authors)

  1. Gender difference of ankle stability in the sagittal and frontal planes.

    Science.gov (United States)

    Hanzlick, Harrison; Hyunglae Lee

    2017-07-01

    This paper offers quantification of ankle stability in relation to simulated haptic environments of varying stiffness. This study analyzes the stability trends of male and female subjects independently over a wide range of simulated environments after subjects were exposed to vigorous position perturbation. Ankle stability was quantified for both degrees-of-freedom of the ankle in the sagittal and frontal planes. Subjects' stability consistently decreased when exposed to environments of negative simulated stiffness. In the frontal plane, male and female subjects exhibited nearly identical stability levels. In the sagittal plane, however, male subjects demonstrated marginally more stability than female subjects in environments with negative stiffness. Results of this study are beneficial to understanding situations in which the ankle is likely to lose stability, potentially resulting in injury.

  2. Target plane imaging system for the Nova laser

    International Nuclear Information System (INIS)

    Swift, C.D.; Bliss, E.S.; Jones, W.A.; Reeves, R.J.; Seppala, L.G.; Shelton, R.T.; VanArsdall, P.J.

    1985-01-01

    The Nova laser, in operation since December 1984, is capable of irradiating targets with light at 1.05 μm, 0.53 μm, and 0.35 μm. Correct alignment of these harmonic beams uses a system called a target plane imager (TPI). It is a large microscope (four meters long, weighing one thousand kilograms) that relays images from the target chamber center to a video optics module located on the outside of the chamber. Several modes of operation are possible including: near-field viewing and far-field viewing at three magnifications and three wavelengths. In addition, the entire instrument can be scanned in X,Y,Z to examine various planes near chamber center. Performance of this system and its computer controls will be described

  3. Scanned Image Projection System Employing Intermediate Image Plane

    Science.gov (United States)

    DeJong, Christian Dean (Inventor); Hudman, Joshua M. (Inventor)

    2014-01-01

    In imaging system, a spatial light modulator is configured to produce images by scanning a plurality light beams. A first optical element is configured to cause the plurality of light beams to converge along an optical path defined between the first optical element and the spatial light modulator. A second optical element is disposed between the spatial light modulator and a waveguide. The first optical element and the spatial light modulator are arranged such that an image plane is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil at an input of the waveguide.

  4. Three-dimensional MRI-linac intra-fraction guidance using multiple orthogonal cine-MRI planes.

    Science.gov (United States)

    Bjerre, Troels; Crijns, Sjoerd; af Rosenschöld, Per Munck; Aznar, Marianne; Specht, Lena; Larsen, Rasmus; Keall, Paul

    2013-07-21

    The introduction of integrated MRI-radiation therapy systems will offer live intra-fraction imaging. We propose a feasible low-latency multi-plane MRI-linac guidance strategy. In this work we demonstrate how interleaved acquired, orthogonal cine-MRI planes can be used for low-latency tracking of the 3D trajectory of a soft-tissue target structure. The proposed strategy relies on acquiring a pre-treatment 3D breath-hold scan, extracting a 3D target template and performing template matching between this 3D template and pairs of orthogonal 2D cine-MRI planes intersecting the target motion path. For a 60 s free-breathing series of orthogonal cine-MRI planes, we demonstrate that the method was capable of accurately tracking the respiration related 3D motion of the left kidney. Quantitative evaluation of the method using a dataset designed for this purpose revealed a translational error of 1.15 mm for a translation of 39.9 mm. We have demonstrated how interleaved acquired, orthogonal cine-MRI planes can be used for online tracking of soft-tissue target volumes.

  5. Ruler of the plane - Games of geometry

    NARCIS (Netherlands)

    Beekhuis, S.; Buchin, K.; Castermans, T.; Hurks, T.; Sonke, W.; Aronov, B.; Katz, M.J.

    2017-01-01

    Ruler of the Plane is a set of games illustrating concepts from combinatorial and computational geometry. The games are based on the art gallery problem, ham-sandwich cuts, the Voronoi game, and geometric network connectivity problems like the Euclidean minimum spanning tree and traveling

  6. Cues for localization in the horizontal plane

    DEFF Research Database (Denmark)

    Jeppesen, Jakob; Møller, Henrik

    2005-01-01

    manipulated in HRTFs used for binaural synthesis of sound in the horizontal plane. The manipulation of cues resulted in HRTFs with cues ranging from correct combinations of spectral information and ITDs to combinations with severely conflicting cues. Both the ITD and the spectral information seem...

  7. A characterization of the desarguesian planes of order q2 by SL(2,q

    Directory of Open Access Journals (Sweden)

    D. A. Foulser

    1983-01-01

    Full Text Available The main result is that if the translation complement of a translation plane of order q2 contains a group isomorphic to SL(2,q and if the subgroups of order q are elations (shears, then the plane is Desarguesian. This generalizes earlier work of Walker, who assumed that the kernel of the plane contained GF(q.

  8. Theoretical study of in-plane response of magnetic field sensor to magnetic beads in an in-plane homogeneous field

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Hansen, Mikkel Fougt

    2008-01-01

    We present a systematic theoretical study of the average in-plane magnetic field on square and rectangular magnetic field sensors from a single magnetic bead and a monolayer of magnetic beads magnetized by an in-plane externally applied homogeneous magnetic field. General theoretical expressions...... are derived such that the sensor response and its dependence on the sensor size, spacer layer thickness, bead diameter, and bead susceptibility can easily be evaluated. The average magnetic field from a single bead close to the sensor shows a strong dependence on the position of the bead and a change of sign...... when the bead passes the edge of the sensor in the direction of the applied field. Analytical approximations are derived for the average field from a homogeneous monolayer of beads for beads much smaller than the sensor dimension and for a bead size chosen to minimize the position sensitivity...

  9. Focal plane instrumentation: a very high resolution MWPC system for inclined tracks

    International Nuclear Information System (INIS)

    Bertozzi, W.; Hynes, M.V.; Sargent, C.P.; Creswell, C.; Dunn, P.C.; Hirsch, A.; Leitch, M.; Norum, B.; Rad, F.N.; Sasanuma, T.

    1977-01-01

    A focal plane system has been developed for the MIT energy-loss spectrometer. The arrival time information from adjacent wires of one MWPC (s=2mm), is used to trace particle trajectories with a position resolution of 120μm (2sigma) and an angular resolution of less than 17 mrad (2sigma). The tracks are inclined to the MWPC at about 45 0 . The readout uses 3 delay lines connected to successive sense wires in a cyclical pattern. Coarse wire positions are determined by differences and drift times by sums of signal arrival times at the ends of the delays lines. A Cherenkov counter provides a fiducial signal. Interpolation is independent of drift velocity since the drift is normal to the sense plane. A similar readout with a second chamber provides position information perpendicular to momentum plane. This information is used to correct on-line for focal plane curvatures and other spectrometer aberrations. Final momentum resolution is about 10 -4 . (Auth.)

  10. Single crystalline Co3O4 nanocrystals exposed with different crystal planes for Li-O2 batteries.

    Science.gov (United States)

    Su, Dawei; Dou, Shixue; Wang, Guoxiu

    2014-08-29

    Single crystalline Co3O4 nanocrystals exposed with different crystal planes were synthesised, including cubic Co3O4 nanocrystals enclosed by {100} crystal planes, pseudo octahedral Co3O4 enclosed by {100} and {110} crystal planes, Co3O4 nanosheets exposed by {110} crystal planes, hexagonal Co3O4 nanoplatelets exposed with {111} crystal planes, and Co3O4 nanolaminar exposed with {112} crystal planes. Well single crystalline features of these Co3O4 nanocrystals were confirmed by FESEM and HRTEM analyses. The electrochemical performance for Li-O2 batteries shows that Co3O4 nanocrystals can significantly reduce the discharge-charge over-potential via the effect on the oxygen evolution reaction (OER). From the comparison on their catalytic performances, we found that the essential factor to promote the oxygen evolution reactions is the surface crystal planes of Co3O4 nanocrystals, namely, crystal planes-dependent process. The correlation between different Co3O4 crystal planes and their effect on reducing charge-discharge over-potential was established: {100} < {110} < {112} < {111}.

  11. Synchrotron-radiation plane-wave topography

    International Nuclear Information System (INIS)

    Riglet, P.; Sauvage, M.; Petroff, J.F.; Epelboin, Y.

    1980-01-01

    A computer program based on the Takagi-Taupin differential equations for X-ray propagation in distorted crystals has been developed in order to simulate dislocation images in the Bragg case. The program is valid both for thin and thick crystals. Simulated images of misfit dislocations formed either in a thin epilayer or in a thick substrate are compared with experimental images obtained by synchrotron-radiation plane-wave topography. The influence of the various strain components on the image features is discussed. (author)

  12. Combinatorial geometry in the plane

    CERN Document Server

    Hadwiger, Hugo; Klee, Victor

    2014-01-01

    Geared toward advanced undergraduates familiar with analysis and college geometry, this concise book discusses theorems on topics restricted to the plane such as convexity, coverings, and graphs. In addition to helping students cultivate rigorous thought, the text encourages the development of mathematical intuition and clarifies the nature of mathematical research.The two-part treatment begins with specific topics including integral distances, covering problems, point set geometry and convexity, simple paradoxes involving point sets, and pure combinatorics, among other subjects. The second pa

  13. Functional Aesthetic Occlusal Plane (FAOP)

    OpenAIRE

    Câmara, Carlos Alexandre; Martins, Renato Parsekian

    2016-01-01

    ABSTRACT Introduction: A reasonable exposure of incisors and gingival tissues is generally considered more attractive than excess or lack of exposure. A reasonable gingival exposure is considered to be around 0 to 2 mm when smiling and 2-4 mm exposure of the maxillary incisor edge when the lips are at rest. Objective: The aim of this paper is to present the Functional Aesthetic Occlusal Plane (FAOP), which aims to help in the diagnosis of the relationships established among molars, incisors...

  14. The Simbol-X Focal Plane

    Science.gov (United States)

    Laurent, P.

    2009-05-01

    The Simbol-X focal plane is designed to detect photons focused by the mirror in the 0.5 to 100 keV energy band. Composed of two detectors, it will measure the position, energy, and arrival time of each incoming X-ray. On top of it will be a collimator to shield all photons not coming from the mirror field of view. The whole system is surrounded by an active and passive shielding in order to ensure the required very low background.

  15. X-ray verification of an optically-aligned off-plane grating module

    Science.gov (United States)

    Donovan, Benjamin; McEntaffer, Randall; Tutt, James; DeRoo, Casey; Allured, Ryan; Gaskin, Jessica; Kolodziejczak, Jeffery

    2017-08-01

    The next generation of X-ray spectrometer missions are baselined to have order-of-magnitude improvements in both spectral resolving power and effective area when compared to existing X-ray spectrometer missions. Off-plane X-ray reflection gratings are capable of achieving high resolution and high diffraction efficiencies over the entire X-ray bandpass, making them an ideal technology to implement on these future missions. To achieve the high effective area desired while maintaining high spectral resolution, many off-plane gratings must be precisely aligned such that their diffraction arcs overlap at the focal plane. Methods are under development to align a number of these gratings into a grating module using optical metrology techniques in support of the Off-plane Grating Rocket Experiment (OGRE), a suborbital rocket payload scheduled to launch in late 2018. X-ray testing was performed on an aligned grating module at the Straylight Test Facility (SLTF) at NASA Marshall Space Flight Center (MSFC) to assess the current alignment methodology and its ability to meet the desired performance of OGRE. We report on the results from the test campaign at MSFC, as well as plans for future development.

  16. Ballistic Target PHD Filter Based on Infrared Focal Plane Ambiguous Observation

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    2017-01-01

    Full Text Available Space-based early warning system, the main detection means of which is passive detection based on focal plane, is an important part of ballistic missile defense system. The focal plane is mainly composed of CCD, and its size can reach the micron level, so the pixel is often regarded as point of no area in image postprocessing. The design of traditional tracking methods is based on this, and the observation based on the focal plane is modeled as the azimuth with random noise. However, this modeling is inaccurate. In the context of space-based detection, CCD cannot be simplified as a point, and its size should be considered. And the corresponding observation cannot be treated as azimuth with random noise. In this paper, the observation based on focal plane is modeled as Unambiguously Generated Ambiguous (UGA measurement. The PHD filter algorithm is redesigned and simplified. The simulation results show that the algorithm based on UGA measurement observation model has better tracking effect compared with that based on traditional observation model. This method provides technical support for more accurate target tracking for space-based early warning system.

  17. A new GTD slope diffraction coefficient for plane wave illumination of a wedge

    DEFF Research Database (Denmark)

    Lumholt, Michael; Breinbjerg, Olav

    1997-01-01

    Two wedge problems including slope diffraction are solved: one in which the incident field is a non-uniform plane wave, and one in which it is an inhomogeneous plane wave. The two solutions lead to the same GTD slope diffraction coefficient. This coefficient reveals the existence of a coupling...... effect between a transverse magnetic (or transverse electric) incident plane wave and the transverse electric (or transverse magnetic) slope-diffracted field. The coupling effect is not described by the existing GTD slope diffraction coefficient...

  18. Visualisasi dan Transformasi Kebertubuhan Dalam Film Animasi Planes (Ke Arah Pembentukan Mitos Baru)

    OpenAIRE

    Acep Iwan Saidi; Agung Eko Budiwaspada

    2015-01-01

    ABSTRACT This research is entitled “Visualization and Transformation of Embodiment in the Film of Planes Animation”. As an animation film, Planes is interesting because it is using inanimate objects, in this case the planes, as characters. This fact indicates that the character transformation is done by an animator, from the character of inanimate objects in to live character.  By using the  methods of structural and semiotic analysis, found that the transformation is done not only for pe...

  19. Locating a circle on the plane using the minimax criterion

    DEFF Research Database (Denmark)

    Brimberg, Jack; Juel, Henrik; Schoebel, Anita

    2006-01-01

    We consider the problem of locating a circle with respect to existing facilities on the plane, such that the largest weighted distance between the circle and the facilities is minimized. The problem properties are analyzed, and a solution procedure proposed.......We consider the problem of locating a circle with respect to existing facilities on the plane, such that the largest weighted distance between the circle and the facilities is minimized. The problem properties are analyzed, and a solution procedure proposed....

  20. innovative strategies on teaching plane geometry using geogebra ...

    African Journals Online (AJOL)

    It was recommended that enough mathematics software in schools especially .... Education Board Statistics for 2013/2014. Session). Two (2) .... Dependent Variable: Post-test score on Mathematics plane geometry using GeoGebra application.

  1. Back Radiation Suppression through a Semitransparent Ground Plane for a mm-Wave Patch Antenna

    KAUST Repository

    Klionovski, Kirill

    2017-06-21

    Omnidirectional radiation pattern with minimum backward radiation is highly desirable for base station antennas to minimize the multipath effects. Semitransparent ground planes have been used to reduce the backward radiation, but mostly with complicated non-uniform impedance distribution. In this work, we propose, for the first time, a round semitransparent ground plane of radius 0.8 λ with uniform impedance distribution that can improve the front-to-back ratio of a wideband patch antenna by 11.6 dB as compared to a similar sized metallic ground plane. The value of uniform impedance is obtained through analytical optimization by using asymptotic expressions in the Kirchhoff approximation of the radiation pattern of a toroidal wave scattered by a round semitransparent ground plane. The semitransparent ground plane has been realized using a low-cost carbon paste on a Kapton film. Experimental results match closely with those of simulations and validate the overall concept.

  2. On Generalisation of Polynomials in Complex Plane

    Directory of Open Access Journals (Sweden)

    Maslina Darus

    2010-01-01

    Full Text Available The generalised Bell and Laguerre polynomials of fractional-order in complex z-plane are defined. Some properties are studied. Moreover, we proved that these polynomials are univalent solutions for second order differential equations. Also, the Laguerre-type of some special functions are introduced.

  3. New bi-Hamiltonian systems on the plane

    Science.gov (United States)

    Tsiganov, A. V.

    2017-06-01

    We discuss several new bi-Hamiltonian integrable systems on the plane with integrals of motion of third, fourth, and sixth orders in momenta. The corresponding variables of separation, separated relations, compatible Poisson brackets, and recursion operators are also presented in the framework of the Jacobi method.

  4. Pascal’s Theorem in Real Projective Plane

    OpenAIRE

    Coghetto Roland

    2017-01-01

    In this article we check, with the Mizar system [2], Pascal’s theorem in the real projective plane (in projective geometry Pascal’s theorem is also known as the Hexagrammum Mysticum Theorem)1. Pappus’ theorem is a special case of a degenerate conic of two lines.

  5. Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    Science.gov (United States)

    Newman, Kevin Edward; Belikov, Ruslan; Guyon, Olivier; Balasubramanian, Kunjithapatham; Wilson, Dan

    2013-01-01

    Recent advances in coronagraph technologies for exoplanet imaging have achieved contrasts close to 1e10 at 4 lambda/D and 1e-9 at 2 lambda/D in monochromatic light. A remaining technological challenge is to achieve high contrast in broadband light; a challenge that is largely limited by chromaticity of the focal plane mask. The size of a star image scales linearly with wavelength. Focal plane masks are typically the same size at all wavelengths, and must be sized for the longest wavelength in the observational band to avoid starlight leakage. However, this oversized mask blocks useful discovery space from the shorter wavelengths. We present here the design, development, and testing of an achromatic focal plane mask based on the concept of optical filtering by a diffractive optical element (DOE). The mask consists of an array of DOE cells, the combination of which functions as a wavelength filter with any desired amplitude and phase transmission. The effective size of the mask scales nearly linearly with wavelength, and allows significant improvement in the inner working angle of the coronagraph at shorter wavelengths. The design is applicable to almost any coronagraph configuration, and enables operation in a wider band of wavelengths than would otherwise be possible. We include initial results from a laboratory demonstration of the mask with the Phase Induced Amplitude Apodization coronagraph.

  6. The Growth of Sea cucumber Stichopus herrmanni After Transverse Induced Fission in Two and Three Fission Plane

    Directory of Open Access Journals (Sweden)

    Retno Hartati

    2016-06-01

    Full Text Available Transverse induced fission proven could be done in Teripang Tril, Stichopus herrmanni. This present works aimed to analyze wound recovery, regeneration period and growth of Teripang Trill  after asexual reproduction by fission using two and three fission plane. Observations were made every day until the sea cucumber body separated into two or more (depending on treatment and reared for 16 weeks.  The results showed that there are differences in wound recovery, regeneration period and growth of S. herrmanni depend on their different fission plane. The wound recovery and regeneration period (days of anterior, middle and posterior individu S. herrmanni resulted from two and three fission plane were varied but the two fission plane the anterior individu recover for longer period than posterior part and  the wound recover process in both end for thee fission plane was same. Average growth of anterior and posterior fragment were longer for two fission plane than three fission plane.  The middle fragment (M1 and M2 both fission plane was able to grow but very low.  It showed that three fission plane gave very slow growth in every fragment of the body. Keywords: growth, post-fission, fission plane, Stichopus herrmanni

  7. Diffraction of love waves by two staggered perfectly weak half-planes

    International Nuclear Information System (INIS)

    Asghar, S.; Zaman, F.D.; Sajida Asghar

    1989-01-01

    Love wave travelling in a layer of uniform thickness overlying a half-space is assumed to be incident on two parallel but staggered perfectly weak half-planes lying in the upper layer. The diffracted fields is calculated using the modified Wiener-Hopf technique and contour integration method. The diffracted waves satisfy the dispersion relations appropriate to different regions formed by the perfectly weak half-planes

  8. Cutting Planes for Branch-and-Price Algorithms

    DEFF Research Database (Denmark)

    Desaulniers, Guy; Desrosiers, Jacques; Spoorendonk, Simon

    2011-01-01

    This article presents a general framework for formulating cutting planes in the context of column generation for integer programs. Valid inequalities can be derived using the variables of an equivalent compact formulation (i.e., the subproblem variables) or the master problem variables. In the fi......This article presents a general framework for formulating cutting planes in the context of column generation for integer programs. Valid inequalities can be derived using the variables of an equivalent compact formulation (i.e., the subproblem variables) or the master problem variables....... In the first case, cuts are added to the compact formulation, either at the master level or the subproblem level, and the decomposition process is reapplied. In the second case, we show that it is possible to model inequalities defined on the master problem variables by adding new variables and constraints......, and the cutting stock problem. © 2011 Wiley Periodicals, Inc. NETWORKS, Vol. 58(4), 301–310 2011...

  9. Mergers of elliptical galaxies and the fundamental plane

    NARCIS (Netherlands)

    Gonzalez-Garcia, AC; van Albada, TS; AvilaReese,; Firmani, C; Frenk, CS; Allen, YC

    2003-01-01

    N-body simulations have been carried out in order to explore the final state of elliptical galaxies after encounters and more expecifically whether the Fundamental Plane (FP hereafter) relation is affected by merging.

  10. Steel-plate composite (SC) walls for safety related nuclear facilities: Design for in-plane forces and out-of-plane moments

    International Nuclear Information System (INIS)

    Varma, Amit H.; Malushte, Sanjeev R.; Sener, Kadir C.; Lai, Zhichao

    2014-01-01

    Steel-concrete (SC) composite walls being considered and used as an alternative to conventional reinforced concrete (RC) walls in safety-related nuclear facilities due to their construction economy and structural efficiency. However, there is a lack of standardized codes for SC structures, and design guidelines and approaches are still being developed. This paper presents the development and verification of: (a) mechanics based model, and (b) detailed nonlinear finite element model for predicting the behavior and failure of SC wall panels subjected to combinations of in-plane forces. The models are verified using existing test results, and the verified models are used to explore the behavior of SC walls subjected to combinations of in-plane forces and moments. The results from these investigations are used to develop an interaction surface in principle force (S p1 –S p2 ) space that can be used to design or check the adequacy of SC wall panels. The interaction surface is easy to develop since it consists of straight line segments connecting anchor points defined by the SC wall section strengths in axial tension, in-plane shear, and compression. Both models and the interaction surface (for design) developed in this paper are recommended for future work. However, in order to use these approaches, the SC wall section should be detailed with adequate shear connector and tie bar strength and spacing to prevent non-ductile failure modes

  11. Frontal plane stability following UKA in a biomechanical study.

    Science.gov (United States)

    Heyse, Thomas J; Tucker, Scott M; Rajak, Yogesh; Kia, Mohammad; Lipman, Joseph D; Imhauser, Carl W; Westrich, Geoffrey H

    2015-06-01

    Function and kinematics following unicondylar knee arthroplasty (UKA) have been reported to be close to the native knee. Gait, stair climbing and activities of daily living expose the knee joint to a combination of varus and valgus moments. Replacement of the medial compartment via UKA is likely to change the physiologic knee stability and its ability to respond to varus and valgus moments. It was hypothesized that UKA implantation would stiffen the knee and decrease range of motion in the frontal plane. Six fresh frozen cadaver knees were prepared and mounted in a six-degrees-of-freedom robot. An axial load of 200 N was applied with the knee in 15°, 45° and 90° of flexion. Varus and valgus moments were added, respectively, before and after implantation of medial UKA. Tests were than redone with a thicker polyethylene inlay to simulate overstuffing of the medial compartment. Range of motion in the frontal plane and the tibial response to moments were recorded via the industrial robot. The range of motion in the frontal plane was decreased with both, balanced and overstuffed UKA and shifted towards valgus. When exposed to valgus moments, knees following UKA were stiffer in comparison with the native knee. The effect was even more pronounced with medial overstuffing. In UKA, the compressive anatomy is replaced by much stiffer components. This lack of medial compression and relative overstuffing leads to a tighter medial collateral ligament. This drives the trend towards a stiffer joint as documented by a decrease in frontal plane range of motion. Overstuffing should strictly be avoided when performing UKA.

  12. Effects of sires with different weight gain potentials and varying planes of nutrition on growth of growing-finishing pigs.

    Science.gov (United States)

    Ha, Duck-Min; Jung, Dae-Yun; Park, Man Jong; Park, Byung-Chul; Lee, C Young

    2014-01-01

    The present study was performed to investigate the effects of two groups of sires with 'medium' and 'high' weight gain potentials (M-sires and H-sires, respectively) on growth of their progenies on varying planes of nutrition during the growing-finishing period. The ADG of the M-sires' progeny was greater (P plane of nutrition (H plane) followed by the medium (M) and low (L) planes (0.65, 0.61, and 0.51 kg, respectively; P planes vs. L plane (0.63, 0.62, and 0.54 kg, respectively). The ADG of pigs on the M or H plane during the grower phase and switched to the H plane thereafter (M-to-H or H-to-H planes) was greater than that of pigs on the L-to-L planes (0.99 vs. 0.78 kg) during the early finisher phase in the M-sires' progeny (P planes did not differ from that of pigs on the M-to-M or H-to-M planes (0.94 vs. 0.96 kg). Results suggest that the H-to-H or H-to-M planes and M-to-M or M-to-L planes are optimal for maximal growth of the M- and H-sires' progenies, respectively.

  13. Simultaneous Generalizations of the Theorems of Ceva and Menelaus for Field Planes

    Science.gov (United States)

    Houston, Kelly B.; Powers, Robert C.

    2009-01-01

    In 1992, Klamkin and Liu proved a very general result in the Extended Euclidean Plane that contains the theorems of Ceva and Menelaus as special cases. In this article, we extend the Klamkin and Liu result to projective planes "PG"(2, F) where F is a field. (Contains 2 figures.)

  14. Fabrication of Transition Edge Sensor Microcalorimeters for X-Ray Focal Planes

    Science.gov (United States)

    Chervenak, James A.; Adams, Joseph S.; Audley, Heather; Bandler, Simon R.; Betancourt-Martinez, Gabriele; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline; Lee, Sang Jun; hide

    2015-01-01

    Requirements for focal planes for x-ray astrophysics vary widely depending on the needs of the science application such as photon count rate, energy band, resolving power, and angular resolution. Transition edge sensor x-ray calorimeters can encounter limitations when optimized for these specific applications. Balancing specifications leads to choices in, for example, pixel size, thermal sinking arrangement, and absorber thickness and material. For the broadest specifications, instruments can benefit from multiple pixel types in the same array or focal plane. Here we describe a variety of focal plane architectures that anticipate science requirements of x-ray instruments for heliophysics and astrophysics. We describe the fabrication procedures that enable each array and explore limitations for the specifications of such arrays, including arrays with multiple pixel types on the same array.

  15. Microstructure of the regions on a plane copper electrode surface affected by a spark discharge in air in the point-plane gap

    Science.gov (United States)

    Tren'kin, A. A.; Karelin, V. I.; Shibitov, Yu. M.; Blinova, O. M.; Yasnikov, I. S.

    2017-09-01

    The microstructure of the regions affected by spark discharge on the surface of a plane copper electrode in atmospheric air in the point-plane gap has been studied using a scanning electron microscope for both the positive and negative polarity of the point electrode. It has been found that the affected regions have the shape of round spots or groups of spots with diameters of individual spots varying in the range of 20-200 μm. It has been revealed that the spots have an internal spatial structure in the form of an aggregate of concentric rings. These rings are aggregates of a large number of microscopic craters with diameters of 0.1-1.0 μm.

  16. Comb-Line Filter with Coupling Capacitor in Ground Plane

    Directory of Open Access Journals (Sweden)

    Toshiaki Kitamura

    2011-01-01

    Full Text Available A comb-line filter with a coupling capacitor in the ground plane is proposed. The filter consists of two quarter-wavelength microstrip resonators. A coupling capacitor is inserted into the ground plane in order to build strong coupling locally along the resonators. The filtering characteristics are investigated through numerical simulations as well as experiments. Filtering characteristics that have attenuation poles at both sides of the passband are obtained. The input susceptances of even and odd modes and coupling coefficients are discussed. The filters using stepped impedance resonators (SIRs are also discussed, and the effects of the coupling capacitor for an SIR structure are shown.

  17. Determination of the Relative Positions of Three Planes: Action Research

    Directory of Open Access Journals (Sweden)

    Tuba Ada

    2016-07-01

    Full Text Available The purpose of this study was to explore how a more effective lesson plan and teaching environment can be achieved so as to improve elementary mathematics teacher candidates’ achievement in analytical examination of planes in space. In order to improve achievement in expressing the relative positions of three planes not only algebraically but also visually the study used an action research approach as planned by the researchers. In Implementation 1, the teacher candidates were given the equations of three planes and they were asked to determine the relative positions of the planes so that their prior knowledge could be identified. In this stage, the candidate teachers tried to determine the relative positions of the planes in one direction by examining the plane equations in pairs. In Implementation 2, the candidate teachers were asked to find the solution set of the linear equation system consisting of three equations with three unknowns and to come up with geometric interpretation of this solution. In this stage, some of the candidate teachers were able to solve the equation, but they couldn’t interpret it geometrically. In Implementation 3, Maple, a computer algebra system, was used so that the candidate teachers could visualize and observe the relative positions of the three planes by using the plane equations. In this stage, the candidate teachers associated the set of solutions of the plane equations with the three-dimensional images obtained with Maple. The results of the implementation showed that the proposed plan improved the mathematics teacher candidates’ visualization of the relative positions of the three planes.Keywords: planes in space, analytic geometry, Maple, action researchÜç Düzlemin Birbirine Göre Konumunun Belirlenmesi: Eylem AraştırmasıÖzBu çalışmanın amacı, ilköğretim Matematik öğretmen adaylarının uzayda düzlemlerin analitik incelenmesi konusundaki başarısını arttırmak için daha etkili

  18. Plane waves and spherical means applied to partial differential equations

    CERN Document Server

    John, Fritz

    2004-01-01

    Elementary and self-contained, this heterogeneous collection of results on partial differential equations employs certain elementary identities for plane and spherical integrals of an arbitrary function, showing how a variety of results on fairly general differential equations follow from those identities. The first chapter deals with the decomposition of arbitrary functions into functions of the type of plane waves. Succeeding chapters introduce the first application of the Radon transformation and examine the solution of the initial value problem for homogeneous hyperbolic equations with con

  19. Locating a circle on the plane using the minimax criterion

    DEFF Research Database (Denmark)

    Brimberg, Jack; Juel, Henrik; Schöbel, Anita

    2009-01-01

    We consider the problem of locating a circle with respect to existing facilities on the plane, such that the largest weighted distance between the circumference of the circle and the facilities is minimized. The problem properties are analyzed, and a solution procedure proposed......We consider the problem of locating a circle with respect to existing facilities on the plane, such that the largest weighted distance between the circumference of the circle and the facilities is minimized. The problem properties are analyzed, and a solution procedure proposed...

  20. Concentrated Ground Plane Booster Antenna Technology for Multiband Operation in Handset Devices

    Directory of Open Access Journals (Sweden)

    C. Picher

    2014-12-01

    Full Text Available The current demand in the handset antenna field requires multiband antennas due to the existence of multiple communication standards and the emergence of new ones. At the same time, antennas with reduced dimensions are strongly required in order to be easily integrated. In this sense, the paper proposes a compact radiating system that uses two non-resonant elements to properly excite the ground plane to solve the abovementioned shortcomings by minimizing the required Printed Circuit Board (PCB area while ensuring a multiband performance. These non-resonant elements are called here ground plane boosters since they excite an efficient mode of the ground plane. The proposed radiating system comprises two ground plane boosters of small dimensions of 5 mm x 5 mm x 5 mm. One is in charge of the low frequency region (0.824-0.960 GHz and the other is in charge of the high frequency region (1.710-2.170 GHz. With the aim of achieving a compact configuration, the two boosters are placed close to each other in a corner of the ground plane of a handset device (concentrated architecture. Several experiments related to the coupling between boosters have been carried out in two different platforms (barphone and smartphone, and the best position and the required matching network are presented. The novel proposal achieves multiband performance at GSM850/900/1800/1900 and UMTS.

  1. Pascal’s Theorem in Real Projective Plane

    Directory of Open Access Journals (Sweden)

    Coghetto Roland

    2017-07-01

    Full Text Available In this article we check, with the Mizar system [2], Pascal’s theorem in the real projective plane (in projective geometry Pascal’s theorem is also known as the Hexagrammum Mysticum Theorem1. Pappus’ theorem is a special case of a degenerate conic of two lines.

  2. Fisher-Renyi entropy product and information plane

    International Nuclear Information System (INIS)

    Romera, E.; Nagy, A.

    2008-01-01

    Connection between Fisher information and Renyi entropy has been established. This link allows us to define the Fisher-Renyi information plane and an entropic product in terms of these quantities. New Renyi uncertainty relations are obtained for single particle densities of many particle systems in position-momentum conjugate spaces

  3. 3D Laser Scanning Assisted by Ordinary Plane Mirror for Non-direct Viewing Area

    Directory of Open Access Journals (Sweden)

    ZHANG Fan

    2017-12-01

    Full Text Available Terrestrial 3D laser scanning is one of principal methods to get the geometric information of object surface,and the integrity of the scanned object is a basic requirement in data acquisition. In order to solve the missing point cloud problem due to the scanning dead angle caused by confined working space,this paper proposes a method using ordinary plane mirror to obtain laser scanning data for non-direct viewing area according to the plane mirror reflection principle,analyzes the influence mechanism of the ordinary plane mirror on the propagation path and distance of laser beam,deduces the coordinate equation of the object point corresponding to the image point reflected by ordinary plane mirror in laser scanning. Given the laser scanning characteristic,this paper introduces a mirror reflection system included target balls and ordinary plane mirror,and expounds the system construction,system calibration and constructing method of system coordinate system. The feasibility and precision of the method are verified by experiments.

  4. Effect of root planing on surface topography: an in-vivo randomized experimental trial.

    Science.gov (United States)

    Rosales-Leal, J I; Flores, A B; Contreras, T; Bravo, M; Cabrerizo-Vílchez, M A; Mesa, F

    2015-04-01

    The root surface topography exerts a major influence on clinical attachment and bacterial recolonization after root planing. In-vitro topographic studies have yielded variable results, and clinical studies are necessary to compare root surface topography after planing with current ultrasonic devices and with traditional manual instrumentation. The aim of this study was to compare the topography of untreated single-rooted teeth planed in vivo with a curette, a piezoelectric ultrasonic (PU) scraper or a vertically oscillating ultrasonic (VOU) scraper. In a randomized experimental trial of 19 patients, 44 single-rooted teeth were randomly assigned to one of four groups for: no treatment; manual root planing with a curette; root planing with a PU scraper; or root planing with a VOU scraper. Post-treatment, the teeth were extracted and their topography was analyzed in 124 observations with white-light confocal microscopy, measuring the roughness parameters arithmetic average height, root-mean-square roughness, maximum height of peaks, maximum depth of valleys, absolute height, skewness and kurtosis. The roughness values arithmetic average height and root-mean-square roughness were similar after each treatment and lower than after no treatment ( p  0.05). Both ultrasonic devices reduce the roughness, producing a similar topography to that observed after manual instrumentation with a curette, to which they appear to represent a valid alternative. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Coupled fracture modes under anti-plane loading

    Directory of Open Access Journals (Sweden)

    Les P. Pook

    2016-07-01

    Full Text Available The linear elastic analysis of homogeneous, isotropic cracked bodies is a Twentieth Century development. It was recognised that the crack tip stress field is a singularity, but it was not until the introduction of the essentially two dimensional stress intensity factor concept in 1957 that widespread application to practical engineering problems became possible. The existence of three dimensional corner point effects in the vicinity of a corner point where a crack front intersects a free surface was investigated in the late 1970s: it was found that modes II and III cannot exist in isolation. The existence of one of these modes always induces the other. An approximate solution for corner point singularities by Bažant and Estenssoro explained some features of corner point effects but there were various paradoxes and inconsistencies. In an attempt to explain these a study was carried out on the coupled in-plane fracture mode induced by a nominal anti-plane (mode III loading applied to plates and discs weakened by a straight crack. The results derived from a large bulk of finite element models showed clearly that Bažant and Estenssoro’s analysis is incomplete. Some of the results of the study are summarised, together with some recent results for a disc under in-plane shear loading. On the basis of these results, and a mathematical argument, the results suggest that the stress field in the vicinity of a corner point is the sum of two singularities: one due to stress intensity factors and the other due to an as yet undetermined corner point singularity.

  6. Investigation of reconstruction conditions in sagittal-plane multiplanar reconstruction of the temporal bone

    International Nuclear Information System (INIS)

    Suzuki, Miyako; Yoshikawa, Hiroshi; Hosokawa, Akira; Ichikawa, Ginichiro; Kobayashi, Kenichi; Ando, Ichiro

    2002-01-01

    In recent years, it has become possible to quickly obtain a large amount of 3D data with high continuity by helical CT scanning, in which the body is scanned continuously in a helical fashion. MPR (multiplanar reconstruction) can be performed using this data to generate images in arbitrary sectional planes, making it possible to obtain sagittal-plane images of the highest quality, which is useful for surgical planning. However, the procedures involved are rather complicated. Therefore, this study was conducted to investigate conditions for standardization of sagittal-plane MPR examinations performed using Xvigor CT scanners and Xtension. The results showed that a slice interval of 1 mm, no imaging filter, a zooming factor of 1.5, a window level of 350, and a window width of 3500 are the optimal imaging conditions. The stapes can be visualized in 70% of cases with sagittal-plane MPR based on axial images, and can be recognized at surgery in 75% or more of cases. Images of consistent quality can be obtained by standardizing the conditions for sagittal-plane MPR, which should prove advantageous in the clinical setting. (author)

  7. Crystal-plane effects of MFI zeolite in catalytic conversion of methanol to hydrocarbons

    KAUST Repository

    Wang, Ning

    2018-02-15

    We report the direct characterization of coke information in the clearly resolved (0 1 0) and (1 0 0) planes of various anisotropic MFI zeolites using EELS techniques, in a model reaction of methanol to hydrocarbons. For the first time, we found that the main coke species varied between different planes and depended on the crystal structure. The coke species was graphite carbon and polyaromatic hydrocarbon over MFI nanosheets and MFI with b-axis length 60 nm, respectively. The diffusion of aromatics out of conventional MFI zeolites was found only through the straight channels, while small molecules randomly diffused through both channels, resulting in different coke deposition on the (0 1 0) plane and the (1 0 0) plane from different precursors. As all product molecules diffused only through the straight channels, the MFI nanosheet showed a distinct crystal-plane selective effect of coke deposition, in contrast to nearly uniform coke distribution throughout the entire external surface for conventional zeolites. This anisotropic diffusion behavior influenced the gaseous and liquid products significantly, providing deep insight into the MFI catalyst for the selective control of products via crystal structure.

  8. Field emission study of ammonia absorption and catalytic decomposition on individual molybdenum planes

    International Nuclear Information System (INIS)

    Abon, M.; Bergeret, G.; Tardy, B.

    1977-01-01

    A probe-hole field emission microscope was used to investigate the crystallographic specificity of ammonia adsorption at 200 and 300 K on (110), (100), (211) and (111) molybdenum crystal planes. Chemisorbed NH 3 causes a large work function decrease, especially at 200 K in agreement with an associative adsorption model which can also explain that this decrease is more important on the crystal planes of highest work function (At 200 K, Δpsi = -2.25 eV on Mo(110) compared to Δpsi = -1.55 eV on Mo(111). The decomposition of NH 3 was followed by measuring the work function changes for stepwise heating of the Mo tip covered with NH 3 at 200 K. On the four studied planes NH 3 decomposition and H 2 desorption are completed at about 400 K. Δpsi changes above 400 K depend on the crystal planes and have been related to two different nitrogen surface states. No inactive plane towards NH 3 adsorption and decomposition has been found but the noted crystallographic anisotropy in this low pressure study is relevant to the structure sensitive character of the NH 3 decomposition and synthesis reactions. (Auth.)

  9. A spectral dynamic stiffness method for free vibration analysis of plane elastodynamic problems

    Science.gov (United States)

    Liu, X.; Banerjee, J. R.

    2017-03-01

    A highly efficient and accurate analytical spectral dynamic stiffness (SDS) method for modal analysis of plane elastodynamic problems based on both plane stress and plane strain assumptions is presented in this paper. First, the general solution satisfying the governing differential equation exactly is derived by applying two types of one-dimensional modified Fourier series. Then the SDS matrix for an element is formulated symbolically using the general solution. The SDS matrices are assembled directly in a similar way to that of the finite element method, demonstrating the method's capability to model complex structures. Any arbitrary boundary conditions are represented accurately in the form of the modified Fourier series. The Wittrick-Williams algorithm is then used as the solution technique where the mode count problem (J0) of a fully-clamped element is resolved. The proposed method gives highly accurate solutions with remarkable computational efficiency, covering low, medium and high frequency ranges. The method is applied to both plane stress and plane strain problems with simple as well as complex geometries. All results from the theory in this paper are accurate up to the last figures quoted to serve as benchmarks.

  10. A Geometric Correction Method of Plane Image Based on OpenCV

    Directory of Open Access Journals (Sweden)

    Li Xiaopeng

    2014-02-01

    Full Text Available Using OpenCV, a geometric correction method of plane image from single grid image in a state of unknown camera position is presented. The method can remove the perspective and lens distortions from an image. The method is simple and easy to implement, and the efficiency is high. Experiments indicate that this method has high precision, and can be used in some domains such as plane measurement.

  11. Spherical and plane integral operators for PDEs construction, analysis, and applications

    CERN Document Server

    Sabelfeld, Karl K

    2013-01-01

    The book presents integral formulations for partial differential equations, with the focus on spherical and plane integral operators. The integral relations are obtained for different elliptic and parabolic equations, and both direct and inverse mean value relations are studied. The derived integral equations are used to construct new numerical methods for solving relevant boundary value problems, both deterministic and stochastic based on probabilistic interpretation of the spherical and plane integral operators.

  12. Two-dimensional electron states bound to an off-plane donor in a magnetic field

    International Nuclear Information System (INIS)

    Bruno-Alfonso, A; Candido, L; Hai, G-Q

    2010-01-01

    The states of an electron confined in a two-dimensional (2D) plane and bound to an off-plane donor impurity center, in the presence of a magnetic field, are investigated. The energy levels of the ground state and the first three excited states are calculated variationally. The binding energy and the mean orbital radius of these states are obtained as a function of the donor center position and the magnetic field strength. The limiting cases are discussed for an in-plane donor impurity (i.e. a 2D hydrogen atom) as well as for the donor center far away from the 2D plane in strong magnetic fields, which corresponds to a 2D harmonic oscillator.

  13. Study on structural plane characteristics of deep rock mass based on acoustic borehole TV

    International Nuclear Information System (INIS)

    Wang Xiyong; Su Rui; Chen Liang; Tian Xiao

    2014-01-01

    Deep rock mass structural plane characteristics are one of the basic data for evaluating the quality of rock mass. Based on acoustic borehole TV, the structural plane quantity, density, attitude, dominant set, structural plane aperture of deep rock mass in boreholes BS15 # and BS16 # located in Beishan granite rock mass of Gansu Province have been calculated and compared with the results of geological documentation of drill core. The results indicate that acoustic borehole TV has the effect in study on characteristics of structural plane. But as a kind of technique of geophysical logging, the acoustic borehole TV has certain defect, and need to combine with the analysis of the other geological materials in applications. (authors)

  14. Synthesis, characterization and frictional wear behavior of ceria hybrid architectures with {111} exposure planes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Pengfei [School of Mechanical Engineering, University of South China, Hengyang 421001 (China); Chen, Yong, E-mail: chenyongjsnt@163.com [School of Mechanical Engineering, University of South China, Hengyang 421001 (China); Sun, Rong [Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai (Japan); Chen, Yue; Yin, Yaru [School of Mechanical Engineering, University of South China, Hengyang 421001 (China); Wang, Zhongchang, E-mail: zcwang@wpi-aimr.tohoku.ac.jp [Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai (Japan)

    2017-04-15

    Highlights: • A hybrid architecture comprising three types of cerium nanoparticles (nano-octahedron and its’ ramifications) is synthesized. • The exposure planes of the prepared ceria nanoparticles are {111} crystal planes. • The nanoparticles show markedly material remove capacity and inferior polishing quality. - Abstract: A hybrid architecture comprising three types of cerium nanoparticles, nano-octahedron and its ramifications, is synthesized via a facile yet efficient hydrothermal process. Comprehensive transmission electron microscopy analysis identifies the exposure planes of the cube-shaped ceria nanoparticles as {111} crystal planes. As a result of this unique morphology, the nanoparticles are found to show markedly enhanced material removal capacity and inferior polishing quality compared to the sphere-shaped ceria nanoparticles.

  15. Quantum mechanics of a free particle on a plane with an extracted point

    International Nuclear Information System (INIS)

    Kowalski, K.; Podlaski, K.; Rembielinski, J.

    2002-01-01

    A detailed study of a quantum free particle on a pointed plane is presented in this paper. In particular, some questions posed in the very recent paper by M. A. Cirone et al, Phys. Rev. A 65, 022101 (2002) are clarified. Namely, the topological effects related to extracting a point from a plane are indicated. The proposed results are introduced concerning self-adjoint extensions of operators describing the free particle on a pointed plane as well as the role played by discrete symmetries in the analysis of such extensions

  16. Can continuous scans in orthogonal planes improve diagnostic performance of shear wave elastography for breast lesions?

    Science.gov (United States)

    Yang, Pan; Peng, Yulan; Zhao, Haina; Luo, Honghao; Jin, Ya; He, Yushuang

    2015-01-01

    Static shear wave elastography (SWE) is used to detect breast lesions, but slice and plane selections result in discrepancies. To evaluate the intraobserver reproducibility of continuous SWE, and whether quantitative elasticities in orthogonal planes perform better in the differential diagnosis of breast lesions. One hundred and twenty-two breast lesions scheduled for ultrasound-guided biopsy were recruited. Continuous SWE scans were conducted in orthogonal planes separately. Quantitative elasticities and histopathology results were collected. Reproducibility in the same plane and diagnostic performance in different planes were evaluated. The maximum and mean elasticities of the hardest portion, and standard deviation of whole lesion, had high inter-class correlation coefficients (0.87 to 0.95) and large areas under receiver operation characteristic curve (0.887 to 0.899). Without loss of accuracy, sensitivities had increased in orthogonal planes compared with single plane (from 73.17% up to 82.93% at most). Mean elasticity of whole lesion and lesion-to-parenchyma ratio were significantly less reproducible and less accurate. Continuous SWE is highly reproducible for the same observer. The maximum and mean elasticities of the hardest portion and standard deviation of whole lesion are most reliable. Furthermore, the sensitivities of the three parameters are improved in orthogonal planes without loss of accuracies.

  17. On motions of a carrier with a mobile load along a rough inclined plane

    Science.gov (United States)

    Bilchenko, Grigory; Bilchenko, Grigory; Bilchenko, Nataly

    2018-05-01

    A mechanical system consisting of a carrier and a load is considered. The load can move respectively to the carrier according to a predetermined motion law. The carrier can move translationally along a rectilinear trajectory on a rough inclined plane. The trajectory is the line of the greatest descent. The axis of the rectilinear channel, along which the load moves, is located in a vertical plane passing through the trajectory of the carrier. The Coulomb dry friction model is applied for simulation the forces of resistance to the motion of the carrier from the side of the underlying inclined plane. The extreme value of plane inclination angle at which the carrier is at rest, when the load is stationary, is obtained by taking into account the frictional forces of sliding at rest. Differential equations of motion of a carrier with a load moving with respect to the carrier are obtained taking into account the requirement of motion of the carrier along an inclined plane without detachment. The determining relationships are given which made it possible to classify the types of carrier motion when the channel setting angle and the plane inclination angle are related by a certain inequality. The results of computational experiments are presented.

  18. A small-plane heat source method for measuring the thermal conductivities of anisotropic materials

    Science.gov (United States)

    Cheng, Liang; Yue, Kai; Wang, Jun; Zhang, Xinxin

    2017-07-01

    A new small-plane heat source method was proposed in this study to simultaneously measure the in-plane and cross-plane thermal conductivities of anisotropic insulating materials. In this method the size of the heat source element is smaller than the sample size and the boundary condition is thermal insulation due to no heat flux at the edge of the sample during the experiment. A three-dimensional model in a rectangular coordinate system was established to exactly describe the heat transfer process of the measurement system. Using the Laplace transform, variable separation, and Laplace inverse transform methods, the analytical solution of the temperature rise of the sample was derived. The temperature rises calculated by the analytical solution agree well with the results of numerical calculation. The result of the sensitivity analysis shows that the sensitivity coefficients of the estimated thermal conductivities are high and uncorrelated to each other. At room temperature and in a high-temperature environment, experimental measurements of anisotropic silica aerogel were carried out using the traditional one-dimensional plane heat source method and the proposed method, respectively. The results demonstrate that the measurement method developed in this study is effective and feasible for simultaneously obtaining the in-plane and cross-plane thermal conductivities of the anisotropic materials.

  19. Construction of the STAR Event Plane Detector

    Science.gov (United States)

    Adams, Joseph

    2017-09-01

    The Event Plane Detector (EPD) is an upgrade to the STAR experiment at RHIC, providing high granularity and acceptance in the forward (2.2 run for commissioning. In this talk I will discuss the construction of the EPD, the installation of the quarter wheel, and plans for full installation in 2018.

  20. Lower extremity energy absorption and biomechanics during landing, part II: frontal-plane energy analyses and interplanar relationships.

    Science.gov (United States)

    Norcross, Marc F; Lewek, Michael D; Padua, Darin A; Shultz, Sandra J; Weinhold, Paul S; Blackburn, J Troy

    2013-01-01

    Greater sagittal-plane energy absorption (EA) during the initial impact phase (INI) of landing is consistent with sagittal-plane biomechanics that likely increase anterior cruciate ligament (ACL) loading, but it does not appear to influence frontal-plane biomechanics. We do not know whether frontal-plane INI EA is related to high-risk frontal-plane biomechanics. To compare biomechanics among INI EA groups, determine if women are represented more in the high group, and evaluate interplanar INI EA relationships. Descriptive laboratory study. Research laboratory. Participants included 82 (41 men, 41 women; age = 21.0 ± 2.4 years, height = 1.74 ± 0.10 m, mass = 70.3 ± 16.1 kg) healthy, physically active volunteers. We assessed landing biomechanics with an electromagnetic motion-capture system and force plate. We calculated frontal- and sagittal-plane total, hip, knee, and ankle INI EA. Total frontal-plane INI EA was used to create high, moderate, and low tertiles. Frontal-plane knee and hip kinematics, peak vertical and posterior ground reaction forces, and peak internal knee-varus moment (pKVM) were identified and compared across groups using 1-way analyses of variance. We used a χ (2) analysis to evaluate male and female allocation to INI EA groups. We used simple, bivariate Pearson product moment correlations to assess interplanar INI EA relationships. The high-INI EA group exhibited greater knee valgus at ground contact, hip adduction at pKVM, and peak hip adduction than the low-INI EA group (P .05). Greater frontal-plane INI EA was associated with less favorable frontal-plane biomechanics that likely result in greater ACL loading. Women were more likely than men to use greater frontal-plane INI EA. The magnitudes of sagittal- and frontal-plane INI EA were largely independent.

  1. Landsat 9 OLI 2 focal plane subsystem: design, performance, and status

    Science.gov (United States)

    Malone, Kevin J.; Schrein, Ronald J.; Bradley, M. Scott; Irwin, Ronda; Berdanier, Barry; Donley, Eric

    2017-09-01

    The Landsat 9 mission will continue the legacy of Earth remote sensing that started in 1972. The Operational Land Imager 2 (OLI 2) is one of two instruments on the Landsat 9 satellite. The OLI 2 instrument is essentially a copy of the OLI instrument flying on Landsat 8. A key element of the OLI 2 instrument is the focal plane subsystem, or FPS, which consists of the focal plane array (FPA), the focal plane electronics (FPE) box, and low-thermal conductivity cables. This paper presents design details of the OLI 2 FPS. The FPA contains 14 critically-aligned focal plane modules (FPM). Each module contains 6 visible/near-IR (VNIR) detector arrays and three short-wave infrared (SWIR) arrays. A complex multi-spectral optical filter is contained in each module. Redundant pixels for each array provide exceptional operability. Spare detector modules from OLI were recharacterized after six years of storage. Radiometric test results are presented and compared with data recorded in 2010. Thermal, optical, mechanical and structural features of the FPA will be described. Special attention is paid to the thermal design of the FPA since thermal stability is crucial to ensuring low-noise and low-drift operation of the detectors which operate at -63°C. The OLI 2 FPE provides power, timing, and control to the focal plane modules. It also digitizes the video data and formats it for the solid-state recorder. Design improvements to the FPA-FPE cables will be discussed and characterization data will be presented. The paper will conclude with the status of the flight hardware assembly and testing.

  2. Applicability of geometrical optics to in-plane liquid-crystal configurations.

    Science.gov (United States)

    Sluijter, M; Xu, M; Urbach, H P; de Boer, D K G

    2010-02-15

    We study the applicability of geometrical optics to inhomogeneous dielectric nongyrotropic optically anisotropic media typically found in in-plane liquid-crystal configurations with refractive indices n(o)=1.5 and n(e)=1.7. To this end, we compare the results of advanced ray- and wave-optics simulations of the propagation of an incident plane wave to a special anisotropic configuration. Based on the results, we conclude that for a good agreement between ray and wave optics, a maximum change in optical properties should occur over a distance of at least 20 wavelengths.

  3. Pseudodifferential Analysis, Automorphic Distributions in the Plane and Modular Forms

    CERN Document Server

    Unterberger, Andre

    2011-01-01

    Pseudodifferential analysis, introduced in this book in a way adapted to the needs of number theorists, relates automorphic function theory in the hyperbolic half-plane I to automorphic distribution theory in the plane. Spectral-theoretic questions are discussed in one or the other environment: in the latter one, the problem of decomposing automorphic functions in I according to the spectral decomposition of the modular Laplacian gives way to the simpler one of decomposing automorphic distributions in R2 into homogeneous components. The Poincare summation process, which consists in building au

  4. Reliability of twin-dependent triple junction distributions measured from a section plane

    International Nuclear Information System (INIS)

    Hardy, Graden B.; Field, David P.

    2016-01-01

    Numerous studies indicate polycrystalline triple junctions are independent microstructural features with distinct properties from their constituent grain boundaries. Despite the influence of triple junctions on material properties, it is impractical to characterize triple junctions on a large scale using current three-dimensional methods. This work demonstrates the ability to characterize twin-dependent triple junction distributions from a section plane by adopting a grain boundary plane stereology. The technique is validated through simulated distributions and simulated electron back-scatter diffraction (EBSD) data. Measures of validation and convergence are adopted to demonstrate the quantitative reliability of the technique as well as the convergence behavior of twin-dependent triple junction distributions. This technique expands the characterization power of EBSD and prepares the way for characterizing general triple junction distributions from a section plane. - Graphical abstract: The distribution of planes forming a triple junction with a given twin boundary is shown partially in the stereographic projections below from a given projection. The plot on the left shows the ideal/measured distribution and the plot on the right shows the distribution obtained from the stereological method presented here.

  5. Video steganography based on bit-plane decomposition of wavelet-transformed video

    Science.gov (United States)

    Noda, Hideki; Furuta, Tomofumi; Niimi, Michiharu; Kawaguchi, Eiji

    2004-06-01

    This paper presents a steganography method using lossy compressed video which provides a natural way to send a large amount of secret data. The proposed method is based on wavelet compression for video data and bit-plane complexity segmentation (BPCS) steganography. BPCS steganography makes use of bit-plane decomposition and the characteristics of the human vision system, where noise-like regions in bit-planes of a dummy image are replaced with secret data without deteriorating image quality. In wavelet-based video compression methods such as 3-D set partitioning in hierarchical trees (SPIHT) algorithm and Motion-JPEG2000, wavelet coefficients in discrete wavelet transformed video are quantized into a bit-plane structure and therefore BPCS steganography can be applied in the wavelet domain. 3-D SPIHT-BPCS steganography and Motion-JPEG2000-BPCS steganography are presented and tested, which are the integration of 3-D SPIHT video coding and BPCS steganography, and that of Motion-JPEG2000 and BPCS, respectively. Experimental results show that 3-D SPIHT-BPCS is superior to Motion-JPEG2000-BPCS with regard to embedding performance. In 3-D SPIHT-BPCS steganography, embedding rates of around 28% of the compressed video size are achieved for twelve bit representation of wavelet coefficients with no noticeable degradation in video quality.

  6. Design of energy efficient optical networks with software enabled integrated control plane

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Yan, Ying; Dittmann, Lars

    2015-01-01

    energy consumption by proposing a new integrated control plane structure utilising Software Defined Networking technologies. The integrated control plane increases the efficiencies of exchanging control information across different network domains, while introducing new possibilities to the routing...... methods and the control over quality of service (QoS). The structure is defined as an overlay generalised multi-protocol label switching (GMPLS) control model. With the defined structure, the integrated control plane is able to gather information from different domains (i.e. optical core network......'s) routing behaviours. With the flexibility of the routing structure, results show that the energy efficiency of the network can be improved without compromising the QoS for delay/blocking sensitive services....

  7. Duality and noncommutative planes

    DEFF Research Database (Denmark)

    Jøndrup, Søren

    2015-01-01

    We study extensions of simple modules over an associative ring A   and we prove that for twosided ideals mm and nn with artinian factors the condition ExtA1(A/m,A/n)≠0 holds for the left A  -modules A/mA/m and A/nA/n if and only if it holds for the right modules A/nA/n and A/mA/m. The methods pro...... proving this are applied to show that noncommutative models of the plane, i.e. algebras of the form k〈x,y〉/(f)k〈x,y〉/(f), where f∈([x,y])f∈([x,y]) are noetherian only in case (f)=([x,y])...

  8. DC Polarographic and Plane Polarographic investigation of the ...

    African Journals Online (AJOL)

    Bheema

    D.C., A.C. and Complex Plane Polarographic behavior of copper (II) in monoethanolamine /sodium ... The Cd of supporting electrolyte can be directly measured. Theoretical phase sensitive ..... The mass and drop time of mercury are provided ...

  9. 3D plane-wave least-squares Kirchhoff migration

    KAUST Repository

    Wang, Xin; Dai, Wei; Huang, Yunsong; Schuster, Gerard T.

    2014-01-01

    A three dimensional least-squares Kirchhoff migration (LSM) is developed in the prestack plane-wave domain to increase the quality of migration images and the computational efficiency. Due to the limitation of current 3D marine acquisition

  10. Reaction plane angle dependence of dihadron azimuthal correlations from a multiphase transport model calculation

    International Nuclear Information System (INIS)

    Li, W.; Zhang, S.; Ma, Y. G.; Cai, X. Z.; Chen, J. H.; Ma, G. L.; Zhong, C.; Huang, H. Z.

    2009-01-01

    Dihadron azimuthal angle correlations relative to the reaction plane have been investigated in Au+Au collisions at √(s NN )=200 GeV using a multiphase transport model (AMPT). Such reaction plane azimuthal-angle-dependent correlations can shed light on the path-length effect of energy loss of high-transverse-momentum particles propagating through a hot dense medium. The correlations vary with the trigger particle azimuthal angle with respect to the reaction plane direction, φ s =φ T -Ψ EP , which is consistent with the experimental observation by the STAR Collaboration. The dihadron azimuthal angle correlation functions on the away side of the trigger particle present a distinct evolution from a single-peak to a broad, possibly double-peak structure when the trigger particle direction goes from in-plane to out-of-plane with the reaction plane. The away-side angular correlation functions are asymmetric with respect to the back-to-back direction in some regions of φ s , which could provide insight into the testing v 1 method for reconstructing the reaction plane. In addition, both the root-mean-square width (W rms ) of the away-side correlation distribution and the splitting parameter (D) between the away-side double peaks increase slightly with φ s , and the average transverse momentum of away-side-associated hadrons shows a strong φ s dependence. Our results indicate that a strong parton cascade and resultant energy loss could play an important role in the appearance of a double-peak structure in the dihadron azimuthal angular correlation function on the away side of the trigger particle.

  11. Can commonly used profile planes be used to evaluate changes in lower lip position?

    Science.gov (United States)

    Buschang, Peter H; Fretty, Kimberly; Campbell, Phillip M

    2011-07-01

    To determine the validity of five profile planes commonly used to describe the horizontal changes of the lower lip during orthodontic treatment. Pretreatment and posttreatment cephalograms of 79 patients (12.4 ± 2.8 years of age) were evaluated. Lower lip (labrale inferiorus) changes over time were measured relative to the Rickett's E-line, Steiner's S1-line, Burstone's B-line, Sushner's S2-line, and Holdaway's H-line. As an independent measure of actual horizontal lip changes, the labrale inferiorus was measured relative to a stable reference plane registered on the sella and oriented on the SN-7°. The lower lip actually moved anteriorly 2.35 ± 3.35 mm during orthodontic treatment; the five profile planes indicated that the lower lip moved to a more retrusive, posterior position. The five profile planes also showed no statistically significant sex differences in terms of the treatment changes that occurred, while the actual lip changes showed that males exhibited significantly greater changes than females. Actual treatment changes showed that the lower lip moved to a more protrusive position with nonextraction than with extraction treatments, changes that were not evident based on the five profile lines. While lip changes based on the five profile planes demonstrated moderately high to high intercorrelations ranging from 0.81 to 0.97, they showed only weak correlations (r planes measured similar aspects of positional change, none of them closely reflected the actual lower lip changes that occurred. These planes should not be used to measure changes in lip position that occur during treatment.

  12. Out-of-Plane Electromechanical Response of Monolayer Molybdenum Disulfide Measured by Piezoresponse Force Microscopy.

    Science.gov (United States)

    Brennan, Christopher J; Ghosh, Rudresh; Koul, Kalhan; Banerjee, Sanjay K; Lu, Nanshu; Yu, Edward T

    2017-09-13

    Two-dimensional (2D) materials have recently been theoretically predicted and experimentally confirmed to exhibit electromechanical coupling. Specifically, monolayer and few-layer molybdenum disulfide (MoS 2 ) have been measured to be piezoelectric within the plane of their atoms. This work demonstrates and quantifies a nonzero out-of-plane electromechanical response of monolayer MoS 2 and discusses its possible origins. A piezoresponse force microscope was used to measure the out-of-plane deformation of monolayer MoS 2 on Au/Si and Al 2 O 3 /Si substrates. Using a vectorial background subtraction technique, we estimate the effective out-of-plane piezoelectric coefficient, d 33 eff , for monolayer MoS 2 to be 1.03 ± 0.22 pm/V when measured on the Au/Si substrate and 1.35 ± 0.24 pm/V when measured on Al 2 O 3 /Si. This is on the same order as the in-plane coefficient d 11 reported for monolayer MoS 2 . Interpreting the out-of-plane response as a flexoelectric response, the effective flexoelectric coefficient, μ eff * , is estimated to be 0.10 nC/m. Analysis has ruled out the possibility of elastic and electrostatic forces contributing to the measured electromechanical response. X-ray photoelectron spectroscopy detected some contaminants on both MoS 2 and its substrate, but the background subtraction technique is expected to remove major contributions from the unwanted contaminants. These measurements provide evidence that monolayer MoS 2 exhibits an out-of-plane electromechanical response and our analysis offers estimates of the effective piezoelectric and flexoelectric coefficients.

  13. Next generation sub-millimeter wave focal plane array coupling concepts: an ESA TRP project to develop multichroic focal plane pixels for future CMB polarization experiments

    Science.gov (United States)

    Trappe, N.; Bucher, M.; De Bernardis, P.; Delabrouille, J.; Deo, P.; DePetris, M.; Doherty, S.; Ghribi, A.; Gradziel, M.; Kuzmin, L.; Maffei, B.; Mahashabde, S.; Masi, S.; Murphy, J. A.; Noviello, F.; O'Sullivan, C.; Pagano, L.; Piacentini, F.; Piat, M.; Pisano, G.; Robinson, M.; Stompor, R.; Tartari, A.; van der Vorst, M.; Verhoeve, P.

    2016-07-01

    The main objective of this activity is to develop new focal plane coupling array concepts and technologies that optimise the coupling from reflector optics to the large number of detectors for next generation sub millimetre wave telescopes particularly targeting measurement of the polarization of the cosmic microwave background (CMB). In this 18 month TRP programme the consortium are tasked with developing, manufacturing and experimentally verifying a prototype multichroic pixel which would be suitable for the large focal plane arrays which will be demanded to reach the required sensitivity of future CMB polarization missions. One major development was to have multichroic operation to potentially reduce the required focal plane size of a CMB mission. After research in the optimum telescope design and definition of requirements based on a stringent science case review, a number of compact focal plane architecture concepts were investigated before a pixel demonstrator consisting of a planar mesh lens feeding a backend Resonant Cold Electron Bolometer RCEB for filtering and detection of the dual frequency signal was planned for manufacture and test. In this demonstrator the frequencies of the channels was chosen to be 75 and 105 GHz in the w band close to the peak CMB signal. In the next year the prototype breadboards will be developed to test the beams produced by the manufactured flat lenses fed by a variety of antenna configurations and the spectral response of the RCEBs will also be verified.

  14. HIGH PERFORMANCE PIAA CORONAGRAPHY WITH COMPLEX AMPLITUDE FOCAL PLANE MASKS

    International Nuclear Information System (INIS)

    Guyon, Olivier; Martinache, Frantz; Belikov, Ruslan; Soummer, Remi

    2010-01-01

    We describe a coronagraph approach where the performance of a Phase-Induced Amplitude Apodization (PIAA) coronagraph is improved by using a partially transmissive phase-shifting focal plane mask and a Lyot stop. This approach combines the low inner working angle offered by phase mask coronagraphy, the full throughput and uncompromized angular resolution of the PIAA approach, and the design flexibility of Apodized Pupil Lyot Coronagraph. A PIAA complex mask coronagraph (PIAACMC) is fully described by the focal plane mask size, or, equivalently, its complex transmission which ranges from 0 (opaque) to -1 (phase shifting). For all values of the transmission, the PIAACMC theoretically offers full on-axis extinction and 100% throughput at large angular separations. With a pure phase focal plane mask (complex transmission = -1), the PIAACMC offers 50% throughput at 0.64 λ/D while providing total extinction of an on-axis point source. This performance is very close to the 'fundamental performance limit' of coronagraphy derived from first principles. For very high contrast level, imaging performance with PIAACMC is in practice limited by the angular size of the on-axis target (usually a star). We show that this fundamental limitation must be taken into account when choosing the optimal value of the focal plane mask size in the PIAACMC design. We show that the PIAACMC enables visible imaging of Jupiter-like planets at ∼1.2 λ/D from the host star, and can therefore offer almost three times more targets than a PIAA coronagraph optimized for this type of observation. We find that for visible imaging of Earth-like planets, the PIAACMC gain over a PIAA is probably much smaller, as coronagraphic performance is then strongly constrained by stellar angular size. For observations at 'low' contrast (below ∼ 10 8 ), the PIAACMC offers significant performance enhancement over PIAA. This is especially relevant for ground-based high contrast imaging systems in the near-IR, where

  15. SNAP Satellite Focal Plane Development

    International Nuclear Information System (INIS)

    Bebek, C.; Akerlof, C.; Aldering, G.; Amanullah, R.; Astier, P.; Baltay, C.; Barrelet, E.; Basa, S.; Bercovitz, J.; Bergstrom, L.; Berstein, G.P.; Bester, M.; Bohlin, R.; Bonissent, A.; Bower, C.; Campbell, M.; Carithers, W.; Commins, E.; Day, C.; Deustua, S.; DiGennaro, R.; Ealet, A.; Ellis, R.; Emmett, W.; Eriksson, M.; Fouchez, D.; Fruchter, A.; Genat, J-F.; Goldhaber, G.; Goobar, A.; Groom, D.; Heetderks, H.; Holland, S.; Huterer, D.; Johnson, W.; Kadel, R.; Karcher, A.; Kim, A.; Kolbe, W.; Lafever, R.; Lamoureaux, J.; Lampton, M.; Lefevre, O.; Levi, M.; Levin, D.; Linder, E.; Loken, S.; Malina, R.; Mazure, A.; McKay, T.; McKee, S.; Miquel, R.; Morgan, N.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Roe, N.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Prieto, E.; Rabinowitz, D.; Refregier, A.; Rhodes, J.; Schubnell, M.; Sholl, M.; Smadja, G.; Smith, R.; Smoot, G.; Snyder, J.; Spadafora, A.; Szymkowiak, A.; Tarle, G.; Taylor, K.; Tilquin, A.; Tomasch, A.; Vincent, D.; von der Lippe, H.; Walder, J-P.; Wang, G.

    2003-01-01

    The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope delivering diffraction-limited images to an instrumented 0.7 square degree field in the visible and near-infrared wavelength regime. The requirements for the instrument suite and the present configuration of the focal plane concept are presented. A two year R and D phase, largely supported by the Department of Energy, is just beginning. We describe the development activities that are taking place to advance our preparedness for mission proposal in the areas of detectors and electronics

  16. Inter-plane artifact suppression in tomosynthesis using 3D CT image data

    Directory of Open Access Journals (Sweden)

    Kim Jae G

    2011-12-01

    Full Text Available Abstract Background Despite its superb lateral resolution, flat-panel-detector (FPD based tomosynthesis suffers from low contrast and inter-plane artifacts caused by incomplete cancellation of the projection components stemming from outside the focal plane. The incomplete cancellation of the projection components, mostly due to the limited scan angle in the conventional tomosynthesis scan geometry, often makes the image contrast too low to differentiate the malignant tissues from the background tissues with confidence. Methods In this paper, we propose a new method to suppress the inter-plane artifacts in FPD-based tomosynthesis. If 3D whole volume CT images are available before the tomosynthesis scan, the CT image data can be incorporated into the tomosynthesis image reconstruction to suppress the inter-plane artifacts, hence, improving the image contrast. In the proposed technique, the projection components stemming from outside the region-of-interest (ROI are subtracted from the measured tomosynthesis projection data to suppress the inter-plane artifacts. The projection components stemming from outside the ROI are calculated from the 3D whole volume CT images which usually have lower lateral resolution than the tomosynthesis images. The tomosynthesis images are reconstructed from the subtracted projection data which account for the x-ray attenuation through the ROI. After verifying the proposed method by simulation, we have performed both CT scan and tomosynthesis scan on a phantom and a sacrificed rat using a FPD-based micro-CT. Results We have measured contrast-to-noise ratio (CNR from the tomosynthesis images which is an indicator of the residual inter-plane artifacts on the focal-plane image. In both cases of the simulation and experimental imaging studies of the contrast evaluating phantom, CNRs have been significantly improved by the proposed method. In the rat imaging also, we have observed better visual contrast from the tomosynthesis

  17. Inter-plane artifact suppression in tomosynthesis using 3D CT image data

    Science.gov (United States)

    2011-01-01

    Background Despite its superb lateral resolution, flat-panel-detector (FPD) based tomosynthesis suffers from low contrast and inter-plane artifacts caused by incomplete cancellation of the projection components stemming from outside the focal plane. The incomplete cancellation of the projection components, mostly due to the limited scan angle in the conventional tomosynthesis scan geometry, often makes the image contrast too low to differentiate the malignant tissues from the background tissues with confidence. Methods In this paper, we propose a new method to suppress the inter-plane artifacts in FPD-based tomosynthesis. If 3D whole volume CT images are available before the tomosynthesis scan, the CT image data can be incorporated into the tomosynthesis image reconstruction to suppress the inter-plane artifacts, hence, improving the image contrast. In the proposed technique, the projection components stemming from outside the region-of-interest (ROI) are subtracted from the measured tomosynthesis projection data to suppress the inter-plane artifacts. The projection components stemming from outside the ROI are calculated from the 3D whole volume CT images which usually have lower lateral resolution than the tomosynthesis images. The tomosynthesis images are reconstructed from the subtracted projection data which account for the x-ray attenuation through the ROI. After verifying the proposed method by simulation, we have performed both CT scan and tomosynthesis scan on a phantom and a sacrificed rat using a FPD-based micro-CT. Results We have measured contrast-to-noise ratio (CNR) from the tomosynthesis images which is an indicator of the residual inter-plane artifacts on the focal-plane image. In both cases of the simulation and experimental imaging studies of the contrast evaluating phantom, CNRs have been significantly improved by the proposed method. In the rat imaging also, we have observed better visual contrast from the tomosynthesis images reconstructed by

  18. Out-of-plane strain effect on silicon-based flexible FinFETs

    KAUST Repository

    Ghoneim, Mohamed T.; Alfaraj, Nasir; Sevilla, Galo T.; Fahad, Hossain M.; Hussain, Muhammad Mustafa

    2015-01-01

    Summary form only given. We report out-of-plane strain effect on silicon based flexible FinFET, with sub 20 nm wide fins and hafnium silicate based high-κ gate dielectric. Since ultra-thin inorganic solid state substrates become flexible with reduced thickness, flexing induced strain does not enhance performance. However, detrimental effects arise as the devices are subject to various out-of-plane stresses (compressive and tensile) along the channel length.

  19. Out-of-plane strain effect on silicon-based flexible FinFETs

    KAUST Repository

    Ghoneim, Mohamed T.

    2015-06-21

    Summary form only given. We report out-of-plane strain effect on silicon based flexible FinFET, with sub 20 nm wide fins and hafnium silicate based high-κ gate dielectric. Since ultra-thin inorganic solid state substrates become flexible with reduced thickness, flexing induced strain does not enhance performance. However, detrimental effects arise as the devices are subject to various out-of-plane stresses (compressive and tensile) along the channel length.

  20. Evaluation of tricuspid annular plane systolic excursion measured with cardiac MRI in children with tetralogy of Fallot.

    Science.gov (United States)

    Soslow, Jonathan H; Usoro, Emem; Wang, Li; Parra, David A

    2016-04-01

    Aneurysmal dilation of the right ventricular outflow tract complicates assessment of right ventricular function in patients with repaired tetralogy of Fallot. Tricuspid annular plane systolic excursion is commonly used to estimate ejection fraction. We hypothesised that tricuspid annular plane systolic excursion measured by cardiac MRI approximates global and segmental right ventricular function, specifically right ventricular sinus ejection fraction, in children with repaired tetralogy of Fallot. Tricuspid annular plane systolic excursion was measured retrospectively on cardiac MRIs in 54 patients with repaired tetralogy of Fallot. Values were compared with right ventricular global, sinus, and infundibular ejection fractions. Tricuspid annular plane systolic excursion was indexed to body surface area, converted into a fractional value, and converted into published paediatric Z-scores. Tricuspid annular plane systolic excursion measurements had good agreement between observers. Right ventricular ejection fraction did not correlate with the absolute or indexed tricuspid annular plane systolic excursion and correlated weakly with fractional tricuspid annular plane systolic excursion (r=0.41 and p=0.002). Segmental right ventricular function did not appreciably improve correlation with any of the tricuspid annular plane systolic excursion measures. Paediatric Z-scores were unable to differentiate patients with normal and abnormal right ventricular function. Tricuspid annular plane systolic excursion measured by cardiac MRI correlates poorly with global and segmental right ventricular ejection fraction in children with repaired tetralogy of Fallot. Tricuspid annular plane systolic excursion is an unreliable approximation of right ventricular function in this patient population.