WorldWideScience

Sample records for planets ii cloud

  1. Cloud formation in giant planets

    CERN Document Server

    Helling, Christiane

    2007-01-01

    We calculate the formation of dust clouds in atmospheres of giant gas-planets. The chemical structure and the evolution of the grain size distribution in the dust cloud layer is discussed based on a consistent treatment of seed formation, growth/evaporation and gravitational settling. Future developments are shortly addressed.

  2. IBM Cloud Computing Powering a Smarter Planet

    Science.gov (United States)

    Zhu, Jinzy; Fang, Xing; Guo, Zhe; Niu, Meng Hua; Cao, Fan; Yue, Shuang; Liu, Qin Yu

    With increasing need for intelligent systems supporting the world's businesses, Cloud Computing has emerged as a dominant trend to provide a dynamic infrastructure to make such intelligence possible. The article introduced how to build a smarter planet with cloud computing technology. First, it introduced why we need cloud, and the evolution of cloud technology. Secondly, it analyzed the value of cloud computing and how to apply cloud technology. Finally, it predicted the future of cloud in the smarter planet.

  3. Water: from clouds to planets

    CERN Document Server

    van Dishoeck, Ewine F; Lis, Dariusz C; Lunine, Jonathan I

    2014-01-01

    Results from recent space missions, in particular Spitzer and Herschel, have lead to significant progress in our understanding of the formation and transport of water from clouds to disks, planetesimals, and planets. In this review, we provide the underpinnings for the basic molecular physics and chemistry of water and outline these advances in the context of water formation in space, its transport to a forming disk, its evolution in the disk, and finally the delivery to forming terrestrial worlds and accretion by gas giants. Throughout, we pay close attention to the disposition of water as vapor or solid and whether it might be subject to processing at any stage. The context of the water in the solar system and the isotopic ratios (D/H) in various bodies are discussed as grounding data point for this evolution. Additional advances include growing knowledge of the composition of atmospheres of extra-solar gas giants, which may be influenced by the variable phases of water in the protoplanetary disk. Further, ...

  4. Masses, Radii, and Cloud Properties of the HR 8799 Planets

    CERN Document Server

    Marley, Mark S; Cushing, Michael; Ackerman, Andrew S; Fortney, Jonathan J; Freedman, Richard

    2012-01-01

    The near-infrared colors of the planets directly imaged around the A star HR 8799 are much redder than most field brown dwarfs of the same effective temperature. Previous theoretical studies of these objects have concluded that the atmospheres of planets b, c, and d are unusually cloudy or have unusual cloud properties. Most studies have also found that the inferred radii of some or all of the planets disagree with expectations of standard giant planet evolution models. Here we compare the available data to the predictions of our own set of atmospheric and evolution models that have been extensively tested against observations of field L and T dwarfs, including the reddest L dwarfs. Unlike almost all previous studies we require mutually consistent choices for effective temperature, gravity, cloud properties, and planetary radius. This procedure thus yields plausible values for the masses, effective temperatures, and cloud properties of all three planets. We find that the cloud properties of the HR 8799 planet...

  5. A Cloud Microphysics Model for the Gas Giant Planets

    Science.gov (United States)

    Palotai, Csaba J.; Le Beau, Raymond P.; Shankar, Ramanakumar; Flom, Abigail; Lashley, Jacob; McCabe, Tyler

    2016-10-01

    Recent studies have significantly increased the quality and the number of observed meteorological features on the jovian planets, revealing banded cloud structures and discrete features. Our current understanding of the formation and decay of those clouds also defines the conceptual modes about the underlying atmospheric dynamics. The full interpretation of the new observational data set and the related theories requires modeling these features in a general circulation model (GCM). Here, we present details of our bulk cloud microphysics model that was designed to simulate clouds in the Explicit Planetary Hybrid-Isentropic Coordinate (EPIC) GCM for the jovian planets. The cloud module includes hydrological cycles for each condensable species that consist of interactive vapor, cloud and precipitation phases and it also accounts for latent heating and cooling throughout the transfer processes (Palotai and Dowling, 2008. Icarus, 194, 303–326). Previously, the self-organizing clouds in our simulations successfully reproduced the vertical and horizontal ammonia cloud structure in the vicinity of Jupiter's Great Red Spot and Oval BA (Palotai et al. 2014, Icarus, 232, 141–156). In our recent work, we extended this model to include water clouds on Jupiter and Saturn, ammonia clouds on Saturn, and methane clouds on Uranus and Neptune. Details of our cloud parameterization scheme, our initial results and their comparison with observations will be shown. The latest version of EPIC model is available as open source software from NASA's PDS Atmospheres Node.

  6. MASSES, RADII, AND CLOUD PROPERTIES OF THE HR 8799 PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Marley, Mark S. [NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States); Saumon, Didier [Los Alamos National Laboratory, Mail Stop F663, Los Alamos, NM 87545 (United States); Cushing, Michael [Department of Physics and Astronomy, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Ackerman, Andrew S. [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Freedman, Richard, E-mail: Mark.S.Marley@NASA.gov, E-mail: dsaumon@lanl.gov, E-mail: michael.cushing@utoledo.edu, E-mail: andrew.ackerman@nasa.gov, E-mail: jfortney@ucolick.org, E-mail: freedman@darkstar.arc.nasa.gov [SETI Institute and NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States)

    2012-08-01

    The near-infrared colors of the planets directly imaged around the A star HR 8799 are much redder than most field brown dwarfs of the same effective temperature. Previous theoretical studies of these objects have concluded that the atmospheres of planets b, c, and d are unusually cloudy or have unusual cloud properties. Some studies have also found that the inferred radii of some or all of the planets disagree with expectations of standard giant planet evolution models. Here, we compare the available data to the predictions of our own set of atmospheric and evolution models that have been extensively tested against observations of field L and T dwarfs, including the reddest L dwarfs. Unlike some previous studies, we require mutually consistent choices for effective temperature, gravity, cloud properties, and planetary radius. This procedure thus yields plausible values for the masses, effective temperatures, and cloud properties of all three planets. We find that the cloud properties of the HR 8799 planets are not unusual but rather follow previously recognized trends, including a gravity dependence on the temperature of the L to T spectral transition-some reasons for which we discuss. We find that the inferred mass of planet b is highly sensitive to whether or not we include the H- and the K-band spectrum in our analysis. Solutions for planets c and d are consistent with the generally accepted constraints on the age of the primary star and orbital dynamics. We also confirm that, like in L and T dwarfs and solar system giant planets, non-equilibrium chemistry driven by atmospheric mixing is also important for these objects. Given the preponderance of data suggesting that the L to T spectral type transition is gravity dependent, we present an exploratory evolution calculation that accounts for this effect. Finally we recompute the bolometric luminosity of all three planets.

  7. DO GIANT PLANETS SURVIVE TYPE II MIGRATION?

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yasuhiro [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), Taipei 10641, Taiwan (China); Ida, Shigeru, E-mail: yasu@asiaa.sinica.edu.tw, E-mail: ida@geo.titech.ac.jp [Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2013-09-10

    Planetary migration is one of the most serious problems to systematically understand the observations of exoplanets. We clarify that the theoretically predicted type II, migration (like type I migration) is too fast, by developing detailed analytical arguments in which the timescale of type II migration is compared with the disk lifetime. In the disk-dominated regime, the type II migration timescale is characterized by a local viscous diffusion timescale, while the disk lifetime is characterized by a global diffusion timescale that is much longer than the local one. Even in the planet-dominated regime where the inertia of the planet mass reduces the migration speed, the timescale is still shorter than the disk lifetime except in the final disk evolution stage where the total disk mass decays below the planet mass. This suggests that most giant planets plunge into the central stars within the disk lifetime, and it contradicts the exoplanet observations that gas giants are piled up at r {approx}> 1 AU. We examine additional processes that may arise in protoplanetary disks: dead zones, photoevaporation of gas, and gas flow across a gap formed by a type II migrator. Although they make the type II migration timescale closer to the disk lifetime, we show that none of them can act as an effective barrier for rapid type II migration with the current knowledge of these processes. We point out that gas flow across a gap and the fraction of the flow accreted onto the planets are uncertain and they may have the potential to solve the problem. Much more detailed investigation for each process may be needed to explain the observed distribution of gas giants in extrasolar planetary systems.

  8. Masses, Radii, and Cloud Properties of the HR 8799 Planets

    Science.gov (United States)

    Marley, Mark S.; Saumon, Didier; Cushing, Michael; Ackerman, Andrew S.; Fortney, Jonathan J.; Freedman, Richard

    2012-01-01

    The near-infrared colors of the planets directly imaged around the A star HR 8799 are much redder than most field brown dwarfs of the same effective temperature. Previous theoretical studies of these objects have compared the photometric and limited spectral data of the planets to the predictions of various atmosphere and evolution models and concluded that the atmospheres of planets b, c, and d are unusually cloudy or have unusual cloud properties. Most studies have also found that the inferred radii of some or all of the planets disagree with expectations of standard giant planet evolution models. Here we compare the available data to the predictions of our own set of atmospheric and evolution models that have been extensively tested against field L and T dwarfs, including the reddest L dwarfs. Unlike almost all previous studies we specify mutually self-consistent choices for effective temperature, gravity, cloud properties, and planetary radius. This procedure yields plausible and self-consistent values for the masses, effective temperatures, and cloud properties of all three planets. We find that the cloud properties of the HR 8799 planets are in fact not unusual but rather follow previously recognized trends including a gravity dependence on the temperature of the L to T spectral transition, some reasons for which we discuss. We find that the inferred mass of planet b is highly sensitive to the H and K band spectrum. Solutions for planets c and particularly d are less certain but are consistent with the generally accepted constraints on the age of the primary star and orbital dynamics. We also confirm that as for L and T dwarfs and solar system giant planets, non-equilibrium chemistry driven by atmospheric mixing is also important for these objects. Given the preponderance of data suggesting that the L to T spectral type transition is gravity dependent, we present a new evolution calculation that predicts cooling tracks on the near-infrared color

  9. Molecules from Clouds to Planets: Sweet Results from Alma

    Science.gov (United States)

    van Dishoeck, Ewine

    2017-06-01

    One of the most exciting developments in astronomy is the discovery of thousands of planets around stars other than our Sun. But how do these exo-planets form, and which chemical ingredients are available to build them? Thanks to powerful new telescopes, especially the Atacama Large Millimeter/submillimeter Array (ALMA), astronomers are starting to address these age-old questions scientifically. Stars and planets are born in the cold and tenuous clouds between the stars in the Milky Way. In spite of the extremely low temperatures and densities, a surprisingly rich and interesting chemistry occurs in these interstellar clouds, as evidenced by the detection of more than 180 different molecules. Highly accurate spectroscopic data are key to their identification, and examples of the continued need and close interaction between laboratory work and astronomical observations will be given. ALMA now allows us to zoom in on solar system construction for the first time. Spectral scans of the birth sites of young stars contain tens of thousands of rotational lines. Water and a surprisingly rich variety of organic materials are found, including simple sugars and high abundances of deuterated species. How are these molecules formed? Can these pre-biotic molecules end up on new planets and form the basis for life elsewhere in the universe? Stay tuned for the latest analyses and also a comparison with recent results from the Rosetta mission to comet 67 P/C-G in our own Solar System.

  10. The Role of Clouds in Brown Dwarf and Extrasolar Giant Planet Atmospheres

    CERN Document Server

    Marley, M S

    2001-01-01

    Clouds and hazes are important throughout our solar system and in the atmospheres of brown dwarfs and extrasolar giant planets. Among the brown dwarfs, clouds control the colors and spectra of the L-dwarfs; the disappearance of clouds helps herald the arrival of the T-dwarfs. The structure and composition of clouds will be among the first remote-sensing results from the direct detection of extrasolar giant planets.

  11. Diversity of extrasolar planets and diversity of molecular cloud cores. I. Semimajor axes

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Liping; Li, Min, E-mail: jinlp@jlu.edu.cn, E-mail: minli09@mails.jlu.edu.cn [College of Physics, Jilin University, Changchun, Jilin 130012 (China)

    2014-03-01

    We show that the diversity of extrasolar planetary systems may be related to the diversity of molecular cloud cores. In previous studies of planet formation, artificial initial conditions of protoplanetary disks or steady state disks, such as the minimum mass nebula model, have often been used so that the influence of cloud core properties on planet formation is not realized. To specifically and quantitatively demonstrate our point, we calculate the dependence of disk properties on cloud core properties and show that the boundary of the giant planet formation region in a disk is a function of cloud core properties with the conventional core accretion model of giant planet formation. The gravitational stability of a disk depends on the properties of its progenitor cloud core. We also compare our calculations with observations of extrasolar planets. From the observational data of cloud cores, our model could infer the range and most frequent values of observed semimajor axes of extrasolar planets. Our calculations suggest that planet formation at the snowline alone could not completely explain the semimajor axis distribution. If the current observations are not biased, our calculations indicate that the planet formation at the snowline is inefficient. We suggest that there will be more observed planets with semimajor axis <9 AU than >9 AU, even with a longer duration of observations, if the planet formation at the snowline is inefficient.

  12. Fomalhaut b as a Cloud of Dust: Testing Aspects of Planet Formation Theory

    CERN Document Server

    Kenyon, Scott J; Bromley, Benjamin C

    2014-01-01

    We consider the ability of three models - impacts, captures, and collisional cascades - to account for a bright cloud of dust in Fomalhaut b. Our analysis is based on a novel approach to the power-law size distribution of solid particles central to each model. When impacts produce debris with (i) little material in the largest remnant and (ii) a steep size distribution, the debris has enough cross-sectional area to match observations of Fomalhaut b. However, published numerical experiments of impacts between 100 km objects suggest this outcome is unlikely. If collisional processes maintain a steep size distribution over a broad range of particle sizes (300 microns to 10 km), Earth-mass planets can capture enough material over 1-100 Myr to produce a detectable cloud of dust. Otherwise, capture fails. When young planets are surrounded by massive clouds or disks of satellites, a collisional cascade is the simplest mechanism for dust production in Fomalhaut b. Several tests using HST or JWST data - including meas...

  13. Stabilizing Cloud Feedback Dramatically Expands the Habitable Zone of Tidally Locked Planets

    CERN Document Server

    Yang, Jun; Abbot, Dorian S

    2013-01-01

    The habitable zone (HZ) is the circumstellar region where a planet can sustain surface liquid water. Searching for terrestrial planets in the HZ of nearby stars is the stated goal of ongoing and planned extrasolar planet surveys. Previous estimates of the inner edge of the HZ were based on one-dimensional radiative-convective models. The most serious limitation of these models is the inability to predict cloud behavior. Here we use global climate models with sophisticated cloud schemes to show that due to a stabilizing cloud feedback, tidally locked planets can be habitable at twice the stellar flux found by previous studies. This dramatically expands the HZ and roughly doubles the frequency of habitable planets orbiting red dwarf stars. At high stellar flux, strong convection produces thick water clouds near the substellar location that greatly increase the planetary albedo and reduce surface temperatures. Higher insolation produces stronger substellar convection and therefore higher albedo, making this phen...

  14. Highly inclined and eccentric massive planets. II. Planet-planet interactions during the disc phase

    Science.gov (United States)

    Sotiriadis, Sotiris; Libert, Anne-Sophie; Bitsch, Bertram; Crida, Aurélien

    2017-02-01

    Context. Observational evidence indicates that the orbits of extrasolar planets are more various than the circular and coplanar ones of the solar system. Planet-planet interactions during migration in the protoplanetary disc have been invoked to explain the formation of these eccentric and inclined orbits. However, our companion paper (Paper I) on the planet-disc interactions of highly inclined and eccentric massive planets has shown that the damping induced by the disc is significant for a massive planet, leading the planet back to the midplane with its eccentricity possibly increasing over time. Aims: We aim to investigate the influence of the eccentricity and inclination damping due to planet-disc interactions on the final configurations of the systems, generalizing previous studies on the combined action of the gas disc and planet-planet scattering during the disc phase. Methods: Instead of the simplistic K-prescription, our N-body simulations adopt the damping formulae for eccentricity and inclination provided by the hydrodynamical simulations of our companion paper. We follow the orbital evolution of 11 000 numerical experiments of three giant planets in the late stage of the gas disc, exploring different initial configurations, planetary mass ratios and disc masses. Results: The dynamical evolutions of the planetary systems are studied along the simulations, with a particular emphasis on the resonance captures and inclination-growth mechanisms. Most of the systems are found with small inclinations (≤ 10°) at the dispersal of the disc. Even though many systems enter an inclination-type resonance during the migration, the disc usually damps the inclinations on a short timescale. Although the majority of the multiple systems in our simulations are quasi-coplanar, 5% of them end up with high mutual inclinations (≥ 10°). Half of these highly mutually inclined systems result from two- or three-body mean-motion resonance captures, the other half being

  15. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    NARCIS (Netherlands)

    Helling, Christiane; Woitke, Peter; Rimmer, Paul B.; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the

  16. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    NARCIS (Netherlands)

    Helling, Christiane; Woitke, Peter; Rimmer, Paul B.; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin

    2014-01-01

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the ef

  17. Clouds and Chemistry in the Atmosphere of Extrasolar Planet HR8799b

    Energy Technology Data Exchange (ETDEWEB)

    Barman, T S; Macintosh, B A; Konopacky, Q M; Marois, C

    2011-03-21

    Using the integral field spectrograph OSIRIS, on the Keck II telescope, broad near-infrared H and K-band spectra of the young exoplanet HR8799b have been obtained. In addition, six new narrow-band photometric measurements have been taken across the H and K bands. These data are combined with previously published photometry for an analysis of the planet's atmospheric properties. Thick photospheric dust cloud opacity is invoked to explain the planet's red near-IR colors and relatively smooth near-IR spectrum. Strong water absorption is detected, indicating a Hydrogen-rich atmosphere. Only weak CH{sub 4} absorption is detected at K band, indicating efficient vertical mixing and a disequilibrium CO/CH{sub 4} ratio at photospheric depths. The H-band spectrum has a distinct triangular shape consistent with low surface gravity. New giant planet atmosphere models are compared to these data with best fitting bulk parameters, T{sub eff} = 1100K {+-} 100 and log(g) = 3.5 {+-} 0.5 (for solar composition). Given the observed luminosity (log L{sub obs}/L{sub {circle_dot}} {approx} -5.1), these values correspond to a radius of 0.75 R{sub Jup{sub 0.12}{sup +0.17}} and mass {approx} 0.72 M{sub Jup{sub -0.6}{sup +2.6}} - strikingly inconsistent with interior/evolution models. Enhanced metallicity (up to {approx} 10 x that of the Sun) along with thick clouds and non-equilibrium chemistry are likely required to reproduce the complete ensemble of spectroscopic and photometric data and the low effective temperatures (< 1000K) required by the evolution models.

  18. STABILIZING CLOUD FEEDBACK DRAMATICALLY EXPANDS THE HABITABLE ZONE OF TIDALLY LOCKED PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jun; Abbot, Dorian S. [Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 (United States); Cowan, Nicolas B., E-mail: abbot@uchicago.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2131 Tech Drive, Evanston, IL 60208 (United States)

    2013-07-10

    The habitable zone (HZ) is the circumstellar region where a planet can sustain surface liquid water. Searching for terrestrial planets in the HZ of nearby stars is the stated goal of ongoing and planned extrasolar planet surveys. Previous estimates of the inner edge of the HZ were based on one-dimensional radiative-convective models. The most serious limitation of these models is the inability to predict cloud behavior. Here we use global climate models with sophisticated cloud schemes to show that due to a stabilizing cloud feedback, tidally locked planets can be habitable at twice the stellar flux found by previous studies. This dramatically expands the HZ and roughly doubles the frequency of habitable planets orbiting red dwarf stars. At high stellar flux, strong convection produces thick water clouds near the substellar location that greatly increase the planetary albedo and reduce surface temperatures. Higher insolation produces stronger substellar convection and therefore higher albedo, making this phenomenon a stabilizing climate feedback. Substellar clouds also effectively block outgoing radiation from the surface, reducing or even completely reversing the thermal emission contrast between dayside and nightside. The presence of substellar water clouds and the resulting clement surface conditions will therefore be detectable with the James Webb Space Telescope.

  19. Supersonic Cloud Collision-II

    CERN Document Server

    Anathpindika, S

    2009-01-01

    In this, second paper of the sequel of two papers, we present five SPH simulations of fast head-on cloud collisions and study the evolution of the ram pressure confined gas slab. Anathpindika (2008) (hereafter paper I) considered highly supersonic cloud collisions and examined the effect of bending and shearing instabilities on the shocked gas slab. The post-collision shock here, as in paper I, is also modelled by a simple barotropic equation of state (EOS). However, a much stiffer EOS is used to model the shock resulting from a low velocity cloud collision. We explore the parameter space by varying the pre-collision velocity and the impact parameter. We observe that pressure confined gas slabs become Jeans unstable if the sound crossing time, $t_{cr}$, is much larger than the freefall time, $t_{ff}$, of putative clumps condensing out of them. Self gravitating clumps may spawn multiple/larger $N$-body star clusters. We also suggest that warmer gas slabs are unlikely to fragment and may end up as diffuse gas c...

  20. The young population of the Chamaeleon II dark cloud

    CERN Document Server

    Spezzi, Loredana; Covino, Elvira; Frasca, Antonio; Gandolfi, Davide; Oliveira, Isa; Chapman, Nicholas; Evans, Neal J; Huard, Tracy L; Jørgensen, Jes K; Merín, Bruno; Stapelfeldt, Karl R

    2008-01-01

    We discuss the results of the optical spectroscopic follow-up of pre-main sequence (PMS) objects and candidates selected in the Chamaeleon II dark cloud based on data from the Spitzer Legacy survey "From Molecular Cores to Planet Forming Disks" (c2d) and from previous surveys. Our sample includes both objects with infrared excess selected according to c2d criteria and referred to as Young Stellar Objects and other cloud members and candidates selected from complementary optical and near-infrared data. We characterize the sample of objects by deriving their physical parameters. The vast majority of objects have masses < 1 solar mass and ages < 6 Myr. Several of the PMS objects and candidates lie very close to or below the Hydrogen-burning limit. A first estimate of the slope of the Initial Mass Function in Cha II is consistent with that of other T associations. The star formation efficiency in the cloud (1-4%) is consistent with our own estimates for Taurus and Lupus, but significantly lower than for Cha...

  1. Shaping of the inner Oort cloud by Planet Nine

    CERN Document Server

    Michaely, Erez

    2016-01-01

    We present a numerical calculation of the dynamical interaction between the proposed Planet Nine and an initially thin circular debris disk around the Sun for 4Gyr, accounting the secular perturbation of the four giant planets. We show that Planet Nine governs the dynamics in between 1000-5000AU and forms spherical structure in the inner part (~1000AU) surrounded by an inclined disk aligned to its orbital plane. This structure is the outcome of mean motion resonances and secular interaction with Planet Nine. We compare the morphology of this structure with the outcome from a fly-by encounter of a star with the debris disk and show distinct differences between the two scenarios. We predict that this structure serves as a source of comets and calculate the resulting comet production rate to be detectable.

  2. NH4SH and cloud cover in the atmospheres of the giant planets

    Science.gov (United States)

    Ibragimov, K. Iu.; Solodovnik, A. A.

    1991-02-01

    The probability of the formation of NH4SH and (NH4)2S is examined on the basis of the Le Chatelier principle. It is shown that it is very doubtful if NH4SH can be created in the atmospheres of the giant planets in quantities sufficient for cloud formation. Thus (NH4)2S is considered as a more likely candidate for cloud formation in the atmospheres of these planets, inasmuch as the conditions for its production there are more favorable.

  3. Probing Clouds in Planets with a Simple Radiative Transfer Model: The Jupiter Case

    Science.gov (United States)

    Mendikoa, Inigo; Perez-Hoyos, Santiago; Sanchez-Lavega, Agustin

    2012-01-01

    Remote sensing of planets evokes using expensive on-orbit satellites and gathering complex data from space. However, the basic properties of clouds in planetary atmospheres can be successfully estimated with small telescopes even from an urban environment using currently available and affordable technology. This makes the process accessible for…

  4. Probing Clouds in Planets with a Simple Radiative Transfer Model: The Jupiter Case

    Science.gov (United States)

    Mendikoa, Inigo; Perez-Hoyos, Santiago; Sanchez-Lavega, Agustin

    2012-01-01

    Remote sensing of planets evokes using expensive on-orbit satellites and gathering complex data from space. However, the basic properties of clouds in planetary atmospheres can be successfully estimated with small telescopes even from an urban environment using currently available and affordable technology. This makes the process accessible for…

  5. 75 FR 64258 - Cloud Computing Forum & Workshop II

    Science.gov (United States)

    2010-10-19

    ... National Institute of Standards and Technology Cloud Computing Forum & Workshop II AGENCY: National... announces the Cloud Computing Forum & Workshop II to be held on November 4 and 5, 2010. This workshop will provide information on a Cloud Computing Roadmap Strategy as well as provide an updated status on NIST...

  6. Why cirrus cloud seeding cannot substantially cool the planet

    Science.gov (United States)

    Gasparini, Blaž; Lohmann, Ulrike

    2016-05-01

    The net warming effect of cirrus clouds has driven part of the geoengineering research toward the idea of decreasing their occurrence frequency by seeding them with efficient ice nucleating particles. We study responses of cirrus clouds to simplified global seeding strategies in terms of their radiative fluxes with the help of the ECHAM-HAM general circulation model. Our cirrus scheme takes into account the competition between homogeneous and heterogeneous freezing, preexisting ice crystals, and the full spectrum of updraft velocities. While we find that the cirrus cloud radiative effect evaluated from our model is positive and large enough (5.7 W/m2) to confirm their geoengineering potential, none of the seeding strategies achieves a significant cooling due to complex microphysical mechanisms limiting their climatic responses. After globally uniform seeding is applied, we observe an increase in cirrus cloud cover, a decrease in ice crystal number concentration, and a decrease in ice crystal radius. An analysis of their respective radiative contributions points to the ice crystal radius decrease as the main factor limiting seeding effectiveness.

  7. Understanding the Atmosphere of 51 Eri b: Do Photochemical Hazes Cloud the Planets Spectrum?

    Science.gov (United States)

    Marley, Mark Scott; Zahnle, Kevin; Moses, J.; Morley, C.

    2015-01-01

    The first young giant planet to be discovered by the Gemini Planet Imager was the (is) approximately 2MJ planet 51 Eri b. This approximately 20 Myr old young Jupiter is the first directly imaged planet to show unmistakable methane in H band. To constrain the planet's mass, atmospheric temperature, and composition, the GPI J and H band spectra as well as some limited photometric points were compared to the predictions of substellar atmosphere models. The best fitting models reported in the discovery paper (Macintosh et al. 2015) relied upon a combination of clear and cloudy atmospheric columns to reproduce the data. However for an object as cool as 700 K, the origin of the cloud coverage is somewhat puzzling, as the global silicate and iron clouds would be expected to have sunk well below the photosphere by this effective temperature. While strong vertical mixing in these low gravity atmospheres remains a plausible explanation, we have explored whether atmospheric photochemistry, driven by the UV flux from the primary star, may yield hazes that also influence the observed spectrum of the planet. To explore this possibility we have modeled the atmospheric photochemistry of 51 Eri b using two state-of-the-art photochemical models, both capable of predicting yields of complex hydrocarbons under various atmospheric conditions. In our presentation we will summarize the modeling approach employed to characterize 51 Eri b, explaining constraints on the planet's effective temperature, gravity, and atmospheric composition and also present results of our studies of atmospheric photochemistry. We will discuss whether photochemical hazes could indeed be responsible for the particulate opacity that apparently sculpts the spectrum of the planet.

  8. Ionisation and discharge in cloud-forming atmospheres of brown dwarfs and extrasolar planets

    Science.gov (United States)

    Helling, Ch; Rimmer, P. B.; Rodriguez-Barrera, I. M.; Wood, Kenneth; Robertson, G. B.; Stark, C. R.

    2016-07-01

    Brown dwarfs and giant gas extrasolar planets have cold atmospheres with rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud particles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field \\gg {{B}\\text{Earth}} , a chromosphere and aurorae might form as suggested by radio and x-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheric gas such that tracer molecules might be identified. Cosmic rays affect the atmosphere through air showers in a certain volume which was modelled with a 3D Monte Carlo radiative transfer code to be able to visualise their spacial extent. Given a certain degree of thermal ionisation of the atmospheric gas, we suggest that electron attachment to charge mineral cloud particles is too inefficient to cause an electrostatic disruption of the cloud particles. Cloud particles will therefore not be destroyed by Coulomb explosion for the local temperature in the collisional dominated brown dwarf and giant gas planet atmospheres. However, the cloud particles are destroyed electrostatically in regions with strong gas ionisation. The potential size of such cloud holes would, however, be too small and might occur too far inside the cloud to mimic the effect of, e.g. magnetic field induced star spots.

  9. Ionisation and discharge in cloud-forming atmospheres of brown dwarfs and extrasolar planets

    CERN Document Server

    Helling, Ch; Rodriguez-Barrera, I M; Wood, Kenneth; Robertson, G B; Stark, C R

    2016-01-01

    Brown dwarfs and giant gas extrasolar planets have cold atmospheres with a rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud particles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field $\\gg B_{\\rm Earth}$, a chromosphere and aurorae might form as suggested by radio and X-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheri...

  10. Measuring the Internal Structure and Physical Conditions in Star and Planet Forming Clouds Core: Toward a Quantitative Description of Cloud Evolution

    Science.gov (United States)

    Lada, Charles J.

    2005-01-01

    This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process. During the second year of this grant, progress toward these goals is discussed.

  11. Measuring the Internal Structure and Physical Conditions in Star and Planet Forming Clouds Cores: Towards a Quantitative Description of Cloud Evolution

    Science.gov (United States)

    Lada, Charles J.

    2004-01-01

    This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to determine the detailed initial conditions for star formation from quantitative measurements of the internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process.

  12. Tidal Downsizing model. II. Planet-metallicity correlations

    CERN Document Server

    Nayakshin, Sergei

    2015-01-01

    Core Accretion (CA), the de-facto accepted theory of planet formation, requires formation of massive solid cores as a prerequisite for assembly of gas giant planets. The observed metallicity correlations of exoplanets are puzzling in the context of CA. While gas giant planets are found preferentially around metal-rich host stars, planets smaller than Neptune orbit hosts with a wide range of metallicities. We propose an alternative interpretation of these observations in the framework of a recently developed planet formation hypothesis called Tidal Downsizing (TD). We perform population synthesis calculations based on TD, and find that the connection between the populations of the gas giant and the smaller solid-core dominated planets is non linear and not even monotonic. While gas giant planets formed in the simulations in the inner few AU region follow a strong positive correlation with the host star metallicity, the smaller planets do not. The simulated population of these smaller planets shows a shallow pe...

  13. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    Directory of Open Access Journals (Sweden)

    Christiane Helling

    2014-04-01

    Full Text Available We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. PRODIMO protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The DRIFT cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models.

  14. Disk evolution, element abundances and cloud properties of young gas giant planets.

    Science.gov (United States)

    Helling, Christiane; Woitke, Peter; Rimmer, Paul B; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin

    2014-04-14

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. PRODIMO protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The DRIFT cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models.

  15. The Compositional Diversity of Extrasolar Terrestrial Planets: II. Migration Simulations

    CERN Document Server

    Carter-Bond, Jade C; Raymond, Sean N

    2012-01-01

    Prior work has found that a variety of terrestrial planetary compositions are expected to occur within known extrasolar planetary systems. However, such studies ignored the effects of giant planet migration, which is thought to be very common in extra-solar systems. Here we present calculations of the compositions of terrestrial planets that formed in dynamical simulations incorporating varying degrees of giant planet migration. We used chemical equilibrium models of the solid material present in the disks of five known planetary host stars: the Sun, GJ 777, HD4203, HD19994 and HD213240. Giant planet migration has a strong effect on the compositions of simulated terrestrial planets as the migration results large-scale mixing between terrestrial planet building blocks that condensed at a range of temperatures. This mixing acts to 1) increase the typical abundance of Mg-rich silicates in the terrestrial planets feeding zones and thus increase the frequency of planets with Earth-like compositions compared with s...

  16. Ammonium hydrosulfide and clouds in the atmospheres of the giant planets.

    Science.gov (United States)

    Ibragimov, K. Yu.; Solodovnik, A. A.

    The physicochemical properties of two possible compounds - ammonium hydrosulfide (NH4SH) and ammonium sulfide (NH4)2S - that may be formed in a reaction of ammonia NH3 with hydrogen sulfide H2S are discussed, and the probability of their formation is analyzed on the basis of the Le Chatelier principle. It is shown that the conditions of their formation on the basis of available data on the concentration ratio of the reagents (NH3 and H2S) in the atmospheres of giant planets make the appearance of enough NH4SH for cloud formation highly problematic. Accordingly, the authors propose as an alternative candidate for a cloud-forming role ammonium sulfide (NH4)2S, for whose formation the conditions in the atmospheres of the giant planets are more favorable. The possible spatial localization of (NH4)2S clouds is estimated, and the result is used in an attempt to identify this compound as one of the chromophores.

  17. Fomalhaut b as a cloud of dust: Testing aspects of planet formation theory

    Energy Technology Data Exchange (ETDEWEB)

    Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Currie, Thayne [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 1A1 (Canada); Bromley, Benjamin C., E-mail: skenyon@cfa.harvard.edu, E-mail: currie@astro.utoronto.ca, E-mail: bromley@physics.utah.edu [Department of Physics, University of Utah, 201 JFB, Salt Lake City, UT 84112 (United States)

    2014-05-01

    We consider the ability of three models—impacts, captures, and collisional cascades—to account for a bright cloud of dust in Fomalhaut b. Our analysis is based on a novel approach to the power-law size distribution of solid particles central to each model. When impacts produce debris with (1) little material in the largest remnant and (2) a steep size distribution, the debris has enough cross-sectional area to match observations of Fomalhaut b. However, published numerical experiments of impacts between 100 km objects suggest this outcome is unlikely. If collisional processes maintain a steep size distribution over a broad range of particle sizes (300 μm to 10 km), Earth-mass planets can capture enough material over 1-100 Myr to produce a detectable cloud of dust. Otherwise, capture fails. When young planets are surrounded by massive clouds or disks of satellites, a collisional cascade is the simplest mechanism for dust production in Fomalhaut b. Several tests using Hubble Space Telescope or James Webb Space Telescope data—including measuring the expansion/elongation of Fomalhaut b, looking for trails of small particles along Fomalhaut b's orbit, and obtaining low resolution spectroscopy—can discriminate among these models.

  18. Disk evolution, element abundances and cloud properties of young gas giant planets

    CERN Document Server

    Helling, Ch; Rimmer, P B; Kamp, I; Thi, W -F; Meijerink, R

    2014-01-01

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. ProDiMo protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O i...

  19. Circumbinary planets II - when transits come and go

    CERN Document Server

    Martin, David V

    2016-01-01

    Circumbinary planets are generally more likely to transit than equivalent single-star planets, but practically the geometry and orbital dynamics of circumbinary planets make the chance of observing a transit inherently time-dependent. In this follow-up paper to Martin & Triaud (2015), the time-dependence is probed deeper by analytically calculating when and for how long the binary and planet orbits overlap, allowing for transits to occur. The derived equations are applied to the known transiting circumbinary planets found by Kepler to predict when future transits will occur, and whether they will be observable by upcoming space telescopes TESS, CHEOPS and PLATO. The majority of these planets spend less than 50% of their time in a transiting configuration, some less than 20%. From this it is calculated that the known Kepler eclipsing binaries likely host an additional ~ 17 - 30 circumbinary planets that are similar to the ten published discoveries, and they will ultimately transit some day, potentially dur...

  20. Atmospheric circulation of brown dwarfs and directly imaged extrasolar giant planets with active clouds

    Science.gov (United States)

    Tan, Xianyu; Showman, Adam

    2016-10-01

    Observational evidence have suggested active meteorology in the atmospheres of brown dwarfs (BDs) and directly imaged extrasolar giant planets (EGPs). In particular, a number of surveys for brown dwarfs showed that near-IR brightness variability is common for L and T dwarfs. Directly imaged EGPs share similar observations, and can be viewed as low-gravity versions of BDs. Clouds are believed to play the major role in shaping the thermal structure, dynamics and near-IR flux of these atmospheres. So far, only a few studies have been devoted to atmospheric circulation and the implications for observations of BDs and directly EGPs, and yet no global model includes a self-consistent active cloud formation. Here we present preliminary results from the first global circulation model applied to BDs and directly imaged EGPs that can properly treat absorption and scattering of radiation by cloud particles. Our results suggest that horizontal temperature differences on isobars can reach up to a few hundred Kelvins, with typical horizontal length scale of the temperature and cloud patterns much smaller than the radius of the object. The combination of temperature anomaly and cloud pattern can result in moderate disk-integrated near-IR flux variability. Wind speeds can reach several hundred meters per second in cloud forming layers. Unlike Jupiter and Saturn, we do not observe stable zonal jet/banded patterns in our simulations. Instead, our simulated atmospheres are typically turbulent and dominated by transient vortices. The circulation is sensitive to the parameterized cloud microphysics. Under some parameter combinations, global-scale atmospheric waves can be triggered and maintained. These waves induce global-scale temperature anomalies and cloud patterns, causing large (up to several percent) disk-integrated near-IR flux variability. Our results demonstrate that the commonly observed near-IR brightness variability for BDs and directly imaged EGPs can be explained by the

  1. Introduction to astrochemistry chemical evolution from interstellar clouds to star and planet formation

    CERN Document Server

    Yamamoto, Satoshi

    2017-01-01

    This important book describes the basic principles of astrochemistry—an interdisciplinary field combining astronomy, physics, and chemistry—with particular emphasis on its physical and chemical background. Chemical processes in diffuse clouds, dense quiescent molecular clouds, star-forming regions, and protoplanetary disks are discussed. A brief introduction to molecular spectroscopy and observational techniques is also presented. These contents provide astronomers with a comprehensive understanding of how interstellar matter is evolved and brought into stars and planets, which is ultimately related to the origin of the solar system. The subject matter will also be understandable and useful for physical chemists who are interested in exotic chemical processes occurring in extreme physical conditions. The book is a valuable resource for all researchers beginning at the graduate level.

  2. Model atmospheres for massive gas giants with thick clouds: Application to the HR 8799 planets and predictions for future detections

    CERN Document Server

    Madhusudhan, Nikku; Currie, Thayne

    2011-01-01

    We have generated an extensive new suite of massive giant planet atmosphere models and used it to obtain fits to photometric data for the planets HR 8799b, c, and d. We consider a wide range of cloudy and cloud-free models. The cloudy models incorporate different geometrical and optical thicknesses, modal particle sizes, and metallicities. For each planet and set of cloud parameters, we explore grids in gravity and effective temperature, with which we determine constraints on the planet's mass and age. Our new models yield statistically significant fits to the data, and conclusively confirm that the HR 8799 planets have much thicker clouds than those required to explain data for typical L and T dwarfs. Both models with 1) physically thick forsterite clouds and a 60-micron modal particle size and 2) clouds made of 1 micron-sized pure iron droplets and 1% supersaturation fit the data. The range of best-estimated masses for HR 8799b, HR 8799c, and HR 8799d conservatively span 2-12 M_J, 7-13 M_J, and 3-11 M_J, re...

  3. A giant cloud of hydrogen escaping the warm Neptune-mass planet GJ 436b

    Science.gov (United States)

    Ehrenreich, David

    2015-12-01

    Exoplanets in extreme irradiation environments, close to their parent stars, could lose some fraction of their atmospheres because of the extreme irradiation. Atmospheric mass loss has been observed during the past 12 years for hot gas giants, as large (~10%) ultraviolet absorption signals during transits. Meanwhile, no confident detection have been obtained for lower-mass planets, which are most likely to be significantly affected by atmospheric escape. In fact, hot rocky planets observed by Corot and Kepler might have lost all of their atmosphere, having begun as Neptune-like. The signature of this loss could be observed in the ultraviolet, when the planet and its escaping atmosphere transit the star, giving rise to deeper and longer transit signatures than in the optical. I will report on new Hubble observations of the Neptune-mass exoplanet GJ 436b, around which an extended atmosphere has been tentatively detected in 2014. The new data reveal that GJ 436b has huge transit depths of 56.3±3.5% in the hydrogen Lyman-alpha line, far beyond the 0.69% optical transit depth, and even far beyond mass loss signatures observed at the same wavelength from more irradiated gas giants. We infer from this repeated observations that the planet is surrounded and trailed by a large exospheric cloud of hydrogen, shaped as a giant comet, much bigger than the star. We estimate a mass-loss rate, which today is far too small to deplete the atmosphere of a Neptune-like planet in the lifetime of the parent star, but would have been much greater in the past. This 16-sigma detection opens exciting perspectives for the atmospheric characterization of low-mass and moderately-irradiated exoplanets, a large number of which will be detected by forthcoming transit surveys.

  4. Mapping Clouds and Terrain of Earth-like Planets from Photometric Variability

    CERN Document Server

    Kawahara, Hajime

    2011-01-01

    We develop an inversion technique of annual scattered light curves to sketch a two-dimensional albedo map of exoplanets. As a test-bed for future observations of extrasolar terrestrial planets, we apply this mapping technique to simulated light curves of a mock Earth-twin. A primary feature in recovered albedo maps traces the annual mean distribution of clouds. To extract information of other surface types, we attempt to reduce the cloud signal by taking difference of two bands. We find that the inversion of reflectivity difference between 0.8-0.9 and 0.4-0.5 micron bands roughly recover the continental distribution, except for high latitude regions persistently covered with clouds and snow. The inversion of the reflectivity difference across the red edge (0.8-0.9 and 0.6-0.7 micron) emphasizes the vegetation features near the equator. The planetary obliquity and equinox can be estimated simultaneously with the mapping under the presence of clouds. We conclude that the photometric variability of the scattered...

  5. EXTRASOLAR BINARY PLANETS. II. DETECTABILITY BY TRANSIT OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, K. M.; Ida, S. [Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Ochiai, H. [Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Nagasawa, M., E-mail: nagasawa.m.ad@m.titech.ac.jp [Interactive Research Center of Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2015-05-20

    We discuss the detectability of gravitationally bound pairs of gas-giant planets (which we call “binary planets”) in extrasolar planetary systems that are formed through orbital instability followed by planet–planet dynamical tides during their close encounters, based on the results of N-body simulations by Ochiai et al. (Paper I). Paper I showed that the formation probability of a binary is as much as ∼10% for three giant planet systems that undergo orbital instability, and after post-capture long-term tidal evolution, the typical binary separation is three to five times the sum of the physical radii of the planets. The binary planets are stable during the main-sequence lifetime of solar-type stars, if the stellarcentric semimajor axis of the binary is larger than 0.3 AU. We show that detecting modulations of transit light curves is the most promising observational method to detect binary planets. Since the likely binary separations are comparable to the stellar diameter, the shape of the transit light curve is different from transit to transit, depending on the phase of the binary’s orbit. The transit durations and depth for binary planet transits are generally longer and deeper than those for the single planet case. We point out that binary planets could exist among the known inflated gas-giant planets or objects classified as false positive detections at orbital radii ≳0.3 AU, propose a binary planet explanation for the CoRoT candidate SRc01 E2 1066, and show that binary planets are likely to be present in, and could be detected using, Kepler-quality data.

  6. Clouds in the atmospheres of extrasolar planets. V. The impact of CO2 ice clouds on the outer boundary of the habitable zone

    Science.gov (United States)

    Kitzmann, D.

    2017-04-01

    Clouds have a strong impact on the climate of planetary atmospheres. The potential scattering greenhouse effect of CO2 ice clouds in the atmospheres of terrestrial extrasolar planets is of particular interest because it might influence the position and thus the extension of the outer boundary of the classic habitable zone around main sequence stars. Here, the impact of CO2 ice clouds on the surface temperatures of terrestrial planets with CO2 dominated atmospheres, orbiting different types of stars is studied. Additionally, their corresponding effect on the position of the outer habitable zone boundary is evaluated. For this study, a radiative-convective atmospheric model is used the calculate the surface temperatures influenced by CO2 ice particles. The clouds are included using a parametrised cloud model. The atmospheric model includes a general discrete ordinate radiative transfer that can describe the anisotropic scattering by the cloud particles accurately. A net scattering greenhouse effect caused by CO2 clouds is only obtained in a rather limited parameter range which also strongly depends on the stellar effective temperature. For cool M-stars, CO2 clouds only provide about 6 K of additional greenhouse heating in the best case scenario. On the other hand, the surface temperature for a planet around an F-type star can be increased by 30 K if carbon dioxide clouds are present. Accordingly, the extension of the habitable zone due to clouds is quite small for late-type stars. Higher stellar effective temperatures, on the other hand, can lead to outer HZ boundaries about 0.5 au farther out than the corresponding clear-sky values.

  7. Belle II public and private cloud management in VMDIRAC system.

    Science.gov (United States)

    Grzymkowski, Rafa; Hara, Takanori; Belle computing Group, II

    2015-12-01

    The role of cloud computing technology in the distributed computing for HEP experiments grows rapidly. Some experiments (Atlas, BES-III, LHCb) already exploit private and public cloud resources for the data processing. Future experiments such as Belle II or upgraded LHC experiments will largely rely on the availability of cloud resources and therefore their computing models have to be adjusted to the specific features of cloud environment, in particular to the on-demand computing paradigm. Belle II experiment at SuperKEKB will start physics run in 2017. Belle II computing requirements are challenging. The data size at the level of hundred PB is expected after several years of operation, around 2020. The baseline solution selected for distributed processing is the DIRAC system. DIRAC can handle variety of computing resources including Grids, Clouds and independent clusters. Cloud resources can be connected by VMDIRAC module through public interfaces. In particular the mechanism of dynamic activation of new virtual machines with reserved job slots for new tasks in case of an increasing demand for computing resources is introduced. This work is focused on VMDIRAC interaction with public (Amazon EC2) and private (CC1) cloud. The solution applied by Belle II experiment and the experience from Monte Carlo production campaigns will be presented. Updated computation costs for different use cases will be shown.

  8. Extrasolar planet population synthesis II: Statistical comparison with observation

    CERN Document Server

    Mordasini, Christoph; Benz, Willy; Naef, Dominique

    2009-01-01

    This is the second paper in a series of papers showing the results of extrasolar planet population synthesis calculations. In the companion paper (Paper I), we have presented in detail our methods. By applying an observational detection bias for radial velocity surveys, we identify the potentially detectable synthetic planets. The properties of these planets are compared in quantitative statistical tests with the properties of a carefully selected sub-population of actual exoplanets. We use a two dimensional Kolmogorov-Smirnov test to compare the mass-distance distributions of synthetic and observed planets, as well as 1D KS tests to compare the mass, the semimajor axis and the [Fe/H] distributions. We find that some models can account to a reasonable degree of significance for the observed properties. We concurrently account for many other observed features, e.g. the "metallicity effect". This gives us confidence that our model captures several essential features of giant planet formation. Our simulations al...

  9. Dynamical Constraints on the Existence of a 9th Planet Residing in the Inner Oort Cloud

    Science.gov (United States)

    Schwamb, Megan E.; Brasser, Ramon; Zhang, Zhi-Wei

    2015-11-01

    The discovery of Sedna, a decade ago, on a highly eccentric orbit beyond the Kuiper belt challenged our understanding of the Solar System. With a perihelion of 76 AU, Sedna is well beyond the reach of the gas-giants and could not be scattered onto its highly eccentric orbit from interactions with Neptune alone. Sedna’s aphelion at ~1000 AU is too far from the edge of the Solar System to feel the perturbing effects of passing stars or galactic tides in the present-day solar neighborhood. Some other mechanism likely no longer active in the Solar System today is required to emplace Sedna on its orbit. Sedna's presence predicts a population of icy bodies on similar orbits residing past the Kuiper belt in what has been called the Inner Oort Cloud.The recent discovery of 2012 VP113 on a similar orbit to Sedna confirmed the presence of the Inner Oort Cloud and identified a possible alignment of the argument of perihelion for objects with orbits detached from Neptune. Based on the expected precession frequency, the arguments of perihelion should be randomly distributed. The existence of a planet beyond 200 AU has been suggested as a possible mechanism to actively control and lock the argument of perihelion of these orbits. We use new dynamical modeling to further investigate this hypothesis and explore the possible orbital configurations and physical properties of such a body residing beyond Neptune. We will also discuss the implications of the presence of a ninth planet for the Solar System's formation and for the current Inner Oort Cloud.

  10. Star-planet interactions. II. Is planet engulfment the origin of fast rotating red giants?

    Science.gov (United States)

    Privitera, Giovanni; Meynet, Georges; Eggenberger, Patrick; Vidotto, Aline A.; Villaver, Eva; Bianda, Michele

    2016-10-01

    Context. Fast rotating red giants in the upper part of the red giant branch have surface velocities that cannot be explained by single star evolution. Aims: We check whether tides between a star and a planet followed by planet engulfment can indeed accelerate the surface rotation of red giants for a sufficiently long time to produce these fast rotating red giants. Methods: We studied how the surface rotation velocity at the stellar surface evolves using rotating stellar models, accounting for the redistribution of the angular momentum inside the star by different transport mechanisms, the exchanges of angular momentum between the planet orbit and the star before the engulfment, and for the deposition of angular momentum inside the star at the engulfment. We considered different situations with masses of stars in the range between 1.5 and 2.5 M⊙, masses of the planets between 1 and 15 MJ (Jupiter mass), and initial semimajor axis between 0.5 and 1.5 au. The metallicity Z for our stellar models is 0.02. Results: We show that the surface velocities reached at the end of the orbital decay due to tidal forces and planet engulfment can be similar to values observed for fast rotating red giants. This surface velocity then decreases when the star evolves along the red giant branch but at a sufficiently slow pace to allowing stars to be detected with such a high velocity. More quantitatively, star-planet interaction can produce a rapid acceleration of the surface of the star, above values equal to 8 km s-1, for periods lasting up to more than 30% the red giant branch phase. As found already by previous works, the changes of the surface carbon isotopic ratios produced by the dilution of the planetary material into the convective envelope is modest. The increase of the lithium abundance due to this effect might be much more important, however lithium may be affected by many different, still uncertain, processes. Thus any lithium measurement can hardly be taken as a support

  11. The SOPHIE search for northern extrasolar planets. II. A multiple planet system around HD 9446

    Science.gov (United States)

    Hébrard, G.; Bonfils, X.; Ségransan, D.; Moutou, C.; Delfosse, X.; Bouchy, F.; Boisse, I.; Arnold, L.; Desort, M.; Díaz, R. F.; Eggenberger, A.; Ehrenreich, D.; Forveille, T.; Lagrange, A.-M.; Lovis, C.; Pepe, F.; Perrier, C.; Pont, F.; Queloz, D.; Santos, N. C.; Udry, S.; Vidal-Madjar, A.

    2010-04-01

    We report the discovery of a planetary system around HD 9446, performed from radial velocity measurements secured with the spectrograph SOPHIE at the 193-cm telescope of the Haute-Provence Observatory for more than two years. At least two planets orbit this G5V, active star: HD 9446b has a minimum mass of 0.7 MJup and a slightly eccentric orbit with a period of 30 days, whereas HD 9446c has a minimum mass of 1.8 MJup and a circular orbit with a period of 193 days. As for most of the known multiple planet systems, the HD 9446-system presents a hierarchical disposition with a massive outer planet and a lighter inner planet. Based on observations collected with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France, by the SOPHIE Consortium (program 07A.PNP.CONS). The full version of Table 1 (SOPHIE measurements of HD 9446) is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/513/A69

  12. Star-planet interactions: II. Is planet engulfment the origin of fast rotating red giants?

    CERN Document Server

    Privitera, Giovanni; Eggenberger, Patrick; Vidotto, Aline A; Villaver, Eva; Bianda, Michele

    2016-01-01

    Context. Fast rotating red giants in the upper part of the red giant branch have surface velocities that cannot be explained by single star evolution. Aims. We check whether tides between a star and a planet followed by planet engulfment can indeed accelerate the surface rotation of red giants for a sufficient long time in order to produce these fast rotating red giants. Methods. Using rotating stellar models, accounting for the redistribution of the angular momentum inside the star by different transport mechanisms, for the exchanges of angular momentum between the planet orbit and the star before the engulfment and for the deposition of angular momentum inside the star at the engulfment, we study how the surface rotation velocity at the stellar surface evolves. Results. We show that the surface velocities reached at the end of the orbital decay due to tidal forces and planet engulfment can be similar to values observed for fast rotating red giants. This surface velocity then decreases when the star evolves ...

  13. The role of disc self-gravity in circumbinary planet systems - II. Planet evolution

    Science.gov (United States)

    Mutter, Matthew M.; Pierens, Arnaud; Nelson, Richard P.

    2017-08-01

    We present the results of hydrodynamic simulations examining migration and growth of planets embedded in self-gravitating circumbinary discs. The binary star parameters are chosen to mimic those of the Kepler-16, -34 and -35 systems; the aim of this study is to examine the role of disc mass in determining the stopping locations of migrating planets at the edge of the cavity created by the central binary. Disc self-gravity can cause significant shrinkage of the cavity for disc masses in excess of 5-10 × the minimum mass solar nebula model. Planets forming early in the disc lifetime can migrate through the disc and stall at locations closer to the central star than is normally the case for lower mass discs, resulting in closer agreement between simulated and observed orbital architecture. The presence of a planet orbiting in the cavity of a massive disc can prevent the cavity size from expanding to the size of a lower mass disc. As the disc mass reduces over long time-scales, this indicates that circumbinary planet systems retain memory of their initial conditions. Our simulations produce planetary orbits in good agreement with Keper-16b without the need for self-gravity; Kepler-34 analogue systems produce wide and highly eccentric cavities, and self-gravity improves the agreement between simulations and data. Kepler-35b is more difficult to explain in detail due to its relatively low mass, which results in the simulated stopping location being at a larger radius than that observed.

  14. Gemini Planet Imager Observational Calibrations II: Detector Performance and Calibration

    CERN Document Server

    Ingraham, Patrick; Sadakuni, Naru; Ruffio, Jean-Baptiste; Maire, Jerome; Chilcote, Jeff; Larkin, James; Marchis, Franck; Galicher, Raphael; Weiss, Jason

    2014-01-01

    The Gemini Planet Imager is a newly commissioned facility instrument designed to measure the near-infrared spectra of young extrasolar planets in the solar neighborhood and obtain imaging polarimetry of circumstellar disks. GPI's science instrument is an integral field spectrograph that utilizes a HAWAII-2RG detector with a SIDECAR ASIC readout system. This paper describes the detector characterization and calibrations performed by the GPI Data Reduction Pipeline to compensate for effects including bad/hot/cold pixels, persistence, non-linearity, vibration induced microphonics and correlated read noise.

  15. Oligarchic planetesimal accretion and giant planet formation II

    CERN Document Server

    Fortier, A; Brunini, A

    2009-01-01

    The equation of state calculated by Saumon and collaborators has been adopted in most core--accretion simulations of giant--planet formation performed to date. Since some minor errors have been found in their original paper, we present revised simulations of giant--planet formation that considers a corrected equation of state. We employ the same code as Fortier and collaborators in repeating our previous simulations of the formation of Jupiter. Although the general conclusions of Fortier and collaborators remain valid, we obtain significantly lower core masses and shorter formation times in all cases considered. The minor errors in the previously published equation of state have been shown to affect directly the adiabatic gradient and the specific heat, causing an overestimation of both the core masses and formation times.

  16. TRANSITING PLANETS WITH LSST. II. PERIOD DETECTION OF PLANETS ORBITING 1 M{sub ⊙} HOSTS

    Energy Technology Data Exchange (ETDEWEB)

    Jacklin, Savannah [Department of Astrophysics and Planetary Science, Villanova University, Villanova, PA 19085 (United States); Lund, Michael B.; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Pepper, Joshua [Department of Physics, Lehigh University, Bethlehem, PA 18015 (United States)

    2015-07-15

    The Large Synoptic Survey Telescope (LSST) will photometrically monitor ∼10{sup 9} stars for 10 years. The resulting light curves can be used to detect transiting exoplanets. In particular, as demonstrated by Lund et al., LSST will probe stellar populations currently undersampled in most exoplanet transit surveys, including out to extragalactic distances. In this paper we test the efficiency of the box-fitting least-squares (BLS) algorithm for accurately recovering the periods of transiting exoplanets using simulated LSST data. We model planets with a range of radii orbiting a solar-mass star at a distance of 7 kpc, with orbital periods ranging from 0.5 to 20 days. We find that standard-cadence LSST observations will be able to reliably recover the periods of Hot Jupiters with periods shorter than ∼3 days; however, it will remain a challenge to confidently distinguish these transiting planets from false positives. At the same time, we find that the LSST deep-drilling cadence is extremely powerful: the BLS algorithm successfully recovers at least 30% of sub-Saturn-size exoplanets with orbital periods as long as 20 days, and a simple BLS power criterion robustly distinguishes ∼98% of these from photometric (i.e., statistical) false positives.

  17. Inner mean-motion resonances with eccentric planets: a possible origin for exozodiacal dust clouds

    Science.gov (United States)

    Faramaz, V.; Ertel, S.; Booth, M.; Cuadra, J.; Simmonds, C.

    2017-02-01

    High levels of dust have been detected in the immediate vicinity of many stars, both young and old. A promising scenario to explain the presence of this short-lived dust is that these analogues to the zodiacal cloud (or exozodis) are refilled in situ through cometary activity and sublimation. As the reservoir of comets is not expected to be replenished, the presence of these exozodis in old systems has yet to be adequately explained. It was recently suggested that mean-motion resonances with exterior planets on moderately eccentric (ep ≳ 0.1) orbits could scatter planetesimals on to cometary orbits with delays of the order of several 100 Myr. Theoretically, this mechanism is also expected to sustain continuous production of active comets once it has started, potentially over Gyr time-scales. We aim here to investigate the ability of this mechanism to generate scattering on to cometary orbits compatible with the production of an exozodi on long time-scales. We combine analytical predictions and complementary numerical N-body simulations to study its characteristics. We show, using order of magnitude estimates, that via this mechanism, low-mass discs comparable to the Kuiper belt could sustain comet scattering at rates compatible with the presence of the exozodis which are detected around Solar-type stars, and on Gyr time-scales. We also find that the levels of dust detected around Vega could be sustained via our proposed mechanism if an eccentric Jupiter-like planet were present exterior to the system's cold debris disc.

  18. Small hydrocarbon molecules in cloud-forming Brown Dwarf and giant gas planet atmospheres

    CERN Document Server

    Bilger, Camille; Helling, Christiane

    2013-01-01

    We study the abundances of complex carbon-bearing molecules in the oxygen-rich dust- forming atmospheres of Brown Dwarfs and giant gas planets. The inner atmospheric re- gions that form the inner boundary for thermochemical gas-phase models are investigated. Results from Drift-phoenix atmosphere simulations, which include the feedback of phase- non-equilibrium dust cloud formation on the atmospheric structure and the gas-phase abun- dances, are utilised. The resulting element depletion leads to a shift in the carbon-to-oxygen ratio such that several hydrocarbon molecules and cyanopolycyanopolyynene molecules can be present. An increase in surface gravity and/or a decrease in metallicity support the increase in the partial pressures of these species. CO, CO2, CH4, and HCN contain the largest fraction of carbon. In the upper atmosphere of low-metallicity objects, more carbon is contained in C4H than in CO, and also CH3 and C2H2 play an increasingly important role as carbon-sink. We determine chemical relaxation...

  19. Inner mean-motion resonances with eccentric planets: A possible origin for exozodiacal dust clouds

    CERN Document Server

    Faramaz, Virginie; Booth, Mark; Cuadra, Jorge; Simmonds, Charlotte

    2016-01-01

    High levels of dust have been detected in the immediate vicinity of many stars, both young and old. A promising scenario to explain the presence of this short-lived dust is that these analogues to the Zodiacal cloud (or exozodis) are refilled in situ through cometary activity and sublimation. As the reservoir of comets is not expected to be replenished, the presence of these exozodis in old systems has yet to be adequately explained. It was recently suggested that mean-motion resonances (MMR) with exterior planets on moderately eccentric ($\\mathrm{e_p}\\gtrsim 0.1$) orbits could scatter planetesimals on to cometary orbits with delays of the order of several 100 Myr. Theoretically, this mechanism is also expected to sustain continuous production of active comets once it has started, potentially over Gyr-timescales. We aim here to investigate the ability of this mechanism to generate scattering on to cometary orbits compatible with the production of an exozodi on long timescales. We combine analytical prediction...

  20. A low-order model of water vapor, clouds, and thermal emission for tidally locked terrestrial planets

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jun; Abbot, Dorian S., E-mail: junyang28@uchicago.edu [Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 (United States)

    2014-04-01

    In the spirit of minimal modeling of complex systems, we develop an idealized two-column model to investigate the climate of tidally locked terrestrial planets with Earth-like atmospheres in the habitable zone of M-dwarf stars. The model is able to approximate the fundamental features of the climate obtained from three-dimensional (3D) atmospheric general circulation model (GCM) simulations. One important reason for the two-column model's success is that it reproduces the high cloud albedo of the GCM simulations, which reduces the planet's temperature and delays the onset of a runaway greenhouse state. The two-column model also clearly illustrates a secondary mechanism for determining the climate: the nightside acts as a 'radiator fin' through which infrared energy can be lost to space easily. This radiator fin is maintained by a temperature inversion and dry air on the nightside, and plays a similar role to the subtropics on modern Earth. Since one-dimensional radiative-convective models cannot capture the effects of the cloud albedo and radiator fin, they are systematically biased toward a narrower habitable zone. We also show that cloud parameters are the most important in the two-column model for determining the day-night thermal emission contrast, which decreases and eventually reverses as the stellar flux increases. This reversal is important because it could be detected by future extrasolar planet characterization missions, which would suggest that the planet has Earth-like water clouds and is potentially habitable.

  1. Transiting Planets with LSST II. Period Detection of Planets Orbiting 1 Solar Mass Hosts

    CERN Document Server

    Jacklin, Savannah R; Pepper, Joshua; Stassun, Keivan G

    2015-01-01

    The Large Synoptic Survey Telescope (LSST) will photometrically monitor ~1 billion stars for ten years. The resulting light curves can be used to detect transiting exoplanets. In particular, as demonstrated by Lund et al. (2015), LSST will probe stellar populations currently undersampled in most exoplanet transit surveys, including out to extragalactic distances. In this paper we test the efficiency of the box-fitting least-squares (BLS) algorithm for accurately recovering the periods of transiting exoplanets using simulated LSST data. We model planets with a range of radii orbiting a solar-mass star at a distance of 7 kpc, with orbital periods ranging from 0.5 to 20 d. We find that typical LSST observations will be able to reliably detect Hot Jupiters with periods shorter than ~3 d. At the same time, we find that the LSST deep drilling cadence is extremely powerful: the BLS algorithm successfully recovers at least 30% of sub-Saturn-size exoplanets with orbital periods as long as 20 d.

  2. Interstellar Ti II in the Milky Way and Magellanic Clouds

    CERN Document Server

    Welty, Daniel E

    2010-01-01

    We discuss several sets of Ti II absorption-line data, which probe a variety of interstellar environments in our Galaxy and in the Magellanic Clouds. Comparisons of high-resolution (FWHM ~ 1.3-1.5 km/s) Ti II spectra of Galactic targets with corresponding high-resolution spectra of Na I, K I, and Ca II reveal both similarities and differences in the detailed structure of the absorption-line profiles -- reflecting component-to-component differences in the ionization and depletion behaviour of those species. Moderate-resolution (FWHM ~ 3.4-4.5 km/s) spectra of more heavily reddened Galactic stars provide more extensive information on the titanium depletion in colder, denser clouds -- where more than 99.9 per cent of the Ti may be in the dust phase. Moderate-resolution (FWHM ~ 4.5-8.7 km/s) spectra of stars in the Magellanic Clouds suggest that the titanium depletion is generally much less severe in the LMC and SMC than in our Galaxy [for a given N(H_tot), E(B-V), or molecular fraction f(H_2)] -- providing addit...

  3. Debris disks as signposts of terrestrial planet formation. II Dependence of exoplanet architectures on giant planet and disk properties

    CERN Document Server

    Raymond, Sean N; Moro-Martin, Amaya; Booth, Mark; Wyatt, Mark C; Armstrong, John C; Mandell, Avi M; Selsis, Franck; West, Andrew A

    2012-01-01

    We present models for the formation of terrestrial planets, and the collisional evolution of debris disks, in planetary systems that contain multiple unstable gas giants. We previously showed that the dynamics of the giant planets introduces a correlation between the presence of terrestrial planets and debris disks. Here we present new simulations that show that this connection is qualitatively robust to changes in: the mass distribution of the giant planets, the width and mass distribution of the outer planetesimal disk, and the presence of gas in the disk. We discuss how variations in these parameters affect the evolution. Systems with equal-mass giant planets undergo the most violent instabilities, and these destroy both terrestrial planets and the outer planetesimal disks that produce debris disks. In contrast, systems with low-mass giant planets efficiently produce both terrestrial planets and debris disks. A large fraction of systems with low-mass outermost giant planets have stable gaps between these p...

  4. Dust in brown dwarfs and extrasolar planets. V. Cloud formation in carbon- and oxygen-rich environments

    Science.gov (United States)

    Helling, Ch.; Tootill, D.; Woitke, P.; Lee, G.

    2017-07-01

    Context. Recent observations indicate potentially carbon-rich (C/O > 1) exoplanet atmospheres. Spectral fitting methods for brown dwarfs and exoplanets have invoked the C/O ratio as additional parameter but carbon-rich cloud formation modeling is a challenge for the models applied. The determination of the habitable zone for exoplanets requires the treatment of cloud formation in chemically different regimes. Aims: We aim to model cloud formation processes for carbon-rich exoplanetary atmospheres. Disk models show that carbon-rich or near-carbon-rich niches may emerge and cool carbon planets may trace these particular stages of planetary evolution. Methods: We extended our kinetic cloud formation model by including carbon seed formation and the formation of C[s], TiC[s], SiC[s], KCl[s], and MgS[s] by gas-surface reactions. We solved a system of dust moment equations and element conservation for a prescribed Drift-Phoenixatmosphere structure to study how a cloud structure would change with changing initial C/O0 = 0.43...10.0. Results: The seed formation efficiency is lower in carbon-rich atmospheres than in oxygen-rich gases because carbon is a very effective growth species. The consequence is that fewer particles make up a cloud if C/O0 > 1. The cloud particles are smaller in size than in an oxygen-rich atmosphere. An increasing initial C/O ratio does not revert this trend because a much greater abundance of condensible gas species exists in a carbon-rich environment. Cloud particles are generally made of a mix of materials: carbon dominates if C/O0 > 1 and silicates dominate if C/O0 < 1. A carbon content of 80-90% carbon is reached only in extreme cases where C/O0 = 3.0 or 10.0. Conclusions: Carbon-rich atmospheres form clouds that are made of particles of height-dependent mixed compositions, sizes and numbers. The remaining gas phase is far less depleted than in an oxygen-rich atmosphere. Typical tracer molecules are HCN and C2H2 in combination with a featureless

  5. Ionisation in atmospheres of Brown Dwarfs and extrasolar planets III. Breakdown conditions for mineral clouds

    CERN Document Server

    Helling, Ch; Stark, C; Diver, D

    2013-01-01

    Electric discharges were detected directly in the cloudy atmospheres of Earth, Jupiter and Saturn, are debatable for Venus, and indirectly inferred for Neptune and Uranus in our solar system. Sprites (and other types of transient luminous events) have been detected only on Earth, and are theoretically predicted for Jupiter, Saturn and Venus. Cloud formation is a common phenomenon in ultra-cool atmospheres such as in Brown Dwarf and extrasolar planetary atmospheres. Cloud particles can be expected to carry considerable charges which may trigger discharge events via small-scale processes between individual cloud particles (intra-cloud discharges) or large-scale processes between clouds (inter-cloud discharges). We investigate electrostatic breakdown characteristics, like critical field strengths and critical charge densities per surface, to demonstrate under which conditions mineral clouds undergo electric discharge events which may trigger or be responsible for sporadic X-ray emission. We apply results from ou...

  6. IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. III. BREAKDOWN CONDITIONS FOR MINERAL CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Helling, Ch.; Jardine, M.; Stark, C. [SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Diver, D., E-mail: ch@leap2010.eu [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2013-04-20

    Electric discharges were detected directly in the cloudy atmospheres of Earth, Jupiter, and Saturn, are debatable for Venus, and indirectly inferred for Neptune and Uranus in our solar system. Sprites (and other types of transient luminous events) have been detected only on Earth, and are theoretically predicted for Jupiter, Saturn, and Venus. Cloud formation is a common phenomenon in ultra-cool atmospheres such as in brown dwarf and extrasolar planetary atmospheres. Cloud particles can be expected to carry considerable charges which may trigger discharge events via small-scale processes between individual cloud particles (intra-cloud discharges) or large-scale processes between clouds (inter-cloud discharges). We investigate electrostatic breakdown characteristics, like critical field strengths and critical charge densities per surface, to demonstrate under which conditions mineral clouds undergo electric discharge events which may trigger or be responsible for sporadic X-ray emission. We apply results from our kinetic dust cloud formation model that is part of the DRIFT-PHOENIX model atmosphere simulations. We present a first investigation of the dependence of the breakdown conditions in brown dwarf and giant gas exoplanets on the local gas-phase chemistry, the effective temperature, and primordial gas-phase metallicity. Our results suggest that different intra-cloud discharge processes dominate at different heights inside mineral clouds: local coronal (point discharges) and small-scale sparks at the bottom region of the cloud where the gas density is high, and flow discharges and large-scale sparks near, and maybe above, the cloud top. The comparison of the thermal degree of ionization and the number density of cloud particles allows us to suggest the efficiency with which discharges will occur in planetary atmospheres.

  7. The Population of Weak MgII Absorbers. II The Properties of Single-Cloud Systems

    CERN Document Server

    Rigby, J R; Churchill, C W; Rigby, Jane R.; Charlton, Jane C.; Churchill, Christopher W.

    2001-01-01

    We present an investigation of MgII absorbers characterized as single-cloud weak systems at z~1. We measured column densities and Doppler parameters for MgII and FeII in 15 systems found in HIRES/Keck spectra at 6.6 km/s. Using these quantities and CIV, Lyman alpha and Lyman limit absorption observed with FOS/HST (resolution ~230 km/s) we applied photoionization models to each system to constrain metallicities, densities, ionization conditions, and sizes. We find that: (1) Single-cloud weak systems are optically thin in neutral hydrogen and may have their origins in a population of objects distinct from the optically thick strong MgII absorbers, which are associated with bright galaxies. (2) Weak systems account for somewhere between 25% to 100% of the z < 1 Lyman alpha forest clouds in the range 15.8II absorber that we term ``iron-rich''. These clo...

  8. The theory of globulettes: candidate precursors of brown dwarfs and free floating planets in H II regions

    CERN Document Server

    Haworth, Thomas J; Clarke, Cathie J

    2014-01-01

    Large numbers of small opaque dust clouds - termed 'globulettes' by Gahm et al - have been observed in the H II regions surrounding young stellar clusters. With masses typically in the planetary (or low mass brown dwarf) regime, these objects are so numerous in some regions (e.g. the Rosette) that, if only a small fraction of them could ultimately collapse, then they would be a very significant source of free floating planets. Here we review the properties of globulettes and present a theoretical framework for their structure and evolution. We demonstrate that their interior structure is well described by a pressure confined isothermal Bonnor-Ebert sphere and that the observed mass-radius relation (mass approximately proportional to the radius squared) is a systematic consequence of a column density threshold below which components of the globulette are not identified. We also find that globulettes with this interior structure are very stable against collapse within H II regions. We follow Gahm et al in assum...

  9. The International Deep Planet Survey. II. The frequency of directly imaged giant exoplanets with stellar mass

    Science.gov (United States)

    Galicher, R.; Marois, C.; Macintosh, B.; Zuckerman, B.; Barman, T.; Konopacky, Q.; Song, I.; Patience, J.; Lafrenière, D.; Doyon, R.; Nielsen, E. L.

    2016-10-01

    Context. Radial velocity and transit methods are effective for the study of short orbital period exoplanets but they hardly probe objects at large separations for which direct imaging can be used. Aims: We carried out the international deep planet survey of 292 young nearby stars to search for giant exoplanets and determine their frequency. Methods: We developed a pipeline for a uniform processing of all the data that we have recorded with NIRC2/Keck II, NIRI/Gemini North, NICI/Gemini South, and NACO/VLT for 14 yr. The pipeline first applies cosmetic corrections and then reduces the speckle intensity to enhance the contrast in the images. Results: The main result of the international deep planet survey is the discovery of the HR 8799 exoplanets. We also detected 59 visual multiple systems including 16 new binary stars and 2 new triple stellar systems, as well as 2279 point-like sources. We used Monte Carlo simulations and the Bayesian theorem to determine that 1.05+2.80-0.70% of stars harbor at least one giant planet between 0.5 and 14 MJ and between 20 and 300 AU. This result is obtained assuming uniform distributions of planet masses and semi-major axes. If we consider power law distributions as measured for close-in planets instead, the derived frequency is 2.30+5.95-1.55%, recalling the strong impact of assumptions on Monte Carlo output distributions. We also find no evidence that the derived frequency depends on the mass of the hosting star, whereas it does for close-in planets. Conclusions: The international deep planet survey provides a database of confirmed background sources that may be useful for other exoplanet direct imaging surveys. It also puts new constraints on the number of stars with at least one giant planet reducing by a factor of two the frequencies derived by almost all previous works. Tables 11-15 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  10. The Pan-Pacific Planet Search. II. Confirmation of a two-planet system around HD 121056

    CERN Document Server

    Wittenmyer, Robert A; Liu, Fan; Horner, Jonathan; Endl, Michael; Johnson, John Asher; Tinney, C G; Carter, B D

    2014-01-01

    Precise radial velocities from the Anglo-Australian Telescope confirm the presence of a rare short-period planet around the K0 giant HD 121056. An independent two-planet solution using the AAT data shows that the inner planet has P=89.1+/-0.1 days, and m sin i=1.35+/-0.17 Mjup. These data also confirm the planetary nature of the outer companion, with m sin i=3.9+/-0.6 Mjup and a=2.96+/-0.16 AU. HD 121056 is the most-evolved star to host a confirmed multiple-planet system, and is a valuable example of a giant star hosting both a short-period and a long-period planet.

  11. THE PAN-PACIFIC PLANET SEARCH. II. CONFIRMATION OF A TWO-PLANET SYSTEM AROUND HD 121056

    Energy Technology Data Exchange (ETDEWEB)

    Wittenmyer, Robert A.; Tinney, C. G. [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Wang, Liang [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Chaoyang District, Beijing 100012 (China); Liu, Fan [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Horner, Jonathan [Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW 2052 (Australia); Endl, Michael [McDonald Observatory, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712 (United States); Johnson, John Asher [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Carter, B. D., E-mail: rob@unsw.edu.au [Computational Engineering and Science Research Centre, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia)

    2015-02-10

    Precise radial velocities from the Anglo-Australian Telescope (AAT) confirm the presence of a rare short-period planet around the K0 giant HD 121056. An independent two-planet solution using the AAT data shows that the inner planet has P = 89.1 ± 0.1 days, and m sin i = 1.35 ± 0.17 M{sub Jup}. These data also confirm the planetary nature of the outer companion, with m sin i = 3.9 ± 0.6 M{sub Jup} and a = 2.96 ± 0.16 AU. HD 121056 is the most-evolved star to host a confirmed multiple-planet system, and is a valuable example of a giant star hosting both a short-period and a long-period planet.

  12. Millions of Single Cloud Weak MgII Systems

    CERN Document Server

    Churchill, C W; Charlton, J; Churchill, Chris; Rigby, Jane; Charlton, Jane

    2001-01-01

    We report on a population of absorption systems selected by the presence of very weak Mg II doublets. A sub-population of these systems are iron enriched and have near solar metallicities. This would indicated advanced stages (i.e. few Gyr) of in situ star formation within the absorbing structures. From photoionization modeling, we infer low ionization fractions of f(HI/H)~0.01, and gas densities of ~0.1 cm^-3. Since the maximum HI column densities are \\~10^17 cm^-2, the inferred cloud sizes are ~10 pc. From their redshift number densities, this implies that their co-moving spatial density outnumbers normal bright galaxies by a factor of a few million.

  13. The International Deep Planet Survey II: The frequency of directly imaged giant exoplanets with stellar mass

    CERN Document Server

    Galicher, Raphael; Macintosh, Bruce; Zuckerman, Ben; Barman, Travis; Konopacky, Quinn; Song, Inseok; Patience, Jenny; Lafreniere, David; Doyon, Rene; Nielsen, Eric L

    2016-01-01

    Radial velocity and transit methods are effective for the study of short orbital period exoplanets but they hardly probe objects at large separations for which direct imaging can be used. We carried out the international deep planet survey of 292 young nearby stars to search for giant exoplanets and determine their frequency. We developed a pipeline for a uniform processing of all the data that we have recorded with NIRC2/Keck II, NIRI/Gemini North, NICI/Gemini South, and NACO/VLT for 14 years. The pipeline first applies cosmetic corrections and then reduces the speckle intensity to enhance the contrast in the images. The main result of the international deep planet survey is the discovery of the HR 8799 exoplanets. We also detected 59 visual multiple systems including 16 new binary stars and 2 new triple stellar systems, as well as 2,279 point-like sources. We used Monte Carlo simulations and the Bayesian theorem to determine that 1.05[+2.80-0.70]% of stars harbor at least one giant planet between 0.5 and 14...

  14. Habitable zone limits for dry planets.

    Science.gov (United States)

    Abe, Yutaka; Abe-Ouchi, Ayako; Sleep, Norman H; Zahnle, Kevin J

    2011-06-01

    Most discussion of habitable planets has focused on Earth-like planets with globally abundant liquid water. For an "aqua planet" like Earth, the surface freezes if far from its sun, and the water vapor greenhouse effect runs away if too close. Here we show that "land planets" (desert worlds with limited surface water) have wider habitable zones than aqua planets. For planets at the inner edge of the habitable zone, a land planet has two advantages over an aqua planet: (i) the tropics can emit longwave radiation at rates above the traditional runaway limit because the air is unsaturated and (ii) the dry air creates a dry stratosphere that limits hydrogen escape. At the outer limits of the habitable zone, the land planet better resists global freezing because there is less water for clouds, snow, and ice. Here we describe a series of numerical experiments using a simple three-dimensional global climate model for Earth-sized planets. Other things (CO(2), rotation rate, surface pressure) unchanged, we found that liquid water remains stable at the poles of a low-obliquity land planet until net insolation exceeds 415 W/m(2) (170% that of modern Earth), compared to 330 W/m(2) (135%) for the aqua planet. At the outer limits, we found that a low-obliquity land planet freezes at 77%, while the aqua planet freezes at 90%. High-obliquity land and aqua planets freeze at 58% and 72%, respectively, with the poles offering the last refuge. We show that it is possible that, as the Sun brightens, an aqua planet like Earth can lose most of its hydrogen and become a land planet without first passing through a sterilizing runaway greenhouse. It is possible that Venus was a habitable land planet as recently as 1 billion years ago.

  15. A Low-order Model of Water Vapor, Clouds, and Thermal Emission for Tidally Locked Terrestrial Planets

    CERN Document Server

    Yang, Jun

    2014-01-01

    In the spirit of minimal modeling of complex systems, we develop an idealized two-column model to investigate the climate of tidally locked terrestrial planets with Earth-like atmospheres in the habitable zone of M-dwarf stars. The model is able to approximate the fundamental features of the climate obtained from three-dimensional (3D) atmospheric general circulation model (GCM) simulations. One important reason for the two-column model's success is that it reproduces the high cloud albedo of the GCM simulations, which reduces the planet's temperature and delays the onset of a runaway greenhouse state. The two-column model also clearly illustrates a secondary mechanism for determining the climate: the nightside acts as a ``radiator fin'' through which infrared energy can be lost to space easily. This radiator fin is maintained by a temperature inversion and dry air on the nightside, and plays a similar role to the subtropics on modern Earth. Since 1D radiative-convective models cannot capture the effects of t...

  16. Transit Timing Variation of Near-Resonance Planetary Pairs. II. Confirmation of 30 planets in 15 Multiple Planet Systems

    CERN Document Server

    Xie, Ji-Wei

    2013-01-01

    Following on from Paper I in our series (Xie 2012), we report the confirmation by Transit Timing Variations (TTVs) of a further 30 planets in 15 multiple planet systems, using the publicly available Kepler light curves (Q0-Q16). All of these fifteen pairs are near first-order Mean Motion Resonances (MMR), showing sinusoidal TTVs consistent with theoretically predicted periods, which demonstrate they are orbiting and interacting in the same systems. Although individual masses cannot be accurately extracted based only on TTVs (because of the well known degeneracy between mass and eccentricity), the measured TTV phases and amplitudes can still place relatively tight constraints on their mass ratios and upper limits on their masses, which confirm their planetary nature. Some of these systems (KOI-274, KOI-285, KOI-370 and KOI-2672) are relatively bright and thus suitable for further follow-up observations.

  17. The CRIRES Search for Planets Around the Lowest-Mass Stars. II. No Giant Planet Orbiting VB10

    CERN Document Server

    Bean, Jacob L; Hartman, Henrik; Nilsson, Hampus; Reiners, Ansgar; Dreizler, Stefan; Henry, Todd J; Wiedemann, Guenter

    2009-01-01

    We present radial velocities of the very low-mass star VB10 obtained over a time span of 0.61 yr as part of an ongoing search for planets around stars at the end of the main sequence. The radial velocities were measured from high-resolution near-infrared spectra obtained using the CRIRES instrument on the VLT with an ammonia gas cell. The typical internal precision of the measurements is 10 m/s. These data do not exhibit significant variability and are essentially constant at a level consistent with the measurement uncertainties. Therefore, we do not detect the radial velocity variations of VB10 expected due to the presence of an orbiting giant planet similar to that recently proposed by Pravdo and Shaklan based on apparent astrometric perturbations. In addition, we do not confirm the ~1 km/s radial velocity variability of the star tentatively detected by Zapatero Osorio and colleagues with lower precision measurements. Our measurements rule out planets with M > 3 M_Jup and the orbital period and inclination ...

  18. Kinematics of molecular clouds. II. New data on nearby giant molecular clouds

    Energy Technology Data Exchange (ETDEWEB)

    Stark, A.A.; Brand, J.

    1989-04-01

    The best currently available data on positions, distances, and velocities of giant molecular clouds within 3 kpc of the sun are analyzed to yield a one-dimensional rms cloud-to-cloud velocity dispersion of 7.8 +0.6, -0.5. Velocity dispersion is defined here as the root mean square of cloud peculiar velocities, a quantity which includes small-scale streaming. It is argued that this value for the velocity dispersion is pausible, based on examples of clouds whose velocities cannot be explained purely by galactic rotation. The mean motion of nearby molecular clouds is drifting by about 4 km/s with respect to the LSR. 21 refs.

  19. Feedback in Clouds II: UV Photoionisation and the first supernova in a massive cloud

    CERN Document Server

    Geen, Sam; Tremblin, Pascal; Rosdahl, Joakim

    2016-01-01

    Molecular cloud structure is regulated by stellar feedback in various forms. Two of the most important feedback processes are UV photoionisation and supernovae from massive stars. However, the precise response of the cloud to these processes, and the interaction between them, remains an open question. In particular, we wish to know under which conditions the cloud can be dispersed by feedback, which in turn can give us hints as to how feedback regulates the star formation inside the cloud. We perform a suite of radiative magnetohydrodynamic simulations of a 10^5 solar mass cloud with embedded sources of ionising radiation and supernovae, including multiple supernovae and a hypernova model. A UV source corresponding to 10% of the mass of the cloud is required to disperse the cloud, suggesting that the star formation efficiency should be on the order of 10%. A single supernova is unable to significantly affect the evolution of the cloud. However, energetic hypernovae and multiple supernovae are able to add sign...

  20. CNO behaviour in planet-harbouring stars. II. Carbon abundances in stars with and without planets using the CH band

    CERN Document Server

    Suárez-Andrés, L; Hernández, J I González; Adibekyan, V Zh; Mena, E Delgado; Santos, N C; Sousa, S G

    2016-01-01

    Context. Carbon, oxygen and nitrogen (CNO) are key elements in stellar formation and evolution, and their abundances should also have a significant impact on planetary formation and evolution. Aims. We present a detailed spectroscopic analysis of 1110 solar-type stars, 143 of which are known to have planetary companions. We have determined the carbon abundances of these stars and investigate a possible connection between C and the presence of planetary companions. Methods. We used the HARPS spectrograph to obtain high-resolution optical spectra of our targets. Spectral synthesis of the CH band at 4300\\AA was performed with the spectral synthesis codes MOOG and FITTING. Results. We have studied carbon in several reliable spectral windows and have obtained abundances and distributions that show that planet host stars are carbon rich when compared to single stars, a signature caused by the known metal-rich nature of stars with planets. We find no different behaviour when separating the stars by the mass of the p...

  1. Clustering, randomness and regularity in cloud fields. I - Theoretical considerations. II - Cumulus cloud fields

    Science.gov (United States)

    Weger, R. C.; Lee, J.; Zhu, Tianri; Welch, R. M.

    1992-01-01

    The current controversy existing in reference to the regularity vs. clustering in cloud fields is examined by means of analysis and simulation studies based upon nearest-neighbor cumulative distribution statistics. It is shown that the Poisson representation of random point processes is superior to pseudorandom-number-generated models and that pseudorandom-number-generated models bias the observed nearest-neighbor statistics towards regularity. Interpretation of this nearest-neighbor statistics is discussed for many cases of superpositions of clustering, randomness, and regularity. A detailed analysis is carried out of cumulus cloud field spatial distributions based upon Landsat, AVHRR, and Skylab data, showing that, when both large and small clouds are included in the cloud field distributions, the cloud field always has a strong clustering signal.

  2. NEWLY IDENTIFIED EXTENDED GREEN OBJECTS (EGOs) FROM THE SPITZER GLIMPSE II SURVEY. II. MOLECULAR CLOUD ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xi; Gan Conggui; Shen Zhiqiang [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Ellingsen, Simon P.; Titmarsh, Anita [School of Mathematics and Physics, University of Tasmania, Hobart, Tasmania (Australia); He Jinhua, E-mail: chenxi@shao.ac.cn [Key Laboratory for the Structure and Evolution of Celestial Objects, Yunnan Astronomical Observatory/National Astronomical Observatory, Chinese Academy of Sciences, P.O. Box 110, Kunming 650011, Yunnan Province (China)

    2013-06-01

    We have undertaken a survey of molecular lines in the 3 mm band toward 57 young stellar objects using the Australia Telescope National Facility Mopra 22 m radio telescope. The target sources were young stellar objects with active outflows (extended green objects (EGOs)) newly identified from the GLIMPSE II survey. We observe a high detection rate (50%) of broad line wing emission in the HNC and CS thermal lines, which combined with the high detection rate of class I methanol masers toward these sources (reported in Paper I) further demonstrates that the GLIMPSE II EGOs are associated with outflows. The physical and kinematic characteristics derived from the 3 mm molecular lines for these newly identified EGOs are consistent with these sources being massive young stellar objects with ongoing outflow activity and rapid accretion. These findings support our previous investigations of the mid-infrared properties of these sources and their association with other star formation tracers (e.g., infrared dark clouds, methanol masers and millimeter dust sources) presented in Paper I. The high detection rate (64%) of the hot core tracer CH{sub 3}CN reveals that the majority of these new EGOs have evolved to the hot molecular core stage. Comparison of the observed molecular column densities with predictions from hot core chemistry models reveals that the newly identified EGOs from the GLIMPSE II survey are members of the youngest hot core population, with an evolutionary time scale of the order of 10{sup 3} yr.

  3. Isolating signatures of major cloud-cloud collisions II: The lifetimes of broad bridge features

    CERN Document Server

    Haworth, T J; Tasker, E J; Fukui, Y; Torii, K; Dale, J E; Takahira, K; Habe, A

    2015-01-01

    We investigate the longevity of broad bridge features in position-velocity diagrams that appear as a result of cloud-cloud collisions. Broad bridges will have a finite lifetime due to the action of feedback, conversion of gas into stars and the timescale of the collision. We make a series of analytic arguments with which to estimate these lifetimes. Our simple analytic arguments suggest that for collisions between clouds larger than R~10 pc the lifetime of the broad bridge is more likely to be determined by the lifetime of the collision rather than the radiative or wind feedback disruption timescale. However for smaller clouds feedback becomes much more effective. This is because the radiative feedback timescale scales with the ionising flux Nly as R^{7/4}Nly^{-1/4} so a reduction in cloud size requires a relatively large decrease in ionising photons to maintain a given timescale. We find that our analytic arguments are consistent with new synthetic observations of numerical simulations of cloud-cloud collisi...

  4. CNO behaviour in planet-harbouring stars. II. Carbon abundances in stars with and without planets using the CH band

    Science.gov (United States)

    Suárez-Andrés, L.; Israelian, G.; González Hernández, J. I.; Adibekyan, V. Zh.; Delgado Mena, E.; Santos, N. C.; Sousa, S. G.

    2017-03-01

    Context. Carbon, oxygen and nitrogen (CNO) are key elements in stellar formation and evolution, and their abundances should also have a significant impact on planetary formation and evolution. Aims: We aim to present a detailed spectroscopic analysis of 1110 solar-type stars, 143 of which are known to have planetary companions. We have determined the carbon abundances of these stars and investigate a possible connection between C and the presence of planetary companions. Methods: We used the HARPS spectrograph to obtain high-resolution optical spectra of our targets. Spectral synthesis of the CH band at 4300 Å was performed with the spectral synthesis codes MOOG and FITTING. Results: We have studied carbon in several reliable spectral windows and have obtained abundances and distributions that show that planet host stars are carbon rich when compared to single stars, a signature caused by the known metal-rich nature of stars with planets. We find no different behaviour when separating the stars by the mass of the planetary companion Conclusions: We conclude that reliable carbon abundances can be derived for solar-type stars from the CH band at 4300 Å. We confirm two different slope trends for [C/Fe] with [Fe/H] because the behaviour is opposite for stars above and below solar values. We observe a flat distribution of the [C/Fe] ratio for all planetary masses, a finding that apparently excludes any clear connection between the [C/Fe] abundance ratio and planetary mass. Based on observations collected at the La Silla Paranal Observatory, ESO (Chile) with the HARPS spectrograph at the 3.6-m telescope (ESO runs ID 72.C-0488, 082.C-0212, and 085.C-0063).Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A96

  5. OGLE Atlas of Classical Novae II. Magellanic Clouds

    CERN Document Server

    Mroz, P; Poleski, R; Soszynski, I; Szymanski, M K; Pietrzynski, G; Wyrzykowski, L; Ulaczyk, K; Kozlowski, S; Pietrukowicz, P; Skowron, J

    2016-01-01

    The population of classical novae in the Magellanic Clouds was poorly known because of a lack of systematic studies. There were some suggestions that nova rates per unit mass in the Magellanic Clouds were higher than in any other galaxy. Here, we present an analysis of data collected over sixteen years by the OGLE survey with the aim of characterizing nova population in the Clouds. We found twenty eruptions of novae, half of them are new discoveries. We robustly measure the nova rates of $2.4 \\pm 0.8$ yr$^{-1}$ (LMC) and $0.9 \\pm 0.4$ yr$^{-1}$ (SMC) and confirm that K-band luminosity-specific nova rates in both Clouds are 2-3 times higher than in other galaxies. This can be explained by the star formation history in the Magellanic Clouds, specifically a re-ignition of the star formation rate a few Gyr ago. We also present the discovery of an intriguing system OGLE-MBR133.25.1160 which mimics recurrent nova eruptions.

  6. OGLE Atlas of Classical Novae. II. Magellanic Clouds

    Science.gov (United States)

    Mróz, P.; Udalski, A.; Poleski, R.; Soszyński, I.; Szymański, M. K.; Pietrzyński, G.; Wyrzykowski, Ł.; Ulaczyk, K.; Kozłowski, S.; Pietrukowicz, P.; Skowron, J.

    2016-01-01

    The population of classical novae in the Magellanic Clouds was poorly known because of a lack of systematic studies. There were some suggestions that nova rates per unit mass in the Magellanic Clouds were higher than in any other galaxy. Here, we present an analysis of data collected over 16 years by the OGLE survey with the aim of characterizing the nova population in the Clouds. We found 20 eruptions of novae, half of which are new discoveries. We robustly measure nova rates of 2.4 ± 0.8 yr-1 (LMC) and 0.9 ± 0.4 yr-1 (SMC) and confirm that the K-band luminosity-specific nova rates in both Clouds are 2-3 times higher than in other galaxies. This can be explained by the star formation history in the Magellanic Clouds, specifically the re-ignition of the star formation rate a few Gyr ago. We also present the discovery of the intriguing system OGLE-MBR133.25.1160, which mimics recurrent nova eruptions.

  7. Dispersion of Magnetic Fields in Molecular Clouds. II

    CERN Document Server

    Houde, Martin; Hildebrand, Roger H; Chitsazzadeh, Shadi; Kirby, Larry

    2009-01-01

    We expand our study on the dispersion of polarization angles in molecular clouds. We show how the effect of signal integration through the thickness of the cloud as well as across the area subtended by the telescope beam inherent to dust continuum measurements can be incorporated in our analysis to correctly account for its effect on the measured angular dispersion and inferred turbulent to large-scale magnetic field strength ratio. We further show how to evaluate the turbulent magnetic field correlation scale from polarization data of sufficient spatial resolution and high enough spatial sampling rate. We apply our results to the molecular cloud OMC-1, where we find a turbulent correlation length of approximately 16 mpc, a turbulent to large-scale magnetic field strength ratio of approximately 0.5, and a plane-of-the-sky large-scale magnetic field strength of approximately 0.76 mG.

  8. Properties of High-Redshift Lyman Alpha Clouds II. Statistical Properties of the Clouds

    CERN Document Server

    Press, W H; Press, William H.; Rybicki, George B.

    1993-01-01

    Curve of growth analysis, applied to the Lyman series absorption ratios deduced in our previous paper, yields a measurement of the logarithmic slope of distribution of \\Lya\\ clouds in column density $N$. The observed exponential distribution of the clouds' equivalent widths $W$ is then shown to require a broad distribution of velocity parameters $b$, extending up to 80 km s$^{-1}$. We show how the exponential itself emerges in a natural way. An absolute normalization for the differential distribution of cloud numbers in $z$, $N$, and $b$ is obtained. By detailed analysis of absorption fluctuations along the line of sight we are able to put upper limits on the cloud-cloud correlation function $\\xi$ on several megaparsec length scales. We show that observed $b$ values, if thermal, are incompatible, in several different ways, with the hypothesis of equilibrium heating and ionization by a background UV flux. Either a significant component of $b$ is due to bulk motion (which we argue against on several grounds), o...

  9. LHC Report: out of the clouds (part II)

    CERN Multimedia

    Giovanni Rumolo for the LHC team

    2015-01-01

    A large fraction of the LHC beam-time over the last two weeks has been devoted to the second phase of the scrubbing of the vacuum chambers. This was aimed at reducing the formation of electron clouds in the beam pipes, this time performed with 25-nanosecond spaced bunches. This operation is designed to prepare the machine for a smooth intensity ramp-up for physics with this type of beam.   The scrubbing of the accelerator beam pipes is done by running the machine under an intense electron cloud regime while respecting beam stability constraints. When electron cloud production becomes sufficiently intense, the probability of creating secondary electrons at the chamber walls decreases and this inhibits the whole process. In this way, the scrubbing operation eventually reduces the formation of electron clouds, which would otherwise generate instabilities in the colliding beams. The second phase of LHC scrubbing started on Saturday, 25 July, when 25 ns beams were circulated again in the LHC...

  10. Photometric investigation of the MBM 12 molecular cloud area in Aries. II. Cloud distance

    CERN Document Server

    Straizys, V; Kazlauskas, A; Laugalys, V

    2002-01-01

    Photoelectric magnitudes and color indices in the Vilnius seven-color system for 152 stars are used to investigate the interstellar extinction in the area of the Aries molecular cloud MBM 12, coinciding with the L1454 and L1457 dust clouds. Spectral types, absolute magnitudes, color excesses, interstellar extinctions and distances of the stars are determined. The plot of interstellar extinction Av versus distance shows that the dust cloud is situated at a distance of 325 pc, at 180 pc from the Galactic plane, and its true diameter is about 11 pc. The interstellar extinction law in the area is found to be normal, typical for the diffuse dust. Ten peculiar or unresolved binary stars and some heavily reddened stars are detected.

  11. The molecular cloud-H II region complexes associated with SH 90 and SH 235

    Science.gov (United States)

    Lafon, G.; Baudry, A.; de La Noe, J.; Deharveng, L.

    1983-07-01

    The Sharpless regions Sh 90 and Sh 235 are characterized on the basis of monochromatic photographs (at H-alpha, N III, and O III) and H-alpha photographic interferograms made at the Observatoire de Haute-Provence and of molecular-cloud maps (at 110.201 and 89.189 GHz) made at the Observatoire de Bordeaux. Sh 90, at a distance of 2.4 kpc, is found to have an evolved-H II-region shell structure, with ionized gas flowing both away from and toward a neutral molecular cloud with a mass of about 60,000 solar mass which lies partly in front of the H II region. Sh 235, at 1.6 kpc, has two extended 100,000-300,000-solar-mass neutral clouds which partly overlap. The northern cloud, identified at -20 km/s, is related to the optical nebula; the southern cloud (at -17 km/s) contains three compact H II regions (A, B, and C) and exhibits recent star-formation processes. The 'champagne' model of H II regions proposed by Tenorio-Tagle (1979) is considered applicable to Sh 90 and to Sh 235C.

  12. Dust in brown dwarfs and extra-solar planets IV. Assessing TiO2 and SiO nucleation for cloud formation modeling

    CERN Document Server

    Lee, G; Giles, H; Bromley, S T

    2014-01-01

    Clouds form in atmospheres of brown dwarfs and planets. The cloud particle formation processes are similar to the dust formation process studied in circumstellar shells of AGB stars and in Supernovae. Cloud formation modelling in substellar objects requires gravitational settling and element replenishment in addition to element depletion. All processes depend on the local conditions, and a simultaneous treatment is required. We apply new material data in order to assess our cloud formation model results regarding the treatment of the formation of condensation seeds. We re-address the question of the primary nucleation species in view of new (TiO2)_N-cluster data and new SiO vapour pressure data. We apply the density functional theory using the computational chemistry package Gaussian 09 to derive updated thermodynamical data for (TiO2)_N-clusters as input for our TiO2 seed formation model. We test different nucleation treatments and their effect on the overall cloud structure by solving a system of dust momen...

  13. THE NATURE OF TRANSITION CIRCUMSTELLAR DISKS. II. SOUTHERN MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Gisela A.; Schreiber, Matthias R.; Rebassa-Mansergas, Alberto [Departamento de Fisica y Astronomia, Universidad de Valparaiso, Valparaiso (Chile); Cieza, Lucas A. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Merin, Bruno [Herschel Science Centre, ESAC (ESA), P.O. Box 78, 28691 Villanueva de la Canada, Madrid (Spain); Smith Castelli, Analia V. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Allen, Lori E. [Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Morrell, Nidia [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile)

    2012-04-10

    Transition disk objects are pre-main-sequence stars with little or no near-IR excess and significant far-IR excess, implying inner opacity holes in their disks. Here we present a multifrequency study of transition disk candidates located in Lupus I, III, IV, V, VI, Corona Australis, and Scorpius. Complementing the information provided by Spitzer with adaptive optics (AO) imaging (NaCo, VLT), submillimeter photometry (APEX), and echelle spectroscopy (Magellan, Du Pont Telescopes), we estimate the multiplicity, disk mass, and accretion rate for each object in our sample in order to identify the mechanism potentially responsible for its inner hole. We find that our transition disks show a rich diversity in their spectral energy distribution morphology, have disk masses ranging from {approx}<1 to 10 M{sub JUP}, and accretion rates ranging from {approx}<10{sup -11} to 10{sup -7.7} M{sub Sun} yr{sup -1}. Of the 17 bona fide transition disks in our sample, three, nine, three, and two objects are consistent with giant planet formation, grain growth, photoevaporation, and debris disks, respectively. Two disks could be circumbinary, which offers tidal truncation as an alternative origin of the inner hole. We find the same heterogeneity of the transition disk population in Lupus III, IV, and Corona Australis as in our previous analysis of transition disks in Ophiuchus while all transition disk candidates selected in Lupus V, VI turned out to be contaminating background asymptotic giant branch stars. All transition disks classified as photoevaporating disks have small disk masses, which indicates that photoevaporation must be less efficient than predicted by most recent models. The three systems that are excellent candidates for harboring giant planets potentially represent invaluable laboratories to study planet formation with the Atacama Large Millimeter/Submillimeter Array.

  14. M2K. II. A TRIPLE-PLANET SYSTEM ORBITING HIP 57274

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Debra A.; Giguere, Matthew J.; Moriarty, John; Brewer, John; Spronck, Julien F. P.; Schwab, Christian; Szymkowiak, Andrew [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Gaidos, Eric [Department of Geology and Geophysics, University of Hawaii, Honolulu, HI 96822 (United States); Howard, Andrew W.; Marcy, Geoffrey W. [Department of Astronomy, University of California at Berkeley, Berkeley, CA 94720 (United States); Johnson, John A. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Wright, Jason T. [Center for Exoplanets and Habitable Worlds, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16803 (United States); Valenti, Jeff A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Piskunov, Nikolai [Department of Astronomy and Space Physics, Uppsala University, Box 515, 751 20 Uppsala (Sweden); Clubb, Kelsey I.; Isaacson, Howard [Pufendorf Institute for Advanced Studies, Lund University, Lund (Sweden); Apps, Kevin [75B Cheyne Walk, Surrey RH6 7LR (United Kingdom); Lepine, Sebastien [American Museum of Natural History, New York, NY 10023 (United States); Mann, Andrew, E-mail: debra.fischer@yale.edu [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2012-01-20

    Doppler observations from Keck Observatory have revealed a triple-planet system orbiting the nearby K4V star, HIP 57274. The inner planet, HIP 57274b, is a super-Earth with Msin i = 11.6 M{sub Circled-Plus} (0.036 M{sub Jup}), an orbital period of 8.135 {+-} 0.004 days, and slightly eccentric orbit e = 0.19 {+-} 0.1. We calculate a transit probability of 6.5% for the inner planet. The second planet has Msin i = 0.4 M{sub Jup} with an orbital period of 32.0 {+-} 0.02 days in a nearly circular orbit (e = 0.05 {+-} 0.03). The third planet has Msin i = 0.53 M{sub Jup} with an orbital period of 432 {+-} 8 days (1.18 years) and an eccentricity e = 0.23 {+-} 0.03. This discovery adds to the number of super-Earth mass planets with M sin i < 12 M{sub Circled-Plus} that have been detected with Doppler surveys. We find that 56% {+-} 18% of super-Earths are members of multi-planet systems. This is certainly a lower limit because of observational detectability limits, yet significantly higher than the fraction of Jupiter mass exoplanets, 20% {+-} 8%, that are members of Doppler-detected, multi-planet systems.

  15. On the nearest molecular clouds. II - MBM 12 and 16

    Science.gov (United States)

    Hobbs, L. M.; Penprase, B. E.; Welty, D. E.; Blitz, L.; Magnani, L.

    1988-01-01

    The paper presents echelle spectra recorded at the D lines of Na I for three stars projected on the high-latitude molecular cloud MBM 16 at l = 172 deg, b = -38 deg. The A stars HD 21142 at about 95 pc and HD 21134 at about 240 pc show strong D-line absorption at the same velocities as the CO emission observed at these positions. The distance to MBM 16 therefore is in the range of 60 to 95 pc. MBM 16 is only 11 deg away from MBM 12, previously placed by the same method at distance of about 65 pc. Consideration is given to the relationship between clouds 12 and 16 and the local hot low-density interstellar gas.

  16. Nearest molecular clouds. II. MBM 12 and 16

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, L.M.; Penprase, B.E.; Welty, D.E.; Blitz, L.; Magnani, L.

    1988-04-01

    The paper presents echelle spectra recorded at the D lines of Na I for three stars projected on the high-latitude molecular cloud MBM 16 at l = 172 deg, b = -38 deg. The A stars HD 21142 at about 95 pc and HD 21134 at about 240 pc show strong D-line absorption at the same velocities as the CO emission observed at these positions. The distance to MBM 16 therefore is in the range of 60 to 95 pc. MBM 16 is only 11 deg away from MBM 12, previously placed by the same method at distance of about 65 pc. Consideration is given to the relationship between clouds 12 and 16 and the local hot low-density interstellar gas. 36 references.

  17. Implications of infalling Fe II - emitting clouds in AGN: anisotropic properties

    CERN Document Server

    Ferland, Gary J; Wang, Jian-Min; Baldwin, Jack A; Porter, Ryan L; van Hoof, Peter A M; Williams, R J R

    2009-01-01

    We investigate consequences of the discovery that Fe II emission in quasars, one of the spectroscopic signatures of "Eigenvector 1", may originate in infalling clouds. Eigenvector 1 correlates with the Eddington ratio L/L_Edd so that Fe II/Hbeta increases as L/L_Edd increases. We show that the "force multiplier", the ratio of gas opacity to electron scattering opacity, is ~ 10^3 - 10^4 in Fe II emitting gas. Such gas would be accelerated away from the central object if the radiation force is able to act on the entire cloud. Infall requires that the clouds have large column densities so that a substantial amount of shielded gas is present. The critical column density required for infall to occur depends on L/L_Edd, establishing a link between Eigenvector 1 and the Fe II/Hbeta ratio. We see predominantly the shielded face of the infalling clouds rather than the symmetric distribution of emitters that has been assumed. The Fe II spectrum emitted by the shielded face is in good agreement with observations thus so...

  18. Clouds in the atmospheres of extrasolar planets. IV. On the scattering greenhouse effect of CO2 ice particles: Numerical radiative transfer studies

    CERN Document Server

    Kitzmann, D; Rauer, H

    2013-01-01

    Owing to their wavelengths dependent absorption and scattering properties, clouds have a strong impact on the climate of planetary atmospheres. Especially, the potential greenhouse effect of CO2 ice clouds in the atmospheres of terrestrial extrasolar planets is of particular interest because it might influence the position and thus the extension of the outer boundary of the classic habitable zone around main sequence stars. We study the radiative effects of CO2 ice particles obtained by different numerical treatments to solve the radiative transfer equation. The comparison between the results of a high-order discrete ordinate method and simpler two-stream approaches reveals large deviations in terms of a potential scattering efficiency of the greenhouse effect. The two-stream methods overestimate the transmitted and reflected radiation, thereby yielding a higher scattering greenhouse effect. For the particular case of a cool M-type dwarf the CO2 ice particles show no strong effective scattering greenhouse eff...

  19. The Solar Twin Planet Search II. A Jupiter twin around a solar twin

    CERN Document Server

    Bedell, M; Bean, J L; Ramirez, I; Asplund, M; Alves-Brito, A; Casagrande, L; Dreizler, S; Monroe, T; Spina, L; Maia, M Tucci

    2015-01-01

    Through our HARPS radial velocity survey for planets around solar twin stars, we have identified a promising Jupiter twin candidate around the star HIP11915. We characterize this Keplerian signal and investigate its potential origins in stellar activity. Our analysis indicates that HIP11915 hosts a Jupiter-mass planet with a 3600-day orbital period and low eccentricity. Although we cannot definitively rule out an activity cycle interpretation, we find that a planet interpretation is more likely based on a joint analysis of RV and activity index data. The challenges of long-period radial velocity signals addressed in this paper are critical for the ongoing discovery of Jupiter-like exoplanets. If planetary in nature, the signal investigated here represents a very close analog to the solar system in terms of both Sun-like host star and Jupiter-like planet.

  20. VizieR Online Data Catalog: SPOTS II. Planets Orbiting Two Stars (Bonavita+, 2016)

    Science.gov (United States)

    Bonavita, M.; Desidera, S.; Thalmann, C.; Janson, M.; Vigan, A.; Chauvin, G.; Lannier, J.

    2016-11-01

    We present a statistical analysis of the combined body of existing high-contrast imaging constraints on circumbinary planets, to complement our ongoing SPOTS direct imaging survey dedicated to such planets. The sample of stars considered includes 117 objects and comes from a search for tight binaries within the target lists of 23 published direct imaging surveys, including some of the deepest ones performed to data. (2 data files).

  1. Detailed Abundances of Planet-Hosting Wide Binaries. II. HD80606 + HD80607

    CERN Document Server

    Mack, Claude E; Schuler, Simon C; Hebb, Leslie; Pepper, Joshua A

    2016-01-01

    We present a detailed chemical abundance analysis of 15 elements in the planet-hosting wide binary system HD80606 + HD80607 using Keck/HIRES spectra. As in our previous analysis of the planet-hosting wide binary HD20782 + HD20781, we presume that these two G5 dwarf stars formed together and therefore had identical primordial abundances. In this binary, HD80606 hosts an eccentric ($e\\approx0.93$) giant planet at $\\sim$0.5 AU, but HD80607 has no detected planets. If close-in giant planets on eccentric orbits are efficient at scattering rocky planetary material into their host stars, then HD80606 should show evidence of having accreted rocky material while HD80607 should not. Here we show that the trends of abundance versus element condensation temperature for HD80606 and HD80607 are statistically indistinguishable, corroborating the recent result of Saffe et al. This could suggest that both stars accreted similar amounts of rocky material; indeed, our model for the chemical signature of rocky planet accretion i...

  2. Dusty uch II regions: cloud pressures and density distributions

    Directory of Open Access Journals (Sweden)

    Stan Kurtz

    2001-01-01

    Full Text Available Discutimos brevemente el efecto de presi on ambiental y de los gradientes de densidad en las propiedades observadas de las regiones UCH ii con polvo y de la nueva clase de regiones Super-ultra-compactas. La absorci on del polvo puede reducir muy e cientemente el tama~no de las regiones fotoionizadas y los gradientes de densidad pueden modi car el ndice espectral de la emisi on. El efecto de los gradientes tambi en se observa en regiones H ii extragal acticas.

  3. The Nature of Transition Circumstellar Disks II. Southern Molecular Clouds

    CERN Document Server

    Romero, Gisela A; Cieza, Lucas A; Rebassa-Mansergas, Alberto; Merín, Bruno; Castelli, Analía V Smith; Allen, Lori E; Morrell, Nidia; 10.1088/0004-637X/749/1/79

    2012-01-01

    Transition disk objects are pre-main-sequence stars with little or no near-IR excess and significant far-IR excess, implying inner opacity holes in their disks. Here we present a multifrequency study of transition disk candidates located in Lupus I, III, IV, V, VI, Corona Australis, and Scorpius. Complementing the information provided by Spitzer with adaptive optics (AO) imaging (NaCo, VLT), submillimeter photometry (APEX), and echelle spectroscopy (Magellan, Du Pont Telescopes), we estimate the multiplicity, disk mass, and accretion rate for each object in our sample in order to identify the mechanism potentially responsible for its inner hole. We find that our transition disks show a rich diversity in their spectral energy distribution morphology, have disk masses ranging from lsim1 to 10 M JUP, and accretion rates ranging from lsim10-11 to 10-7.7 M \\odot yr-1. Of the 17 bona fide transition disks in our sample, three, nine, three, and two objects are consistent with giant planet formation, grain growth, ph...

  4. Constructing the secular architecture of the solar system II: The terrestrial planets

    CERN Document Server

    Brasser, Ramon; Gomes, Rodney; Tsiganis, Kleomenis; Levison, Harold F

    2009-01-01

    We investigate the dynamical evolution of the terrestrial planets during the planetesimal-driven migration of the giant planets. A basic assumption of this work is that giant planet migration occurred after the completion of terrestrial planet formation, such as in the models that link the former to the origin of the Late Heavy Bombardment. The divergent migration of Jupiter and Saturn causes the g5 eigenfrequency to cross resonances of the form g5=gk with k ranging from 1 to 4. Consequently these secular resonances cause large-amplitude responses in the eccentricities of the terrestrial planets. We show that the resonances g5=g_4 and g5=g3 do not pose a problem if Jupiter and Saturn have a fast approach and departure from their mutual 2:1 mean motion resonance. On the other hand, the resonance crossings g5=g2 and g5=g1 are more of a concern as they tend to yield a terrestrial system incompatible with the current one. We offer two solutions to this problem. The first uses the fact that a secular resonance cro...

  5. PASTIS: Bayesian extrasolar planet validation II. Constraining exoplanet blend scenarios using spectroscopic diagnoses

    CERN Document Server

    Santerne, A; Almenara, J -M; Bouchy, F; Deleuil, M; Figueira, P; Hébrard, G; Moutou, C; Rodionov, S; Santos, N C

    2015-01-01

    The statistical validation of transiting exoplanets proved to be an efficient technique to secure the nature of small exoplanet signals which cannot be established by purely spectroscopic means. However, the spectroscopic diagnoses are providing us with useful constraints on the presence of blended stellar contaminants. In this paper, we present how a contaminating star affects the measurements of the various spectroscopic diagnoses as function of the parameters of the target and contaminating stars using the model implemented into the PASTIS planet-validation software. We find particular cases for which a blend might produce a large radial velocity signal but no bisector variation. It might also produce a bisector variation anti-correlated with the radial velocity one, as in the case of stellar spots. In those cases, the full width half maximum variation provides complementary constraints. These results can be used to constrain blend scenarios for transiting planet candidates or radial velocity planets. We r...

  6. Swansong Biospheres II: The final signs of life on terrestrial planets near the end of their habitable lifetimes

    CERN Document Server

    O'Malley-James, Jack T; Greaves, Jane S; Raven, John A

    2013-01-01

    The biosignatures of life on Earth do not remain static, but change considerably over the planet's habitable lifetime. Earth's future biosphere, much like that of the early Earth, will consist of predominantly unicellular microorganisms due to the increased hostility of environmental conditions caused by the Sun as it enters the late stage of its main sequence evolution. Building on previous work, the productivity of the biosphere is evaluated during different stages of biosphere decline between 1 Gyr and 2.8 Gyr from present. A simple atmosphere-biosphere interaction model is used to estimate the atmospheric biomarker gas abundances at each stage and to assess the likelihood of remotely detecting the presence of life in low-productivity, microbial biospheres, putting an upper limit on the lifetime of Earth's remotely detectable biosignatures. Other potential biosignatures such as leaf reflectance and cloud cover are discussed.

  7. XUV exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets II: Hydrogen coronae and ion escape

    CERN Document Server

    Kislyakova, K G; Holmström, M; Panchenko, M; Odert, P; Erkaev, N V; Leitzinger, M; Khodachenko, M L; Kulikov, Yu N; Güdel, M; Hanslmeier, A

    2012-01-01

    The interactions between the stellar wind plasma flow of a typical M star such as GJ 436 and hydrogen-rich upper atmospheres of an Earth-like planet and a "super-Earth" with the radius of 2 R_Earth and a mass of 10 M_Earth, located within the habitable zone at ~0.24 AU are studied. The formation of extended atomic hydrogen coronae under the influence of such factors as the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause) and the heating efficiency on the evolution of the hydrogen-rich upper atmospheres is investigated. XUV fluxes which are 1, 10, 50 and 100 times higher compared to that of the present Sun are considered and the formation of the high-energy neutral hydrogen clouds around the planets due to charge-exchange reaction under various stellar conditions have been modeled. Charge-exchange between stellar wind protons with the planetary hydrogen atoms and photoionization leads to the production of initially cold io...

  8. Final Masses of Giant Planets II: Jupiter Formation in a Gas-Depleted Disk

    CERN Document Server

    Tanigawa, Takayuki

    2015-01-01

    Firstly, we study the final masses of giant planets growing in protoplanetary disks through capture of disk gas, by employing an empirical formula for the gas capture rate and a shallow disk gap model, which are both based on hydrodynamical simulations. The shallow disk gaps cannot terminate growth of giant planets. For planets less massive than 10 Jupiter masses, their growth rates are mainly controlled by the gas supply through the global disk accretion, rather than their gaps. The insufficient gas supply compared with the rapid gas capture causes a depletion of the gas surface density even at the outside of the gap, which can create an inner hole in the protoplanetary disk. Our model can also predict the depleted gas surface density in the inner hole for a given planet mass. Secondly, our findings are applied to the formation of our solar system. For the formation of Jupiter, a very low-mass gas disk with a few or several Jupiter masses is required at the beginning of its gas capture because of the non-sto...

  9. Influence of Stellar Multiplicity On Planet Formation. II. Planets Are Less Common in Multiple-Star Systems with Separations Smaller than 1500 AU

    CERN Document Server

    Wang, Ji; Xie, Ji-Wei; Ciardi, David R

    2014-01-01

    Almost half of the stellar systems in the solar neighborhood are made up of multiple stars. In multiple-star systems, planet formation is under the dynamical influence of stellar companions, and the planet occurrence rate is expected to be different from that for single stars. There have been numerous studies on the planet occurrence rate of single star systems. However, to fully understand planet formation, the planet occurrence rate in multiple-star systems needs to be addressed. In this work, we {{infer}} the planet occurrence rate in multiple-star systems by measuring the stellar multiplicity rate for planet host stars. For a sub-sample of 56 $Kepler$ planet host stars, we use adaptive optics (AO) imaging and the radial velocity (RV) technique to search for stellar companions. The combination of these two techniques results in high search completeness for stellar companions. We detect 59 visual stellar companions to 25 planet host stars with AO data. {{Three stellar companions are within 2$^{\\prime\\prime}...

  10. Measurements of the Electron Cloud Density in the PEP-II Low Energy Ring

    CERN Document Server

    Byrd, J; Sonnad, K; Caspers, Friedhelm; Kroyer, T; Krasnykh, A; Pivi, M

    2009-01-01

    Clouds of low energy electrons in the vacuum beam pipes of accelerators of positively charged particle beams present a serious limitation for operation of these machines at high currents. Because of the size of these accelerators, it is difficult to probe the low energy electron clouds over substantial lengths of the beam pipe. We have developed a novel technique to directly measure the electron cloud density via the phase shift induced in a TE wave that is independently excited and transmitted over a section of the accelerator. We infer the absolute phase shift with relatively high accuracy from the phase modulation of the transmission due to the modulation of the electron cloud density from a gap in the positively charged beam. We have used this technique for the first time to measure the average electron cloud density over a 50 m straight section in the positron ring of the PEP-II collider at the Stanford Linear Accelerator Center. We have also measured the variation of the density by using low field solen...

  11. Measurements of the Electron Cloud Density in the PEP-II Low Energy Ring

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, John; De Santis, Stefano; Sonnad, Kiran; Caspers, Fritz; Kroyer, Tom; Krasnykh, Anatoly; Pivi, Mauro

    2008-06-01

    Clouds of low energy electronsin the vacuum beam pipes of accelerators of positively charged particle beams present a serious limitation for operation of these machines at high currents. Because of the size of these accelerators, it is difficult to probe the low energyelectron clouds over substantial lengths of the beam pipe. We have developed a novel technique to directly measure the electron cloud density via the phase shift induced in a TE wave that is independently excited and transmitted over a section of the accelerator. We infer the absolute phase shift with relatively high accuracy from the phase modulation of the transmission due to the modulation of the electron cloud density from a gap in the positively charged beam. We have used this technique for the first time to measure the average electron cloud density over a 50 m straight section in the positron ring of the PEP-II collider at the Stanford Linear Accelerator Center. We have also measured the variation of the density by using low field solenoid magnets to control the electrons.

  12. The Optical Depth of H II Regions in the Magellanic Clouds

    CERN Document Server

    Pellegrini, E W; Winkler, P F; Points, S D; Smith, R C

    2012-01-01

    We exploit ionization-parameter mapping as a powerful tool to measure the optical depth of star-forming H II regions. Our simulations based on the C LOUDY photoionization code and our new, SURFBRIGHT surface brightness simulator demonstrate that this technique can directly diagnose most density-bounded, optically thin nebulae with spatially resolved emission line data. We apply this method to the Large and Small Magellanic Clouds, using the data from the Magellanic Clouds Emission Line Survey. We generate new H II region catalogs based on photoionization criteria set by the observed ionization structure in the [SII]/[OIII] ratio and H{\\alpha} surface brightness. The luminosity functions from these catalogs generally agree with those from H{\\alpha}-only surveys. We then use ionization-parameter mapping to crudely classify all the nebulae into optically thick vs optically thin categories, yielding fundamental new insights into the Lyman continuum radiation transfer. We find that in both galaxies, the frequency ...

  13. Protostars and Planets VI

    Science.gov (United States)

    Beuther, Henrik; Klessen, Ralf S.; Dullemond, Cornelis P.; Henning, Thomas

    The Protostars and Planets book and conference series has been a long-standing tradition that commenced with the first meeting led by Tom Gehrels and held in Tucson, Arizona, in 1978. The goal then, as it still is today, was to bridge the gap between the fields of star and planet formation as well as the investigation of planetary systems and planets. As Tom Gehrels stated in the preface to the first Protostars and Planets book, "Cross-fertilization of information and understanding is bound to occur when investigators who are familiar with the stellar and interstellar phases meet with those who study the early phases of solar system formation." The central goal remained the same for the subsequent editions of the books and conferences Protostars and Planets II in 1984, Protostars and Planets III in 1990, Protostars and Planets IV in 1998, and Protostars and Planets V in 2005, but has now been greatly expanded by the flood of new discoveries in the field of exoplanet science. The original concept of the Protostars and Planets series also formed the basis for the sixth conference in the series, which took place on July 15-20, 2013. It was held for the first time outside of the United States in the bustling university town of Heidelberg, Germany. The meeting attracted 852 participants from 32 countries, and was centered around 38 review talks and more than 600 posters. The review talks were expanded to form the 38 chapters of this book, written by a total of 250 contributing authors. This Protostars and Planets volume reflects the current state-of-the-art in star and planet formation, and tightly connects the fields with each other. It is structured into four sections covering key aspects of molecular cloud and star formation, disk formation and evolution, planetary systems, and astrophysical conditions for life. All poster presentations from the conference can be found at www.ppvi.org. In the eight years that have passed since the fifth conference and book in the

  14. Insights into Planet Formation from Debris Disks. II. Giant Impacts in Extrasolar Planetary Systems

    Science.gov (United States)

    Wyatt, Mark C.; Jackson, Alan P.

    2016-12-01

    Giant impacts refer to collisions between two objects each of which is massive enough to be considered at least a planetary embryo. The putative collision suffered by the proto-Earth that created the Moon is a prime example, though most Solar System bodies bear signatures of such collisions. Current planet formation models predict that an epoch of giant impacts may be inevitable, and observations of debris around other stars are providing mounting evidence that giant impacts feature in the evolution of many planetary systems. This chapter reviews giant impacts, focussing on what we can learn about planet formation by studying debris around other stars. Giant impact debris evolves through mutual collisions and dynamical interactions with planets. General aspects of this evolution are outlined, noting the importance of the collision-point geometry. The detectability of the debris is discussed using the example of the Moon-forming impact. Such debris could be detectable around another star up to 10 Myr post-impact, but model uncertainties could reduce detectability to a few 100 yr window. Nevertheless the 3 % of young stars with debris at levels expected during terrestrial planet formation provide valuable constraints on formation models; implications for super-Earth formation are also discussed. Variability recently observed in some bright disks promises to illuminate the evolution during the earliest phases when vapour condensates may be optically thick and acutely affected by the collision-point geometry. The outer reaches of planetary systems may also exhibit signatures of giant impacts, such as the clumpy debris structures seen around some stars.

  15. Planet gaps in the dust layer of 3D protoplanetary disks. II. Observability with ALMA

    CERN Document Server

    Gonzalez, J -F; Maddison, S T; Ménard, F; Fouchet, L

    2012-01-01

    [Abridged] Aims: We provide predictions for ALMA observations of planet gaps that account for the specific spatial distribution of dust that results from consistent gas+dust dynamics. Methods: In a previous work, we ran full 3D, two-fluid Smoothed Particle Hydrodynamics (SPH) simulations of a planet embedded in a gas+dust T Tauri disk for different planet masses and grain sizes. In this work, the resulting dust distributions are passed to the Monte Carlo radiative transfer code MCFOST to construct synthetic images in the ALMA wavebands. We then use the ALMA simulator to produce images that include thermal and phase noise for a range of angular resolutions, wavelengths, and integration times, as well as for different inclinations, declinations and distances. We also produce images which assume that gas and dust are well mixed with a gas-to-dust ratio of 100 to compare with previous ALMA predictions, all made under this hypothesis. Results: Our findings clearly demonstrate the importance of correctly incorporat...

  16. Insights into planet formation from debris disks: II. Giant impacts in extrasolar planetary systems

    CERN Document Server

    Wyatt, Mark C

    2016-01-01

    Giant impacts refer to collisions between two objects each of which is massive enough to be considered at least a planetary embryo. The putative collision suffered by the proto-Earth that created the Moon is a prime example, though most Solar System bodies bear signatures of such collisions. Current planet formation models predict that an epoch of giant impacts may be inevitable, and observations of debris around other stars are providing mounting evidence that giant impacts feature in the evolution of many planetary systems. This chapter reviews giant impacts, focussing on what we can learn about planet formation by studying debris around other stars. Giant impact debris evolves through mutual collisions and dynamical interactions with planets. General aspects of this evolution are outlined, noting the importance of the collision-point geometry. The detectability of the debris is discussed using the example of the Moon-forming impact. Such debris could be detectable around another star up to 10Myr post-impac...

  17. Signatures of planets and protoplanets in the Galactic center: a clue to understand the G2 cloud?

    CERN Document Server

    Mapelli, Michela

    2015-01-01

    Several hundred young stars lie in the innermost parsec of our Galaxy. The super-massive black hole (SMBH) might capture planets orbiting these stars, and bring them onto nearly radial orbits. The same fate might occur to planetary embryos (PEs), i.e. protoplanets born from gravitational instabilities in protoplanetary disks. In this paper, we investigate the emission properties of rogue planets and PEs in the Galactic center. In particular, we study the effects of photoevaporation, caused by the ultraviolet background. Rogue planets can hardly be detected by current or forthcoming facilities, unless they are tidally disrupted and accrete onto the SMBH. In contrast, photoevaporation of PEs (especially if the PE is being tidally stripped) might lead to a recombination rate as high as ~10^45 s^-1, corresponding to a Brackett-gamma luminosity ~10^31 erg s^-1, very similar to the observed luminosity of the dusty object G2. We critically discuss the possibility that G2 is a rogue PE, and the major uncertainties of...

  18. Spitzer observations of dust emission from H II regions in the Large Magellanic Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Ian W. [Now at Institute for Astrophysical Research, Boston University, Boston, MA 02215, USA. (United States); Evans, Jessica Marie; Xue, Rui; Chu, You-Hua; Gruendl, Robert A.; Segura-Cox, Dominique M., E-mail: ianws@bu.edu [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

    2014-04-01

    Massive stars can alter physical conditions and properties of their ambient interstellar dust grains via radiative heating and shocks. The H II regions in the Large Magellanic Cloud (LMC) offer ideal sites to study the stellar energy feedback effects on dust because stars can be resolved, and the galaxy's nearly face-on orientation allows us to unambiguously associate H II regions with their ionizing massive stars. The Spitzer Space Telescope survey of the LMC provides multi-wavelength (3.6-160 μm) photometric data of all H II regions. To investigate the evolution of dust properties around massive stars, we have analyzed spatially resolved IR dust emission from two classical H II regions (N63 and N180) and two simple superbubbles (N70 and N144) in the LMC. We produce photometric spectral energy distributions (SEDs) of numerous small subregions for each region based on its stellar distributions and nebular morphologies. We use DustEM dust emission model fits to characterize the dust properties. Color-color diagrams and model fits are compared with the radiation field (estimated from photometric and spectroscopic surveys). Strong radial variations of SEDs can be seen throughout the regions, reflecting the available radiative heating. Emission from very small grains drastically increases at locations where the radiation field is the highest, while polycyclic aromatic hydrocarbons (PAHs) appear to be destroyed. PAH emission is the strongest in the presence of molecular clouds, provided that the radiation field is low.

  19. The Physical Conditions of Intermediate Redshift MgII Absorbing Clouds from Voigt Profile Analysis

    CERN Document Server

    Churchill, C W; Charlton, J; Churchill, Chris; Vogt, Steven; Charlton, Jane

    2003-01-01

    [Slightly Abridged] We present a detailed statistical analysis of the column densities, N, and Doppler parameters, b, of MgII absorbing clouds at redshifts 0.4~5 km/s for MgII and FeII and ~7 km/s for MgI. The clouds are consistent with being thermally broadened, with temperatures in the 30-40,000K range. (4) A two-component Gaussian model to the velocity two-point correlation function yielded velocity dispersions of 54 km/s and 166 km/s. The narrow component has roughly twice the amplitude of the broader component. The width and amplitude of the broader component decreases as equivalent width increases. (5) From photoionization models we find that the column density ratios are most consistent with photoionization by the extragalactic background, as opposed to stars. Based upon N(MgI)/N(MgII), it appears that at least two-phase ionization models are required to explain the data.

  20. The Magellanic Inter-Cloud Project (MAGIC) II: Slicing up the Bridge

    CERN Document Server

    Noel, Noelia E D; Read, Justin I; Dolphin, Andrew; Rix, Hans-Walter

    2015-01-01

    The origin of the gas in between the Magellanic Clouds (MCs), known as the Magellanic Bridge (MB), has always been the subject of controversy. To shed light into this, we present the results from the MAGIC II project aimed at probing the stellar populations in ten large fields located perpendicular to the main ridge-line of HI in the Inter-Cloud region. We secured these observations of the stellar populations in between the MCs using the WFI camera on the 2.2 m telescope in La Silla. Using colour-magnitude diagrams (CMDs), we trace stellar populations across the Inter-Cloud region. In good agreement with MAGIC I, we find significant intermediate-age stars in the Inter-Cloud region as well as young stars of a similar age to the last pericentre passage in between the MCs (~200 Myr ago). We show here that the young, intermediate-age and old stars have distinct spatial distributions. The young stars correlate well with the HI gas suggesting that they were either recently stripped from the SMC or formed in-situ. T...

  1. Stellar irradiated discs and implications on migration of embedded planets II: accreting-discs

    CERN Document Server

    Bitsch, Bertram; Lega, Elena; Crida, Aurélien

    2014-01-01

    The strength and direction of migration of embedded low mass planets depends on the disc's structure. It has been shown that, in discs with viscous heating and radiative transport, the migration can be directed outwards. In this paper we investigate the influence of a constant dM/dt-flux through the disc, as well as the influence of the disc's metallicity on the disc's thermodynamics. We focus on dM/dt discs, which have a net mass flux through them. Utilizing the resulting disc structure, we determine the regions of outward migration in the disc. We perform numerical hydrosimulations of dM/dt discs with viscous heating, radiative cooling and stellar irradiation in 2D in the r-z-plane. We use the explicit/implicit hydrodynamical code FARGOCA that includes a full tensor viscosity and stellar irradiation, as well as a two temperature solver that includes radiation transport in the flux-limited diffusion approximation. The migration of embedded planets is studied by using torque formulae. For a disc of gas surfac...

  2. KNOW THE STAR, KNOW THE PLANET. II. SPECKLE INTERFEROMETRY OF EXOPLANET HOST STARS

    Energy Technology Data Exchange (ETDEWEB)

    Mason, Brian D.; Hartkopf, William I. [United States Naval Observatory, Washington, DC 20392-5420 (United States); Raghavan, Deepak [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303-3083 (United States); Subasavage, John P. [Cerro Tololo Inter-American Observatory, La Serena (Chile); Roberts, Lewis C. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Turner, Nils H.; Ten Brummelaar, Theo A., E-mail: bdm@usno.navy.mil, E-mail: wih@usno.navy.mil, E-mail: raghavan@chara.gsu.edu, E-mail: jsubasavage@ctio.noao.edu, E-mail: lewis.c.roberts@jpl.nasa.gov, E-mail: nils@chara-array.org, E-mail: theo@chara-array.org [Center for High Angular Resolution Astronomy, Georgia State University, Mt. Wilson, CA 91023 (United States)

    2011-11-15

    A study of the host stars to exoplanets is important for understanding their environment. To that end, we report new speckle observations of a sample of exoplanet host primaries. The bright exoplanet host HD 8673 (= HIP 6702) is revealed to have a companion, although at this time we cannot definitively establish the companion as physical or optical. The observing lists for planet searches and for these observations have for the most part been pre-screened for known duplicity, so the detected binary fraction is lower than what would otherwise be expected. Therefore, a large number of double stars were observed contemporaneously for verification and quality control purposes, to ensure that the lack of detection of companions for exoplanet hosts was valid. In these additional observations, 10 pairs are resolved for the first time and 60 pairs are confirmed. These observations were obtained with the USNO speckle camera on the NOAO 4 m telescopes at both KPNO and CTIO from 2001 to 2010.

  3. Disruption of Molecular Clouds by Expansion of Dusty H II Regions

    CERN Document Server

    Kim, Jeong-Gyu; Ostriker, Eve C

    2016-01-01

    Dynamical expansion of H II regions around star clusters plays a key role in dispersing the surrounding dense gas and therefore in limiting the efficiency of star formation in molecular clouds. We use a semi-analytic method and numerical simulations to explore expansion of spherical dusty H II regions and surrounding neutral shells and the resulting cloud disruption. Our model for shell expansion adopts the static solutions of Draine (2011) for dusty H II regions and considers the contact outward forces on the shell due to radiation and thermal pressures as well as the inward gravity from the central star and the shell itself. We show that the internal structure we adopt and the shell evolution from the semi-analytic approach are in good agreement with the results of numerical simulations. Strong radiation pressure in the interior controls the shell expansion indirectly by enhancing the density and pressure at the ionization front. We calculate the minimum star formation efficiency $\\epsilon_{min}$ required f...

  4. Extended study of the Surface Heterogeneity of candidate dwarf-planets (II)

    Science.gov (United States)

    Pinilla-Alonso, Noemi; Emery, Joshua; Cruikshank, Dale P.

    2016-08-01

    We propose to continue with our investigation of the volatile activity and migration of volatiles on dwarf-planets (DP) and some candidates to dwarf-planets (CDP). We also extend this study to cover the list of targets for the Kuiper Extended Mission (KEM, second phase of New horizons mission submitted by the New Horizons Team to NASA for extension, and yet to be approved) and extend our continuous monitoring of Pluto's surface. Surface heterogeneity on these bodies can be indicative of the presence of an atmosphere, and active collisional history, or even cometary activity. In cycle 12 we were awarded with ~ 38hr to study three DPs and three CDPs. Five of these objects have been announced in 2016 as targets of the KEM. On cycle 13 we ask for 145.5 hours to study 11 CDP plus five targets of the KEM (one object belongs to both lists but will be observed only once) plus Pluto. By using the proven capability of Spitzer to detect and map the presence of volatile ices, complex organics and silicates on the surface of these distant bodies, we will 1) test the hypothesis that KBOs on the scale of >450 km in diameter could retain a higher content of volatiles than the smaller and more abundant KBOs; 2) characterize the distribution of silicates/organics/ices on the surface of these bodies. These points are key to understanding chemical and dynamical history of the outer Solar System, which acts as a model for the new systems discovered around other stars. Our study will be be of special interest in the eve of James Webb Telescope operation, in 2019 and will pave the road for a detailed characterization of the targets of the Kuiper Extended Mission (if approved).

  5. Coupling dynamical and collisional evolution of small bodies II Forming the Kuiper Belt, the Scattered Disk and the Oort Cloud

    CERN Document Server

    Morbidelli, S C A

    2006-01-01

    The Oort Cloud, the Kuiper Belt and the Scattered Disk are dynamically distinct populations of small bodies evolving in the outer regions of the Solar System. Whereas their collisional activity is now quiet, gravitational interactions with giant planets may have shaped these populations both dynamically and collisionally during their formation. Using a hybrid approach (Charnoz & Morbidelli 2003), the present paper tries to couple the primordial collisional and dynamical evolution of these three populations in a self-consistent way. A critical parameter is the primordial size-distribution. We show that the initial planetesimal size distribution that allows an effective mass depletion of the Kuiper belt by collisional grinding, would decimate also the population of comet-size bodies that end in the Oort Cloud and, in particular, in the Scattered Disk. As a consequence, the Scattered Disk and the Oort Cloud would be too anemic, by a factor 20 to 100, relative to the estimates achieved from the observation of...

  6. Water vapor in the spectrum of the extrasolar planet HD 189733b. II. The eclipse

    Energy Technology Data Exchange (ETDEWEB)

    Crouzet, Nicolas [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4 (Canada); McCullough, Peter R. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Madhusudhan, Nikku, E-mail: crouzet@dunlap.utoronto.ca [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2014-11-10

    Spectroscopic observations of exoplanets are crucial to infer the composition and properties of their atmospheres. HD 189733b is one of the most extensively studied exoplanets and is a cornerstone for hot Jupiter models. In this paper, we report the dayside emission spectrum of HD 189733b in the wavelength range 1.1-1.7 μm obtained with the Hubble Space Telescope Wide Field Camera 3 (WFC3) in spatial scan mode. The quality of the data is such that even a straightforward analysis yields a high-precision Poisson noise-limited spectrum: the median 1σ uncertainty is 57 ppm per 0.02 μm bin. We also build a white-light curve correcting for systematic effects and derive an absolute eclipse depth of 96 ± 39 ppm. The resulting spectrum shows marginal evidence for water vapor absorption, but can also be well explained by a blackbody spectrum. However, the combination of these WFC3 data with previous Spitzer photometric observations is best explained by a dayside atmosphere of HD 189733b with no thermal inversion and a nearly solar or subsolar H{sub 2}O abundance in a cloud-free atmosphere. Alternatively, this apparent subsolar abundance may be the result of clouds or hazes that future studies need to investigate.

  7. An Evaluation of Northern Hemisphere Merged Cloud Analyses from the United States Air Force Cloud Depiction Forecasting System II

    Science.gov (United States)

    2013-03-01

    than LTE less than or equal to LWIR longwave infrared METEOSAT European Space Agency’s Meteorological Satellite METAR Meteorological...of the telemetry stream, sensor data calibration , and earth location. Level 2 is cloud-detection, cloud optical property retrieval, and parallax...merged into a global cloud analysis (Figure 1). Level one is data calibration , level two classifies each pixel into cloudy or clear, level three

  8. The VMC Survey. XIII. Type II Cepheids in the Large Magellanic Cloud

    CERN Document Server

    Ripepi, V; Marconi, M; Clementini, G; Cioni, M-R L; de Grijs, R; Emerson, J P; Groenewegen, M A T; Ivanov, V D; Muraveva, T; Piatti, A E; Subramanian, S

    2014-01-01

    The VISTA survey of the Magellanic Clouds System (VMC) is collecting deep $K_\\mathrm{s}$--band time--series photometry of the pulsating variable stars hosted in the system formed by the two Magellanic Clouds and the Bridge connecting them. In this paper we have analysed a sample of 130 Large Magellanic Cloud (LMC) Type II Cepheids (T2CEPs) found in tiles with complete or near complete VMC observations for which identification and optical magnitudes were obtained from the OGLE III survey. We present $J$ and $K_\\mathrm{s}$ light curves for all 130 pulsators, including 41 BL Her, 62 W Vir (12 pW Vir) and 27 RV Tau variables. We complement our near-infrared photometry with the $V$ magnitudes from the OGLE III survey, allowing us to build a variety of Period-Luminosity ($PL$), Period-Luminosity-Colour ($PLC$) and Period-Wesenheit ($PW$) relationships, including any combination of the $V, J, K_\\mathrm{s}$ filters and valid for BL Her and W Vir classes. These relationships were calibrated in terms of the LMC distanc...

  9. Red Giants in the Small Magellanic Cloud. II. Metallicity Gradient and Age-Metallicity Relation

    CERN Document Server

    Dobbie, P D; Subramaniam, A; Keller, S

    2015-01-01

    We present results from the largest CaII triplet line metallicity study of Small Magellanic Cloud (SMC) field red giant stars to date, involving 3037 objects spread across approximately 37.5 sq. deg., centred on this galaxy. We find a median metallicity of [Fe/H]=-0.99+/-0.01, with clear evidence for an abundance gradient of -0.075+/-0.011 dex / deg. over the inner 5 deg. We interpret the abundance gradient to be the result of an increasing fraction of young stars with decreasing galacto-centric radius, coupled with a uniform global age-metallicity relation. We also demonstrate that the age-metallicity relation for an intermediate age population located 10kpc in front of the NE of the Cloud is indistinguishable from that of the main body of the galaxy, supporting a prior conjecture that this is a stellar analogue of the Magellanic Bridge. The metal poor and metal rich quartiles of our RGB star sample (with complementary optical photometry from the Magellanic Clouds Photometric Survey) are predominantly older ...

  10. Determination of Orange II in food samples after cloud point extraction using mixed micelles.

    Science.gov (United States)

    Pourreza, N; Zareian, M

    2009-06-15

    In this paper, a cloud point extraction method for the determination of trace amounts of Orange II by spectrophotometry is described. The method is based on the extraction of Orange II from aqueous solution using mixed micelles of non-ionic surfactant, Triton X-100 and cationic surfactant cetyltrimethyl ammonium bromide (CTAB) in acidic media. The extracted surfactant rich phase is diluted with water and its absorbance is measured at 484 nm by a spectrophotometer. The effects of surfactant, acid and salt concentration, incubation time and temperature were investigated. The calibration graph was linear in the range of 2.1-420 ng mL(-1) of Orange II in the initial solution with r=0.9991 (n=12). Detection limit based on three times the standard deviation of the blank (3S(b)) was 0.67 ng mL(-1) and the relative standard deviation (RSD) for 35 and 105 ng mL(-1) of Orange II was 1.20% and 1.49% (n=10), respectively. The method was applied to the determination of Orange II in different food samples.

  11. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. II: Multi layered cloud

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, H.; McCoy, Renata; Klein, Stephen A.; Xie, Shaocheng; Luo, Yali; Avramov, Alexander; Chen, Mingxuan; Cole, Jason N.; Falk, Michael; Foster, Mike; Del Genio, Anthony D.; Harrington, Jerry Y.; Hoose, Corinna; Khrairoutdinov, Marat; Larson, Vince; Liu, Xiaohong; McFarquhar, Greg; Poellot, M. R.; Von Salzen, Knut; Shipway, Ben; Shupe, Matthew D.; Sud, Yogesh C.; Turner, David D.; Veron, Dana; Walker, Gregory K.; Wang, Zhien; Wolf, Audrey; Xu, Kuan-Man; Yang, Fanglin; Zhang, G.

    2009-05-21

    Results are presented from an intercomparison of single-column and cloud resolving model simulations of a deep, multi-layered, mixed-phase cloud system observed during the ARM Mixed-Phase Arctic Cloud Experiment. This cloud system was associated with strong surface turbulent sensible and latent heat fluxes as cold air flowed over the open Arctic Ocean, combined with a low pressure system that supplied moisture at mid-level. The simulations, performed by 13 single-column and 4 cloud-resolving models, generally overestimate the liquid water path and strongly underestimate the ice water path, although there is a large spread among the models. This finding is in contrast with results for the single-layer, low-level mixed-phase stratocumulus case in Part I of this study, as well as previous studies of shallow mixed-phase Arctic clouds, that showed an underprediction of liquid water path. The overestimate of liquid water path and underestimate of ice water path occur primarily when deeper mixed-phase clouds extending into the mid-troposphere were observed. These results suggest important differences in the ability of models to simulate Arctic mixed-phase clouds that are deep and multi-layered versus shallow and single-layered. In general, the cloud-resolving models and models with a more sophisticated, two-moment treatment of the cloud microphysics produce a somewhat smaller liquid water path that is closer to observations. The cloud-resolving models also tend to produce a larger cloud fraction than the single column models. The liquid water path and especially the cloud fraction have a large impact on the cloud radiative forcing at the surface, which is dominated by the longwave flux for this case.

  12. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. II. LAMB, SURFACE, AND CENTRIFUGAL WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)

    2014-07-01

    This paper is the second in a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases where the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this second part, we study the waves' solutions when several atmospheric approximations are applied: Lamb, surface, and centrifugal waves. Lamb and surface waves are found to be quite similar to those in a geostrophic regime. By contrast, centrifugal waves turn out to be a special case of Rossby waves that arise in atmospheres in cyclostrophic balance. Finally, we use our results to identify the nature of the waves behind atmospheric periodicities found in polar and lower latitudes of Venus's atmosphere.

  13. Hydrodynamics of Embedded Planets' First Atmospheres. II. A Rapid Recycling of Atmospheric Gas

    CERN Document Server

    Ormel, Chris W; Kuiper, Rolf

    2014-01-01

    Following Paper I we investigate the properties of atmospheres that form around small protoplanets embedded in a protoplanetary disc by conducting hydrodynamical simulations. These are now extended to three dimensions, employing a spherical grid centred on the planet. Compression of gas is shown to reduce rotational motions. Contrasting the 2D case, no clear boundary demarcates bound atmospheric gas from disc material; instead, we find an open system where gas enters the Bondi sphere at high latitudes and leaves through the midplane regions, or, vice versa, when the disc gas rotates sub-Keplerian. The simulations do not converge to a time-independent solution; instead, the atmosphere is characterized by a time-varying velocity field. Of particular interest is the timescale to replenish the atmosphere by nebular gas, $t_\\mathrm{replenish}$. It is shown that the replenishment rate, $M_\\mathrm{atm}/t_\\mathrm{replenish}$, can be understood in terms of a modified Bondi accretion rate, $\\sim$$R_\\mathrm{Bondi}^2\\rho...

  14. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part II: Multi-layered cloud

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, H; McCoy, R B; Klein, S A; Xie, S; Luo, Y; Avramov, A; Chen, M; Cole, J; Falk, M; Foster, M; Genio, A D; Harrington, J; Hoose, C; Khairoutdinov, M; Larson, V; Liu, X; McFarquhar, G; Poellot, M; Shipway, B; Shupe, M; Sud, Y; Turner, D; Veron, D; Walker, G; Wang, Z; Wolf, A; Xu, K; Yang, F; Zhang, G

    2008-02-27

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a deep, multi-layered, mixed-phase cloud system observed during the ARM Mixed-Phase Arctic Cloud Experiment. This cloud system was associated with strong surface turbulent sensible and latent heat fluxes as cold air flowed over the open Arctic Ocean, combined with a low pressure system that supplied moisture at mid-level. The simulations, performed by 13 single-column and 4 cloud-resolving models, generally overestimate the liquid water path and strongly underestimate the ice water path, although there is a large spread among the models. This finding is in contrast with results for the single-layer, low-level mixed-phase stratocumulus case in Part I of this study, as well as previous studies of shallow mixed-phase Arctic clouds, that showed an underprediction of liquid water path. The overestimate of liquid water path and underestimate of ice water path occur primarily when deeper mixed-phase clouds extending into the mid-troposphere were observed. These results suggest important differences in the ability of models to simulate Arctic mixed-phase clouds that are deep and multi-layered versus shallow and single-layered. In general, models with a more sophisticated, two-moment treatment of the cloud microphysics produce a somewhat smaller liquid water path that is closer to observations. The cloud-resolving models tend to produce a larger cloud fraction than the single-column models. The liquid water path and especially the cloud fraction have a large impact on the cloud radiative forcing at the surface, which is dominated by the longwave flux for this case.

  15. Simulating the environment around planet-hosting stars. II. Stellar winds and inner astrospheres

    Science.gov (United States)

    Alvarado-Gómez, J. D.; Hussain, G. A. J.; Cohen, O.; Drake, J. J.; Garraffo, C.; Grunhut, J.; Gombosi, T. I.

    2016-10-01

    We present the results of a comprehensive numerical simulation of the environment around three exoplanet-host stars (HD 1237, HD 22049, and HD 147513). Our simulations consider one of the latest models currently used for space weather studies in the Heliosphere, with turbulent Alfvén wave dissipation as the source of coronal heating and stellar wind acceleration. Large-scale magnetic field maps, recovered with two implementations of the tomographic technique of Zeeman-Doppler imaging, serve to drive steady-state solutions in each system. This paper contains the description of the stellar wind and inner astrosphere, while the coronal structure was discussed in a previous paper. The analysis includes the magneto-hydrodynamical properties of the stellar wind, the associated mass and angular momentum loss rates, as well as the topology of the astrospheric current sheet in each system. A systematic comparison among the considered cases is performed, including two reference solar simulations covering activity minimum and maximum. For HD 1237, we investigate the interactions between the structure of the developed stellar wind, and a possible magnetosphere around the Jupiter-mass planet in this system. We find that the process of particle injection into the planetary atmosphere is dominated by the density distribution rather than the velocity profile of the stellar wind. In this context, we predict a maximum exoplanetary radio emission of 12 mJy at 40 MHz in this system, assuming the crossing of a high-density streamer during periastron passage. Furthermore, in combination with the analysis performed in the first paper of this study, we obtain for the first time a fully simulated mass loss-activity relation. This relation is compared and discussed in the context of the previously proposed observational counterpart, derived from astrospheric detections. Finally, we provide a characterisation of the global 3D properties of the stellar wind of these systems, at the inner

  16. The Galactic Center Molecular Cloud Survey. II. A Lack of Dense Gas & Cloud Evolution along Galactic Center Orbits

    CERN Document Server

    Kauffmann, Jens; Zhang, Qizhou; Menten, Karl M; Goldsmith, Paul F; Lu, Xing; Guzmán, Andrés E; Schmiedeke, Anika

    2016-01-01

    We present the first systematic study of the density structure of clouds found in a complete sample covering all major molecular clouds in the Central Molecular Zone (CMZ; inner $\\sim{}200~\\rm{}pc$) of the Milky Way. This is made possible by using data from the Galactic Center Molecular Cloud Survey (GCMS), the first study resolving all major molecular clouds in the CMZ at interferometer angular resolution. We find that many CMZ molecular clouds have unusually shallow density gradients compared to regions elsewhere in the Milky Way. This is possibly a consequence of weak gravitational binding of the clouds. The resulting relative absence of dense gas on spatial scales $\\sim{}0.1~\\rm{}pc$ is probably one of the reasons why star formation (SF) in dense gas of the CMZ is suppressed by a factor $\\sim{}10$, compared to solar neighborhood clouds. Another factor suppressing star formation are the high SF density thresholds that likely result from the observed gas kinematics. Further, it is possible but not certain t...

  17. Planets under pressure

    Science.gov (United States)

    Jeanloz, Raymond

    2009-04-01

    Deep inside the planet Jupiter, diamonds hail down from hydrocarbon clouds as intense atmospheric pressures break methane into its atomic components. Further in - but still only 15% of the way to the planet's centre - the pressure reaches a million times that of the Earth's atmosphere. This is enough to transform hydrogen from the transparent, insulating gas we know at our planet's surface into a metallic fluid that sustains Jupiter's huge magnetic field. Even diamond is not forever: at pressures of 8-10 million atmospheres it is transformed into an opaque, metallic form of carbon, rather than the familiar transparent crystal.

  18. Primordial Planet Formation

    CERN Document Server

    Schild, Rudolph E

    2010-01-01

    Recent spacecraft observations exploring solar system properties impact standard paradigms of the formation of stars, planets and comets. We stress the unexpected cloud of microscopic dust resulting from the DEEP IMPACT mission, and the existence of molten nodules in STARDUST samples. And the theory of star formation does not explain the common occurrence of binary and multiple star systems in the standard gas fragmentation scenario. No current theory of planet formation can explain the iron core of the earth, under oceans of water. These difficulties are avoided in a scenario where the planet mass objects form primordially and are today the baryonic dark matter. They have been detected in quasar microlensing and anomalous quasar radio brightening bursts. The primordial planets often concentrate together to form a star, with residual matter seen in pre-stellar accretion discs around the youngest stars. These primordial planet mass bodies were formed of hydrogen-helium, aggregated in dense clumps of a trillion...

  19. COLLISIONAL EXCITATION OF THE [C II] FINE STRUCTURE TRANSITION IN INTERSTELLAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, Paul F.; Langer, William D.; Pineda, Jorge L.; Velusamy, T., E-mail: Paul.F.Goldsmith@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2012-11-15

    We analyze the collisional excitation of the 158 {mu}m (1900.5 GHz) fine structure transition of ionized carbon in terms of line intensities produced by simple cloud models. The single C{sup +} fine structure transition is a very important coolant of the atomic interstellar medium (ISM) and of photon-dominated regions in which carbon is partially or completely in ionized form. The [C II] line is widely used as a tracer of star formation in the Milky Way and other galaxies. Excitation of the [C II] fine structure transition can be via collisions with hydrogen molecules, atoms, and electrons. Analysis of [C II] observations is complicated by the fact that it is difficult to determine the optical depth of the line. We discuss the excitation of the [C II] line, deriving analytic results for several limiting cases and carry out numerical solutions using a large velocity gradient model for a more inclusive analysis. For antenna temperatures up to 1/3 of the brightness temperature of the gas kinetic temperature, the antenna temperature is linearly proportional to the column density of C{sup +} irrespective of the optical depth of the transition. This is appropriately referred to as the effectively optically thin approximation. We review the critical densities for excitation of the [C II] line by various collision partners, briefly analyze C{sup +} absorption, and conclude with a discussion of C{sup +} cooling and how the considerations for line intensities affect the behavior of this important coolant of the ISM.

  20. Characterizing the Transition from Diffuse Atomic to Dense Molecular Clouds in the Magellanic Clouds with [C ii], [C i], and CO

    Science.gov (United States)

    Pineda, Jorge L.; Langer, William D.; Goldsmith, Paul F.; Horiuchi, Shinji; Kuiper, Thomas B. H.; Muller, Erik; Hughes, Annie; Ott, Jürgen; Requena-Torres, Miguel A.; Velusamy, Thangasamy; Wong, Tony

    2017-04-01

    We present and analyze deep Herschel/HIFI observations of the [C ii] 158 μm, [C i] 609 μm, and [C i] 370 μm lines toward 54 lines of sight in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC). These observations are used to determine the physical conditions of the line-emitting gas, which we use to study the transition from atomic to molecular gas and from C+ to C0 to CO in their low-metallicity environments. We trace gas with molecular fractions in the range 0.1UV absorption (f({{{H}}}2) 0.45 in both the LMC and the SMC. Ionized carbon is the dominant gas-phase form of this element that is associated with molecular gas, with C0 and CO representing a small fraction, implying that most (89% in the LMC and 77% in the SMC) of the molecular gas in our sample is CO-dark H2. The mean {X}{CO} conversion factors in our LMC and SMC sample are larger than the value typically found in the Milky Way. When applying a correction based on the filling factor of the CO emission, we find that the values of {X}{CO} in the LMC and SMC are closer to that in the Milky Way. The observed [C ii] intensity in our sample represents about 1% of the total far-infrared intensity from the lines of sight observed in both Magellanic clouds.

  1. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium(II), lead(II), palladium(II) and silver(I) in environmental samples.

    Science.gov (United States)

    Ghaedi, Mehrorang; Shokrollahi, Ardeshir; Niknam, Khodabakhsh; Niknam, Ebrahim; Najibi, Asma; Soylak, Mustafa

    2009-09-15

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of cadmium(II), lead(II), palladium(II) and silver(I). The analytical procedure involved the formation of understudy metals complex with bis((1H-benzo [d] imidazol-2yl)ethyl) sulfane (BIES), and quantitatively extracted to the phase rich in octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. Methanol acidified with 1molL(-1) HNO(3) was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The concentration of BIES, pH and amount of surfactant (Triton X-114) was optimized. At optimum conditions, the detection limits of (3 sdb/m) of 1.4, 2.8, 1.6 and 1.4 ng mL(-1) for Cd(2+), Pb(2+), Pd(2+) and Ag(+) along with preconcentration factors of 30 and enrichment factors of 48, 39, 32 and 42 for Cd(2+), Pb(2+), Pd(2+) and Ag(+), respectively, were obtained. The proposed cloud point extraction has been successfully applied for the determination of metal ions in real samples with complicated matrix such as radiology waste, vegetable, blood and urine samples.

  2. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium(II), lead(II), palladium(II) and silver(I) in environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, Mehrorang, E-mail: m_ghaedi@mail.yu.ac.ir [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Shokrollahi, Ardeshir [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Niknam, Khodabakhsh [Chemistry Department, Persian Gulf University, Bushehr (Iran, Islamic Republic of); Niknam, Ebrahim; Najibi, Asma [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Soylak, Mustafa [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2009-09-15

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of cadmium(II), lead(II), palladium(II) and silver(I). The analytical procedure involved the formation of understudy metals complex with bis((1H-benzo [d] imidazol-2yl)ethyl) sulfane (BIES), and quantitatively extracted to the phase rich in octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. Methanol acidified with 1 mol L{sup -1} HNO{sub 3} was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The concentration of BIES, pH and amount of surfactant (Triton X-114) was optimized. At optimum conditions, the detection limits of (3 sdb/m) of 1.4, 2.8, 1.6 and 1.4 ng mL{sup -1} for Cd{sup 2+}, Pb{sup 2+}, Pd{sup 2+} and Ag{sup +} along with preconcentration factors of 30 and enrichment factors of 48, 39, 32 and 42 for Cd{sup 2+}, Pb{sup 2+}, Pd{sup 2+} and Ag{sup +}, respectively, were obtained. The proposed cloud point extraction has been successfully applied for the determination of metal ions in real samples with complicated matrix such as radiology waste, vegetable, blood and urine samples.

  3. The uptake of chlorine dioxide by type II polar stratospheric clouds

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.A. [Univ. of Colorado, Boulder, CO (United States); Graham, J.D.; Roberts, J.T. [Univ. of Minnesota, Minneapolis, MN (United States)

    1995-12-31

    We studied the uptake of chlorine dioxide by type II, ice, Polar Stratospheric Clouds with several experimental techniques. The surface coverage of OClO on amorphous ice was studied using a flow tube apparatus. These experiments determined an upper limit to the surface coverage of 2 x 10{sup 9} molec/cm{sup 2} for an OClO concentration of 6 x 10{sup 10} molec/cm{sup 3}. The first order desorption kinetics of OClO from single crystal. ice surfaces was measured in a UHV chamber using temperature programmed desorption. The activation energy for desorption is 23 kJ/mol with a preexponential of 2 x 10{sup 9} s{sup -1}. The sticking coefficient of OClO to amorphous and crystalline ice at 100 K is 0.8 and 0.6 respectively. Using the sticking coefficient and desorption kinetics, equilibrium surface coverages were calculated for OClO on type II PSCs.

  4. Improved SAGE II cloud/aerosol categorization and observations of the Asian tropopause aerosol layer: 1989–2005

    Directory of Open Access Journals (Sweden)

    L. W. Thomason

    2013-05-01

    Full Text Available We describe the challenges associated with the interpretation of extinction coefficient measurements by the Stratospheric Aerosol and Gas Experiment (SAGE II in the presence of clouds. In particular, we have found that tropospheric aerosol analyses are highly dependent on a robust method for identifying when clouds affect the measured extinction coefficient. Herein, we describe an improved cloud identification method that appears to capture cloud/aerosol events more effectively than early methods. In addition, we summarize additional challenges to observing the Asian Tropopause Aerosol Layer (ATAL using SAGE II observations. Using this new approach, we perform analyses of the upper troposphere, focusing on periods in which the UTLS (upper troposphere/lower stratosphere is relatively free of volcanic material (1989–1990 and after 1996. Of particular interest is the Asian monsoon anticyclone where CALIPSO (Cloud-Aerosol Lidar Pathfinder Satellite Observations has observed an aerosol enhancement. This enhancement, called the ATAL, has a similar morphology to observed enhancements in long-lived trace gas species like CO. Since the CALIPSO record begins in 2006, the question of how long this aerosol feature has been present requires a new look at the long-lived SAGE II data sets despite significant hurdles to its use in the subtropical upper troposphere. We find that there is no evidence of ATAL in the SAGE II data prior to 1998. After 1998, it is clear that aerosol in the upper troposphere in the ATAL region is substantially enhanced relative to the period before that time. In addition, the data generally supports the presence of the ATAL beginning in 1999 and continuing through the end of the mission, though some years (e.g., 2003 are complicated by the presence of episodic enhancements most likely of volcanic origin.

  5. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part II: hydrogen coronae and ion escape.

    Science.gov (United States)

    Kislyakova, Kristina G; Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V; Leitzinger, Martin; Khodachenko, Maxim L; Kulikov, Yuri N; Güdel, Manuel; Hanslmeier, Arnold

    2013-11-01

    We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a "super-Earth" with a radius of 2 R(Earth) and a mass of 10 M(Earth), located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×10²⁵ s⁻¹ to ∼5.3×10³⁰ s⁻¹, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EO(H)) to <3 EO(H) and usually is several times smaller in comparison to the thermal atmospheric escape rates.

  6. Colors of a Second Earth II: Effects of Clouds on Photometric Characterization of Earth-like Exoplanets

    CERN Document Server

    Fujii, Yuka; Suto, Yasushi; Fukuda, Satoru; Nakajima, Teruyuki; Livengood, Timothy A; Turner, Edwin L

    2011-01-01

    As a test-bed for future investigations of directly imaged terrestrial exoplanets, we present the recovery of the surface components of the Earth from multi-band diurnal light curves obtained with the EPOXI spacecraft. We find that the presence and longitudinal distribution of ocean, soil and vegetation are reasonably well reproduced by fitting the observed color variations with a simplified model composed of a priori known albedo spectra of ocean, soil, vegetation, snow and clouds. The effect of atmosphere, including clouds, on light scattered from surface components is modeled using a radiative transfer code. The required noise levels for future observations of exoplanets are also determined. Our model-dependent approach allows us to infer the presence of major elements of the planet (in the case of the Earth, clouds and ocean) with observations having S/N $\\gtrsim 10$ in most cases and with high confidence if S/N $\\gtrsim 20$. In addition, S/N $\\gtrsim 100$ enables us to detect the presence of components o...

  7. Conditions for circumstellar disc formation - II. Effects of initial cloud stability and mass accretion rate

    Science.gov (United States)

    Machida, Masahiro N.; Matsumoto, Tomoaki; Inutsuka, Shu-ichiro

    2016-12-01

    Disc formation in strongly magnetized cloud cores is investigated using a three-dimensional magnetohydrodynamic simulation with a focus on the effects of the initial cloud stability and the mass accretion rate. The initial cloud stability greatly alters the disc formation process even for prestellar clouds with the same mass-to-flux ratio. A high mass accretion rate on to the disc-forming region is realized in initially unstable clouds, and a large angular momentum is introduced into the circumstellar region in a short time. The region around the protostar has both a thin infalling envelope and a weak magnetic field, which both weaken the effect of magnetic braking. The growth of the rotation-supported disc is promoted in such unstable clouds. Conversely, clouds in an initially near-equilibrium state show lower accretion rates of mass and angular momentum. The angular momentum is transported to the outer envelope before protostar formation. After protostar formation, the circumstellar region has a thick infalling envelope and a strong magnetic field that effectively brakes the disc. As a result, disc formation is suppressed when the initial cloud is in a nearly stable state. The density distribution of the initial cloud also affects the disc formation process. Disc growth strongly depends on the initial conditions when the prestellar cloud has a uniform density, whereas there is no significant difference in the disc formation process in prestellar clouds with non-uniform densities.

  8. Triggering Collapse of the Presolar Dense Cloud Core and Injecting Short-Lived Radioisotopes with a Shock Wave. II. Varied Shock Wave and Cloud Core Parameters

    CERN Document Server

    Boss, Alan P

    2013-01-01

    A variety of stellar sources have been proposed for the origin of the short-lived radioisotopes that existed at the time of the formation of the earliest Solar System solids, including Type II supernovae, AGB and super-AGB stars, and Wolf-Rayet star winds. Our previous adaptive mesh hydrodynamics models with the FLASH2.5 code have shown which combinations of shock wave parameters are able to simultaneously trigger the gravitational collapse of a target dense cloud core and inject significant amounts of shock wave gas and dust, showing that thin supernova shocks may be uniquely suited for the task. However, recent meteoritical studies have weakened the case for a direct supernova injection to the presolar cloud, motivating us to re-examine a wider range of shock wave and cloud core parameters, including rotation, in order to better estimate the injection efficiencies for a variety of stellar sources. We find that supernova shocks remain as the most promising stellar source, though planetary nebulae resulting f...

  9. H ii REGIONS WITHIN A COMPACT HIGH VELOCITY CLOUD. A NEARLY STARLESS DWARF GALAXY?

    Energy Technology Data Exchange (ETDEWEB)

    Bellazzini, M. [INAF—Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Magrini, L. [INAF—Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Mucciarelli, A.; Fraternali, F. [Dipartimento di Fisica and Astronomia, Università degli Studi di Bologna, Viale Berti Pichat, 6/2, I-40127 Bologna (Italy); Beccari, G. [European Southern Observatory, Alonso de Cordova 3107, Vitacura Santiago (Chile); Ibata, R.; Martin, N. [Obs. astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l’Université, F-67000 Strasbourg (France); Battaglia, G. [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Testa, V. [INAF—Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio (Italy); Fumana, M.; Marchetti, A. [INAF—IASF, via E. Bassini 15, I-20133, Milano (Italy); Correnti, M., E-mail: michele.bellazzini@oabo.inaf.it [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2015-02-10

    Within the SECCO survey we identified a candidate stellar counterpart to the Ultra Compact High Velocity Cloud (UCHVC) HVC274.68+74.70-123 that was suggested by Adams et al. to be a possible mini halo within the Local Group of galaxies. The spectroscopic follow-up of the brightest sources within the candidate reveals the presence of two H ii regions whose radial velocity is compatible with a physical association with the UVHVC. The available data do not allow us to give a definite answer on the nature of the newly identified system. A few alternative hypotheses are discussed. However, the most likely possibility is that we have found a new faint dwarf galaxy residing in the Virgo cluster of galaxies, which we name SECCO 1. Independently of its actual distance, SECCO 1 displays a ratio of neutral hydrogen mass to V luminosity of M{sub H} {sub I}/L{sub V}≳20, by far the largest among local dwarfs. Hence, it appears to be a nearly starless galaxy and it may be an example of the missing links between normal dwarfs and the dark mini halos that are predicted to exist in large numbers according to the currently accepted cosmological model.

  10. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys, II: The Frequency of Planets Orbiting M Dwarfs

    CERN Document Server

    Clanton, Christian

    2014-01-01

    In contrast to radial velocity surveys, results from microlensing surveys indicate that giant planets with masses greater than the critical mass for core accretion ($\\sim 0.1~M_{\\rm Jup}$) are relatively common around low-mass stars. Using the methodology developed in the first paper, we predict the sensitivity of M-dwarf radial velocity (RV) surveys to analogs of the population of planets inferred by microlensing. We find that RV surveys should detect a handful of super-Jovian ($>M_{\\rm Jup}$) planets at the longest periods being probed. These planets are indeed found by RV surveys, implying that the demographic constraints inferred from these two methods are consistent. We combine the results from both methods to estimate planet frequencies spanning wide regions of parameter space. We find that the frequency of Jupiters and super-Jupiters ($1\\lesssim m_p\\sin{i}/M_{\\rm Jup}\\lesssim 13$) with periods $1\\leq P/{\\rm days}\\leq 10^4$ is $f_{\\rm J}=0.029^{+0.013}_{-0.015}$, a median factor of 4.3 ($1.5-14$ at 95% ...

  11. Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars II. Sulfur and Phosphorus

    CERN Document Server

    Visscher, C

    2005-01-01

    We use thermochemical equilibrium and kinetic calculations to model sulfur and phosphorus chemistry in the atmospheres of giant planets, brown dwarfs, low-mass stars, and extrasolar giant planets (EGPs). The chemical behavior of individual S- and P-bearing gases and condensates is determined as a function of pressure, temperature, and metallicity. Our results are independent of any particular model atmosphere and the behavior of different gases can be used to constrain atmospheric structure and metallicity. Hydrogen sulfide is the dominant sulfur gas in substellar atmospheres and approximately represents the atmospheric sulfur inventory. Depending on the prevailing S and C chemistry, the abundance of minor sulfur gases may constrain atmospheric temperatures or metallicity. Disequilibrium abundances of PH3 are expected in the observable atmospheres of substellar objects, and PH3 is representative of the total P abundance in giant planets and T dwarfs. A number of other phosphorus gases become relatively abunda...

  12. Multiple scattering of polarized light in planetary atmospheres. II - Sunlight reflected by terrestrial water clouds.

    Science.gov (United States)

    Hansen, J. E.

    1971-01-01

    The intensity and polarization of sunlight reflected by terrestrial water clouds are computed with the doubling method. The calculations illustrate that this method can be effectively used in problems involving strongly anisotropic phase matrices. The method can, therefore, be used to derive information about planetary clouds, including those of the earth, from polarimetric observations. The results of the computations indicate that the polarization is more sensitive than the intensity to cloud microstructure, such as particle size and shape.

  13. Age, size, and position of H ii regions in the Galaxy. Expansion of ionized gas in turbulent molecular clouds

    CERN Document Server

    Tremblin, P; Didelon, P; Raga, A C; Minier, V; Ntormousi, E; Pettitt, A; Pinto, C; Samal, M; Schneider, N; Zavagno, A

    2014-01-01

    This work aims at improving the current understanding of the interaction between H ii regions and turbulent molecular clouds. We propose a new method to determine the age of a large sample of OB associations by investigating the development of their associated H ii regions in the surrounding turbulent medium. Using analytical solutions, one-dimensional (1D), and three-dimensional (3D) simulations, we constrained the expansion of the ionized bubble depending on the turbulent level of the parent molecular cloud. A grid of 1D simulations was then computed in order to build isochrone curves for H ii regions in a pressure-size diagram. This grid of models allowed to date large sample of OB associations and was used on the H ii Region Discovery Survey (HRDS). Analytical solutions and numerical simulations showed that the expansion of H ii regions is slowed down by the turbulence up to the point where the pressure of the ionized gas is in a quasi-equilibrium with the turbulent ram pressure. Based on this result, we ...

  14. The Dynamics of Dense Cores in the Perseus Molecular Cloud II: The Relationship Between Dense Cores and the Cloud

    CERN Document Server

    Kirk, Helen; Johnstone, Doug; Goodman, Alyssa

    2010-01-01

    We utilize the extensive datasets available for the Perseus molecular cloud to analyze the relationship between the kinematics of small-scale dense cores and the larger structures in which they are embedded. The kinematic measures presented here can be used in conjunction with those discussed in our previous work as strong observational constraints that numerical simulations (or analytic models) of star formation should match. We find that dense cores have small motions with respect to the 13CO gas, about one third of the 13CO velocity dispersion along the same line of sight. Within each extinction region, the core-to-core velocity dispersion is about half of the total (13CO) velocity dispersion seen in the region. Large-scale velocity gradients account for roughly half of the total velocity dispersion in each region, similar to what is predicted from large-scale turbulent modes following a power spectrum of P(k) ~ k^{-4}.

  15. Atmospheres of Extrasolar Giant Planets

    CERN Document Server

    Marley, M S; Seager, S; Barman, T; Marley, Mark S.; Fortney, Jonathan; Seager, Sara; Barman, Travis

    2006-01-01

    The key to understanding an extrasolar giant planet's spectrum--and hence its detectability and evolution--lies with its atmosphere. Now that direct observations of thermal emission from extrasolar giant planets are in hand, atmosphere models can be used to constrain atmospheric composition, thermal structure, and ultimately the formation and evolution of detected planets. We review the important physical processes that influence the atmospheric structure and evolution of extrasolar giant planets and consider what has already been learned from the first generation of observations and modeling. We pay particular attention to the roles of cloud structure, metallicity, and atmospheric chemistry in affecting detectable properties through Spitzer Space Telescope observations of the transiting giant planets. Our review stresses the uncertainties that ultimately limit our ability to interpret EGP observations. Finally we will conclude with a look to the future as characterization of multiple individual planets in a ...

  16. An ALMA Survey of Planet Forming Disks in Rho Ophiuchus

    Science.gov (United States)

    Guilfoil Cox, Erin; Looney, Leslie; Harris, Robert J.; Dong, Jiayin; Segura-Cox, Dominique; Tobin, John J.; Sadavoy, Sarah; Li, Zhi-Yun; Dunham, Michael; Perez, Laura M.; Chandler, Claire J.; Kratter, Kaitlin M.; Melis, Carl; Chiang, Hsin-Fang

    2017-01-01

    Relatively evolved (~ 1 Myr old) protostars with little residual natal envelope, but massive disks, are commonly assumed to be the sites of ongoing planet formation. Critical to our study of these objects is information about the available mass reservior and dust structure, as they directly tie in to how much mass is available for planets as well as the modes of planet formation that occur (i.e., core-accretion vs. gravitational instability). Millimeter-wave observations provide this critical information as continuum emission is relatively optically thin, allowing for mass estimates, and the availability of high-resolution interferometry, allowing structure constraints. We present high-resolution observations of the population of Class II protostars in the Rho-Ophiuchus cloud (d ~ 130 pc). Our survey observed ~50 of these older protostars at 870µm, using the Atacama Large Millimeter/submillimeter Array (ALMA). Out of these sources, there are ~10 transition disks, where we see a ring of dust emission surrounding the central protostar -- indicative of ongoing planet formation -- as well as many binary systems. Both of these stages have implications for star and planet formation. We present results from both 1-D and 2-D disk modeling, where we try to understand disk substructure that might indicate on-going planet formation, in particular, transition disk cavities, disk gaps, and asymmetries in the dust emission.

  17. GEMINI PLANET IMAGER SPECTROSCOPY OF THE HR 8799 PLANETS c AND d

    Energy Technology Data Exchange (ETDEWEB)

    Ingraham, Patrick; Macintosh, Bruce [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Marley, Mark S. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Saumon, Didier [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Marois, Christian; Dunn, Jennifer; Erikson, Darren [NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Barman, Travis [Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721-0092 (United States); Bauman, Brian [Lawrence Livermore National Lab, 7000 East Avenue, Livermore, CA 94551 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Chilcote, Jeffrey K.; Fitzgerald, Michael P. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States); De Rosa, Robert J. [School of Earth and Space Exploration, Arizona State University, PO Box 871404, Tempe, AZ 85287 (United States); Dillon, Daren; Gavel, Donald [Department of Astronomy, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Doyon, René [Department de Physique, Université de Montréal, Montréal QC H3C 3J7 (Canada); Goodsell, Stephen J.; Hartung, Markus; Hibon, Pascale [Gemini Observatory, Casilla 603, La Serena (Chile); Graham, James R. [Department of Astronomy, UC Berkeley, Berkeley CA, 94720 (United States); and others

    2014-10-10

    During the first-light run of the Gemini Planet Imager we obtained K-band spectra of exoplanets HR 8799 c and d. Analysis of the spectra indicates that planet d may be warmer than planet c. Comparisons to recent patchy cloud models and previously obtained observations over multiple wavelengths confirm that thick clouds combined with horizontal variation in the cloud cover generally reproduce the planets' spectral energy distributions. When combined with the 3 to 4 μm photometric data points, the observations provide strong constraints on the atmospheric methane content for both planets. The data also provide further evidence that future modeling efforts must include cloud opacity, possibly including cloud holes, disequilibrium chemistry, and super-solar metallicity.

  18. Gemini Planet Imager Spectroscopy of the HR 8799 planets c and d

    CERN Document Server

    Ingraham, Patrick; Saumon, Didier; Marois, Christian; Macintosh, Bruce; Barman, Travis; Bauman, Brian; Burrows, Adam; Chilcote, Jeffrey K; De Rosa, Robert J; Dillon, Daren; Doyon, Rene; Dunn, Jennifer; Erikson, Darren; Fitzgerald, Michael P; Gavel, Donald; Goodsell, Stephen J; Graham, James R; Hartung, Markus; Hibon, Pascale; Kalas, Paul G; Konopacky, Quinn; Larkin, James A; Maire, Jerome; Marchis, Franck; McBride, James; Millar-Blanchaer, Max; Morzinski, Katie M; Norton, Andrew; Oppenheimer, Rebecca; Palmer, Dave W; Patience, Jenny; Perrin, Marshall D; Poyneer, Lisa A; Pueyo, Laurent; Rantakyro, Fredrik; Sadakuni, Naru; Saddlemyer, Leslie; Savransky, Dmitry; Soummer, Remi; Sivaramakrishnan, Anand; Song, Inseok; Thomas, Sandrine; Wallace, J Kent; Wiktorowicz, Sloane J; Wolff, Schuyler G

    2014-01-01

    During the first-light run of the Gemini Planet Imager (GPI) we obtained K-band spectra of exoplanets HR 8799 c and d. Analysis of the spectra indicates that planet d may be warmer than planet c. Comparisons to recent patchy cloud models and previously obtained observations over multiple wavelengths confirm that thick clouds combined with horizontal variation in the cloud cover generally reproduce the planets' spectral energy distributions. When combined with the 3 to 4 um photometric data points, the observations provide strong constraints on the atmospheric methane content for both planets. The data also provide further evidence that future modeling efforts must include cloud opacity, possibly including cloud holes, disequilibrium chemistry, and super-solar metallicity.

  19. The California-Kepler Survey. II. Precise Physical Properties of 2025 Kepler Planets and Their Host Stars

    Science.gov (United States)

    Johnson, John Asher; Petigura, Erik A.; Fulton, Benjamin J.; Marcy, Geoffrey W.; Howard, Andrew W.; Isaacson, Howard; Hebb, Leslie; Cargile, Phillip A.; Morton, Timothy D.; Weiss, Lauren M.; Winn, Joshua N.; Rogers, Leslie A.; Sinukoff, Evan; Hirsch, Lea A.

    2017-09-01

    We present stellar and planetary properties for 1305 Kepler Objects of Interest hosting 2025 planet candidates observed as part of the California-Kepler Survey. We combine spectroscopic constraints, presented in Paper I, with stellar interior modeling to estimate stellar masses, radii, and ages. Stellar radii are typically constrained to 11%, compared to 40% when only photometric constraints are used. Stellar masses are constrained to 4%, and ages are constrained to 30%. We verify the integrity of the stellar parameters through comparisons with asteroseismic studies and Gaia parallaxes. We also recompute planetary radii for 2025 planet candidates. Because knowledge of planetary radii is often limited by uncertainties in stellar size, we improve the uncertainties in planet radii from typically 42% to 12%. We also leverage improved knowledge of stellar effective temperature to recompute incident stellar fluxes for the planets, now precise to 21%, compared to a factor of two when derived from photometry. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time has been granted by the University of California, and California Institute of Technology, the University of Hawaii, and NASA.

  20. Comparative Climatology of Terrestrial Planets

    Science.gov (United States)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    to a future volume. Our authors have taken on the task to look at climate on the terrestrial planets in the broadest sense possible — by comparing the atmospheric processes at work on the four terrestrial bodies, Earth, Venus, Mars, and Titan (Titan is included because it hosts many of the common processes), and on terrestrial planets around other stars. These processes include the interactions of shortwave and thermal radiation with the atmosphere, condensation and vaporization of volatiles, atmospheric dynamics, chemistry and aerosol formation, and the role of the surface and interior in the long-term evolution of climate. Chapters herein compare the scientific questions, analysis methods, numerical models, and spacecraft remote sensing experiments of Earth and the other terrestrial planets, emphasizing the underlying commonality of physical processes. We look to the future by identifying objectives for ongoing research and new missions. Through these pages we challenge practicing planetary scientists, and most importantly new students of any age, to find pathways and synergies for advancing the field. In Part I, Foundations, we introduce the fundamental physics of climate on terrestrial planets. Starting with the best studied planet by far, Earth, the first chapters discuss what is known and what is not known about the atmospheres and climates of the terrestrial planets of the solar system and beyond. In Part II, Greenhouse Effect and Atmospheric Dynamics, we focus on the processes that govern atmospheric motion and the role that general circulation models play in our current understanding. In Part III, Clouds and Hazes, we provide an in-depth look at the many effects of clouds and aerosols on planetary climate. Although this is a vigorous area of research in the Earth sciences, and very strongly influences climate modeling, the important role that aerosols and clouds play in the climate of all planets is not yet well constrained. This section is intended to

  1. PLANET FORMATION IN STELLAR BINARIES. II. OVERCOMING THE FRAGMENTATION BARRIER IN α CENTAURI AND γ CEPHEI-LIKE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Rafikov, Roman R.; Silsbee, Kedron, E-mail: rrr@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Ivy Lane, Princeton, NJ 08540 (United States)

    2015-01-10

    Planet formation in small-separation (∼20 AU) eccentric binaries such as γ Cephei or α Centauri is believed to be adversely affected by the presence of the stellar companion. Strong dynamical excitation of planetesimals by the eccentric companion can result in collisional destruction (rather than growth) of 1-100 km objects, giving rise to the ''fragmentation barrier'' for planet formation. We revise this issue using a novel description of secular dynamics of planetesimals in binaries, which accounts for the gravity of the eccentric, coplanar protoplanetary disk, as well as gas drag. By studying planetesimal collision outcomes, we show, in contrast to many previous studies, that planetesimal growth and subsequent formation of planets (including gas giants) in AU-scale orbits within ∼20 AU separation binaries may be possible, provided that the protoplanetary disks are massive (≳ 10{sup –2} M {sub ☉}) and only weakly eccentric (disk eccentricity ≲ 0.01). These requirements are compatible with both the existence of massive (several M{sub J} ) planets in γ Cep-like systems and the results of recent simulations of gaseous disks in eccentric binaries. Terrestrial and Neptune-like planets can also form in lower-mass disks at small (sub-AU) radii. We find that the fragmentation barrier is less of a problem in eccentric disks that are apsidally aligned with the binary orbit. Alignment gives rise to special locations, where (1) relative planetesimal velocities are low and (2) the timescale of their drag-induced radial drift is long. This causes planetesimal pileup at such locations in the disk and promotes their growth locally, helping to alleviate the timescale problem for core formation.

  2. Extrasolar Binary Planets I: Formation by tidal capture during planet-planet scattering

    CERN Document Server

    Ochiai, H; Ida, S

    2014-01-01

    We have investigated i) the formation of gravitationally bounded pairs of gas-giant planets (which we call "binary planets") from capturing each other through planet-planet dynamical tide during their close encounters and ii) the following long-term orbital evolution due to planet-planet and planet-star {\\it quasi-static} tides. For the initial evolution in phase i), we carried out N-body simulations of the systems consisting of three jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing and this fraction is almost independent of the initial stellarcentric semi-major axes of the planets, while ejection and merging rates sensitively depend on the semi-major axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by ...

  3. WE-B-BRD-01: Innovation in Radiation Therapy Planning II: Cloud Computing in RT

    Energy Technology Data Exchange (ETDEWEB)

    Moore, K [University of California, San Diego, La Jolla, CA (United States); Kagadis, G [University Patras, Rion - Patras (Greece); Xing, L [Stanford University, Stanford, CA (United States); McNutt, T [Johns Hopkins University, Severna Park, MD (United States)

    2014-06-15

    As defined by the National Institute of Standards and Technology, cloud computing is “a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.” Despite the omnipresent role of computers in radiotherapy, cloud computing has yet to achieve widespread adoption in clinical or research applications, though the transition to such “on-demand” access is underway. As this transition proceeds, new opportunities for aggregate studies and efficient use of computational resources are set against new challenges in patient privacy protection, data integrity, and management of clinical informatics systems. In this Session, current and future applications of cloud computing and distributed computational resources will be discussed in the context of medical imaging, radiotherapy research, and clinical radiation oncology applications. Learning Objectives: Understand basic concepts of cloud computing. Understand how cloud computing could be used for medical imaging applications. Understand how cloud computing could be employed for radiotherapy research.4. Understand how clinical radiotherapy software applications would function in the cloud.

  4. The Photoeccentric Effect and Proto Hot Jupiters II. KOI-1474.01, an eccentric planet perturbed by an unseen companion

    CERN Document Server

    Dawson, Rebekah I; Morton, Timothy D; Crepp, Justin R; Fabrycky, Daniel C; Murray-Clay, Ruth A; Howard, Andrew W

    2012-01-01

    The exoplanets known as hot Jupiters---Jupiter-sized planets with periods less than 10 days---likely are relics of dynamical processes that shape all planetary system architectures. Socrates et al. (2012) argued that high eccentricity migration (HEM) mechanisms proposed for situating these close-in planets should produce an observable population of highly eccentric proto hot Jupiters that have not yet tidally circularized. HEM should also create failed hot Jupiters, with periapses just beyond the influence of fast circularization. Using the technique we previously presented for measuring eccentricities from photometry (the "photoeccentric effect"), we are distilling a collection of eccentric proto and failed hot Jupiters from the Kepler Objects of Interest (KOI). Here we present the first, KOI-1474.01, which has a long orbital period (69.7340 days) and a large eccentricity e = 0.81 +0.10/-0.07, skirting the proto hot Jupiter boundary. Combining Keplerphotometry, ground-based spectroscopy, and stellar evolutio...

  5. ON SHOCKS DRIVEN BY HIGH-MASS PLANETS IN RADIATIVELY INEFFICIENT DISKS. II. THREE-DIMENSIONAL GLOBAL DISK SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lyra, Wladimir [Department of Physics and Astronomy, California State University Northridge, 18111 Nordhoff St, Northridge, CA 91330 (United States); Richert, Alexander J. W. [Department of Astronomy and Astrophysics, Penn State University, 525 Davey Lab, University Park, PA 16802 (United States); Boley, Aaron [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Turner, Neal; Okuzumi, Satoshi; Flock, Mario [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Mac Low, Mordecai-Mark, E-mail: wlyra@csun.edu, E-mail: neal.j.turner@jpl.nasa.gov, E-mail: mario.flock@jpl.nasa.gov, E-mail: ajr327@psu.edu, E-mail: acboley@phas.ubc.ca, E-mail: mordecai@amnh.org, E-mail: okuzumi@geo.titech.ac.jp [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (United States)

    2016-02-01

    Recent high-resolution, near-infrared images of protoplanetary disks have shown that these disks often present spiral features. Spiral arms are among the structures predicted by models of disk–planet interaction and thus it is tempting to suspect that planetary perturbers are responsible for these signatures. However, such interpretation is not free of problems. The observed spirals have large pitch angles, and in at least one case (HD 100546) it appears effectively unpolarized, implying thermal emission of the order of 1000 K (465 ± 40 K at closer inspection). We have recently shown in two-dimensional models that shock dissipation in the supersonic wake of high-mass planets can lead to significant heating if the disk is sufficiently adiabatic. Here we extend this analysis to three dimensions in thermodynamically evolving disks. We use the Pencil Code in spherical coordinates for our models, with a prescription for thermal cooling based on the optical depth of the local vertical gas column. We use a 5M{sub J} planet, and show that shocks in the region around the planet where the Lindblad resonances occur heat the gas to substantially higher temperatures than the ambient gas. The gas is accelerated vertically away from the midplane to form shock bores, and the gas falling back toward the midplane breaks up into a turbulent surf. This turbulence, although localized, has high α values, reaching 0.05 in the inner Lindblad resonance, and 0.1 in the outer one. We find evidence that the disk regions heated up by the shocks become superadiabatic, generating convection far from the planet’s orbit.

  6. The GAPS Programme with HARPS-N@TNG II: No giant planets around the metal-poor star HIP 11952

    CERN Document Server

    Desidera, S; Bonomo, A S; Gratton, R; Poretti, E; Claudi, R; Latham, D W; Affer, L; Cosentino, R; Damasso, M; Esposito, M; Giacobbe, P; Malavolta, L; Nascimbeni, V; Piotto, G; Rainer, M; Scardia, M; Schmid, V S; Lanza, A F; Micela, G; Pagano, I; Bedin, L; Biazzo, K; Borsa, F; Carolo, E; Covino, E; Faedi, F; Hebrard, G; Lovis, C; Maggio, A; Mancini, L; Marzari, F; Messina, S; Molinari, E; Munari, U; Pepe, F; Santos, N; Scandariato, G; Shkolnik, E; Southworth, J

    2013-01-01

    In the context of the program Global Architecture of Planetary Systems (GAPS), we have performed radial velocity monitoring of the metal-poor star HIP 11952 on 35 nights over about 150 days using the newly installed high resolution spectrograph HARPS-N at the TNG and HARPS at ESO 3.6m telescope. The radial velocities show a scatter of 7 m/s, compatible with the measurement errors for such a moderately warm metal-poor star (Teff = 6040+-120K; [Fe/H] =-1.9+-0.1). We then exclude the presence of the two giant planets with periods of 6.95+-0.01 d and 290.0+-16.2 d and radial velocity semi-amplitudes of 100.3+-19.4 m/s and 105.2+-14.7 m/s, respectively, which had recently been announced. This result is important considering that HIP 11952 was thought to be the most metal-poor star hosting a planetary system with giant planets, thus challenging some models of planet formation.

  7. The Hunt for Exomoons with Kepler (HEK): II. Analysis of Seven Viable Satellite-Hosting Planet Candidates

    CERN Document Server

    Kipping, David M; Buchhave, Lars A; Schmitt, Allan R; Bakos, Gáspár Á; Nesvorny, David

    2013-01-01

    From the list of 2321 transiting planet candidates announced by the Kepler Mission, we identify seven targets as having favorable properties for the capacity to dynamically maintain an exomoon and present a detectable signal. These seven candidates were identified through our automatic target selection (TSA) algorithm and target selection prioritization (TSP) filtering, whereby we excluded systems exhibiting significant time-correlated noise and focussed on those with a single transiting planet candidate of radius less than 6 Earth radii. We find no compelling evidence for an exomoon around any of the seven KOIs but constrain the satellite-to-planet mass ratios for each. For four of the seven KOIs, we estimate a 95% upper quantile of M_S/M_P<0.04, which given the radii of the candidates, likely probes down to sub-Earth masses. We also derive precise transit times and durations for each candidate and find no evidence for dynamical variations in any of the KOIs. With just a few systems analyzed thus far in t...

  8. Extrasolar planets.

    Science.gov (United States)

    Lissauer, J J; Marcy, G W; Ida, S

    2000-11-07

    The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems.

  9. Exploring the diversity of Jupiter-class planets.

    Science.gov (United States)

    Fletcher, Leigh N; Irwin, Patrick G J; Barstow, Joanna K; de Kok, Remco J; Lee, Jae-Min; Aigrain, Suzanne

    2014-04-28

    Of the 900+ confirmed exoplanets discovered since 1995 for which we have constraints on their mass (i.e. not including Kepler candidates), 75% have masses larger than Saturn (0.3 MJ), 53% are more massive than Jupiter and 67% are within 1 AU of their host stars. When Kepler candidates are included, Neptune-sized giant planets could form the majority of the planetary population. And yet the term 'hot Jupiter' fails to account for the incredible diversity of this class of astrophysical object, which exists on a continuum of giant planets from the cool jovians of our own Solar System to the highly irradiated, tidally locked hot roasters. We review theoretical expectations for the temperatures, molecular composition and cloud properties of hydrogen-dominated Jupiter-class objects under a variety of different conditions. We discuss the classification schemes for these Jupiter-class planets proposed to date, including the implications for our own Solar System giant planets and the pitfalls associated with compositional classification at this early stage of exoplanetary spectroscopy. We discuss the range of planetary types described by previous authors, accounting for (i) thermochemical equilibrium expectations for cloud condensation and favoured chemical stability fields; (ii) the metallicity and formation mechanism for these giant planets; (iii) the importance of optical absorbers for energy partitioning and the generation of a temperature inversion; (iv) the favoured photochemical pathways and expectations for minor species (e.g. saturated hydrocarbons and nitriles); (v) the unexpected presence of molecules owing to vertical mixing of species above their quench levels; and (vi) methods for energy and material redistribution throughout the atmosphere (e.g. away from the highly irradiated daysides of close-in giants). Finally, we discuss the benefits and potential flaws of retrieval techniques for establishing a family of atmospheric solutions that reproduce the

  10. Jupiter before Juno: State of the atmosphere at cloud level in 2016 from PlanetCam observations in the 0.4-1.7 microns wavelength range and amateur observations in the visible

    Science.gov (United States)

    Hueso, Ricardo; Sanchez-Lavega, Agustin; Perez-Hoyos, Santiago; Rojas, Jose Felix; Iñurrigarro, Peio; Mendikoa, Iñigo; Go, Christopher; PVOL-IOPW Team

    2016-10-01

    The arrival of Juno to Jupiter provides a unique opportunity to link findings of the inner structure of the planet with astronomical observations of its meteorology at cloud level. Long time base observations of Jupiter's atmosphere before and during the Juno mission are critical in providing context to Junocam observations and may benefit the interpretation of the MWR data on the lower atmosphere structure as well as Juno data on the depth of the zonal winds. We have performed a long campaign of observations in the visible with the PlanetCam lucky imaging instrument in the 2.2m telescope at Calar Alto Observatory in Spain with observations obtained in December 2015 and in March, May, June and July 2016. In observations under good atmospheric seeing, the instrument allows to obtain images with a spatial resolution of 0.05'' in the visible and 0.1'' from 1.0 to 1.7 microns. The later is an interesting range of wavelengths for observing Jupiter because of the existence of several strong and weak methane absorption bands not generally used in high-resolution ground-based observations of the planet. A combination of images using narrow filters centered in methane absorption bands and their adjacent continuum allows studying the vertical structure of the clouds at horizontal spatial scales of 350-1000 km over the planet depending on the atmospheric seeing and filter used. The best images can be further processed showing features at spatial resolutions of about 150 km. We have also monitored the state of the atmosphere with images obtained by amateur astronomers contributing to the Planetary Virtual Observatory Laboratory database (http://pvol.ehu.eus). Based on both datasets we present zonal winds from -70 to +75 deg with an accuracy of 10 m/s in the low latitudes and 25 m/s in subpolar latitudes. Relative altitude maps of features observed in bands J, H and others with different methane absorption will be presented.

  11. Atmospheres of Extrasolar Giant Planets

    Science.gov (United States)

    Marley, M. S.; Fortney, J.; Seager, S.; Barman, T.

    The key to understanding an extrasolar giant planet's spectrum - and hence its detectability and evolution - lies with its atmosphere. Now that direct observations of thermal emission from extrasolar giant planets (EGPs) are in hand, atmosphere models can be used to constrain atmospheric composition, thermal structure, and ultimately the formation and evolution of detected planets. We review the important physical processes that influence the atmospheric structure and evolution of EGPs and consider what has already been learned from the first generation of observations and modeling. We pay particular attention to the roles of cloud structure, metallicity, and atmospheric chemistry in affecting detectable properties through Spitzer Space Telescope observations of the transiting giant planets. Our review stresses the uncertainties that ultimately limit our ability to interpret EGP observations. Finally we will conclude with a look to the future as characterization of multiple individual planets in a single stellar system leads to the study of comparative planetary architectures.

  12. Evolution of Prolate Molecular Clouds at Hii Boundaries: II. Formation of BRCs of asymmetrical morphology

    CERN Document Server

    Kinnear, T M; White, G J; Sugitani, K; Goodwin, S

    2015-01-01

    A systematic investigation on the evolution of a prolate cloud at an Hii boundary is conducted using Smoothed Particle Hydrodynamics (SPH) in order to understand the mechanism for a variety of irregular morphological structures found at the boundaries of various Hii regions. The prolate molecular clouds in this investigation are set with their semi-major axes at inclinations between 0 and 90 degrees to a plane parallel ionizing radiation flux. A set of 4 parameters, the number density n, the ratio of major to minor axis gamma, the inclination angle phi and the incident flux F_EUV, are used to define the initial state of the simulated clouds. The dependence of the evolution of a prolate cloud under Radiation Driven Implosion (RDI) on each of the four parameters is investigated. It is found that: i) in addition to the well studied standard type A, B or C Bright Rimmed Clouds (BRCs), many other types such as asymmetrical BRCs, filamentary structures and irregular horse-head structures could also be developed at ...

  13. Microwave Transmission Measurement of the Electron Cloud Density in the Positron Ring of PEP-II

    CERN Document Server

    Pivi, M T F; Byrd, J; De Santis, S; Sonnad, K G; Caspers, Friedhelm; Kroyer, T; Roncarolo, F

    2008-01-01

    Clouds of electrons in the vacuum chambers of accelerators of positively charged particle beams present a serious limitation for operation of these machines at high currents. Because of the size of these accelerators, it is difficult to probe the low energy electron clouds over substantial lengths of the beam pipe. We applied a novel technique to directly measure the electron cloud density via the phase shift induced in a TE wave which is independently excited and transmitted over a straight section of the accelerator. The modulation in the wave transmission which appear to increase in depth when the clearing solenoids are switched off, seem to be directly correlated to the electron cloud density in the section. Furthermore, we expect a larger phase shift of a wave transmitted through magnetic dipole field regions if the transmitted wave couples with the gyration motion of the electrons. We have used this technique to measure the average electron cloud density (ECD) specifically for the first time in magnetic...

  14. From Ultracompact to Extended HII Regions. II: Cloud Gravity and Stellar Motion

    CERN Document Server

    Franco, J; Kurtz, S; Franco, Jose; Garcia-Segura, Guillermo; Kurtz, Stan

    2005-01-01

    The dynamical evolution of HII regions with and without stellar motion in dense, structured molecular clouds is studied. Clouds are modeled in hydrostatic equilibrium, with gaussian central cores and external halos that obey r**-2 and r**-3 density power laws. The cloud gravity is included as a time-independent, external force. Stellar velocities of 0, 2, 8, and 12 km/s are considered. When stellar motion is included, stars move from the central core to the edge of the cloud, producing transitions from ultracompact to extended HII regions as the stars move into lower density regions. The opposite behavior occurs when stars move toward the cloud cores. The main conclusion of our study is that ultracompact HII regions are pressure-confined entities while they remain embedded within dense cores. The confinement comes from ram and/or ambient pressures. The survival of ultracompact regions depends on the position of the star with respect to the core, the stellar life-time, and the core crossing time. Stars with ve...

  15. A Stochastic Closure for Two-Moment Bulk Microphysics of Warm Clouds: Part II, Validation

    CERN Document Server

    Collins, David

    2016-01-01

    The representation of clouds and associated processes of rain and snow formation remains one of the major uncertainties in climate and weather prediction models. In a companion paper (Part I), we systematically derived a two moment bulk cloud microphysics model for collision and coalescence in warm rain based on the kinetic coalescence equation (KCE) and used stochastic approximations to close the higher order moment terms, and do so independently of the collision kernel. Conservation of mass and consistency of droplet number concentration of the evolving cloud properties were combined with numerical simulations to reduce the parametrization problem to three key parameters. Here, we constrain these three parameters based on the physics of collision and coalescence resulting in a "region of validity." Furthermore, we theoretically validate the new bulk model by deriving a subset of the "region of validity" that contains stochastic parameters that skillfully reproduces an existing model based on an a priori dro...

  16. On shocks driven by high-mass planets in radiatively inefficient disks. II. Three-dimensional global disk simulations

    CERN Document Server

    Lyra, Wladimir; Boley, Aaron; Turner, Neal; Mac Low, Mordecai-Mark; Okuzumi, Satoshi; Flock, Mario

    2015-01-01

    Recent high-resolution, near-infrared images of protoplanetary disks have shown that these disks often present spiral features. Spiral arms are among the structures predicted decades ago by numerical simulations of disk-planet interaction and thus it is tempting to suspect that planetary perturbers are responsible for the observed signatures. However, such interpretation is not free of problems. The spirals are found to have large pitch angles, and in at least one case the spiral feature appears effectively unpolarized, which implies thermal emission at roughly 1000 K. We have recently shown in two-dimensional models that shock dissipation in the supersonic wake of high-mass planets can lead to significant heating if the disk is sufficiently adiabatic. In this paper we extend this analysis to three dimensions in thermodynamically evolving disks. We use the Pencil Code in spherical coordinates for our models, with a prescription for thermal cooling based on the optical depth of the local vertical gas column. W...

  17. Grain opacity and the bulk composition of extrasolar planets. II. An analytical model for the grain opacity in protoplanetary atmospheres

    CERN Document Server

    Mordasini, C

    2014-01-01

    Context. We investigate the grain opacity k_gr in the atmosphere of protoplanets. This is important for the planetary mass-radius relation since k_gr affects the H/He envelope mass of low-mass planets and the critical core mass of giant planets. Aims. The goal of this study is to derive an analytical model for k_gr. Methods. Our model is based on the comparison of the timescales of microphysical processes like grain settling in the Stokes and Epstein regime, growth by Brownian motion coagulation and differential settling, grain evaporation, and grain advection due to envelope contraction. With these timescales we derive the grain size, abundance, and opacity. Results. We find that the main growth process is differential settling. In this regime, k_gr has a simple functional form and is given as 27 Q/8 H rho in the Epstein regime and as 2 Q/H rho for Stokes drag. Grain dynamics lead to a typical radial structure of k_gr with high ISM-like values in the top layers but a strong decrease in the deeper parts where...

  18. Probing the evolution of molecular cloud structure. II. From chaos to confinement

    Science.gov (United States)

    Kainulainen, J.; Beuther, H.; Banerjee, R.; Federrath, C.; Henning, T.

    2011-06-01

    We present an analysis of the large-scale molecular cloud structure and of the stability of clumpy structures in nearby molecular clouds. In our recent work, we identified a structural transition in molecular clouds by studying the probability distributions of their gas column densities. In this paper, we further examine the nature of this transition. The transition takes place at the visual extinction of A_V^tail = 2{-4} mag, or equivalently, at Σtail ≈ 40-80 M⊙ pc-2. The clumps identified above this limit have wide ranges of masses and sizes, but a remarkably constant mean volume density of overline{n ≈ 10^3} cm-3. This is 5-10 times higher than the density of the medium surrounding the clumps. By examining the stability of the clumps, we show that they are gravitationally unbound entities, and that the external pressure from the parental molecular cloud is a significant source of confining pressure for them. Then, the structural transition at A_V^tail may be linked to a transition between this population and the surrounding medium. The star-formation rates in the clouds correlate strongly with the total mass in the clumps, i.e., with the mass above A_V^tail, and drops abruptly below that threshold. These results imply that the formation of pressure-confined clumps introduces a prerequisite for star formation. Furthermore, they give a physically motivated explanation for the recently reported relation between the star-formation rates and the amount of dense material in molecular clouds. Likewise, they give rise to a natural threshold for star formation at A_V^tail.

  19. Magic Planet

    DEFF Research Database (Denmark)

    Jacobsen, Aase Roland

    2009-01-01

    Med den digitale globe som omdrejningspunkt bestemmer publikum, hvilken planet, der er i fokus. Vores solsystem udforskes interaktivt. Udgivelsesdato: november......Med den digitale globe som omdrejningspunkt bestemmer publikum, hvilken planet, der er i fokus. Vores solsystem udforskes interaktivt. Udgivelsesdato: november...

  20. HOLIMO II: a digital holographic instrument for ground-based in-situ observations of microphysical properties of mixed-phase clouds

    Directory of Open Access Journals (Sweden)

    J. Henneberger

    2013-05-01

    Full Text Available Measurements of the microphysical properties of mixed-phase clouds with high spatial resolution are important to understand the processes inside these clouds. This work describes the design and characterization of the newly developed ground-based field instrument HOLIMO II (HOLographic Imager for Microscopic Objects II. HOLIMO II uses digital in-line holography to in-situ image cloud particles in a well defined sample volume. By an automated algorithm, two-dimensional images of single cloud particles between 6 and 250 μm in diameter are obtained and the size spectrum, the concentration and water content of clouds are calculated. By testing the sizing algorithm with monosized beads a systematic overestimation near the resolution limit was found, which has been used to correct the measurements. Field measurements from the high altitude research station Jungfraujoch, Switzerland, are presented. The measured number size distributions are in good agreement with parallel measurements by a fog monitor (FM-100, DMT, Boulder USA. The field data shows that HOLIMO II is capable of measuring the number size distribution with a high spatial resolution and determines ice crystal shape, thus providing a method of quantifying variations in microphysical properties. A case study over a period of 8 h has been analyzed, exploring the transition from a liquid to a mixed-phase cloud, which is the longest observation of a cloud with a holographic device. During the measurement period, the cloud does not completely glaciate, contradicting earlier assumptions of the dominance of the Wegener–Bergeron–Findeisen (WBF process.

  1. Dust cloud lightning in extraterrestrial atmospheres

    CERN Document Server

    Helling, Christiane; Diver, Declan; Witte, Soeren

    2012-01-01

    Lightning is present in all solar system planets which form clouds in their atmospheres. Cloud formation outside our solar system is possible in objects with much higher temperatures than on Earth or on Jupiter: Brown dwarfs and giant extrasolar gas planets form clouds made of mixed materials and a large spectrum of grain sizes. These clouds are globally neutral obeying dust-gas charge equilibrium which is, on short timescales, inconsistent with the observation of stochastic ionization events of the solar system planets. We argue that a significant volume of the clouds in brown dwarfs and extrasolar planets is susceptible to local discharge events and that the upper cloud layers are most suitable for powerful lightning-like discharge events. We discuss various sources of atmospheric ionisation, including thermal ionisation and a first estimate of ionisation by cosmic rays, and argue that we should expect thunderstorms also in the atmospheres of brown dwarfs and giant gas planets which contain mineral clouds.

  2. Probing the evolution of molecular cloud structure II: From chaos to confinement

    CERN Document Server

    Kainulainen, J; Banerjee, R; Federrath, C; Henning, T

    2011-01-01

    We present an analysis of the large-scale molecular cloud structure and of the stability of clumpy structures in nearby molecular clouds. In our recent work, we identified a structural transition in molecular clouds by studying the probability distributions of gas column densities in them. In this paper, we further examine the nature of this transition. The transition takes place at the visual extinction of A_V^tail = 2-4 mag, or equivalently, at \\Sigma^tail = 40-80 Ms pc^{-2}. The clumps identified above this limit have wide ranges of masses and sizes, but a remarkably constant mean volume density of n = 10^3 cm^{-3}. This is 5-10 times larger than the density of the medium surrounding the clumps. By examining the stability of the clumps, we show that they are gravitationally unbound entities, and that the external pressure from the parental molecular cloud is a significant source of confining pressure for them. Then, the structural transition at A_V^tail may be linked to a transition between this population...

  3. Selected translated abstracts of Russian-language climate-change publications: II, Clouds. Issue 159

    Energy Technology Data Exchange (ETDEWEB)

    Burtis, M.D. [comp.

    1994-01-01

    This report presents abstracts (translated into English) of important Russian-language literature concerning clouds as they relate to climate change. In addition to the bibliographic citations and abstracts translated into English, this report presents the original citations and abstracts in Russian. Author and title indexes are included to assist the reader in locating abstracts of particular interest.

  4. Structure and Evolution of Nearby Stars with Planets II. Physical Properties of ~1000 Cool Stars from the SPOCS Catalog

    CERN Document Server

    Takeda, G; Sills, A; Rasio, F A; Fischer, D A; Valenti, J A; Takeda, Genya; Ford, Eric B.; Sills, Alison; Rasio, Frederic A.; Fischer, Debra A.; Valenti, Jeff A.

    2006-01-01

    We derive detailed theoretical models for 1074 nearby stars from the SPOCS (Spectroscopic Properties of Cool Stars) Catalog. The California and Carnegie Planet Search has obtained high-quality echelle spectra of over 1000 nearby stars taken with the Hamilton spectrograph at Lick Observatory, the HIRES spectrograph at Keck, and UCLES at the Anglo Australian Observatory. A uniform analysis of the high-resolution spectra has yielded precise stellar parameters, enabling systematic error analyses and accurate theoretical stellar modeling. We have created a large database of theoretical stellar evolution tracks using the Yale Stellar Evolution Code (YREC) to match the observed parameters of the SPOCS stars. Our very dense grids of evolutionary tracks eliminate the need for interpolation between stellar evolutionary tracks and allow precise determinations of physical stellar parameters (mass, age, radius, size and mass of the convective zone, etc.). Combining our stellar models with the observed stellar atmospheric ...

  5. The Spitzer c2d Survey of Weak-line T Tauri Stars II: New Constraints on the Timescale for Planet Building

    CERN Document Server

    Cieza, Lucas; Stapelfeldt, Karl R; Augereau, Jean-Charles; Harvey, Paul; Evans, Neal J; II,; Merin, Bruno; Koerner, David W; Sargent, Anneila; van Dishoeck, Ewine F; Allen, Lori; Blake, G A; Brooke, Timothy; Chapman, Nicholas; Huard, Tracy; Lai, Shih-Ping; Mundy, Lee; Myers, Philip C; Spiesman, William; Wahhaj, Zahed

    2007-01-01

    One of the central goals of the Spitzer Legacy Project ``From Molecular Cores to Planet-forming Disks'' (c2d) is to determine the frequency of remnant circumstellar disks around weak-line T Tauri stars (wTTs) and to study the properties and evolutionary status of these disks. Here we present a census of disks for a sample of over 230 spectroscopically identified wTTs located in the c2d IRAC (3.6, 4.5, 4.8, and 8.0 um) and MIPS (24 um) maps of the Ophiuchus, Lupus, and Perseus Molecular Clouds. We find that ~20% of the wTTs in a magnitude limited subsample have noticeable IR-excesses at IRAC wavelengths indicating the presence of a circumstellar disk. The disk frequencies we find in these 3 regions are ~3-6 times larger than that recently found for a sample of 83 relatively isolated wTTs located, for the most part, outside the highest extinction regions covered by the c2d IRAC and MIPS maps. The disk fractions we find are more consistent with those obtained in recent Spitzer studies of wTTs in young clusters s...

  6. Jupiter: Lord of the Planets.

    Science.gov (United States)

    Kaufmann, William

    1984-01-01

    Presents a chapter from an introductory college-level astronomy textbook in which full-color photographs and numerous diagrams highlight an extensive description of the planet Jupiter. Topics include Jupiter's geology, rotation, magnetic field, atmosphere (including clouds and winds), and the Great Red Spot. (DH)

  7. H II regions, infrared dark molecular clouds and the local geometry of the Milky Way's nuclear star-forming ring

    CERN Document Server

    Liszt, H S

    2009-01-01

    To interpret the galactic center H II region complexes as constituents of a barred galaxy's nuclear star-forming ring, we compare 18cm VLA radiocontinuumm, $8-22\\mu$ MSX IR and 2.6mm BTL and ARO12m CO emission in the inner few hundred pc. Galactic center H II regions are comparable in their IR appearance, luminosity and SED to M17 or N!0, but the IR light distribution is strongly modified by extinction at 8-22$\\mu$, locally and overall. In Sgr B2 at $l > 0.6$\\degr strong radio H II regions are invisible in the IR. In two favorable cases, extinction from individual galactic center molecular clouds is shown to have $\\tau \\ga 1$ at 8-22$\\mu$ independent of wavelength. The gas kinematics are mostly rotational but with systematic $\\pm 30-50$ \\kms non-circular motion. Sgr B and C both show the same shell and high-velocity cap structure. The H II regions lie in a slightly-inclined ring of radius $\\approx$ 180 pc (1.2\\degr) whose near side appears at higher latitude and lower velocity and contains Sgr B. Sgr C is on ...

  8. Cloud point extraction of Cu(II) using a mixture of Triton X-100 and dithizone with a salting-out effect and its application to visual determination.

    Science.gov (United States)

    Sato, Nobuko; Mori, Masanobu; Itabashi, Hideyuki

    2013-12-15

    A method for the separation and concentration of trace copper(II) ion (Cu(II)) via cloud point extraction (CPE) using a nonionic surfactant with a salting-out effect was developed and applied as a technique for the visual determination of Cu(II). Triton X-100 (TX-100), which has a cloud point at 64-67 °C in aqueous solutions, was used as the nonionic surfactant for the CPE of Cu(II). Although CPE with TX-100 requires heating of the solution to separate the surfactant-rich phase from the aqueous phase, the new method achieves phase separation at 15-30 °C owing to the addition of a large amount of salt to the solution, which lowers the cloud point. The compound 1,5-diphenylthiocarbazone (dithizone) was selected as the chelating agent for complexation and transfer of Cu(II) to the surfactant-rich phase. The extractability of Cu(II) (initial concentration: 10 μM) was 96.6±2.1% when Na2SO4 was added to a 20% TX-100/4 μM dithizone solution (pH 2). Using this method, the visual determination of Cu(II) was possible for concentrations ranging from 0.01 to 10 μM. In addition, the extraction system was successfully applied to the visual determination of Cu(II) in a river water sample.

  9. Simulating the formation of molecular clouds. II. Rapid formation from turbulent initial conditions

    CERN Document Server

    Glover, S C O

    2006-01-01

    (Abridged). In this paper, we present results from a large set of numerical simulations that demonstrate that H2 formation occurs rapidly in turbulent gas. Starting with purely atomic hydrogen, large quantities of molecular hydrogen can be produced on timescales of 1 -- 2 Myr, given turbulent velocity dispersions and magnetic field strengths consistent with observations. Moreover, as our simulations underestimate the effectiveness of H2 self-shielding and dust absorption, we can be confident that the molecular fractions that we compute are strong lower limits on the true values. The formation of large quantities of H2 on the timescale required by rapid cloud formation models therefore appears to be entirely plausible. We also investigate the density and temperature distributions of gas in our model clouds. We show that the density probability distribution function is approximately log-normal, with a dispersion that agrees well with the prediction of Padoan, Nordlund & Jones (1997). The temperature distrib...

  10. 2MASS wide field extinction maps: II. The Ophiuchus and the Lupus cloud complexe

    CERN Document Server

    Lombardi, Marco; Alves, Joao

    2008-01-01

    We present an extinction map of a ~1,700 deg sq region that encloses the Ophiuchus, the Lupus, and the Pipe dark complexes using 42 million stars from the Two Micron All Sky Survey (2MASS) point source catalog. The use of a robust and optimal near-infrared method to map dust column density (Nicer, described in Lombardi & Alves 2001) allow us to detect extinction as low as A_K = 0.05 mag with a 2-sigma significance, and still to have a resolution of 3 arcmin on our map. We also present a novel, statistically sound method to characterize the small-scale inhomogeneities in molecular clouds. Finally, we investigate the cloud structure function, and show that significant deviations from the results predicted by turbulent models are observed.

  11. Small Scale Structure at High Redshift II. Physical Properties of the CIV Absorbing Clouds

    CERN Document Server

    Rauch, M; Barlow, T A; Rauch, Michael; Sargent, Wallace L.W.; Barlow, Thomas A.

    2001-01-01

    Keck HIRES spectra were obtained of the separate images of three gravitationally lensed QSOs (UM 673, Q1104-1804, and Q1422+2309). We studied the velocity and column density differences in CIV doublets in each QSO. Unlike the low ionization gas clouds typical of the interstellar gas in the Galaxy or damped Ly alpha galaxies, the spatial density distribution of CIV absorbing gas clouds turns out to be mostly featureless on scales up to a few hundred parsecs, with column density differences rising to 50 percent or more over separations beyond a few kpc. Similarly, velocity shear becomes detectable only over distances larger than a few hundred pc, rising to 70 km/s at a few kpc. The energy transmitted to the gas is substantially less than in present day star-forming regions, and the gas is less turbulent on a given spatial scale than, e.g., local HII regions. The quiescence of CIV clouds, taken with their probable low density, imply that these objects are not internal to galaxies. The CIV absorbers could be gas ...

  12. A submillimetre survey of the kinematics of the Perseus molecular cloud - II. Molecular outflows

    CERN Document Server

    Curtis, Emily I; Swift, Jonathan J; Williams, Jonathan P

    2010-01-01

    We present a census of molecular outflows across four active regions of star formation in the Perseus molecular cloud (NGC 1333, IC348/HH211, L1448 and L1455), totalling an area of over 1000 sq arcmin. This is one of the largest surveys of outflow evolution in a single molecular cloud published to date. We analyse large-scale, sensitive CO J=3-2 datasets from the James Clerk Maxwell Telescope, including new data towards NGC 1333. Where possible we make use of our complementary 13CO and C18O data to correct for the 12CO optical depth and measure ambient cloud properties. Of the 65 submillimetre cores in our fields, we detect outflows towards 45. We compare various parameters between the outflows from Class 0 and I protostars, including their mass, momentum, energy and momentum flux. Class 0 outflows are longer, faster, more massive and have more energy than Class I outflows. The dynamical time-scales we derive from these outflows are uncorrelated to the age of the outflow driving source, computed from the prot...

  13. Kepler Monitoring of an L Dwarf II. Clouds with Multiyear Lifetimes

    CERN Document Server

    Gizis, John E; Burgasser, Adam J; Camnasio, Sara; Alam, Munazza; Filippazzo, Joseph C; Cruz, Kelle L; Metchev, Stanimir; Berger, Edo; Williams, Peter K G

    2015-01-01

    We present Kepler, Spitzer Space Telescope, Gemini-North, MMT, and Kitt Peak observations of the L1 dwarf WISEP J190648.47+401106.8. We find that the Kepler optical light curve is consistent in phase and amplitude over the nearly two years of monitoring with a peak-to-peak amplitude of 1.4%. Spitzer Infrared Array Camera 3.6 micron observations are in phase with Kepler with similar light curve shape and peak-to-peak amplitude 1.1%, but at 4.5 micron, the variability has amplitude $<$0.1%. Chromospheric H$\\alpha$ emission is variable but not synced with the stable Kepler light curve. A single dark spot can reproduce the light curve but is not a unique solution. An inhomogeneous cloud deck, specifically a region of thick cloud cover, can explain the multi-wavelength data of this ultracool dwarf and need not be coupled with the asynchronous magnetic emission variations. The long life of the cloud is in contrast with weather changes seen in cooler brown dwarfs on the timescale of hours and days.

  14. Cloud structure and composition of Jupiter's troposphere from 5-{\\mu}m Cassini VIMS spectroscopy

    CERN Document Server

    Giles, Rohini S; Irwin, Patrick G J

    2015-01-01

    Jupiter's tropospheric composition and cloud structure are studied using Cassini VIMS 4.5-5.1 {\\mu}m thermal emission spectra from the 2000-2001 flyby. We make use of both nadir and limb darkening observations on the planet's nightside, and compare these with dayside observations. Although there is significant spatial variability in the 5-{\\mu}m brightness temperatures, the shape of the spectra remain very similar across the planet, suggesting the presence of a spectrally-flat, spatially inhomogeneous cloud deck. We find that a simple cloud model consisting of a single, compact cloud is able to reproduce both nightside and dayside spectra, subject to the following constraints: (i) the cloud base is located at pressures of 1.2 bar or lower; (ii) the cloud particles are highly scattering; (iii) the cloud is sufficiently spectrally flat. Using this cloud model, we search for global variability in the cloud opacity and the phosphine deep volume mixing ratio. We find that the vast majority of the 5-{\\mu}m inhomoge...

  15. Saving the planet with bin packing - Experiences using 2D and 3D bin packing of virtual machines for greener clouds

    OpenAIRE

    Hage, Thomas; Begnum, Kyrre; Yazidi, Anis

    2014-01-01

    Greener cloud computing has recently become an extremely pertinent research topic in academy and among practitioners. Despite the abundance of the state of the art studies that tackle the problem, the vast majority of them solely rely on simulation, and do not report real settings experience. Thus, the theoretical models might overlook some of the practical details that might emerge in real life scenarios. In this paper, we try to bridge the aforementioned gap in the l...

  16. The Penn State - Torun Centre for Astronomy Planet Search stars. II. Lithium abundance analysis of the Red Giant Clump sample

    CERN Document Server

    Adamow, M; Villaver, E; Wolszczan, A; Nowak, G

    2014-01-01

    Using the sample of 348 stars from the PennState-Torun Centre for Astronomy Planet Search, for which uniformly determined atmospheric parameters are available, with chemical abundances and rotational velocities presented here, we investigate various channels of Li enrichment in giants. Our work is based on the HET/HRS spectra. The A(Li) was determined from the 670.8nm line, while we use a more extended set of lines for alpha-elements abundances. In a series of K-S tests, we compare Li-rich giants with other stars in the sample. We also use available IR photometric and kinematical data in search for evidence of mass-loss. We investigate properties of the most Li-abundant giants in more detail by using multi-epoch precise radial velocities. We present Li and alpha-elements abundances, as well as vsini for 348 stars. We detected Li in 92 stars, of which 82 are giants. 11 of them show significant Li abundance A(Li)>1.4 and 7 of them are Li-overabundant objects, according to criterion of A(Li)>1.5 and their locati...

  17. Spectral reflectance and atmospheric energetics in cirrus-like clouds. Part II: Applications of a Fourier-Riccati approach to radiative transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tsay, S.C.; King, M.D. [NASA/Goddard Space Flight Center, Greenbelt, MD (United States); Gabriel, P.M.; Stephens, G.L. [Colorado State Univ., Fort Collins, CO (United States)

    1996-12-01

    One of the major sources of uncertainty in climate studies is the detection of cirrus clouds and characterization of their radiative properties. Combinations of water vapor absorption channels (e.g., 1.38 {mu}m), ice-water absorption channels (e.g., 1.64 {mu}m), and atmospheric window channels (e.g., 11 {mu}m) in the imager, together with a lidar profiler on future EOS platforms, will contribute to enhancing present understanding of cirrus clouds. The aforementioned spectral channels are used in this study to explore the effects exerted by uncertainties in cloud microphysical properties (e.g., particle size distribution) and cloud morphology on the apparent radiative properties, such as spectral reflectance and heating and cooling rate profiles. As in Part I of the previous study, which establishes the foundations of the Fourier-Riccati method of radiative transfer in inhomogeneous media, cloud extinction and scattering functions are characterized by simple spatial variations with measured and hypothesized microphysics to facilitate the understanding of their radiative properties. Results of this study suggest that (i) while microphysical variations in the scattering and extinction functions of clouds affect the magnitudes of their spectral reflectances, cloud morphology significantly alters the shape of their angular distribution; (ii) spectral reflectances viewed near nadir are least affected by cloud variability; and (iii) cloud morphology can lead to spectral heating and cooling rate profiles that differ substantially from their plane-parallel averaged equivalents. Since there are no horizontal thermal gradients in plane-parallel clouds, it may be difficult to correct for this deficiency. 32 refs., 11 figs., 1 tab.

  18. Cloud point extraction, preconcentration and spectrophotometric determination of trace amount of manganese(II) in water and food samples

    Science.gov (United States)

    Gouda, Ayman A.

    2014-10-01

    A new cloud point extraction (CPE) process using the nonionic surfactant Triton X-114 to extract manganese(II) from aqueous solution was investigated. The method is based on the complexation reaction of manganese(II) with 1,2,5,8-tetrahydroxyanthracene-9,10-dione (quinalizarin) in the presence of borate buffer at pH 8.5 and micelle-mediated extraction of the complex. The enriched analyte in the surfactant-rich phase was determined by spectrophotometry at 528 nm. The optimal extraction and reaction conditions (e.g. pH, reagent and surfactant concentrations, temperature and centrifugation times) were evaluated and optimized. Under the optimized experimental conditions, the analytical characteristics of the method (e.g., limit of detection (LOD), linear range, preconcentration and improvement factors) were obtained. The proposed CPE method showed linear calibration within the range 5.0-200 ng mL-1 of manganese(II) and the limit of detection of the method was 0.8 ng mL-1 with an preconcentration factor of ∼50 when 25 mL of sample solution was preconcentrated to 0.5 mL. The relative standard deviation (RSD) and relative error were found to be 1.35% and 1.42%, respectively (CMn(II) = 150 ng mL-1, n = 6) for pure standard solutions. The interference effect of some cations and anions was also studied. In the presence of foreign ions, no significant interference was observed. The method was applied to the determination of manganese(II) in water and food samples with a recovery for the spiked samples in the range of 95.87-102.5%.

  19. Cloud point extraction, preconcentration and spectrophotometric determination of trace amount of manganese(II) in water and food samples.

    Science.gov (United States)

    Gouda, Ayman A

    2014-10-15

    A new cloud point extraction (CPE) process using the nonionic surfactant Triton X-114 to extract manganese(II) from aqueous solution was investigated. The method is based on the complexation reaction of manganese(II) with 1,2,5,8-tetrahydroxyanthracene-9,10-dione (quinalizarin) in the presence of borate buffer at pH 8.5 and micelle-mediated extraction of the complex. The enriched analyte in the surfactant-rich phase was determined by spectrophotometry at 528nm. The optimal extraction and reaction conditions (e.g. pH, reagent and surfactant concentrations, temperature and centrifugation times) were evaluated and optimized. Under the optimized experimental conditions, the analytical characteristics of the method (e.g., limit of detection (LOD), linear range, preconcentration and improvement factors) were obtained. The proposed CPE method showed linear calibration within the range 5.0-200ngmL(-1) of manganese(II) and the limit of detection of the method was 0.8ngmL(-1) with an preconcentration factor of ∼50 when 25mL of sample solution was preconcentrated to 0.5mL. The relative standard deviation (RSD) and relative error were found to be 1.35% and 1.42%, respectively (CMn(II)=150ngmL(-1), n=6) for pure standard solutions. The interference effect of some cations and anions was also studied. In the presence of foreign ions, no significant interference was observed. The method was applied to the determination of manganese(II) in water and food samples with a recovery for the spiked samples in the range of 95.87-102.5%.

  20. Cloud point extraction and flame atomic absorption spectrometry combination for copper(II) ion in environmental and biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Shokrollahi, Ardeshir [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of)], E-mail: ashokrollahi@mail.yu.ac.ir; Ghaedi, Mehrorang [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of)], E-mail: m_ghaedi@mail.yu.ac.ir; Hossaini, Omid; Khanjari, Narges [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Soylak, Mustafa [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2008-12-30

    A cloud point extraction procedure was presented for the preconcentration of copper(II) ion in various samples. After complexation by 4-(phenyl diazenyl) benzene-1,3-diamine (PDBDM) (chrysoidine), copper(II) ions were quantitatively recovered in Triton X-114 after centrifugation. 0.5 ml of methanol acidified with 1.0 mol L{sup -1} HNO{sub 3} was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The influence of analytical parameters including ligand, Triton X-114 and HNO{sub 3} concentrations, bath temperature, heating time, centrifuge rate and time were optimized. The effect of the matrix ions on the recovery of copper(II) ions was investigated. The detection limit (3S.D.{sub b}/m, n = 10) of 0.6 ng mL{sup -1} along with preconcentration factor of 30 and enrichment factor of 41.1 with R.S.D. of 1.0% for Cu was achieved. The proposed procedure was applied to the analysis of various environmental and biological samples.

  1. Determination of cadmium(II), cobalt(II), nickel(II), lead(II), zinc(II), and copper(II) in water samples using dual-cloud point extraction and inductively coupled plasma emission spectrometry.

    Science.gov (United States)

    Zhao, Lingling; Zhong, Shuxian; Fang, Keming; Qian, Zhaosheng; Chen, Jianrong

    2012-11-15

    A dual-cloud point extraction (d-CPE) procedure has been developed for simultaneous pre-concentration and separation of heavy metal ions (Cd2+, Co2+, Ni2+, Pb2+, Zn2+, and Cu2+ ion) in water samples by inductively coupled plasma optical emission spectrometry (ICP-OES). The procedure is based on forming complexes of metal ion with 8-hydroxyquinoline (8-HQ) into the as-formed Triton X-114 surfactant rich phase. Instead of direct injection or analysis, the surfactant rich phase containing the complexes was treated by nitric acid, and the detected ions were back extracted again into aqueous phase at the second cloud point extraction stage, and finally determined by ICP-OES. Under the optimum conditions (pH=7.0, Triton X-114=0.05% (w/v), 8-HQ=2.0×10(-4) mol L(-1), HNO3=0.8 mol L(-1)), the detection limits for Cd2+, Co2+, Ni2+, Pb2+, Zn2+, and Cu2+ ions were 0.01, 0.04, 0.01, 0.34, 0.05, and 0.04 μg L(-1), respectively. Relative standard deviation (RSD) values for 10 replicates at 100 μg L(-1) were lower than 6.0%. The proposed method could be successfully applied to the determination of Cd2+, Co2+, Ni2+, Pb2+, Zn2+, and Cu2+ ion in water samples.

  2. Migration of accreting giant planets

    Science.gov (United States)

    Crida, A.; Bitsch, B.; Raibaldi, A.

    2016-12-01

    We present the results of 2D hydro simulations of giant planets in proto-planetary discs, which accrete gas at a more or less high rate. First, starting from a solid core of 20 Earth masses, we show that as soon as the runaway accretion of gas turns on, the planet is saved from type I migration : the gap opening mass is reached before the planet is lost into its host star. Furthermore, gas accretion helps opening the gap in low mass discs. Consequently, if the accretion rate is limited to the disc supply, then the planet is already inside a gap and in type II migration. We further show that the type II migration of a Jupiter mass planet actually depends on its accretion rate. Only when the accretion is high do we retrieve the classical picture where no gas crosses the gap and the planet follows the disc spreading. These results impact our understanding of planet migration and planet population synthesis models. The e-poster presenting these results in French can be found here: L'e-poster présentant ces résultats en français est disponible à cette adresse: http://sf2a.eu/semaine-sf2a/2016/posterpdfs/156_179_49.pdf.

  3. Formation of terrestrial planets in eccentric and inclined giant-planet systems

    Science.gov (United States)

    Sotiriadis, Sotiris; Libert, Anne-Sophie; Raymond, Sean

    2016-10-01

    The orbits of extrasolar planets are more various than the circular and coplanar ones of the Solar system. We study the impact of inclined and eccentric massive giant planets on the terrestrial planet formation process. The physical and orbital parameters of the giant planets considered in this study arise from n-body simulations of three giant planets in the late stage of the gas disc, under the combined action of Type II migration and planet-planet scattering. At the dispersal of the gas disc, the two- and three-planet systems interact then with an inner disc of planetesimals and planetary embryos. We discuss the mass and orbital parameters of the terrestrial planets formed by our simulations, as well as their water content. We also investigate how the disc of planetesimals and planetary embryos modifies the eccentric and inclined orbits of the giant planets.

  4. New 20-cm radio-continuum study of the Small Magellanic Cloud, part II: Point sources

    Directory of Open Access Journals (Sweden)

    Wong G.F.

    2011-01-01

    Full Text Available We present a new catalogue of radio-continuum sources in the field of the Small Magellanic Cloud (SMC. This catalogue contains sources previously not found in 2370 MHz (λ=13 cm with sources found at 1400 MHz (λ=20 cm and 843 MHz (λ=36 cm. 45 sources have been detected at 13 cm, with 1560 sources at 20 cm created from new high sensitivity and resolution radio-continuum images of the SMC at 20 cm from paper I. We also created a 36 cm catalogue to which we listed 1689 radio-continuum sources.

  5. Embedded protostellar disks around (sub-)solar stars. II. Disk masses, sizes, densities, temperatures and the planet formation perspective

    CERN Document Server

    Vorobyov, Eduard I

    2011-01-01

    We present basic properties of protostellar disks in the embedded phase of star formation (EPSF), which is difficult to probe observationally using available observational facilities. We use numerical hydrodynamics simulations of cloud core collapse and focus on disks formed around stars in the 0.03-1.0 Msun mass range. Our obtained disk masses scale near-linearly with the stellar mass. The mean and median disk masses in the Class 0 and I phases (M_{d,C0}^{mean}=0.12 Msun, M_{d,C0}^{mdn}=0.09 Msun and M_{d,CI}^{mean}=0.18 Msun, M_{d,CI}^{mdn}=0.15 Msun, respectively) are greater than those inferred from observations by (at least) a factor of 2--3. We demonstrate that this disagreement may (in part) be caused by the optically thick inner regions of protostellar disks, which do not contribute to millimeter dust flux. We find that disk masses and surface densities start to systematically exceed that of the minimum mass solar nebular for objects with stellar mass as low as M_st=0.05-0.1 Msun. Concurrently, disk r...

  6. Determination of cadmium(II), cobalt(II), nickel(II), lead(II), zinc(II), and copper(II) in water samples using dual-cloud point extraction and inductively coupled plasma emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lingling; Zhong, Shuxian; Fang, Keming; Qian, Zhaosheng [College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004 (China); Chen, Jianrong, E-mail: cjr@zjnu.cn [College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004 (China); College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A dual-cloud point extraction (d-CPE) procedure was firstly developed for simultaneous pre-concentration and separation of trace metal ions combining with ICP-OES. Black-Right-Pointing-Pointer The developed d-CPE can significantly eliminate the surfactant of Triton X-114 and successfully extend to the determination of water samples with good performance. Black-Right-Pointing-Pointer The designed method is simple, high efficient, low cost, and in accordance with the green chemistry concept. - Abstract: A dual-cloud point extraction (d-CPE) procedure has been developed for simultaneous pre-concentration and separation of heavy metal ions (Cd{sup 2+}, Co{sup 2+}, Ni{sup 2+}, Pb{sup 2+}, Zn{sup 2+}, and Cu{sup 2+} ion) in water samples by inductively coupled plasma optical emission spectrometry (ICP-OES). The procedure is based on forming complexes of metal ion with 8-hydroxyquinoline (8-HQ) into the as-formed Triton X-114 surfactant rich phase. Instead of direct injection or analysis, the surfactant rich phase containing the complexes was treated by nitric acid, and the detected ions were back extracted again into aqueous phase at the second cloud point extraction stage, and finally determined by ICP-OES. Under the optimum conditions (pH = 7.0, Triton X-114 = 0.05% (w/v), 8-HQ = 2.0 Multiplication-Sign 10{sup -4} mol L{sup -1}, HNO{sub 3} = 0.8 mol L{sup -1}), the detection limits for Cd{sup 2+}, Co{sup 2+}, Ni{sup 2+}, Pb{sup 2+}, Zn{sup 2+}, and Cu{sup 2+} ions were 0.01, 0.04, 0.01, 0.34, 0.05, and 0.04 {mu}g L{sup -1}, respectively. Relative standard deviation (RSD) values for 10 replicates at 100 {mu}g L{sup -1} were lower than 6.0%. The proposed method could be successfully applied to the determination of Cd{sup 2+}, Co{sup 2+}, Ni{sup 2+}, Pb{sup 2+}, Zn{sup 2+}, and Cu{sup 2+} ion in water samples.

  7. Simulating the Formation of Molecular Clouds. II. Rapid Formation from Turbulent Initial Conditions

    Science.gov (United States)

    Glover, Simon C. O.; Mac Low, Mordecai-Mark

    2007-04-01

    In this paper we present results from a large set of numerical simulations that demonstrate that H2 formation occurs rapidly in turbulent gas. Starting with purely atomic hydrogen, large quantities of molecular hydrogen can be produced on timescales of 1-2 Myr, given turbulent velocity dispersions and magnetic field strengths consistent with observations. Moreover, as our simulations underestimate the effectiveness of H2 self-shielding and dust absorption, we can be confident that the molecular fractions that we compute are strong lower limits on the true values. The formation of large quantities of molecular gas on the timescale required by rapid cloud formation models therefore appears to be entirely plausible. We also investigate the density and temperature distributions of gas in our model clouds. We show that the density probability distribution function is approximately lognormal, with a dispersion that agrees well with the prediction of Padoan and coworkers. The temperature distribution is similar to that of a polytrope, with an effective polytropic index γeff~=0.8, although at low gas densities, the scatter of the actual gas temperature around this mean value is considerable, and the polytropic approximation does not capture the full range of behavior of the gas.

  8. A bright-rimmed cloud sculpted by the H ii region Sh2-48

    CERN Document Server

    Ortega, M E; Giacani, E; Rubio, M; Dubner, G

    2013-01-01

    To characterize a bright-rimmed cloud embedded in the HII region Sh2-48 searching for evidence of triggered star formation. We carried out observations towards a region of 2'x2' centered at RA=18h 22m 11.39s, dec.=-14deg 35m 24.81s (J2000) using the Atacama Submillimeter Telescope Experiment (ASTE; Chile) in the 12CO J=3-2,13CO J=3-2, HCO+ J=4-3, and CS J=7-6 lines with an angular resolution of about 22". We also present radio continuum observations at 5 GHz carried out with the Jansky Very Large Array (JVLA; EEUU) interferometer with a synthetized beam of 7"x5". The analysis of our molecular observations reveals the presence of a relatively dense clump with n(H_2)~3x10^3 cm^-3, located in projection onto the interior of the HII region Sh2-48. The emission distribution of the four observed molecular transitions has, at VLSR~38 kms^-1, morphological anti-correlation with the bright-rimmed cloud as seen in the optical emission. From the new radio continuum observations we identify a thin layer of ionized gas lo...

  9. FUSE Measurements of Far Ultraviolet Extinction. II. Magellanic Cloud Sight Lines

    CERN Document Server

    Cartledge, S I B; Gordon, K D; Rachford, B L; Draine, B T; Martin, P G; Mathis, J S; Misselt, K A; Sofia, U J; Whittet, D C B; Wolff, M J; Cartledge, Stefan I. B.; Clayton, Geoffrey C.; Gordon, Karl D.; Rachford, Brian L.; Mathis, John S.; Sofia, Ulysses J.; Wolff, Michael J.

    2005-01-01

    We present an extinction analysis of 9 paths through the LMC and SMC based on FUSE observations. To date, just two LMC sight lines have probed dust grain composition and size distributions in the Clouds using spectra including wavelengths as short as 950 A. We supplement these with results from 4 regions distinguished by their IR through UV extinction curves and grouped as LMCAvg, LMC2, SMC bar and SMC wing. Despite the distinct characters of Milky Way and Magellanic Cloud extinction, our results are generally analogous to those found for Galactic curves in that the FUSE portions of each extinction curve are described reasonably well by FM curves fitted only to longer wavelength data and lack any dramatic new extinction features, and any deviations from the CCM formalism continue into FUV wavelengths. An MEM analysis of these curves suggests that LMCAvg and SMC wing sight lines require more silicon and/or carbon in dust than current abundance measurements would allow, while the requirements for LMC2 and SMC b...

  10. Simulating Atmospheric Free-Space Optical Propagation; Part II: Haze, Fog, and Low Clouds Attenuations

    Science.gov (United States)

    Achour, Maha

    2002-12-01

    One of the biggest challenges facing Free-Space Optics deployment is proper understanding of optical signal propagation in different atmospheric conditions. In an earlier study by the author (30), attenuation by rain was analyzed and successfully modeled for infrared signal transmission. In this paper, we focus on attenuation due to scattering by haze, fog and low clouds droplets using the original Mie Scattering theory. Relying on published experimental results on infrared propagation, electromagnetic waves scattering by spherical droplet, atmospheric physics and thermodynamics, UlmTech developed a computer-based platform, Simulight, which simulates infrared signal (750 nm-12 μm) propagation in haze, fog, low clouds, rain and clear weather. Optical signals are scattered by fog droplets during transmission in the forward direction preventing the receiver from detecting the minimum required power. Weather databases describe foggy conditions by measuring the visibility parameter, which is, in general, defined as the maximum distance that the visible 550 nm signal can travel while distinguishing between the target object and its background at 2% contrast. Extrapolating optical signal attenuations beyond 550 nm using only visibility is not as straightforward as stated by the Kruse equation which is unfortunately widely used. We conclude that it is essential to understand atmospheric droplet sizes and their distributions based on measured attenuations to effectively estimate infrared attenuation. We focus on three types of popular fogs: Evolving, Stable and Selective.

  11. Modeling CO Emission: II. The Physical Characteristics that Determine the X factor in Galactic Molecular Clouds

    CERN Document Server

    Shetty, Rahul; Dullemond, Cornelis P; Ostriker, Eve C; Harris, Andrew I; Klessen, Ralf S

    2011-01-01

    We investigate how the X factor, the ratio of H_2 column density (NH2) to velocity-integrated CO intensity (W), is determined by the physical properties of gas in model molecular clouds (MCs). We perform radiative transfer calculations on chemical-MHD models to compute X. Using integrated NH2 and W reproduces the limited range in X found in observations, resulting in a mean value X=2\\times10^20 s/cm^2/K^1/km^1 from the Galactic MC model. However, in limited velocity intervals, X can take on a much larger range due to CO line saturation. Thus, X strongly depends on both the range in gas velocities and volume densities. The temperature (T) variations within individual MCs do not strongly affect X, as dense gas contributes most to setting X. For fixed velocity and density structure, gas with higher T has higher W, yielding X ~ T^-1/2 for T~20-100 K. We demonstrate that the linewidth-size scaling relation does not influence the X factor - only the range in velocities is important. Clouds with larger linewidths, r...

  12. Submillimeter to centimeter excess emission from the Magellanic Clouds. II. On the nature of the excess

    CERN Document Server

    Bot, Caroline; Paradis, Déborah; Bernard, Jean-Philippe; Lagache, Guilaine; Israel, Frank P; Wall, William F

    2010-01-01

    Dust emission at submm to cm wavelengths is often simply the Rayleigh-Jeans tail of dust particles at thermal equilibrium and is used as a cold mass tracer in various environments including nearby galaxies. However, well-sampled spectral energy distributions of the nearby, star-forming Magellanic Clouds have a pronounced (sub-)millimeter excess (Israel et al., 2010). This study attempts to confirm the existence of such a millimeter excess above expected dust, free-free and synchrotron emission and to explore different possibilities for its origin. We model NIR to radio spectral energy distributions of the Magellanic Clouds with dust, free-free and synchrotron emission. A millimeter excess emission is confirmed above these components and its spectral shape and intensity are analysed in light of different scenarios: very cold dust, Cosmic Microwave Background (CMB) fluctuations, a change of the dust spectral index and spinning dust emission. We show that very cold dust or CMB fluctuations are very unlikely expl...

  13. Spitzer SAGE survey of the Large Magellanic Cloud II : Evolved Stars and Infrared Color Magnitude Diagrams

    CERN Document Server

    Blum, R D; Olsen, K A; Frogel, J A; Werner, M; Meixner, M; Markwick-Kemper, F; Indebetouw, R; Whitney, B; Meade, M; Babler, B; Churchwell, E B; Gordon, K; Engelbracht, C W; Misselt, K; Vijh, U; Leitherer, C; Volk, K; Points, S; Reach, W; Hora, J L; Bernard, J P; Boulanger, F; Bracker, S; Cohen, M; Fukui, Y; Gallagher, J; Gorjian, V; Harris, J; Kelly, D; Kawamura, A; Latter, W B; Madden, S; Mizuno, A; Mizuno, N; Nota, A; Oey, M S; Onishi, T; Paladini, R; Panagia, N; Perez-Gonzalez, P; Shibai, H; Sato, S; Smith, L; Staveley-Smith, L; Tielens, A G G M; Ueta, T; Van Dyk, S D; Zaritsky, D

    2006-01-01

    Color-magnitude diagrams (CMDs) are presented for the Spitzer SAGE (Surveying the Agents of a Galaxy's Evolution) survey of the Large Magellanic Cloud (LMC). IRAC and MIPS 24 um epoch one data are presented. These data represent the deepest, widest mid-infrared CMDs of their kind ever produced in the LMC. Combined with the 2MASS survey, the diagrams are used to delineate the evolved stellar populations in the Large Magellanic Cloud as well as Galactic foreground and extragalactic background populations. Some 32000 evolved stars brighter than the tip of the red giant branch are identified. Of these, approximately 17500 are classified as oxygen-rich, 7000 carbon-rich, and another 1200 as ``extreme'' asymptotic giant branch (AGB) stars. Brighter members of the latter group have been called ``obscured'' AGB stars in the literature owing to their dusty circumstellar envelopes. A large number (1200) of luminous oxygen--rich AGB stars/M supergiants are also identified. Finally, there is strong evidence from the 24 u...

  14. Diurnal variability of regional cloud and clear-sky radiative parameters derived from GOES data. I - Analysis method. II - November 1978 cloud distributions. III - November 1978 radiative parameters

    Science.gov (United States)

    Minnis, P.; Harrison, E. F.

    1984-01-01

    Cloud cover is one of the most important variables affecting the earth radiation budget (ERB) and, ultimately, the global climate. The present investigation is concerned with several aspects of the effects of extended cloudiness, taking into account hourly visible and infrared data from the Geostationary Operational Environmental Satelite (GOES). A methodology called the hybrid bispectral threshold method is developed to extract regional cloud amounts at three levels in the atmosphere, effective cloud-top temperatures, clear-sky temperature and cloud and clear-sky visible reflectance characteristics from GOES data. The diurnal variations are examined in low, middle, high, and total cloudiness determined with this methodology for November 1978. The bulk, broadband radiative properties of the resultant cloud and clear-sky data are estimated to determine the possible effect of the diurnal variability of regional cloudiness on the interpretation of ERB measurements.

  15. Clouds and Hazes in Exoplanet Atmospheres

    CERN Document Server

    Marley, Mark S; Cuzzi, Jeffrey N; Kitzmann, Daniel

    2013-01-01

    Clouds and hazes are commonplace in the atmospheres of solar system planets and are likely ubiquitous in the atmospheres of extrasolar planets as well. Clouds affect every aspect of a planetary atmosphere, from the transport of radiation, to atmospheric chemistry, to dynamics and they influence - if not control - aspects such as surface temperature and habitability. In this review we aim to provide an introduction to the role and properties of clouds in exoplanetary atmospheres. We consider the role clouds play in influencing the spectra of planets as well as their habitability and detectability. We briefly summarize how clouds are treated in terrestrial climate models and consider the far simpler approaches that have been taken so far to model exoplanet clouds, the evidence for which we also review. Since clouds play a major role in the atmospheres of certain classes of brown dwarfs we briefly discuss brown dwarf cloud modeling as well. We also review how the scattering and extinction efficiencies of cloud p...

  16. Some Stars are Totally Metal: A New Mechanism Driving Dust Across Star-Forming Clouds, and Consequences for Planets, Stars, and Galaxies

    CERN Document Server

    Hopkins, Philip F

    2014-01-01

    Dust grains in neutral gas behave as aerodynamic particles, so they can develop large local density fluctuations entirely independent of gas density fluctuations. Specifically, gas turbulence can drive order-of-magnitude 'resonant' fluctuations in the dust density on scales where the gas stopping/drag timescale is comparable to the turbulent eddy turnover time. Here we show that for large grains (size >0.1 micron, containing most grain mass) in sufficiently large molecular clouds (radii >1-10 pc, masses >10^4 solar), this scale becomes longer than the characteristic sizes of pre-stellar cores (the sonic length), so large fluctuations in the dust-to-gas ratio are imprinted on cores. As a result, star clusters and protostellar disks formed in large clouds should exhibit substantial abundance spreads in the elements preferentially found in large grains (C, O, Si). This naturally predicts populations of carbon-enhanced stars, certain highly unusual stellar populations observed in nearby open clusters, and may exp...

  17. Giant Planets

    CERN Document Server

    Guillot, Tristan

    2014-01-01

    We review the interior structure and evolution of Jupiter, Saturn, Uranus and Neptune, and giant exoplanets with particular emphasis on constraining their global composition. Compared to the first edition of this review, we provide a new discussion of the atmospheric compositions of the solar system giant planets, we discuss the discovery of oscillations of Jupiter and Saturn, the significant improvements in our understanding of the behavior of material at high pressures and the consequences for interior and evolution models. We place the giant planets in our Solar System in context with the trends seen for exoplanets.

  18. Star formation in bright-rimmed clouds and cluster associated with W5 E H{\\sc ii} region

    CERN Document Server

    Chauhan, Neelam; Ogura, K; Jose, J; Ojha, D K; Samal, M R; Mito, H

    2011-01-01

    The aim of this paper is to present the results of photometric investigations of the central cluster of the W5 E region as well as a follow-up study of the triggered star formation in and around bright-rimmed clouds (BRCs). We have carried out wide field $UBVI_c$ and deep $VI_c$ photometry of the W5 E H{\\sc ii} region. A distance of $\\sim$2.1 kpc and a mean age of $\\sim$1.3 Myr have been obtained for the central cluster. The young stellar objects (YSOs) associated with the region are identified on the basis of near-infrared and mid-infrared observations. We confirmed our earlier results that the average age of the YSOs lying on/inside the rim are younger than those lying outside the rim. The global distribution of the YSOs shows an aligned distribution from the ionising source to the BRCs. These facts indicate that a series of radiation driven implosion processes proceeded from near the central ionising source towards the periphery of the W5 E H{\\sc ii} region. We found that, in general, the age distributions...

  19. Planets and Dark Energy

    CERN Document Server

    Gibson, Carl H

    2008-01-01

    Self gravitational fluid mechanical methods termed hydro-gravitational-dynamics (HGD) predict plasma fragmentation 0.03 Myr after the turbulent big bang to form protosuperclustervoids, turbulent protosuperclusters, and protogalaxies at the 0.3 Myr transition from plasma to gas. Linear protogalaxyclusters fragment at 0.003 Mpc viscous-inertial scales along turbulent vortex lines or in spirals, as observed. The plasma protogalaxies fragment on transition into white-hot planet-mass gas clouds (PFPs) in million-solar-mass clumps (PGCs) that become globular-star-clusters (GCs) from tidal forces or dark matter (PGCs) by freezing and diffusion into 0.3 Mpc halos with 97% of the galaxy mass. The weakly collisional non-baryonic dark matter diffuses to > Mpc scales and fragments to form galaxy cluster halos. Stars and larger planets form by binary mergers of the trillion PFPs per PGC, mostly on 0.03 Mpc galaxy accretion disks. Stars deaths depend on rates of planet accretion and internal star mixing. Moderate accretion...

  20. Pluto: Planet or "Dwarf Planet"?

    Science.gov (United States)

    Voelzke, M. R.; de Araújo, M. S. T.

    2010-09-01

    In August 2006 during the XXVI General Assembly of the International Astronomical Union (IAU), taken place in Prague, Czech Republic, new parameters to define a planet were established. According to this new definition Pluto will be no more the ninth planet of the Solar System but it will be changed to be a "dwarf planet". This reclassification of Pluto by the academic community clearly illustrates how dynamic science is and how knowledge of different areas can be changed and evolves through the time, allowing to perceive Science as a human construction in a constant transformation, subject to political, social and historical contexts. These epistemological characteristics of Science and, in this case, of Astronomy, constitute important elements to be discussed in the lessons, so that this work contributes to enable Science and Physics teachers who perform a basic education to be always up to date on this important astronomical fact and, thereby, carry useful information to their teaching.

  1. Evidence Against an Edge-On Disk Around the Extrasolar Planet 2MASS 1207 b and a New Thick Cloud Explanation for its Under-Luminosity

    CERN Document Server

    Skemer, Andrew J; Sz\\Hucs, László; Apai, Dániel; Pascucci, Ilaria; Biller, Beth A

    2011-01-01

    (Abridged) Since the discovery of the first directly-imaged, planetary-mass object, 2MASS 1207 b, several works have sought to explain a disparity between its observed temperature and luminosity. Given its known age, distance, and spectral type, 2MASS 1207 b is under-luminous by a factor of ~10 (~2.5 mags) when compared to standard models of brown-dwarf/giant-planet evolution. In this paper, we study three possible sources of 2MASS 1207 b's under-luminosity. First, we investigate Mohanty et al. (2007)'s hypothesis that a near edge-on disk might be responsible for 2MASS 1207 b's under-luminosity. We conclude that the hypothesis is unlikely due to the lack of variability seen in multi-epoch photometry and unnecessary due to the increasing sample of under-luminous brown-dwarfs/giant-exoplanets that cannot be explained by an edge-on disk. Next, we test the analogous possibility that a spherical shell of dust, could explain 2MASS 1207 b's under-luminosity. Models containing enough dust to create ~2.5 mags of extin...

  2. Observations of [C II] 158 micron Line and Far-infrared Continuum Emission toward the High-latitude Molecular Clouds in Ursa Major

    CERN Document Server

    Matsuhara, H; Yonekura, Y; Fukui, Y; Kawada, M K; Bock, J J; Matsuhara, Hideo; Tanaka, Masahiro; Yonekura, Yoshinori; Fukui, Yasuo; Kawada, Mitsunobu; Bock, James. J.

    1997-01-01

    We report the results of a rocket-borne observation of [C II] 158\\micron line and far-infrared continuum emission at 152.5\\micron toward the high latitude molecular clouds in Ursa Major. We also present the results of a follow-up observation of the millimeter ^{12}CO J=1-0 line over a selected region observed by the rocket-borne experiment. We have discovered three small CO cloudlets from the follow-up ^{12}CO observations. We show that these molecular cloudlets, as well as the MBM clouds(MBM 27/28/29/30), are not gravitationally bound. Magnetic pressure and turbulent pressure dominate the dynamic balance of the clouds. After removing the HI-correlated and background contributions, we find that the [C II] emission peak is displaced from the 152.5\\micron and CO peaks, while the 152.5\\micron continuum emission is spatially correlated with the CO emission. We interpret this behavior by attributing the origin of [C II] emission to the photodissociation regions around the molecular clouds illuminated by the local ...

  3. Planetary perturbations for Oort cloud comets: II. Implications for the origin of observable comets

    Science.gov (United States)

    Fouchard, M.; Rickman, H.; Froeschlé, Ch.; Valsecchi, G. B.

    2014-03-01

    We present Monte Carlo simulations of the dynamical history of the Oort cloud, where in addition to the main external perturbers (Galactic tides and stellar encounters) we include, as done in a companion paper (Fouchard, M., Rickman, H., Froeschlé, Ch., Valsecchi, G.B. [2013b]. Icarus, in press), the planetary perturbations experienced each time the comets penetrate to within 50 AU of the Sun. Each simulation involves an initial sample of four million comets and extends over a maximum of 5 Gyr. For better understanding of the outcomes, we supplement the full dynamical model by others, where one or more of the effects are left out. We concentrate on the production of observable comets, reaching for the first time a perihelion within 5 AU of the Sun. We distinguish between four categories, depending on whether the comet jumps across, or creeps through, the Jupiter-Saturn barrier (perihelion distances between 5 and 15 AU), and whether the orbit leading to the observable perihelion is preceded by a major planetary perturbation or not. For reasons explained in the paper, we call the strongly perturbed comets "Kaib-Quinn comets". We thus derive a synthetic picture of the Oort spike, from which we draw two main conclusions regarding the full dynamical model. One is that 2/3 of the observable comets are injected with the aid of a planetary perturbation at the previous perihelion passage, and about half of the observable comets are of the Kaib-Quinn type. The other is that the creepers dominate over the jumpers. Due to this fact, the spike peaks at only 31 000 AU, and the majority of new comets have semi-major axes less than this value. The creepers show a clear preference for retrograde orbits as a consequence of the need to avoid untimely, planetary ejection before becoming observable. Thus, the new comets should have a 60/40 preference for retrograde against prograde orbits in apparent conflict with observations. However, both these and other results depend on our model

  4. A New Family of Planets ? "Ocean Planets"

    OpenAIRE

    Leger, A.; Selsis, F.; Sotin, C.; Guillot, T.; Despois, D.; Lammer, H.; Ollivier, M.; Brachet, F.; Labeque, A.; Valette, C.

    2003-01-01

    A new family of planets is considered which is between rochy terrestrial planets and gaseous giant ones: "Ocean-Planets". We present the possible formation, composition and internal models of these putative planets, including that of their ocean, as well as their possible Exobiology interest. These planets should be detectable by planet detection missions such as Eddington and Kepler, and possibly COROT (lauch scheduled in 2006). They would be ideal targets for spectroscopic missions such as ...

  5. Wolf-Rayet stars in the Small Magellanic Cloud. II. Analysis of the binaries

    Science.gov (United States)

    Shenar, T.; Hainich, R.; Todt, H.; Sander, A.; Hamann, W.-R.; Moffat, A. F. J.; Eldridge, J. J.; Pablo, H.; Oskinova, L. M.; Richardson, N. D.

    2016-06-01

    Context. Massive Wolf-Rayet (WR) stars are evolved massive stars (Mi ≳ 20 M⊙) characterized by strong mass-loss. Hypothetically, they can form either as single stars or as mass donors in close binaries. About 40% of all known WR stars are confirmed binaries, raising the question as to the impact of binarity on the WR population. Studying WR binaries is crucial in this context, and furthermore enable one to reliably derive the elusive masses of their components, making them indispensable for the study of massive stars. Aims: By performing a spectral analysis of all multiple WR systems in the Small Magellanic Cloud (SMC), we obtain the full set of stellar parameters for each individual component. Mass-luminosity relations are tested, and the importance of the binary evolution channel is assessed. Methods: The spectral analysis is performed with the Potsdam Wolf-Rayet (PoWR) model atmosphere code by superimposing model spectra that correspond to each component. Evolutionary channels are constrained using the Binary Population and Spectral Synthesis (BPASS) evolution tool. Results: Significant hydrogen mass fractions (0.1 putatively single SMC WR stars, our study suggests that the binary evolution channel does not dominate the formation of WR stars at SMC metallicity.

  6. Coagulation and Fragmentation in molecular clouds. II. The opacity of the dust aggregate size distribution

    CERN Document Server

    Ormel, C W; Tielens, A G G M; Dominik, C; Paszun, D

    2011-01-01

    The dust size distribution in molecular clouds can be strongly affected by ice-mantle formation and (subsequent) grain coagulation. Following previous work where the dust size distribution has been calculated from a state-of-the art collision model for dust aggregates that involves both coagulation and fragmentation (Paper I), the corresponding opacities are presented in this study. The opacities are calculated by applying the effective medium theory assuming that the dust aggregates are a mix of 0.1{\\mu}m silicate and graphite grains and vacuum. In particular, we explore how the coagulation affects the near-IR opacities and the opacity in the 9.7{\\mu}m silicate feature. We find that as dust aggregates grow to {\\mu}m-sizes both the near-IR color excess and the opacity in the 9.7 {\\mu}m feature increases. Despite their coagulation, porous aggregates help to prolong the presence of the 9.7{\\mu}m feature. We find that the ratio between the opacity in the silicate feature and the near-IR color excess becomes lowe...

  7. Protostar Formation in Magnetic Molecular Clouds beyond Ion Detachment: II. Typical Axisymmetric Solution

    CERN Document Server

    Tassis, K; Tassis, Konstantinos; Mouschovias, Telemachos Ch.

    2007-01-01

    We follow the ambipolar-diffusion--driven formation and evolution of a fragment in a magnetically supported molecular cloud, until a hydrostatic protostellar core forms at its center. This problem was formulated in Paper I. We determine the density, velocity and magnetic field as functions of space and time, and the contribution of ambipolar diffusion and Ohmic dissipation to the resolution of the magnetic flux problem of star formation. The issue of whether the magnetic field ever decouples from the (neutral) matter is also addressed. We also find that the electrons do not decouple from the field lines before thermal ionization becomes important and recouples the magnetic field to the neutral matter. Ohmic dissipation becomes more effective than ambipolar diffusion as a flux reduction mechanism only at the highest densities (a few times 10^12 particles per cubic cm). In the high-density central parts of the core, the magnetic field acquires an almost spatially uniform structure, with a value that, at the end...

  8. Mantle formation, coagulation and the origin of cloud/core-shine: II. Comparison with observations

    CERN Document Server

    Ysard, N; Jones, A P; Dartois, E; Godard, M; Gavilan, L

    2016-01-01

    Many dense interstellar clouds are observable in emission in the near-IR, commonly referred to as "Cloudshine", and in the mid-IR, the so-called "Coreshine". These C-shine observations have usually been explained with grain growth but no model has yet been able to self-consistently explain the dust spectral energy distribution from the near-IR to the submm. We want to demonstrate the ability of our new core/mantle evolutionary dust model THEMIS (The Heterogeneous dust Evolution Model at the IaS), which has been shown to be valid in the far-IR and submm, to reproduce the C-shine observations. Our starting point is a physically motivated core/mantle dust model. It consists of 3 dust populations: small aromatic-rich carbon grains; bigger core/mantle grains with mantles of aromatic-rich carbon and cores either made of amorphous aliphatic-rich carbon or amorphous silicate. We assume an evolutionary path where these grains, when entering denser regions, may first form a second aliphatic-rich carbon mantle (coagulat...

  9. RR Lyrae variables in the Small Magellanic Cloud - II. The extended area: chemical and structural analysis

    CERN Document Server

    Kapakos, Efstratios

    2012-01-01

    We have performed the Fourier decomposition analysis of 8- and 13-year V-band light curves of a carefully selected sample of 454 fundamental-mode RR Lyrae variables (RRab type), detected in a 14 square degree area of the Small Magellanic Cloud (SMC) and listed in the Optical Gravitational Lensing Experiment, phase III, Catalogue of Variable Stars. The Fourier decomposition parameters were used to derive metal abundances and distance moduli, following the methodology described by Kapakos, Hatzidimitriou & Soszy\\'nski. The average metal abundance of the RRab stars on the new scale of Carretta et al. was found to be = -1.69pm0.41 dex (std, with a standard error of 0.02 dex). A tentative metallicity gradient of -0.013pm0.007 dex/kpc was detected, with increasing metal abundance towards the dynamical center of the SMC, but selection effects are also discussed. The distance modulus of the SMC was re-estimated and was found to be = 19.13pm0.19 (std) in a distance scale where the distance modulus of the Large M...

  10. Influence of turbulence on the drop growth in warm clouds, Part II: Sensitivity studies with a spectral bin microphysics and a Lagrangian cloud model

    Directory of Open Access Journals (Sweden)

    Theres Riechelmann

    2015-04-01

    Full Text Available Raindrops in warm clouds grow faster than predicted by classical cloud models. One of the possible reasons for this discrepancy is the influence of cloud turbulence on the coagulation process. In Part I (Siewert et al., 2014 of this paper series, a turbulent collision kernel has been derived from wind tunnel experiments and direct numerical simulations (DNS. Here we use this new collision kernel to investigate the influence of turbulence on coagulation and rain formation using two models of different complexity: a one-dimensional model called RAINSHAFT (height as coordinate with cloud microphysics treated by a spectral bin model (BIN and a large-eddy simulation (LES model with cloud microphysics treated by Lagrangian particles (a so called Lagrangian Cloud Model, LCM. Simulations are performed for the case of no turbulence and for two situations with moderate and with extremely strong turbulence. The idealized 0- and 1-dimensional runs show, that large drops grow faster in the case turbulence is taken into account in the cloud microphysics, as was also found by earlier investigations of other groups. For moderate turbulence intensity, the acceleration is only weak, while it is more significant for strong turbulence. From the model intercomparison it turns out, that the BIN model produced large drops much faster than the LCM, independent of turbulence intensity. The differences are larger than those due to a variation in turbulence intensities. The diverging rate of formation of large drops is due to the use of different growth models for the coagulation process, i.e. the quasi-stochastic model in the spectral BIN model and the continuous growth model in LCM. From the results of this model intercomparison it is concluded, that the coagulation process has to be improved in future versions of the LCM. The LES-LCM model was also applied to the simulation of a single 3-D cumulus cloud. It turned out, that the effect of turbulence on drop formation

  11. Deep Chandra Survey of the Small Magellanic Cloud. II. Timing Analysis of X-Ray Pulsars

    Science.gov (United States)

    Hong, JaeSub; Antoniou, Vallia; Zezas, Andreas; Haberl, Frank; Sasaki, Manami; Drake, Jeremy J.; Plucinsky, Paul P.; Laycock, Silas

    2017-09-01

    We report the timing analysis results of X-ray pulsars from a recent deep Chandra survey of the Small Magellanic Cloud (SMC). We analyzed a total exposure of 1.4 Ms from 31 observations over a 1.2 deg2 region in the SMC under a Chandra X-ray Visionary Program. Using the Lomb–Scargle and epoch-folding techniques, we detected periodic modulations from 20 pulsars and a new candidate pulsar. The survey also covered 11 other pulsars with no clear sign of periodic modulation. The 0.5–8 keV X-ray luminosity (L X ) of the pulsars ranges from 1034 to 1037 erg s‑1 at 60 kpc. All of the Chandra sources with L X ≳ 4 × 1035 erg s‑1 exhibit X-ray pulsations. The X-ray spectra of the SMC pulsars (and high-mass X-ray binaries) are in general harder than those of the SMC field population. All but SXP 8.02 can be fitted by an absorbed power-law model with a photon index of Γ ≲ 1.5. The X-ray spectrum of the known magnetar SXP 8.02 is better fitted with a two-temperature blackbody model. Newly measured pulsation periods of SXP 51.0, SXP 214, and SXP 701, are significantly different from the previous XMM-Newton and RXTE measurements. This survey provides a rich data set for energy-dependent pulse profile modeling. Six pulsars show an almost eclipse-like dip in the pulse profile. Phase-resolved spectral analysis reveals diverse spectral variations during pulsation cycles: e.g., for an absorbed power-law model, some exhibit an (anti)-correlation between absorption and X-ray flux, while others show more intrinsic spectral variation (i.e., changes in photon indices).

  12. Planet Formation with Migration

    CERN Document Server

    Chambers, J E

    2006-01-01

    In the core-accretion model, gas-giant planets form solid cores which then accrete gaseous envelopes. Tidal interactions with disk gas cause a core to undergo inward type-I migration in 10^4 to 10^5 years. Cores must form faster than this to survive. Giant planets clear a gap in the disk and undergo inward type-II migration in <10^6 years if observed disk accretion rates apply to the disk as a whole. Type-II migration times exceed typical disk lifetimes if viscous accretion occurs mainly in the surface layers of disks. Low turbulent viscosities near the midplane may allow planetesimals to form by coagulation of dust grains. The radius r of such planetesimals is unknown. If r<0.5 km, the core formation time is shorter than the type-I migration timescale and cores will survive. Migration is substantial in most cases, leading to a wide range of planetary orbits, consistent with the observed variety of extrasolar systems. When r is of order 100m and midplane alpha is of order 3 times 10^-5, giant planets si...

  13. Structure analysis of interstellar clouds: II. Applying the Delta-variance method to interstellar turbulence

    CERN Document Server

    Ossenkopf, V; Stutzki, J

    2008-01-01

    The Delta-variance analysis is an efficient tool for measuring the structural scaling behaviour of interstellar turbulence in astronomical maps. In paper I we proposed essential improvements to the Delta-variance analysis. In this paper we apply the improved Delta-variance analysis to i) a hydrodynamic turbulence simulation with prominent density and velocity structures, ii) an observed intensity map of rho Oph with irregular boundaries and variable uncertainties of the different data points, and iii) a map of the turbulent velocity structure in the Polaris Flare affected by the intensity dependence on the centroid velocity determination. The tests confirm the extended capabilities of the improved Delta-variance analysis. Prominent spatial scales were accurately identified and artifacts from a variable reliability of the data were removed. The analysis of the hydrodynamic simulations showed that the injection of a turbulent velocity structure creates the most prominent density structures are produced on a sca...

  14. Herbig-Haro Jets Emerging from a Neutral Cloud into a H II region

    Directory of Open Access Journals (Sweden)

    A. C. Raga

    2004-01-01

    Full Text Available Presentamos simulaciones numéricas de un flujo Herbig-Haro que sale de una nube densa hacia una región H II. Este tipo de "salidas" de nubes densas han sido observadas recientemente en varias regiones de formación estelar, y aquí exploramos las propiedades de estos flujos variando algunos de los parámetros libres del modelo. Presentamos series temporales de la temperatura, densidad, fracción de ionización y de la emisión en H. Encontramos que la emisión en H de los flujos está mayormente controlada por el flujo incidente de fotones ionizantes, en lugar de por las propiedades intrínsecas del flujo.

  15. CA II TRIPLET SPECTROSCOPY OF SMALL MAGELLANIC CLOUD RED GIANTS. III. ABUNDANCES AND VELOCITIES FOR A SAMPLE OF 14 CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Parisi, M. C.; Clariá, J. J.; Marcionni, N. [Observatorio Astronómico, Universidad Nacional de Córdoba, Laprida 854, Córdoba, CP 5000 (Argentina); Geisler, D.; Villanova, S. [Departamento de Astronomía, Universidad de Concepción Casilla 160-C, Concepción (Chile); Sarajedini, A. [Department of Astronomy, University of Florida P.O. Box 112055, Gainesville, FL 32611 (United States); Grocholski, A. J., E-mail: celeste@oac.uncor.edu, E-mail: claria@oac.uncor.edu, E-mail: nmarcionni@oac.uncor.edu, E-mail: dgeisler@astro-udec.cl, E-mail: svillanova@astro-udec.cl, E-mail: ata@astro.ufl.edu, E-mail: grocholski@phys.lsu.edu [Department of Physics and Astronomy, Louisiana State University 202 Nicholson Hall, Tower Drive, Baton Rouge, LA 70803-4001 (United States)

    2015-05-15

    We obtained spectra of red giants in 15 Small Magellanic Cloud (SMC) clusters in the region of the Ca ii lines with FORS2 on the Very Large Telescope. We determined the mean metallicity and radial velocity with mean errors of 0.05 dex and 2.6 km s{sup −1}, respectively, from a mean of 6.5 members per cluster. One cluster (B113) was too young for a reliable metallicity determination and was excluded from the sample. We combined the sample studied here with 15 clusters previously studied by us using the same technique, and with 7 clusters whose metallicities determined by other authors are on a scale similar to ours. This compilation of 36 clusters is the largest SMC cluster sample currently available with accurate and homogeneously determined metallicities. We found a high probability that the metallicity distribution is bimodal, with potential peaks at −1.1 and −0.8 dex. Our data show no strong evidence of a metallicity gradient in the SMC clusters, somewhat at odds with recent evidence from Ca ii triplet spectra of a large sample of field stars. This may be revealing possible differences in the chemical history of clusters and field stars. Our clusters show a significant dispersion of metallicities, whatever age is considered, which could be reflecting the lack of a unique age–metallicity relation in this galaxy. None of the chemical evolution models currently available in the literature satisfactorily represents the global chemical enrichment processes of SMC clusters.

  16. Ca II Triplet Spectroscopy of Small Magellanic Cloud Red Giants. III. Abundances and Velocities for a Sample of 14 Clusters

    CERN Document Server

    Parisi, M C; Clariá, J J; Villanova, S; Marcionni, N; Sarajedini, A; Grocholski, A J

    2015-01-01

    We obtained spectra of red giants in 15 Small Magellanic Cloud (SMC) clusters in the region of the CaII lines with FORS2 on the Very Large Telescope (VLT). We determined the mean metallicity and radial velocity with mean errors of 0.05 dex and 2.6 km/s, respectively, from a mean of 6.5 members per cluster. One cluster (B113) was too young for a reliable metallicity determination and was excluded from the sample. We combined the sample studied here with 15 clusters previously studied by us using the same technique, and with 7 clusters whose metallicities determined by other authors are on a scale similar to ours. This compilation of 36 clusters is the largest SMC cluster sample currently available with accurate and homogeneously determined metallicities. We found a high probability that the metallicity distribution is bimodal, with potential peaks at -1.1 and -0.8 dex. Our data show no strong evidence of a metallicity gradient in the SMC clusters, somewhat at odds with recent evidence from CaT spectra of a lar...

  17. The Three-mm Ultimate Mopra Milky Way Survey. II. Cloud and Star Formation Near the Filamentary Ministarburst RCW 106

    CERN Document Server

    Nguyen, Hans; Martin, Peter G; Barnes, Peter J; Muller, Erik; Lowe, Vicki; Lo, Nadia; Cunningham, Maria; Motte, Frédérique; O'Dougherty, Stefan N; Hernandez, Audra K; Fuller, Gary A

    2015-01-01

    We report here a study of gas, dust and star formation rates (SFRs) in the molecular cloud complexes (MCCs) surrounding the giant H$\\,{\\rm \\scriptsize{II}}$ region RCW$\\,$106 using $^{12}$CO and $^{13}$CO$\\,$(1-0) data from the Three-mm Ultimate Mopra Milky way Survey (ThrUMMS) and archival data. We separate the emission in the Galactic Plane around $l=330^{\\circ}$-$335^{\\circ}$ and $b=-1^{\\circ}$-$1^{\\circ}$ into two main MCCs: the RCW$\\,$106 (V$_{\\rm LSR} = -48\\,$km$\\,$s$^{-1}$) complex and the MCC331-90(V$_{\\rm LSR} = -90\\,$km$\\,$s$^{-1}$) complex. While RCW$\\,$106 (M$\\sim 5.9\\times 10^{6}\\,$M$_{\\odot}$) is located in the Scutum-Centaurus arm at a distance of 3.6$\\,$kpc, MCC331-90 (M$\\sim 2.8\\times 10^{6}\\,$M$_{\\odot}$) is in the Norma arm at a distance of 5$\\,$kpc. Their molecular gas mass surface densities are $\\sim220$ and $\\sim130\\,$M$_{\\odot}$ pc$^{-2}$, respectively. For RCW$\\,$106 complex, using the 21$\\,$cm continuum fluxes and dense clump counting, we obtain an immediate past ($\\sim$-0.2$\\,$Myr) a...

  18. Timescales of Disk Evolution and Planet Formation

    CERN Document Server

    Jayawarhana, R

    2000-01-01

    It has been suggested that circumstellar disks evolve from dense, actively accreting structures to low-mass, replenished remnants. During this transition, grains may assemble into planetesimals, or the disk may be cleared by newborn planets. Recently identified nearby groups of young stars provide valuable laboratories for probing disk evolution. I discuss the properties of dust disks in the TW Hydrae Association and the MBM 12 cloud, and compare the results to other studies of disk evolution and planet formation timescales.

  19. Extragalactic background light: a measurement at 400 nm using dark cloud shadow - II. Spectroscopic separation of the dark cloud's light, and results★

    Science.gov (United States)

    Mattila, K.; Väisänen, P.; Lehtinen, K.; von Appen-Schnur, G.; Leinert, Ch.

    2017-09-01

    In a project aimed at measuring the optical extragalactic background light (EBL), we are using the shadow of a dark cloud. We have performed, with the ESO VLT/FORS, spectrophotometry of the surface brightness towards the high-galactic-latitude dark cloud Lynds 1642. A spectrum representing the difference between the opaque core of the cloud and several unobscured positions around the cloud was presented in Paper I. The topic of this paper is the separation of the scattered starlight from the dark cloud itself which is the only remaining foreground component in this difference. While the scattered starlight spectrum has the characteristic Fraunhofer lines and the discontinuity at 400 nm, typical of integrated light of galaxies, the EBL spectrum is a smooth one without these features. As template for the scattered starlight, we make use of the spectra at two semitransparent positions. The resulting EBL intensity at 400 nm is IEBL = 2.9 ± 1.1 10-9 erg cm-2 s-1 sr-1 Å-1 or 11.6 ± 4.4 nW m-2sr-1, which represents a 2.6σ detection; the scaling uncertainty is +20 per cent/-16 per cent. At 520 nm, we have set a 2σ upper limit of IEBL ≤4.5 10-9 erg cm-2 s-1 sr-1 Å-1 or ≤ 23.4 nW m-2sr-1 +20 per cent/-16 per cent. Our EBL value at 400 nm is ≳ 2 times as high as the integrated light of galaxies. No known diffuse light sources, such as light from Milky Way halo, intra-cluster or intra-group stars appear capable of explaining the observed EBL excess over the integrated light of galaxies.

  20. Precipitating Condensation Clouds in Substellar Atmospheres

    Science.gov (United States)

    Ackerman, Andrew S.; Marley, Mark S.; Gore, Warren J. (Technical Monitor)

    2000-01-01

    We present a method to calculate vertical profiles of particle size distributions in condensation clouds of giant planets and brown dwarfs. The method assumes a balance between turbulent diffusion and precipitation in horizontally uniform cloud decks. Calculations for the Jovian ammonia cloud are compared with previous methods. An adjustable parameter describing the efficiency of precipitation allows the new model to span the range of predictions from previous models. Calculations for the Jovian ammonia cloud are found to be consistent with observational constraints. Example calculations are provided for water, silicate, and iron clouds on brown dwarfs and on a cool extrasolar giant planet.

  1. Planet Ocean

    Science.gov (United States)

    Afonso, Isabel

    2014-05-01

    A more adequate name for Planet Earth could be Planet Ocean, seeing that ocean water covers more than seventy percent of the planet's surface and plays a fundamental role in the survival of almost all living species. Actually, oceans are aqueous solutions of extraordinary importance due to its direct implications in the current living conditions of our planet and its potential role on the continuity of life as well, as long as we know how to respect the limits of its immense but finite capacities. We may therefore state that natural aqueous solutions are excellent contexts for the approach and further understanding of many important chemical concepts, whether they be of chemical equilibrium, acid-base reactions, solubility and oxidation-reduction reactions. The topic of the 2014 edition of GIFT ('Our Changing Planet') will explore some of the recent complex changes of our environment, subjects that have been lately included in Chemistry teaching programs. This is particularly relevant on high school programs, with themes such as 'Earth Atmosphere: radiation, matter and structure', 'From Atmosphere to the Ocean: solutions on Earth and to Earth', 'Spring Waters and Public Water Supply: Water acidity and alkalinity'. These are the subjects that I want to develop on my school project with my pupils. Geographically, our school is located near the sea in a region where a stream flows into the sea. Besides that, our school water comes from a borehole which shows that the quality of the water we use is of significant importance. This project will establish and implement several procedures that, supported by physical and chemical analysis, will monitor the quality of water - not only the water used in our school, but also the surrounding waters (stream and beach water). The samples will be collected in the borehole of the school, in the stream near the school and in the beach of Carcavelos. Several physical-chemical characteristics related to the quality of the water will

  2. Detection and Characterization of Extrasolar Planets through Mean-motion Resonances. II. The Effect of the Planet’s Orbital Eccentricity on Debris Disk Structures

    Science.gov (United States)

    Tabeshian, Maryam; Wiegert, Paul A.

    2017-09-01

    Structures observed in debris disks may be caused by gravitational interaction with planetary or stellar companions. These perturbed disks are often thought to indicate the presence of planets and offer insights into the properties of both the disk and the perturbing planets. Gaps in debris disks may indicate a planet physically present within the gap, but such gaps can also occur away from the planet’s orbit at mean-motion resonances (MMRs), and this is the focus of our interest here. We extend our study of planet–disk interaction through MMRs, presented in an earlier paper, to systems in which the perturbing planet has moderate orbital eccentricity, a common occurrence in exoplanetary systems. In particular, a new result is that the 3:1 MMR becomes distinct at higher eccentricity, while its effects are absent for circular planetary orbits. We also only consider gravitational interaction with a planetary body of at least 1 M J. Our earlier work shows that even a 1 Earth mass planet can theoretically open an MMR gap; however, given the narrow gap that can be opened by a low-mass planet, its observability would be questionable. We find that the widths, locations, and shapes of two prominent structures, the 2:1 and 3:1 MMRs, could be used to determine the mass, semimajor axis, and eccentricity of the planetary perturber and present an algorithm for doing so. These MMR structures can be used to narrow the position and even determine the planetary properties (such as mass) of any inferred but as-yet-unseen planets within a debris disk. We also briefly discuss the implications of eccentric disks on brightness asymmetries and their dependence on the wavelengths with which these disks are observed.

  3. Formation of Hot Planets by a Combination of Planet Scattering, Tidal Circularization, and the Kozai Mechanism

    Science.gov (United States)

    Nagasawa, M.; Ida, S.; Bessho, T.

    2008-05-01

    We have investigated the formation of close-in extrasolar giant planets through a coupling effect of mutual scattering, the Kozai mechanism, and tidal circularization, by orbital integrations. Close-in gas giants would have been originally formed at several AU beyond the ice lines in protoplanetary disks and migrated close to their host stars. Although type II migration due to planet-disk interactions may be a major channel for the migration, we show that this scattering process would also give a nonnegligible contribution. We carried out orbital integrations of three planets with Jupiter mass, directly including the effect of tidal circularization. We have found that in about 30% of the runs close-in planets are formed, which is much higher than suggested by previous studies. Three-planet orbit crossing usually results in the ejection of one or two planets. Tidal circularization often occurs during three-planet orbit crossing, but previous studies have monitored only the final stage after the ejection, significantly underestimating the formation probability. We have found that the Kozai mechanism in outer planets is responsible for the formation of close-in planets. During three-planet orbital crossing, Kozai excitation is repeated and the eccentricity is often increased secularly to values close enough to unity for tidal circularization to transform the inner planet to a close-in planet. Since a moderate eccentricity can retain for the close-in planet, this mechanism may account for the observed close-in planets with moderate eccentricities and without nearby secondary planets. Since these planets also remain a broad range of orbital inclinations (even retrograde ones), the contribution of this process would be clarified by more observations of Rossiter-McLaughlin effects for transiting planets.

  4. The NASA-UC Eta-Earth Program: II. A Planet Orbiting HD 156668 with a Minimum Mass of Four Earth Masses

    CERN Document Server

    Howard, Andrew W; Marcy, Geoffrey W; Fischer, Debra A; Wright, Jason T; Henry, Gregory W; Isaacson, Howard; Valenti, Jeff A; Anderson, Jay; Piskunov, Nikolai E

    2010-01-01

    We report the discovery of HD 156668b, an extrasolar planet with a minimum mass of M_P sin i = 4.15 M_Earth. This planet was discovered through Keplerian modeling of precise radial velocities from Keck-HIRES and is the second super-Earth to emerge from the NASA-UC Eta-Earth Survey. The best-fit orbit is consistent with circular and has a period of P = 4.6455 d. The Doppler semi-amplitude of this planet, K = 1.89 m/s, is among the lowest ever detected, on par with the detection of GJ 581e using HARPS. A longer period (P ~ 2.3 yr), low-amplitude signal of unknown origin was also detected in the radial velocities and was filtered out of the data while fitting the short-period planet. Additional data are required to determine if the long-period signal is due to a second planet, stellar activity, or another source. Photometric observations using the Automated Photometric Telescopes at Fairborn Observatory show that HD 156668 (an old, quiet K3 dwarf) is photometrically constant over the radial velocity period to 0....

  5. Stimulated Radiative Molecular Association in the Early Solar System. II. Orbital Radii of the Planets and Other Satellites of the Sun

    CERN Document Server

    Lombardi, James C

    2015-01-01

    In a previous investigation, the orbital radii of regular satellites of Uranus, Jupiter, Neptune, and Saturn are shown to be directly related to photon energies in the spectra of atomic and molecular hydrogen. To explain these observations a model was developed involving stimulated radiative molecular association (SRMA) reactions among photons and atoms in the protosatellite disks of the planets. In the present investigation, the previously developed model is applied to the planets and important satellites of the Sun. A key component of the model involves resonance associated with SRMA. Through this resonance, thermal energy is extracted from the protosun's protoplanetary disk at specific distances from the protosun wherever there is a match between the local thermal energy of the disk and the energy of photons impinging on the disk. Orbital radii of the planets and satellites are related to photon energies ($E_P$ values) in the spectrum of atomic hydrogen. An expression determined previously is used to relat...

  6. SPOTS: The Search for Planets Orbiting Two Stars. II. First constraints on the frequency of sub-stellar companions on wide circumbinary orbits

    Science.gov (United States)

    Bonavita, M.; Desidera, S.; Thalmann, C.; Janson, M.; Vigan, A.; Chauvin, G.; Lannier, J.

    2016-09-01

    A large number of direct imaging surveys for exoplanets have been performed in recent years, yielding the first directly imaged planets and providing constraints on the prevalence and distribution of wide planetary systems. However, like most of the radial velocity ones, these generally focus on single stars, hence binaries and higher-order multiples have not been studied to the same level of scrutiny. This motivated the Search for Planets Orbiting Two Stars (SPOTS) survey, which is an ongoing direct imaging study of a large sample of close binaries, started with VLT/NACO and now continuing with VLT/SPHERE. To complement this survey, we have identified the close binary targets in 24 published direct imaging surveys. Here we present our statistical analysis of this combined body of data. We analysed a sample of 117 tight binary systems, using a combined Monte Carlo and Bayesian approach to derive the expected values of the frequency of companions, for different values of the companion's semi-major axis. Our analysis suggest that the frequency of sub-stellar companions in wide orbit is moderately low (≲ 13% with a best value of 6% at 95% confidence level) and not significantly different between single stars and tight binaries. One implication of this result is that the very high frequency of circumbinary planets in wide orbits around post-common envelope binaries, implied by eclipse timing, cannot be uniquely due to planets formed before the common-envelope phase (first generation planets), supporting instead the second generation planet formation or a non-Keplerian origin of the timing variations.

  7. Luminosities and infrared excess in Type II and anomalous Cepheids in the Large and Small Magellanic Clouds

    Science.gov (United States)

    Groenewegen, M. A. T.; Jurkovic, M. I.

    2017-07-01

    Type II and anomalous Cepheids (ACs) are useful distance indicators when there are too few classical Cepheids or when RR Lyrae stars are too faint. Type II and ACs follow a period-luminosity relation as well, but they are less well-studied classes of objects. In this paper we study the sample of 335 Type II and ACs in the Small and Large Magellanic Clouds detected in OGLE-III data. The spectral energy distributions (SEDs) are constructed from photometric data available in the literature and fitted with a dust radiative transfer model, thereby leading to a determination of luminosity and effective temperature. In addition, a subsample of targets is investigated for possible binarity by looking for the light-time travel effect (LITE). Hertzsprung-Russell diagrams (HRD) are constructed and compared to evolutionary tracks and theoretical instability strips (ISs). In agreement with previous suggestions, the BL Her subclass can be explained by the evolution of 0.5-0.6 M⊙ stars evolving off the zero-age horizontal branch and the ACs can be explained by the evolution of 1.1-2.3 M⊙ stars. The evolution of the W Vir subclass is not clear. These objects are at higher luminosities than ACs and evolutionary tracks of 2.5-4 M⊙ stars cross this region in the HRD, but the periods of the W Vir are longer than those of the short period classical Cepheids at these luminosities, which indicates the former have lower masses. A low-mass star experiencing a thermal pulse when the envelope mass is small can make a blue loop into the IS region of the W Vir stars. But the timescale is extremely short, so this is also no explanation for the W Vir as a class. A relation to binarity might be at the origin of the W Vir stars, which has already been explicitly suggested for the peculiar W Vir stars. For 60% of the RV Tau and 10% of the W Vir objects an infrared excess is detected from the SED fitting. A recent result is confirmed that stars exist with luminosities below that predicted from

  8. Measuring stellar granulation during planet transits

    CERN Document Server

    Chiavassa, A; Selsis, F; Leconte, J; Von Paris, P; Bordé, P; Magic, Z; Collet, R; Asplund, M

    2016-01-01

    Stellar activity and convection-related surface structures might cause bias in planet detection and characterization that use these transits. Surface convection simulations help to quantify the granulation signal. We used realistic three-dimensional radiative hydrodynamical simulations from the Stagger grid and synthetic images computed with the radiative transfer code Optim3D to model the transits of three prototype planets: a hot Jupiter, a hot Neptune, and a terrestrial planet. We computed intensity maps from RHD simulations of the Sun and a K-dwarf star at different wavelength bands from optical to far-infrared. We modeled the transit using synthetic stellar-disk images and emulated the temporal variation of the granulation intensity. We identified two types of granulation noise that act simultaneously during the planet transit: (i) the intrinsic change in the granulation pattern with timescales smaller than the usual planet transit, and (ii) the fact that the transiting planet occults isolated regions of...

  9. Albedo and Reflection Spectra of Extrasolar Giant Planets

    CERN Document Server

    Sudarsky, D; Pinto, P A; Sudarsky, David; Burrows, Adam; Pinto, Philip

    1999-01-01

    We generate theoretical albedo and reflection spectra for a full range of extrasolar giant planet (EGP) models, from Jovian to 51-Pegasi class objects. Our albedo modeling utilizes the latest atomic and molecular cross sections, a Mie theory treatment of extinction by condensates, a variety of particle size distributions, and an extension of the Feautrier radiative transfer method which allows for a general treatment of the scattering phase function. We find that due to qualitative similarities in the compositions and spectra of objects within each of four broad effective temperature ranges, it is natural to establish four representative EGP albedo classes: a ``Jovian'' class (T$_{\\rm eff} \\lesssim 150$ K; Class I) with tropospheric ammonia clouds, a ``water cloud'' class (T$_{\\rm eff} \\sim 250$ K; Class II) primarily affected by condensed H$_2$O, a ``clear'' class (T$_{\\rm eff} \\gtrsim 350$ K; Class III) which lacks clouds, and a high-temperature class (T$_{\\rm{eff}}$ $\\gtrsim$ 900 K; Class IV) for which alk...

  10. Watching How Planets Form

    Science.gov (United States)

    2006-09-01

    Anatomy of a Planet-Forming Disc around a Star More Massive than the Sun With the VISIR instrument on ESO's Very Large Telescope, astronomers have mapped the disc around a star more massive than the Sun. The very extended and flared disc most likely contains enough gas and dust to spawn planets. It appears as a precursor of debris discs such as the one around Vega-like stars and thus provides the rare opportunity to witness the conditions prevailing prior to or during planet formation. "Planets form in massive, gaseous and dusty proto-planetary discs that surround nascent stars. This process must be rather ubiquitous as more than 200 planets have now been found around stars other than the Sun," said Pierre-Olivier Lagage, from CEA Saclay (France) and leader of the team that carried out the observations. "However, very little is known about these discs, especially those around stars more massive than the Sun. Such stars are much more luminous and could have a large influence on their disc, possibly quickly destroying the inner part." The astronomers used the VISIR instrument [1] on ESO's Very Large Telescope to map in the infrared the disc surrounding the young star HD 97048. With an age of a few million years [2], HD 97048 belongs to the Chameleon I dark cloud, a stellar nursery 600 light-years away. The star is 40 times more luminous than our Sun and is 2.5 times as massive. The astronomers could only have achieved such a detailed view due to the high angular resolution offered by an 8-metre size telescope in the infrared, reaching a resolution of 0.33 arcsecond. They discovered a very large disc, at least 12 times more extended than the orbit of the farthest planet in the Solar System, Neptune. The observations suggest the disc to be flared. "This is the first time such a structure, predicted by some theoretical models, is imaged around a massive star," said Lagage. ESO PR Photo 36/06 ESO PR Photo 36/06 A Flared Proto-Planetary Disc Such a geometry can only be

  11. Does Si Play a Role in the Formation of Extrasolar Planet Systems?

    Indian Academy of Sciences (India)

    C. Huang; G. Zhao; H. W. Zhang; Y. Q. Chen

    2007-06-01

    With the high signal-to-noise ratio spectra, we obtained Si abundances of 22 extrasolar planet host stars, and discussed some constraints on the planet formation. Using our silicon abundance results and other authors’ Si abundance studies about planets-harboring stars, we investigated the correlation between the dynamical properties and the silicon abundance. We propose a hypothesis that higher primordial metallicity in the host stars’ birth cloud with higher abundance of Si will make the cloud more sticky to bypass the time scale restriction in planet formation and easier to form the planets.

  12. An Evolutionary Model for Collapsing Molecular Clouds and Their Star Formation Activity. II. Mass Dependence of the Star Formation Rate

    CERN Document Server

    Zamora-Avilés, Manuel

    2013-01-01

    In a previous study, we presented a semi-analytical model for the regulation of the star formation rate (SFR) and efficiency (SFE) in which the molecular clouds (MCs) were assumed to be in gravitational collapse, and the SFR was instantaneously controlled by evaporation of the cloud material by massive-star ionization feedback. In this model, the main parameter controlling the evolution of the clouds was found to be the gas mass involved in the process and here we discuss various properties of the SFR and SFE as a function of the cloud masses, that can be compared with observations and implemented in numerical models of galactic evolution. Because the model neglects magnetic fields, supernova explosions, and radiation pressure, the results presented are upper limits. We find that $\\SFRavg$ and $\\SFEavg$ are well represented as functions of the maximum cloud mass by the fits $\\SFRavg \\approx 100 (1+\\Mmax/2 \\times 10^5 ~ \\Msun)^{2} ~ \\Msun \\Myr^{-1}$ and $\\SFEavg \\approx 0.024 (\\Mmax/10^5 ~ \\Msun)^{0.28}$, resp...

  13. Collapse and Fragmentation of Magnetic Molecular Cloud Cores with the Enzo AMR MHD Code. II. Prolate and Oblate Cores

    CERN Document Server

    Boss, A P

    2014-01-01

    We present the results of a large suite of three-dimensional (3D) models of the collapse of magnetic molecular cloud cores using the adaptive mesh refinement (AMR) code Enzo2.2 in the ideal magnetohydrodynamics (MHD) approximation. The cloud cores are initially either prolate or oblate, centrally condensed clouds with masses of 1.73 or 2.73 $M_\\odot$, respectively. The radial density profiles are Gaussian, with central densities 20 times higher than boundary densities. A barotropic equation of state is used to represent the transition from low density, isothermal phases, to high density, optically thick phases. The initial magnetic field strength ranges from 6.3 to 100 $\\mu$G, corresponding to clouds that are strongly to marginally supercritical, respectively, in terms of the mass to magnetic flux ratio. The magnetic field is initially uniform and aligned with the clouds' rotation axes, with initial ratios of rotational to gravitational energy ranging from $10^{-4}$ to 0.1. Two significantly different outcome...

  14. Final Stages of Planet Formation

    Science.gov (United States)

    Goldreich, Peter; Lithwick, Yoram; Sari, Re'em

    2004-10-01

    gravitational interactions among them no longer produced large-scale chaos. After that their orbital eccentricities and inclinations were damped by dynamical friction from the remaining small bodies. The last and longest stage in planet formation was the cleanup of small bodies. Our understanding of this stage is fraught with uncertainty. The surviving protoplanets cleared wide gaps around their orbits that inhibited their ability to accrete small bodies. Nevertheless, in the inner planet system, all of the material in the small bodies ended up inside planets. Small bodies in the outer planet system probably could not have been accreted in the age of the solar system. A second generation of planetesimals may have formed in the disk of small bodies, by either collisional coagulation or gravitational instability. In the outer planet system, bodies of kilometer size or larger would have had their random velocities excited until their orbits crossed those of neighboring protoplanets. Ultimately they would have either escaped from the Sun or become residents of the Oort Cloud. An important distinction is that growth of the inner planets continued through cleanup, whereas assembly of the outer planets was essentially complete by the end of oligarchy. These conclusions imply that the surface density of the protoplanetary disk was that of the minimum solar mass nebula in the inner planet region but a few times larger in the outer planet region. The timescale through cleanup was set by the accretion rate at the geometrical cross section in the inner planet region and by the ejection rate at the gravitationally enhanced cross section in the outer planet region. It was a few hundred million years in the former and a few billion years in the latter. However, since Uranus and Neptune acquired most of their mass by the end of oligarchy, they may have formed before Earth! A few implications of the above scenario are worth noting. Impacts among protoplanets of comparable size were common in

  15. A Corona Australis cloud filament seen in NIR scattered light II: Comparison with sub-millimeter data

    OpenAIRE

    Juvela, Mika; Pelkonen, Veli-Matti; Porceddu, Sebastian

    2009-01-01

    We study a northern part of the Corona Australis molecular cloud that consists of a filament and a dense sub-millimetre core inside the filament. Our aim is to measure dust temperature and sub-mm emissivity within the region. We also look for confirmation that near-infrared (NIR) surface brightness can be used to study the structure of even very dense clouds. We extend our previous NIR mapping south of the filament. The dust colour temperatures are estimated using Spitzer 160um and APEX/Laboc...

  16. Transiting exoplanets from the CoRoT space mission II. CoRoT-Exo-2b: A transiting planet around an active G star

    CERN Document Server

    Alonso, R; Baglin, A; Ollivier, M; Moutou, C; Rouan, D; Deeg, H J; Aigrain, S; Almenara, J M; Barbieri, M; Barge, P; Benz, W; Bordé, P; Bouchy, F; De la Reza, R; Deleuil, M; Dvorak, R; Erikson, A; Fridlund, M; Gillon, M; Gondoin, P; Guillot, T; Hatzes, A; Hébrard, G; Kabath, P; Jorda, L; Lammer, H; Léger, A; Llebaria, A; Loeillet, B; Magain, P; Mayor, M; Mazeh, T; Pätzold, M; Pepe, F; Pont, F; Queloz, D; Rauer, H; Shporer, A; Schneider, J; Stecklum, B; Udry, S; Wuchterl, G

    2008-01-01

    Context. The CoRoT mission, a pioneer in exoplanet searches from space, has completed its first 150 days of continuous observations of ~12000 stars in the galactic plane. An analysis of the raw data identifies the most promising candidates and triggers the ground-based follow-up. Aims. We report on the discovery of the transiting planet CoRoT-Exo-2b, with a period of 1.743 days, and characterize its main parameters. Methods. We filter the CoRoT raw light curve of cosmic impacts, orbital residuals, and low frequency signals from the star. The folded light curve of 78 transits is fitted to a model to obtain the main parameters. Radial velocity data obtained with the SOPHIE, CORALIE and HARPS spectro-graphs are combined to characterize the system. The 2.5 min binned phase-folded light curve is affected by the effect of sucessive occultations of stellar active regions by the planet, and the dispersion in the out of transit part reaches a level of 1.09x10-4 in flux units. Results. We derive a radius for the planet...

  17. Line-Shape Code Comparison through Modeling and Fitting of Experimental Spectra of the C ii 723-nm Line Emitted by the Ablation Cloud of a Carbon Pellet

    Directory of Open Access Journals (Sweden)

    Mohammed Koubiti

    2014-07-01

    Full Text Available Various codes of line-shape modeling are compared to each other through the profile of the C ii 723-nm line for typical plasma conditions encountered in the ablation clouds of carbon pellets, injected in magnetic fusion devices. Calculations were performed for a single electron density of 1017 cm−3 and two plasma temperatures (T = 2 and 4 eV. Ion and electron temperatures were assumed to be equal (Te = Ti = T. The magnetic field, B, was set equal to either to zero or 4 T. Comparisons between the line-shape modeling codes and two experimental spectra of the C ii 723-nm line, measured perpendicularly to the B-field in the Large Helical Device (LHD using linear polarizers, are also discussed.

  18. Exozodiacal Dust and Direct Imaging of Extrasolar Planets

    Science.gov (United States)

    Kuchner, Marc

    2008-01-01

    Direct imaging of extrasolar planets means contending with dust from extrasolar asteroids and comets. This 'exozodiacal dust' creates a structured background light that can easily outshine the light from an exoEarth and confuse a planet-search mission like TPF or TOPS. But exozodiacal dust can be both friend and foe: planets can stir dust clouds into patterns that reveal the presence of the planet and constrain its mass and orbit. I'll describe some recent research on this topic: 3-D dynamical models of dust clouds with planets and searches for exozodiacal dust with the Keck Interferometer. The author also offers a prediction for the typical zodiacal dust background found around solar analogs, based on seafloor sediment data.

  19. A spectrum of an extrasolar planet.

    Science.gov (United States)

    Richardson, L Jeremy; Deming, Drake; Horning, Karen; Seager, Sara; Harrington, Joseph

    2007-02-22

    Of the over 200 known extrasolar planets, 14 exhibit transits in front of their parent stars as seen from Earth. Spectroscopic observations of the transiting planets can probe the physical conditions of their atmospheres. One such technique can be used to derive the planetary spectrum by subtracting the stellar spectrum measured during eclipse (planet hidden behind star) from the combined-light spectrum measured outside eclipse (star + planet). Although several attempts have been made from Earth-based observatories, no spectrum has yet been measured for any of the established extrasolar planets. Here we report a measurement of the infrared spectrum (7.5-13.2 microm) of the transiting extrasolar planet HD 209458b. Our observations reveal a hot thermal continuum for the planetary spectrum, with an approximately constant ratio to the stellar flux over this wavelength range. Superposed on this continuum is a broad emission peak centred near 9.65 microm that we attribute to emission by silicate clouds. We also find a narrow, unidentified emission feature at 7.78 microm. Models of these 'hot Jupiter' planets predict a flux peak near 10 microm, where thermal emission from the deep atmosphere emerges relatively unimpeded by water absorption, but models dominated by water fit the observed spectrum poorly.

  20. Photon-dominated region modeling of the [C I], [C II], and CO Line Emission From A Boundary In The Taurus molecular cloud

    Energy Technology Data Exchange (ETDEWEB)

    Orr, Matthew E. [Physics and Astronomy Department, University of Southern California, Los Angeles, CA 90089 (United States); Pineda, Jorge L.; Goldsmith, Paul F. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States)

    2014-11-01

    We present [C I] and [C II] observations of a linear edge region in the Taurus molecular cloud, and model this region as a cylindrically symmetric photon-dominated region (PDR) exposed to a low-intensity UV radiation field. The sharp, long profile of the linear edge makes it an ideal case to test PDR models and determine cloud parameters. We compare observations of the [C I], {sup 3} P {sub 1} → {sup 3} P {sub 0} (492 GHz), [C I] {sup 3} P {sub 2} → {sup 3} P {sub 1} (809 GHz), and [C II] {sup 2} P {sub 3/2} → {sup 2} P {sub 1/2} (1900 GHz) transitions, as well as the lowest rotational transitions of {sup 12}CO and {sup 13}CO, with line intensities produced by the RATRAN radiative transfer code from the results of the Meudon PDR code. We constrain the density structure of the cloud by fitting a cylindrical density function to visual extinction data. We study the effects of variation of the FUV field, {sup 12}C/{sup 13}C isotopic abundance ratio, sulfur depletion, cosmic ray ionization rate, and inclination of the filament relative to the sky-plane on the chemical network of the PDR model and resulting line emission. We also consider the role of suprathermal chemistry and density inhomogeneities. We find good agreement between the model and observations, and that the integrated line intensities can be explained by a PDR model with an external FUV field of 0.05 G {sub 0}, a low ratio of {sup 12}C to {sup 13}C ∼43, a highly depleted sulfur abundance (by a factor of at least 50), a cosmic ray ionization rate (3-6) × 10{sup –17} s{sup –1}, and without significant effects from inclination, clumping or suprathermal chemistry.

  1. The GAPS programme with HARPS-N at TNG. II. No giant planets around the metal-poor star HIP 11952

    Science.gov (United States)

    Desidera, S.; Sozzetti, A.; Bonomo, A. S.; Gratton, R.; Poretti, E.; Claudi, R.; Latham, D. W.; Affer, L.; Cosentino, R.; Damasso, M.; Esposito, M.; Giacobbe, P.; Malavolta, L.; Nascimbeni, V.; Piotto, G.; Rainer, M.; Scardia, M.; Schmid, V. S.; Lanza, A. F.; Micela, G.; Pagano, I.; Bedin, L. R.; Biazzo, K.; Borsa, F.; Carolo, E.; Covino, E.; Faedi, F.; Hébrard, G.; Lovis, C.; Maggio, A.; Mancini, L.; Marzari, F.; Messina, S.; Molinari, E.; Munari, U.; Pepe, F.; Santos, N.; Scandariato, G.; Shkolnik, E.; Southworth, J.

    2013-06-01

    In the context of the programme Global Architecture of Planetary Systems (GAPS), we have performed radial velocity monitoring of the metal-poor star HIP 11952 on 35 nights during about 150 days using the newly installed high-resolution spectrograph HARPS-N at the TNG and HARPS at the ESO 3.6 m telescope. The radial velocities show a scatter of 7 m s-1, compatible with the measurement errors for such a moderately warm metal-poor star (Teff = 6040 ± 120 K; [Fe/H] = -1.9 ± 0.1). We exclude the presence of the two giant planets with periods of 6.95 ± 0.01 d and 290.0 ± 16.2 d and radial velocity semi-amplitudes of 100.3 ± 19.4 m s-1 and 105.2 ± 14.7 m s-1, respectively, which have recently been announced. This result is important because HIP 11952 was thought to be the most metal-poor star hosting a planetary systemwith giant planets, which challenged some models of planet formation. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundacion Galileo Galilei of the INAF at the Spanish Observatorio del Roque de los Muchachos of the IAC in the frame of the programme Global Architecture of Planetary Systems (GAPS). Based on observations collected at the La Silla Observatory, ESO (Chile): Program 185.D-0056.Table 1 is available in electronic form at http://www.aanda.org

  2. Efficiency Formulas for the 2K-H Type Planetary Gear Train (A II Type Planetary Gear Train with an Idie Planet Pinion)

    OpenAIRE

    岸, 佐年; 両角, 宗晴

    1989-01-01

    A new 2K-H type planetary gear train with an idle planet pinion is devised. This planetary gear train consists of only spur gears. The function of this planetary gear train is equal to those of the internal 2K-H type planetary gear train and the bevel gear type planetary gear train. The efficiency formulas of this planetary gear train are derived from the theoretical analysis and tabulated. The formulas tabulated can be utilized safely without any understanding of the underlying theory.

  3. Mars - Are observed white clouds composed of H2O.

    Science.gov (United States)

    Wells, R. A.

    1972-01-01

    A total of 252 occurrences of white clouds are studied. Water abundances are compared with those of white clouds as a function of latitude on Mars. It appears not necessarily to be the case that observed cloud frequencies will always follow water abundances. Martian white cloud frequencies tend to follow the distribution of water both seasonally and latitudinally on the planet, which strongly suggests that most white clouds are formed from water vapor.

  4. Speciative Determination of Dissolved Inorganic Fe(II, Fe(III and Total Fe in Natural Waters by Coupling Cloud Point Extraction with FAAS

    Directory of Open Access Journals (Sweden)

    Ramazan GÜRKAN

    2013-12-01

    Full Text Available A new cloud point extraction (CPE method for the preconcentration of trace iron speciation in natural waters prior to determination by flame atomic absorption spectrometry (FAAS was developed in the present study. In this method, Fe(II sensitively and selectively reacts with Calcon carboxylic acid (CCA in presence of cetylpyridinium chloride (CPC yielding a hydrophobic complex at pH 10.5, which is then entrapped in surfactant-rich phase. Total Fe was accurately and reliably determined after the reduction of Fe(III to Fe(II with sulfite. The amount of Fe(III in samples was determined from the difference between total Fe and Fe(II. CPC was used not only as an auxiliary ligand in CPE, but also as sensitivity enhancement agent in FAAS. The nonionic surfactant, polyethylene glycol tert-octylphenyl ether (Triton X-114 was used as an extracting agent. The analytical variables affecting CPE efficiency were investigated in detail. The preconcentration/enhancement factors of 50 and 82 respectively, were obtained for the preconcentration of Fe(II with 50 mL solution. Under the optimized conditions, the detection limit of Fe(II in linear range of 0.2-60 μg L-1 was 0.06 μg L-1. The relative standard deviation was 2.7 % (20 μg L-1, N: 5, recoveries for Fe(II were in range of 99.0-102.0% for all water samples including certified reference materials (CRMs. In order to verify its accuracy, two CRMs were analyzed and the results obtained were statistically in good agreement with the certified values.

  5. Colors of a Second Earth II: Effects of Clouds on Photometric Characterization of Earth-like Exoplanets

    OpenAIRE

    Fujii, Yuka; Kawahara, Hajime; Suto, Yasushi; Fukuda, Satoru; Nakajima, Teruyuki; Livengood, Timothy A.; Turner, Edwin L.

    2011-01-01

    As a test-bed for future investigations of directly imaged terrestrial exoplanets, we present the recovery of the surface components of the Earth from multi-band diurnal light curves obtained with the EPOXI spacecraft. We find that the presence and longitudinal distribution of ocean, soil and vegetation are reasonably well reproduced by fitting the observed color variations with a simplified model composed of a priori known albedo spectra of ocean, soil, vegetation, snow and clouds. The effec...

  6. New 6 and 3-cm radio-continuum maps of the Small Magellanic Cloud - part II: Point source catalogue

    Directory of Open Access Journals (Sweden)

    Wong G.F.

    2012-01-01

    Full Text Available We present two new catalogues of radio-continuum sources in the field of the Small Magellanic Cloud (SMC. These catalogues contain sources found at 4800 MHz (λ=6cm and 8640 MHz (λ=3cm. Some 457 sources have been detected at 3cm with 601 sources at 6cm created from new high-sensitivity and resolution radio-continuum images of the SMC from Crawford et al. (2011.

  7. New 6 and 3-cm radio-continuum maps of the Small Magellanic Cloud: Part II - Point source catalogue

    CERN Document Server

    Wong, G F; Filipović, M D; De Horta, A Y; Tothill, N F H; Collier, J D; Drasković, D; Galvin, T J; Payne, J L

    2012-01-01

    We present two new catalogues of radio-continuum sources in the field of the Small Magellanic Cloud (SMC). These catalogues contain sources found at 4800 MHz (lambda=6 cm) and 8640 MHz (lambda=3 cm). Some 457 sources have been detected at 3 cm with 601 sources at 6 cm created from new high-sensitivity and resolution radio-continuum images of the SMC from Crawford et al. (2011).

  8. SPOTS: The Search for Planets Orbiting Two Stars: II. First constraints on the frequency of sub-stellar companions on wide circumbinary orbits

    CERN Document Server

    Bonavita, Mariangela; Thalmann, Christian; Janson, Markus; Vigan, Arthur; Chauvin, Gael; Lannier, Justine

    2016-01-01

    A large number of direct imaging surveys for exoplanets have been performed in recent years, yielding the first directly imaged planets and providing constraints on the prevalence and distribution of wide planetary systems. However, like most of the radial velocity ones, these surveys generally focus on single stars, hence binaries and higher-order multiples have not been studied to the same level of scrutiny. This motivated the SPOTS (Search for Planets Orbiting Two Stars) survey, which is an ongoing direct imaging study of a large sample of close binaries, started with VLT/NACO and now continuing with VLT/SPHERE. To complement this survey, we have identified the close binary targets in 24 published direct imaging surveys. Here we present our statistical analysis of this combined body of data. We analysed a sample of 117 tight binary systems, using a combined Monte Carlo and Bayesian approach to derive the expected values of the frequency of companions, for different values of the companion's semi-major axis...

  9. A new airborne Polar Nephelometer for the measurement of optical and microphysical cloud properties. Part II: Preliminary tests

    Directory of Open Access Journals (Sweden)

    O. Crépel

    Full Text Available A new optical sensor, the airborne Polar Nephelometer, has been tested in an open wind tunnel. The wind tunnel was operated in cloudy conditions including either cloud water droplets or ice crystals, or a mixture of these particles. The sensor is designed to measure the optical and microphysical parameters of cloud particles sized from a few micrometers to about 500 µm diameter. Basically, the probe measures the scattering phase function of an ensemble of cloud particles which intersect a collimated laser beam near the focal point of a paraboloidal mirror. From the measured scattering phase function the retrieval of the droplet-size spectra and subsequent derived quantities such as liquid water content and size parameters can be calculated using an inversion method. The particle phase discrimination (water droplets/ice particles can be derived from the shape of the scattering phase function and the sensitivity of the probe allows the detection of small ice crystals (typically of 5 µm diameter. The paper describes the preliminary results obtained by the prototype version of the Polar Nephelometer in various cloudy conditions. These results are compared with direct microphysical measurements obtained by usual PMS probes also mounted in the wind tunnel. Complementary results obtained in a cold chamber are presented in order to illustrate the reliability of the Polar Nephelometer in the presence of small ice crystals.

  10. Creatures on Other Planets

    Institute of Scientific and Technical Information of China (English)

    罗汉中; 张静

    2000-01-01

    People often discuss whether there are creatures on other planets .Some people say “yes” while others say “no” This is because they haven't seen any real creatures or flying objects from other planets.

  11. Naming the extrasolar planets

    CERN Document Server

    Lyra, W

    2009-01-01

    Extrasolar planets are not named and are referred to only by their assigned scientific designation. The reason given by the IAU to not name the planets is that it is considered impractical as planets are expected to be common. I advance some reasons as to why this logic is flawed, and suggest names for the 403 extrasolar planet candidates known as of Oct 2009, based on the continued tradition of names from Roman-Greek mythology.

  12. Kepler Planet Formation

    Science.gov (United States)

    Lissauer, Jack J.

    2015-01-01

    Kepler has vastly increased our knowledge of planets and planetary systems located close to stars. The new data shows surprising results for planetary abundances, planetary spacings and the distribution of planets on a mass-radius diagram. The implications of these results for theories of planet formation will be discussed.

  13. Precipitating Condensation Clouds in Substellar Atmospheres

    CERN Document Server

    Ackerman, A S; Ackerman, Andrew S; Marley, Mark S.

    2001-01-01

    We present a method to calculate vertical profiles of particle size distributions in condensation clouds of giant planets and brown dwarfs. The method assumes a balance between turbulent diffusion and sedimentation in horizontally uniform cloud decks. Calculations for the Jovian ammonia cloud are compared with results from previous methods. An adjustable parameter describing the efficiency of sedimentation allows the new model to span the range of predictions made by previous models. Calculations for the Jovian ammonia cloud are consistent with observations. Example calculations are provided for water, silicate, and iron clouds on brown dwarfs and on a cool extrasolar giant planet. We find that precipitating cloud decks naturally account for the characteristic trends seen in the spectra and colors of L- and T-type ultracool dwarfs.

  14. Speciation of Fe(II) and Fe(III) by the modified ferrozine method, FIA-spectrophotometry, and flame AAS after cloud-point extraction

    Energy Technology Data Exchange (ETDEWEB)

    Giokas, Dimosthenis L.; Paleologos, Evangelos K.; Karayannis, Miltiades I. [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina (Greece)

    2002-07-01

    A method has been developed for the simultaneous determination of traces of Fe(III) and Fe(II) in water by on-line coupling of spectrophotometry with flame atomic absorption spectrometry (FAAS). The method involves cloud-point extraction (CPE) of both species with ammonium pyrrolidinecarbodithioate (APDC) under standard conditions, which facilitates the in situ complexation and extraction of both species. Differentiation of the oxidation states of iron is achieved by using mathematical equations to overcome the interference of Fe(III) in the spectrophotometric determination of Fe(II) when they are both present in the same solution. In this manner the time-consuming and labor-intensive steps of preoxidation of Fe(II) or reduction of Fe(III) are eliminated. By preconcentrating a 10-mL sample solution detection limits as low as 7 {mu}g L{sup -1}, were obtained after a single-step extraction procedure. The relative standard deviation (n=4, 30 {mu}g L{sup -1}) was 2.6 % and 1.8 % for spectrophotometry and FAAS, respectively. Recoveries in the range of 96-105 % were obtained by analysis of spiked real samples. The method was further verified by analyzing a certified reference material (IMEP-9); for this the recovery was 98.5 %. (orig.)

  15. Measurements of Stellar Inclinations for Kepler Planet Candidates II: Candidate Spin-Orbit Misalignments in Single and Multiple-Transiting Systems

    CERN Document Server

    Hirano, Teruyuki; Takeda, Yoichi; Winn, Joshua N; Narita, Norio; Takahashi, Yasuhiro H

    2014-01-01

    We present a test for spin-orbit alignment for the host stars of 25 candidate planetary systems detected by the {\\it Kepler} spacecraft. The inclination angle of each star's rotation axis was estimated from its rotation period, rotational line broadening, and radius. The rotation periods were determined using the {\\it Kepler} photometric time series. The rotational line broadening was determined from high-resolution optical spectra with Subaru/HDS. Those same spectra were used to determine the star's photospheric parameters (effective temperature, surface gravity, metallicity) which were then interpreted with stellar-evolutionary models to determine stellar radii. We combine the new sample with the 7 stars from our previous work on this subject, finding that the stars show a statistical tendency to have inclinations near 90$^\\circ$, in alignment with the planetary orbits. Possible spin-orbit misalignments are seen in several systems, including three multiple-planet systems (KOI-304, 988, 2261). Ideally these ...

  16. Tidal dissipation in rotating low-mass stars and implications for the orbital evolution of close-in massive planets. II. Effect of stellar metallicity

    Science.gov (United States)

    Bolmont, E.; Gallet, F.; Mathis, S.; Charbonnel, C.; Amard, L.; Alibert, Y.

    2017-08-01

    Observations of hot-Jupiter exoplanets suggest that their orbital period distribution depends on the metallicity of the host stars. We investigate here whether the impact of the stellar metallicity on the evolution of the tidal dissipation inside the convective envelope of rotating stars and its resulting effect on the planetary migration might be a possible explanation for this observed statistical trend. We use a frequency-averaged tidal dissipation formalism coupled to an orbital evolution code and to rotating stellar evolution models in order to estimate the effect of a change of stellar metallicity on the evolution of close-in planets. We consider here two different stellar masses: 0.4 M⊙ and 1.0 M⊙ evolving from the early pre-main sequence phase up to the red-giant branch. We show that the metallicity of a star has a strong effect on the stellar parameters, which in turn strongly influence the tidal dissipation in the convective region. While on the pre-main sequence, the dissipation of a metal-poor Sun-like star is higher than the dissipation of a metal-rich Sun-like star; on the main sequence it is the opposite. However, for the 0.4 M⊙ star, the dependence of the dissipation with metallicity is much less visible. Using an orbital evolution model, we show that changing the metallicity leads to different orbital evolutions (e.g., planets migrate farther out from an initially fast-rotating metal-rich star). Using this model, we qualitatively reproduced the observational trends of the population of hot Jupiters with the metallicity of their host stars. However, more steps are needed to improve our model to try to quantitatively fit our results to the observations. Specifically, we need to improve the treatment of the rotation evolution in the orbital evolution model, and ultimately we need to consistently couple the orbital model to the stellar evolution model.

  17. A systematic retrieval analysis of secondary eclipse spectra. II. A uniform analysis of nine planets and their C to O ratios

    Energy Technology Data Exchange (ETDEWEB)

    Line, Michael R.; Knutson, Heather; Wolf, Aaron S.; Yung, Yuk L., E-mail: mrl@gps.caltech.edu [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-03-10

    Secondary eclipse spectroscopy provides invaluable insights into the temperatures and compositions of exoplanetary atmospheres. We carry out a systematic temperature and abundance retrieval analysis of nine exoplanets (HD 189733b, HD 209458b, HD 149026b, GJ436b, WASP-12b, WASP-19b, WASP-43b, TrES-2b, and TrES-3b) observed in secondary eclipse using a combination of space- and ground-based facilities. Our goal with this analysis is to provide a consistent set of temperatures and compositions from which self-consistent models can be compared and to probe the underlying processes that shape these atmospheres. This paper is the second in a three part series of papers exploring the retrievability of temperatures and abundances from secondary eclipse spectra and the implications of these results for the chemistry of exoplanet atmospheres. In this investigation we present a catalogue of temperatures and abundances for H{sub 2}O, CH{sub 4}, CO, and CO{sub 2}. We find that our temperatures and abundances are generally consistent with those of previous studies, although we do not find any statistically convincing evidence for super-solar C to O ratios (e.g., solar C/O falls in the 1σ confidence intervals in eight of the nine planets in our sample). Furthermore, within our sample we find little evidence for thermal inversions over a wide range of effective temperatures (with the exception of HD 209458b), consistent with previous investigations. The lack of evidence for inversions for most planets in our sample over such a wide range of effective temperatures provides additional support for the hypothesis that TiO is unlikely to be the absorber responsible for the formation of these inversions.

  18. A multi-transition study of carbon monoxide in the Orion A molecular cloud. II - C(O-18)

    Science.gov (United States)

    Dutrey, A.; Duvert, G.; Castets, A.; Langer, W. D.; Bally, J.; Wilson, R. W.

    1993-01-01

    We present an analysis of density, temperature, and excitation conditions in a one half square degree region around BN/KL in Orion A using new C(O-l8) J = 1 yields 0 and J = 2 yields 1 data. This paper extends a previous study of Orion A, based on a multitransition analysis of (C-13)O, to the optically thinner C(O-18) species that traces better the dense inner regions of giant molecular clouds. From the C(O-18) maps we identify several condensations and are able to derive their size, linewidth, average density, mass, and virial mass.

  19. Extrasolar planets: constraints for planet formation models.

    Science.gov (United States)

    Santos, Nuno C; Benz, Willy; Mayor, Michel

    2005-10-14

    Since 1995, more than 150 extrasolar planets have been discovered, most of them in orbits quite different from those of the giant planets in our own solar system. The number of discovered extrasolar planets demonstrates that planetary systems are common but also that they may possess a large variety of properties. As the number of detections grows, statistical studies of the properties of exoplanets and their host stars can be conducted to unravel some of the key physical and chemical processes leading to the formation of planetary systems.

  20. Planets and Life

    Science.gov (United States)

    Sullivan, Woodruff T., III; Baross, John

    2007-09-01

    Foreword; Preface; Contributors; Prologue; Part I. History: 1. History of astrobiological ideas W. T. Sullivan and D. Carney; 2. From exobiology to astrobiology S. J. Dick; Part II. The Physical Stage: 3. Formation of Earth-like habitable planets D. E. Brownlee and M. Kress; 4. Planetary atmospheres and life D. Catling and J. F. Kasting; Part III. The Origin of Life on Earth: 5. Does 'life' have a definition? C.E. Cleland and C. F. Chyba; 6. Origin of life: crucial issues R. Shapiro; 7. Origin of proteins and nucleic acids A. Ricardo and S. A. Benner; 8. The roots of metabolism G.D. Cody and J. H. Scott; 9. Origin of cellular life D. W. Deamer; Part IV. Life on Earth: 10. Evolution: a defining feature of life J. A. Baross; 11. Evolution of metabolism and early microbial communities J. A. Leigh, D. A. Stahl and J. T. Staley; 12. The earliest records of life on Earth R. Buick; 13. The origin and diversification of eukaryotes M. L. Sogin, D. J. Patterson and A. McArthur; 14. Limits of carbon life on Earth and elsewhere J. A. Baross, J. Huber and M. Schrenk; 15. Life in ice J. W. Deming and H. Eicken; 16. The evolution and diversification of life S. Awramik and K. J. McNamara; 17. Mass extinctions P. D. Ward; Part V. Potentially Habitable Worlds: 18. Mars B. M. Jakosky, F. Westall and A. Brack; 19. Europa C. F. Chyba and C. B. Phillips; 20. Titan J. I. Lunine and B. Rizk; 21. Extrasolar planets P. Butler; Part VI. Searching for Extraterrestrial Life: 22. How to search for life on other worlds C. P. McKay; 23. Instruments and strategies for detecting extraterrestrial life P. G. Conrad; 24. Societial and ethical concerns M. S. Race; 25. Planetary protection J. D. Rummel; 26. Searching for extraterrestrial intelligence J. C. Tarter; 27. Alien biochemistries P. D. Ward and S. A. Benner; Part VII. Future of the Field: 28. Disciplinary and educational opportunities L. Wells, J. Armstrong and J. Huber; Epilogue C. F. Chyba; Appendixes: A. Units and usages; B. Planetary

  1. Molecular and Atomic Gas in the Large Magellanic Cloud II. Three-dimensional Correlation between CO and HI

    CERN Document Server

    Fukui, Y; Wong, T; Murai, M; Iritani, H; Mizuno, N; Mizuno, Y; Onishi, T; Hughes, A; Ott, J; Müller, E; Staveley-Smith, L; Kim, S

    2009-01-01

    We compare the CO J =(1-0) and HI emission in the Large Magellanic Cloud (LMC) in three dimensions, i.e. including a velocity axis in addition to the two spatial axes, with the aim of elucidating the physical connection between giant molecular clouds (GMCs) and their surrounding HI gas. The CO J =1-0 dataset is from the second NANTEN CO survey and the HI dataset is from the merged Australia Telescope Compact Array (ATCA) and Parkes Telescope surveys. The major findings of our analysis are: 1) GMCs are associated with an envelope of HI emission, 2) in GMCs [average CO intensity] is proportional to [average HI intensity]^[1.1+-0.1] and 3) the HI intensity tends to increase with the star formation activity within GMCs, from Type I to Type III. An analysis of the HI envelopes associated with GMCs shows that their average linewidth is 14 km s-1 and the mean density in the envelope is 10 cm-3. We argue that the HI envelopes are gravitationally bound by GMCs. These findings are consistent with a continual increase i...

  2. Challenges in Discerning Atmospheric Composition in Directly Imaged Planets

    Science.gov (United States)

    Marley, Mark S.

    2017-01-01

    One of the justifications motivating efforts to detect and characterize young extrasolar giant planets has been to measure atmospheric composition for comparison with that of the primary star. If the enhancement of heavy elements in the atmospheres of extrasolar giant planets, like it is for their solar system analogs, is inversely proportional to mass, then it is likely that these worlds formed by core accretion. However in practice it has been very difficult to constrain metallicity because of the complex effect of clouds. Cloud opacity varies both vertically and, in some cases, horizontally through the atmosphere. Particle size and composition, both of which impact opacity, are difficult challenges both for forward modeling and retrieval studies. In my presentation I will discuss systematic efforts to improve cloud studies to enable more reliable determinations of atmospheric composition. These efforts are relevant both to discerning composition of directly imaged young planets from ground based telescopes and future space based missions, such as WFIRST and LUVOIR.

  3. A transition in the cloud composition of hot Jupiters atmospheres

    Science.gov (United States)

    Parmentier, Vivien; Fortney, Jonathan J.; Showman, Adam P.; Morley, Caroline; Marley, Mark S.

    2016-01-01

    Over a large range of equilibrium temperatures clouds seem to dominate the transmission spectrum of Hot Jupiters atmospheres and no trend allowing the classification of these objects have yet emerged. Recently observations of the light reflected by Hot Jupiters atmospheres shed a new light on the cloud distribution on the dayside of these planets : for a handful of planets clouds are more abundant on the western than on the eastern side of the dayside hemisphere and, more importantly, this asymmetry depends on the equilibrium temperature of the planet.Here we use a grid of 3D global circulation models to show that a single cloud species is unable to explain the recent Kepler observations. The cloud asymmetry on the dayside is a strong function of the condensation temperature of the cloud species which allow us to determine the composition of the clouds present in these planets. We show that a transition between silicate clouds and sulfide clouds appear at equilibrium temperatures of 1600K. A mechanism such as the presence of a deep cold trap is necessary to explain this transi- tion. Furthermore, we show that the western limb temperature is always cold, independently of the equilibrium temperature of the planet, allowing cloud particles to form even in the most irradiated planets as seen in the observations.Our results provide the first evidence for a transition in the cloud species of hot Jupiters similar to the L/T Brown Dwarf transition. We further show that inhomogeneous dayside and limbs cloud coverage are expected what should affect the retrieved molecular abundances from emission and transmission spectra of these planets.

  4. Search Cloud

    Science.gov (United States)

    ... of this page: https://medlineplus.gov/cloud.html Search Cloud To use the sharing features on this ... of Top 110 zoster vaccine Share the MedlinePlus search cloud with your users by embedding our search ...

  5. First light of the VLT planet finder SPHERE. II. The physical properties and the architecture of the young systems PZ Telescopii and HD 1160 revisited

    Science.gov (United States)

    Maire, A.-L.; Bonnefoy, M.; Ginski, C.; Vigan, A.; Messina, S.; Mesa, D.; Galicher, R.; Gratton, R.; Desidera, S.; Kopytova, T. G.; Millward, M.; Thalmann, C.; Claudi, R. U.; Ehrenreich, D.; Zurlo, A.; Chauvin, G.; Antichi, J.; Baruffolo, A.; Bazzon, A.; Beuzit, J.-L.; Blanchard, P.; Boccaletti, A.; de Boer, J.; Carle, M.; Cascone, E.; Costille, A.; De Caprio, V.; Delboulbé, A.; Dohlen, K.; Dominik, C.; Feldt, M.; Fusco, T.; Girard, J. H.; Giro, E.; Gisler, D.; Gluck, L.; Gry, C.; Henning, T.; Hubin, N.; Hugot, E.; Jaquet, M.; Kasper, M.; Lagrange, A.-M.; Langlois, M.; Le Mignant, D.; Llored, M.; Madec, F.; Martinez, P.; Mawet, D.; Milli, J.; Möller-Nilsson, O.; Mouillet, D.; Moulin, T.; Moutou, C.; Origné, A.; Pavlov, A.; Petit, C.; Pragt, J.; Puget, P.; Ramos, J.; Rochat, S.; Roelfsema, R.; Salasnich, B.; Sauvage, J.-F.; Schmid, H. M.; Turatto, M.; Udry, S.; Vakili, F.; Wahhaj, Z.; Weber, L.; Wildi, F.

    2016-03-01

    Context. The young systemsPZ Tel and HD 1160, hosting known low-mass companions, were observed during the commissioning of the new planet finder of the Very Large Telescope (VLT) SPHERE with several imaging and spectroscopic modes. Aims: We aim to refine the physical properties and architecture of both systems. Methods: We use SPHERE commissioning data and dedicated Rapid Eye Mount (REM) observations, as well as literature and unpublished data from VLT/SINFONI, VLT/NaCo, Gemini/NICI, and Keck/NIRC2. Results: We derive new photometry and confirm the short-term (P = 0.94 d) photometric variability of the star PZ Tel A with values of 0.14 and 0.06 mag at optical and near-infrared wavelengths, respectively. We note from the comparison to literature data spanning 38 yr that the star also exhibits a long-term variability trend with a brightening of ~0.25 mag. The 0.63-3.8 μm spectral energy distribution of PZ Tel B (separation ~25 AU) allows us to revise its physical characteristics: spectral type M7 ± 1, Teff = 2700 ± 100 K, log(g) 0.66). For eccentricities below 0.9, the inclination, longitude of the ascending node, and time of periastron passage are well constrained. In particular, both star and companion inclinations are compatible with a system seen edge-on. Based on "hot-start" evolutionary models, we reject other brown dwarf candidates outside 0.25'' for both systems, and giant planet companions outside 0.5'' that are more massive than 3 MJ for the PZ Tel system. We also show that K1-K2 color can be used along with YJH low-resolution spectra to identify young L-type companions, provided high photometric accuracy (≤0.05 mag) is achieved. Conclusions: SPHERE opens new horizons in the study of young brown dwarfs and giant exoplanets using direct imaging thanks to high-contrast imaging capabilities at optical (0.5-0.9 μm) and near-infrared (0.95-2.3 μm) wavelengths, as well as high signal-to-noise spectroscopy in the near-infrared domain (0.95-2.3 μm) from low

  6. THE PHOTOECCENTRIC EFFECT AND PROTO-HOT JUPITERS. II. KOI-1474.01, A CANDIDATE ECCENTRIC PLANET PERTURBED BY AN UNSEEN COMPANION

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Rebekah I.; Murray-Clay, Ruth A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St, MS-10, Cambridge, MA 02138 (United States); Johnson, John Asher; Morton, Timothy D. [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Fabrycky, Daniel C. [Department of Astronomy and Astrophysics, University of California Santa Cruz, Santa Cruz, California 95064 (United States); Howard, Andrew W., E-mail: rdawson@cfa.harvard.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822-1839 (United States)

    2012-12-20

    The exoplanets known as hot Jupiters-Jupiter-sized planets with periods of less than 10 days-likely are relics of dynamical processes that shape all planetary system architectures. Socrates et al. argued that high eccentricity migration (HEM) mechanisms proposed for situating these close-in planets should produce an observable population of highly eccentric proto-hot Jupiters that have not yet tidally circularized. HEM should also create failed-hot Jupiters, with periapses just beyond the influence of fast circularization. Using the technique we previously presented for measuring eccentricities from photometry (the ''photoeccentric effect''), we are distilling a collection of eccentric proto- and failed-hot Jupiters from the Kepler Objects of Interest (KOI). Here, we present the first, KOI-1474.01, which has a long orbital period (69.7340 days) and a large eccentricity e 0.81{sup +0.10}{sub -0.07}, skirting the proto-hot Jupiter boundary. Combining Kepler photometry, ground-based spectroscopy, and stellar evolution models, we characterize host KOI-1474 as a rapidly rotating F star. Statistical arguments reveal that the transiting candidate has a low false-positive probability of 3.1%. KOI-1474.01 also exhibits transit-timing variations of the order of an hour. We explore characteristics of the third-body perturber, which is possibly the ''smoking-gun'' cause of KOI-1474.01's large eccentricity. We use the host star's period, radius, and projected rotational velocity to measure the inclination of the stellar spin. Comparing KOI 1474.01's inclination, we find that its orbit is marginally consistent with being aligned with the stellar spin axis, although a reanalysis is warranted with future additional data. Finally, we discuss how the number and existence of proto-hot Jupiters will not only demonstrate that hot Jupiters migrate via HEM, but also shed light on the typical timescale for the mechanism.

  7. Bayesian priors for transiting planets

    CERN Document Server

    Kipping, David M

    2016-01-01

    As astronomers push towards discovering ever-smaller transiting planets, it is increasingly common to deal with low signal-to-noise ratio (SNR) events, where the choice of priors plays an influential role in Bayesian inference. In the analysis of exoplanet data, the selection of priors is often treated as a nuisance, with observers typically defaulting to uninformative distributions. Such treatments miss a key strength of the Bayesian framework, especially in the low SNR regime, where even weak a priori information is valuable. When estimating the parameters of a low-SNR transit, two key pieces of information are known: (i) the planet has the correct geometric alignment to transit and (ii) the transit event exhibits sufficient signal-to-noise to have been detected. These represent two forms of observational bias. Accordingly, when fitting transits, the model parameter priors should not follow the intrinsic distributions of said terms, but rather those of both the intrinsic distributions and the observational ...

  8. The Gould’s Belt Distances Survey (GOBELINS) II. Distances and Structure toward the Orion Molecular Clouds

    Science.gov (United States)

    Kounkel, Marina; Hartmann, Lee; Loinard, Laurent; Ortiz-León, Gisela N.; Mioduszewski, Amy J.; Rodríguez, Luis F.; Dzib, Sergio A.; Torres, Rosa M.; Pech, Gerardo; Galli, Phillip A. B.; Rivera, Juana L.; Boden, Andrew F.; Evans, Neal J., II; Briceño, Cesar; Tobin, John J.

    2017-01-01

    We present the results of the Gould’s Belt Distances Survey of young star-forming regions toward the Orion Molecular Cloud Complex. We detected 36 young stellar objects (YSOs) with the Very Large Baseline Array, 27 of which have been observed in at least three epochs over the course of two years. At least half of these YSOs belong to multiple systems. We obtained parallax and proper motions toward these stars to study the structure and kinematics of the Complex. We measured a distance of 388 ± 5 pc toward the Orion Nebula Cluster, 428 ± 10 pc toward the southern portion L1641, 388 ± 10 pc toward NGC 2068, and roughly ∼420 pc toward NGC 2024. Finally, we observed a strong degree of plasma radio scattering toward λ Ori.

  9. New 20-CM Radio-Continuum Study of The Small Magellanic Cloud: Part II - Point Sources Catalogue

    CERN Document Server

    Wong, G F; Crawford, E J; Tothill, N F H; Drasković, A Y De Horta D; Galvin, T J; Collier, J D; Payne, J L

    2011-01-01

    We present a new catalogue of point radio-continuum sources in the field of the Small Magellanic Cloud (SMC). This catalogue also contains point sources previously not found in 2300 MHz (\\lambda=13 cm) with sources found at 1400 MHz (\\lambda=20 cm) and 843 MHz (\\lambda=36 cm). We found 1576 point sources at 20 cm image that is created from new high sensitivity and resolution radio-continuum images of the SMC from Paper I. Some 46 new point sources have been detected at 13 cm as an addition the Filipovi\\'c et al. (2002) catalogue. We also created a 36 cm catalogue to which we listed 1692 point radio-continuum sources. Follow up studies on these sources nature will be presented in Paper III of this series.

  10. First light of the VLT planet finder SPHERE - II. The physical properties and the architecture of the young systems PZ Tel and HD 1160 revisited

    CERN Document Server

    Maire, A -L; Ginski, C; Vigan, A; Messina, S; Mesa, D; Galicher, R; Gratton, R; Desidera, S; Kopytova, T G; Millward, M; Thalmann, C; Claudi, R U; Ehrenreich, D; Zurlo, A; Chauvin, G; Antichi, J>; Baruffolo, A; Bazzon, A; Beuzit, J -L; Blanchard, P; Boccaletti, A; de Boer, J; Carle, M; Cascone, E; Costille, A; De Caprio, V; Delboulbe, A; Dohlen, K; Dominik, C; Feldt, M; Fusco, T; Girard, J H; Giro, E; Gisler, D; Gluck, L; Gry, C; Henning, T; Hubin, N; Hugot, E; Jaquet, M; Kasper, M; Lagrange, A -M; Langlois, M; Mignant, D Le; Llored, M; Madec, F; Martinez, P; Mawet, D; Milli, J; Moeller-Nilsson, O; Mouillet, D; Moulin, T; Moutou, C; Origne, A; Pavlov, A; Petit, C; Pragt, J; Puget, P; Ramos, J; Rochat, S; Roelfsema, R; Salasnich, B; Sauvage, J -F; Schmid, H M; Turatto, M; Udry, S; Vakili, F; Wahhaj, Z; Weber, L; Wildi, F

    2015-01-01

    [Abridged] Context. The young systems PZ Tel and HD 1160, hosting known low-mass companions, were observed during the commissioning of the new planet finder SPHERE with several imaging and spectroscopic modes. Aims. We aim to refine the physical properties and architecture of both systems. Methods. We use SPHERE commissioning data and REM observations, as well as literature and unpublished data from VLT/SINFONI, VLT/NaCo, Gemini/NICI, and Keck/NIRC2. Results. We derive new photometry and confirm the nearly daily photometric variability of PZ Tel A. Using literature data spanning 38 yr, we show that the star also exhibits a long-term variability trend. The 0.63-3.8 mic SED of PZ Tel B allows us to revise its properties: spectral type M7+/-1, Teff=2700+/-100 K, log(g)0.66) of PZ Tel B. For e4 MJ) outside 0.5" for the PZ Tel system. We also show that K1-K2 color can be used with YJH low-resolution spectra to identify young L-type companions, provided high photometric accuracy (<0.05 mag) is achieved. Conclusi...

  11. Simulating radiative feedback and star cluster formation in GMCs - II. Mass dependence of cloud destruction and cluster properties

    Science.gov (United States)

    Howard, Corey S.; Pudritz, Ralph E.; Harris, William E.

    2017-09-01

    The process of radiative feedback in giant molecular clouds (GMCs) is an important mechanism for limiting star cluster formation through the heating and ionization of the surrounding gas. We explore the degree to which radiative feedback affects early (≲5 Myr) cluster formation in GMCs having masses that range from 104 to 106 M⊙ using the flash code. The inclusion of radiative feedback lowers the efficiency of cluster formation by 20-50 per cent relative to hydrodynamic simulations. Two models in particular - 5 × 104 and 105 M⊙ - show the largest suppression of the cluster formation efficiency, corresponding to a factor of ∼2. For these clouds only, the internal energy, a measure of the energy injected by radiative feedback, exceeds the gravitational potential for a significant amount of time. We find a clear relation between the maximum cluster mass, Mc,max, formed in a GMC and the mass of the GMC itself, MGMC: Mc,max ∝ M_{GMC}^{0.81}. This scaling result suggests that young globular clusters at the necessary scale of 106 M⊙ form within host GMCs of masses near ∼5 × 107 M⊙. We compare simulated cluster mass distributions to the observed embedded cluster mass function [d log (N)/dlog (M) ∝ Mβ where β = -1] and find good agreement (β = -0.99 ± 0.14) only for simulations including radiative feedback, indicating this process is important in controlling the growth of young clusters. However, the high star formation efficiencies, which range from 16 to 21 per cent, and high star formation rates compared to locally observed regions suggest other feedback mechanisms are also important during the formation and growth of stellar clusters.

  12. Improving Representation of Convective Transport for Scale-Aware Parameterization, Part II: Analysis of Cloud-Resolving Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi-Chin; Fan, Jiwen; Zhang, Guang J.; Xu, Kuan-Man; Ghan, Steven J.

    2015-04-27

    Following Part I, in which 3-D cloud-resolving model (CRM) simulations of a squall line and mesoscale convective complex in the mid-latitude continental and the tropical regions are conducted and evaluated, we examine the scale-dependence of eddy transport of water vapor, evaluate different eddy transport formulations, and improve the representation of convective transport across all scales by proposing a new formulation that more accurately represents the CRM-calculated eddy flux. CRM results show that there are strong grid-spacing dependencies of updraft and downdraft fractions regardless of altitudes, cloud life stage, and geographical location. As for the eddy transport of water vapor, updraft eddy flux is a major contributor to total eddy flux in the lower and middle troposphere. However, downdraft eddy transport can be as large as updraft eddy transport in the lower atmosphere especially at the mature stage of 38 mid-latitude continental convection. We show that the single updraft approach significantly underestimates updraft eddy transport of water vapor because it fails to account for the large internal variability of updrafts, while a single downdraft represents the downdraft eddy transport of water vapor well. We find that using as few as 3 updrafts can account for the internal variability of updrafts well. Based on evaluation with the CRM simulated data, we recommend a simplified eddy transport formulation that considers three updrafts and one downdraft. Such formulation is similar to the conventional one but much more accurately represents CRM-simulated eddy flux across all grid scales.

  13. Dynamical Expansion of H II Regions from Ultracompact to Compact Sizes in Turbulent, Self-Gravitating Molecular Clouds

    CERN Document Server

    MacLow, M M; Oishi, J S; Abel, T; Low, Mordecai-Mark Mac; Toraskar, Jayashree; Oishi, Jeffrey S.; Abel, Tom

    2006-01-01

    The nature of ultracompact H II regions (UCHRs) remains poorly determined. In particular, they are about an order of magnitude more common than would be expected if they formed around young massive stars and lasted for one dynamical time, around 10^4 yr. We here perform three-dimensional numerical simulations of the expansion of an H II region into self-gravitating, radiatively cooled gas, both with and without supersonic turbulent flows. In the laminar case, we find that H II region expansion in a collapsing core produces nearly spherical shells, even if the ionizing source is off-center in the core. This agrees with analytic models of blast waves in power-law media. In the turbulent case, we find that the H II region does not disrupt the central collapsing region, but rather sweeps up a shell of gas in which further collapse occurs. Although this does not constitute triggering, as the swept-up gas would eventually have collapsed anyway, it does expose the collapsing regions to ionizing radiation. We suggest...

  14. Building Terrestrial Planets

    CERN Document Server

    Morbidelli, Alessandro; O`brien, David P; Raymond, Sean N; Walsh, Kevin J; 10.1146/annurev-earth-042711-105319

    2012-01-01

    This paper reviews our current understanding of terrestrial planets formation. The focus is on computer simulations of the dynamical aspects of the accretion process. Throughout the chapter, we combine the results of these theoretical models with geochemical, cosmochemical and chronological constraints, in order to outline a comprehensive scenario of the early evolution of our Solar System. Given that the giant planets formed first in the protoplanetary disk, we stress the sensitive dependence of the terrestrial planet accretion process on the orbital architecture of the giant planets and on their evolution. This suggests a great diversity among the terrestrial planets populations in extrasolar systems. Issues such as the cause for the different masses and accretion timescales between Mars and the Earth and the origin of water (and other volatiles) on our planet are discussed at depth.

  15. Seismology of Giant Planets

    CERN Document Server

    Gaulme, Patrick; Schmider, Francois-Xavier; Guillot, Tristan

    2014-01-01

    Seismology applied to giant planets could drastically change our understanding of their deep interiors, as it has happened with the Earth, the Sun, and many main-sequence and evolved stars. The study of giant planets' composition is important for understanding both the mechanisms enabling their formation and the origins of planetary systems, in particular our own. Unfortunately, its determination is complicated by the fact that their interior is thought not to be homogeneous, so that spectroscopic determinations of atmospheric abundances are probably not representative of the planet as a whole. Instead, the determination of their composition and structure must rely on indirect measurements and interior models. Giant planets are mostly fluid and convective, which makes their seismology much closer to that of solar-like stars than that of terrestrial planets. Hence, helioseismology techniques naturally transfer to giant planets. In addition, two alternative methods can be used: photometry of the solar light ref...

  16. Kinetic temperature of massive star-forming molecular clumps measured with formaldehyde. II. The Large Magellanic Cloud

    Science.gov (United States)

    Tang, X. D.; Henkel, C.; Chen, C.-H. R.; Menten, K. M.; Indebetouw, R.; Zheng, X. W.; Esimbek, J.; Zhou, J. J.; Yuan, Y.; Li, D. L.; He, Y. X.

    2017-03-01

    Context. The kinetic temperature of molecular clouds is a fundamental physical parameter affecting star formation and the initial mass function. The Large Magellanic Cloud (LMC) is the closest star-forming galaxy with a low metallicity and provides an ideal laboratory for studying star formation in such an environment. Aims: The classical dense molecular gas thermometer NH3 is seldom available in a low-metallicity environment because of photoionization and a lack of nitrogen atoms. Our goal is to directly measure the gas kinetic temperature with formaldehyde toward six star-forming regions in the LMC. Methods: Three rotational transitions (JKAKC = 303-202, 322-221, and 321-220) of para-H2CO near 218 GHz were observed with the Atacama Pathfinder EXperiment (APEX) 12 m telescope toward six star-forming regions in the LMC. These data are complemented by C18O 2-1 spectra. Results: Using non-local thermal equilibrium modeling with RADEX, we derive the gas kinetic temperature and spatial density, using as constraints the measured para-H2CO 321-220/303-202 and para-H2CO 303-202/C18O 2-1 ratios. Excluding the quiescent cloud N159S, where only one para-H2CO line could be detected, the gas kinetic temperatures derived from the preferred para-H2CO 321-220/303-202 line ratios range from 35 to 63 K with an average of 47 ± 5 K (errors are unweighted standard deviations of the mean). Spatial densities of the gas derived from the para-H2CO 303-202/C18O 2-1 line ratios yield 0.4-2.9 × 105 cm-3 with an average of 1.5 ± 0.4 × 105 cm-3. Temperatures derived from the para-H2CO line ratio are similar to those obtained with the same method from Galactic star-forming regions and agree with results derived from CO in the dense regions (n(H2) > 103 cm-3) of the LMC. A comparison of kinetic temperatures derived from para-H2CO with those from the dust also shows good agreement. This suggests that the dust and para-H2CO are well mixed in the studied star-forming regions. A comparison of

  17. Dynamos of giant planets

    CERN Document Server

    Busse, F H; 10.1017/S1743921307000920

    2009-01-01

    Possibilities and difficulties of applying the theory of magnetic field generation by convection flows in rotating spherical fluid shells to the Giant Planets are outlined. Recent progress in the understanding of the distribution of electrical conductivity in the Giant Planets suggests that the dynamo process occurs predominantly in regions of semiconductivity. In contrast to the geodynamo the magnetic field generation in the Giant Planets is thus characterized by strong radial conductivity variations. The importance of the constraint on the Ohmic dissipation provided by the planetary luminosity is emphasized. Planetary dynamos are likely to be of an oscillatory type, although these oscillations may not be evident from the exterior of the planets.

  18. Challenges in Planet Formation

    CERN Document Server

    Morbidelli, Alessandro

    2016-01-01

    Over the past two decades, large strides have been made in the field of planet formation. Yet fundamental questions remain. Here we review our state of understanding of five fundamental bottlenecks in planet formation. These are: 1) the structure and evolution of protoplanetary disks; 2) the growth of the first planetesimals; 3) orbital migration driven by interactions between proto-planets and gaseous disk; 4) the origin of the Solar System's orbital architecture; and 5) the relationship between observed super-Earths and our own terrestrial planets. Given our lack of understanding of these issues, even the most successful formation models remain on shaky ground.

  19. Exploring Disks Around Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    Giant planets are thought to form in circumstellar disks surrounding young stars, but material may also accrete into a smaller disk around the planet. Weve never detected one of these circumplanetary disks before but thanks to new simulations, we now have a better idea of what to look for.Image from previous work simulating a Jupiter-mass planet forming inside a circumstellar disk. The planet has its own circumplanetary disk of accreted material. [Frdric Masset]Elusive DisksIn the formation of giant planets, we think the final phase consists of accretion onto the planet from a disk that surrounds it. This circumplanetary disk is important to understand, since it both regulates the late gas accretion and forms the birthplace of future satellites of the planet.Weve yet to detect a circumplanetary disk thus far, because the resolution needed to spot one has been out of reach. Now, however, were entering an era where the disk and its kinematics may be observable with high-powered telescopes (like the Atacama Large Millimeter Array).To prepare for such observations, we need models that predict the basic characteristics of these disks like the mass, temperature, and kinematic properties. Now a researcher at the ETH Zrich Institute for Astronomy in Switzerland, Judit Szulgyi, has worked toward this goal.Simulating CoolingSzulgyi performs a series of 3D global radiative hydrodynamic simulations of 1, 3, 5, and 10 Jupiter-mass (MJ) giant planets and their surrounding circumplanetary disks, embedded within the larger circumstellar disk around the central star.Density (left column), temperature (center), and normalized angular momentum (right) for a 1 MJ planet over temperatures cooling from 10,000 K (top) to 1,000 K (bottom). At high temperatures, a spherical circumplanetary envelope surrounds the planet, but as the planet cools, the envelope transitions around 64,000 K to a flattened disk. [Szulgyi 2017]This work explores the effects of different planet temperatures and

  20. Directly Imaged Giant Planets: What Do We Hope to Learn?

    Science.gov (United States)

    Marley, Mark

    2015-01-01

    As we move into an era when GPI and SPHERE are (hopefully) discovering and characterizing new young giant planets, it is worthwhile to step back and review our science goals for young giant planets. Of course for individual planets we ideally would hope to measure mass, radius, atmospheric composition, temperature, and cloud properties, but how do these characteristics fit into our broader understanding of planetary system origin and evolution theories? In my presentation I will review both the specifics of what we hope to learn from newly discovered young worlds as well as how these characteristics inform our broader understanding of giant planets and planetary systems. Finally I will consider the limitations realistic datasets will place on our ability to understand newly discovered planets, illustrating with data from any new such worlds that are available by the conference date.

  1. Characterization of extrasolar terrestrial planets from diurnal photometric variability.

    Science.gov (United States)

    Ford, E B; Seager, S; Turner, E L

    2001-08-30

    The detection of massive planets orbiting nearby stars has become almost routine, but current techniques are as yet unable to detect terrestrial planets with masses comparable to the Earth's. Future space-based observatories to detect Earth-like planets are being planned. Terrestrial planets orbiting in the habitable zones of stars-where planetary surface conditions are compatible with the presence of liquid water-are of enormous interest because they might have global environments similar to Earth's and even harbour life. The light scattered by such a planet will vary in intensity and colour as the planet rotates; the resulting light curve will contain information about the planet's surface and atmospheric properties. Here we report a model that predicts features that should be discernible in the light curve obtained by low-precision photometry. For extrasolar planets similar to Earth, we expect daily flux variations of up to hundreds of per cent, depending sensitively on ice and cloud cover as well as seasonal variations. This suggests that the meteorological variability, composition of the surface (for example, ocean versus land fraction) and rotation period of an Earth-like planet could be derived from photometric observations. Even signatures of Earth-like plant life could be constrained or possibly, with further study, even uniquely determined.

  2. The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. I. Chamaeleon II Observed with MIPS

    CERN Document Server

    Young, K E; Allen, L E; Bertoldi, F; Blake, G A; Bourke, T L; Brooke, T Y; Chapman, N; Harvey, P M; Kauffmann, J; Körner, D W; Lai, S P; Mundy, L G; Myers, P C; Padgett, D L; Salinas, A; Sargent, A I; Spiesman, W; Stapelfeldt, K R; Teuben, P; Van Dishoeck, E F; Wahhaj, Z

    2005-01-01

    We present maps of over 1.5 square degrees in Chamaeleon (Cha) II at 24, 70, and 160 micron observed with the Spitzer Space Telescope Multiband Imaging Photometer for Spitzer (MIPS) and a 1.2 square degree millimeter map from SIMBA on the Swedish-ESO Submillimetre Telescope (SEST). The c2d Spitzer Legacy Team's data reduction pipeline is described in detail. Over 1500 24 micron sources and 41 70 micron sources were detected by MIPS with fluxes greater than 10-sigma. More than 40 potential YSOs are identified with a MIPS and 2MASS color-color diagram and by their spectral indices, including two previously unknown sources with 24 micron excesses. Our new SIMBA millimeter map of Cha II shows that only a small fraction of the gas is in compact structures with high column densities. The extended emission seen by MIPS is compared with previous CO observations. Some selected interesting sources, including two detected at 1 mm, associated with Cha II are discussed in detail and their SEDs presented. The classificatio...

  3. The VLA Nascent Disk and Multiplicity Survey of Perseus Protostars (VANDAM). II. Multiplicity of Protostars in the Perseus Molecular Cloud

    CERN Document Server

    Tobin, John J; Li, Zhi-Yun; Chandler, Claire J; Dunham, Michael M; Segura-Cox, Dominique; Sadavoy, Sarah I; Melis, Carl; Harris, Robert J; Kratter, Kaitlin; Perez, Laura

    2016-01-01

    We present a multiplicity study of all known protostars (94) in the Perseus molecular cloud from a Karl G. Jansky Very Large Array (VLA) survey at Ka-band (8 mm and 1 cm) and C-band (4 cm and 6.6 cm). The observed sample has a bolometric luminosity range between 0.1 L$_{\\odot}$ and $\\sim$33 L$_{\\odot}$, with a median of 0.7 L$_{\\odot}$. This multiplicity study is based on the Ka-band data, having a best resolution of $\\sim$0.065" (15 AU) and separations out to $\\sim$43" (10000 AU) can be probed. The overall multiplicity fraction (MF) is found to be of 0.40$\\pm$0.06 and the companion star fraction (CSF) is 0.71$\\pm$0.06. The MF and CSF of the Class 0 protostars are 0.57$\\pm$0.09 and 1.2$\\pm$0.2, and the MF and CSF of Class I protostars are both 0.23$\\pm$0.08. The distribution of companion separations appears bi-modal, with a peak at $\\sim$75 AU and another peak at $\\sim$3000 AU. Turbulent fragmentation is likely the dominant mechanism on $>$1000 AU scales and disk fragmentation is likely to be the dominant mec...

  4. Bright-rimmed molecular cloud around S140 IRS. II. Bipolar outflow from S140 IRS 1

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, M.; Hasegawa, T.; Omodaka, T.; Hayashi, S.S.; Miyawaki, R.

    1987-01-01

    Radioastronomy maps are presented from 16 arcsec resolution scans of the C-12O J = 1 yields 0 emission from S140 IRS, an H II region that is also associated with star formation. The observed C-12O outflow exhibits clear bipolarity. Integral values are calculated for the total mass, momentum and energy of the outflow, which has a velocity asymmetry that features the lowest velocity in the region of greatest mass outflow. Possible explanations for the velocity/mass outflow asymmetry are considered. 37 references.

  5. THE VLA NASCENT DISK AND MULTIPLICITY SURVEY OF PERSEUS PROTOSTARS (VANDAM). II. MULTIPLICITY OF PROTOSTARS IN THE PERSEUS MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, John J.; Harris, Robert J. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300-RA Leiden (Netherlands); Looney, Leslie W.; Segura-Cox, Dominique [Department of Astronomy, University of Illinois, Urbana, IL 61801 (United States); Li, Zhi-Yun [Department of Astronomy, University of Virginia, Charlottesville, VA 22903 (United States); Chandler, Claire J.; Perez, Laura [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Dunham, Michael M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St, MS 78, Cambridge, MA 02138 (United States); Sadavoy, Sarah I. [Max-Planck-Institut für Astronomie, D-69117 Heidelberg (Germany); Melis, Carl [Center for Astrophysics and Space Sciences, University of California, San Diego, CA 92093 (United States); Kratter, Kaitlin, E-mail: tobin@strw.leidenuniv.nl [University of Arizona, Steward Observatory, Tucson, AZ 85721 (United States)

    2016-02-10

    We present a multiplicity study of all known protostars (94) in the Perseus molecular cloud from a Karl G. Jansky Very Large Array survey at Ka-band (8 mm and 1 cm) and C-band (4 and 6.6 cm). The observed sample has a bolometric luminosity range between 0.1 L{sub ⊙} and ∼33 L{sub ⊙}, with a median of 0.7 L{sub ⊙}. This multiplicity study is based on the Ka-band data, having a best resolution of ∼0.″065 (15 au) and separations out to ∼43″ (10,000 au) can be probed. The overall multiplicity fraction (MF) is found to be 0.40 ± 0.06 and the companion star fraction (CSF) is 0.71 ± 0.06. The MF and CSF of the Class 0 protostars are 0.57 ± 0.09 and 1.2 ± 0.2, and the MF and CSF of Class I protostars are both 0.23 ± 0.08. The distribution of companion separations appears bi-modal, with a peak at ∼75 au and another peak at ∼3000 au. Turbulent fragmentation is likely the dominant mechanism on >1000 au scales and disk fragmentation is likely to be the dominant mechanism on <200 au scales. Toward three Class 0 sources we find companions separated by <30 au. These systems have the smallest separations of currently known Class 0 protostellar binary systems. Moreover, these close systems are embedded within larger (50–400 au) structures and may be candidates for ongoing disk fragmentation.

  6. FIRST HABITABLE PLANET DISCOVEREO

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    20 light years away from our solar system, there is a planet called "Gliese 581d" which has conditions that could support Earth-like life, including possible oceans and rainfall. On May. 19, 20l 1, the planet has been the first to be officially declared habitable by French scientists.

  7. Map-A-Planet

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Map-A-Planet website allows users to create and download custom image maps of planets and satellites from a variety of missions in an easy to use web interface

  8. March of the Planets

    Science.gov (United States)

    Thompson, Bruce

    2007-01-01

    The motion of the planets in their orbits can be demonstrated to students by using planetarium software programs. These allow time to be sped up so that the relative motions are readily observed. However, it is also valuable to have the students understand the real speed of the planets in their orbits. This paper describes an exercise that gives…

  9. Extrasolar Planet Interactions

    CERN Document Server

    Barnes, Rory

    2008-01-01

    The dynamical interactions of planetary systems may be a clue to their formation histories. Therefore, the distribution of these interactions provides important constraints on models of planet formation. We focus on each system's apsidal motion and proximity to dynamical instability. Although only ~25 multiple planet systems have been discovered to date, our analyses in these terms have revealed several important features of planetary interactions. 1) Many systems interact such that they are near the boundary between stability and instability. 2) Planets tend to form such that at least one planet's eccentricity periodically drops to near zero. 3) Mean-motion resonant pairs would be unstable if not for the resonance. 4) Scattering of approximately equal mass planets is unlikely to produce the observed distribution of apsidal behavior. 5) Resonant interactions may be identified through calculating a system's proximity to instability, regardless of knowledge of angles such as mean longitude and longitude of peri...

  10. Transits of Earth-Like Planets

    CERN Document Server

    Kaltenegger, L

    2009-01-01

    Transmission spectroscopy of Earth-like exoplanets is a potential tool for habitability screening. Transiting planets are present-day "Rosetta Stones" for understanding extrasolar planets because they offer the possibility to characterize giant planet atmospheres and should provide an access to biomarkers in the atmospheres of Earth-like exoplanets, once they are detected. Using the Earth itself as a proxy we show the potential and limits of the transiting technique to detect biomarkers on an Earth-analog exoplanet in transit. We quantify the Earths cross section as a function of wavelength, and show the effect of each atmospheric species, aerosol, and Rayleigh scattering. Clouds do not significantly affect this picture because the opacity of the lower atmosphere from aerosol and Rayleigh losses dominates over cloud losses. We calculate the optimum signal-to-noise ratio for spectral features in the primary eclipse spectrum of an Earth-like exoplanet around a Sun-like star and also M stars, for a 6.5-m telesco...

  11. Toward a robust analytical method for separating trace levels of nano-materials in natural waters: cloud point extraction of nano-copper(II) oxide.

    Science.gov (United States)

    Majedi, Seyed Mohammad; Kelly, Barry C; Lee, Hian Kee

    2014-10-01

    Cloud point extraction (CPE) factors, namely Triton X-114 (TX-114) concentration, pH, ionic strength, incubation time, and temperature, were optimized for the separation of nano-sized copper(II) oxide (nCuO) in aqueous matrices. The kinetics of phase transfer was studied using UV-visible spectroscopy. From the highest separation rate, the most favorable conditions were observed with 0.2 % w/v of TX-114, pH = 9.0, ionic strength of 10 mM NaCl, and incubation at 40 °C for 60 min, yielding an extraction efficiency of 89.2 ± 3.9 % and a preconcentration factor of 86. The aggregate size distribution confirmed the formation of very large nCuO-micelle assemblies (11.9 μm) under these conditions. The surface charge of nCuO was also diminished effectively. An extraction efficiency of 91 % was achieved with a mixture of TX-100 and TX-114 containing 30 wt.% of TX-100. Natural organic and particulate matters, represented by humic acid (30 mg/L) and micron-sized silica particles (50 mg/L), respectively, did not significantly reduce the CPE efficiency (<10 %). The recovery of copper(II) ions (20 mg/L) in the presence of humic acid was low (3-10 %). The spiked natural water samples were analyzed either directly or after CPE by inductively coupled plasma mass spectrometry following acid digestion/microwave irradiation. The results indicated the influence of matrix effects and their reduction by CPE. A delay between spiking nCuO and CPE may also influence the recovery of nCuO due to aggregation and dissolution. A detection limit of 0.04 μg Cu/L was achieved for nCuO.

  12. Integral Field Spectroscopy of Massive Young Stellar Objects in the N113 H\\,{\\sc ii} Region in the Large Magellanic Cloud

    CERN Document Server

    Ward, J L; van Loon, J Th; Sewilo, M

    2015-01-01

    The \\textit{Spitzer} SAGE survey has allowed the identification and analysis of significant samples of Young Stellar Object (YSO) candidates in the Large Magellanic Cloud (LMC). However the angular resolution of \\textit{Spitzer} is relatively poor meaning that at the distance of the LMC, it is likely that many of the \\textit{Spitzer} YSO candidates in fact contain multiple components. We present high resolution \\textit{K}-band integral field spectroscopic observations of the three most prominent massive YSO candidates in the N113 H\\,{\\sc ii} region using VLT/SINFONI. We have identified six \\textit{K}-band continuum sources within the three \\textit{Spitzer} sources and we have mapped the morphology and velocity fields of extended line emission around these sources. Br$\\gamma$, He\\,{\\sc i} and H$_2$ emission is found at the position of all six \\textit{K}-band sources; we discuss whether the emission is associated with the continuum sources or whether it is ambient emission. H$_2$ emission appears to be mostly a...

  13. Planets a very short introduction

    CERN Document Server

    Rothery, David A

    2010-01-01

    Planets: A Very Short Introduction demonstrates the excitement, uncertainties, and challenges faced by planetary scientists, and provides an overview of our Solar System and its origins, nature, and evolution. Terrestrial planets, giant planets, dwarf planets and various other objects such as satellites (moons), asteroids, trans-Neptunian objects, and exoplanets are discussed. Our knowledge about planets has advanced over the centuries, and has expanded at a rapidly growing rate in recent years. Controversial issues are outlined, such as What qualifies as a planet? What conditions are required for a planetary body to be potentially inhabited by life? Why does Pluto no longer have planet status? And Is there life on other planets?

  14. The extrasolar planet atmosphere and exosphere: Emission and transmission spectroscopy

    CERN Document Server

    Tinetti, Giovanna

    2008-01-01

    We have entered the phase of extrasolar planets characterization, probing their atmospheres for molecules, constraining their horizontal and vertical temperature profiles and estimating the contribution of clouds and hazes. We report here a short review of the current situation using ground based and space based observations, and present the transmission spectra of HD189733b in the spectral range 0.5-24 microns.

  15. The Penn State - Toruń Centre for Astronomy Planet Search stars. II. Lithium abundance analysis of the red giant clump sample

    Science.gov (United States)

    Adamów, M.; Niedzielski, A.; Villaver, E.; Wolszczan, A.; Nowak, G.

    2014-09-01

    Context. Standard stellar evolution theory does not predict existence of Li-rich giant stars. Several mechanisms for Li-enrichment have been proposed to operate at certain locations inside some stars. The actual mechanism operating in real stars is still unknown. Aims: Using the sample of 348 stars from the Penn State - Toruń Centre for Astronomy Planet Search, for which uniformly determined atmospheric parameters are available, with chemical abundances and rotational velocities presented here, we investigate various channels of Li enrichment in giants. We also study Li-overabundant giants in more detail in search for origin of their peculiarities. Methods: Our work is based on the Hobby-Eberly Telescope spectra obtained with the High Resolution Spectrograph, which we use for determination of abundances and rotational velocities. The Li abundance was determined from the 7Li λ670.8 nm line, while we use a more extended set of lines for α-elements abundances. In a series of Kolmogorov-Smirnov tests, we compare Li-overabundant giants with other stars in the sample. We also use available IR photometric and kinematical data in search for evidence of mass-loss. We investigate properties of the most Li-abundant giants in more detail by using multi-epoch precise radial velocities. Results: We present Li and α-elements abundances, as well as rotational velocities for 348 stars. We detected Li in 92 stars, of which 82 are giants. Eleven of them show significant Li abundance A(Li)NLTE> 1.4 and seven of them are Li-overabundant objects, according to common criterion of A(Li) > 1.5 and their location on HR diagram, including TYC 0684-00553-1 and TYC 3105-00152-1, which are two giants with Li abundances close to meteoritic level. For another 271 stars, upper limits of Li abundance are presented. We confirmed three objects with increased stellar rotation. We show that Li-overabundant giants are among the most massive stars from our sample and show larger than average

  16. Detecting tree-like multicellular life on extrasolar planets.

    Science.gov (United States)

    Doughty, Christopher E; Wolf, Adam

    2010-11-01

    Over the next two decades, NASA and ESA are planning a series of space-based observatories to find Earth-like planets and determine whether life exists on these planets. Previous studies have assessed the likelihood of detecting life through signs of biogenic gases in the atmosphere or a red edge. Biogenic gases and the red edge could be signs of either single-celled or multicellular life. In this study, we propose a technique with which to determine whether tree-like multicellular life exists on extrasolar planets. For multicellular photosynthetic organisms on Earth, competition for light and the need to transport water and nutrients has led to a tree-like body plan characterized by hierarchical branching networks. This design results in a distinct bidirectional reflectance distribution function (BRDF) that causes differing reflectance at different sun/view geometries. BRDF arises from the changing visibility of the shadows cast by objects, and the presence of tree-like structures is clearly distinguishable from flat ground with the same reflectance spectrum. We examined whether the BRDF could detect the existence of tree-like structures on an extrasolar planet by using changes in planetary albedo as a planet orbits its star. We used a semi-empirical BRDF model to simulate vegetation reflectance at different planetary phase angles and both simulated and real cloud cover to calculate disk and rotation-averaged planetary albedo for a vegetated and non-vegetated planet with abundant liquid water. We found that even if the entire planetary albedo were rendered to a single pixel, the rate of increase of albedo as a planet approaches full illumination would be comparatively greater on a vegetated planet than on a non-vegetated planet. Depending on how accurately planetary cloud cover can be resolved and the capabilities of the coronagraph to resolve exoplanets, this technique could theoretically detect tree-like multicellular life on exoplanets in 50 stellar systems.

  17. Cloud Computing Law

    CERN Document Server

    Millard, Christopher

    2013-01-01

    This book is about the legal implications of cloud computing. In essence, ‘the cloud’ is a way of delivering computing resources as a utility service via the internet. It is evolving very rapidly with substantial investments being made in infrastructure, platforms and applications, all delivered ‘as a service’. The demand for cloud resources is enormous, driven by such developments as the deployment on a vast scale of mobile apps and the rapid emergence of ‘Big Data’. Part I of this book explains what cloud computing is and how it works. Part II analyses contractual relationships between cloud service providers and their customers, as well as the complex roles of intermediaries. Drawing on primary research conducted by the Cloud Legal Project at Queen Mary University of London, cloud contracts are analysed in detail, including the appropriateness and enforceability of ‘take it or leave it’ terms of service, as well as the scope for negotiating cloud deals. Specific arrangements for public sect...

  18. From Disks to Planets

    Science.gov (United States)

    Youdin, Andrew N.; Kenyon, Scott J.

    This pedagogical chapter covers the theory of planet formation, with an emphasis on the physical processes relevant to current research. After summarizing empirical constraints from astronomical and geophysical data, we describe the structure and evolution of protoplanetary disks. We consider the growth of planetesimals and of larger solid protoplanets, followed by the accretion of planetary atmospheres, including the core accretion instability. We also examine the possibility that gas disks fragment directly into giant planets and/or brown dwarfs. We defer a detailed description of planet migration and dynamical evolution to other work, such as the complementary chapter in this series by Morbidelli.

  19. Kepler's first rocky planet

    DEFF Research Database (Denmark)

    Batalha, N.M.; Borucki, W.J.; Bryson, S.T.

    2011-01-01

    NASA's Kepler Mission uses transit photometry to determine the frequency of Earth-size planets in or near the habitable zone of Sun-like stars. The mission reached a milestone toward meeting that goal: the discovery of its first rocky planet, Kepler-10b. Two distinct sets of transit events were...... tests on the photometric and pixel flux time series established the viability of the planet candidates triggering ground-based follow-up observations. Forty precision Doppler measurements were used to confirm that the short-period transit event is due to a planetary companion. The parent star is bright...

  20. Dynamics of Tidally Captured Planets in the Galactic Center

    Science.gov (United States)

    Trani, Alessandro A.; Mapelli, Michela; Spera, Mario; Bressan, Alessandro

    2016-11-01

    Recent observations suggest ongoing planet formation in the innermost parsec of the Galactic center. The supermassive black hole (SMBH) might strip planets or planetary embryos from their parent star, bringing them close enough to be tidally disrupted. Photoevaporation by the ultraviolet field of young stars, combined with ongoing tidal disruption, could enhance the near-infrared luminosity of such starless planets, making their detection possible even with current facilities. In this paper, we investigate the chance of planet tidal captures by means of high-accuracy N-body simulations exploiting Mikkola's algorithmic regularization. We consider both planets lying in the clockwise (CW) disk and planets initially bound to the S-stars. We show that tidally captured planets remain on orbits close to those of their parent star. Moreover, the semimajor axis of the planetary orbit can be predicted by simple analytic assumptions in the case of prograde orbits. We find that starless planets that were initially bound to CW disk stars have mild eccentricities and tend to remain in the CW disk. However, we speculate that angular momentum diffusion and scattering by other young stars in the CW disk might bring starless planets into orbits with low angular momentum. In contrast, planets initially bound to S-stars are captured by the SMBH on highly eccentric orbits, matching the orbital properties of the clouds G1 and G2. Our predictions apply not only to planets but also to low-mass stars initially bound to the S-stars and tidally captured by the SMBH.

  1. A transition in the composition of clouds in hot Jupiters

    CERN Document Server

    Parmentier, Vivien; Showman, Adam P; Morley, Caroline V; Marley, Mark S

    2016-01-01

    Over a large range of equilibrium temperatures, clouds shape the transmission spectrum of hot Jupiter atmospheres, yet their composition remains unknown. Recent observations show that the \\emph{Kepler} lightcurves of some hot Jupiters are asymmetric: for the hottest planets, the lightcurve peaks before secondary eclipse, whereas for planets cooler than $\\sim1900\\,\\rm K$, it peaks after secondary eclipse. In this paper we use the thermal structure from 3D global circulation models to determine the expected cloud distribution and \\emph{Kepler} lightcurves of hot Jupiters. We demonstrate that the change from a visible lightcurve dominated by thermal emission to one dominated by scattering (reflection) naturally explains the observed trend from negative to positive offset. For the cool planets the presence of an asymmetry in the \\emph{Kepler} lightcurve is a telltale sign of the cloud composition, because each cloud species can produce an offset only over a narrow range of effective temperatures. Silicate clouds ...

  2. On the compensation between cloud feedback and cloud adjustment in climate models

    Science.gov (United States)

    Chung, Eui-Seok; Soden, Brian J.

    2017-04-01

    Intermodel compensation between cloud feedback and rapid cloud adjustment has important implications for the range of model-inferred climate sensitivity. Although this negative intermodel correlation exists in both realistic (e.g., coupled ocean-atmosphere models) and idealized (e.g., aqua-planet) model configurations, the compensation appears to be stronger in the latter. The cause of the compensation between feedback and adjustment, and its dependence on model configuration remain poorly understood. In this study, we examine the characteristics of the cloud feedback and adjustment in model simulations with differing complexity, and analyze the causes responsible for their compensation. We show that in all model configurations, the intermodel compensation between cloud feedback and cloud adjustment largely results from offsetting changes in marine boundary-layer clouds. The greater prevalence of these cloud types in aqua-planet models is a likely contributor to the larger correlation between feedback and adjustment in those configurations. It is also shown that differing circulation changes in the aqua-planet configuration of some models act to amplify the intermodel range and sensitivity of the cloud radiative response by about a factor of 2.

  3. The role of Clouds in Emitted, Reflected and Transmitted Spectra of Terrestrial Exoplanets

    Science.gov (United States)

    Tinetti, G.; Yung, Y. L.; Ehrenreich, D.; Meadows, V. S.; Crisp, D.; Kahn, B.; Lecavelier des Etangs, A.; Vidal-Madjar, A.

    2005-12-01

    Two objectives of the NASA-Terrestrial Planet Finder and ESA-Darwin missions are to characterize the environments of terrestrial planets outside of our solar system and to search for life on these planets. These objectives will be met by measuring the disk-averaged spectra of the radiation reflected or emitted from these planets. Clouds play a significant role in determining these spectra. For Earth, water clouds can reduce the infrared emission by up to 50 and increase the visible reflectance by up to 400%. The disk-averaged spectra of a cloudy planet are also very sensitive to the observed planetary phase. For Earth, we see up to 40% increases of the solar albedo from the gibbous phase to the fully illuminated phase. Moreover, clouds strongly modify the strength of absorption features due to tropospheric trace gases and may impact the detectability of surface biosignatures in the visible (Tinetti et al.,2005). Stellar occultation might provide another effective method for probing the atmospheres of Earth-size extrasolar planets in the not too distant future. In the transmission spectra of terrestrial planets in transit, clouds act, to a first order approximation, as an optically thick layer at a given altitude. A uniform cloud layer will effectively increase the apparent radius of the planet and yield information only about atmospheric components existing above the clouds. The altitude where the cloud deck occurs, changes for Venus-like, Earth-like or highly-condensable-volatile rich planets (Ehrenreich et al.,2005). The radiative properties of clouds are strongly dependent on the chemical species that condense or freeze (e.g. water for present-day Earth, methane for Titan etc.), the particle size distributions present and particle shapes. Therefore, an understanding of aerosol and cloud microphysics on extra-solar terrestrial planets is necessary to properly interpret the spectra of terrestrial planets, emitted, reflected or transmitted. This work was supported

  4. Cloud Governance

    DEFF Research Database (Denmark)

    Berthing, Hans Henrik

    Denne præsentation beskriver fordele og værdier ved anvendelse af Cloud Computing. Endvidere inddrager resultater fra en række internationale analyser fra ISACA om Cloud Computing.......Denne præsentation beskriver fordele og værdier ved anvendelse af Cloud Computing. Endvidere inddrager resultater fra en række internationale analyser fra ISACA om Cloud Computing....

  5. Radioactivity of the moon, planets, and meteorites

    Science.gov (United States)

    Surkou, Y. A.; Fedoseyev, G. A.

    1977-01-01

    Analytical data is summarized for the content of natural radioactive elements in meteorites, eruptive terrestrial rocks, and also in lunar samples returned by Apollo missions and the Luna series of automatic stations. The K-U systematics of samples analyzed in the laboratory are combined with data for orbital gamma-ray measurements for Mars (Mars 5) and with the results of direct gamma-ray measurements of the surface of Venus by the Venera 8 lander. Using information about the radioactivity of solar system bodies and evaluations of the content of K, U, and Th in the terrestrial planets, we examine certain aspects of the evolution of material in the protoplanetary gas-dust cloud and then in the planets of the solar system.

  6. Students Discover Unique Planet

    Science.gov (United States)

    2008-12-01

    Three undergraduate students, from Leiden University in the Netherlands, have discovered an extrasolar planet. The extraordinary find, which turned up during their research project, is about five times as massive as Jupiter. This is also the first planet discovered orbiting a fast-rotating hot star. Omega Centauri ESO PR Photo 45a/08 A planet around a hot star The students were testing a method of investigating the light fluctuations of thousands of stars in the OGLE database in an automated way. The brightness of one of the stars was found to decrease for two hours every 2.5 days by about one percent. Follow-up observations, taken with ESO's Very Large Telescope in Chile, confirmed that this phenomenon is caused by a planet passing in front of the star, blocking part of the starlight at regular intervals. According to Ignas Snellen, supervisor of the research project, the discovery was a complete surprise. "The project was actually meant to teach the students how to develop search algorithms. But they did so well that there was time to test their algorithm on a so far unexplored database. At some point they came into my office and showed me this light curve. I was completely taken aback!" The students, Meta de Hoon, Remco van der Burg, and Francis Vuijsje, are very enthusiastic. "It is exciting not just to find a planet, but to find one as unusual as this one; it turns out to be the first planet discovered around a fast rotating star, and it's also the hottest star found with a planet," says Meta. "The computer needed more than a thousand hours to do all the calculations," continues Remco. The planet is given the prosaic name OGLE2-TR-L9b. "But amongst ourselves we call it ReMeFra-1, after Remco, Meta, and myself," says Francis. The planet was discovered by looking at the brightness variations of about 15 700 stars, which had been observed by the OGLE survey once or twice per night for about four years between 1997 and 2000. Because the data had been made public

  7. Managing Planet Earth.

    Science.gov (United States)

    Clark, William C.

    1989-01-01

    Discusses the human use of the planet earth. Describes the global patterns and the regional aspects of change. Four requirements for the cultivation of leadership and institutional competence are suggested. Lists five references for further reading. (YP)

  8. The planet Mercury (1971)

    Science.gov (United States)

    1972-01-01

    The physical properties of the planet Mercury, its surface, and atmosphere are presented for space vehicle design criteria. The mass, dimensions, mean density, and orbital and rotational motions are described. The gravity field, magnetic field, electromagnetic radiation, and charged particles in the planet's orbit are discussed. Atmospheric pressure, temperature, and composition data are given along with the surface composition, soil mechanical properties, and topography, and the surface electromagnetic and temperature properties.

  9. Monte Carlo Bayesian Inference on a Statistical Model of Sub-gridcolumn Moisture Variability Using High-resolution Cloud Observations . Part II; Sensitivity Tests and Results

    Science.gov (United States)

    da Silva, Arlindo M.; Norris, Peter M.

    2013-01-01

    Part I presented a Monte Carlo Bayesian method for constraining a complex statistical model of GCM sub-gridcolumn moisture variability using high-resolution MODIS cloud data, thereby permitting large-scale model parameter estimation and cloud data assimilation. This part performs some basic testing of this new approach, verifying that it does indeed significantly reduce mean and standard deviation biases with respect to the assimilated MODIS cloud optical depth, brightness temperature and cloud top pressure, and that it also improves the simulated rotational-Ramman scattering cloud optical centroid pressure (OCP) against independent (non-assimilated) retrievals from the OMI instrument. Of particular interest, the Monte Carlo method does show skill in the especially difficult case where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach allows finite jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast where the background state has a clear swath. This paper also examines a number of algorithmic and physical sensitivities of the new method and provides guidance for its cost-effective implementation. One obvious difficulty for the method, and other cloud data assimilation methods as well, is the lack of information content in the cloud observables on cloud vertical structure, beyond cloud top pressure and optical thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification due to Riishojgaard (1998) provides some help in this respect, by better honoring inversion structures in the background state.

  10. The Atmospheres of Extrasolar Planets

    Science.gov (United States)

    Richardson, L. J.; Seager, S.

    2007-01-01

    In this chapter we examine what can be learned about extrasolar planet atmospheres by concentrating on a class of planets that transit their parent stars. As discussed in the previous chapter, one way of detecting an extrasolar planet is by observing the drop in stellar intensity as the planet passes in front of the star. A transit represents a special case in which the geometry of the planetary system is such that the planet s orbit is nearly edge-on as seen from Earth. As we will explore, the transiting planets provide opportunities for detailed follow-up observations that allow physical characterization of extrasolar planets, probing their bulk compositions and atmospheres.

  11. Cloud optics

    CERN Document Server

    Kokhanovsky, A

    2006-01-01

    Clouds affect the climate of the Earth, and they are an important factor in the weather. Therefore, their radiative properties must be understood in great detail. This book summarizes current knowledge on cloud optical properties, for example their ability to absorb, transmit, and reflect light, which depends on the clouds' geometrical and microphysical characteristics such as sizes of droplets and crystals, their shapes, and structures. In addition, problems related to the image transfer through clouds and cloud remote sensing are addressed in this book in great detail. This book can be an im

  12. Comparison of cloud models for Brown Dwarfs

    CERN Document Server

    Helling, Ch; Allard, F; Dehn, M; Hauschildt, P; Homeier, D; Lodders, K; Marley, M; Rietmeijer, F; Tsuji, T; Woitke, P

    2007-01-01

    A test case comparison is presented for different dust cloud model approaches applied in brown dwarfs and giant gas planets. We aim to achieve more transparency in evaluating the uncertainty inherent to theoretical modelling. We show in how far model results for characteristic dust quantities vary due to different assumptions. We also demonstrate differences in the spectral energy distributions resulting from our individual cloud modelling in 1D substellar atmosphere simulations

  13. Reinflating Giant Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-01-01

    Two new, large gas-giant exoplanets have been discovered orbiting close to their host stars. A recent study examining these planets and others like them may help us to better understand what happens to close-in hot Jupiters as their host stars reach the end of their main-sequence lives.OversizedGiantsUnbinned transit light curves for HAT-P-65b. [Adapted from Hartman et al. 2016]The discovery of HAT-P-65b and HAT-P-66b, two new transiting hot Jupiters, is intriguing. These planets have periods of just under 3 days and masses of roughly 0.5 and 0.8 times that of Jupiter, but their sizes are whats really interesting: they have inflated radii of 1.89 and 1.59 times that of Jupiter.These two planets, discovered using the Hungarian-made Automated Telescope Network (HATNet) in Arizona and Hawaii, mark the latest in an ever-growing sample of gas-giant exoplanets with radii larger than expected based on theoretical planetary structure models.What causes this discrepancy? Did the planets just fail to contract to the expected size when they were initially formed, or were they reinflated later in their lifetimes? If the latter, how? These are questions that scientists are only now starting to be able to address using statistics of the sample of close-in, transiting planets.Unbinned transit light curves for HAT-P-66b. [Hartman et al. 2016]Exploring Other PlanetsLed by Joel Hartman (Princeton University), the team that discovered HAT-P-65b and HAT-P-66b has examined these planets observed parameters and those of dozens of other known close-in, transiting exoplanets discovered with a variety of transiting exoplanet missions: HAT, WASP, Kepler, TrES, and KELT. Hartman and collaborators used this sample to draw conclusions about what causes some of these planets to have such large radii.The team found that there is a statistically significant correlation between the radii of close-in giant planets and the fractional ages of their host stars (i.e., the stars age divided by its full

  14. Extrasolar binary planets. I. Formation by tidal capture during planet-planet scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, H. [Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Nagasawa, M. [Interactive Research Center of Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Ida, S., E-mail: nagasawa.m.ad@m.titech.ac.jp [Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-08-01

    We have investigated (1) the formation of gravitationally bounded pairs of gas-giant planets (which we call 'binary planets') from capturing each other through planet-planet dynamical tide during their close encounters and (2) the subsequent long-term orbital evolution due to planet-planet and planet-star quasi-static tides. For the initial evolution in phase 1, we carried out N-body simulations of the systems consisting of three Jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing, and this fraction is almost independent of the initial stellarcentric semimajor axes of the planets, while ejection and merging rates sensitively depend on the semimajor axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in phase 2. The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for the main-sequence lifetime of solar-type stars (∼10 Gyr), if the binary planets are beyond ∼0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at ≳ 0.3 AU.

  15. The Serpens Molecular Cloud

    CERN Document Server

    Eiroa, C; Casali, M M

    2008-01-01

    The Serpens cloud has received considerable attention in the last years, in particular the small region known as the Serpens cloud core where a plethora of star formation related phenomena are found. This review summarizes our current observational knowledge of the cloud, with emphasis on the core. Recent results are converging to a distance for the cloud of ~ 230 +- 20 pc, an issue which has been controversial over the years. We present the gas and dust properties of the cloud core and describe its structure and appearance at different wavelengths. The core contains a dense, very young, low mass stellar cluster with more than 300 objects in all evolutionary phases, from collapsing gaseous condensations to pre-main sequence stars. We describe the behaviour and spatial distribution of the different stellar populations (mm cores, Classes 0, I and II sources). The spatial concentration and the fraction number of Class 0/Class I/Class II sources is considerably larger in the Serpens core than in any other low mas...

  16. Almost All of Kepler's Multiple Planet Candidates are Planets

    CERN Document Server

    Lissauer, Jack J; Rowe, Jason F; Bryson, Stephen T; Adams, Elisabeth; Buchhave, Lars A; Ciardi, David R; Cochran, William D; Fabrycky, Daniel C; Ford, Eric B; Fressin, Francois; Geary, John; Gilliland, Ronald L; Holman, Matthew J; Howell, Steve B; Jenkins, Jon M; Kinemuchi, Karen; Koch, David G; Morehead, Robert C; Ragozzine, Darin; Seader, Shawn E; Tanenbaum, Peter G; Torres, Guillermo; Twicken, Joseph D

    2012-01-01

    We present a statistical analysis that demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) indeed represent true, physically-associated transiting planets. Binary stars provide the primary source of false positives among Kepler planet candidates, implying that false positives should be nearly randomly-distributed among Kepler targets. In contrast, true transiting planets would appear clustered around a smaller number of Kepler targets if detectable planets tend to come in systems and/or if the orbital planes of planets encircling the same star are correlated. There are more than one hundred times as many Kepler planet candidates in multi-candidate systems as would be predicted from a random distribution of candidates, implying that the vast majority are true planets. Most of these multis are multiple planet systems orbiting the Kepler target star, but there are likely cases where (a) the planetary system orbits a fainter star, and the planets are thus significa...

  17. A cold metal poor cloud traced by a weak MgII absorption at z~0.45. First detection of SiI, CaI and FeI in a QSO absorber

    CERN Document Server

    D'Odorico, Valentina

    2007-01-01

    We present the observations of a weak MgII absorption system detected at z~0.452 in the UVES high resolution spectrum of the QSO HE0001-2340. The weakest of the two MgII components forming the system shows associated absorptions due to SiI, CaI and FeI observed for the first time in a QSO spectrum. We investigate the nature of this absorber by comparing its properties with those of different classes of absorbers (weak MgII, Damped Ly-alpha systems and local interstellar clouds) and reproducing its ionization conditions with photoionization models. The observed absorber belongs to the class of weak MgII systems on the basis of its equivalent width, however the relative strength of commonly observed transitions deviates significantly from those of the above mentioned absorbers. A rough estimate of the probability to cross such a system with a QSO line of sight is P~0.03. The presence of rare neutral transitions suggests that the cloud is shielded by a large amount of neutral Hydrogen. A detailed comparison of t...

  18. Ionisation in atmospheres of Brown Dwarfs and extrasolar planets I The role of electron avalanche

    CERN Document Server

    Helling, Ch; Witte, S; Diver, D A

    2010-01-01

    Brown Dwarf and extrasolar planet atmospheres form clouds which strongly influence the local chemistry and physics. These clouds are globally neutral obeying dust-gas charge equilibrium which is, on short time scales, inconsistent with the observation of stochastic ionisation events of the solar system planets. We argue that a significant volume of the clouds in Brown Dwarfs and extrasolar planets is susceptible to local discharge events. These are electron avalanches triggered by charged dust grains. Such intra-cloud discharges occur on time scales shorter than the time needed to neutralise the dust grains by collisional processes. An ensemble of discharges is likely to produce enough free charges to suggest a partial and stochastic coupling of the atmosphere to a large-scale magnetic field.

  19. An overabundance of low-density Neptune-like planets

    Science.gov (United States)

    Cubillos, Patricio; Erkaev, Nikolai V.; Juvan, Ines; Fossati, Luca; Johnstone, Colin P.; Lammer, Helmut; Lendl, Monika; Odert, Petra; Kislyakova, Kristina G.

    2017-04-01

    We present a uniform analysis of the atmospheric escape rate of Neptune-like planets with estimated radius and mass (restricted to Mp Values of Λ ≲ 20 suggest extremely high mass-loss rates. We identify 27 planets (out of 167) that are simultaneously consistent with hydrogen-dominated atmospheres and are expected to exhibit extreme mass-loss rates. We further estimate the mass-loss rates (Lhy) of these planets with tailored atmospheric hydrodynamic models. We compare Lhy to the energy-limited (maximum-possible high-energy driven) mass-loss rates. We confirm that 25 planets (15 per cent of the sample) exhibit extremely high mass-loss rates (Lhy > 0.1 M⌖ Gyr-1), well in excess of the energy-limited mass-loss rates. This constitutes a contradiction, since the hydrogen envelopes cannot be retained given the high mass-loss rates. We hypothesize that these planets are not truly under such high mass-loss rates. Instead, either hydrodynamic models overestimate the mass-loss rates, transit-timing-variation measurements underestimate the planetary masses, optical transit observations overestimate the planetary radii (due to high-altitude clouds), or Neptunes have consistently higher albedos than Jupiter planets. We conclude that at least one of these established estimations/techniques is consistently producing biased values for Neptune planets. Such an important fraction of exoplanets with misinterpreted parameters can significantly bias our view of populations studies, like the observed mass-radius distribution of exoplanets for example.

  20. The earth's radiation budget and its relation to atmospheric hydrology. I - Observations of the clear sky greenhouse effect. II - Observations of cloud effects

    Science.gov (United States)

    Stephens, Graeme L.; Greenwald, Thomas J.

    1991-01-01

    The clear-sky components of the earth's radiation budget (ERB), the relationship of these components to the sea surface temperature (SST), and microwave-derived water-vapor amount are analyzed in an observational study along with the relationship between the cloudy-sky components of ERB and space/time coincident observations of SST, microwave-derived cloud liquid water, and cloud cover. The purpose of the study is to use these observations for establishing an understanding of the couplings between radiation and the atmosphere that are important to understanding climate feedback. A strategy for studying the greenhouse effect of earth by analyzing the emitted clear-sky longwave flux over the ocean is proposed. It is concluded that the largest observed influence of clouds on ERB is more consistent with macrophysical properties of clouds as opposed to microphysical properties. The analysis for clouds and the greenhouse effect of clouds is compared quantitatively with the clear sky results. Land-ocean differences and tropical-midlatitude differences are shown and explained in terms of the cloud macrostructure.

  1. Comparisons of cloud ice mass content retrieved from the radar-infrared radiometer method with aircraft data during the second international satellite cloud climatology project regional experiment (FIRE-II)

    Energy Technology Data Exchange (ETDEWEB)

    Matrosov, S.Y. [Univ. of Colorado, Boulder, CO (United States)]|[National Oceanic and Atmospheric Administration Environmental Technology Lab., Boulder, CO (United States); Heymsfield, A.J. [National Center for Atmospheric Research, Boulder, CO (United States); Kropfli, R.A.; Snider, J.B. [National Oceanic and Atmospheric Administration Environmental Technology Lab., Boulder, CO (United States)

    1996-04-01

    Comparisons of remotely sensed meteorological parameters with in situ direct measurements always present a challenge. Matching sampling volumes is one of the main problems for such comparisons. Aircraft usually collect data when flying along a horizontal leg at a speed of about 100 m/sec (or even greater). The usual sampling time of 5 seconds provides an average horizontal resolution of the order of 500 m. Estimations of vertical profiles of cloud microphysical parameters from aircraft measurements are hampered by sampling a cloud at various altitudes at different times. This paper describes the accuracy of aircraft horizontal and vertical coordinates relative to the location of the ground-based instruments.

  2. Marine Cloud Brightening

    Energy Technology Data Exchange (ETDEWEB)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, H.; Connolly, P.; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Philip J.; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Robert

    2012-09-07

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could - subject to satisfactory resolution of technical and scientific problems identified herein - have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seedparticle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  3. Marine cloud brightening.

    Science.gov (United States)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-09-13

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could-subject to satisfactory resolution of technical and scientific problems identified herein-have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  4. First light of the VLT planet finder SPHERE. IV. Physical and chemical properties of the planets around HR8799

    CERN Document Server

    Bonnefoy, M; Baudino, J L; Lucas, P; Mesa, D; Maire, A -L; Vigan, A; Galicher, R; Homeier, D; Marocco, F; Gratton, R; Chauvin, G; Allard, F; Desidera, S; Kasper, M; Moutou, C; Lagrange, A -M; Baruffolo, A; Baudrand, J; Beuzit, J -L; Boccaletti, A; Cantalloube, F; Carbillet, M; Charton, J; Claudi, R U; Costille, A; Dohlen, K; Dominik, C; Fantinel, D; Feautrier, P; Feldt, M; Fusco, T; Gigan, P; Girard, J H; Gluck, L; Gry, C; Henning, T; Janson, M; Langlois, M; Madec, F; Magnard, Y; Maurel, D; Mawet, D; Meyer, M R; Milli, J; Moeller-Nilsson, O; Mouillet, D; Pavlov, A; Perret, D; Pujet, P; Quanz, S P; Rochat, S; Rousset, G; Roux, A; Salasnich, B; Salter, G; Sauvage, J -F; Schmid, H M; Sevin, A; Soenke, C; Stadler, E; Turatto, M; Udry, S; Vakili, F; Wahhaj, Z; Wildi, F

    2015-01-01

    The system of four planets around HR8799 offers a unique opportunity to probe the physics and chemistry at play in the atmospheres of self-luminous young (~30 Myr) planets. We recently obtained new photometry of the four planets and low-resolution (R~30) spectra of HR8799 d and e with the SPHERE instrument (paper III). In this paper (paper IV), we compare the available spectra and photometry of the planets to known objects and atmospheric models (BT-SETTL14, Cloud-AE60, Exo-REM) to characterize the atmospheric properties of the planets. We find that HR8799d and e properties are well reproduced by those of L6-L8 dusty dwarfs discovered in the field, among which some are candidate members of young nearby associations. No known object reproduces well the properties of planets b and c. Nevertheless, we find that the spectra and WISE photometry of peculiar and/or young early-T dwarfs reddened by submicron grains made of corundum, iron, enstatite, or forsterite successfully reproduce the SED of these two planets. O...

  5. Preliminary investigation of radiatively driven convection in marine stratocumulus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Norris, P. [Univ. of California, San Diego, CA (United States)

    1995-09-01

    Marine stratocumulus play an important yet still poorly modeled role in the climate system. These clouds cool the planet, having a large albedo, but little infrared effect. A fundamental question is whether such clouds will exist at a given time and location. Stratocumulus is often formed at higher latitudes as stratus and advected equatorward until it breaks up. Possible mechanisms for cloud breakup include strong subsidence, cloud top entrainment instability (CTEI), drizzle, solar heating and resultant boundary layer decoupling, and surface forcing. The Atlantic Stratocumulus Transition Experiment (ASTEX) was conducted to investigate these potential cloud breakup mechanisms. 5 refs., 3 figs.

  6. Imaging Extrasolar Giant Planets

    Science.gov (United States)

    Bowler, Brendan P.

    2016-10-01

    High-contrast adaptive optics (AO) imaging is a powerful technique to probe the architectures of planetary systems from the outside-in and survey the atmospheres of self-luminous giant planets. Direct imaging has rapidly matured over the past decade and especially the last few years with the advent of high-order AO systems, dedicated planet-finding instruments with specialized coronagraphs, and innovative observing and post-processing strategies to suppress speckle noise. This review summarizes recent progress in high-contrast imaging with particular emphasis on observational results, discoveries near and below the deuterium-burning limit, and a practical overview of large-scale surveys and dedicated instruments. I conclude with a statistical meta-analysis of deep imaging surveys in the literature. Based on observations of 384 unique and single young (≈5-300 Myr) stars spanning stellar masses between 0.1 and 3.0 M ⊙, the overall occurrence rate of 5-13 M Jup companions at orbital distances of 30-300 au is {0.6}-0.5+0.7 % assuming hot-start evolutionary models. The most massive giant planets regularly accessible to direct imaging are about as rare as hot Jupiters are around Sun-like stars. Dividing this sample into individual stellar mass bins does not reveal any statistically significant trend in planet frequency with host mass: giant planets are found around {2.8}-2.3+3.7 % of BA stars, planets spanning a broad range of masses and ages.

  7. Extrasolar planet interactions

    Science.gov (United States)

    Barnes, Rory; Greenberg, Richard

    2008-05-01

    The dynamical interactions of planetary systems may be a clue to their formation histories. Therefore, the distribution of these interactions provides important constraints on models of planet formation. We focus on each system's apsidal motion and proximity to dynamical instability. Although only 25 multiple planet systems have been discovered to date, our analyses in these terms have revealed several important features of planetary interactions. 1) Many systems interact such that they are near the boundary between stability and instability. 2) Planets tend to form such that at least one planet's eccentricity periodically drops to near zero. 3) Mean-motion resonant pairs would be unstable if not for the resonance. 4) Scattering of approximately equal mass planets is unlikely to produce the observed distribution of apsidal behavior. 5) Resonant interactions may be identified through calculating a system's proximity to instability, regardless of knowledge of angles such as mean longitude and longitude of periastron (e.g. GJ 317 b and c are probably in a 4:1 resonance). These properties of planetary systems have been identified through calculation of two parameters that describe the interaction. The apsidal interaction can be quantified by determining how close a planet is to an apsidal separatrix (a boundary between qualitatively different types of apsidal oscillations, e.g. libration or circulation of the major axes). This value can be calculated through short numerical integrations. The proximity to instability can be measured by comparing the observed orbital elements to an analytic boundary that describes a type of stability known as Hill stability. We have set up a website dedicated to presenting the most up-to-date information on dynamical interactions: http://www.lpl.arizona.edu/~rory/research/xsp/dynamics.

  8. The snowline in the protoplanetary disk and extrasolar planets

    Science.gov (United States)

    Liu, Chun-Jian; Yao, Zhen; Ding, Wen-Bo

    2017-08-01

    We investigate the behavior of the snowline in a protoplanetary disk and the relationship between the radius of the snowline and properties of molecular cloud cores. In our disk model, we consider mass influx from the gravitational collapse of a molecular cloud core, irradiation from the central star, and thermal radiation from the ambient molecular cloud gas. As the protoplanetary disk evolves, the radius of the snowline increases first to a maximum value R max, and then decreases in the late stage of evolution of the protoplanetary disk. The value of R max is dependent on the properties of molecular cloud cores (mass M core, angular velocity ω and temperature T core). Many previous works found that solid material tends to accumulate at the location of the snowline, which suggests that the snowline is the preferred location for giant planet formation. With these conclusions, we compare the values of R max with semimajor axes of giant planets in extrasolar systems, and find that R max may provide an upper limit for the locations of the formation of giant planets which are formed by the core accretion model.

  9. Heat Pipe Planets

    Science.gov (United States)

    Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.

    2014-01-01

    When volcanism dominates heat transport, a terrestrial body enters a heat-pipe mode, in which hot magma moves through the lithosphere in narrow channels. Even at high heat flow, a heat-pipe planet develops a thick, cold, downwards-advecting lithosphere dominated by (ultra-)mafic flows and contractional deformation at the surface. Heat-pipes are an important feature of terrestrial planets at high heat flow, as illustrated by Io. Evidence for their operation early in Earth's history suggests that all terrestrial bodies should experience an episode of heat-pipe cooling early in their histories.

  10. Antarctic clouds

    OpenAIRE

    Lachlan-Cope, Tom

    2010-01-01

    Sensitivity studies with global climate models show that, by their influence on the radiation balance, Antarctic clouds play a major role in the climate system, both directly at high southern latitudes and indirectly globally, as the local circulation changes lead to global teleconnections. Unfortunately, observations of cloud distribution in the Antarctic are limited and often of low quality because of the practical difficulty in observing clouds in the harsh Antarctic environment. The best ...

  11. A Metric and Optimisation Scheme for Microlens Planet Searches

    CERN Document Server

    Horne, Keith; Tsapras, Yianni

    2009-01-01

    OGLE III and MOA II are discovering 600-1000 Galactic Bulge microlens events each year. This stretches the resources available for intensive follow-up monitoring of the lightcurves in search of anomalies caused by planets near the lens stars. We advocate optimizing microlens planet searches by using an automatic prioritization algorithm based on the planet detection zone area probed by each new data point. This optimization scheme takes account of the telescope and detector characteristics, observing overheads, sky conditions, and the time available for observing on each night. The predicted brightness and magnification of each microlens target is estimated by fitting to available data points. The optimisation scheme then yields a decision on which targets to observe and which to skip, and a recommended exposure time for each target, designed to maximize the planet detection capability of the observations. The optimal strategy maximizes detection of planet anomalies, and must be coupled with rapid data reduct...

  12. Cloud Computing

    CERN Document Server

    Antonopoulos, Nick

    2010-01-01

    Cloud computing has recently emerged as a subject of substantial industrial and academic interest, though its meaning and scope is hotly debated. For some researchers, clouds are a natural evolution towards the full commercialisation of grid systems, while others dismiss the term as a mere re-branding of existing pay-per-use technologies. From either perspective, 'cloud' is now the label of choice for accountable pay-per-use access to third party applications and computational resources on a massive scale. Clouds support patterns of less predictable resource use for applications and services a

  13. The Search for Primordial Molecular Cloud Matter

    DEFF Research Database (Denmark)

    van Kooten, Elishevah M M E

    evolution. Some of the least altered, most primitive meteorites can give us clues to the original make-up of the interstellar molecular cloud from which the Sun and its surrounding planets formed, thus, permitting us to trace Solar System formation from its most early conditions. Using state-of-the-art...

  14. Clouds over Mars!

    Science.gov (United States)

    1997-01-01

    This is the first color image ever taken from the surface of Mars of an overcast sky. Featured are pink stratus clouds coming from the northeast at about 15 miles per hour (6.7 meters/second) at an approximate height of ten miles (16 kilometers) above the surface. The clouds consist of water ice condensed on reddish dust particles suspended in the atmosphere. Clouds on Mars are sometimes localized and can sometimes cover entire regions, but have not yet been observed to cover the entire planet. The image was taken about an hour and forty minutes before sunrise by the Imager for Mars Pathfinder (IMP) on Sol 16 at about ten degrees up from the eastern Martian horizon.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages and Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  15. Managing Clouds in Cloud Platforms

    CERN Document Server

    Ahmat, Kamal A

    2010-01-01

    Managing cloud services is a fundamental challenge in todays virtualized environments. These challenges equally face both providers and consumers of cloud services. The issue becomes even more challenging in virtualized environments that support mobile clouds. Cloud computing platforms such as Amazon EC2 provide customers with flexible, on demand resources at low cost. However, they fail to provide seamless infrastructure management and monitoring capabilities that many customers may need. For instance, Amazon EC2 doesn't fully support cloud services automated discovery and it requires a private set of authentication credentials. Salesforce.com, on the other hand, do not provide monitoring access to their underlying systems. Moreover, these systems fail to provide infrastructure monitoring of heterogenous and legacy systems that don't support agents. In this work, we explore how to build a cloud management system that combines heterogeneous management of virtual resources with comprehensive management of phys...

  16. Twist planet drive

    Science.gov (United States)

    Vranish, John M. (Inventor)

    1996-01-01

    A planetary gear system includes a sun gear coupled to an annular ring gear through a plurality of twist-planet gears, a speeder gear, and a ground structure having an internal ring gear. Each planet gear includes a solid gear having a first half portion in the form of a spur gear which includes vertical gear teeth and a second half portion in the form of a spur gear which includes helical gear teeth that are offset from the vertical gear teeth and which contact helical gear teeth on the speeder gear and helical gear teeth on the outer ring gear. One half of the twist planet gears are preloaded downward, while the other half are preloaded upwards, each one alternating with the other so that each one twists in a motion opposite to its neighbor when rotated until each planet gear seats against the sun gear, the outer ring gear, the speeder gear, and the inner ring gear. The resulting configuration is an improved stiff anti-backlash gear system.

  17. Measuring stellar granulation during planet transits

    Science.gov (United States)

    Chiavassa, A.; Caldas, A.; Selsis, F.; Leconte, J.; Von Paris, P.; Bordé, P.; Magic, Z.; Collet, R.; Asplund, M.

    2017-01-01

    Context. Stellar activity and convection-related surface structures might cause bias in planet detection and characterization that use these transits. Surface convection simulations help to quantify the granulation signal. Aims: We used realistic three-dimensional (3D) radiative hydrodynamical (RHD) simulations from the Stagger grid and synthetic images computed with the radiative transfer code Optim3D to model the transits of three prototype planets: a hot Jupiter, a hot Neptune, and a terrestrial planet. Methods: We computed intensity maps from RHD simulations of the Sun and a K-dwarf star at different wavelength bands from optical to far-infrared that cover the range of several ground- and space-based telescopes which observe exoplanet transits. We modeled the transit using synthetic stellar-disk images obtained with a spherical-tile imaging method and emulated the temporal variation of the granulation intensity generating random images covering a granulation time-series of 13.3 h. We measured the contribution of the stellar granulation on the light curves during the planet transit. Results: We identified two types of granulation noise that act simultaneously during the planet transit: (i) the intrinsic change in the granulation pattern with timescale (e.g., 10 min for solar-type stars assumed in this work) is smaller than the usual planet transit ( hours as in our prototype cases); and (ii) the fact that the transiting planet occults isolated regions of the photosphere that differ in local surface brightness as a result of convective-related surface structures. First, we showed that our modeling approach returns granulation timescale fluctuations that are comparable with what has been observed for the Sun. Then, our statistical approach shows that the granulation pattern of solar and K-dwarf-type stars have a non-negligible effect of the light curve depth during the transit, and, consequentially on the determination of the planet transit parameters such as the

  18. BUILDING ON THE MARS PLANET

    National Research Council Canada - National Science Library

    Valeriy Pershakov; Tatyana Petrova

    2012-01-01

    The main task is the terraforming of the Mars planet. Nowadays it is a very important task, because there are a lot of problems on the planet Earth, which deals with the exhaustion of natural resources...

  19. Terrestrial Planets Accreted Dry

    Science.gov (United States)

    Albarede, F.; Blichert-Toft, J.

    2007-12-01

    Plate tectonics shaped the Earth, whereas the Moon is a dry and inactive desert. Mars probably came to rest within the first billion years of its history, and Venus, although internally very active, has a dry inferno for its surface. The strong gravity field of a large planet allows for an enormous amount of gravitational energy to be released, causing the outer part of the planetary body to melt (magma ocean), helps retain water on the planet, and increases the pressure gradient. The weak gravity field and anhydrous conditions prevailing on the Moon stabilized, on top of its magma ocean, a thick buoyant plagioclase lithosphere, which insulated the molten interior. On Earth, the buoyant hydrous phases (serpentines) produced by reactions between the terrestrial magma ocean and the wet impactors received from the outer Solar System isolated the magma and kept it molten for some few tens of million years. The elemental distributions and the range of condensation temperatures show that the planets from the inner Solar System accreted dry. The interior of planets that lost up to 95% of their K cannot contain much water. Foundering of their wet surface material softened the terrestrial mantle and set the scene for the onset of plate tectonics. This very same process may have removed all the water from the surface of Venus 500 My ago and added enough water to its mantle to make its internal dynamics very strong and keep the surface very young. Because of a radius smaller than that of the Earth, not enough water could be drawn into the Martian mantle before it was lost to space and Martian plate tectonics never began. The radius of a planet therefore is the key parameter controlling most of its evolutional features.

  20. Cloud Control

    Science.gov (United States)

    Ramaswami, Rama; Raths, David; Schaffhauser, Dian; Skelly, Jennifer

    2011-01-01

    For many IT shops, the cloud offers an opportunity not only to improve operations but also to align themselves more closely with their schools' strategic goals. The cloud is not a plug-and-play proposition, however--it is a complex, evolving landscape that demands one's full attention. Security, privacy, contracts, and contingency planning are all…

  1. Cloud Cover

    Science.gov (United States)

    Schaffhauser, Dian

    2012-01-01

    This article features a major statewide initiative in North Carolina that is showing how a consortium model can minimize risks for districts and help them exploit the advantages of cloud computing. Edgecombe County Public Schools in Tarboro, North Carolina, intends to exploit a major cloud initiative being refined in the state and involving every…

  2. Cloud Computing

    CERN Document Server

    Mirashe, Shivaji P

    2010-01-01

    Computing as you know it is about to change, your applications and documents are going to move from the desktop into the cloud. I'm talking about cloud computing, where applications and files are hosted on a "cloud" consisting of thousands of computers and servers, all linked together and accessible via the Internet. With cloud computing, everything you do is now web based instead of being desktop based. You can access all your programs and documents from any computer that's connected to the Internet. How will cloud computing change the way you work? For one thing, you're no longer tied to a single computer. You can take your work anywhere because it's always accessible via the web. In addition, cloud computing facilitates group collaboration, as all group members can access the same programs and documents from wherever they happen to be located. Cloud computing might sound far-fetched, but chances are you're already using some cloud applications. If you're using a web-based email program, such as Gmail or Ho...

  3. The HARPS search for southern extra-solar planets XI. Super-Earths (5 & 8 M_Earth) in a 3-planet system

    CERN Document Server

    Udry, S; Delfosse, X; Forveille, T; Mayor, M; Perrier, C; Bouchy, F; Lovis, C; Pepe, F; Queloz, D; Bertaux, J -L

    2007-01-01

    This Letter reports on the detection of two super-Earth planets in the Gl581 system, already known to harbour a hot Neptune. One of the planets has a mass of 5 M_Earth and resides at the ``warm'' edge of the habitable zone of the star. It is thus the known exoplanet which most resembles our own Earth. The other planet has a 7.7 M_Earth mass and orbits at 0.25 AU from the star, close to the ``cold'' edge of the habitable zone. These two new light planets around an M3 dwarf further confirm the formerly tentative statistical trend for i) many more very low-mass planets being found around M dwarfs than around solar-type stars and ii) low-mass planets outnumbering Jovian planets around M dwarfs.

  4. Evolution of primordial planets in relation to the cosmological origin of life

    CERN Document Server

    Wickramasinghea, N Chandra; Gibson, Carl H; Schild, Rudolph E

    2010-01-01

    We explore the conditions prevailing in primordial planets in the framework of the HGD cosmologies as discussed by Gibson and Schild. The initial stages of condensation of planet-mass H-4He gas clouds in trillion-planet clumps is set at 300,000 yr (0.3My) following the onset of plasma instabilities when ambient temperatures were >1000K. Eventual collapse of the planet-cloud into a solid structure takes place against the background of an expanding universe with declining ambient temperatures. Stars form from planet mergers within the clumps and die by supernovae on overeating of planets. For planets produced by stars, isothermal free fall collapse occurs initially via quasi equilibrium polytropes until opacity sets in due to molecule and dust formation. The contracting cooling cloud is a venue for molecule formation and the sequential condensation of solid particles, starting from mineral grains at high temperatures to ice particles at lower temperatures, water-ice becomes thermodynamically stable between 7 an...

  5. Detectability of Red-Edge-shifted Vegetation on Terrestrial Planets Orbiting M Stars

    Science.gov (United States)

    Tinetti, Giovanna; Rashby, Sky; Yung, Yuk L.

    2006-06-01

    We have explored the detectability of exovegetation on the surface of a terrestrial planet orbiting an M star. The exovegetation is responsible for producing a pigment-derived surface signature that is redshifted with respect to the Earth vegetation's red edge. The redshift was estimated using a model of leaf optical property spectra (Jacquemoud & Baret) combined with a 3 photon photosynthetic scheme calculated by Wolstencroft & Raven for a possible exovegetation growing on an M star planet. To study the detectability of this surface biosignature on an M star terrestrial planet, we have used the three-dimensional model developed by Tinetti et al. for the case of the Earth. This model can generate disk-averaged spectra and broadband integrated fluxes, which will be useful for future terrestrial planet exploration missions, such as the NASA Terrestrial Planet Finder Coronagraph. Input to this model were the atmospheric profiles and cloud distributions predicted by Joshi and coworkers for a synchronous planet orbiting an M dwarf and the distinctive surface reflectance of the exovegetation. While on Earth this pigment-derived surface feature would be almost completely masked by water absorption, even in a cloud-free atmosphere, we found that the strength of the edge feature on our simulated M star terrestrial planet can exceed that on Earth, given the right conditions. Obviously, the detectability of such biosignatures would be highly dependent on the extent of vegetation surface area, cloud cover, and viewing angle.

  6. Classifying Planets: Nature vs. Nurture

    Science.gov (United States)

    Beichman, Charles A.

    2009-05-01

    The idea of a planet was so simple when we learned about the solar system in elementary school. Now students and professional s alike are faced with confusing array of definitions --- from "Brown Dwarfs” to "Super Jupiters", from "Super Earths” to "Terrestrial Planets", and from "Planets” to "Small, Sort-of Round Things That Aren't Really Planets". I will discuss how planets might be defined by how they formed, where they are found, or by the life they might support.

  7. Marine cloud brightening

    Science.gov (United States)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-01-01

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identified herein—have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud–albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action

  8. Dynamic mineral clouds on HD 189733b I. 3D RHD with kinetic, non-equilibrium cloud formation

    CERN Document Server

    Lee, G; Helling, Ch; Bognar, K; Woitke, P

    2016-01-01

    3D modelling of cloud formation in atmospheres of extrasolar planets coupled to the atmospheric radiative, hydrodynamic and thermo-chemical properties has long been an open challenge. We present a 3D radiative-hydrodynamic (RHD) atmosphere model of HD 189733b fully coupled to a kinetic, microphysical mineral cloud formation model. We include the feedback effects of cloud advection and settling, gas phase element advection and depletion/replenishment and include the radiative effects of cloud and gas opacity. The 3D Navier-Stokes equations are solved consistently with a two-stream radiative transfer scheme coupled with the cloud moment conservation equations. We model the cloud particles as a mix of mineral materials which change in size and composition as they travel through atmospheric thermo-chemical environments. The local cloud properties such as number density, grain size and material composition are time-dependently calculated. Gas phase element depletion as a result of cloud formation are calculated an...

  9. Planet signatures in the chemical composition of Sun-like stars

    CERN Document Server

    Melendez, Jorge

    2016-01-01

    There are two possible mechanisms to imprint planet signatures in the chemical composition of Sun-like stars: i) dust condensation at the early stages of planet formation, causing a depletion of refractory elements in the gas accreted by the star in the late stages of its formation; ii) planet engulfment, enriching the host star in lithium and refractory elements. We discuss both planet signatures, the influence of galactic chemical evolution, and the importance of binaries composed of stellar twins as laboratories to verify abundance anomalies imprinted by planets.

  10. Screaming Clouds

    Science.gov (United States)

    Fikke, Svein; Egill Kristjánsson, Jón; Nordli, Øyvind

    2017-04-01

    "Mother-of-pearl clouds" appear irregularly in the winter stratosphere at high northern latitudes, about 20-30 km above the surface of the Earth. The size range of the cloud particles is near that of visible light, which explains their extraordinary beautiful colours. We argue that the Norwegian painter Edvard Munch could well have been terrified when the sky all of a sudden turned "bloodish red" after sunset, when darkness was expected. Hence, there is a high probability that it was an event of mother-of-pearl clouds which was the background for Munch's experience in nature, and for his iconic Scream. Currently, the leading hypothesis for explaining the dramatic colours of the sky in Munch's famous painting is that the artist was captivated by colourful sunsets following the enormous Krakatoa eruption in 1883. After carefully considering the historical accounts of some of Munch's contemporaries, especially the physicist Carl Störmer, we suggest an alternative hypothesis, namely that Munch was inspired by spectacular occurrences of mother-of-pearl clouds. Such clouds, which have a wave-like structure akin to that seen in the Scream were first observed and described only a few years before the first version of this motive was released in 1892. Unlike clouds related to conventional weather systems in the troposphere, mother-of-pearl clouds appear in the stratosphere, where significantly different physical conditions prevail. This result in droplet sizes within the range of visible light, creating the spectacular colour patterns these clouds are famous for. Carl Störmer observed such clouds, and described them in minute details at the age of 16, but already with a profound interest in science. He later noted that "..these mother-of-pearl clouds was a vision of indescribable beauty!" The authors find it logical that the same vision could appear scaring in the sensible mind of a young artist unknown to such phenomena.

  11. BUILDING ON THE MARS PLANET

    Directory of Open Access Journals (Sweden)

    Valeriy Pershakov

    2012-09-01

    Full Text Available  The main task is the terraforming of the Mars planet. Nowadays it is a very important task, because there are a lot of problems on the planet Earth, which deals with the exhaustion of natural resources. The solution is in the colonizing and building on the Mars planet.

  12. Extrasolar Planets in the Classroom

    Science.gov (United States)

    George, Samuel J.

    2011-01-01

    The field of extrasolar planets is still, in comparison with other astrophysical topics, in its infancy. There have been about 300 or so extrasolar planets detected and their detection has been accomplished by various different techniques. Here we present a simple laboratory experiment to show how planets are detected using the transit technique.…

  13. Extrasolar Planets in the Classroom

    Science.gov (United States)

    George, Samuel J.

    2011-01-01

    The field of extrasolar planets is still, in comparison with other astrophysical topics, in its infancy. There have been about 300 or so extrasolar planets detected and their detection has been accomplished by various different techniques. Here we present a simple laboratory experiment to show how planets are detected using the transit technique.…

  14. Spectro-Polarimetry of Self-Luminous Extrasolar Planets

    Indian Academy of Sciences (India)

    Sujan Sengupta

    2013-06-01

    Planets which are old and close to their parent stars are considered as reflecting planets because their intrinsic temperature is extremely low but they are heated strongly by the impinging stellar radiation and hence radiation of such planets are the reflected star light that is governed by the stellar radiation, orbital distance and albedo of the planet. These planets cannot be resolved from the host stars. The second kind of exoplanets are those which are very young and hence they have high intrinsic temperature. They are far away from their star and so they can be resolved by blocking the star-light. It is now realized that radiation of such planets are linearly polarized due to atmospheric scattering and polarization can determine various physical properties including the mass of such directly detected self-luminous exoplanets. It is suggested that a spectropolarimeter of even low spectral resolution and with a capacity to record linear polarization of 0.5–1% at the thirty-meter telescope would immensely help in understanding the atmosphere, especially the cloud chemistry of the self-luminous and resolvable exoplanets.

  15. How Giant Planets Shape the Characteristics of Terrestrial Planets

    Science.gov (United States)

    Barclay, Thomas; Quintana, Elisa V.

    2016-01-01

    The giant planets in the Solar System likely played a defining role in shaping the properties of the Earth and other terrestrial planets during their formation. Observations from the Kepler spacecraft indicate that terrestrial planets are highly abundant. However, there are hints that giant planets a few AU from their stars are not ubiquitous. It therefore seems reasonable to assume that many terrestrial planets lack a Jupiter-like companion. We use a recently developed, state-of-the-art N-body model that allows for collisional fragmentation to perform hundreds of numerical simulations of the final stages of terrestrial planet formation around a Sun-like star -- with and without giant outer planets. We quantify the effects that outer giant planet companions have on collisions and the planet accretion process. We focus on Earth-analogs that form in each system and explore how giant planets influence the relative frequency of giant impacts occurring at late times and the delivery of volitiles. This work has important implications for determining the frequency of habitable planets.

  16. Observations of Uranus and Neptune in Spanish Telescopes: Calar Alto/PlanetCam, WHT/Ingrid y GTC/Osiris

    Science.gov (United States)

    Hueso, R.; Sánchez-Lavega, A.; Ordonez-Etxeberria, I.; Rojas, J. F.; Pérez-Hoyos, S.; Mendikoa, I.

    2017-03-01

    The astronomical observation of the atmospheres of Uranus and Neptune poses unique challenges. Both planets are relatively dimm objects (visual magnitude of +5.3 and +7.7) and have small angular sizes (3.7” and 2.4” at opposition). Both worlds have atmospheres that are very dynamic, specially Neptune. These atmospheres are dominated by intense zonal winds that reach 450 m/s and where seasonal evolution changes the band patterns present in these planets. Thanks to the atmospheric methane gas, when observing Uranus and Neptune in near infrared wavelengths their upper clouds become well contrasted and bright and observations at different methane absorption bands allow to sample the atmosphere at different vertical layers. Both worlds are subject to the development of bright cloud patterns, some times of convective origin and whose activity can extend over weeks to several months or years. In the last few years we have surveyed the atmospheric activity of Uranus and Neptune with instruments able to improve the spatial resolution of the images beyond the limits impose by the atmospheric seeing. We use the Lucky Imaging technique (fast observation of several short-exposure frames combined with automatic selection of best frames and coregistration for stacking). We present image observations of Uranus and Neptune obtained with the instruments: OSIRIS at Grantecan as well as the AstraLux and PlanetCam UPV/EHU cameras on the 2.2m telescope at Calar Alto observatory. These observations are compared with other observations acquired by amateur astronomers able to obtain resolve cloud features in Uranus and Neptune. We compare these observations with images acquired with Adaptive Optics instruments at the William Herschel with the NAOMI+Ingrid instruments and Keck II and with Hubble Space Telescope images. We show the importance of surveying the atmospheric activity of these planets with a variety of telescopes. Two science cases are presented: The study of convective

  17. Trojan twin planets

    Science.gov (United States)

    Dvorak, R.; Loibnegger, B.; Schwarz, R.

    2017-03-01

    The Trojan asteroids are moving in the vicinity of the stable Lagrange points L_4 and L_5 of the gas giants Jupiter, Uranus and Neptune. Their motion can be described and understood with the aid of the restricted three-body problem. As an extension of this problem we investigate how stable motion close to the Lagrange points of two massive bodies can exist. This configuration can be described as the Trojan Twin Problem when we regard the two additional bodies as having a mass significantly smaller than the the two primary bodies: a star in the center (m_1) and an additional Jupiter-like mass (m_2). Using this 4-body problem we have undertaken numerical investigations concerning possible stable "twin orbits". However, these two bodies (m_3 and m_4) in Trojan-like orbits may have quite different masses. We decided to choose 6 different scenaria for this problem: as primary body, m2, we have taken a Jupiter-like planet, a Saturn-like one, and a super-Earth with 10 Earthmasses (m_{Earth}) respectively. As quasi twin planets, we have used different mass ratios namely objects for m3 and m4 from 10m_{Earth} to Moon like ones. We found different stable configurations depending on the involved masses and the initial distances between the twins (always close to the Lagrange point). Although the formation of such a configuration seems to be not very probable we should not exclude that it exists regarding the huge number of planets even in our own galaxy. This model is of special interest when the most massive planet (m_2) is moving on an orbit in the habitable zone around a main sequence star. One can use our results of stable orbits of Trojan Twin Planets (or asteroids) for extrasolar systems having as second primary a Jupiter-like, a Saturn-like or a super-Earth like planet around a star similar to our Sun.

  18. Exploring the Effects of Cloud Vertical Structure on Cloud Microphysical Retrievals based on Polarized Reflectances

    Science.gov (United States)

    Miller, D. J.; Zhang, Z.; Platnick, S. E.; Ackerman, A. S.; Cornet, C.; Baum, B. A.

    2013-12-01

    A polarized cloud reflectance simulator was developed by coupling an LES cloud model with a polarized radiative transfer model to assess the capabilities of polarimetric cloud retrievals. With future remote sensing campaigns like NASA's Aerosols/Clouds/Ecosystems (ACE) planning to feature advanced polarimetric instruments it is important for the cloud remote sensing community to understand the retrievable information available and the related systematic/methodical limitations. The cloud retrieval simulator we have developed allows us to probe these important questions in a realistically relevant test bed. Our simulator utilizes a polarized adding-doubling radiative transfer model and an LES cloud field from a DHARMA simulation (Ackerman et al. 2004) with cloud properties based on the stratocumulus clouds observed during the DYCOMS-II field campaign. In this study we will focus on how the vertical structure of cloud microphysics can influence polarized cloud effective radius retrievals. Numerous previous studies have explored how retrievals based on total reflectance are affected by cloud vertical structure (Platnick 2000, Chang and Li 2002) but no such studies about the effects of vertical structure on polarized retrievals exist. Unlike the total cloud reflectance, which is predominantly multiply scattered light, the polarized reflectance is primarily the result of singly scattered photons. Thus the polarized reflectance is sensitive to only the uppermost region of the cloud (tau~influencer on the microphysical development of cloud droplets, can be potentially studied with polarimetric retrievals.

  19. The Spitzer Space Telescope Survey of the Orion A and B Molecular Clouds. II. The Spatial Distribution and Demographics of Dusty Young Stellar Objects

    Science.gov (United States)

    Megeath, S. T.; Gutermuth, R.; Muzerolle, J.; Kryukova, E.; Hora, J. L.; Allen, L. E.; Flaherty, K.; Hartmann, L.; Myers, P. C.; Pipher, J. L.; Stauffer, J.; Young, E. T.; Fazio, G. G.

    2016-01-01

    We analyze the spatial distribution of dusty young stellar objects (YSOs) identified in the Spitzer Survey of the Orion Molecular clouds, augmenting these data with Chandra X-ray observations to correct for incompleteness in dense clustered regions. We also devise a scheme to correct for spatially varying incompleteness when X-ray data are not available. The local surface densities of the YSOs range from 1 pc-2 to over 10,000 pc-2, with protostars tending to be in higher density regions. This range of densities is similar to other surveyed molecular clouds with clusters, but broader than clouds without clusters. By identifying clusters and groups as continuous regions with surface densities ≥10 pc-2, we find that 59% of the YSOs are in the largest cluster, the Orion Nebula Cluster (ONC), while 13% of the YSOs are found in a distributed population. A lower fraction of protostars in the distributed population is evidence that it is somewhat older than the groups and clusters. An examination of the structural properties of the clusters and groups shows that the peak surface densities of the clusters increase approximately linearly with the number of members. Furthermore, all clusters with more than 70 members exhibit asymmetric and/or highly elongated structures. The ONC becomes azimuthally symmetric in the inner 0.1 pc, suggesting that the cluster is only ˜2 Myr in age. We find that the star formation efficiency (SFE) of the Orion B cloud is unusually low, and that the SFEs of individual groups and clusters are an order of magnitude higher than those of the clouds. Finally, we discuss the relationship between the young low mass stars in the Orion clouds and the Orion OB 1 association, and we determine upper limits to the fraction of disks that may be affected by UV radiation from OB stars or dynamical interactions in dense, clustered regions.

  20. THE SPITZER SPACE TELESCOPE SURVEY OF THE ORION A AND B MOLECULAR CLOUDS. II. THE SPATIAL DISTRIBUTION AND DEMOGRAPHICS OF DUSTY YOUNG STELLAR OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Megeath, S. T.; Kryukova, E. [Ritter Astrophsical Research Center, Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Gutermuth, R. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Muzerolle, J. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Hora, J. L.; Myers, P. C.; Fazio, G. G. [Harvard Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Allen, L. E. [National Optical Astronomical Observatory, Tucson, AZ 85719 (United States); Flaherty, K. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Hartmann, L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Pipher, J. L. [Department of Physics and Astronomy, University of Rochester, Rochester NY 14627 (United States); Stauffer, J. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Young, E. T., E-mail: megeath@physics.utoledo.edu [SOFIA-Universities Space Research Association, NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2016-01-15

    We analyze the spatial distribution of dusty young stellar objects (YSOs) identified in the Spitzer Survey of the Orion Molecular clouds, augmenting these data with Chandra X-ray observations to correct for incompleteness in dense clustered regions. We also devise a scheme to correct for spatially varying incompleteness when X-ray data are not available. The local surface densities of the YSOs range from 1 pc{sup −2} to over 10,000 pc{sup −2}, with protostars tending to be in higher density regions. This range of densities is similar to other surveyed molecular clouds with clusters, but broader than clouds without clusters. By identifying clusters and groups as continuous regions with surface densities ≥10 pc{sup −2}, we find that 59% of the YSOs are in the largest cluster, the Orion Nebula Cluster (ONC), while 13% of the YSOs are found in a distributed population. A lower fraction of protostars in the distributed population is evidence that it is somewhat older than the groups and clusters. An examination of the structural properties of the clusters and groups shows that the peak surface densities of the clusters increase approximately linearly with the number of members. Furthermore, all clusters with more than 70 members exhibit asymmetric and/or highly elongated structures. The ONC becomes azimuthally symmetric in the inner 0.1 pc, suggesting that the cluster is only ∼2 Myr in age. We find that the star formation efficiency (SFE) of the Orion B cloud is unusually low, and that the SFEs of individual groups and clusters are an order of magnitude higher than those of the clouds. Finally, we discuss the relationship between the young low mass stars in the Orion clouds and the Orion OB 1 association, and we determine upper limits to the fraction of disks that may be affected by UV radiation from OB stars or dynamical interactions in dense, clustered regions.

  1. Securing Cloud from Cloud Drain

    Directory of Open Access Journals (Sweden)

    Niva Das

    2014-09-01

    Full Text Available Today, in the world of communication, connected systems is growing at a rapid pace. To accommodate this growth the need for computational power and storage is also increasing at a similar rate. Companies are investing a large amount of resources in buying, maintaining and ensuring availability of the system to their customers. To mitigate these issues, cloud computing is playing a major role [1]. The underlying concept of cloud computing dates back to the ‘50s but the term entering into widespread usage can be traced to 2006 when Amazon.com announced the Elastic Compute Cloud. In this paper, we will discuss about cloud security approaches. We have used the term “CloudDrain” to define data leakage in case of security compromise.

  2. Progress towards a Venus reference cloud model

    Science.gov (United States)

    Wilson, Colin; Ignatiev, Nikolay; Marcq, Emmanuel

    Venus is completely enveloped by clouds. The main cloud layers stretch from altitudes of 48 - 75 km, with additional tenuous hazes found at altitudes 30 - 100 km. Clouds play a crucial role in governing atmospheric circulation, chemistry and climate on all planets, but particularly so on Venus due to the optical thickness of the atmosphere. The European Space Agency’s Venus Express (VEx) satellite has carried out a wealth of observations of Venus clouds since its arrival at Venus in April 2006. Many VEx observations are relevant to cloud science - from imagers and spectrometers to solar, stellar and radio occultation - each covering different altitude ranges, spectral ranges and atmospheric constituents. We have formed an International Team at the International Space Science Institute to bring together scientists from each of the relevant Venus Express investigation teams as well as from previous missions, as well as those developing computational and analytical models of clouds and hazes. The aims of the project are (1) to create self-consistent reference cloud/haze models which capture not only a mean cloud structure but also its main modes of variability; and (2) to bring together modelers and observers, to reach an understanding of clouds and hazes on Venus which matches all observables and is physically consistent. Our approach is to first to assemble an averaged cloud profile for low latitudes, showing how cloud number abundances and other observables vary as a function of altitude, consistent with all available observations. In a second step, we will expand this work to produce a reference cloud profile which varies with latitude and local solar time, as well as optical thickness of the cloud. We will present our status in progressing towards this goal. We acknowledge the support of the International Space Science Institute of Berne, Switzerland, in hosting our Team’s meetings.

  3. Pluto and other dwarf planets

    CERN Document Server

    Saxena, Shalini

    2017-01-01

    The reclassification of Pluto in 2006 not only decreased the number of planets in our solar system by one but also introduced the new category of dwarf planet. Readers will come to understand what separates a dwarf planet from a planet-or for that matter from any of the other bodies found within the solar system. They'll learn about Pluto itself, as well as its fellow dwarf planets, Ceres, Makemake, Haumea, and Eris. Full of recent information, this title is sure to inspire an interest in space science among young readers.

  4. Mars - an escaping planet?

    CERN Document Server

    Dvorak, R

    2005-01-01

    The chaotic behaviour of the motion of the planets in our Solar System is well established. Numerical experiments with a modified Solar System consisting of a more massive Earth have shown, that for special values of an enlargement factor K around 5 the dynamical state of a truncated planetary system (excluding Mercury and the outer planets Uranus and Neptune) is highly chaotic. On the contrary for values of the mass of the Earth up to the mass of Saturn no irregular dynamical behaviour was observed. We extended our investigations to the complete planetary system and showed, that this chaotic window found before still exists. Tests in different 'Solar Systems' showed that only including Jupiter and Saturn with their actual masses together with a 'massive' Earth (between 4 and 6 times more massive) destabilize the orbit of Mars so that even escapes from the system are possible.

  5. Cloud migration

    CERN Document Server

    Höllwarth, Tobias

    2012-01-01

    This book is designed for managers and entrepreneurs, who are considering improving the economics and flexibility of their IT solutions and infrastructures. The book is also for readers who wish to learn more about the Cloud, but do not want to become specialists.This book discusses the technical, legal, fiscal, economic, organisational and environmental aspects of Cloud services. If you are looking for practical advice on vendor selection and certification, as well as real world Cloud project case studies, this is the book to consult.It is the result of a highly cooper

  6. Cloud Computing

    CERN Document Server

    Baun, Christian; Nimis, Jens; Tai, Stefan

    2011-01-01

    Cloud computing is a buzz-word in today's information technology (IT) that nobody can escape. But what is really behind it? There are many interpretations of this term, but no standardized or even uniform definition. Instead, as a result of the multi-faceted viewpoints and the diverse interests expressed by the various stakeholders, cloud computing is perceived as a rather fuzzy concept. With this book, the authors deliver an overview of cloud computing architecture, services, and applications. Their aim is to bring readers up to date on this technology and thus to provide a common basis for d

  7. Transitions in the cloud composition of hot Jupiters

    Science.gov (United States)

    Parmentier, Vivien; Fortney, Jonathan J.; Showman, Adam; Morley, Caroline; Marley, Mark S.

    2016-10-01

    Over a large range of equilibrium temperatures, clouds shape the transmission spectrum of hot Jupiter atmospheres, yet their composition remains unknown. Recent observations show that the Kepler lightcurves of some hot Jupiters are asymmetric: for the hottest planets, the lightcurve peaks before secondary eclipse, whereas for planets cooler than 1900K, it peaks after secondary eclipse. We use the thermal structure from 3D global circulation models to determine the expected cloud distribution and Kepler lightcurves of hot Jupiters. We demonstrate that the change from an optical lightcurve dominated by thermal emission to one dominated by scattering (reflection) naturally explains the observed trend from negative to positive offset. For the cool planets the presence of an asymmetry in the Kepler lightcurve is a telltale sign of the cloud composition, because each cloud species can produce an offset only over a narrow range of effective temperatures. By comparing our models and the observations, we show that the cloud composition of hot Jupiters likely varies with equilibrium temperature. We suggest that a transition occurs between silicate and manganese sulfide clouds at a temperature near 1600K, analogous to the L/T transition on brown dwarfs. The cold trapping of cloud species below the photosphere naturally produces such a transition and predicts similar transitions for other condensates, including TiO. We predict that most hot Jupiters should have cloudy nightsides, that partial cloudiness should be common at the limb and that the dayside hot spot should often be cloud-free.

  8. Astrometric Detection of Earthlike Planets

    CERN Document Server

    Shao, Michael; Catanzarite, Joseph H; Edberg, Stephen J; Leger, Alain; Malbet, Fabien; Queloz, Didier; Muterspaugh, Matthew W; Beichman, Charles; Fischer, Debra A; Ford, Eric; Olling, Robert; Kulkarni, Shrinivas; Unwin, Stephen C; Traub, Wesley

    2009-01-01

    Astrometry can detect rocky planets in a broad range of masses and orbital distances and measure their masses and three-dimensional orbital parameters, including eccentricity and inclination, to provide the properties of terrestrial planets. The masses of both the new planets and the known gas giants can be measured unambiguously, allowing a direct calculation of the gravitational interactions, both past and future. Such dynamical interactions inform theories of the formation and evolution of planetary systems, including Earth-like planets. Astrometry is the only technique technologically ready to detect planets of Earth mass in the habitable zone (HZ) around solar-type stars within 20 pc. These Earth analogs are close enough for follow-up observations to characterize the planets by infrared imaging and spectroscopy with planned future missions such as the James Webb Space Telescope (JWST) and the Terrestrial Planet Finder/Darwin. Employing a demonstrated astrometric precision of 1 microarcsecond and a noise ...

  9. Observed properties of extrasolar planets.

    Science.gov (United States)

    Howard, Andrew W

    2013-05-03

    Observational surveys for extrasolar planets probe the diverse outcomes of planet formation and evolution. These surveys measure the frequency of planets with different masses, sizes, orbital characteristics, and host star properties. Small planets between the sizes of Earth and Neptune substantially outnumber Jupiter-sized planets. The survey measurements support the core accretion model, in which planets form by the accumulation of solids and then gas in protoplanetary disks. The diversity of exoplanetary characteristics demonstrates that most of the gross features of the solar system are one outcome in a continuum of possibilities. The most common class of planetary system detectable today consists of one or more planets approximately one to three times Earth's size orbiting within a fraction of the Earth-Sun distance.

  10. Extrasolar planet detection

    Science.gov (United States)

    Korechoff, R. P.; Diner, D. J.; Tubbs, E. F.; Gaiser, S. L.

    1994-01-01

    This paper discusses the concept of extrasolar planet detection using a large-aperture infared imaging telescope. Coronagraphic stellar apodization techniques are less efficient at infrared wavelengths compared to the visible, as a result of practical limitations on aperture dimensions, thus necessitating additional starlight suppression to make planet detection feasible in this spectral domain. We have been investigating the use of rotational shearing interferometry to provide up to three orders of magnitude of starlight suppression over broad spectral bandwidths. We present a theoretical analysis of the system performance requirements needed to make this a viable instrument for planet detection, including specifications on the interferometer design and telescope aperture characteristics. The concept of using rotational shearing interferometry as a wavefront error detector, thus providing a signal that can be used to adaptively correct the wavefront, will be discussed. We also present the status of laboratory studies of on-axis source suppression using a recently constructed rotational shearing interferometer that currently operates in the visible.

  11. Giant Planets of Our Solar System Atmospheres, Composition, and Structure

    CERN Document Server

    Irwin, Patrick G. J

    2009-01-01

    This book reviews the current state of knowledge of the atmospheres of the giant gaseous planets: Jupiter, Saturn, Uranus, and Neptune. The current theories of their formation are reviewed and their recently observed temperature, composition and cloud structures are contrasted and compared with simple thermodynamic, radiative transfer and dynamical models. The instruments and techniques that have been used to remotely measure their atmospheric properties are also reviewed, and the likely development of outer planet observations over the next two decades is outlined. This second edition has been extensively updated following the Cassini mission results for Jupiter/Saturn and the newest ground-based measurements for Uranus/Neptune as well as on the latest development in the theories on planet formation.

  12. Microlensing by Kuiper, Oort, and Free-Floating Planets

    CERN Document Server

    Gould, Andrew

    2016-01-01

    Microlensing is generally thought to probe planetary systems only out to a few Einstein radii. Microlensing events generated by bound planets beyond about 10 Einstein radii generally do not yield any trace of their hosts, and so would be classified as free floating planets (FFPs). I show that it is already possible, using adaptive optics (AO), to constrain the presence of potential hosts to FFP candidates at separations comparable to the Oort Cloud. With next-generation telescopes, planets at Kuiper-Belt separations can be probed. Next generation telescopes will also permit routine vetting for all FFP candidates, simply by obtaining second epochs 4-8 years after the event. At present, the search for such hosts is restricted to within the "confusion limit" of theta_confus ~ 250 mas, but future WFIRST observations will allow one to probe beyond this confusion limit as well.

  13. Magellan Adaptive Optics first-light observations of the exoplanet beta Pic b. II. 3-5 micron direct imaging with MagAO+Clio, and the empirical bolometric luminosity of a self-luminous giant planet

    CERN Document Server

    Morzinski, Katie M; Skemer, Andy J; Close, Laird M; Hinz, Phil M; Rodigas, T J; Puglisi, Alfio; Esposito, Simone; Riccardi, Armando; Pinna, Enrico; Xompero, Marco; Briguglio, Runa; Bailey, Vanessa P; Follette, Katherine B; Kopon, Derek; Weinberger, Alycia J; Wu, Ya-Lin

    2015-01-01

    Young giant exoplanets are a unique laboratory for understanding cool, low-gravity atmospheres. A quintessential example is the massive extrasolar planet $\\beta$ Pic b, which is 9 AU from and embedded in the debris disk of the young nearby A6V star $\\beta$ Pictoris. We observed the system with first light of the Magellan Adaptive Optics (MagAO) system. In Paper I we presented the first CCD detection of this planet with MagAO+VisAO. Here we present four MagAO+Clio images of $\\beta$ Pic b at 3.1 $\\mu$m, 3.3 $\\mu$m, $L^\\prime$, and $M^\\prime$, including the first observation in the fundamental CH$_4$ band. To remove systematic errors from the spectral energy distribution (SED), we re-calibrate the literature photometry and combine it with our own data, for a total of 22 independent measurements at 16 passbands from 0.99--4.8 $\\mu$m. Atmosphere models demonstrate the planet is cloudy but are degenerate in effective temperature and radius. The measured SED now covers $>$80\\% of the planet's energy, so we approach ...

  14. Characterizing extrasolar terrestrial planets with reflected, emitted and transmitted spectra.

    Science.gov (United States)

    Tinetti, Giovanna

    2006-12-01

    NASA and ESA are planning missions to directly detect and characterize terrestrial planets outside our solar system (nominally NASA-Terrestrial Planet Finder and ESA-DARWIN missions). These missions will provide our first opportunity to spectroscopically study the global characteristics of those planets, and search for signs of habitability and life. We have used spatially and spectrally-resolved models to explore the observational sensitivity to changes in atmospheric and surface properties, and the detectability of surface biosignatures, in the globally averaged spectra and light-curves of the Earth. Atmospheric signatures of Earth-size exoplanets might be detected, in a near future, by stellar occultation as well. Detectability depends on planet's size, atmospheric composition, cloud cover and stellar type. According to our simulations, Earth's land vegetation signature (red-edge) is potentially visible in the disk-averaged spectra, even with cloud cover, and when the signal is averaged over the daily time scale. Marine vegetation is far more difficult to detect. We explored also the detectability of an exo-vegetation responsible for producing a signature that is red-shifted with respect to the Earth vegetation's one.

  15. Giant Planets in Reflected Light: What Science Can We Expect?

    Science.gov (United States)

    Marley, Mark

    2016-01-01

    Interpreting the reflection spectra of cool giant planets will be a challenge. Spectra of such worlds are expected to be primarily shaped by scattering from clouds and hazes and punctuated by absorption bands of methane, water, and ammonia. While the warmest giants may be cloudless, their atmospheres will almost certainly sport substantial photochemical hazes. Furthermore the masses of most direct imaging targets will be constrained by radial velocity observations, their radii, and thus atmospheric gravity, will be imperfectly known. The uncertainty in planet radius and gravity will compound with uncertain aerosol properties to make estimation of key absorber abundances difficult. To address such concerns our group is developing atmospheric retrieval tools to constrain quantities of interest, particular gas mixing ratios. We have applied our Markov Chain Monte Carlo methods to simulated data of the quality expected from the WFIRST CGI instrument and found that given sufficiently high SNR data we can confidentially identify and constrain the abundance of methane, cloud top pressures, gravity, and the star-planet-observer phase angle. In my presentation I will explain the expected characteristics of cool extrasolar giant planet reflection spectra, discuss these and other challenges in their interpretation, and summarize the science results we can expect from direct imaging observations.

  16. Probing exoplanet clouds with optical phase curves.

    Science.gov (United States)

    Muñoz, Antonio García; Isaak, Kate G

    2015-11-01

    Kepler-7b is to date the only exoplanet for which clouds have been inferred from the optical phase curve--from visible-wavelength whole-disk brightness measurements as a function of orbital phase. Added to this, the fact that the phase curve appears dominated by reflected starlight makes this close-in giant planet a unique study case. Here we investigate the information on coverage and optical properties of the planet clouds contained in the measured phase curve. We generate cloud maps of Kepler-7b and use a multiple-scattering approach to create synthetic phase curves, thus connecting postulated clouds with measurements. We show that optical phase curves can help constrain the composition and size of the cloud particles. Indeed, model fitting for Kepler-7b requires poorly absorbing particles that scatter with low-to-moderate anisotropic efficiency, conclusions consistent with condensates of silicates, perovskite, and silica of submicron radii. We also show that we are limited in our ability to pin down the extent and location of the clouds. These considerations are relevant to the interpretation of optical phase curves with general circulation models. Finally, we estimate that the spherical albedo of Kepler-7b over the Kepler passband is in the range 0.4-0.5.

  17. Cloud Formation

    Science.gov (United States)

    Graham, Mark Talmage

    2004-05-01

    Cloud formation is crucial to the heritage of modern physics, and there is a rich literature on this important topic. In 1927, Charles T.R. Wilson was awarded the Nobel Prize in physics for applications of the cloud chamber.2 Wilson was inspired to study cloud formation after working at a meteorological observatory on top of the highest mountain in Scotland, Ben Nevis, and testified near the end of his life, "The whole of my scientific work undoubtedly developed from the experiments I was led to make by what I saw during my fortnight on Ben Nevis in September 1894."3 To form clouds, Wilson used the sudden expansion of humid air.4 Any structure the cloud may have is spoiled by turbulence in the sudden expansion, but in 1912 Wilson got ion tracks to show up by using strobe photography of the chamber immediately upon expansion.5 In the interim, Millikan's study in 1909 of the formation of cloud droplets around individual ions was the first in which the electron charge was isolated. This study led to his famous oil drop experiment.6 To Millikan, as to Wilson, meteorology and physics were professionally indistinct. With his meteorological physics expertise, in WWI Millikan commanded perhaps the first meteorological observation and forecasting team essential to military operation in history.7 But even during peacetime meteorology is so much of a concern to everyone that a regular news segment is dedicated to it. Weather is the universal conversation topic, and life on land could not exist as we know it without clouds. One wonders then, why cloud formation is never covered in physics texts.

  18. The Search for Planet Nine

    Science.gov (United States)

    Brown, Michael E.; Batygin, Konstantin

    2016-10-01

    We use an extensive suite of numerical simulations to constrain the mass and orbit of Planet Nine, and we use these constraints to begin the search for this newly proposed planet in new and in archival data. Here, we compare our simulations to the observed population of aligned eccentric high semimajor axis Kuiper belt objects and determine which simulation parameters are statistically compatible with the observations. We find that only a narrow range of orbital elements can reproduce the observations. In particular, the combination of semimajor axis, eccentricity, and mass of Planet Nine strongly dictates the semimajor axis range of the orbital confinement of the distant eccentric Kuiper belt objects. Allowed orbits, which confine Kuiper belt objects with semimajor axis beyond 380 AU, have perihelia roughly between 150 and 350 AU, semimajor axes between 380 and 980 AU, and masses between 5 and 20 Earth masses. Orbitally confined objects also generally have orbital planes similar to that of the planet, suggesting that the planet is inclined approximately 30 degrees to the ecliptic. We compare the allowed orbital positions and estimated brightness of Planet Nine to previous and ongoing surveys which would be sensitive to the planet's detection and use these surveys to rule out approximately two-thirds of the planet's orbit. Planet Nine is likely near aphelion with an approximate brightness of 22hours. We discuss the state of our current and archival searches for this newly predicted planet.

  19. Simulations for terrestrial planets formation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper,the formation of terrestrial planets in the late stage of planetary formation is investigated using the two-planet model.At that time,the protostar formed for about 3 Ma and the gas disk dissipated.In the model,the perturbations from Jupiter and Saturn are considered.Variations of the mass of outer planet,and the initial eccentricities and inclinations of embryos and planetesimals are also considered.Our results show that,terrestrial planets are formed in 50 Ma,and the accretion rate is about 60%-80%.In each simulation,3-4 terrestrial planets are formed inside"Jupiter"with masses of 0.15 -3.6M⊕.In the 0.5-4 AU,when the eccentricities of planetesimals are excited,planetesimals are able to accrete material from wide radial direction.The plenty of water material of the terrestrial planet in the Habitable Zone may be transferred from the farther places by this mechanism.Accretion could also happen a few times between two major planets only if the outer planet has a moderate mass and the small terrestrial planet could survive at some resonances over time scale of 10 8 a.In one of our simulations,commensurability of the orbital periods of planets is very common.Moreover,a librating-circulating 3:2 configuration of mean motion resonance is found.

  20. Simulations for terrestrial planets formation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Niu; JI JiangHui

    2009-01-01

    In this paper, the formation of terrestrial planets in the late stage of planetary formation is Investigated using the two-planet model. At that time, the protostar formed for about 3 Ma and the gas disk dissipated. In the model, the perturbations from Jupiter and Saturn are considered. Variations of the mass of outer planet, and the initial eccentricities and inclinations of embryos and planetesimals are also considered. Our results show that, terrestrial planets are formed in 50 Ma, and the accretion rate is about 60%-80%. In each simulation, 3-4 terrestrial planets are formed inside "Jupiter" with masses of 0.15-3.6 M(⊙). In the 0.5-4 AU, when the eccentricities of planetesimals are excited, planetesimals are able to accrete material from wide radial direction. The plenty of water material of the terrestrial planet in the Habitable Zone may be transferred from the farther places by this mechanism. Accretion could also happen a few times between two major planets only if the outer planet has a moderate mass and the small terrestrial planet could survive at some resonances over time scale of 108a. In one of our simulations, commensurability of the orbital periods of planets is very common. Moreover, a librating-circulating 3:2 configuration of mean motion resonance is found.

  1. Taxonomy of the extrasolar planet.

    Science.gov (United States)

    Plávalová, Eva

    2012-04-01

    When a star is described as a spectral class G2V, we know that the star is similar to our Sun. We know its approximate mass, temperature, age, and size. When working with an extrasolar planet database, it is very useful to have a taxonomy scale (classification) such as, for example, the Harvard classification for stars. The taxonomy has to be easily interpreted and present the most relevant information about extrasolar planets. I propose an extrasolar planet taxonomy scale with four parameters. The first parameter concerns the mass of an extrasolar planet in the form of units of the mass of other known planets, where M represents the mass of Mercury, E that of Earth, N Neptune, and J Jupiter. The second parameter is the planet's distance from its parent star (semimajor axis) described in a logarithm with base 10. The third parameter is the mean Dyson temperature of the extrasolar planet, for which I established four main temperature classes: F represents the Freezing class, W the Water class, G the Gaseous class, and R the Roasters class. I devised one additional class, however: P, the Pulsar class, which concerns extrasolar planets orbiting pulsar stars. The fourth parameter is eccentricity. If the attributes of the surface of the extrasolar planet are known, we are able to establish this additional parameter where t represents a terrestrial planet, g a gaseous planet, and i an ice planet. According to this taxonomy scale, for example, Earth is 1E0W0t, Neptune is 1N1.5F0i, and extrasolar planet 55 Cnc e is 9E-1.8R1.

  2. New insights about cloud vertical structure from CloudSat and CALIPSO observations

    Science.gov (United States)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin

    2017-09-01

    Active cloud observations from A-Train's CloudSat and CALIPSO satellites offer new opportunities to examine the vertical structure of hydrometeor layers. We use the 2B-CLDCLASS-LIDAR merged CloudSat-CALIPSO product to examine global aspects of hydrometeor vertical stratification. We group the data into major cloud vertical structure (CVS) classes based on our interpretation of how clouds in three standard atmospheric layers overlap and provide their global frequency of occurrence. The two most frequent CVS classes are single-layer (per our definition) low and high clouds that represent 53% of cloudy skies, followed by high clouds overlying low clouds, and vertically extensive clouds that occupy near-contiguously a large portion of the troposphere. The prevalence of these configurations changes seasonally and geographically, between daytime and nighttime, and between continents and oceans. The radiative effects of the CVS classes reveal the major radiative warmers and coolers from the perspective of the planet as a whole, the surface, and the atmosphere. Single-layer low clouds dominate planetary and atmospheric cooling and thermal infrared surface warming. We also investigate the consistency between passive and active views of clouds by providing the CVS breakdowns of Moderate Resolution Imaging Spectroradiometer cloud regimes for spatiotemporally coincident MODIS-Aqua (also on the A-Train) and CloudSat-CALIPSO daytime observations. When the analysis is expanded for a more in-depth look at the most heterogeneous of the MODIS cloud regimes, it ultimately confirms previous interpretations of their makeup that did not have the benefit of collocated active observations.

  3. Present status of Japanese Venus Climate Orbiter Planet-C in 2009

    Science.gov (United States)

    Nakamura, M.

    2009-04-01

    Japanese Venus climate orbiter PLANET-C is JAXA's third planetary explorer succeeding Suisei (PLANET-A) and Nozomi (PLANET-B). PLANET-C will be launched in 2010 and travel around the sun to reach Venus within the same year, then it will enter the Venusian orbit. PLANET-C will research the Venusian atmosphere, which is covered by thick clouds. It carries five cameras including ultraviolet and optical devices and even infrared cameras. Each of them will capture images of the clouds at different altitudes. The infrared cameras will look through the top layer of the clouds to see the lower atmosphere. Using these cameras, PLANET-C will take one photo every two hours at various wavelengths. We have finished the Proto-Model integration test of major components of VCO in December 2007. In March 2008, we finished the CDR for the phase-up (to Phase D). The flight model development will be finalized by 2009 and the final integration test will be done during whole 2009. There is no delay in schedule so far.

  4. Atmospheres of Extrasolar Giant Planets

    Science.gov (United States)

    Marley, Mark

    2006-01-01

    The next decade will almost certainly see the direct imaging of extrasolar giant planets around nearby stars. Unlike purely radial velocity detections, direct imaging will open the door to characterizing the atmosphere and interiors of extrasola planets and ultimately provide clues on their formation and evolution through time. This process has already begun for the transiting planets, placing new constraints on their atmospheric structure, composition, and evolution. Indeed the key to understanding giant planet detectability, interpreting spectra, and constraining effective temperature and hence evolution-is the atmosphere. I will review the universe of extrasolar giant planet models, focusing on what we have already learned from modeling and what we will likely be able to learn from the first generation of direct detection data. In addition to these theoretical considerations, I will review the observations and interpretation of the - transiting hot Jupiters. These objects provide a test of our ability to model exotic atmospheres and challenge our current understanding of giant planet evolution.

  5. Planet Packing in Circumbinary Systems

    CERN Document Server

    Kratter, Kaitlin M

    2013-01-01

    The recent discovery of planets orbiting main sequence binaries will provide crucial constraints for theories of binary and planet formation. The formation pathway for these planets is complicated by uncertainties in the formation mechanism of the host stars. In this paper, we compare the dynamical states of single and binary star planetary systems. Specifically, we pose two questions: (1) What does it mean for a circumbinary system to be dynamically packed? (2) How many systems are required to differentiate between a population of packed or sparse planets? We determine when circumbinary systems become dynamically unstable as a function of the separation between the host-stars and the inner planet, and the first and second planets. We show that these represent unique stability constraints compared to single-star systems. We find that although the existing Kepler data is insufficient to distinguish between a population of packed or sparse circumbinary systems, a more thorough study of circumbinary TTVs combine...

  6. The impact of red noise in radial velocity planet searches: only three planets orbiting GJ 581?

    Science.gov (United States)

    Baluev, Roman V.

    2013-03-01

    We perform a detailed analysis of the latest HARPS and Keck radial velocity data for the planet-hosting red dwarf GJ 581, which attracted a lot of attention in recent time. We show that these data contain important correlated noise component (`red noise') with the correlation time-scale of the order of 10 d. This red noise imposes a lot of misleading effects while we work in the traditional white-noise model. To eliminate these misleading effects, we propose a maximum-likelihood algorithm equipped by an extended model of the noise structure. We treat the red noise as a Gaussian random process with an exponentially decaying correlation function. Using this method we prove that (i) planets b and c do exist in this system, since they can be independently detected in the HARPS and Keck data, and regardless of the assumed noise models; (ii) planet e can also be confirmed independently by both the data sets, although to reveal it in the Keck data it is mandatory to take the red noise into account; (iii) the recently announced putative planets f and g are likely just illusions of the red noise; (iv) the reality of the planet candidate GJ 581 d is questionable, because it cannot be detected from the Keck data, and its statistical significance in the HARPS data (as well as in the combined data set) drops to a marginal level of ˜2σ, when the red noise is taken into account. Therefore, the current data for GJ 581 really support the existence of no more than four (or maybe even only three) orbiting exoplanets. The planet candidate GJ 581 d requests serious observational verification.

  7. ISO far infrared observations of the high latitude cloud L1642. II. Correlated variations of far-infrared emissivity and temperature of "classical large" dust particles

    CERN Document Server

    Lehtinen, K; Mattila, K; Lemke, D; Russeil, D

    2007-01-01

    Our aim is to compare the infrared properties of big, ``classical'' dust grains with visual extinction in the cloud L1642. In particular, we study the differences of grain emissivity between diffuse and dense regions in the cloud. The far-infrared properties of dust are based on large-scale 100um and 200um maps. Extinction through the cloud has been derived by using the star count method at B- and I-bands, and color excess method at J, H and Ks bands. Radiative transfer calculations have been used to study the effects of increasing absorption cross-section on the far-infrared emission and dust temperature. Dust emissivity, measured by the ratio of far-infrared optical depth to visual extinction, tau(far-IR)/A(V), increases with decreasing dust temperature in L1642. There is about two-fold increase of emissivity over the dust temperature range of 19K-14K. Radiative transfer calculations show that in order to explain the observed decrease of dust temperature towards the centre of L1642 an increase of absorption...

  8. The Spitzer Space Telescope Survey of the Orion A and B Molecular Clouds II: the Spatial Distribution and Demographics of Dusty Young Stellar Objects

    CERN Document Server

    Megeath, S T; Muzerolle, J; Kryukova, E; Hora, J L; Allen, L E; Flaherty, K; Hartmann, L; Myers, P C; Pipher, J L; Stauffer, J; Young, E T; Fazio, G G

    2015-01-01

    We analyze the spatial distribution of dusty young stellar objects (YSOs) identified in the Spitzer Survey of the Orion Molecular clouds, augmenting these data with Chandra X-ray observations to correct for incompleteness in dense clustered regions. We also devise a scheme to correct for spatially varying incompleteness when X-ray data are not available. The local surface densities of the YSOs range from 1 pc$^{-2}$ to over 10,000 pc$^{-2}$, with protostars tending to be in higher density regions. This range of densities is similar to other surveyed molecular clouds with clusters, but broader than clouds without clusters. By identifying clusters and groups as continuous regions with surface densities $\\ge10$ pc$^{-2}$, we find that 59% of the YSOs are in the largest cluster, the Orion Nebular Cluster (ONC), while 13% of the YSOs are found in a distributed population. A lower fraction of protostars in the distributed population is evidence that it is somewhat older than the groups and clusters. An examination ...

  9. Mid-J CO shock tracing observations of infrared dark clouds II Low-J CO constraints on excitation, depletion, and kinematics

    CERN Document Server

    Pon, A; Caselli, P; Fontani, F; Palau, A; Butler, M J; Kaufman, M; Jiménez-Serra, I; Tan, J C

    2015-01-01

    Infrared dark clouds are kinematically complex molecular structures in the interstellar medium that can host sites of massive star formation. We present 4 square arcminute maps of the 12CO, 13CO, and C18O J = 3 to 2 lines from selected locations within the C and F (G028.37+00.07 and G034.43+00.24) infrared dark clouds (IRDCs), as well as single pointing observations of the 13CO and C18O J = 2 to 1 lines towards three cores within these clouds. We derive CO gas temperatures throughout the maps and find that CO is significantly frozen out within these IRDCs. We find that the CO depletion tends to be the highest near column density peaks, with maximum depletion factors between 5 and 9 in IRDC F and between 16 and 31 in IRDC C. We also detect multiple velocity components and complex kinematic structure in both IRDCs. Therefore, the kinematics of IRDCs seem to point to dynamically evolving structures yielding dense cores with considerable depletion factors.

  10. Photon-Dominated Region Modeling of the [C I],[C II], and CO Line Emission from a Boundary in the Taurus Molecular Cloud

    CERN Document Server

    Orr, Matthew; Goldsmith, Paul

    2014-01-01

    We present [Ci] and [Cii] observations of a linear edge region in the Taurus molecular cloud, and model this region as a cylindrically symmetric PDR exposed to a low-intensity UV radiation field. The sharp, long profile of the linear edge makes it an ideal case to test PDR models and determine cloud parameters. We compare observations of the [C i], 3P1 -> 3P0 (492 GHz), [C i] 3P2 -> 3P1 (809 GHz), and [Cii] 2P3/2 -> 2P1/2 (1900 GHz) transitions, as well as the lowest rotational transitions of 12CO and 13CO, with line intensities produced by the RATRAN radiative transfer code from the results of the Meudon PDR code. We constrain the density structure of the cloud by fitting a cylindrical density function to visual extinction data. We study the effects of variation of the FUV field, 12C/13C isotopic abundance ratio, sulfur depletion, cosmic ray ionization rate, and inclination of the filament relative to the sky-plane on the chemical network of the PDR model and resulting line emission. We also consider the rol...

  11. Planet X - Fact or fiction?

    Science.gov (United States)

    Anderson, John

    1988-01-01

    The search for a possible tenth planet in our solar system is examined. The history of the discoveries of Uranus, Neptune, and Pluto are reviewed. Searches of the sky with telescopes and theoretical studies of the gravitational influences on the orbits of known objects in the solar system are discussed. Information obtained during the Pioneer 10 and 11 missions which could suggest the presence of an undiscovered planet and computer simulations of the possible orbit of a tenth planet are presented.

  12. Professor: The Animal Planet Optimization

    OpenAIRE

    Satish Gajawada

    2014-01-01

    This paper is dedicated to everyone who is interested in making this planet a better place to live. In the past, researchers have explored behavior of several animals separately. But there is scope to explore in the direction where various artificial animals together solve the optimization problem. In this paper, Satish Gajawada proposed The AnimalPlanet Optimization. The concept of this paper is to imitate all the animals on this planet. The idea is to solve the optimization problem where al...

  13. Water vapour in the atmosphere of a transiting extrasolar planet.

    Science.gov (United States)

    Tinetti, Giovanna; Vidal-Madjar, Alfred; Liang, Mao-Chang; Beaulieu, Jean-Philippe; Yung, Yuk; Carey, Sean; Barber, Robert J; Tennyson, Jonathan; Ribas, Ignasi; Allard, Nicole; Ballester, Gilda E; Sing, David K; Selsis, Franck

    2007-07-12

    Water is predicted to be among the most abundant (if not the most abundant) molecular species after hydrogen in the atmospheres of close-in extrasolar giant planets ('hot Jupiters'). Several attempts have been made to detect water on such planets, but have either failed to find compelling evidence for it or led to claims that should be taken with caution. Here we report an analysis of recent observations of the hot Jupiter HD 189733b (ref. 6) taken during the transit, when the planet passed in front of its parent star. We find that absorption by water vapour is the most likely cause of the wavelength-dependent variations in the effective radius of the planet at the infrared wavelengths 3.6 mum, 5.8 mum (both ref. 7) and 8 mum (ref. 8). The larger effective radius observed at visible wavelengths may arise from either stellar variability or the presence of clouds/hazes. We explain the report of a non-detection of water on HD 189733b (ref. 4) as being a consequence of the nearly isothermal vertical profile of the planet's atmosphere.

  14. Kepler planet-detection mission

    DEFF Research Database (Denmark)

    Borucki...[], William J.; Koch, David; Buchhave, Lars C. Astrup

    2010-01-01

    The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet’s surface. During the first 6 weeks of observations, Kepler...... is one of the lowest-density planets (~0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets....

  15. Stars and Planets

    Science.gov (United States)

    Neta, Miguel

    2014-05-01

    'Estrelas e Planetas' (Stars and Planets) project was developed during the academic year 2009/2010 and was tested on three 3rd grade classes of one school in Quarteira, Portugal. The aim was to encourage the learning of science and the natural and physical phenomena through the construction and manipulation of materials that promote these themes - in this case astronomy. Throughout the project the students built a small book containing three themes of astronomy: differences between stars and planets, the solar system and the phases of the Moon. To each topic was devoted two sessions of about an hour each: the first to teach the theoretical aspects of the theme and the second session to assembly two pages of the book. All materials used (for theoretical sessions and for the construction of the book) and videos of the finished book are available for free use in www.miguelneta.pt/estrelaseplanetas. So far there is only a Portuguese version but soon will be published in English as well. This project won the Excellency Prize 2011 of Casa das Ciências, a portuguese site for teachers supported by the Calouste Gulbenkian Fundation (www.casadasciencias.org).

  16. The ocean planet.

    Science.gov (United States)

    Hinrichsen, D

    1998-01-01

    The Blue Planet is 70% water, and all but 3% of it is salt water. Life on earth first evolved in the primordial soup of ancient seas, and though today's seas provide 99% of all living space on the planet, little is known about the world's oceans. However, the fact that the greatest threats to the integrity of our oceans come from land-based activities is becoming clear. Humankind is in the process of annihilating the coastal and ocean ecosystems and the wealth of biodiversity they harbor. Mounting population and development pressures have taken a grim toll on coastal and ocean resources. The trend arising from such growth is the chronic overexploitation of marine resources, whereby rapidly expanding coastal populations and the growth of cities have contributed to a rising tide of pollution in nearly all of the world's seas. This crisis is made worse by government inaction and a frustrating inability to enforce existing coastal and ocean management regulations. Such inability is mainly because concerned areas contain so many different types of regulations and involve so many levels of government, that rational planning and coordination of efforts are rendered impossible. Concerted efforts are needed by national governments and the international community to start preserving the ultimate source of all life on earth.

  17. Imaging Extrasolar Giant Planets

    CERN Document Server

    Bowler, Brendan P

    2016-01-01

    High-contrast adaptive optics imaging is a powerful technique to probe the architectures of planetary systems from the outside-in and survey the atmospheres of self-luminous giant planets. Direct imaging has rapidly matured over the past decade and especially the last few years with the advent of high-order adaptive optics systems, dedicated planet-finding instruments with specialized coronagraphs, and innovative observing and post-processing strategies to suppress speckle noise. This review summarizes recent progress in high-contrast imaging with particular emphasis on observational results, discoveries near and below the deuterium-burning limit, and a practical overview of large-scale surveys and dedicated instruments. I conclude with a statistical meta-analysis of deep imaging surveys in the literature. Based on observations of 384 unique and single young ($\\approx$5--300~Myr) stars spanning stellar masses between 0.1--3.0~\\Msun, the overall occurrence rate of 5--13~\\Mjup \\ companions at orbital distances ...

  18. Microphysics of KCl and ZnS Clouds on GJ 1214 b

    Science.gov (United States)

    Gao, Peter; Benneke, Björn

    2016-10-01

    Clouds are ubiquitous in the atmospheres of exoplanets. However, as most of these planets have temperatures between 600 and 2000 K, their clouds are likely composed of exotic condensates such as salts, sulfides, silicates, and metals. Treatment of these clouds in current exoplanet atmosphere models do not consider the microphysical processes that govern their formation, evolution, and distribution, such as nucleation and condensation/evaporation, thus creating a gulf between the cloud properties retrieved from observations and the cloud composition predictions from condensation equilibrium models. In this work, we apply a 1D microphysical cloud model to GJ 1214 b and investigate the properties of potassium chloride (KCl) and zinc sulfide (ZnS) clouds as a function of atmospheric metallicity, the intensity of vertical mixing, and the mode of nucleation. Our cloud model has been widely applied to planets in our own Solar System, and as such our work bridges a gap between planetary science and exoplanets. Using model background atmospheres calculated by the SCARLET code, we find that (1) the cloud distribution is not significantly affected by metallicity unless [Fe/H] > 2, (2) higher intensities of vertical mixing leads to more extended cloud decks, more cloud particles at all altitudes, and smaller mean particle radii, (3) the high surface energy of solid ZnS prevents the homogeneous nucleation of pure ZnS cloud particles, such that KCl clouds dominate; solid ZnS can only manifest by nucleating onto pre-existing surfaces (heterogeneous nucleation), such as KCl cloud particles, resulting in mixed clouds, and (4) formation of KCl clouds results in a KCl vapor abundance above the cloud deck ~5 orders of magnitude less than that calculated from equilibrium chemistry. We also examine the transmission spectra that would result from these different cases. Extension of this model to other planets and condensates will shed light on the observed continuum in the "cloudiness

  19. Tidal effects on Earth, Planets, Sun by far visiting moons

    Science.gov (United States)

    Fargion, Daniele

    2016-07-01

    The Earth has been formed by a huge mini-planet collision forming our Earth surface and our Moon today. Such a central collision hit was statistically rare. A much probable skimming or nearby encounter by other moons or planets had to occur. Indeed Recent observations suggest that many planetary-mass objects may be present in the outer solar system between the Kuiper belt and the Oort cloud. Gravitational perturbations may occasionally bring them into the inner solar system. Their passage near Earth could have generated gigantic tidal waves, large volcanic eruptions, sea regressions, large meteoritic impacts and drastic changes in global climate. They could have caused the major biological mass extinctions in the past in the geological records. For instance a ten times a terrestrial radius nearby impact scattering by a peripherical encounter by a small moon-like object will force huge tidal waves (hundred meter height), able to lead to huge tsunami and Earth-quake. Moreover the historical cumulative planet hits in larger and wider planets as Juppiter, Saturn, Uranus will leave a trace, as observed, in their tilted spin axis. Finally a large fraction of counter rotating moons in our solar system probe and test such a visiting mini-planet captur origination. In addition the Earth day duration variability in the early past did show a rare discountinuity, very probably indebt to such a visiting planet crossing event. These far planets in rare trajectory to our Sun may, in thousands event capture, also explain sudden historical and recent temperature changes.

  20. 基于改进 NSGA-Ⅱ的云服务 PDTs调度算法%An Scheduling Algorithm for Cloud Service PDTs Based on Improved NSGA-II

    Institute of Scientific and Technical Information of China (English)

    刘瑶

    2014-01-01

    基于多目标优化的云计算PDTs调度是一个NP问题,考虑云计算用户的服务质量( QoS)要求,将处理PDTs的成本和时间要求作为目标,提出一种基于改进NSGA-Ⅱ的云服务PDTs调度算法。采用相似任务序列交叉( STOX)操作加快进化,而采用位移变异避免算法过早收敛,此外,还利用一个拥挤距离自适应算子( SCD)来改善Pareto 最优前沿的个体多样性。仿真结果表明该算法在云PDTs调度中保持Pareto最优解的多样性和分布性方面优于NSGA-Ⅱ算法。%Partly dependent tasks (PDTs) scheduling with multi-objective optimization in cloud computing is an NP-hard problem.Taking the quality of service ( QoS) requirements of users that use cloud computing into ac-count, we set the cost and time requirements of handling the PDTs as the multiple objectives and propose an im-proved algorithm based on the non-dominated sorting genetic algorithm-II ( NSGA-II) to find the Pareto optimal set of the PDTs scheduling.In this paper, the similar task order crossover ( STOX) operator is applied to make the evolution more efficient while the shift mutation operator is applied in the process of evolution to avoid the premature convergence.In addition, we propose a new method named self-adapting crowding distance ( SCD) operator, which can improve the diversity of individuals in the Pareto-optimal front.The simulation results and a-nalysis show that the proposed algorithm outperforms NSGA-II in maintaining the diversity and the distribution of the Pareto-optimal solutions in the cloud PDTs scheduling.

  1. Mobile Clouds

    DEFF Research Database (Denmark)

    Fitzek, Frank; Katz, Marcos

    users in very different ways and for various purposes. The book provides many stimulating examples of resource-sharing applications. Enabling technologies for mobile clouds are also discussed, highlighting the key role of network coding. Mobile clouds have the potential to enhance communications...... of resource sharing takes a wider and deeper meaning, creating the foundations for a global real-time multidimensional resource pool, the underlying infrastructure for shareconomy. Above all, this is an inspiring book for anyone who is concerned about the future of wireless and mobile communications networks...... and their relationship with Social networks. Key Features: Provides fundamental ideas and promising concepts for exploiting opportunistic cooperation and cognition in wireless and mobile networks Gives clear definitions of mobile clouds from different perspectives Associates mobile and wireless networks with social...

  2. Hydrogen Greenhouse Planets Beyond the Habitable Zone

    CERN Document Server

    Pierrehumbert, Raymond

    2011-01-01

    We show that collision-induced absorption allows molecular hydrogen to act as an incondensible greenhouse gas, and that bars or tens of bars of primordial H2-He mixtures can maintain surface temperatures above the freezing point of water well beyond the "classical" habitable zone defined for CO2 greenhouse atmospheres. Using a 1-D radiative-convective model we find that 40 bars of pure H2 on a 3 Earth-mass planet can maintain a surface temperature of 280K out to 1.5AU from an early-type M dwarf star and 10 AU from a G-type star. Neglecting the effects of clouds and of gaseous absorbers besides H2, the flux at the surface would be sufficient for photosynthesis by cyanobacteria (in the G star case) or anoxygenic phototrophs (in the M star case). We argue that primordial atmospheres of one to several hundred bars of H2-He are possible, and use a model of hydrogen escape to show that such atmospheres are likely to persist further than 1.5 AU from M stars, and 2 AU from G stars, assuming these planets have protect...

  3. Mean motion resonances from planet-planet scattering

    CERN Document Server

    Raymond, Sean N; Armitage, Philip J; Gorelick, Noel

    2008-01-01

    Planet-planet scattering is the leading mechanism to explain the large eccentricities of the observed exoplanet population. However, scattering has not been considered important to the production of pairs of planets in mean motion resonances (MMRs). We present results from a large number of numerical simulations of dynamical instabilities in 3-planet systems. We show that MMRs arise naturally in about five percent of cases. The most common resonances we populate are the 2:1 and 3:1 MMRs, although a wide variety of MMRs can occur, including high-order MMRs (up to eleventh order). MMRs are generated preferentially in systems with uneven mass distributions: the smallest planet is typically ejected after a series of close encounters, leaving the remaining, more massive planets in resonance. The distribution of resonant planets is consistent with the phase-space density of resonant orbits, meaning that planets are randomly thrown into MMRs rather than being slowly pulled into them. It may be possible to distinguis...

  4. The Hunt for Planet Nine: Atmosphere, Spectra, Evolution, and Detectability

    Science.gov (United States)

    Fortney, Jonathan J.; Marley, Mark; Laughlin, Gregory P.; Nettelmann, Nadine; Morley, Caroline; Lupu, Roxana E.; Visscher, Channon

    2016-10-01

    We investigate the physical characteristics of the Solar System's proposed Planet Nine using modeling tools with a heritage in studying Uranus and Neptune. For a range of plausible masses and interior structures, we find upper limits on the intrinsic Teff, from ~35-50 K for masses of 5-20 M_Earth, and we also explore lower Teff values. Possible planetary radii could readily span from 2.7 to 6 R_Earth depending on the mass fraction of any H/He envelope. Given its cold temperature, the planet encounters significant methane condensation, which dramatically alters the atmosphere away from simple Neptune-like expectations. We find the atmosphere is strongly depleted in molecular absorption at visible wavelengths, suggesting a Rayleigh scattering atmosphere with a high geometric albedo approaching 0.75. We highlight two diagnostics for the atmosphere's temperature structure, the first being the value of the methane mixing ratio above the methane cloud. The second is the wavelength at which cloud scattering can be seen, which yields the cloud-top pressure. Surface reflection may be seen if the atmosphere is thin. Due to collision-induced opacity of H2 in the infrared, the planet would be extremely blue (instead of red) in the shortest wavelength WISE colors if methane is depleted, and would, in some cases, exist on the verge of detectability by WISE. For a range of models, thermal fluxes from ~3-5 microns are ~20 orders of magnitude larger than blackbody expectations. We report a search of the AllWISE Source Catalog for Planet Nine, but find no detection.

  5. Probing exoplanet clouds with optical phase curves

    CERN Document Server

    Munoz, A Garcia

    2015-01-01

    Kepler-7b is to date the only exoplanet for which clouds have been inferred from the optical phase curve -- from visible-wavelength whole-disk brightness measurements as a function of orbital phase. Added to this, the fact that the phase curve appears dominated by reflected starlight makes this close-in giant planet a unique study case. Here we investigate the information on coverage and optical properties of the planet clouds contained in the measured phase curve. We generate cloud maps of Kepler-7b and use a multiple-scattering approach to create synthetic phase curves, thus connecting postulated clouds with measurements. We show that optical phase curves can help constrain the composition and size of the cloud particles. Indeed, model fitting for Kepler-7b requires poorly absorbing particles that scatter with low-to-moderate anisotropic efficiency, conclusions consistent with condensates of silicates, perovskite, and silica of submicron radii. We also show that we are limited in our ability to pin down the...

  6. Simulating planet migration in globally evolving disks

    CERN Document Server

    Crida, A; Masset, F

    2006-01-01

    Numerical simulations of planet-disk interactions are usually performed with hydro-codes that -- because they consider only an annulus of the disk, over a 2D grid -- can not take into account the global evolution of the disk. However, the latter governs planetary migration of type II, so that the accuracy of the planetary evolution can be questioned. To develop an algorithm that models the local planet-disk interactions together with the global viscous evolution of the disk, we surround the usual 2D grid with a 1D grid ranging over the real extension of the disk. The 1D and 2D grids are coupled at their common boundaries via ghost rings, paying particular attention to the fluxes at the interface, especially the flux of angular momentum carried by waves. The computation is done in the frame centered on the center of mass to ensure angular momentum conservation. The global evolution of the disk and the local planet-disk interactions are both well described and the feedback of one on the other can be studied wit...

  7. Extrasolar Planet Inferometric Survey (EPIcS)

    Science.gov (United States)

    Shao, Michael; Baliunas, Sallie; Boden, Andrew; Kulkarni, Shrinivas; Lin, Douglas N. C.; Loredo, Tom; Queloz, Didier; Shaklan, Stuart; Tremaine, Scott; Wolszczan, Alexander

    2004-01-01

    The discovery of the nature of the solar system was a crowning achievement of Renaissance science. The quest to evaluate the properties of extrasolar planetary systems is central to both the intellectual understanding of our origins and the cultural understanding of humanity's place in the Universe; thus it is appropriate that the goals and objectives of NASA's breakthrough Origins program emphasize the study of planetary systems, with a focus on the search for habitable planets. We propose an ambitious research program that will use SIM - the first major mission of the Origins program - to explore planetary systems in our Galactic neighborhood. Our program is a novel two-tiered SIM survey of nearby stars that exploits the capabilities of SIM to achieve two scientific objectives: (i) to identify Earth-like planets in habitable regions around nearby Sunlike stars: and (ii) to explore the nature and evolution of planetary systems in their full variety. The first of these objectives was recently recommended by the Astronomy and Astrophysics Survey Committee (the McKee-Taylor Committee) as a prerequisite for the development of the Terrestrial Planet Finder mission later in the decade. Our program combines this two-part survey with preparatory and contemporaneous research designed to maximize the scientific return from the limited and thus precious observing resources of SIM.

  8. Cloud radiative properties and aerosol - cloud interaction

    Science.gov (United States)

    Viviana Vladutescu, Daniela; Gross, Barry; Li, Clement; Han, Zaw

    2015-04-01

    The presented research discusses different techniques for improvement of cloud properties measurements and analysis. The need for these measurements and analysis arises from the high errors noticed in existing methods that are currently used in retrieving cloud properties and implicitly cloud radiative forcing. The properties investigated are cloud fraction (cf) and cloud optical thickness (COT) measured with a suite of collocated remote sensing instruments. The novel approach makes use of a ground based "poor man's camera" to detect cloud and sky radiation in red, green, and blue with a high spatial resolution of 30 mm at 1km. The surface-based high resolution photography provides a new and interesting view of clouds. As the cloud fraction cannot be uniquely defined or measured, it depends on threshold and resolution. However as resolution decreases, cloud fraction tends to increase if the threshold is below the mean, and vice versa. Additionally cloud fractal dimension also depends on threshold. Therefore these findings raise concerns over the ability to characterize clouds by cloud fraction or fractal dimension. Our analysis indicate that Principal Component analysis may lead to a robust means of quantifying cloud contribution to radiance. The cloud images are analyzed in conjunction with a collocated CIMEL sky radiometer, Microwave Radiometer and LIDAR to determine homogeneity and heterogeneity. Additionally, MFRSR measurements are used to determine the cloud radiative properties as a validation tool to the results obtained from the other instruments and methods. The cloud properties to be further studied are aerosol- cloud interaction, cloud particle radii, and vertical homogeneity.

  9. The present and past climates of planet Mars

    Directory of Open Access Journals (Sweden)

    Forget F.

    2009-02-01

    Full Text Available Mars is a small planet with a thin atmosphere of almost pure carbon dioxide. To first order, the Martian meteorology can be compared with what one would expect on a cold, dry desert-like Earth. However, several phenomena make the Martian climate system more complex than it appears. First, as much as 30% of the carbon dioxide atmosphere condenses every winter at high latitude to form CO2 ice polar caps, inducing large surface pressure variations all over the planet and an atmospheric circulation without equivalent on Earth. Second, a highly variable amount of suspended dust lifted by the winds modifies the radiative properties of the atmosphere, with sometime global dust storms able to totally shroud the planet. Last, a peculiar water cycle occurs on Mars, with water vapor transported by the atmosphere between the polar caps and possibly subsurface reservoirs, allowing the formation of clouds, hazes and frost. Telescopic and spacecraft observations have shown us that this complex climate system is highly variable, seasonally and from year to year, but these variations remain poorly understood. In fact, the Martian climate system has probably experienced large variations related to the oscillations in the parameters of the orbit and rotation of Mars (obliquity a few millions or even thousand of years ago. These oscillations affected surface temperatures and the water cycle, inducing the mobilization and accumulation of large ice deposits in various locations on the planets. In a much distant past, it is also likely that Mars may have been a completely different planet. The observations of the geology (dry riverbeds and deltas, lacustrine sediments and mineralogy (clay, sulfate of the oldest surface on Mars dating back to more than 3 billions years ago provide evidence that liquid water was then abundant on the surface, at least episodically. Mars may have been warmed by a thicker atmosphere containing greenhouse gas and clouds, high geothermal

  10. Physical conditions in CaFe interstellar clouds

    CERN Document Server

    Gnacinski, P

    2007-01-01

    Interstellar clouds that exhibit strong Ca I and Fe I lines were called CaFe clouds. The ionisation equilibrium equations were used to model the column densities of Ca II, Ca I, K I, Na I, Fe I and Ti II in CaFe clouds. The chemical composition of CaFe clouds is that of the Solar System and no depletion of elements onto dust grains is seen. The CaFe clouds have high electron densities n=1 cm^-3 that leads to high column densities of neutral Ca and Fe.

  11. Physical conditions in CaFe interstellar clouds

    OpenAIRE

    Gnacinski, P.; Krogulec, M.

    2007-01-01

    Interstellar clouds that exhibit strong Ca I and Fe I lines were called CaFe clouds. The ionisation equilibrium equations were used to model the column densities of Ca II, Ca I, K I, Na I, Fe I and Ti II in CaFe clouds. The chemical composition of CaFe clouds is that of the Solar System and no depletion of elements onto dust grains is seen. The CaFe clouds have high electron densities n=1 cm^-3 that leads to high column densities of neutral Ca and Fe.

  12. The Spitzer Space Telescope Survey of the Orion A and B Molecular Clouds. II. The Spatial Distribution and Demographics of Dusty Young Stellar Objects

    OpenAIRE

    Megeath, S. T.; Gutermuth, R.; J. Muzerolle; Kryukova, E.; Hora, J.L.; Allen, L E; Flaherty, K; Hartmann, L.; Myers, P. C.; Pipher, J. L.; Stauffer, J.; Young, E T; Fazio, G. G.

    2016-01-01

    We analyze the spatial distribution of dusty young stellar objects (YSOs) identified in the Spitzer Survey of the Orion Molecular clouds, augmenting these data with Chandra X-ray observations to correct for incompleteness in dense clustered regions. We also devise a scheme to correct for spatially varying incompleteness when X-ray data are not available. The local surface densities of the YSOs range from 1 pc$^{-2}$ to over 10,000 pc$^{-2}$, with protostars tending to be in higher density reg...

  13. Giant elves: Lightning-generated electromagnetic pulses in giant planets.

    Science.gov (United States)

    Luque Estepa, Alejandro; Dubrovin, Daria; José Gordillo-Vázquez, Francisco; Ebert, Ute; Parra-Rojas, Francisco Carlos; Yair, Yoav; Price, Colin

    2015-04-01

    We currently have direct optical observations of atmospheric electricity in the two giant gaseous planets of our Solar System [1-5] as well as radio signatures that are possibly generated by lightning from the two icy planets Uranus and Neptune [6,7]. On Earth, the electrical activity of the troposphere is associated with secondary electrical phenomena called Transient Luminous Events (TLEs) that occur in the mesosphere and lower ionosphere. This led some researchers to ask if similar processes may also exist in other planets, focusing first on the quasi-static coupling mechanism [8], which on Earth is responsible for halos and sprites and then including also the induction field, which is negligible in our planet but dominant in Saturn [9]. However, one can show that, according to the best available estimation for lightning parameters, in giant planets such as Saturn and Jupiter the effect of the electromagnetic pulse (EMP) dominates the effect that a lightning discharge has on the lower ionosphere above it. Using a Finite-Differences, Time-Domain (FDTD) solver for the EMP we found [10] that electrically active storms may create a localized but long-lasting layer of enhanced ionization of up to 103 cm-3 free electrons below the ionosphere, thus extending the ionosphere downward. We also estimate that the electromagnetic pulse transports 107 J to 1010 J toward the ionosphere. There emissions of light of up to 108 J would create a transient luminous event analogous to a terrestrial elve. Although these emissions are about 10 times fainter than the emissions coming from the lightning itself, it may be possible to target them for detection by filtering the appropiate wavelengths. [1] Cook, A. F., II, T. C. Duxbury, and G. E. Hunt (1979), First results on Jovian lightning, Nature, 280, 794, doi:10.1038/280794a0. [2] Little, B., C. D. Anger, A. P. Ingersoll, A. R. Vasavada, D. A. Senske, H. H. Breneman, W. J. Borucki, and The Galileo SSI Team (1999), Galileo images of

  14. Pluto: The Farthest Planet (Usually).

    Science.gov (United States)

    Universe in the Classroom, 1988

    1988-01-01

    Provides background information about the planet Pluto. Includes the history of Pluto and discusses some of the common misconceptions about the planets. Addresses some of the recent discoveries about Pluto and contains a resource list of books, articles, and a videotape. (TW)

  15. Chemical kinetics on extrasolar planets.

    Science.gov (United States)

    Moses, Julianne I

    2014-04-28

    Chemical kinetics plays an important role in controlling the atmospheric composition of all planetary atmospheres, including those of extrasolar planets. For the hottest exoplanets, the composition can closely follow thermochemical-equilibrium predictions, at least in the visible and infrared photosphere at dayside (eclipse) conditions. However, for atmospheric temperatures approximately planets.

  16. Planets from the HATNet project

    Directory of Open Access Journals (Sweden)

    Latham D. W.

    2011-02-01

    Full Text Available We summarize the contribution of the HATNet project to extrasolar planet science, highlighting published planets (HAT-P-1b through HAT-P-26b. We also briefly discuss the operations, data analysis, candidate selection and confirmation procedures, and we summarize what HATNet provides to the exoplanet community with each discovery.

  17. The fate of scattered planets

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-12-01

    As gas giant planets evolve, they may scatter other planets far from their original orbits to produce hot Jupiters or rogue planets that are not gravitationally bound to any star. Here, we consider planets cast out to large orbital distances on eccentric, bound orbits through a gaseous disk. With simple numerical models, we show that super-Earths can interact with the gas through dynamical friction to settle in the remote outer regions of a planetary system. Outcomes depend on planet mass, the initial scattered orbit, and the evolution of the time-dependent disk. Efficient orbital damping by dynamical friction requires planets at least as massive as the Earth. More massive, longer-lived disks damp eccentricities more efficiently than less massive, short-lived ones. Transition disks with an expanding inner cavity can circularize orbits at larger distances than disks that experience a global (homologous) decay in surface density. Thus, orbits of remote planets may reveal the evolutionary history of their primordial gas disks. A remote planet with an orbital distance ∼100 AU from the Sun is plausible and might explain correlations in the orbital parameters of several distant trans-Neptunian objects.

  18. THREE PLANETS ORBITING WOLF 1061

    Energy Technology Data Exchange (ETDEWEB)

    Wright, D. J.; Wittenmyer, R. A.; Tinney, C. G.; Bentley, J. S.; Zhao, Jinglin, E-mail: duncan.wright@unsw.edu.au [Department of Astronomy and Australian Centre for Astrobiology, School of Physics, University of New South Wales, NSW 2052 (Australia)

    2016-02-01

    We use archival HARPS spectra to detect three planets orbiting the M3 dwarf Wolf 1061 (GJ 628). We detect a 1.36 M{sub ⊕} minimum-mass planet with an orbital period P = 4.888 days (Wolf 1061b), a 4.25 M{sub ⊕} minimum-mass planet with orbital period P = 17.867 days (Wolf 1061c), and a likely 5.21 M{sub ⊕} minimum-mass planet with orbital period P = 67.274 days (Wolf 1061d). All of the planets are of sufficiently low mass that they may be rocky in nature. The 17.867 day planet falls within the habitable zone for Wolf 1061 and the 67.274 day planet falls just outside the outer boundary of the habitable zone. There are no signs of activity observed in the bisector spans, cross-correlation FWHMs, calcium H and K indices, NaD indices, or Hα indices near the planetary periods. We use custom methods to generate a cross-correlation template tailored to the star. The resulting velocities do not suffer the strong annual variation observed in the HARPS DRS velocities. This differential technique should deliver better exploitation of the archival HARPS data for the detection of planets at extremely low amplitudes.

  19. Numerical simulations of a shock interacting with multiple magnetized clouds

    Science.gov (United States)

    Alūzas, R.; Pittard, J. M.; Falle, S. A. E. G.; Hartquist, T. W.

    2014-10-01

    We present 2D adiabatic magnetohydrodynamic simulations of a shock interacting with groups of two or three cylindrical clouds. We study how the presence of a nearby cloud influences the dynamics of this interaction, and explore the resulting differences and similarities in the evolution of each cloud. The understanding gained from this small-scale study will help to interpret the behaviour of systems with many 10s or 100s of clouds. We observe a wide variety of behaviour in the interactions studied, which is dependent on the initial positions of the clouds and the orientation and strength of the magnetic field. We find (i) some clouds are stretched along their field lines, whereas others are confined by their field lines; (ii) upstream clouds may accelerate past downstream clouds (though magnetic tension can prevent this); (iii) clouds may also change their relative positions transverse to the direction of shock propagation as they `slingshot' past each other; (iv) downstream clouds may be offered some protection from the oncoming flow as a result of being in the lee of an upstream cloud; (v) the cycle of cloud compression and re-expansion is generally weaker when there are nearby neighbouring clouds; (vi) the plasma β in cloud material can vary rapidly as clouds collide with one another, but low values of β are always transitory. This work is relevant to studies of multiphase regions, where fast, low-density gas interacts with dense clouds, such as in circumstellar bubbles, supernova remnants, superbubbles and galactic winds.

  20. Mobile Clouds

    DEFF Research Database (Denmark)

    Fitzek, Frank; Katz, Marcos

    examples of mobile clouds applications, based on both existing commercial initiatives as well as proof-of-concept test-beds. Visions and prospects are also discussed, paving the way for further development. As mobile networks and social networks become more and more reliant on each other, the concept...

  1. Soft Clouding

    DEFF Research Database (Denmark)

    Søndergaard, Morten; Markussen, Thomas; Wetton, Barnabas;

    2012-01-01

    Soft Clouding is a blended concept, which describes the aim of a collaborative and transdisciplinary project. The concept is a metaphor implying a blend of cognitive, embodied interaction and semantic web. Furthermore, it is a metaphor describing our attempt of curating a new semantics of sound...

  2. From Pixels to Planets

    Science.gov (United States)

    Brownston, Lee; Jenkins, Jon M.

    2015-01-01

    The Kepler Mission was launched in 2009 as NASAs first mission capable of finding Earth-size planets in the habitable zone of Sun-like stars. Its telescope consists of a 1.5-m primary mirror and a 0.95-m aperture. The 42 charge-coupled devices in its focal plane are read out every half hour, compressed, and then downlinked monthly. After four years, the second of four reaction wheels failed, ending the original mission. Back on earth, the Science Operations Center developed the Science Pipeline to analyze about 200,000 target stars in Keplers field of view, looking for evidence of periodic dimming suggesting that one or more planets had crossed the face of its host star. The Pipeline comprises several steps, from pixel-level calibration, through noise and artifact removal, to detection of transit-like signals and the construction of a suite of diagnostic tests to guard against false positives. The Kepler Science Pipeline consists of a pipeline infrastructure written in the Java programming language, which marshals data input to and output from MATLAB applications that are executed as external processes. The pipeline modules, which underwent continuous development and refinement even after data started arriving, employ several analytic techniques, many developed for the Kepler Project. Because of the large number of targets, the large amount of data per target and the complexity of the pipeline algorithms, the processing demands are daunting. Some pipeline modules require days to weeks to process all of their targets, even when run on NASA's 128-node Pleiades supercomputer. The software developers are still seeking ways to increase the throughput. To date, the Kepler project has discovered more than 4000 planetary candidates, of which more than 1000 have been independently confirmed or validated to be exoplanets. Funding for this mission is provided by NASAs Science Mission Directorate.

  3. The Rocky Planet Survey

    Science.gov (United States)

    Fischer, Debra

    In direct support of the NASA Origins program, we propose the Rocky Planet Survey, a high cadence exoplanet search of sixty late G and K dwarf stars using the CHIRON spectrometer, which we built and commissioned at CTIO. CHIRON operates in two high- resolution modes (R=90,000 and R=120,000) and has a demonstrated precision of better than 1 m s-1. We are contributing 200 nights of telescope time for the next three years, for the excellent phase coverage needed to carry out this work. We have developed simulation software to optimize scheduling of observations to suppress aliases and quickly extract dynamical signals. Our science objectives are to (1) provide a statistical assessment of planet occurrence as a function of decreasing mass in the range of parameter space 3 objectives, we intend to push the frontiers of extreme precision Doppler measurements to keep the U.S. competitive with the next generation of European Doppler spectroscopy (ESPRESSO on the VLT). Our team has significant expertise in optical design, fiber coupling, raw extraction, barycentric velocity corrections, and Doppler analysis. The proposed work includes a new optimal extraction algorithm, with the optical designers and software engineers working together on the 2-D PSF description needed for a proper row-by-row extraction and calibration. We will also develop and test upgrades to the barycentric correction code and improvements in the Doppler code that take advantage of stability in the dispersion solution, afforded by a new vacuum-enclosed grating upgrade (scheduled for November 2011). We will test use of emission wavelength calibrations to extend the iodine (absorption) wavelength calibration that we currently use to prepare for eventual use of stabilized etalons or laser frequency combs. Radial velocity measurements play a fundamental role, both in the detection of exoplanets and in support of NASA missions. This program will train postdoctoral fellows, grad students and undergrads, while

  4. The Search for Primordial Molecular Cloud Matter

    DEFF Research Database (Denmark)

    van Kooten, Elishevah M M E

    Our Solar System today presents a somewhat static picture compared to the turbulent start of its existence. Meteorites are the left-over building blocks of planet formation and allow us to probe the chemical and physical processes that occurred during the first few million years of Solar System...... evolution. Some of the least altered, most primitive meteorites can give us clues to the original make-up of the interstellar molecular cloud from which the Sun and its surrounding planets formed, thus, permitting us to trace Solar System formation from its most early conditions. Using state......-of-the-art magnesium and chromium isotope techniques, we can distinguish a class of metal-rich meteorites with primordial molecular cloud signatures that show these objects formed in accretion regions akin to comets. As comets are proposed to have delivered some of the prerequisites of life to Earth, for example...

  5. Numerical Simulations of Disk-Planet Interactions

    Science.gov (United States)

    D'Angelo, Gennaro

    2003-06-01

    constant when perturbing masses lie above approximately a 0.1 of the Jupiter's mass, as prescribed by Type II migration regime. In a range between 7 and 15 Earth's masses, it is found a dependency of the migration speed on the planetary mass that yields time scales considerably longer than those predicted by linear analytical theories. Type I migration regime is well reproduced outside of such mass interval. The growth time scale is minimum around 20 Earth-masses, but it rapidly increases for both smaller and larger mass values. With respect to accretion and migration rates, significant differences between 2D and 3D calculations are found in particular for objects with masses smaller than 10 Earth-masses. The final part of this work was dedicated to the simulation of non-local isothermal (i.e., radiative) models, by restricting to 2D computations. Different temperature regimes are examined, according to the magnitude of the fluid's kinematic viscosity. The gap structure was found to depend on the viscosity regime, and only cold environments offer the right conditions for a wide and deep gap to be carved in. The temperature profile inside of proto-Jovian disks falls off as the inverse of the distance from the planet. As for migration and accretion, estimates are generally on the same order of magnitude as those acquired with the aid of local isothermal models. Since the gap is generally filled in the high-viscosity case, Type I migration regime might extend to larger planetary masses, thereby causing a reduction of migration rates.

  6. Migration of accreting planets in radiative discs from dynamical torques

    Science.gov (United States)

    Pierens, A.; Raymond, S. N.

    2016-11-01

    We present the results of hydrodynamical simulations of the orbital evolution of planets undergoing runaway gas accretion in radiative discs. We consider accreting disc models with constant mass flux through the disc, and where radiative cooling balances the effect of viscous heating and stellar irradiation. We assume that 20-30 M⊕ giant planet cores are formed in the region where viscous heating dominates and migrate outward under the action of a strong entropy-related corotation torque. In the case where gas accretion is neglected and for an α viscous stress parameter α = 2 × 10-3, we find evidence for strong dynamical torques in accreting discs with accretion rates {dot{M}}≳ 7× 10^{-8} M_{⊙} yr{}^{-1}. Their main effect is to increase outward migration rates by a factor of ˜2 typically. In the presence of gas accretion, however, runaway outward migration is observed with the planet passing through the zero-torque radius and the transition between the viscous heating and stellar heating dominated regimes. The ability for an accreting planet to enter a fast migration regime is found to depend strongly on the planet growth rate, but can occur for values of the mass flux through the disc of {dot{M}}≳ 5× 10^{-8} M_{⊙} yr{}^{-1}. We find that an episode of runaway outward migration can cause an accreting planet formed in the 5-10 au region to temporarily orbit at star-planet separations as large as ˜60-70 au. However, increase in the amplitude of the Lindblad torque associated with planet growth plus change in the streamline topology near the planet systematically cause the direction of migration to be reversed. Subsequent evolution corresponds to the planet migrating inward rapidly until it becomes massive enough to open a gap in the disc and migrate in the type II regime. Our results indicate that a planet can reach large orbital distances under the combined effect of dynamical torques and gas accretion, but an alternative mechanism is required to

  7. Clouds in the Forecast? A Joint Spitzer and HST Investigation of Clouds and Hazes for Two Exo-Neptunes

    Science.gov (United States)

    Kreidberg, Laura; Morley, Caroline; Line, Michael; Stevenson, Kevin; Dragomir, Diana

    2016-08-01

    Recent observations of transiting planets have revealed that clouds and hazes are common in exoplanet atmospheres. Little is known, however, about how the clouds/hazes form, what their composition is, and how their properties vary with planet parameters. We propose to characterize the atmospheres of two exo-Neptunes, GJ 436b and GJ 3470b, both of which show evidence for clouds or hazes in their near-infrared spectra. We will measure precise 3.6 and 4.5 micron transit depths for these planets, to compare with existing high-precision data at shorter wavelengths. We will also obtain a UV spectrum for GJ 3470 with HST/COS to enable accurate models of the planet's photochemistry. These observations will enable us to distinguish at high confidence between a range of physically realistic models for the atmospheric chemistry, including methanogenic photochemical hazes and equilibrium salt/sulfide clouds. The measurements will enable comparative planetology with the handful of other small, cool worlds currently accessible to observation, and serve as a first assessment of the prevalence, origin, and composition of clouds and haze in metal-enriched atmospheres below 1000 K. Our findings will guide the design of future observations of increasingly Earth-like worlds with JWST.

  8. Radargrammetry on three planets

    Science.gov (United States)

    Kirk, R.L.; Howington-Kraus, E.

    2008-01-01

    Synthetic Aperture Radar (SAR) can provide useful images in situations where passive optical imaging cannot, either because the microwaves used can penetrate atmospheric clouds, because active imaging can "see in the dark," or both. We have participated in the NASA Magellan mission to Venus in the 1990s and the current NASA-ESA Cassini-Huygens mission to Saturn and Titan, which have used SAR to see through the clouds of Venus and Titan, respectively, and have developed software and techniques for the production of digital topographic models (DTMs) from radar stereopairs. We are currently preparing for similar radargrammetric analysis of data from the Mini-RF instrument to be carried to the Moon on both the ISRO Chandrayaan-1 and NASA Lunar Reconnaissance Orbiter (LRO) missions later in 2008. These instruments are intended to image the permanently shadowed areas at the lunar poles and even see below the surface to detect possible water ice deposits. In this paper, we describe our approach to radargrammetric topographic mapping, based on the use of the USGS ISIS software system to ingest and prepare data, and the commercial stereoanalysis software SOCET SET (® BAE Systems), augmented with custom sensor models we have implemented, for DTM production and editing. We describe the commonalities and differences between the various data sets, and some of the lessons learned, both radargrammetric and geoscientific.

  9. Kiloparsec-Scale Simulations of Star Formation in Disk Galaxies II. Structure and Dynamics of Filaments and Clumps in Giant Molecular Clouds

    CERN Document Server

    Butler, Michael J; Van Loo, Sven

    2014-01-01

    We present hydrodynamic simulations of self-gravitating dense gas in a galactic disk, exploring scales ranging from 1 kpc down to $\\sim 0.1$~pc. Our primary goal is to understand how dense filaments form in Giant Molecular Clouds (GMCs). These structures, often observed as Infrared Dark Clouds (IRDCs) in the Galactic plane, are thought to be the precursors to massive stars and star clusters, so their formation may be the rate limiting step controlling global star formation rates in galactic systems as described by the Kennicutt-Schmidt relation. Our study follows on from Van Loo et al. (2013, Paper I), which carried out simulations to 0.5~pc resolution and examined global aspects of the formation of dense gas clumps and the resulting star formation rate. Here, using our higher resolution, we examine the detailed structural, kinematic and dynamical properties of dense filaments and clumps, including mass surface density ($\\Sigma$) probability distribution functions, filament mass per unit length and its disper...

  10. Aerosol measurements in the winter/spring Antarctic stratosphere. I - Correlative measurements with ozone. II - Impact on polar stratospheric cloud theories

    Science.gov (United States)

    Hofmann, D. J.; Rosen, J. M.; Harder, J. W.

    1988-01-01

    Aerosol measurements collected from August 25-November 3, 1986 at McMurdo Station using balloon-borne optical particle counters are examined in order to study the relationship between aerosol and ozone distribution and the formation of polar stratospheric clouds (PSCs). Ozone, aerosol, and condensation nuclei profiles, and pressure, temperature, and humidity measurements are analyzed. It is observed that the height of the stratospheric sulfate layer decreases over the period of measurement suggesting that upwelling in the votex is not important in the zone depletion process. Three theories on PSC formation are described, and the effects of the aerosol measurements on the theories are considered. The three theories are: (1) the original theory of water vapor pressure over a solution of H2SO4 of Steele et al. (1983) and Hamill and Mc Master (1984); (2) the nitric acid theory of PSCs of Toon et al. (1986) and Hamill et al. (1986); and (3) the quasi-cirrus cloud theory of Heymsfield (1986).

  11. The Chemistry of Planet Formation

    Science.gov (United States)

    Oberg, Karin I.

    2017-01-01

    Exo-planets are common, and they span a large range of compositions. The origins of the observed diversity of planetary compositions is largely unconstrained, but must be linked to the planet formation physics and chemistry. Among planets that are Earth-like, a second question is how often such planets form hospitable to life. A fraction of exo-planets are observed to be ‘physically habitable’, i.e. of the right temperature and bulk composition to sustain a water-based prebiotic chemistry, but this does not automatically imply that they are rich in the building blocks of life, in organic molecules of different sizes and kinds, i.e. that they are chemically habitable. In this talk I will argue that characterizing the chemistry of protoplanetary disks, the formation sites of planets, is key to address both the origins of planetary bulk compositions and the likelihood of finding organic matter on planets. The most direct path to constrain the chemistry in disks is to directly observe it. In the age of ALMA it is for the first time possible to image the chemistry of planet formation, to determine locations of disk snowlines, and to map the distributions of different organic molecules. Recent ALMA highlights include constraints on CO snowline locations, the discovery of spectacular chemical ring systems, and first detections of more complex organic molecules. Observations can only provide chemical snapshots, however, and even ALMA is blind to the majority of the chemistry that shapes planet formation. To interpret observations and address the full chemical complexity in disks requires models, both toy models and astrochemical simulations. These models in turn must be informed by laboratory experiments, some of which will be shown in this talk. It is thus only when we combine observational, theoretical and experimental constraints that we can hope to characterize the chemistry of disks, and further, the chemical compositions of nascent planets.

  12. Planet Classification: A Historical Perspective

    Science.gov (United States)

    Weintraub, David A.

    2009-05-01

    As philosopher George Santayana famously said, "those who cannot remember the past are condemned to repeat it." The professional astronomy community, as embodied in the IAU, now suffers from Santayana's malady. Ceres was expelled from the community of planets because it apparently was not a planet; yet, no working, scientifically reasonable definition of the word planet existed in the early nineteenth century and so no rational basis existed for excluding or including Ceres or, for that matter, Uranus or the soon-to-be-discovered Neptune from the family of planets. Instead, William Herschel disparaged Ceres as only an "asteroid," a term he invented specifically to separate Ceres and Pallas and Vesta from the true planets. Clearly, in Herschel's view, Ceres was not big enough, and apparently, to Herschel, size mattered. So how big is big enough and by what method was size put in place as the critical scientific metric for assessing planethood? Certainly, as members of the newly discovered asteroid belt, the newly identified asteroids were members of a previously unknown family of objects in the solar system. But why did that make these non-classically known objects asteroids but not planets rather than asteroids and planets? Uranus and Neptune were also members of a newly identified and previously unknown family of solar system objects that we now call "ice giants." On what basis were these two objects embraced as planets and why have these two non-classical objects become known as ice giants and planets rather than ice giants but not planets? Perhaps our scientific predecessors were too quick to render judgment, as they lacked the scientific context in which to understand the many new objects discovered during the years 1781 to 1846. Is that a lesson from the past that we might remember today?

  13. Impact of future climate policy scenarios on air quality and aerosol-cloud interactions using an advanced version of CESM/CAM5: Part II. Future trend analysis and impacts of projected anthropogenic emissions

    Science.gov (United States)

    Glotfelty, Timothy; Zhang, Yang

    2017-03-01

    Following a comprehensive evaluation of the Community Earth System Model modified at the North Carolina State University (CESM-NCSU), Part II describes the projected changes in the future state of the atmosphere under the representative concentration partway scenarios (RCP4.5 and 8.5) by 2100 for the 2050 time frame and examine the impact of climate change on future air quality under both scenarios, and the impact of projected emission changes under the RCP4.5 scenario on future climate through aerosol direct and indirect effects. Both the RCP4.5 and RCP8.5 simulations predict similar changes in air quality by the 2050 period due to declining emissions under both scenarios. The largest differences occur in O3, which decreases by global mean of 1.4 ppb under RCP4.5 but increases by global mean of 2.3 ppb under RCP8.5 due to differences in methane levels, and PM10, which decreases by global mean of 1.2 μg m-3 under RCP4.5 and increases by global mean of 0.2 μg m-3 under RCP8.5 due to differences in dust and sea-salt emissions under both scenarios. Enhancements in cloud formation in the Arctic and Southern Ocean and increases of aerosol optical depth (AOD) in central Africa and South Asia dominate the change in surface radiation in both scenarios, leading to global average dimming of 1.1 W m-2 and 2.0 W m-2 in the RCP4.5 and RCP8.5 scenarios, respectively. Declines in AOD, cloud formation, and cloud optical thickness from reductions of emissions of primary aerosols and aerosol precursors under RCP4.5 result in near surface warming of 0.2 °C from a global average increase of 0.7 W m-2 in surface downwelling solar radiation. This warming leads to a weakening of the Walker Circulation in the tropics, leading to significant changes in cloud and precipitation that mirror a shift in climate towards the negative phase of the El Nino Southern Oscillation.

  14. Web life: Backyard Worlds: Planet 9

    Science.gov (United States)

    2017-04-01

    Much as its name suggests, Backyard Worlds: Planet 9 focuses on the hunt for a ninth planet in our solar system, along with other possible “rogue” planets that astronomers now believe may abound in the galaxy.

  15. Planet Scattering Around Binaries: Ejections, Not Collisions

    CERN Document Server

    Smullen, Rachel A; Shannon, Andrew

    2016-01-01

    Transiting circumbinary planets discovered by Kepler provide unique insight into binary and planet formation. Several features of this new found population, for example the apparent pile-up of planets near the innermost stable orbit, may distinguish between formation theories. In this work, we determine how planet-planet scattering shapes planetary systems around binaries as compared to single stars. In particular, we look for signatures that arise due to differences in dynamical evolution in binary systems. We carry out a parameter study of N-body scattering simulations for four distinct planet populations around both binary and single stars. While binarity has little influence on the final system multiplicity or orbital distribution, the presence of a binary dramatically effects the means by which planets are lost from the system. Most circumbinary planets are lost due to ejections rather than planet-planet or planet-star collisions. The most massive planet in the system tends to control the evolution. Asid...

  16. Planet Hunters: Assessing the Kepler Inventory of Short Period Planets

    CERN Document Server

    Schwamb, Megan E; Fischer, Debra A; Giguere, Matthew J; Lynn, Stuart; Smith, Arfon M; Brewer, John M; Parrish, Michael; Schawinski, Kevin; Simpson, Robert J

    2012-01-01

    We present the results from a search of data from the first 33.5 days of the Kepler science mission (Quarter 1) for exoplanet transits by the Planet Hunters citizen science project. Planet Hunters enlists members of the general public to visually identify transits in the publicly released Kepler light curves via the World Wide Web. Over 24,000 volunteers reviewed the Kepler Quarter 1 data set. We examine the abundance of \\geq 2 R\\oplus planets on short period (< 15 days) orbits based on Planet Hunters detections. We present these results along with an analysis of the detection efficiency of human classifiers to identify planetary transits including a comparison to the Kepler inventory of planet candidates. Although performance drops rapidly for smaller radii, \\geq 4 R\\oplus Planet Hunters \\geq 85% efficient at identifying transit signals for planets with periods less than 15 days for the Kepler sample of target stars. Our high efficiency rate for simulated transits along with recovery of the majority of Ke...

  17. The Effect of Giant Planets on Habitable Planet Formation

    Science.gov (United States)

    Quintana, Elisa V.; Barclay, Thomas

    2016-06-01

    The giant planets in the Solar System likely played a large role in shaping the properties of the Earth during its formation. To explore their effects, we numerically model the growth of Earth-like planets around Sun-like stars with and without Jupiter and Saturn analog companions. Employing state-of-the-art dynamical formation models that allow both accretion and collisional fragmentation, we perform hundreds of simulations and quantify the specific impact energies of all collisions that lead to the formation of an Earth-analog. Our model tracks the bulk compositions and water abundances in the cores and mantles of the growing protoplanets to constrain the types of giant planet configurations that allow the formation of habitable planets. We find significant differences in the collisional histories and bulk compositions of the final planets formed in the presence of different giant planet configurations. Exoplanet surveys like Kepler hint at a paucity of Jupiter analogs, thus these analyses have important implications for determining the frequency of habitable planets and also support target selection for future exoplanet characterization missions.

  18. Characterizing Earth-like Planets with Terrestrial Planet Finder

    CERN Document Server

    Seager, S; Turner, E L

    2002-01-01

    For the first time in human history the possibility of detecting and studying Earth-like planets is on the horizon. Terrestrial Planet Finder (TPF), with a launch date in the 2015 timeframe, is being planned by NASA to find and characterize planets in the habitable zones of nearby stars. The mission Darwin from ESA has similar goals. The motivation for both of these space missions is the detection and spectroscopic characterization of extrasolar terrestrial planet atmospheres. Of special interest are atmospheric biomarkers--such as O2, O3, H2O, CO and CH4--which are either indicative of life as we know it, essential to life, or can provide clues to a planet's habitability. A mission capable of measuring these spectral features would also obtain sufficient signal-to-noise to characterize other terrestrial planet properties. For example, physical characteristics such as temperature and planetary radius can be constrained from low- resolution spectra. In addition, planet characteristics such as weather, rotation...

  19. EDITORIAL: Focus on Cloud Physics FOCUS ON CLOUD PHYSICS

    Science.gov (United States)

    Falkovich, Gregory; Malinowski, Szymon P.

    2008-07-01

    elements of the puzzle, and those which combine them. Scales, assumptions and the conditions used in order to describe a particular single process of interest must be consistent with the conditions in clouds. The papers in this focus issue of New Journal of Physics collectively demonstrate (i) the variation in scientific approaches towards investigating cloud processes, (ii) the various stages of shaping elements of the puzzle, and (iii) some attempts to put the pieces together. These papers present just a small subset of loosely arranged elements in an initial stage of puzzle creation. Addressed by this issue is one of the important problems in our understanding of cloud processes—the interaction between cloud particles and turbulence. There is currently a gap between the cloud physics community and scientists working in wind tunnels, on turbulence theory and particle interactions. This collection is intended to narrow this gap by bringing together work by theoreticians, modelers, laboratory experimentalists and those who measure and observe actual processes in clouds. It forms a collage of contributions showing various approaches to cloud processes including: • theoretical works with possible applications to clouds (Bistagnino and Boffetta, Gustavsson et al), • an attempt to construct a phenomenological description of clouds and rain (Lovejoy and Schertzer), • simplified models designed to parameterize turbulence micro- and macro-effects (Celani et al, Derevyanko et al), • focused theoretical research aimed at particular cloud processes (Ayala et al, parts I and II, Wang et al), • laboratory and modeling studies of complex cloud processes (Malinowski et al). This collage is far from being complete but, hopefully, should give the reader a representative impression of the current state of knowledge in the field. We hope it will be useful to all scientists whose work is inspired by cloud processes. Focus on Cloud Physics Contents The equivalent size of cloud

  20. Aerosols, clouds and their climatic impacts

    Energy Technology Data Exchange (ETDEWEB)

    Kulmala, M.; Laaksonen, A.; Korhonen, P. [Helsinki Univ. (Finland). Dept. of Physics

    1995-12-31

    The increasing atmospheric concentrations of greenhouse gases such as carbon dioxide and methane may drive a significant warming of the earth`s climate. However, a topic of more recent attention is the possibility that increased atmospheric concentrations of aerosol particles might drive a cooling of the planet. There are two distinct cooling mechanisms related to the enhanced concentrations of aerosol particles: the increase in the direct reflection of solar radiation (the direct effect), and the increase in cloud reflectivity caused by greater numbers of cloud condensation nuclei available (the indirect effect). Aerosols and clouds play a major role in the scattering and absorption of radiation in the Earth`s atmosphere. Locally the net effect can vary because of different kinds of surfaces. But according to measurements, the global net effect of clouds (and aerosols) on the atmosphere is net cooling and thus in opposition to the effect of greenhouse gases. The prediction of the future evolution of the climate involves substantial uncertainties. Clouds have a major effect on the radiation balance of the Earth and the prediction of amount and radiative properties of clouds is very difficult. Also the formation mechanisms and residence times of aerosol particles in the atmosphere involve large uncertainties. Thus the most serious difficulties arise in the area of the physics of clouds and aerosols

  1. An Update on Planet Nine

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    Whats the news coming from the research world on the search for Planet Nine? Read on for an update from a few of the latest studies.Artists illustration of Planet Nine, a hypothesized Neptune-sized planet orbiting in the distant reaches of our solar system. [Caltech/Robert Hurt]What is Planet Nine?In January of this year, Caltech researchers Konstantin Batygin and Mike Brown presented evidence of a distant ninth planet in our solar system. They predicted this planet to be of a mass and volume consistent with a super-Earth, orbiting on a highly eccentric pathwith a period of tens of thousands of years.Since Batygin and Browns prediction, scientists have been hunting for further signs of Planet Nine. Though we havent yet discovered an object matching its description, we have come up with new strategies for finding it, we set some constraints on where it might be, and we made some interesting theoretical predictions about its properties.Visualizations of the resonant orbits of the four longest-period Kuiper belt objects, depicted in a frame rotating with the mean angular velocity of Planet Nine. Planet Nines position is on the right (with the trace of possible eccentric orbits e=0.17 and e=0.4 indicated in red). [Malhotra et al 2016]Here are some of the newest constraints on Planet Nine from studies published just within the past two weeks.Resonant OrbitsRenu Malhotra (University of Arizonas Lunar and Planetary Laboratory) and collaborators present further evidence of the shaping of solar system orbits by the hypothetical Planet Nine. The authors point out that the four longest-period Kuiper belt objects (KBOs) have orbital periods close to integer ratios with each other. Could it be that these outer KBOs have become locked into resonant orbits with a distant, massive body?The authors find that a distant planet orbiting with a period of ~17,117 years and a semimajor axis ~665 AU would have N/1 and N/2 period ratios with these four objects. If this is correct, it

  2. Looking for the rainbow on exoplanets covered by liquid and icy water clouds

    CERN Document Server

    Karalidi, T; Hovenier, J W

    2012-01-01

    Looking for the primary rainbow in starlight that is reflected by exoplanets appears to be a promising method to search for liquid water clouds in exoplanetary atmospheres. Ice water clouds, that consist of water crystals instead of water droplets, could potentially mask the rainbow feature in the planetary signal by covering liquid water clouds. Here, we investigate the strength of the rainbow feature for exoplanets that have liquid and icy water clouds in their atmosphere, and calculate the rainbow feature for a realistic cloud coverage of Earth. We calculate flux and polarization signals of starlight that is reflected by horizontally and vertically inhomogeneous Earth--like exoplanets, covered by patchy clouds consisting of liquid water droplets or water ice crystals. The planetary surfaces are black. On a planet with a significant coverage of liquid water clouds only, the total flux signal shows a weak rainbow feature. Any coverage of the liquid water clouds by ice clouds, however, dampens the rainbow fea...

  3. Planet-Planet Scattering Alone Cannot Explain the Free-Floating Planet Population

    CERN Document Server

    Veras, Dimitri

    2012-01-01

    Recent gravitational microlensing observations predict a vast population of free-floating giant planets that outnumbers main sequence stars almost twofold. A frequently-invoked mechanism for generating this population is a dynamical instability that incites planet-planet scattering and the ejection of one or more planets in isolated main sequence planetary systems. Here, we demonstrate that this process alone probably cannot represent the sole source of these galactic wanderers. By using straightforward quantitative arguments and N-body simulations, we argue that the observed number of exoplanets exceeds the plausible number of ejected planets per system from scattering. Thus, other potential sources of free-floaters, such as planetary stripping in stellar clusters and post-main-sequence ejection, must be considered.

  4. Cloud management and security

    CERN Document Server

    Abbadi, Imad M

    2014-01-01

    Written by an expert with over 15 years' experience in the field, this book establishes the foundations of Cloud computing, building an in-depth and diverse understanding of the technologies behind Cloud computing. In this book, the author begins with an introduction to Cloud computing, presenting fundamental concepts such as analyzing Cloud definitions, Cloud evolution, Cloud services, Cloud deployment types and highlighting the main challenges. Following on from the introduction, the book is divided into three parts: Cloud management, Cloud security, and practical examples. Part one presents the main components constituting the Cloud and federated Cloud infrastructure(e.g., interactions and deployment), discusses management platforms (resources and services), identifies and analyzes the main properties of the Cloud infrastructure, and presents Cloud automated management services: virtual and application resource management services. Part two analyzes the problem of establishing trustworthy Cloud, discuss...

  5. Three planets orbiting Wolf 1061

    CERN Document Server

    Wright, D J; Tinney, C G; Bentley, J S; Zhao, Jinglin

    2015-01-01

    We use archival HARPS spectra to detect three planets orbiting the M3 dwarf Wolf1061 (GJ 628). We detect a 1.36 Mearth minimum-mass planet with an orbital period P = 4.888d (Wolf1061b), a 4.25 Mearth minimum-mass planet with orbital period P = 17.867d (Wolf1061c), and a likely 5.21 Mearth minimum-mass planet with orbital period P = 67.274d (Wolf1061d). All of the planets are of sufficiently low mass that they may be rocky in nature. The 17.867d planet falls within the habitable zone for Wolf 1061 and the 67.274d planet falls just outside the outer boundary of the habitable zone. There are no signs of activity observed in the bisector spans, cross-correlation full-width-half-maxima, Calcium H & K indices, NaD indices, or H-alpha indices near the planetary periods. We use custom methods to generate a cross-correlation template tailored to the star. The resulting velocities do not suffer the strong annual variation observed in the HARPS DRS velocities. This differential technique should deliver better exploi...

  6. The Fate of Scattered Planets

    CERN Document Server

    Bromley, Benjamin C

    2014-01-01

    As gas giant planets evolve, they may scatter other planets far from their original orbits to produce hot Jupiters or rogue planets that are not gravitationally bound to any star. Here, we consider planets cast out to large orbital distances on eccentric, bound orbits through a gaseous disk. With simple numerical models, we show that super-Earths can interact with the gas through dynamical friction to settle in the remote outer regions of a planetary system. Outcomes depend on planet mass, the initial scattered orbit, and the evolution of the time-dependent disk. Efficient orbital damping by dynamical friction requires planets at least as massive as the Earth. More massive, longer-lived disks damp eccentricities more efficiently than less massive, short-lived ones. Transition disks with an expanding inner cavity can circularize orbits at larger distances than disks that experience a global (homologous) decay in surface density. Thus, orbits of remote planets may reveal the evolutionary history of their primor...

  7. Planetans - oceanic planets

    Science.gov (United States)

    Ksanfomality, Leonid

    The analysis of experimental data obtained in studies of extrasolar low-mass planets indicates that there is one more class of celestial bodies—planetans—oceanic planets with global water oceans that have high, but subcritical, temperatures. A convenient method of analysis is using of entropy-entalphy diagram. The atmospheres of planetans should be composed mainly of water vapor under high pressure. The number of detected planetans will grow as new exoplanets with masses of 1-5 Earth masses are discovered. The properties of some low-mass objects that were determined using different methods, including Kepler-11, Kepler-22, GJ 1214b, and Gl 581g, differ appreciably. The exoplanet GJ 1214b cannot be a planetan. On the contrary, properties of a planetan may have the exoplanet GL 581g, if it spherical albedo reaches a value of 0.86 (like of some of Jupiter and Saturn satellites). The radiation of the star Gl 581 itself is mainly concentrated in the IR range, making the photolysis of water vapor in the upper atmospheric layers of Gl 581g inefficient. For this reason, the exoplanet Gl 581g does not loss appreciable water on a cosmogonic timescale. On the contrary, it is shown that the identification of GJ 1214b with the model of a planetans (as an object with low mean density) seems to be erroneous. An alternative model of the structure of GJ 1214b suggests the existence of a silicate-metal core with a density of 13 g/cm3 and a radius of 5000 km and a middle layer with a density of 9 g/cm3 and a radius of 10000 km. The middle layer includes a mixture of volatile substances, mostly water, with traces of methane and ammonia. Its dense atmosphere corresponds to the observed diameter of the exoplanet, extending to 7500 km. A possible habitability of planetans is considered. References: Ksanfomality L.V. 2014 Solar System Research, 48 (1), 79

  8. DUST AND GAS IN THE MAGELLANIC CLOUDS FROM THE HERITAGE HERSCHEL KEY PROJECT. II. GAS-TO-DUST RATIO VARIATIONS ACROSS INTERSTELLAR MEDIUM PHASES

    Energy Technology Data Exchange (ETDEWEB)

    Roman-Duval, Julia; Gordon, Karl D.; Meixner, Margaret [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bot, Caroline [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l' université, F-67000 Strasbourg (France); Bolatto, Alberto; Jameson, Katherine [Department of Astronomy, Lab for Millimeter-wave Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Hughes, Annie; Hony, Sacha [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Wong, Tony [University of Illinois at Urbana-Champaign, 1002 W. Green St., Urbana, IL 61801 (United States); Babler, Brian [Department of Astronomy, University of Wisconsin, 475 North Charter St., Madison, WI 53706 (United States); Bernard, Jean-Philippe [CNRS, IRAP, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse Cedex 4 (France); Clayton, Geoffrey C. [Louisiana State University, Department of Physics and Astronomy, 233-A Nicholson Hall, Tower Dr., Baton Rouge, LA 70803-4001 (United States); Fukui, Yasuo [Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Galametz, Maud [European Southern Observatory, Karl-Schwarzschild-Str 2, D-85748 Garching (Germany); Galliano, Frederic; Lebouteiller, Vianney; Lee, Min-Young [CEA, Laboratoire AIM, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Glover, Simon [Zentrum für Astronomie, Institut für Theoretische Astrophysik, Universität Heidelberg, Albert-Ueberle Strasse 2, D-69120 Heidelberg (Germany); Israel, Frank [Sterrewacht Leiden, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Li, Aigen, E-mail: duval@stsci.edu [314 Physics Building, Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); and others

    2014-12-20

    The spatial variations of the gas-to-dust ratio (GDR) provide constraints on the chemical evolution and lifecycle of dust in galaxies. We examine the relation between dust and gas at 10-50 pc resolution in the Large and Small Magellanic Clouds (LMC and SMC) based on Herschel far-infrared (FIR), H I 21 cm, CO, and Hα observations. In the diffuse atomic interstellar medium (ISM), we derive the GDR as the slope of the dust-gas relation and find GDRs of 380{sub −130}{sup +250} ± 3 in the LMC, and 1200{sub −420}{sup +1600} ± 120 in the SMC, not including helium. The atomic-to-molecular transition is located at dust surface densities of 0.05 M {sub ☉} pc{sup –2} in the LMC and 0.03 M {sub ☉} pc{sup –2} in the SMC, corresponding to A {sub V} ∼ 0.4 and 0.2, respectively. We investigate the range of CO-to-H{sub 2} conversion factor to best account for all the molecular gas in the beam of the observations, and find upper limits on X {sub CO} to be 6 × 10{sup 20} cm{sup –2} K{sup –1} km{sup –1} s in the LMC (Z = 0.5 Z {sub ☉}) at 15 pc resolution, and 4 × 10{sup 21} cm{sup –2} K{sup –1} km{sup –1} s in the SMC (Z = 0.2 Z {sub ☉}) at 45 pc resolution. In the LMC, the slope of the dust-gas relation in the dense ISM is lower than in the diffuse ISM by a factor ∼2, even after accounting for the effects of CO-dark H{sub 2} in the translucent envelopes of molecular clouds. Coagulation of dust grains and the subsequent dust emissivity increase in molecular clouds, and/or accretion of gas-phase metals onto dust grains, and the subsequent dust abundance (dust-to-gas ratio) increase in molecular clouds could explain the observations. In the SMC, variations in the dust-gas slope caused by coagulation or accretion are degenerate with the effects of CO-dark H{sub 2}. Within the expected 5-20 times Galactic X {sub CO} range, the dust-gas slope can be either constant or decrease by a factor of several across ISM phases. Further modeling

  9. Population Parameters of Intermediate-Age Star Clusters in the Large Magellanic Cloud. II. New Insights from Extended Main Sequence Turnoffs in 7 Star Clusters

    CERN Document Server

    Goudfrooij, Paul; Kozhurina-Platais, Vera; Chandar, Rupali

    2011-01-01

    We discuss new photometry from high-resolution images of 7 intermediate-age (1-2 Gyr) star clusters in the Large Magellanic Cloud taken with the Advanced Camera for Surveys on board the Hubble Space Telescope. We fit color-magnitude diagrams (CMDs) with several different sets of theoretical isochrones, and determine systematic uncertainties for population parameters when derived using any one set of isochrones. The cluster CMDs show several interesting features, including extended main sequence turnoff (MSTO) regions, narrow red giant branches, and clear sequences of unresolved binary stars. We show that the extended MSTOs are not caused by photometric uncertainties, contamination by field stars, or the presence of binary stars. Enhanced helium abundances in a fraction of cluster stars are also ruled out as the reason for the extended MSTOs. Quantitative comparisons with simulations indicate that the MSTO regions are better described by a spread in ages than by a bimodal age distribution, although we can not ...

  10. Planet Hunters: A Status Report

    Science.gov (United States)

    Schwamb, Megan E.; Orosz, J. A.; Carter, J. A.; Fischer, D. A.; Howard, A. W.; Crepp, J. R.; Welsh, W. F.; Kaib, N. A.; Lintott, C. J.; Terrell, D.; Jek, K. J.; Gagliano, R.; Parrish, M.; Smith, A. M.; Lynn, S.; Brewer, J. M.; Giguere, M. J.; Schawinski, K.; Simpson, R. J.

    2012-10-01

    The Planet Hunters (http://www.planethunters.org) citizen science project uses the power of human pattern recognition via the World Wide Web to identify transits in the Kepler public data. Planet Hunters uses the Zooniverse (http://www.zooniverse.org) platform to present visitors to the Planet Hunters website with a randomly selected 30-day light curve segment from one of Kepler's 160,000 target stars. Volunteers are asked to draw boxes to mark the locations of visible transits with multiple independent classifiers reviewing each 30-day light curve segment. Since December 2010, more than 170,000 members of the general public have participated in Planet Hunters contributing over 12.5 million classifications searching the 1 1/2 years of publicly released Kepler observations. Planet Hunters is a novel and complementary technique to the automated transit detection algorithms, providing an independent assessment of the completeness of the Kepler exoplanet inventory. We report the latest results from Planet Hunters, highlighting in particular our latest efforts to search for circumbinary planets (planets orbiting a binary star) and single transit events in the first 1.5 years of public Kepler data. We will present a status report of our search of the first 6 Quarters of Kepler data, introducing our new planet candidates and sharing the results of our observational follow-up campaign to characterize these planetary systems. Acknowledgements: MES is supported by a NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-1003258. This is research is supported in part by an American Philosophical Society Franklin Grant.

  11. Cloud Computing

    DEFF Research Database (Denmark)

    Krogh, Simon

    2013-01-01

    The second half of the 20th century has been characterized by an explosive development in information technology (Maney, Hamm, & O'Brien, 2011). Processing power, storage capacity and network bandwidth have increased exponentially, resulting in new possibilities and shifting IT paradigms. In step...... with technological changes, the paradigmatic pendulum has swung between increased centralization on one side and a focus on distributed computing that pushes IT power out to end users on the other. With the introduction of outsourcing and cloud computing, centralization in large data centers is again dominating...... the IT scene. In line with the views presented by Nicolas Carr in 2003 (Carr, 2003), it is a popular assumption that cloud computing will be the next utility (like water, electricity and gas) (Buyya, Yeo, Venugopal, Broberg, & Brandic, 2009). However, this assumption disregards the fact that most IT production...

  12. Water Loss from Terrestrial Planets with CO2-rich Atmospheres

    Science.gov (United States)

    Wordsworth, R. D.; Pierrehumbert, R. T.

    2013-12-01

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on a range of atmospheric and external parameters. We show that CO2 can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO2 atmospheric partial pressures (0.1-1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but X-ray and ultraviolet/ultravoilet luminosity decreases, this places strong limits on water loss for planets like Earth. In contrast, for a CO2-rich early Venus, diffusion limits on water loss are only important if clouds caused strong cooling, implying that scenarios where the planet never had surface liquid water are indeed plausible. Around M-stars, water loss is primarily a function of orbital distance, with planets that absorb less flux than ~270 W m-2 (global mean) unlikely to lose more than one Earth ocean of H2O over their lifetimes unless they lose all their atmospheric N2/CO2 early on. Because of the variability of H2O delivery during accretion, our results suggest that many "Earth-like" exoplanets in the habitable zone may have ocean-covered surfaces, stable CO2/H2O-rich atmospheres, and high mean surface temperatures.

  13. Assessing spaceborne lidar detection and characterization of aerosols near clouds using coincident airborne lidar and other measurements

    Science.gov (United States)

    Kacenelenbogen, M. S.; Redemann, J.; Russell, P. B.; Vaughan, M.; Omar, A. H.; Burton, S. P.; Rogers, R.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.

    2011-12-01

    The objectives are to 1) evaluate potential shortcomings in the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol height detection concerning specific biomass burning smoke events informed by airborne High Spectral Resolution Lidar (HSRL) in different cloud environments and 2) study the lidar-derived atmospheric parameters in the vicinity of clouds for the cases where smoke is within or above clouds. In the case of light absorbing aerosols like biomass burning smoke, studies show that the greater the cloud cover below the aerosols, the more likely the aerosols are to heat the planet. An accurate aerosol height assumption is also crucial to a correct retrieval of aerosol chemical composition from passive space-based measurements (through the Single Scattering Albedo (SSA) and aerosol absorption coefficient, as exemplified by aerosol retrievals using the passive Ozone Monitoring Instrument (OMI)). Strong smoke events are recognized as very difficult to quantify from space using passive (MODIS, OMI etc...) or active (CALIOP) satellite sensors for different reasons. This study is performed through (i) the selection of smoke events with coincident CALIOP and airborne HSRL aerosol observations, with smoke presence determined according to the HSRL aerosol classification data, (ii) the order of such events by range of HSRL aerosol optical depth, total color ratio and depolarization ratio (the latter two informing on the size and shape of the particles) and the evaluation of CALIOP's detection, classification and retrieval performance for each event, (iii) the study of the HSRL (or CALIOP when available) atmospheric parameters (total color ratio, volume depolarization ratio, mean attenuated backscatter) in the vicinity of clouds for each smoke event.

  14. Large Impacts around a Solar Analog Star in the Era of Terrestrial Planet Formation

    CERN Document Server

    Meng, Huan Y A; Rieke, George H; Stevenson, David J; Plavchan, Peter; Rujopakarn, Wiphu; Lisse, Carey M; Poshyachinda, Saran; Reichart, Daniel E

    2015-01-01

    The final assembly of terrestrial planets occurs via massive collisions, which can launch copious clouds of dust that are warmed by the star and glow in the infrared. We report the real-time detection of a debris-producing impact in the terrestrial planet zone around a 35-million year-old solar analog star. We observed a substantial brightening of the debris disk at 3-5 {\\mu}m, followed by a decay over a year, with quasi-periodic modulations of the disk flux. The behavior is consistent with the occurrence of a violent impact that produced vapor out of which a thick cloud of silicate spherules condensed that were ground into dust by collisions. These results demonstrate how the time domain can become a new dimension for the study of terrestrial planet formation.

  15. Large impacts around a solar-analog star in the era of terrestrial planet formation.

    Science.gov (United States)

    Meng, Huan Y A; Su, Kate Y L; Rieke, George H; Stevenson, David J; Plavchan, Peter; Rujopakarn, Wiphu; Lisse, Carey M; Poshyachinda, Saran; Reichart, Daniel E

    2014-08-29

    The final assembly of terrestrial planets occurs via massive collisions, which can launch copious clouds of dust that are warmed by the star and glow in the infrared. We report the real-time detection of a debris-producing impact in the terrestrial planet zone around a 35-million-year-old solar-analog star. We observed a substantial brightening of the debris disk at a wavelength of 3 to 5 micrometers, followed by a decay over a year, with quasi-periodic modulations of the disk flux. The behavior is consistent with the occurrence of a violent impact that produced vapor out of which a thick cloud of silicate spherules condensed that were then ground into dust by collisions. These results demonstrate how the time domain can become a new dimension for the study of terrestrial planet formation.

  16. Taxonomy of the extrasolar planet

    OpenAIRE

    Plávalová, E.

    2011-01-01

    When a star is described as a spectral class G2V, we know that the star is similar to our Sun. We know its approximate mass, temperature, age, and size. When working with an extra-solar planet database, it is very useful to have a taxonomy scale (classification) such as, for example, the Harvard classification for stars. The taxonomy has to be easily interpreted and present the most relevant information about extra-solar planets. I propose the following the extra-solar planet taxonomy scale w...

  17. Planet-Planet Scattering and White Dwarf Pollution

    Science.gov (United States)

    Joasil, Arielle; Payne, Matthew John; Veras, Dimitri

    2017-01-01

    About one-quarter to one-half of white dwarfs are observed to have polluted atmospheres. White dwarfs (WD) are expected to be chemically stratified, with heavy elements rapidly sinking. The frequent observation of heavy element pollution in WD atmospheres indicates that there must be a copious and frequent supply of rocky material from remnant planetary systems acting as a pollutant. Recently, the white dwarf WD 1145+017 has been observed to have been transited by a rocky body apparently in the process of disintegrating (Vanderburg et al. 2015).Post-main sequence expansion may render the planetary system unstable (Veras 2016). Planets orbiting the white dwarf may perturb and scatter one another. If this scattering happens, any moons can be scattered about the system. As such, one possible source of the material polluting WDs is destabilized exomoons (Payne et al. 2016a, 2016b). Moons offer a plausible source of pollution due to their large total mass (in the Solar system), and their generally rocky composition that matches that found in the atmospheric pollution of WDs. During a planet-planet scattering event, the probability that a moon will be ejected from its parent planet is a function of the velocity of the perturbing planet and the distance between the perturbed moon and the perturbing planet (as well as the initial orbit of the moon). We review the results of Payne et al. (2016a, 2016b) and present new results illustrating the probability of moon ejection as a function of these key parameters. We demonstrate the utility of these results for (a) the pollution and WDs, and for (b) general planet-planet scattering scenarios around main-sequence stars.

  18. Photoionization feedback in a self-gravitating, magnetized, turbulent cloud

    Science.gov (United States)

    Geen, Sam; Hennebelle, Patrick; Tremblin, Pascal; Rosdahl, Joakim

    2015-12-01

    We present a new set of analytic models for the expansion of H II regions powered by ultraviolet (UV) photoionization from massive stars and compare them to a new suite of radiative magnetohydrodynamic simulations of turbulent, self-gravitating molecular clouds. To perform these simulations, we use RAMSES-RT, a Eulerian adaptive mesh magnetohydrodynamics code with radiative transfer of UV photons. Our analytic models successfully predict the global behaviour of the H II region provided the density and velocity structure of the cloud are known. We give estimates for the H II region behaviour based on a power-law fit to the density field assuming that the system is virialized. We give a radius at which the ionization front should stop expanding (`stall'). If this radius is smaller than the distance to the edge of the cloud, the H II region will be trapped by the cloud. This effect is more severe in collapsing clouds than in virialized clouds, since the density in the former increases dramatically over time, with much larger photon emission rates needed for the H II region to escape a collapsing cloud. We also measure the response of Jeans unstable gas to the H II regions to predict the impact of UV radiation on star formation in the cloud. We find that the mass in unstable gas can be explained by a model in which the clouds are evaporated by UV photons, suggesting that the net feedback on star formation should be negative.

  19. Habitable planet finder

    Science.gov (United States)

    Ditto, Thomas D.

    2012-09-01

    A notional space telescope configuration is presented that addresses issues of angular resolution, spectral bandwidth and rejection of host star glare by means of a double dispersion architecture. The telescope resolves angle by wavelength. In an earlier embodiment for surveys, a primary objective grating telescope architecture was shown to acquire millions of objects in one observation cycle, one wave length at a time. The proposed HPF can detect exquisite spectral signatures out of millions of wavelengths in albedos - one exoplanetary system at a time. Like its predecessor, the new HPF telescope has a ribbon-shaped flat gossamer membrane primary objective that lends itself to space deployment, but the preferred embodiment uses a holographic optical element rather than a plane grating. The HOE provides an improvement in efficiency at select wavelength bands. The considerable length of the membrane can be in the 100 meter class providing angular resolution sufficient to resolve planets in the habitable zone and also spectral resolution sufficient to earmark habitability. A novel interferometric secondary spectrograph rejects host star glare. However, the architecture cannot disambiguate multiple stellar sources and may require unprecedented focal lengths in the primary objective to isolate one system at a time.

  20. Planets on the Edge

    CERN Document Server

    Valsecchi, Francesca

    2014-01-01

    Hot Jupiters formed through circularization of high-eccentricity orbits should be found at orbital separations $a$ exceeding $twice$ that of their Roche limit $a_{\\rm R}$. Nevertheless, about a dozen giant planets have now been found well within this limit ($a_{\\rm R}< a< 2 a_{\\rm R}$), with one coming as close as 1.2$a_{\\rm R}$. In this Letter, we show that orbital decay (starting beyond 2$a_{\\rm R}$) driven by tidal dissipation in the star can naturally explain these objects. For a few systems (WASP-4 and 19), this explanation requires the linear reduction in convective tidal dissipation proposed originally by Zahn (1966) and verified by recent numerical simulations (Penev et al. 2007), but rules out the quadratic prescription proposed by Goldreich and Nicholson (1977). Additionally, we find that WASP-19-type systems could potentially provide empirical support to the Zahn's (1966) prescription through high precision transit timing measurements of their orbital decay rate.

  1. First light of the VLT planet finder SPHERE. IV. Physical and chemical properties of the planets around HR8799

    Science.gov (United States)

    Bonnefoy, M.; Zurlo, A.; Baudino, J. L.; Lucas, P.; Mesa, D.; Maire, A.-L.; Vigan, A.; Galicher, R.; Homeier, D.; Marocco, F.; Gratton, R.; Chauvin, G.; Allard, F.; Desidera, S.; Kasper, M.; Moutou, C.; Lagrange, A.-M.; Antichi, J.; Baruffolo, A.; Baudrand, J.; Beuzit, J.-L.; Boccaletti, A.; Cantalloube, F.; Carbillet, M.; Charton, J.; Claudi, R. U.; Costille, A.; Dohlen, K.; Dominik, C.; Fantinel, D.; Feautrier, P.; Feldt, M.; Fusco, T.; Gigan, P.; Girard, J. H.; Gluck, L.; Gry, C.; Henning, T.; Janson, M.; Langlois, M.; Madec, F.; Magnard, Y.; Maurel, D.; Mawet, D.; Meyer, M. R.; Milli, J.; Moeller-Nilsson, O.; Mouillet, D.; Pavlov, A.; Perret, D.; Pujet, P.; Quanz, S. P.; Rochat, S.; Rousset, G.; Roux, A.; Salasnich, B.; Salter, G.; Sauvage, J.-F.; Schmid, H. M.; Sevin, A.; Soenke, C.; Stadler, E.; Turatto, M.; Udry, S.; Vakili, F.; Wahhaj, Z.; Wildi, F.

    2016-03-01

    Context. The system of fourplanets discovered around the intermediate-mass star HR8799 offers a unique opportunity to test planet formation theories at large orbital radii and to probe the physics and chemistry at play in the atmospheres of self-luminous young (~30 Myr) planets. We recently obtained new photometry of the four planets and low-resolution (R ~ 30) spectra of HR8799 d and e with the SPHERE instrument (Paper III). Aims: In this paper (Paper IV), we aim to use these spectra and available photometry to determine how they compare to known objects, what the planet physical properties are, and how their atmospheres work. Methods: We compare the available spectra, photometry, and spectral energy distribution (SED) of the planets to field dwarfs and young companions. In addition, we use the extinction from corundum, silicate (enstatite and forsterite), or iron grains likely to form in the atmosphere of the planets to try to better understand empirically the peculiarity of their spectrophotometric properties. To conclude, we use three sets of atmospheric models (BT-SETTL14, Cloud-AE60, Exo-REM) to determine which ingredients are critically needed in the models to represent the SED of the objects, and to constrain their atmospheric parameters (Teff, log g, M/H). Results: We find that HR8799d and e properties are well reproduced by those of L6-L8 dusty dwarfs discovered in the field, among which some are candidate members of young nearby associations. No known object reproduces well the properties of planets b and c. Nevertheless, we find that the spectra and WISE photometry of peculiar and/or young early-T dwarfs reddened by submicron grains made of corundum, iron, enstatite, or forsterite successfully reproduce the SED of these planets. Our analysis confirms that only the Exo-REM models with thick clouds fit (within 2σ) the whole set of spectrophotometric datapoints available for HR8799 d and e for Teff = 1200 K, log g in the range 3.0-4.5, and M/H = +0.5. The

  2. Emergence of two types of terrestrial planet on solidification of magma ocean.

    Science.gov (United States)

    Hamano, Keiko; Abe, Yutaka; Genda, Hidenori

    2013-05-30

    Understanding the origins of the diversity in terrestrial planets is a fundamental goal in Earth and planetary sciences. In the Solar System, Venus has a similar size and bulk composition to those of Earth, but it lacks water. Because a richer variety of exoplanets is expected to be discovered, prediction of their atmospheres and surface environments requires a general framework for planetary evolution. Here we show that terrestrial planets can be divided into two distinct types on the basis of their evolutionary history during solidification from the initially hot molten state expected from the standard formation model. Even if, apart from their orbits, they were identical just after formation, the solidified planets can have different characteristics. A type I planet, which is formed beyond a certain critical distance from the host star, solidifies within several million years. If the planet acquires water during formation, most of this water is retained and forms the earliest oceans. In contrast, on a type II planet, which is formed inside the critical distance, a magma ocean can be sustained for longer, even with a larger initial amount of water. Its duration could be as long as 100 million years if the planet is formed together with a mass of water comparable to the total inventory of the modern Earth. Hydrodynamic escape desiccates type II planets during the slow solidification process. Although Earth is categorized as type I, it is not clear which type Venus is because its orbital distance is close to the critical distance. However, because the dryness of the surface and mantle predicted for type II planets is consistent with the characteristics of Venus, it may be representative of type II planets. Also, future observations may have a chance to detect not only terrestrial exoplanets covered with water ocean but also those covered with magma ocean around a young star.

  3. A Prediction of an Additional Planet of the Extrasolar Planetary System Kepler-62 Based on the Planetary Distances' Long-Range Order

    Directory of Open Access Journals (Sweden)

    Scholkmann F.

    2013-10-01

    Full Text Available Recently, the discovery of the extrasolar planetary system Kepler-62 comprising five planets were reported. The present paper explores whether (i the sequence of semimajor axis values of the planets shows a long-range order, and whether (ii it is possible to predict any additional planets of this system. The analysis showed that the semimajor axis values of the planets are indeed characterized by a long-range order, i.e. the logarithmic positions of the planets are correlated. Based on this characteristic, an additional planet at 0.22 AU in the Kepler-62 system is predicted.

  4. Hydro-Gravitational Dynamics of Planets and Dark Energy

    Directory of Open Access Journals (Sweden)

    Carl H. Gibson

    2009-01-01

    Full Text Available Self gravitational fluid mechanical methods termed hydro-gravitational-dynamics (HGD predict plasma fragmentation 0.03 Myr after the turbulent big bang to form protosuperclustervoids, turbulent protosuperclusters, and protogalaxies at the 0.3 Myr transition from plasma to gas. Linear protogalaxyclusters fragment at 0.003 Mpc viscous-inertial scales along turbulent vortex lines or in spirals, as observed. The plasma protogalaxies fragment on transition into white-hot planet-mass gas clouds (PFPs in million-solar-mass clumps (PGCs that become globular-star-clusters (GCs from tidal forces or dark matter (PGCs by freezing and diffusion into 0.3 Mpc halos with 97% of the galaxy mass. The weakly collisional non-baryonic dark matter diffuses to > Mpc scales and fragments to form galaxy cluster halos. Stars and larger planets form by binary mergers of the trillion PFPs per PGC, mostly on 0.03 Mpc galaxy accretion disks. Stars deaths depend on rates of planet accretion and internal star mixing. Moderate accretion rates pro-duce white dwarfs that evaporate surrounding gas planets by spin-radiation to form planetary nebulae before Supernova Ia events, dimming some events to give systematic distance errors, the dark energy hypothesis, and overestimates of the universe age.

  5. An Overabundance of Low-density Neptune-like Planets

    CERN Document Server

    Cubillos, Patricio; Juvan, Ines; Fossati, Luca; Johnstone, Colin P; Lammer, Helmut; Lendl, Monika; Odert, Petra; Kislyakova, Kristina G

    2016-01-01

    We present a uniform analysis of the atmospheric escape rate of Neptune-like planets with estimated radius and mass (restricted to $M_{\\rm p}0.1\\,M_{\\oplus}{\\rm Gyr}^{-1}$), well in excess of the energy-limited mass-loss rates. This constitutes a contradiction, since the hydrogen envelopes cannot be retained given the high mass-loss rates. We hypothesize that these planets are not truly under such high mass-loss rates. Instead, either hydrodynamic models overestimate the mass-loss rates, transit-timing-variation measurements underestimate the planetary masses, optical transit observations overestimate the planetary radii (due to high-altitude clouds), or Neptunes have consistently higher albedos than Jupiter planets. We conclude that at least one of these established estimations/techniques is consistently producing biased values for Neptune planets. Such an important fraction of exoplanets with misinterpreted parameters can significantly bias our view of populations studies, like the observed mass--radius dis...

  6. Water vapour in the atmosphere of a transiting extrasolar planet

    CERN Document Server

    Tinetti, Giovanna; Liang, Mao-Chang; Beaulieu, Jean-Philippe; Yung, Yuk; Carey, Sean; Barber, Robert J; Tennyson, Jonathan; Ribas, Ignasi; Allard, Nicole; Ballester, Gilda E; Sing, David K; Selsis, Franck

    2007-01-01

    Water is predicted to be among, if not the most abundant molecular species after hydrogen in the atmospheres of close-in extrasolar giant planets (hot-Jupiters) Several attempts have been made to detect water on an exoplanet, but have failed to find compelling evidence for it or led to claims that should be taken with caution. Here we report an analysis of recent observations of the hot-Jupiter HD189733b taken during the transit, where the planet passed in front of its parent star. We find that absorption by water vapour is the most likely cause of the wavelength-dependent variations in the effective radius of the planet at the infrared wavelengths 3.6, 5.8 and 8 microns. The larger effective radius observed at visible wavelengths may be due to either star variability or the presence of clouds/hazes. We explain the most recent thermal infrared observations of the planet during secondary transit behind the star, reporting a non-detection of water on HD189733b, as being a consequence of the nearly isothermal ve...

  7. Cloud Interactions

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 1 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. This image was acquired during mid-spring near the North Pole. The linear water-ice clouds are now regional in extent and often interact with neighboring cloud system, as seen in this image. The bottom of the image shows how the interaction can destroy the linear nature. While the surface is still visible through most of the clouds, there is evidence that dust is also starting to enter the atmosphere. Image information: VIS instrument. Latitude 68.4, Longitude 258.8 East (101.2 West). 38 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara

  8. MgII Absorption Lines in z=2.974 Damped Lyman-alpha System toward Gravitationally Lensed QSO APM 08279+5255 Detection of Small-scale Structure in MgII Absorbing Clouds

    CERN Document Server

    Kobayashi, N; Goto, M; Tokunaga, A; Kobayashi, Naoto; Terada, Hiroshi; Goto, Miwa; Tokunaga, Alan

    2002-01-01

    1.02-1.16 micron spectra (R ~ 7,000) of the gravitationally lensed QSO APM 08279+5255 at z_em=3.911 were obtained during the commissioning run of IRCS, the 1-5 micron near-infrared camera and spectrograph for the Subaru 8.2 m Telescope. Strong MgII doublet at 2976,2800 angstrom and FeII (2600 angstrom), FeII (2587 angstrom) absorption lines at z_abs=2.974 were clearly detected in the rest-frame UV spectra, confirming the presence of a damped Lyman-alpha system at the redshift as suggested by Petitjean et al. Also MgI (2853 angstrom) absorption line is probably detected. An analysis of the absorption lines including velocity decomposition was performed. This is a first detailed study of MgII absorption system at high redshift (z > 2.5) where the MgII doublet shifts into the near-infrared in the observer's frame. The spectra of the lensed QSO pair A and B with 0.38 arcsec separation were resolved in some exposure frames under excellent seeing condition. We extracted the MgII doublet spectra of A and B separatel...

  9. Transmission Spectra as Diagnostics of Extrasolar Giant Planet Atmospheres

    CERN Document Server

    Brown, T M

    2001-01-01

    Atmospheres of transiting extrasolar giant planets (EGPs) such as HD 209458 b must impose features on the spectra of their parent stars during transits; these features contain information about the physical conditions and chemical composition of the atmospheres. The most convenient observational index showing these features is the ``spectrum ratio'', defined as the wavelength-dependent ratio of spectra taken in and out of transit. I describe a model that estimates this ratio and its dependence upon parameters of the planetary atmosphere, including its cloud structure, temperature, chemical composition, and wind fields. For giant planets in close orbits, the depths of atomic and molecular features in the spectrum ratio may be as large as 0.001. Observations in visible and near-IR wavelengths using existing and planned spectrographs should be adequate to detect these features, and to provide some diagnostics of the conditions within the planetary atmosphere. I give numerous examples of such diagnostics, and I d...

  10. The chemistry of planet-forming regions is not interstellar

    CERN Document Server

    Pontoppidan, Klaus M

    2014-01-01

    Advances in infrared and submillimeter technology have allowed for detailed observations of the molecular content of the planet-forming regions of protoplanetary disks. In particular, disks around solar-type stars now have growing molecular inventories that can be directly compared with both prestellar chemistry and that inferred for the early solar nebula. The data directly address the old question whether the chemistry of planet-forming matter is similar or different and unique relative to the chemistry of dense clouds and protostellar envelopes. The answer to this question may have profound consequences for the structure and composition of planetary systems. The practical challenge is that observations of emission lines from disks do not easily translate into chemical concentrations. Here, we present a two-dimensional radiative transfer model of RNO 90, a classical protoplanetary disk around a solar-mass star, and retrieve the concentrations of dominant molecular carriers of carbon, oxygen and nitrogen in ...

  11. Trojan capture by terrestrial planets

    CERN Document Server

    Schwarz, Richard

    2016-01-01

    The paper is devoted to investigate the capture of asteroids by Venus, Earth and Mars into the 1:1 mean motion resonance especially into Trojan orbits. Current theoretical studies predict that Trojan asteroids are a frequent by-product of the planet formation. This is not only the case for the outer giant planets, but also for the terrestrial planets in the inner Solar System. By using numerical integrations, we investigated the capture efficiency and the stability of the captured objects. We found out that the capture efficiency is larger for the planets in the inner Solar System compared to the outer ones, but most of the captured Trojan asteroids are not long term stable. This temporary captures caused by chaotic behaviour of the objects were investigated without any dissipative forces. They show an interesting dynamical behaviour of mixing like jumping from one Lagrange point to the other one.

  12. Planets, stars and stellar systems

    CERN Document Server

    Bond, Howard; McLean, Ian; Barstow, Martin; Gilmore, Gerard; Keel, William; French, Linda

    2013-01-01

    This is volume 3 of Planets, Stars and Stellar Systems, a six-volume compendium of modern astronomical research covering subjects of key interest to the main fields of contemporary astronomy. This volume on “Solar and Stellar Planetary Systems” edited by Linda French and Paul Kalas presents accessible review chapters From Disks to Planets, Dynamical Evolution of Planetary Systems, The Terrestrial Planets, Gas and Ice Giant Interiors, Atmospheres of Jovian Planets, Planetary Magnetospheres, Planetary Rings, An Overview of the Asteroids and Meteorites, Dusty Planetary Systems and Exoplanet Detection Methods. All chapters of the handbook were written by practicing professionals. They include sufficient background material and references to the current literature to allow readers to learn enough about a specialty within astronomy, astrophysics and cosmology to get started on their own practical research projects. In the spirit of the series Stars and Stellar Systems published by Chicago University Press in...

  13. Planet migration and magnetic torques

    Science.gov (United States)

    Strugarek, A.; Brun, A. S.; Matt, S. P.; Reville, V.

    2016-10-01

    The possibility that magnetic torques may participate in close-in planet migration has recently been postulated. We develop three dimensional global models of magnetic star-planet interaction under the ideal magnetohydrodynamic (MHD) approximation to explore the impact of magnetic topology on the development of magnetic torques. We conduct twin numerical experiments in which only the magnetic topology of the interaction is altered. We find that magnetic torques can vary by roughly an order of magnitude when varying the magnetic topology from an aligned case to an anti-aligned case. Provided that the stellar magnetic field is strong enough, we find that magnetic migration time scales can be as fast as ~100 Myr. Hence, our model supports the idea that magnetic torques may participate in planet migration for some close-in star-planet systems.

  14. Voyager to the Seventh Planet.

    Science.gov (United States)

    Gold, Michael

    1986-01-01

    Presents recent findings obtained by the Voyager 2 mission on Uranus. Updates information on the planet's moons, rings, atmosphere, and magnetic field. Illustrations and diagrams of selected aspects of Uranus are included. (ML)

  15. Model Atmospheres and Transit Spectra for Hot Rocky Planets

    Science.gov (United States)

    Lupu, Roxana

    We propose to build a versatile set of self-consistent atmospheric models for hot rocky exoplanets and use them to predict their transit and eclipse spectra. Hot rocky exoplanets will form the majority of small planets in close-in orbits to be discovered by the TESS and Kepler K2 missions, and offer the best opportunity for characterization with current and future instruments. We will use fully non-grey radiative-convective atmospheric structure codes with cloud formation and vertical mixing, combined with a self-consistent treatment of gas chemistry above the magma ocean. Being in equilibrium with the surface, the vaporized rock material can be a good tracer of the bulk composition of the planet. We will derive the atmospheric structure and escape rates considering both volatile-free and volatile bearing compositions, which reflect the diversity of hot rocky planet atmospheres. Our models will inform follow- up observations with JWST and ground-based instruments, aid the interpretation of transit and eclipse spectra, and provide a better understanding of volatile loss in these atmospheres. Such results will help refine our picture of rocky planet formation and evolution. Planets in ultra-short period (USP) orbits are a special class of hot rocky exoplanets. As shown by Kepler, these planets are generally smaller than 2 Earth radii, suggesting that they are likely to be rocky and could have lost their volatiles through photo-evaporation. Being close to their host stars, these planets are ultra-hot, with estimated temperatures of 1000-3000 K. A number of USP planets have been already discovered (e.g. Kepler-78 b, CoRoT-7 b, Kepler-10 b), and this number is expected to grow by confirming additional planet candidates. The characterization of planets on ultra-short orbits is advantageous due to the larger number of observable transits, and the larger transit signal in the case of an evaporating atmosphere. Much advance has been made in understanding and characterizing

  16. Evolution of Earth Like Planets

    Science.gov (United States)

    Monroy-Rodríguez, M. A.; Vega, K. M.

    2017-07-01

    In order to study and explain the evolution of our own planet we have done a review of works related to the evolution of Earth-like planets. From the stage of proto-planet to the loss of its atmosphere. The planetary formation from the gas and dust of the proto-planetary disk, considering the accretion by the process of migration, implies that the material on the proto-planet is very mixed. The newborn planet is hot and compact, it begins its process of stratification by gravity separation forming a super dense nucleus, an intermediate layer of convective mantle and an upper mantle that is less dense, with material that emerges from zones at very high pressure The surface with low pressure, in this process the planet expands and cools. This process also releases gas to the surface, forming the atmosphere, with the gas gravitationally bounded. The most important thing for the life of the planet is the layer of convective mantle, which produces the magnetic field, when it stops the magnetic field disappears, as well as the rings of van allen and the solar wind evaporates the atmosphere, accelerating the evolution and cooling of the planet. In a natural cycle of cataclysms and mass extinctions, the solar system crosses the galactic disk every 30 million years or so, the increase in the meteorite fall triggers the volcanic activity and the increase in the release of CO2 into the atmosphere reaching critical levels (4000 billion tons) leads us to an extinction by overheating that last 100 000 years, the time it takes CO2 to sediment to the ocean floor. Human activity will lead us to reach critical levels of CO2 in approximately 300 years.

  17. Review of Evolving Planet [game

    Directory of Open Access Journals (Sweden)

    Shawn Graham

    2016-11-01

    Full Text Available A review of Evolving Planet is an agent-based model situated in the archaeology of hominin dispersal, wrapped in the trappings of a casual video game. In Evolving Planet, a terrestrial world has been discovered, replete with artefacts and sites from a now-extinct intelligent species, dubbed the 'Lovans'. You (the player are the distinguished archaeologist sent from Earth to oversee a project trying to work out why the 'Lovans' became extinct.

  18. Review of Evolving Planet [game

    OpenAIRE

    Shawn Graham

    2016-01-01

    A review of Evolving Planet is an agent-based model situated in the archaeology of hominin dispersal, wrapped in the trappings of a casual video game. In Evolving Planet, a terrestrial world has been discovered, replete with artefacts and sites from a now-extinct intelligent species, dubbed the 'Lovans'. You (the player) are the distinguished archaeologist sent from Earth to oversee a project trying to work out why the 'Lovans' became extinct.

  19. The mineral clouds on HD 209458b and HD189733b

    CERN Document Server

    Helling, Ch; Dobbs-Dixon, I; Mayne, N; Amundsen, D S; Khaimova, J; Unger, A A; Manners, J; Acreman, D; Smith, C

    2016-01-01

    3D atmosphere model results are used to comparatively study the kinetic, non-equilibrium cloud formation in the atmospheres of two example planets guided by the giant gas planets HD209458b and HD189733b. Rather independently of hydrodynamic model differences, our cloud modelling suggests that both planets are covered in mineral clouds throughout the entire modelling domain. Both planets harbour chemically complex clouds that are made of mineral particles that have a height-dependent material composition and size. The remaining gas-phase element abundances strongly effects the molecular abundances of the atmosphere in the cloud forming regions. Hydrocarbon and cyanopolyyne molecules can be rather abundant in the inner, dense part of the atmospheres of HD189733b and HD209458b. No one value for metallicity and the C/O ratio can be used to describe an extrasolar planet. Our results concerning the presence and location of water in relation to the clouds explain some of the observed discrepancies between the two pl...

  20. Electrodynamics in Giant Planet Atmospheres

    Science.gov (United States)

    Koskinen, T.; Yelle, R. V.; Lavvas, P.; Cho, J.

    2014-12-01

    The atmospheres of close-in extrasolar giant planets such as HD209458b are strongly ionized by the UV flux of their host stars. We show that photoionization on such planets creates a dayside ionosphere that extends from the thermosphere to the 100 mbar level. The resulting peak electron density near the 1 mbar level is higher than that encountered in any planetary ionosphere of the solar system, and the model conductivity is in fact comparable to the atmospheres of Sun-like stars. As a result, the momentum and energy balance in the upper atmosphere of HD209458b and similar planets can be strongly affected by ion drag and resistive heating arising from wind-driven electrodynamics. Despite much weaker ionization, electrodynamics is nevertheless also important on the giant planets of the solar system. We use a generic framework to constrain the conductivity regimes on close-in extrasolar planets, and compare the results with conductivites based on the same approach for Jupiter and Saturn. By using a generalized Ohm's law and assumed magnetic fields, we then demonstrate the basic effects of wind-driven ion drag in giant planet atmospheres. Our results show that ion drag is often significant in the upper atmosphere where it can also substantially alter the energy budget through resistive heating.