WorldWideScience

Sample records for planetary vehicle drives

  1. Long-Life, Lightweight, Multi-Roller Traction Drives for Planetary Vehicle Surface Exploration

    Science.gov (United States)

    Klein, Richard C.; Fusaro, Robert L.; Dimofte, Florin

    2012-01-01

    NASA s initiative for Lunar and Martian exploration will require long lived, robust drive systems for manned vehicles that must operate in hostile environments. The operation of these mechanical drives will pose a problem because of the existing extreme operating conditions. Some of these extreme conditions include operating at a very high or very cold temperature, operating over a wide range of temperatures, operating in very dusty environments, operating in a very high radiation environment, and operating in possibly corrosive environments. Current drive systems use gears with various configurations of teeth. These gears must be lubricated with oil (or grease) and must have some sort of a lubricant resupply system. For drive systems, oil poses problems such as evaporation, becoming too viscous and eventually freezing at cold temperatures, being too thin to lubricate at high temperatures, being degraded by the radiation environment, being contaminated by the regolith (soil), and if vaporized (and not sealed), it will contaminate the regolith. Thus, it may not be advisable or even possible to use oil because of these limitations. An oil-less, compact traction vehicle drive is a drive designed for use in hostile environments like those that will be encountered on planetary surfaces. Initially, traction roller tests in vacuum were conducted to obtain traction and endurance data needed for designing the drives. From that data, a traction drive was designed that would fit into a prototype lunar rover vehicle, and this design data was used to construct several traction drives. These drives were then tested in air to determine their performance characteristics, and if any final corrections to the designs were necessary. A limitation with current speed reducer systems such as planetary gears and harmonic drives is the high-contact stresses that occur at tooth engagement and in the harmonic drive wave generator interface. These high stresses induce high wear of solid

  2. Electrohydraulic drive system with planetary superposed gears

    Energy Technology Data Exchange (ETDEWEB)

    Graetz, A.; Klimek, K.H.; Welz, H.

    1989-01-01

    To prevent drive problems in ploughs the drives must be designed in such a way as to compensate for asymmetries. If electromechanical drives are replaced by an electrohydraulic drive system with superposed planetary gears and hydrostatic torque reaction supports the following advantages occur: load-free acceleration, load equalisation between main and auxiliary drive, overload protection, and reduction of systems vibrations. 2 figs., 2 tabs.

  3. Natural Frequencies and Vibrating Modes for a Magnetic Planetary Gear Drive

    Directory of Open Access Journals (Sweden)

    Lizhong Xu

    2012-01-01

    Full Text Available In this paper, a dynamic model for a magnetic planetary gear drive is proposed. Based on the model, the dynamic equations for the magnetic planetary gear drive are given. From the magnetic meshing forces and torques between the elements for the drive system, the tangent and radial magnetic meshing stiffness is obtained. Using these equations, the natural frequencies and the modes of the magnetic planetary gear drive are investigated. The sensitivity of the natural frequencies to the system parameters is discussed. Results show that the pole pair number and the air gap have obvious effects on the natural frequencies. For the planetary gear number larger than two, the vibrations of the drive system include the torsion mode of the center elements, the translation mode of the center elements, and the planet modes. For the planetary gear number equal to two, the planet mode does not occur, the crown mode and the sun gear mode occur.

  4. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Septon, Kendall K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-11

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  5. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  6. Robotic vehicles for planetary exploration

    Science.gov (United States)

    Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry

    1992-01-01

    A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.

  7. Analysis of Vehicle Steering and Driving Bifurcation Characteristics

    Directory of Open Access Journals (Sweden)

    Xianbin Wang

    2015-01-01

    Full Text Available The typical method of vehicle steering bifurcation analysis is based on the nonlinear autonomous vehicle model deriving from the classic two degrees of freedom (2DOF linear vehicle model. This method usually neglects the driving effect on steering bifurcation characteristics. However, in the steering and driving combined conditions, the tyre under different driving conditions can provide different lateral force. The steering bifurcation mechanism without the driving effect is not able to fully reveal the vehicle steering and driving bifurcation characteristics. Aiming at the aforementioned problem, this paper analyzed the vehicle steering and driving bifurcation characteristics with the consideration of driving effect. Based on the 5DOF vehicle system dynamics model with the consideration of driving effect, the 7DOF autonomous system model was established. The vehicle steering and driving bifurcation dynamic characteristics were analyzed with different driving mode and driving torque. Taking the front-wheel-drive system as an example, the dynamic evolution process of steering and driving bifurcation was analyzed by phase space, system state variables, power spectral density, and Lyapunov index. The numerical recognition results of chaos were also provided. The research results show that the driving mode and driving torque have the obvious effect on steering and driving bifurcation characteristics.

  8. The eco-driving effect of electric vehicles compared to conventional gasoline vehicles

    Directory of Open Access Journals (Sweden)

    Hideki Kato

    2016-10-01

    Full Text Available Eco-driving is attractive to the public, not only users of internal-combustion-engine vehicles (ICEVs including hybrid electric vehicles (HEVs but also users of electric vehicles (EVs have interest in eco-driving. In this context, a quantitative evaluation of eco-driving effect of EVs was conducted using a chassis dynamometer (C/D with an “eco-driving test mode.” This mode comprised four speed patterns selected from fifty-two real-world driving datasets collected during an eco-driving test-ride event. The four patterns had the same travel distance (5.2 km, but showed varying eco-driving achievement levels. Three ICEVs, one HEV and two EVs were tested using a C/D. Good linear relationships were found between the eco-driving achievement level and electric or fuel consumption rate of all vehicles. The reduction of CO2 emissions was also estimated. The CO2-reduction rates of the four conventional (including hybrid vehicles were 10.9%–12.6%, while those of two types of EVs were 11.7%–18.4%. These results indicate that the eco-driving tips for conventional vehicles are effective to not only ICEVs and HEVs but also EVs. Furthermore, EVs have a higher potential of eco-driving effect than ICEVs and HEVs if EVs could maintain high energy conversion efficiency at low load range. This study is intended to support the importance of the dissemination of tools like the intelligent speed adaptation (ISA to obey the regulation speed in real time. In the future, also in the development and dissemination of automated driving systems, the viewpoint of achieving the traveling purpose with less kinetic energy would be important.

  9. The Energetic Demands and Planetary Footprint of Alternative Human Diets

    Science.gov (United States)

    Eshel, G.; Martin, P. A.

    2005-12-01

    Agriculture is one of the major vehicles of human alteration of the planetary environment. Yet different diets vary vastly in terms of both their energetic demands and overall planetary footprint. We present a quantitative argument that demonstrates that plant-based diets exert vastly smaller planetary environmental cost than animal-based ones. We demonstrate that under a reasonable and readily defensible set of assumptions, a plant-based diet differs from the average American diet by as much energy as the difference between driving a compact and efficient sedan and a Sport Utility Vehicle.

  10. Analysis of Wheel Hub Motor Drive Application in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Sun Yuechao

    2017-01-01

    Full Text Available Based on the comparative analysis of the performance characteristics of centralized and distributed drive electric vehicles, we found that the wheel hub motor drive mode of the electric vehicles with distributed drive have compact structure, high utilization ratio of interior vehicle space, lower center of vehicle gravity, good driving stability, easy intelligent control and many other advantages, hence in line with the new requirements for the development of drive performance of electric vehicles, and distributed drive will be the ultimate mode of electric vehicles in the future.

  11. CHOOSING DRIVING CYCLE OF HYBRID VEHICLE

    Directory of Open Access Journals (Sweden)

    A. Vorona

    2011-01-01

    Full Text Available The analysis of existing driving cycles was performed. After comparing some of the cycles, one specific driving cycle was selected for the hybrid vehicle as the most reliable in representing the real moving of the vehicle in operating conditions and which may be reproduced at experimental tests at the modeling roller stand.

  12. Planetary Mission Entry Vehicles Quick Reference Guide. Version 3.0

    Science.gov (United States)

    Davies, Carol; Arcadi, Marla

    2006-01-01

    This is Version 3.0 of the planetary mission entry vehicle document. Three new missions, Re-entry F, Hayabusa, and ARD have been added to t he previously published edition (Version 2.1). In addition, the Huyge ns mission has been significantly updated and some Apollo data correc ted. Due to the changing nature of planetary vehicles during the desi gn, manufacture and mission phases, and to the variables involved in measurement and computation, please be aware that the data provided h erein cannot be guaranteed. Contact Carol Davies at cdavies@mail.arc. nasa.gov to correct or update the current data, or to suggest other missions.

  13. Does Driving Range of Electric Vehicles Influence Electric Vehicle Adoption?

    Directory of Open Access Journals (Sweden)

    Seiho Kim

    2017-10-01

    Full Text Available This study aims to determine the influential factors on the market share of electric vehicles through panel data analysis based on time series data from 2011 to 2015 in 31 countries. We selected five significant independent variables that are expected to affect electric vehicle adoption based on literature review. The econometric model in this study suggests that the relative price of electric vehicle compared to internal combustion engine vehicle, driving range, and number of models available in markets are correlated to the market share of electric vehicles. On the other hand, relationship between recharging infrastructure—an important factor for electric vehicle adoption in many studies—and market share of electric vehicles turned out to be insignificant in this study. From a political point of view, we argue that policy makers need to allocate more resources to research and development in order to extend driving range at the early stage of electric vehicle deployment in the markets.

  14. At A Glance: Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    2016-07-01

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. With the range of styles and options available, there is likely one to meet your needs. The vehicles can be divided into three categories: 1) Hybrid electric vehicles (HEVs), 2) Plug-in hybrid electric vehicles (PHEVs), and 3) All-electric vehicles (EVs).

  15. At A Glance: Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-07-13

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. With the range of styles and options available, there is likely one to meet your needs. The vehicles can be divided into three categories: 1) Hybrid electric vehicles (HEVs), 2) Plug-in hybrid electric vehicles (PHEVs), and 3) All-electric vehicles (EVs).

  16. Full drive-by-wire dynamic control for four-wheel-steer all-wheel-drive vehicles

    Science.gov (United States)

    Fahimi, Farbod

    2013-03-01

    Most of the controllers introduced for four-wheel-steer (4WS) vehicles are derived with the assumption that the longitudinal speed of the vehicle is constant. However, in real applications, the longitudinal speed varies, and the longitudinal, lateral, and yaw dynamics are coupled. In this paper, the longitudinal dynamics of the vehicle as well as its lateral and yaw motions are controlled simultaneously. This way, the effect of driving/braking forces of the tires on the lateral and yaw motions of the vehicle are automatically included in the control laws. To address the dynamic parameter uncertainty of the vehicle, a chatter-free variable structure controller is introduced. Elimination of chatter is achieved by introducing a dynamically adaptive boundary layer thickness. It is shown via simulations that the proposed control approach performs more robustly than the controllers developed based on dynamic models, in which longitudinal speed is assumed to be constant, and only lateral speed and yaw rate are used as system states. Furthermore, this approach supports all-wheel-drive vehicles. Front-wheel-drive or rear-wheel-drive vehicles are also supported as special cases of an all-wheel-drive vehicle.

  17. Towards functional safety in drive-by-wire vehicles

    CERN Document Server

    Bergmiller, Peter Johannes

    2015-01-01

    This book presents approaches to address key challenges based on a vehicle level view and with a special emphasis on Drive-by-Wire systems. The design and testing of modern vehicle electronics are becoming more and more demanding due to increasing interdependencies among components and the safety criticality of tasks. The development towards Drive-by-Wire functionalities in vehicles with multiple actuators for vehicle control further increases the challenge. The book explicitly takes into account the interactions between components  and aims at bridging the gap between the need to generate additional customer benefits and the effort to achieve functional safety. The book follows a twofold approach: on the one side, it presents a toolchain to support efficient further development of novel functionalities for Drive-by-Wire vehicles. The toolchain comprises appropriate software tools and scaled and full-scale experimental vehicles. On the other side, development towards functionally safe and flexible Drive-by-W...

  18. Driving range estimation for electric vehicles based on driving condition identification and forecast

    Science.gov (United States)

    Pan, Chaofeng; Dai, Wei; Chen, Liao; Chen, Long; Wang, Limei

    2017-10-01

    With the impact of serious environmental pollution in our cities combined with the ongoing depletion of oil resources, electric vehicles are becoming highly favored as means of transport. Not only for the advantage of low noise, but for their high energy efficiency and zero pollution. The Power battery is used as the energy source of electric vehicles. However, it does currently still have a few shortcomings, noticeably the low energy density, with high costs and short cycle life results in limited mileage compared with conventional passenger vehicles. There is great difference in vehicle energy consumption rate under different environment and driving conditions. Estimation error of current driving range is relatively large due to without considering the effects of environmental temperature and driving conditions. The development of a driving range estimation method will have a great impact on the electric vehicles. A new driving range estimation model based on the combination of driving cycle identification and prediction is proposed and investigated. This model can effectively eliminate mileage errors and has good convergence with added robustness. Initially the identification of the driving cycle is based on Kernel Principal Component feature parameters and fuzzy C referring to clustering algorithm. Secondly, a fuzzy rule between the characteristic parameters and energy consumption is established under MATLAB/Simulink environment. Furthermore the Markov algorithm and BP(Back Propagation) neural network method is utilized to predict the future driving conditions to improve the accuracy of the remaining range estimation. Finally, driving range estimation method is carried out under the ECE 15 condition by using the rotary drum test bench, and the experimental results are compared with the estimation results. Results now show that the proposed driving range estimation method can not only estimate the remaining mileage, but also eliminate the fluctuation of the

  19. USING OF NON-CONVENTIONAL FUELS IN HYBRID VEHICLE DRIVES

    Directory of Open Access Journals (Sweden)

    Dalibor Barta

    2016-12-01

    Full Text Available Electric or hybrid vehicles are becoming increasingly common on roads. While electric vehicles are still more or less intended for city traffic, hybrid vehicles allow normal use due to wider driving range. The use of internal combustion engines in hybrid drives is still an inspiration to find the way to reduce the produc-tion of emissions. Numbers of alternative energy resources were studied as a substitution of conventional fuels for hybrid vehicles drives worldwide. The paper deals with the possibility of using alternative fuels as CNG, LPG and LNG in combination with hybrid drive of a midibus with the capacity of 20 passengers. Various aspects and techniques of hybrid vehicles from energy management system, propulsion system and using of various alternative fuels are explored in this paper. Other related fields of hybrid vehicles such as changes of vehicle weight or influence of electric energy sources on the total vehicle emission production are also included.

  20. Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer

    Science.gov (United States)

    Tamai, Goro; Zhou, Jing; Weslati, Feisel

    2014-09-02

    An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

  1. Electrohydraulic drive system with planetary superposed PS 16 gears

    Energy Technology Data Exchange (ETDEWEB)

    Graetz, A.; Klimek, K.H.; Welz, H.

    1988-10-20

    During the nine-month period of use of the electrohydraulic drive system with PS 16 superposed planetary gear and hydrostatic support advance of 800 m was achieved on the 250 m long face in the Geitling 2 seam at the Niederberg colliery. No appreciable difficulties occurred in the hydraulic system and with the PS 16 superposed planetary gear in the entire period. Uniform load distribution between the two drives was proved until the end of the working even with a chain elongation difference up to 3% observed during the final phase of operation. In contrast to normal operation thermal disconnections and motor failures no longer occurred. After accurate adjustment of the pressures the system operated successfully. The time utilisation of the equipment was improved by 15% to 65.7%. The quick and reliable response of the hydraulics in the event of overloading ensured that no chain cracks occurred. The four connector fractures were attributable to fatigue failures. The material-protecting method of operation was proved by the quiet running of the chain and substantially longer operating time, e.g. of the chain and sprocket. To prove the efficiency of the new drive system, comprehensive measurements were undertaken. It emerged during these measurements that in contrast to the conventional drives the load equalisation ensures that the total installed power is available if required. However, the freeing capacity of the plough could not be fully utilised because of the missing conveyor cross-section.

  2. Design of driving control strategy of torque distribution for two - wheel independent drive electric vehicle

    Science.gov (United States)

    Zhang, Chuanwei; Zhang, Dongsheng; Wen, Jianping

    2018-02-01

    In order to coordinately control the torque distribution of existing two-wheel independent drive electric vehicle, and improve the energy efficiency and control stability of the whole vehicle, the control strategies based on fuzzy control were designed which adopt the direct yaw moment control as the main line. For realizing the torque coordination simulation of the two-wheel independent drive vehicle, the vehicle model, motor model and tire model were built, including the vehicle 7 - DOF dynamics model, motion equation, torque equation. Finally, in the Carsim - Simulink joint simulation platform, the feasibility of the drive control strategy was verified.

  3. Decoupling control of steering and driving system for in-wheel-motor-drive electric vehicle

    Science.gov (United States)

    Zhang, Han; Zhao, Wanzhong

    2018-02-01

    To improve the maneuverability and stability of in-wheel-motor-drive electric vehicle, a control strategy based on nonlinear decoupling control method is proposed in this paper, realizing the coordinated control of the steering and driving system. At first, the nonlinear models of the in-wheel-motor-drive electric vehicle and its sub-system are constructed. Then the inverse system decoupling theory is applied to decompose the nonlinear system into several independent subsystems, which makes it possible to realize the coordinated control of each subsystem. Next, the μ-Synthesis theory is applied to eliminate the influence of model uncertainty, improving the stability, robustness and tracking performance of in-wheel-motor-drive electric vehicle. Simulation and experiment results and numerical analyses, based on the electric vehicle actuated by in-wheel-motors, prove that the proposed control method is effective to accomplish the decoupling control of the steering and driving system in both simulation and real practice.

  4. Modeling Driving Performance Using In-Vehicle Speech Data From a Naturalistic Driving Study.

    Science.gov (United States)

    Kuo, Jonny; Charlton, Judith L; Koppel, Sjaan; Rudin-Brown, Christina M; Cross, Suzanne

    2016-09-01

    We aimed to (a) describe the development and application of an automated approach for processing in-vehicle speech data from a naturalistic driving study (NDS), (b) examine the influence of child passenger presence on driving performance, and (c) model this relationship using in-vehicle speech data. Parent drivers frequently engage in child-related secondary behaviors, but the impact on driving performance is unknown. Applying automated speech-processing techniques to NDS audio data would facilitate the analysis of in-vehicle driver-child interactions and their influence on driving performance. Speech activity detection and speaker diarization algorithms were applied to audio data from a Melbourne-based NDS involving 42 families. Multilevel models were developed to evaluate the effect of speech activity and the presence of child passengers on driving performance. Speech activity was significantly associated with velocity and steering angle variability. Child passenger presence alone was not associated with changes in driving performance. However, speech activity in the presence of two child passengers was associated with the most variability in driving performance. The effects of in-vehicle speech on driving performance in the presence of child passengers appear to be heterogeneous, and multiple factors may need to be considered in evaluating their impact. This goal can potentially be achieved within large-scale NDS through the automated processing of observational data, including speech. Speech-processing algorithms enable new perspectives on driving performance to be gained from existing NDS data, and variables that were once labor-intensive to process can be readily utilized in future research. © 2016, Human Factors and Ergonomics Society.

  5. Design and Simulation Tools for Planetary Atmospheric Entry Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric entry is one of the most critical phases of flight during planetary exploration missions. During the design of an entry vehicle, experimental and...

  6. Computer-Aided Engineering for Electric-Drive Vehicle Batteries (CAEBAT)

    Science.gov (United States)

    Consortium and Partners | Transportation Research | NREL Computer-Aided Engineering for Electric-Drive Vehicle Batteries (CAEBAT) Consortium and Partners Computer-Aided Engineering for Electric -Drive Vehicle Batteries (CAEBAT) Consortium and Partners The Computer-Aided Engineering for Electric

  7. Dynamic performances analysis of a real vehicle driving

    Science.gov (United States)

    Abdullah, M. A.; Jamil, J. F.; Salim, M. A.

    2015-12-01

    Vehicle dynamic is the effects of movement of a vehicle generated from the acceleration, braking, ride and handling activities. The dynamic behaviours are determined by the forces from tire, gravity and aerodynamic which acting on the vehicle. This paper emphasizes the analysis of vehicle dynamic performance of a real vehicle. Real driving experiment on the vehicle is conducted to determine the effect of vehicle based on roll, pitch, and yaw, longitudinal, lateral and vertical acceleration. The experiment is done using the accelerometer to record the reading of the vehicle dynamic performance when the vehicle is driven on the road. The experiment starts with weighing a car model to get the center of gravity (COG) to place the accelerometer sensor for data acquisition (DAQ). The COG of the vehicle is determined by using the weight of the vehicle. A rural route is set to launch the experiment and the road conditions are determined for the test. The dynamic performance of the vehicle are depends on the road conditions and driving maneuver. The stability of a vehicle can be controlled by the dynamic performance analysis.

  8. Earthbound Unmanned Autonomous Vehicles (UAVS) As Planetary Science Testbeds

    Science.gov (United States)

    Pieri, D. C.; Bland, G.; Diaz, J. A.; Fladeland, M. M.

    2014-12-01

    Recent advances in the technology of unmanned vehicles have greatly expanded the range of contemplated terrestrial operational environments for their use, including aerial, surface, and submarine. The advances have been most pronounced in the areas of autonomy, miniaturization, durability, standardization, and ease of operation, most notably (especially in the popular press) for airborne vehicles. Of course, for a wide range of planetary venues, autonomy at high cost of both money and risk, has always been a requirement. Most recently, missions to Mars have also featured an unprecedented degree of mobility. Combining the traditional planetary surface deployment operational and science imperatives with emerging, very accessible, and relatively economical small UAV platforms on Earth can provide flexible, rugged, self-directed, test-bed platforms for landed instruments and strategies that will ultimately be directed elsewhere, and, in the process, provide valuable earth science data. While the most direct transfer of technology from terrestrial to planetary venues is perhaps for bodies with atmospheres (and oceans), with appropriate technology and strategy accommodations, single and networked UAVs can be designed to operate on even airless bodies, under a variety of gravities. In this presentation, we present and use results and lessons learned from our recent earth-bound UAV volcano deployments, as well as our future plans for such, to conceptualize a range of planetary and small-body missions. We gratefully acknowledge the assistance of students and colleagues at our home institutions, and the government of Costa Rica, without which our UAV deployments would not have been possible. This work was carried out, in part, at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.

  9. VEHICLE DRIVING CYCLE OPTIMISATION ON THE HIGHWAY

    Directory of Open Access Journals (Sweden)

    Zinoviy STOTSKO

    2016-06-01

    Full Text Available This paper is devoted to the problem of reducing vehicle energy consumption. The authors consider the optimisation of highway driving cycle a way to use the kinetic energy of a car more effectively at various road conditions. The model of a vehicle driving control at the highway which consists of elementary cycles, such as accelerating, free rolling and deceleration under forces of external resistance, was designed. Braking, as an energy dissipation regime, was not included. The influence of the various longitudinal profiles of the road was taken into consideration and included in the model. Ways to use the results of monitoring road and traffic conditions are presented. The method of non-linear programming is used to design the optimal vehicle control function and phase trajectory. The results are presented by improved typical driving cycles that present energy saving as a subject of choice at a specified schedule.

  10. Large-Scale Battery System Development and User-Specific Driving Behavior Analysis for Emerging Electric-Drive Vehicles

    Directory of Open Access Journals (Sweden)

    Yihe Sun

    2011-04-01

    Full Text Available Emerging green-energy transportation, such as hybrid electric vehicles (HEVs and plug-in HEVs (PHEVs, has a great potential for reduction of fuel consumption and greenhouse emissions. The lithium-ion battery system used in these vehicles, however, is bulky, expensive and unreliable, and has been the primary roadblock for transportation electrification. Meanwhile, few studies have considered user-specific driving behavior and its significant impact on (PHEV fuel efficiency, battery system lifetime, and the environment. This paper presents a detailed investigation of battery system modeling and real-world user-specific driving behavior analysis for emerging electric-drive vehicles. The proposed model is fast to compute and accurate for analyzing battery system run-time and long-term cycle life with a focus on temperature dependent battery system capacity fading and variation. The proposed solution is validated against physical measurement using real-world user driving studies, and has been adopted to facilitate battery system design and optimization. Using the collected real-world hybrid vehicle and run-time driving data, we have also conducted detailed analytical studies of users’ specific driving patterns and their impacts on hybrid vehicle electric energy and fuel efficiency. This work provides a solid foundation for future energy control with emerging electric-drive applications.

  11. CyberTORCS: An Intelligent Vehicles Simulation Platform for Cooperative Driving

    Directory of Open Access Journals (Sweden)

    Ming Yang

    2011-05-01

    Full Text Available Simulation platforms play an important role in helping intelligent vehicle research, especially for the research of cooperative driving due to the high cost and risk of the real experiments. In order to ease and bring more convenience for cooperative driving tests, we introduce an intelligent vehicle simulation platform, called CyberTORCS, for the research in cooperative driving. Details of the simulator modules including vehicle body control, vehicle visualization modeling and track visualization modeling are presented. Two simulation examples are given to validate the feasibility and effectiveness of the proposed simulation platform.

  12. Computer-Aided Engineering for Electric-Drive Vehicle Batteries (CAEBAT) |

    Science.gov (United States)

    Transportation Research | NREL Computer-Aided Engineering for Electric-Drive Vehicle Batteries (CAEBAT) Computer-Aided Engineering for Electric-Drive Vehicle Batteries (CAEBAT) Graphic of a 24-cell (bottom). Images: Courtesy of EC Power NREL's work on the U.S. Department of Energy Computer-Aided

  13. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  14. General motors front wheel drive 2-mode hybrid transmission

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, James [General Motors Corp., Pontiac, MI (United States). New Transmission Products Group.; Holmes, Alan G. [General Motors Corp., Pontiac, MI (United States). Powertrain Hybrid Architecture

    2009-07-01

    General Motors now expands the application of two-mode hybrid technology to front wheel drive vehicles with the development of a hybrid electric transmission packaged into essentially the same space as a conventional automatic transmission for front wheel drive. This was accomplished using a space-efficient arrangement based on two planetary gear sets and electric motor-generators with large internal diameters. A combination of damper and hydraulically-controlled clutch allow comfortable shutdown and restarting of large-displacement engines in front wheel drive vehicles. The hybrid system delivers electric low-speed urban driving, two continuously variable ranges of transmission speed ratios, four fixed transmission speed ratios, electric acceleration boosting, and regenerative braking. In the first vehicle application, the two-mode hybrid helps to reduce vehicle fuel consumption by approximately one-third. (orig.)

  15. Electric vehicle machines and drives design, analysis and application

    CERN Document Server

    Chau, K

    2015-01-01

    A timely comprehensive reference consolidates the research and development of electric vehicle machines and drives for electric and hybrid propulsions • Focuses on electric vehicle machines and drives • Covers the major technologies in the area including fundamental concepts and applications • Emphasis the design criteria, performance analyses and application examples or potentials of various motor drives and machine systems • Accompanying website includes the simulation models and outcomes as supplementary material

  16. Electric motor drive unit, especially adjustment drive for vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Litterst, P

    1980-05-29

    An electric motor drive unit, particularly an adjustment drive for vehicles with at least two parallel drive shafts is described, which is compact and saves space, and whose manufacturing costs are low compared with those of well-known drive units of this type. The drive unit contains a suitable number of magnet systems, preferably permanent magnet systems, whose pole axes are spaced and run parallel. The two pole magnet systems have diametrically opposite shell-shaped segments, to which the poles are fixed. In at least one magnet system the two segments are connected by diametrically opposite flat walls parallel to the pole axes to form a single magnetic circuit pole housing. The segments of at least one other magnet system are arranged on this pole housing so that one of these flat walls is a magnetically conducting, connecting component of the magnetic circuit of the other magnet system.

  17. The Development of Vocational Vehicle Drive Cycles and Segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Adam W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Phillips, Caleb T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Konan, Arnaud M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kelly, Kenneth J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-09-28

    Under a collaborative interagency agreement between the U.S. Environmental Protection Agency and the U.S Department of Energy (DOE), the National Renewable Energy Laboratory (NREL) performed a series of in-depth analyses to characterize the on-road driving behavior including distributions of vehicle speed, idle time, accelerations and decelerations, and other driving metrics of medium- and heavy-duty vocational vehicles operating within the United States. As part of this effort, NREL researchers segmented U.S. medium- and heavy-duty vocational vehicle driving characteristics into three distinct operating groups or clusters using real world drive cycle data collected at 1 Hz and stored in NREL's Fleet DNA database. The Fleet DNA database contains millions of miles of historical real-world drive cycle data captured from medium- and heavy vehicles operating across the United States. The data encompass data from existing DOE activities as well as contributions from valued industry stakeholder participants. For this project, data captured from 913 unique vehicles comprising 16,250 days of operation were drawn from the Fleet DNA database and examined. The Fleet DNA data used as a source for this analysis has been collected from a total of 30 unique fleets/data providers operating across 22 unique geographic locations spread across the United States. This includes locations with topology ranging from the foothills of Denver, Colorado, to the flats of Miami, Florida. The range of fleets, geographic locations, and total number of vehicles analyzed ensures results that include the influence of these factors. While no analysis will be perfect without unlimited resources and data, it is the researchers understanding that the Fleet DNA database is the largest and most thorough publicly accessible vocational vehicle usage database currently in operation. This report includes an introduction to the Fleet DNA database and the data contained within, a presentation of the

  18. Comparison of electric drives for road vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Bader, C; Stephan, W [Deutsche Automobilgesellschaft m.b.H., Esslingen (Germany, F.R.)

    1977-01-01

    The low energy-storage capacity of the electrolytic energy-storage apparatus available at the moment limits the practical use of electric vehicles to meeting the requirements for restricted areas. But in this field of application, conversion from drive with internal combustion engine to electric drive can be considered only if a reduction of costs is achieved with electric drive. From the wide range of possible drive units the most suitable is found to be the dc squirrelcage motor the speed of which is controlled by field weakening. In the case of a motor with conventional design, the controllable drive range is limited to about 1 : 3, so that generally additional measures are required for extending the drive range. But if the motor is fitted with a compensation winding, field weakening to give a controlled speed range of 1 : 8 can be obtained. To evaluate the different drive units under consideration use is made of the acceleration when, according to the drive system, advantages are obtained from the point of view of energy consumption with disadvantages in acceleration time, and vice versa. By using vehicles proven in practice with different drive systems, either with hydrodynamic transducer and battery switchover, or else with changeover gear and mechanical clutch, the overall construction of the different control and protective arrangements are demonstrated. It is then found that the extra cost of regulation in the case of automatic drive operation is partly compensated by the additional protective devices which are required to limit the effects of any incorrect operations with a manually-operated drive.

  19. Two wheel speed robust sliding mode control for electric vehicle drive

    Directory of Open Access Journals (Sweden)

    Abdelfatah Nasri

    2008-01-01

    Full Text Available Nowadays the uses of electrical power resources are integrated in the modern vehicle motion traction chain so new technologies allow the development of electric vehicles (EV by means of static converters-related electric motors. All mechanical transmission devices are eliminated and vehicle wheel motion can be controlled by means of power electronics. The proposed propulsing system consists of two induction motors (IM that ensure the drive of the two back driving wheels. The proposed control structure-called independent machines- for speed control permit the achievement of an electronic differential. The electronic differential system ensures the robust control of the vehicle behavior on the road. It also allows controlling independently, every driving wheel to turn at different speeds in any curve. This paper presents the study and the sliding mode control strategy of the electric vehicle driving wheels.

  20. Vehicle Dynamics Control of In-wheel Electric Motor Drive Vehicles Based on Averaging of Tire Force Usage

    Science.gov (United States)

    Masaki, Nobuo; Iwano, Haruo; Kamada, Takayoshi; Nagai, Masao

    For in-wheel electric motor drive vehicles, a new vehicle dynamics control which is based on the tire force usage rate is proposed. The new controller adopts non-linear optimal control could manage the interference between direct yaw-moment control and the tire force usage rate. The new control is considered total longitudinal and transverse tire force. Therefore the controller can prevent tire force saturation near tire force limit during cornering. Simulations and test runs by the custom made four wheel drive in-wheel motor electric vehicle show that higher driving stability performance compared to the performance of the same vehicle without control.

  1. AN AUTONOMOUS GPS-DENIED UNMANNED VEHICLE PLATFORM BASED ON BINOCULAR VISION FOR PLANETARY EXPLORATION

    Directory of Open Access Journals (Sweden)

    M. Qin

    2018-04-01

    Full Text Available Vision-based navigation has become an attractive solution for autonomous navigation for planetary exploration. This paper presents our work of designing and building an autonomous vision-based GPS-denied unmanned vehicle and developing an ARFM (Adaptive Robust Feature Matching based VO (Visual Odometry software for its autonomous navigation. The hardware system is mainly composed of binocular stereo camera, a pan-and tilt, a master machine, a tracked chassis. And the ARFM-based VO software system contains four modules: camera calibration, ARFM-based 3D reconstruction, position and attitude calculation, BA (Bundle Adjustment modules. Two VO experiments were carried out using both outdoor images from open dataset and indoor images captured by our vehicle, the results demonstrate that our vision-based unmanned vehicle is able to achieve autonomous localization and has the potential for future planetary exploration.

  2. An Autonomous Gps-Denied Unmanned Vehicle Platform Based on Binocular Vision for Planetary Exploration

    Science.gov (United States)

    Qin, M.; Wan, X.; Shao, Y. Y.; Li, S. Y.

    2018-04-01

    Vision-based navigation has become an attractive solution for autonomous navigation for planetary exploration. This paper presents our work of designing and building an autonomous vision-based GPS-denied unmanned vehicle and developing an ARFM (Adaptive Robust Feature Matching) based VO (Visual Odometry) software for its autonomous navigation. The hardware system is mainly composed of binocular stereo camera, a pan-and tilt, a master machine, a tracked chassis. And the ARFM-based VO software system contains four modules: camera calibration, ARFM-based 3D reconstruction, position and attitude calculation, BA (Bundle Adjustment) modules. Two VO experiments were carried out using both outdoor images from open dataset and indoor images captured by our vehicle, the results demonstrate that our vision-based unmanned vehicle is able to achieve autonomous localization and has the potential for future planetary exploration.

  3. Optimal charging of electric drive vehicles in a market environment

    DEFF Research Database (Denmark)

    Kristoffersen, Trine Krogh; Capion, Karsten Emil; Meibom, Peter

    2011-01-01

    With a potential to facilitate the integration of renewable energy into the electricity system, electric drive vehicles may offer a considerable flexibility by allowing for charging and discharging when desired. This paper takes the perspective of an aggregator that manages the electricity market...... participation of a vehicle fleet and presents a framework for optimizing charging and discharging of the electric drive vehicles, given the driving patterns of the fleet and the variations in market prices of electricity. When the aggregator is a price-taker the optimization can be stated in terms of linear...... programming whereas a quadratic programming formulation is required when he/she has market power. A Danish case study illustrates the construction of representative driving patterns through clustering of survey data from Western Denmark and the prediction of electricity price variations through regression...

  4. On Optimizing Steering Performance of Multi-axle Vehicle Based on Driving Force Control

    Directory of Open Access Journals (Sweden)

    Wu Zhicheng

    2017-01-01

    Full Text Available The steering performance of multi-axle vehicle with independent driving system is affected by the distribution of the wheel driving force. A nonlinear vehicle dynamics model including magic formula tire model for describing 11 DoF four-axle vehicle with dual-front-axle-steering (DFAS system was presented. The influence of different driving force distribution scheme on the steering performance of the vehicle was analyzed. A control strategy for improving the steady response and transient response of the vehicle steering is proposed. The results show: For the steady response, setting different drive force for internal and external wheels according to the actual steering characteristics of the vehicle can effectively improve its steering characteristics; For the transient response, adopting the zero sideslip angle control strategy and using the PID control algorithm to control the driving force of the outside wheel of tear-two-axle, under angle step input, the vehicle sideslip angle can quickly stabilize to 0 and yaw rate also significantly decreases.

  5. Highway vehicle electric drive in the United States : 2009 status and issues.

    Energy Technology Data Exchange (ETDEWEB)

    Santini, D. J.; Energy Systems

    2011-02-16

    The status of electric drive technology in the United States as of early 2010 is documented. Rapidly evolving electric drive technologies discussed include hybrid electric vehicles, multiple types of plug-in hybrid electric vehicles, and battery electric vehicles. Recent trends for hybrids are quantified. Various plug-in vehicles entering the market in the near term are examined. The technical and economic requirements for electric drive to more broadly succeed in a wider range of highway vehicle applications are described, and implications for the most promising new markets are provided. Federal and selected state government policy measures promoting and preparing for electric drive are discussed. Taking these into account, judgment on areas where increased Clean Cities funds might be most productively focused over the next five years are provided. In closing, the request by Clean Cities for opinion on the broad range of research needs providing near-term support to electric drive is fulfilled.

  6. Battery prices and capacity sensitivity: Electric drive vehicles

    DEFF Research Database (Denmark)

    Juul, Nina

    2012-01-01

    , the prices at which the electric drive vehicles become of interest to the power system are found. Smart charge, including the opportunity to discharge (vehicle-to-grid) is used in all scenarios. Analyses show that the marginal benefits decrease the larger the battery. For very high battery prices, large......The increase in fluctuating power production requires an increase in flexibility in the system as well. Flexibility can be found in generation technologies with fast response times or in storage options. In the transport sector, the proportion of electric drive vehicles is expected to increase over...... the next decade or two. These vehicles can provide some of the flexibility needed in the power system, in terms of both flexible demand and electricity storage. However, what are the batteries worth to the power system? And does the value depend on battery capacity? This article presents an analysis...

  7. Heavy-Duty Vehicle Port Drayage Drive Cycle Characterization and Development

    Energy Technology Data Exchange (ETDEWEB)

    Prohaska, Robert; Konan, Arnaud; Kelly, Kenneth; Lammert, Michael

    2016-10-06

    In an effort to better understand the operational requirements of port drayage vehicles and their potential for adoption of advanced technologies, National Renewable Energy Laboratory (NREL) researchers collected over 36,000 miles of in-use duty cycle data from 30 Class 8 drayage trucks operating at the Port of Long Beach and Port of Los Angeles in Southern California. These data include 1-Hz global positioning system location and SAE J1939 high-speed controller area network information. Researchers processed the data through NREL's Drive-Cycle Rapid Investigation, Visualization, and Evaluation tool to examine vehicle kinematic and dynamic patterns across the spectrum of operations. Using the k-medoids clustering method, a repeatable and quantitative process for multi-mode drive cycle segmentation, the analysis led to the creation of multiple drive cycles representing four distinct modes of operation that can be used independently or in combination. These drive cycles are statistically representative of real-world operation of port drayage vehicles. When combined with modeling and simulation tools, these representative test cycles allow advanced vehicle or systems developers to efficiently and accurately evaluate vehicle technology performance requirements to reduce cost and development time while ultimately leading to the commercialization of advanced technologies that meet the performance requirements of the port drayage vocation. The drive cycles, which are suitable for chassis dynamometer testing, were compared to several existing test cycles. This paper presents the clustering methodology, accompanying results of the port drayage duty cycle analysis and custom drive cycle creation.

  8. Dual motor drive vehicle speed synchronization and coordination control strategy

    Science.gov (United States)

    Huang, Hao; Tu, Qunzhang; Jiang, Chenming; Ma, Limin; Li, Pei; Zhang, Hongxing

    2018-04-01

    Multi-motor driven systems are more and more widely used in the field of electric engineering vehicles, as a result of the road conditions and the variable load of engineering vehicles, makes multi-motors synchronization coordinated control system as a key point of the development of the electric vehicle drive system. This paper based on electrical machinery transmission speed in the process of engineering vehicles headed for coordinated control problem, summarized control strategies at home and abroad in recent years, made analysis and comparison of the characteristics, finally discussed the trend of development of the multi-motor coordination control, provided a reference for synchronized control system research of electric drive engineering vehicles.

  9. Enabling All-Access Mobility for Planetary Exploration Vehicles via Transformative Reconfiguration

    Science.gov (United States)

    Ferguson, Scott; Mazzoleni, Andre

    2016-01-01

    Effective large-scale exploration of planetary surfaces requires robotic vehicles capable of mobility across chaotic terrain. Characterized by a combination of ridges, cracks and valleys, the demands of this environment can cause spacecraft to experience significant reductions in operating footprint, performance, or even result in total system loss. Significantly increasing the scientific return of an interplanetary mission is facilitated by architectures capable of real-time configuration changes that go beyond that of active suspensions while concurrently meeting system, mass, power, and cost constraints. This Phase 1 report systematically explores how in-service architecture changes can expand system capabilities and mission opportunities. A foundation for concept generation is supplied by four Martian mission profiles spanning chasms, ice fields, craters and rocky terrain. A fifth mission profile centered on Near Earth Object exploration is also introduced. Concept generation is directed using four transformation principles - a taxonomy developed by the engineering design community to explain the cause of an architecture change and existing brainstorming techniques. This allowed early conceptual sketches of architecture changes to be organized by the principle driving the greatest increase in mission performance capability.

  10. An electric-drive vehicle strategy for Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, D.; Lipman, T. [California Univ., Davis, CA (United States). Inst. of Transportation Studies; Lundberg, M. [Swedish Transport and Communications Research Board, Stockholm (Sweden)

    2000-07-01

    The strategy that Sweden has taken regarding the use of electric-powered vehicles (EVs) to mitigate the environmental impacts caused by the transportation sector was discussed. Sweden's unique attributes include inexpensive and clean electricity, a strong environmental ethic and a strong automotive sector. All versions of electric-drive technology are considered to be environmentally superior to internal combustion engine vehicles. While the cost of batteries is dropping, they will remain highly priced. However, manufacturers are making larger investments into hybrid EVs and fuel cell EVs. Electric drive buses are also gaining in popularity as a means by which to reduce exhaust gases in urban areas. Sweden's industrial policy is aimed at manufacturing electrically driven heavy duty vehicles such as buses and trucks. The environmental policy is aimed at deploying small EVs for on and off-road transportation use, as well as heavy duty EVs targeted by the industrial policy. refs.

  11. Evolutionary algorithm for vehicle driving cycle generation.

    Science.gov (United States)

    Perhinschi, Mario G; Marlowe, Christopher; Tamayo, Sergio; Tu, Jun; Wayne, W Scott

    2011-09-01

    Modeling transit bus emissions and fuel economy requires a large amount of experimental data over wide ranges of operational conditions. Chassis dynamometer tests are typically performed using representative driving cycles defined based on vehicle instantaneous speed as sequences of "microtrips", which are intervals between consecutive vehicle stops. Overall significant parameters of the driving cycle, such as average speed, stops per mile, kinetic intensity, and others, are used as independent variables in the modeling process. Performing tests at all the necessary combinations of parameters is expensive and time consuming. In this paper, a methodology is proposed for building driving cycles at prescribed independent variable values using experimental data through the concatenation of "microtrips" isolated from a limited number of standard chassis dynamometer test cycles. The selection of the adequate "microtrips" is achieved through a customized evolutionary algorithm. The genetic representation uses microtrip definitions as genes. Specific mutation, crossover, and karyotype alteration operators have been defined. The Roulette-Wheel selection technique with elitist strategy drives the optimization process, which consists of minimizing the errors to desired overall cycle parameters. This utility is part of the Integrated Bus Information System developed at West Virginia University.

  12. Library of Samples for E-Vehicle Propulsion Drive Tuning

    Directory of Open Access Journals (Sweden)

    Rassõlkin Anton

    2014-05-01

    Full Text Available The majority of testing cycles for the vehicle comparison is the long-term cycles and could not be used for the short-term transient mode imitations. Also, all the used nowadays testing cycles were designed for internal combustion engine vehicles and take into account not only energy and mechanical aspects, but also pollution and internal combustion engine characteristics. The paper presents a collection of sample signals developed to explore and simulate multiple system impacts to emulate different reference and load conditions. The study describes the major driving modes, such as the constant-speed cruising, speeding up and braking, typical parking regimes, uphill and downhill motion, and taking a turn. The developed testing equipment and software are described. Responses of the battery vehicle drives to the changeable controls and disturbances were studied in the laboratory test bench. The set of test cycles prepared in the frame of the ABB control arrangement was applied to the system evaluation and assessment. The developed methodology can be recommended to adjust the electric drives for different kinds of testing equipment. Experimental validation of the described approach has demonstrated the broad possibilities for the steady-state and transient modes of vehicle quality evaluation. It suits for recommendations that can be made with regard to the tuning of the drive regulators, control looping, sensor allocation, and feedback arrangements.

  13. Designing for enhancing situational awareness of semi-autonomous driving vehicles

    NARCIS (Netherlands)

    Wang, C.; Steeghs, S.; Chakraborty, D.; Gorle, A.; Dey, D.; Van De Star, S.; Sudhakaran, A.; Terken, J.M.B.; Hu, J.

    2017-01-01

    Autonomous driving technology is evolving quickly, and self-driving cars are fast becoming a reality. In the level 2 autonomous driving stage, the system will take full control of the vehicle. The driver must monitor the driving and be prepared to immediately intervene at any time if the automated

  14. Converted vehicle for battery electric drive. Aspects on the design of the software-driven vehicle control unit

    Energy Technology Data Exchange (ETDEWEB)

    Giessler, Martin; Paul, Jens; Gauterin, Frank [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Fahrzeugsystemtechnik (FAST); Fritz, Alexander; Sander, Oliver; Mueller-Glaser, Klaus D. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Technik der Informationsverarbeitung (ITIV)

    2012-11-01

    At the Karlsruher Institute of Technology (KIT) a vehicle was converted for full battery electric drive within a cooperation of several faculties under the direction of the chair of vehicle technology. Within this paper the developed software to control the main functions of the vehicle will be presented and potentials to increase the energy efficiency will be discussed. The software based vehicle control unit is the central control unit to realize drivers command with respect to the system parameters, which are important for safety, dynamics, range and comfort of the vehicle. The structure of the software architecture, the interaction with the main electric vehicle specific control units and components and the main implemented functions will be described within this paper. The converted vehicle consists mainly of one electric motor with water cooled power electronics that drives the front axle, 21 battery modules controlled and managed by the battery management system, one on board charging device and an universal control unit. Not only strategies for power recovery while braking, but also strategies for driving and operation can help increase the energy efficiency. Select measures to recover and safe energy are also shown. (orig.)

  15. Heavy-Duty Vehicle Port Drayage Drive Cycle Characterization and Development: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Prohaska, Robert; Konan, Arnaud; Kelly, Kenneth; Lammert, Michael

    2016-08-01

    In an effort to better understand the operational requirements of port drayage vehicles and their potential for adoption of advanced technologies, National Renewable Energy Laboratory (NREL) researchers collected over 36,000 miles of in-use duty cycle data from 30 Class 8 drayage trucks operating at the Port of Long Beach and Port of Los Angeles in Southern California. These data include 1-Hz global positioning system location and SAE J1939 high-speed controller area network information. Researchers processed the data through NREL's Drive-Cycle Rapid Investigation, Visualization, and Evaluation tool to examine vehicle kinematic and dynamic patterns across the spectrum of operations. Using the k-medoids clustering method, a repeatable and quantitative process for multi-mode drive cycle segmentation, the analysis led to the creation of multiple drive cycles representing four distinct modes of operation that can be used independently or in combination. These drive cycles are statistically representative of real-world operation of port drayage vehicles. When combined with modeling and simulation tools, these representative test cycles allow advanced vehicle or systems developers to efficiently and accurately evaluate vehicle technology performance requirements to reduce cost and development time while ultimately leading to the commercialization of advanced technologies that meet the performance requirements of the port drayage vocation. The drive cycles, which are suitable for chassis dynamometer testing, were compared to several existing test cycles. This paper presents the clustering methodology, accompanying results of the port drayage duty cycle analysis and custom drive cycle creation.

  16. CORRELATION ANALYSIS OF DRIVING CONDITIONS AND ON-ROAD EMISSIONS TRENDS FOR VEHICLES

    Directory of Open Access Journals (Sweden)

    Jawad H. Al-rifai

    2017-01-01

    Full Text Available This paper presents the impact of road grade, vehicle speed, nu mber of vehicles and vehicle type on vehicle emissions. ANOVA analyses were conducte d among different driving conditions and vehicle emissions to discover the signif icant effects of driving conditions on measured emission rates. This study is intended t o improve the understanding of vehicle emission levels in Jordan. Gas emissio ns in real-world driving conditions were measured by a por table emissions measurement un it over six sections of an urban road. The road grade, speed, type and number of veh icles were found to have a significant influence on the rate of gas emissions. Road grade and diesel-fueled vehicles were positively correlate d with average emission rates . The average emission rates were higher at speeds ranging between 60–69 km/h than at three other speed ranges. The results of ANOVA showed a strong and consistent reg ression between rates of emissions measured and grade, speed and diesel vehicle parameters. The grade parameter contributed the most to the rate of emissions compare d to other parameters. Gasoline vehicles contributed the least.

  17. Light duty vehicle transportation and global climate policy: The importance of electric drive vehicles

    International Nuclear Information System (INIS)

    Bosetti, Valentina; Longden, Thomas

    2013-01-01

    With a focus on the interaction between long-term climate targets and personal transport we review the electrification of light duty vehicles (LDVs) within a model that utilizes a learning-by-researching structure. By modeling the demand of vehicles, the use of fuels and emissions implied, the model solves for the optimum RD and D investments that decrease the cost of hybrid, plug-in hybrid and electric vehicles. A range of technology and climate policy scenarios provide long term projections of vehicle use that highlight the potential synergies between innovation in the transportation sector and the energy sector. We find that even when the capital cost of electric drive vehicles (EDVs) remains higher than that of traditional combustion engine alternatives, EDVs are likely to play a key role in the decarbonisation implied by stringent climate policy. Limited innovation in batteries results in notable increases in policy costs consistent with a two degree climate policy target. - Highlights: • Significant increase in vehicles across regions in the medium to long term future. • Climate policy costs are sensitive to a lack of electric drive vehicles (EDVs). • Achieving 450ppm with no change in battery costs has a policy cost that is 2.86 percentage points higher than the base 450ppm scenario. • Climate policy hastens the introduction of electrified vehicles, however EDVs do not become the dominant vehicle of choice before the middle of the century

  18. Driving the Phileas, a new automated public transport vehicle

    NARCIS (Netherlands)

    de Waard, Dick; Brookhuis, Karel; Fabriek, Eva; Van Wolffelaar, Peter C.

    2004-01-01

    Phileas is a high quality public transport vehicle combining characteristics of bus, tram, and the underground. Phileas is equipped with pneumatic tyres and complies with the statutory regulations for buses. Accordingly Phileas may drive everywhere on public roads where buses are allowed to drive.

  19. Progress on advanced dc and ac induction drives for electric vehicles

    Science.gov (United States)

    Schwartz, H. J.

    1982-01-01

    Progress is reported in the development of complete electric vehicle propulsion systems, and the results of tests on the Road Load Simulator of two such systems representative of advanced dc and ac drive technology are presented. One is the system used in the DOE's ETV-1 integrated test vehicle which consists of a shunt wound dc traction motor under microprocessor control using a transistorized controller. The motor drives the vehicle through a fixed ratio transmission. The second system uses an ac induction motor controlled by transistorized pulse width modulated inverter which drives through a two speed automatically shifted transmission. The inverter and transmission both operate under the control of a microprocessor. The characteristics of these systems are also compared with the propulsion system technology available in vehicles being manufactured at the inception of the DOE program and with an advanced, highly integrated propulsion system upon which technology development was recently initiated.

  20. A Study of Torque Vectoring and Traction Control for an All-Wheel Drive Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Maharun Mui’nuddin

    2014-07-01

    Full Text Available Common vehicle always experience energy loss during cornering manoeuver. Thus, to ensure it did not happened especially at high speed, a study of torque vectoring and traction control need to be made since it can increase the traction control of tyres during cornering at high speed. The study of torque vectoring and traction control for an all-wheel drive electric vehicle was conducted by modelling an all-wheel drive electric vehicle (EV in ADAMS/Car software. In addition, an optimal control algorithm will be developed for best performance to minimize energy losses using MATLAB/Simulink software. Furthermore, to prove the effectiveness of the all-wheel drive electric, the torque and traction control simulation of the all-wheel drive electric vehicle will be compared with uncontrolled electric vehicle model. According to the result, torque vectoring and traction control of in-wheel motor in all wheel drive EV can help to increase the performance of the electric vehicle during cornering manoeuver. In conclusion, this study of torque vectoring and traction control for an all-wheel drive electric vehicle will help researchers to improve the design of the future electric vehicle in term of the vehicle performance during cornering manoeuvre.

  1. Using fleets of electric-drive vehicles for grid support

    International Nuclear Information System (INIS)

    Tomic, Jasna; Kempton, Willett

    2007-01-01

    Electric-drive vehicles can provide power to the electric grid when they are parked (vehicle-to-grid power). We evaluated the economic potential of two utility-owned fleets of battery-electric vehicles to provide power for a specific electricity market, regulation, in four US regional regulation services markets. The two battery-electric fleet cases are: (a) 100 Th.nk City vehicle and (b) 252 Toyota RAV4. Important variables are: (a) the market value of regulation services, (b) the power capacity (kW) of the electrical connections and wiring, and (c) the energy capacity (kWh) of the vehicle's battery. With a few exceptions when the annual market value of regulation was low, we find that vehicle-to-grid power for regulation services is profitable across all four markets analyzed. Assuming now more than current Level 2 charging infrastructure (6.6 kW) the annual net profit for the Th.nk City fleet is from US$ 7000 to 70,000 providing regulation down only. For the RAV4 fleet the annual net profit ranges from US$ 24,000 to 260,000 providing regulation down and up. Vehicle-to-grid power could provide a significant revenue stream that would improve the economics of grid-connected electric-drive vehicles and further encourage their adoption. It would also improve the stability of the electrical grid. (author)

  2. Advising on human factors for field trials with (partially) self-driving vehicles.

    NARCIS (Netherlands)

    Craen, S. de Boele, M.J. Duivenvoorden, C.W.A.E. & Hoekstra, A.T.G.

    2016-01-01

    Vehicles are increasingly equipped with systems that take over (elements of) the driving task. Eventually, this is expected to result in fully self-driving vehicles. The human role will shift from driver to supervisor, and ultimately to passenger. These systems are assumed to reduce the risk of

  3. DIAGNOSTICS CONCEPTION OF ELECTRICAL DRIVE OF A HYBRID VEHICLE

    Directory of Open Access Journals (Sweden)

    Y. Borodenko

    2012-01-01

    Full Text Available Conceptual approach to creat the diagnostic system of the power elements of the electric drive of the hybrid vehicle has been considered. Approbation of the imitation model of electric drive with brushless DC electric motor as a diagnostic object has been carried out.

  4. Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas

    International Nuclear Information System (INIS)

    Brady, John; O’Mahony, Margaret

    2016-01-01

    Highlights: • Development of a driving cycle to evaluate energy economy of electric vehicles. • Improves on existing driving cycles by using real world data from electric vehicles. • Driving data from different road types and traffic conditions included. - Abstract: Understanding real-world driving conditions in the form of driving cycles is instrumental in the design of efficient powertrains and energy storage systems for electric vehicles. In addition, driving cycles serve as a standardised measurement procedure for the certification of a vehicle’s fuel economy and driving range. They also facilitate the evaluation of the economic and lifecycle costs of emerging vehicular technologies. However, discrepancies between existing driving cycles and real-world driving conditions exist due to a number of factors such as insufficient data, inadequate driving cycle development methodologies and methods to assess the representativeness of developed driving cycles. The novel aspect of the work presented here is the use of real-world data from electric vehicles, over a six month period, to derive a driving cycle appropriate for their assessment. A stochastic and statistical methodology is used to develop and assess the representativeness of the driving cycle against a separate set of real world electric vehicle driving data and the developed cycle performs well in that comparison. Although direct comparisons with internal combustion engine driving cycles are not that informative or relevant due to the marked differences between how they and electric vehicles operate, some discussion around how the developed electric vehicle cycle relates to them is also included.

  5. Modeling and predicting low-speed vehicle emissions as a function of driving kinematics.

    Science.gov (United States)

    Hao, Lijun; Chen, Wei; Li, Lei; Tan, Jianwei; Wang, Xin; Yin, Hang; Ding, Yan; Ge, Yunshan

    2017-05-01

    An instantaneous emission model was developed to model and predict the real driving emissions of the low-speed vehicles. The emission database used in the model was measured by using portable emission measurement system (PEMS) under actual traffic conditions in the rural area, and the characteristics of the emission data were determined in relation to the driving kinematics (speed and acceleration) of the low-speed vehicle. The input of the emission model is driving cycle, and the model requires instantaneous vehicle speed and acceleration levels as input variables and uses them to interpolate the pollutant emission rate maps to calculate the transient pollutant emission rates, which will be accumulated to calculate the total emissions released during the whole driving cycle. And the vehicle fuel consumption was determined through the carbon balance method. The model predicted the emissions and fuel consumption of an in-use low-speed vehicle type model, which agreed well with the measured data. Copyright © 2016. Published by Elsevier B.V.

  6. Integrated traction control strategy for distributed drive electric vehicles with improvement of economy and longitudinal driving stability

    OpenAIRE

    Zhang, Xudong; Göhlich, Dietmar

    2017-01-01

    This paper presents an integrated traction control strategy (ITCS) for distributed drive electric vehicles. The purpose of the proposed strategy is to improve vehicle economy and longitudinal driving stability. On high adhesion roads, economy optimization algorithm is applied to maximize motors efficiency by means of the optimized torque distribution. On low adhesion roads, a sliding mode control (SMC) algorithm is implemented to guarantee the wheel slip ratio around the optimal slip ratio po...

  7. Heel and toe driving on fuel cell vehicle

    Science.gov (United States)

    Choi, Tayoung; Chen, Dongmei

    2012-12-11

    A system and method for providing nearly instantaneous power in a fuel cell vehicle. The method includes monitoring the brake pedal angle and the accelerator pedal angle of the vehicle, and if the vehicle driver is pressing both the brake pedal and the accelerator pedal at the same time and the vehicle is in a drive gear, activating a heel and toe mode. When the heel and toe mode is activated, the speed of a cathode compressor is increased to a predetermined speed set-point, which is higher than the normal compressor speed for the pedal position. Thus, when the vehicle brake is removed, the compressor speed is high enough to provide enough air to the cathode, so that the stack can generate nearly immediate power.

  8. Enviromnental Control and Life Support Systems for Mars Missions - Issues and Concerns for Planetary Protection

    Science.gov (United States)

    Barta, Daniel J.; Anderson, Molly S.; Lange, Kevin

    2015-01-01

    Planetary protection represents an additional set of requirements that generally have not been considered by developers of technologies for Environmental Control and Life Support Systems (ECLSS). Planetary protection guidelines will affect the kind of operations, processes, and functions that can take place during future human planetary exploration missions. Ultimately, there will be an effect on mission costs, including the mission trade space when planetary protection requirements begin to drive vehicle deisgn in a concrete way. Planetary protection requirements need to be considered early in technology development and mission programs in order to estimate these impacts and push back on requirements or find efficient ways to perform necessary functions. It is expected that planetary protection will be a significant factor during technology selection and system architecture design for future missions.

  9. Assessment of the influence on vehicle emissions of driving style, vehicle technology and traffic measures

    NARCIS (Netherlands)

    Burgwal, H.C. van de; Gense, N.L.J.; Mierlo, J. van; Maggetto, G.

    2002-01-01

    The influence of traffic measures and driving style on different vehicle emissions and on primary energy consumption, and the definition of vehicle parameters influencing the relation between them, is an interesting issue to be assessed in order to allow more realistic estimations of the impact of

  10. A novel dual motor drive system for three wheel electric vehicles

    Science.gov (United States)

    Panmuang, Piyapat; Thongsan, Taweesak; Suwapaet, Nuchida; Laohavanich, Juckamass; Photong, Chonlatee

    2018-03-01

    This paper presents a novel dual motor drive system used for three wheel electric vehicles that have one free wheel at the front and two wheels with a drive system at the end of the vehicles. A novel dual motor drive system consists of two identical DC motors that are independently controlled by its speed-torque controller. Under light load conditions, only one of the DC motors will operate around it rated whilst under hard load conditions both of the DC motors will operate. With this drive system, the motors will operate only at its high performance at rated or else no operate to retain longer lifetime. The simulated results for the Skylab three wheel electric vehicle prototype with 8kW at full load (high torque, low speed) and around 4kW at light/normal operating loads (regular speed-torque) showed that the proposed system provides better dynamic responses with faster overshoot current/voltage recovery time, has lower investment costs, has longer lifetime of the motors and allows the motors to always operate at their high performance and thus achieve more cost effective system compared to a single motor drive system with 8kW DC motors.

  11. Climate Control Load Reduction Strategies for Electric Drive Vehicles in Warm Weather

    Energy Technology Data Exchange (ETDEWEB)

    Jeffers, M. A.; Chaney, L.; Rugh, J. P.

    2015-04-30

    Passenger compartment climate control is one of the largest auxiliary loads on a vehicle. Like conventional vehicles, electric vehicles (EVs) require climate control to maintain occupant comfort and safety, but cabin heating and air conditioning have a negative impact on driving range for all electric vehicles. Range reduction caused by climate control and other factors is a barrier to widespread adoption of EVs. Reducing the thermal loads on the climate control system will extend driving range, thereby reducing consumer range anxiety and increasing the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have investigated strategies for vehicle climate control load reduction, with special attention toward EVs. Outdoor vehicle thermal testing was conducted on two 2012 Ford Focus Electric vehicles to evaluate thermal management strategies for warm weather, including solar load reduction and cabin pre-ventilation. An advanced thermal test manikin was used to assess a zonal approach to climate control. In addition, vehicle thermal analysis was used to support testing by exploring thermal load reduction strategies, evaluating occupant thermal comfort, and calculating EV range impacts. Through stationary cooling tests and vehicle simulations, a zonal cooling configuration demonstrated range improvement of 6%-15%, depending on the drive cycle. A combined cooling configuration that incorporated thermal load reduction and zonal cooling strategies showed up to 33% improvement in EV range.

  12. Preliminary Design of Reluctance Motors for Light Electric Vehicles Driving

    Directory of Open Access Journals (Sweden)

    TRIFA, V.

    2009-02-01

    Full Text Available The paper presents the aspects regarding FEM analysis of a reluctant motor for direct driving of the light electric vehicles. The reluctant motor take into study is of special construction suitable for direct drive of a light electric vehicle. It is an inverse radial reluctant motor, with a fixed stator mounted on front wheel shaft and an external toothed rotor fixed on the front wheel itself. A short presentation of preliminary design is continued with the FEM analysis in order to provide the optimal geometry of the motor and adequate windings.

  13. Bidirectional DC-DC converter fed drive for electric vehicle system ...

    African Journals Online (AJOL)

    Batteries are the primary energy-storage devices in ground vehicles. Now days battery fed electric drives are commonly being used for electric vehicles applications, due to various advantages, such as: nearly zero emission, guaranteed load leveling, good transient operation and energy recovery during braking operation.

  14. Vehicle Mode and Driving Activity Detection Based on Analyzing Sensor Data of Smartphones

    Directory of Open Access Journals (Sweden)

    Dang-Nhac Lu

    2018-03-01

    Full Text Available In this paper, we present a flexible combined system, namely the Vehicle mode-driving Activity Detection System (VADS, that is capable of detecting either the current vehicle mode or the current driving activity of travelers. Our proposed system is designed to be lightweight in computation and very fast in response to the changes of travelers’ vehicle modes or driving events. The vehicle mode detection module is responsible for recognizing both motorized vehicles, such as cars, buses, and motorbikes, and non-motorized ones, for instance, walking, and bikes. It relies only on accelerometer data in order to minimize the energy consumption of smartphones. By contrast, the driving activity detection module uses the data collected from the accelerometer, gyroscope, and magnetometer of a smartphone to detect various driving activities, i.e., stopping, going straight, turning left, and turning right. Furthermore, we propose a method to compute the optimized data window size and the optimized overlapping ratio for each vehicle mode and each driving event from the training datasets. The experimental results show that this strategy significantly increases the overall prediction accuracy. Additionally, numerous experiments are carried out to compare the impact of different feature sets (time domain features, frequency domain features, Hjorth features as well as the impact of various classification algorithms (Random Forest, Naïve Bayes, Decision tree J48, K Nearest Neighbor, Support Vector Machine contributing to the prediction accuracy. Our system achieves an average accuracy of 98.33% in detecting the vehicle modes and an average accuracy of 98.95% in recognizing the driving events of motorcyclists when using the Random Forest classifier and a feature set containing time domain features, frequency domain features, and Hjorth features. Moreover, on a public dataset of HTC company in New Taipei, Taiwan, our framework obtains the overall accuracy of 97

  15. Vehicle Mode and Driving Activity Detection Based on Analyzing Sensor Data of Smartphones.

    Science.gov (United States)

    Lu, Dang-Nhac; Nguyen, Duc-Nhan; Nguyen, Thi-Hau; Nguyen, Ha-Nam

    2018-03-29

    In this paper, we present a flexible combined system, namely the Vehicle mode-driving Activity Detection System (VADS), that is capable of detecting either the current vehicle mode or the current driving activity of travelers. Our proposed system is designed to be lightweight in computation and very fast in response to the changes of travelers' vehicle modes or driving events. The vehicle mode detection module is responsible for recognizing both motorized vehicles, such as cars, buses, and motorbikes, and non-motorized ones, for instance, walking, and bikes. It relies only on accelerometer data in order to minimize the energy consumption of smartphones. By contrast, the driving activity detection module uses the data collected from the accelerometer, gyroscope, and magnetometer of a smartphone to detect various driving activities, i.e., stopping, going straight, turning left, and turning right. Furthermore, we propose a method to compute the optimized data window size and the optimized overlapping ratio for each vehicle mode and each driving event from the training datasets. The experimental results show that this strategy significantly increases the overall prediction accuracy. Additionally, numerous experiments are carried out to compare the impact of different feature sets (time domain features, frequency domain features, Hjorth features) as well as the impact of various classification algorithms (Random Forest, Naïve Bayes, Decision tree J48, K Nearest Neighbor, Support Vector Machine) contributing to the prediction accuracy. Our system achieves an average accuracy of 98.33% in detecting the vehicle modes and an average accuracy of 98.95% in recognizing the driving events of motorcyclists when using the Random Forest classifier and a feature set containing time domain features, frequency domain features, and Hjorth features. Moreover, on a public dataset of HTC company in New Taipei, Taiwan, our framework obtains the overall accuracy of 97.33% that is

  16. Steering redundancy for self-driving vehicles using differential braking

    Science.gov (United States)

    Jonasson, M.; Thor, M.

    2018-05-01

    This paper describes how differential braking can be used to turn a vehicle in the context of providing fail-operational control for self-driving vehicles. Two vehicle models are developed with differential input. The models are used to explain the bounds of curvature that differential braking provides and they are then validated with measurements in a test vehicle. Particular focus is paid on wheel suspension effects that significantly influence the obtained curvature. The vehicle behaviour and its limitations due to wheel suspension effects are, owing to the vehicle models, defined and explained. Finally, a model-based controller is developed to control the vehicle curvature during a fault by differential braking. The controller is designed to compensate for wheel angle disturbance that is likely to occur during the control event.

  17. Does assisted driving behavior lead to safety-critical encounters with unequipped vehicles' drivers?

    Science.gov (United States)

    Preuk, Katharina; Stemmler, Eric; Schießl, Caroline; Jipp, Meike

    2016-10-01

    With Intelligent Transport Systems (e.g., traffic light assistance systems) assisted drivers are able to show driving behavior in anticipation of upcoming traffic situations. In the years to come, the penetration rate of such systems will be low. Therefore, the majority of vehicles will not be equipped with these systems. Unequipped vehicles' drivers may not expect the driving behavior of assisted drivers. However, drivers' predictions and expectations can play a significant role in their reaction times. Thus, safety issues could arise when unequipped vehicles' drivers encounter driving behavior of assisted drivers. This is why we tested how unequipped vehicles' drivers (N=60) interpreted and reacted to the driving behavior of an assisted driver. We used a multi-driver simulator with three drivers. The three drivers were driving in a line. The lead driver in the line was a confederate who was followed by two unequipped vehicles' drivers. We varied the equipment of the confederate with an Intelligent Transport System: The confederate was equipped either with or without a traffic light assistance system. The traffic light assistance system provided a start-up maneuver before a light turned green. Therefore, the assisted confederate seemed to show unusual deceleration behavior by coming to a halt at an unusual distance from the stop line at the red traffic light. The unusual distance was varied as we tested a moderate (4m distance from the stop line) and an extreme (10m distance from the stop line) parameterization of the system. Our results showed that the extreme parametrization resulted in shorter minimal time-to-collision of the unequipped vehicles' drivers. One rear-end crash was observed. These results provided initial evidence that safety issues can arise when unequipped vehicles' drivers encounter assisted driving behavior. We recommend that future research identifies counteractions to prevent these safety issues. Moreover, we recommend that system developers

  18. Research on safety evaluation model for in-vehicle secondary task driving.

    Science.gov (United States)

    Jin, Lisheng; Xian, Huacai; Niu, Qingning; Bie, Jing

    2015-08-01

    This paper presents a new method for evaluating in-vehicle secondary task driving safety. There are five in-vehicle distracter tasks: tuning the radio to a local station, touching the touch-screen telephone menu to a certain song, talking with laboratory assistant, answering a telephone via Bluetooth headset, and finding the navigation system from Ipad4 computer. Forty young drivers completed the driving experiment on a driving simulator. Measures of fixations, saccades, and blinks are collected and analyzed. Based on the measures of driver eye movements which have significant difference between the baseline and secondary task driving conditions, the evaluation index system is built. The Analytic Network Process (ANP) theory is applied for determining the importance weight of the evaluation index in a fuzzy environment. On the basis of the importance weight of the evaluation index, Fuzzy Comprehensive Evaluation (FCE) method is utilized to evaluate the secondary task driving safety. Results show that driving with secondary tasks greatly distracts the driver's attention from road and the evaluation model built in this study could estimate driving safety effectively under different driving conditions. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  19. Switched Cooperative Driving Model towards Human Vehicle Copiloting Situation: A Cyberphysical Perspective

    Directory of Open Access Journals (Sweden)

    Yang Li

    2018-01-01

    Full Text Available Development of highly automated and intelligent vehicles can lead to the reduction of driver workload. However, it also causes the out-of-the-loop problem to drivers, which leaves drivers handicapped in their ability to take over manual operations in emergency situations. This contribution puts forth a new switched driving strategy to avoid some of the negative consequences associated with out-of-the-loop performance by having drivers assume manual control at periodic intervals. To minimize the impact of the transitions between automated and manual driving on traffic operations, a switched cooperative driving model towards human vehicle copiloting situation is proposed by considering the vehicle dynamics and the realistic intervehicle communication in a cyberphysical view. The design method of the switching signal for the switched cooperative driving model is given based on the Lyapunov stability theory with the comprehensive consideration of platoon stability and human factors. The good agreement between simulation results and theoretical analysis illustrates the effectiveness of the proposed methods.

  20. Alternating-Current Motor Drive for Electric Vehicles

    Science.gov (United States)

    Krauthamer, S.; Rippel, W. E.

    1982-01-01

    New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

  1. Commercial Motor Vehicle Driving Safety Website

    OpenAIRE

    Tidwell, Scott; Trimble, Tammy; Blanco, Myra

    2016-01-01

    This report documents the CMV Driving Safety website (http://cmvdrivingsafety.org/), which was created by the National Surface Transportation Safety Center for Excellence (NSTSCE) as an outreach effort to assist commercial motor vehicle (CMV) fleets and drivers, driver trainers, CMV training schools, and insurance companies. The website contains 15 unique pages and provides six downloadable training modules on driver distraction, driver health, hours of service, driver drowsiness and fatigue,...

  2. 32 CFR 634.9 - Suspension or revocation of driving or privately owned vehicle registration privileges.

    Science.gov (United States)

    2010-07-01

    ... violations or safe vehicle operation, is not limited or restricted by this part. (a) Suspension. (1) Driving... Government vehicles. (3) Immediate suspension of installation or overseas command POV driving privileges... which the vehicle is being operated if the jurisdiction imposes a suspension solely on the basis of the...

  3. Integrated Traction Control Strategy for Distributed Drive Electric Vehicles with Improvement of Economy and Longitudinal Driving Stability

    Directory of Open Access Journals (Sweden)

    Xudong Zhang

    2017-01-01

    Full Text Available This paper presents an integrated traction control strategy (ITCS for distributed drive electric vehicles. The purpose of the proposed strategy is to improve vehicle economy and longitudinal driving stability. On high adhesion roads, economy optimization algorithm is applied to maximize motors efficiency by means of the optimized torque distribution. On low adhesion roads, a sliding mode control (SMC algorithm is implemented to guarantee the wheel slip ratio around the optimal slip ratio point to make full use of road adhesion capacity. In order to avoid the disturbance on slip ratio calculation due to the low vehicle speed, wheel rotational speed is taken as the control variable. Since the optimal slip ratio varies according to different road conditions, Bayesian hypothesis selection is utilized to estimate the road friction coefficient. Additionally, the ITCS is designed for combining the vehicle economy and stability control through three traction allocation cases: economy-based traction allocation, pedal self-correcting traction allocation and inter-axles traction allocation. Finally, simulations are conducted in CarSim and Matlab/Simulink environment. The results show that the proposed strategy effectively reduces vehicle energy consumption, suppresses wheels-skid and enhances the vehicle longitudinal stability and dynamic performance.

  4. A study on optimization of hybrid drive train using Advanced Vehicle Simulator (ADVISOR)

    Energy Technology Data Exchange (ETDEWEB)

    Same, Adam; Stipe, Alex; Grossman, David; Park, Jae Wan [Department of Mechanical and Aeronautical Engineering, University of California, Davis, One Shields Ave, Davis, CA 95616 (United States)

    2010-10-01

    This study investigates the advantages and disadvantages of three hybrid drive train configurations: series, parallel, and ''through-the-ground'' parallel. Power flow simulations are conducted with the MATLAB/Simulink-based software ADVISOR. These simulations are then applied in an application for the UC Davis SAE Formula Hybrid vehicle. ADVISOR performs simulation calculations for vehicle position using a combined backward/forward method. These simulations are used to study how efficiency and agility are affected by the motor, fuel converter, and hybrid configuration. Three different vehicle models are developed to optimize the drive train of a vehicle for three stages of the SAE Formula Hybrid competition: autocross, endurance, and acceleration. Input cycles are created based on rough estimates of track geometry. The output from these ADVISOR simulations is a series of plots of velocity profile and energy storage State of Charge that provide a good estimate of how the Formula Hybrid vehicle will perform on the given course. The most noticeable discrepancy between the input cycle and the actual velocity profile of the vehicle occurs during deceleration. A weighted ranking system is developed to organize the simulation results and to determine the best drive train configuration for the Formula Hybrid vehicle. Results show that the through-the-ground parallel configuration with front-mounted motors achieves an optimal balance of efficiency, simplicity, and cost. ADVISOR is proven to be a useful tool for vehicle power train design for the SAE Formula Hybrid competition. This vehicle model based on ADVISOR simulation is applicable to various studies concerning performance and efficiency of hybrid drive trains. (author)

  5. Dual rotor single- stator axial air gap PMSM motor/generator drive for high torque vehicles applications

    Science.gov (United States)

    Tutelea, L. N.; Deaconu, S. I.; Boldea, I.; Popa, G. N.

    2014-03-01

    The actual e - continuously variable transmission (e-CVT) solution for the parallel Hybrid Electric Vehicle (HEV) requires two electric machines, two inverters, and a planetary gear. A distinct electric generator and a propulsion electric motor, both with full power converters, are typical for a series HEV. In an effort to simplify the planetary-geared e-CVT for the parallel HEV or the series HEV we hereby propose to replace the basically two electric machines and their two power converters by a single, axial-air-gap, electric machine central stator, fed from a single PWM converter with dual frequency voltage output and two independent PM rotors, destined for hybrid electric vehicles (HEV) and military vehicles applications. The proposed topologies and the magneto-motive force analysis are the core of the paper.

  6. Dual rotor single- stator axial air gap PMSM motor/generator drive for high torque vehicles applications

    International Nuclear Information System (INIS)

    University of Timisoara, Electrical Engineering Department, Vasile Parvan str., no. 1-2, 300223 Timisoara (Romania))" data-affiliation=" (Politehnica University of Timisoara, Electrical Engineering Department, Vasile Parvan str., no. 1-2, 300223 Timisoara (Romania))" >Tutelea, L N; University of Timisoara, Electrical Engineering Department, Vasile Parvan str., no. 1-2, 300223 Timisoara (Romania))" data-affiliation=" (Politehnica University of Timisoara, Electrical Engineering Department, Vasile Parvan str., no. 1-2, 300223 Timisoara (Romania))" >Boldea, I; University of Timisoara, Department of Electrotechnical Engineering and Industrial Informatics, 5 Revolution Street, Hunedoara, 331128 (Romania))" data-affiliation=" (Politehnica University of Timisoara, Department of Electrotechnical Engineering and Industrial Informatics, 5 Revolution Street, Hunedoara, 331128 (Romania))" >Deaconu, S I; University of Timisoara, Department of Electrotechnical Engineering and Industrial Informatics, 5 Revolution Street, Hunedoara, 331128 (Romania))" data-affiliation=" (Politehnica University of Timisoara, Department of Electrotechnical Engineering and Industrial Informatics, 5 Revolution Street, Hunedoara, 331128 (Romania))" >Popa, G N

    2014-01-01

    The actual e – continuously variable transmission (e-CVT) solution for the parallel Hybrid Electric Vehicle (HEV) requires two electric machines, two inverters, and a planetary gear. A distinct electric generator and a propulsion electric motor, both with full power converters, are typical for a series HEV. In an effort to simplify the planetary-geared e-CVT for the parallel HEV or the series HEV we hereby propose to replace the basically two electric machines and their two power converters by a single, axial-air-gap, electric machine central stator, fed from a single PWM converter with dual frequency voltage output and two independent PM rotors, destined for hybrid electric vehicles (HEV) and military vehicles applications. The proposed topologies and the magneto-motive force analysis are the core of the paper

  7. The latest technical solutions in rail vehicles drives

    Directory of Open Access Journals (Sweden)

    Andrzejewski Maciej

    2017-01-01

    Full Text Available The article discusses the latest trends and solutions used in the offers of rail vehicles manufacturers. The study is mainly concerned with the technical solutions used in hybrid rail vehicles, whose development has become one of the priorities for the development of rail vehicles in the European Union in recent years. Stricter emissions standards for harmful compounds in the European Union have forced manufacturers to use increasingly sophisticated technology, including hybrid drives and alternative fuels. The products and solutions offered by the major manufacturers on the market, along with their capabilities and future applications are described. The predicted trends in the development of propulsion technology for rail and road-rail vehicles are also indicated in view of the current legislative aspirations among the EU Member States.

  8. Driving Pattern Analysis for Electric Vehicle (EV) Grid Integration Study

    DEFF Research Database (Denmark)

    Wu, Qiuwei; Nielsen, Arne Hejde; Østergaard, Jacob

    2010-01-01

    In order to facilitate the integration of electric vehicles (EVs) into the Danish power system, the driving data in Denmark were analyzed to extract the information of driving distances and driving time periods which were used to represent the driving requirements and the EV unavailability...... from the driving time periods to show how many cars are available for charging and discharging in each time period. The obtained EV availability data are in one hour time periods and one quarter time periods for different study purposes. The EV availability data of one hour time period are to be used...

  9. Performance Analysis of Hybrid Electric Vehicle over Different Driving Cycles

    Science.gov (United States)

    Panday, Aishwarya; Bansal, Hari Om

    2017-02-01

    Article aims to find the nature and response of a hybrid vehicle on various standard driving cycles. Road profile parameters play an important role in determining the fuel efficiency. Typical parameters of road profile can be reduced to a useful smaller set using principal component analysis and independent component analysis. Resultant data set obtained after size reduction may result in more appropriate and important parameter cluster. With reduced parameter set fuel economies over various driving cycles, are ranked using TOPSIS and VIKOR multi-criteria decision making methods. The ranking trend is then compared with the fuel economies achieved after driving the vehicle over respective roads. Control strategy responsible for power split is optimized using genetic algorithm. 1RC battery model and modified SOC estimation method are considered for the simulation and improved results compared with the default are obtained.

  10. Driving with Pets as a Risk Factor for Motor Vehicle Collisions among Older Drivers

    Science.gov (United States)

    Blunck, Hallie; Owsley, Cynthia; MacLennan, Paul A.; McGwin, Gerald

    2015-01-01

    Increasing rates of distraction-related motor vehicle collisions (MVCs) continue to raise concerns regarding driving safety. This study sought to evaluate a novel driving-related distraction, driving with a pet, as a risk factor for MVCs among older, community dwelling adults. Two thousand licensed drivers aged 70 and older were identified, of whom 691 reported pet ownership. Comparing pet owners who did and did not drive with their pets, neither overall MVC rates (rate ratio [RR] 0.97 95% confidence interval [CI] 0.75–1.26) nor at-fault MVC rates (RR 0.84 95% CI 0.57–1.24) were elevated. However, those who reported always driving with a pet in the vehicle had an elevated MVC rate (RR 1.89 95% CI 1.10–3.25), as compared to those who did not drive with a pet. The MVC rate was not increased for those reporting only sometimes or rarely driving with a pet in the vehicle. The current study demonstrates an increased risk of MVC involvement in those older drivers who always take a pet with them when they drive a vehicle. When confronted with an increased cognitive or physical workload while driving, elderly drivers in prior studies have exhibited slower cognitive performance and delayed response times in comparison to younger age groups. Further study of pet-related distracted driving behaviors among older drivers as well as younger populations with respect to driver safety and performance is warranted to appropriately inform the need for policy regulation on this issue. PMID:23708755

  11. Automated driving and autonomous functions on road vehicles

    Science.gov (United States)

    Gordon, T. J.; Lidberg, M.

    2015-07-01

    In recent years, road vehicle automation has become an important and popular topic for research and development in both academic and industrial spheres. New developments have received extensive coverage in the popular press, and it may be said that the topic has captured the public imagination. Indeed, the topic has generated interest across a wide range of academic, industry and governmental communities, well beyond vehicle engineering; these include computer science, transportation, urban planning, legal, social science and psychology. While this follows a similar surge of interest - and subsequent hiatus - of Automated Highway Systems in the 1990s, the current level of interest is substantially greater, and current expectations are high. It is common to frame the new technologies under the banner of 'self-driving cars' - robotic systems potentially taking over the entire role of the human driver, a capability that does not fully exist at present. However, this single vision leads one to ignore the existing range of automated systems that are both feasible and useful. Recent developments are underpinned by substantial and long-term trends in 'computerisation' of the automobile, with developments in sensors, actuators and control technologies to spur the new developments in both industry and academia. In this paper, we review the evolution of the intelligent vehicle and the supporting technologies with a focus on the progress and key challenges for vehicle system dynamics. A number of relevant themes around driving automation are explored in this article, with special focus on those most relevant to the underlying vehicle system dynamics. One conclusion is that increased precision is needed in sensing and controlling vehicle motions, a trend that can mimic that of the aerospace industry, and similarly benefit from increased use of redundant by-wire actuators.

  12. Evaluation of half wave induction motor drive for use in passenger vehicles

    Science.gov (United States)

    Hoft, R. G.; Kawamura, A.; Goodarzi, A.; Yang, G. Q.; Erickson, C. L.

    1985-01-01

    Research performed at the University of Missouri-Columbia to devise and design a lower cost inverter induction motor drive for electrical propulsion of passenger vehicles is described. A two phase inverter motor system is recommended. The new design is predicted to provide comparable vehicle performance, improved reliability and a cost advantage for a high production vehicle, decreased total rating of the power semiconductor switches, and a somewhat simpler control hardware compared to the conventional three phase bridge inverter motor drive system. The major disadvantages of the two phase inverter motor drive are that it is larger and more expensive than a three phase machine, the design of snubbers for the power leakage inductances produce higher transient voltages, and the torque pulsations are relatively large because of the necessity to limit the inverter switching frequency to achieve high efficiency.

  13. Dynamic motion stabilization for front-wheel drive in-wheel motor electric vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Sheng Hu

    2015-12-01

    Full Text Available This article presents a new dynamic motion stabilization approach to front-wheel drive in-wheel motor electric vehicles. The approach includes functions such as traction control system, electronic differential system, and electronic stability control. The presented electric vehicle was endowed with anti-skid performance in longitudinal accelerated start; smooth turning with less tire scrubbing; and safe driving experience in two-dimensional steering. The analysis of the presented system is given in numerical derivations. For practical verifications, this article employed a hands-on electric vehicle named Corsa-electric vehicle to carry out the tests. The presented approach contains an integrated scheme which can achieve the mentioned functions in a single microprocessor. The experimental results demonstrated the effectiveness and feasibility of the presented methodology.

  14. Interface design considerations for an in-vehicle eco-driving assistance system

    OpenAIRE

    Jamson, AH; Hibberd, DL; Merat, N

    2015-01-01

    This high-fidelity driving simulator study used a paired comparison design to investigate the effectiveness of 12 potential eco-driving interfaces. Previous work has demonstrated fuel economy improvements through the provision of in-vehicle eco-driving guidance using a visual or haptic interface. This study uses an eco-driving assistance system that advises the driver of the most fuel efficient accelerator pedal angle, in real time. Assistance was provided to drivers through a visual dashboar...

  15. Implications of driving patterns on well-to-wheel performance of plug-in hybrid electric vehicles.

    Science.gov (United States)

    Raykin, Leon; MacLean, Heather L; Roorda, Matthew J

    2012-06-05

    This study examines how driving patterns (distance and conditions) and the electricity generation supply interact to impact well-to-wheel (WTW) energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW performance of a PHEV is compared with that of a similar (nonplug-in) gasoline hybrid electric vehicle and internal combustion engine vehicle (ICEV). Driving PHEVs for short distances between recharging generally results in lower WTW total and fossil energy use and GHG emissions per kilometer compared to driving long distances, but the extent of the reductions depends on the electricity supply. For example, the shortest driving pattern in this study with hydroelectricity uses 81% less fossil energy than the longest driving pattern. However, the shortest driving pattern with coal-based electricity uses only 28% less fossil energy. Similar trends are observed in reductions relative to the nonplug-in vehicles. Irrespective of the electricity supply, PHEVs result in greater reductions in WTW energy use and GHG emissions relative to ICEVs for city than highway driving conditions. PHEVs charging from coal facilities only reduce WTW energy use and GHG emissions relative to ICEVs for certain favorable driving conditions. The study results have implications for environmentally beneficial PHEV adoption and usage patterns.

  16. A DCT-Based Driving Cycle Generation Method and Its Application for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Cheng Lin

    2015-01-01

    Full Text Available Nowadays, many widely used driving cycle (DC representing and generating methods are designed for traditional vehicles with internal combustion engines (ICE. The real-world driving is viewed as a sequence of acceleration, cruise, deceleration, and idle modes. The emission and fuel consumption in each period should be taken into account carefully. However, for electric vehicles (EVs, most of them are powered by low or zero-emission renewable energy sources. The working status and energy management algorithms of them are very different from traditional vehicles. To facilitate the EV design, we proposed a novel DC representing and construction method to generate DCs for EVs. The whole driving route is divided into several length-fixed segments and each of these segments is converted into a frequency sequence. After doing that, we can adjust the frequency and amplitude of the generated driving cycle directly. The experiment results showed that the proposed method was effective and convenient.

  17. Vehicle Velocity and Roll Angle Estimation with Road and Friction Adaptation for Four-Wheel Independent Drive Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Linhui Zhao

    2014-01-01

    Full Text Available Vehicle velocity and roll angle are important information for active safety control systems of four-wheel independent drive electric vehicle. In order to obtain robustness estimation of vehicle velocity and roll angle, a novel method is proposed based on vehicle dynamics and the measurement information provided by the sensors equipped in modern cars. The method is robust with respect to different road and friction conditions. Firstly, the dynamic characteristics of four-wheel independent drive electric vehicle are analyzed, and a four-degree-of-freedom nonlinear dynamic model of vehicle and a tire longitudinal dynamic equation are established. The relationship between the longitudinal and lateral friction forces is derived based on Dugoff tire model. The unknown input reconstruction technique of sliding mode observer is used to achieve longitudinal tire friction force estimation. A simple observer is designed for the estimation of the roll angle of the vehicle. And then using the relationship, the estimated longitudinal friction forces and roll angle, a sliding mode observer for vehicle velocity estimation is provided, which does not need to know the tire-road friction coefficient and road angles. Finally, the proposed method is evaluated experimentally under a variety of maneuvers and road conditions.

  18. Optimal recharge and driving strategies for a battery-powered electric vehicle

    Directory of Open Access Journals (Sweden)

    Lee W. R.

    1999-01-01

    Full Text Available A major problem facing battery-powered electric vehicles is in their batteries: weight and charge capacity. Thus, a battery-powered electric vehicle only has a short driving range. To travel for a longer distance, the batteries are required to be recharged frequently. In this paper, we construct a model for a battery-powered electric vehicle, in which driving strategy is to be obtained such that the total travelling time between two locations is minimized. The problem is formulated as an optimization problem with switching times and speed as decision variables. This is an unconventional optimization problem. However, by using the control parametrization enhancing technique (CPET, it is shown that this unconventional optimization is equivalent to a conventional optimal parameter selection problem. Numerical examples are solved using the proposed method.

  19. Climate Control Load Reduction Strategies for Electric Drive Vehicles in Cold Weather: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jeffers, Matthew; Chaney, Lawrence; Rugh, John

    2016-03-31

    When operated, the climate control system is the largest auxiliary load on a vehicle. This load has significant impact on fuel economy for conventional and hybrid vehicles, and it drastically reduces the driving range of all electric vehicles (EVs). Heating is even more detrimental to EV range than cooling because no engine waste heat is available. Reducing the thermal loads on the heating, ventilating, and air conditioning system will extend driving range and increase the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have evaluated strategies for vehicle climate control load reduction with special attention toward grid connected electric vehicles. Outdoor vehicle thermal testing and computational modeling were used to assess potential strategies for improved thermal management and to evaluate the effectiveness of thermal load reduction technologies. A human physiology model was also used to evaluate the impact on occupant thermal comfort. Experimental evaluations of zonal heating strategies demonstrated a 5.5% to 28.5% reduction in cabin heating energy over a 20-minute warm-up. Vehicle simulations over various drive cycles show a 6.9% to 18.7% improvement in EV range over baseline heating using the most promising zonal heating strategy investigated. A national-level analysis was conducted to determine the overall national impact. If all vehicles used the best zonal strategy, the range would be improved by 7.1% over the baseline heating range. This is a 33% reduction in the range penalty for heating.

  20. EVALUATION METHOD OF FUEL-EFFICIENT DRIVING IN DUMP TRUCK USING VEHICLE SPEED AND ENGINE ROTATIONAL SPEED

    Science.gov (United States)

    Hirata, Masafumi; Yamamoto, Tatsuo; Yasui, Toshiaki; Hayashi, Mayu; Takebe, Atsuji; Funahashi, Masashi

    In the construction site, the light oil that the construction vehicle such as dump trucks uses accounts for 70 percent of the amount of the energy use. Therefore, the eco-driving education of the construction vehicle is effective in the fuel cost improvement and the CO2 reduction. The eco-driving education can be executed cheap and easily, and a high effect can be expected. However, it is necessary to evaluate the eco-driving situation of the construction vehicle exactly to maintain the educative effect for a long term. In this paper, the method for evaluating the effect of the fuel cost improvement was examined by using the vehicle speed and the engine rotational speed of the dump truck. In this method, "Ideal eco-driving model" that considers the difference between the vehicle model and the running condition (traffic jam etc.) is made. As a result, it is possible to evaluate the fuel consumption improvement effect of a dump truck by the same index.

  1. Driving Simulator Study of Effect of Inside Shoulder on Vehicle Operation

    Directory of Open Access Journals (Sweden)

    Han Ding

    2015-02-01

    Full Text Available According to the Chinese Design Specification for Highway Alignment (JTG D20-2006, eight-lane expressways should be paved with an inside shoulder of 2.5 m; however, this regulation is rarely obeyed in engineering practice. On the basis of driving simulator experiment, this research examined the impacts of inside shoulder on vehicle operation with and without the speed limitation. A virtual scenario, consisting of five expressways with different inside shoulder widths, was created and displayed in driving simulator, and vehicle operational data—speed and lane position—were recorded. Authors used analysis of variance (ANOVA and contrast analysis to examine whether inside shoulder width had statistically significant effects on travel speed and lane position. Analytical results indicated that there is a kind of quadratic relationship between inside shoulder width and driver's speed choice, while driver's speed choice is not significantly affected by inside shoulder width. What is more, inside shoulder width has statistically significant effects on vehicle's lane positions, and vehicle's lane position is negatively correlated to inside shoulder width. Specifically, the vehicle can be maintained at the center of lane when the inside shoulder width is 2.5 m.

  2. Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains

    International Nuclear Information System (INIS)

    Karabasoglu, Orkun; Michalek, Jeremy

    2013-01-01

    We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas emissions under various scenarios and simulated driving conditions. We find that driving conditions affect economic and environmental benefits of electrified vehicles substantially: Under the urban NYC driving cycle, hybrid and plug-in vehicles can cut life cycle emissions by 60% and reduce costs up to 20% relative to conventional vehicles (CVs). In contrast, under highway test conditions (HWFET) electrified vehicles offer marginal emissions reductions at higher costs. NYC conditions with frequent stops triple life cycle emissions and increase costs of conventional vehicles by 30%, while aggressive driving (US06) reduces the all-electric range of plug-in vehicles by up to 45% compared to milder test cycles (like HWFET). Vehicle window stickers, fuel economy standards, and life cycle studies using average lab-test vehicle efficiency estimates are therefore incomplete: (1) driver heterogeneity matters, and efforts to encourage adoption of hybrid and plug-in vehicles will have greater impact if targeted to urban drivers vs. highway drivers; and (2) electrified vehicles perform better on some drive cycles than others, so non-representative tests can bias consumer perception and regulation of alternative technologies. We discuss policy implications. - Highlights: • Electrified vehicle life cycle emissions and cost depend on driving conditions. • GHGs can triple in NYC conditions vs. highway (HWFET), cost +30%. • Under NYC conditions hybrid and plug-in vehicles cut GHGs up to 60%, cost 20%. • Under HWFET conditions they offer few GHG reductions at higher costs. • Federal tests for window labels and CAFE standards favor some technologies over others

  3. A traction control strategy with an efficiency model in a distributed driving electric vehicle.

    Science.gov (United States)

    Lin, Cheng; Cheng, Xingqun

    2014-01-01

    Both active safety and fuel economy are important issues for vehicles. This paper focuses on a traction control strategy with an efficiency model in a distributed driving electric vehicle. In emergency situation, a sliding mode control algorithm was employed to achieve antislip control through keeping the wheels' slip ratios below 20%. For general longitudinal driving cases, an efficiency model aiming at improving the fuel economy was built through an offline optimization stream within the two-dimensional design space composed of the acceleration pedal signal and the vehicle speed. The sliding mode control strategy for the joint roads and the efficiency model for the typical drive cycles were simulated. Simulation results show that the proposed driving control approach has the potential to apply to different road surfaces. It keeps the wheels' slip ratios within the stable zone and improves the fuel economy on the premise of tracking the driver's intention.

  4. A Traction Control Strategy with an Efficiency Model in a Distributed Driving Electric Vehicle

    Science.gov (United States)

    Lin, Cheng

    2014-01-01

    Both active safety and fuel economy are important issues for vehicles. This paper focuses on a traction control strategy with an efficiency model in a distributed driving electric vehicle. In emergency situation, a sliding mode control algorithm was employed to achieve antislip control through keeping the wheels' slip ratios below 20%. For general longitudinal driving cases, an efficiency model aiming at improving the fuel economy was built through an offline optimization stream within the two-dimensional design space composed of the acceleration pedal signal and the vehicle speed. The sliding mode control strategy for the joint roads and the efficiency model for the typical drive cycles were simulated. Simulation results show that the proposed driving control approach has the potential to apply to different road surfaces. It keeps the wheels' slip ratios within the stable zone and improves the fuel economy on the premise of tracking the driver's intention. PMID:25197697

  5. Acceleration Slip Regulation Strategy for Distributed Drive Electric Vehicles with Independent Front Axle Drive Motors

    Directory of Open Access Journals (Sweden)

    Lingfei Wu

    2015-05-01

    Full Text Available This paper presents an acceleration slip regulation strategy for distributed drive electric vehicles with two motors on the front axle. The tasks of the strategy include controlling the slip ratio to make full use of the road grip and controlling the yaw rate to eliminate the lateral movement due to the difference between motor torques. The rate of the slip ratio change can be controlled by controlling the motor torque, so that the slip ratio can be controlled by applying a proportional-integral control strategy to control the rate of the slip ratio change. The yaw rate can be controlled to almost zero by applying torque compensation based on yaw rate feedback. A coordination control strategy for the slip ratio control and yaw rate control is proposed based on analysis of the priorities and features of the two control processes. Simulations were carried out using MATLAB/Simulink, and experiments were performed on a hardware-in-loop test bench with actual motors. The results of the simulations and experiments showed that the proposed strategy could improve the longitudinal driving performance and straight line driving stability of the vehicle.

  6. A Dynamic Control Strategy for Hybrid Electric Vehicles Based on Parameter Optimization for Multiple Driving Cycles and Driving Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Zhenzhen Lei

    2017-01-01

    Full Text Available The driving pattern has an important influence on the parameter optimization of the energy management strategy (EMS for hybrid electric vehicles (HEVs. A new algorithm using simulated annealing particle swarm optimization (SA-PSO is proposed for parameter optimization of both the power system and control strategy of HEVs based on multiple driving cycles in order to realize the minimum fuel consumption without impairing the dynamic performance. Furthermore, taking the unknown of the actual driving cycle into consideration, an optimization method of the dynamic EMS based on driving pattern recognition is proposed in this paper. The simulation verifications for the optimized EMS based on multiple driving cycles and driving pattern recognition are carried out using Matlab/Simulink platform. The results show that compared with the original EMS, the former strategy reduces the fuel consumption by 4.36% and the latter one reduces the fuel consumption by 11.68%. A road test on the prototype vehicle is conducted and the effectiveness of the proposed EMS is validated by the test data.

  7. Harnessing Big-Data for Estimating the Energy Consumption and Driving Range of Electric Vehicles

    DEFF Research Database (Denmark)

    Fetene, Gebeyehu Manie; Prato, Carlo Giacomo; Kaplan, Sigal

    -effects econometrics model used in this paper predicts that the energy saving speed of driving is between 45 and 56 km/h. In addition to the contribution to the literature about energy efficiency of electric vehicles, the findings from this study enlightens consumers to choose appropriate cars that suit their travel......This study analyses the driving range and investigates the factors affecting the energy consumption rate of fully-battery electric vehicles under real-world driving patterns accounting for weather condition, drivers’ characteristics, and road characteristics. Four data sources are used: (i) up...

  8. Detuning Minimization of Induction Motor Drive System for Alternative Energy Vehicles

    Directory of Open Access Journals (Sweden)

    Habibur Rehman

    2015-08-01

    Full Text Available This paper evaluates different types of AC machines and various control techniques for their suitability for the drive system of Alternative Energy Vehicles (AEV. An Indirect Field Oriented (IFO drive system for the AEV application is chosen and its major problem of detuning is addressed by designing an offline and an online rotor resistance adaptation technique. The offline scheme sets the slip gain at various operating conditions based on the fact that if the rotor resistance is set correctly and field orientation is achieved, then there should be a linear relationship between the torque current and the output torque. The online technique is designed using Model Reference Adaptive System (MRAS for the rotor resistance adaptation. For an ideal field oriented machine, the rotor flux along the q-axis should be zero. This condition acts as a reference model for the proposed MRAS scheme. The current model flux observer in the synchronous frame of reference is selected as an adjustable model and its rotor resistance is tuned so that the flux along the q-axis becomes zero. The effectiveness of the offline tuning scheme is evident through performance validation of the drive system, which is implemented in a real Ford vehicle. The experimental results obtained while driving the test vehicle are included in the paper while the proposed online scheme is validated on a 3.75 kW prototype induction motor.

  9. Driving behaviors in early stage dementia: a study using in-vehicle technology.

    Science.gov (United States)

    Eby, David W; Silverstein, Nina M; Molnar, Lisa J; LeBlanc, David; Adler, Geri

    2012-11-01

    According to the Alzheimer's Association (2011), (1) in 8 people age 65 and older, and about one-half of people age 85 and older, have Alzheimer's disease in the United States (US). There is evidence that drivers with Alzheimer's disease and related dementias are at an increased risk for unsafe driving. Recent advances in sensor, computer, and telecommunication technologies provide a method for automatically collecting detailed, objective information about the driving performance of drivers, including those with early stage dementia. The objective of this project was to use in-vehicle technology to describe a set of driving behaviors that may be common in individuals with early stage dementia (i.e., a diagnosis of memory loss) and compare these behaviors to a group of drivers without cognitive impairment. Seventeen drivers with a diagnosis of early stage dementia, who had completed a comprehensive driving assessment and were cleared to drive, participated in the study. Participants had their vehicles instrumented with a suite of sensors and a data acquisition system, and drove 1-2 months as they would under normal circumstances. Data from the in-vehicle instrumentation were reduced and analyzed, using a set of algorithms/heuristics developed by the research team. Data from the early stage dementia group were compared to similar data from an existing dataset of 26 older drivers without dementia. The early stage dementia group was found to have significantly restricted driving space relative to the comparison group. At the same time, the early stage dementia group (which had been previously cleared by an occupational therapist as safe to drive) drove as safely as the comparison group. Few safety-related behavioral errors were found for either group. Wayfinding problems were rare among both groups, but the early stage dementia group was significantly more likely to get lost. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Optimal control strategy design for extending all-electric driving capability of plug-in hybrid electric vehicles (PHEVs)

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, S.S [Concordia Univ., Montreal, PQ (Canada). Dept. of Electrical and Computer Engineering, P.D Ziogas Power Electronics Laboratory

    2007-07-01

    The high voltage energy storage system in plug-in hybrid electric vehicles (PHEVs) is usually a rechargeable type that service a dual purpose, notably to supplement the power delivered by the internal combustion engine, and to provide partial propulsion energy from an off-board source of electricity. The energy storage devices in electric vehicles typically improve vehicle efficiency through engine downsizing and by recapturing braking energy. However, since PHEVs have the ability to recharge their energy storage systems directly from the power grid, the periods of all-electric operation can be extended, thereby reducing the dependence on the internal combustion engine. This is particularly useful in city driving conditions. Developers of PHEV technology are faced with the challenge of choosing the appropriate energy storage battery in order to improve the all-electric drive range. In this study, control strategies were modeled for specific driving load conditions using the Advanced Vehicle Simulator (ADVISOR) software. This paper presented specific control algorithms for PHEV operation for various city driving loads. The optimal design strategy considered the improvement of critical energy storage parameters, overall drive train efficiency, and vehicle performance characteristics. Future trends in the design and development of PHEV drive trains were also presented. 13 figs.

  11. A novel integrated chassis controller for full drive-by-wire vehicles

    Science.gov (United States)

    Song, Pan; Tomizuka, Masayoshi; Zong, Changfu

    2015-02-01

    In this paper, a systematic design with multiple hierarchical layers is adopted in the integrated chassis controller for full drive-by-wire vehicles. A reference model and the optimal preview acceleration driver model are utilised in the driver control layer to describe and realise the driver's anticipation of the vehicle's handling characteristics, respectively. Both the sliding mode control and terminal sliding mode control techniques are employed in the vehicle motion control (MC) layer to determine the MC efforts such that better tracking performance can be attained. In the tyre force allocation layer, a polygonal simplification method is proposed to deal with the constraints of the tyre adhesive limits efficiently and effectively, whereby the load transfer due to both roll and pitch is also taken into account which directly affects the constraints. By calculating the motor torque and steering angle of each wheel in the executive layer, the total workload of four wheels is minimised during normal driving, whereas the MC efforts are maximised in extreme handling conditions. The proposed controller is validated through simulation to improve vehicle stability and handling performance in both open- and closed-loop manoeuvres.

  12. Position and force control of a vehicle with two or more steerable drive wheels

    Energy Technology Data Exchange (ETDEWEB)

    Reister, D.B.; Unseren, M.A.

    1992-10-01

    When a vehicle with two or more steerable drive wheels is traveling in a circle, the motion of the wheels is constrained. The wheel translational velocity divided by the radius to the center of rotation must be the same for all wheels. When the drive wheels are controlled independently using position control, the motion of the wheels may violate the constraints and the wheels may slip. Consequently, substantial errors can occur in the orientation of the vehicle. A vehicle with N drive wheels has (N - 1) constraints and one degree of freedom. We have developed a new approach to the control of a vehicle with N steerable drive wheels. The novel aspect of our approach is the use of force control. To control the vehicle, we have one degree of freedom for the position on the circle and (N - 1) forces that can be used to reduce errors. Recently, Kankaanranta and Koivo developed a control architecture that allows the force and position degrees of freedom to be decoupled. In the work of Kankaanranta and Koivo the force is an exogenous input. We have made the force endogenous by defining the force in terms of the errors in satisfying the rigid body kinematic constraints. We have applied the control architecture to the HERMIES-III robot and have measured a dramatic reduction in error (more than a factor of 20) compared to motions without force control.

  13. A Traction Control Strategy with an Efficiency Model in a Distributed Driving Electric Vehicle

    OpenAIRE

    Lin, Cheng; Cheng, Xingqun

    2014-01-01

    Both active safety and fuel economy are important issues for vehicles. This paper focuses on a traction control strategy with an efficiency model in a distributed driving electric vehicle. In emergency situation, a sliding mode control algorithm was employed to achieve antislip control through keeping the wheels' slip ratios below 20%. For general longitudinal driving cases, an efficiency model aiming at improving the fuel economy was built through an offline optimization stream within the tw...

  14. Improving Drive Files for Vehicle Road Simulations

    Science.gov (United States)

    Cherng, John G.; Goktan, Ali; French, Mark; Gu, Yi; Jacob, Anil

    2001-09-01

    Shaker tables are commonly used in laboratories for automotive vehicle component testing to study durability and acoustics performance. An example is development testing of car seats. However, it is difficult to repeat the measured road data perfectly with the response of a shaker table as there are basic differences in dynamic characteristics between a flexible vehicle and substantially rigid shaker table. In addition, there are performance limits in the shaker table drive systems that can limit correlation. In practice, an optimal drive signal for the actuators is created iteratively. During each iteration, the error between the road data and the response data is minimised by an optimising algorithm which is generally a part of the feed back loop of the shake table controller. This study presents a systematic investigation to the errors in time and frequency domains as well as joint time-frequency domain and an evaluation of different digital signal processing techniques that have been used in previous work. In addition, we present an innovative approach that integrates the dynamic characteristics of car seats and the human body into the error-minimising iteration process. We found that the iteration process can be shortened and the error reduced by using a weighting function created by normalising the frequency response function of the car seat. Two road data test sets were used in the study.

  15. Identification of common features of vehicle motion under drowsy/distracted driving: A case study in Wuhan, China.

    Science.gov (United States)

    Chen, Zhijun; Wu, Chaozhong; Zhong, Ming; Lyu, Nengchao; Huang, Zhen

    2015-08-01

    Drowsy/distracted driving has become one of the leading causes of traffic crash. Only certain particular drowsy/distracted driving behaviors have been studied by previous studies, which are mainly based on dedicated sensor devices such as bio and visual sensors. The objective of this study is to extract the common features for identifying drowsy/distracted driving through a set of common vehicle motion parameters. An intelligent vehicle was used to collect vehicle motion parameters. Fifty licensed drivers (37 males and 13 females, M=32.5 years, SD=6.2) were recruited to carry out road experiments in Wuhan, China and collecting vehicle motion data under four driving scenarios including talking, watching roadside, drinking and under the influence of drowsiness. For the first scenario, the drivers were exposed to a set of questions and asked to repeat a few sentences that had been proved valid in inducing driving distraction. Watching roadside, drinking and driving under drowsiness were assessed by an observer and self-reporting from the drivers. The common features of vehicle motions under four types of drowsy/distracted driving were analyzed using descriptive statistics and then Wilcoxon rank sum test. The results indicated that there was a significant difference of lateral acceleration rates and yaw rate acceleration between "normal driving" and drowsy/distracted driving. Study results also shown that, under drowsy/distracted driving, the lateral acceleration rates and yaw rate acceleration were significantly larger from the normal driving. The lateral acceleration rates were shown to suddenly increase or decrease by more than 2.0m/s(3) and the yaw rate acceleration by more than 2.5°/s(2). The standard deviation of acceleration rate (SDA) and standard deviation of yaw rate acceleration (SDY) were identified to as the common features of vehicle motion for distinguishing the drowsy/distracted driving from the normal driving. In order to identify a time window for

  16. Particle swarm optimization of driving torque demand decision based on fuel economy for plug-in hybrid electric vehicle

    International Nuclear Information System (INIS)

    Shen, Peihong; Zhao, Zhiguo; Zhan, Xiaowen; Li, Jingwei

    2017-01-01

    In this paper, an energy management strategy based on logic threshold is proposed for a plug-in hybrid electric vehicle. The plug-in hybrid electric vehicle powertrain model is established using MATLAB/Simulink based on experimental tests of the power components, which is validated by the comparison with the verified simulation model which is built in the AVL Cruise. The influence of the driving torque demand decision on the fuel economy of plug-in hybrid electric vehicle is studied using a simulation. The optimization method for the driving torque demand decision, which refers to the relationship between the accelerator pedal opening and driving torque demand, from the perspective of fuel economy is formulated. The dynamically changing inertia weight particle swarm optimization is used to optimize the decision parameters. The simulation results show that the optimized driving torque demand decision can improve the PHEV fuel economy by 15.8% and 14.5% in the fuel economy test driving cycle of new European driving cycle and worldwide harmonized light vehicles test respectively, using the same rule-based energy management strategy. The proposed optimization method provides a theoretical guide for calibrating the parameters of driving torque demand decision to improve the fuel economy of the real plug-in hybrid electric vehicle. - Highlights: • The influence of the driving torque demand decision on the fuel economy is studied. • The optimization method for the driving torque demand decision is formulated. • An improved particle swarm optimization is utilized to optimize the parameters. • Fuel economy is improved by using the optimized driving torque demand decision.

  17. Leveraging Big Data Analysis Techniques for U.S. Vocational Vehicle Drive Cycle Characterization, Segmentation, and Development

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Adam W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Phillips, Caleb T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Perr-Sauer, Jordan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kelly, Kenneth J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Konan, Arnaud M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-03

    Under a collaborative interagency agreement between the U.S. Environmental Protection Agency and the U.S. Department of Energy (DOE), the National Renewable Energy Laboratory (NREL) performed a series of in-depth analyses to characterize on-road driving behavior including distributions of vehicle speed, idle time, accelerations and decelerations, and other driving metrics of medium- and heavy-duty vocational vehicles operating within the United States. As part of this effort, NREL researchers segmented U.S. medium- and heavy-duty vocational vehicle driving characteristics into three distinct operating groups or clusters using real-world drive cycle data collected at 1 Hz and stored in NREL's Fleet DNA database. The Fleet DNA database contains millions of miles of historical drive cycle data captured from medium- and heavy-duty vehicles operating across the United States. The data encompass existing DOE activities as well as contributions from valued industry stakeholder participants. For this project, data captured from 913 unique vehicles comprising 16,250 days of operation were drawn from the Fleet DNA database and examined. The Fleet DNA data used as a source for this analysis has been collected from a total of 30 unique fleets/data providers operating across 22 unique geographic locations spread across the United States. This includes locations with topographies ranging from the foothills of Denver, Colorado, to the flats of Miami, Florida. This paper includes the results of the statistical analysis performed by NREL and a discussion and detailed summary of the development of the vocational drive cycle weights and representative transient drive cycles for testing and simulation. Additional discussion of known limitations and potential future work is also included.

  18. Evaluating the Impact of Road Grade on Simulated Commercial Vehicle Fuel Economy Using Real-World Drive Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lopp, Sean; Wood, Eric; Duran, Adam

    2015-10-13

    Commercial vehicle fuel economy is known to vary significantly with both positive and negative road grade. Medium- and heavy-duty vehicles operating at highway speeds require incrementally larger amounts of energy to pull heavy payloads up inclines as road grade increases. Non-hybrid vehicles are then unable to recapture energy on descent and lose energy through friction braking. While the on-road effects of road grade are well understood, the majority of standard commercial vehicle drive cycles feature no climb or descent requirements. Additionally, existing literature offers a limited number of sources that attempt to estimate the on-road energy implications of road grade in the medium- and heavy-duty space. This study uses real-world commercial vehicle drive cycles from the National Renewable Energy Laboratory's Fleet DNA database to simulate the effects of road grade on fuel economy across a range of vocations, operating conditions, and locations. Drive-cycles are matched with vocation-specific vehicle models and simulated with and without grade. Fuel use due to grade is presented, and variation in fuel consumption due to drive cycle and vehicle characteristics is explored through graphical and statistical comparison. The results of this study suggest that road grade accounts for 1%-9% of fuel use in commercial vehicles on average and up to 40% on select routes.

  19. A driving cycle for vehicle emissions estimation in the metropolitan area of Mexico City.

    Science.gov (United States)

    Schifter, I; Díaz, L; Rodríguez, R; López-Salinas, E

    2005-02-01

    A driving cycle derived from driving behavior and real traffic conditions in Mexico City (MC) is proposed. Data acquisition was carried out over diverse MC routes, representing travel under congested and uncongested conditions, using the chase-car approach. Thirteen different on-road patterns, including the four main access roads to MC, trips in both directions and different timetables, a total of 108 trips spanning 1044 km were evaluated in this study. The MC cycle lasts 1360 seconds with a distance of 8.8 km and average speed of 23.4 km h(-1). Both maximum speed (73.6 km h(-1)) and maximum acceleration (2.22 km h(-1)s(-1)) are lower than those of the new vehicles certification employed in Mexico ,FTP-75 cycle., that is, the MC cycle exhibits less cruising time and more transient events than the FTP cycle. A total of 30 light duty gasoline vehicles were classified into different technological groups and tested in an FTP-75 and MC driving cycles in order to compare their emission factors A potential concern is that in Mexico manufacturers design vehicles to meet the emission standards in the FTP, but emission levels increase significantly in a more representative cycle of present driving patterns in the Metropolitan Area of Mexico City (MAMC). The use of a more representative cycle during certification testing, would provide an incentive for vehicle manufacturers to design emissions control systems to remain effective during operation modes that are not currently represented in the official test procedures used in the certification process. Based on the results of the study, the use of MC cycle, which better represents current day driving patterns during testing of vehicle fleets in emissions laboratories, would improve the accuracy of emissions factors used in the MAMC emissions inventories.

  20. Practicability of passenger vehicle driving emission tests according to new European Union procedures

    Directory of Open Access Journals (Sweden)

    Pielecha Jacek

    2017-01-01

    Full Text Available The article compares driving test data using the latest legislative proposals applicable to passenger cars. Several measurements were performed on the same test route in accordance with the RDE test guidelines, which requires a number of criteria to be met. These criteria include: the length of the measuring segments, their overall test time share, and the dynamic characteristics of the drive. A mobile device for reading the EOBD System information was used to record the engine and vehicle operating parameters during tests. This allowed for the monitoring of parameters such as: load value, engine speed and vehicle velocity. The obtained results were then analyzed for their compatibility with the RDE procedure requirements. Despite the same research route, the obtained results were not the same. The analysis also uses the two-dimensional operating time share characteristics expressed in vehicle velocity and acceleration co-ordinates. As a result it was possible to compare the dynamic properties, share of operating time and, consequently, to check the validity of conducted drive tests in terms of their practicability and emission values.

  1. Study of emissions and fuel economy for parallel hybrid versus conventional vehicles on real world and standard driving cycles

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Samari

    2017-12-01

    Full Text Available Parallel hybrid electric vehicles (PHEVs increasing rapidly in the automobile markets. However, the benefits out of using this kind of vehicles are still concerned a lot of costumers. This work investigated the expected benefits (such as decreasing emissions and increasing fuel economy from using the parallel HEV in comparison to the conventional vehicle model of the real-world and standard driving cycles. The software Autonomie used in this study to simulate the parallel HEV and conventional models on these driving cycles.The results show that the fuel economy (FE can be improved significantly up to 68% on real-world driving cycle, which is represented mostly city activities. However, the FE improvement was limited (10% on the highway driving cycle, and this is expected since the using of brake system was infrequent. Moreover, the emissions from parallel HEV decreased about 40% on the real-world driving cycle, and decreased 11% on the highway driving cycle. Finally, the engine efficiency, improved about 12% on the real-world driving cycle, and about 7% on highway driving cycle. Keywords: Emissions, Hybrid electric vehicles, Fuel economy, Real-world driving cycle

  2. Greenhouse gas emission impacts of electric vehicles under varying driving cycles in various counties and US cities

    International Nuclear Information System (INIS)

    Wang, M.Q.; Marr, W.W.

    1994-01-01

    Electric vehicles (EVs) can reduce greenhouse gas emissions, relative to emissions from gasoline-fueled vehicles. However, those studies have not considered all aspects that determine greenhouse gas emissions from both gasoline vehicles (GVs) and EVs. Aspects often overlooked include variations in vehicle trip characteristics, inclusion of all greenhouse gases, and vehicle total fuel cycle. In this paper, we estimate greenhouse gas emission reductions for EVs, including these important aspects. We select four US cities (Boston, Chicago, Los Angeles, and Washington, D.C.) and six countries (Australia, France, Japan, Norway, the United Kingdom, and the United States) and analyze greenhouse emission impacts of EVs in each city or country. We also select six driving cycles developed around the world (i.e., the US federal urban driving cycle, the Economic Community of Europe cycle 15, the Japanese 10-mode cycle, the Los Angeles 92 cycle, the New York City cycle, and the Sydney cycle). Note that we have not analyzed EVs in high-speed driving (e.g., highway driving), where the results would be less favorable to EVs; here, EVs are regarded as urban vehicles only. We choose one specific driving cycle for a given city or country and estimate the energy consumption of four-passenger compact electric and gasoline cars in the given city or country. Finally, we estimate total fuel cycle greenhouse gas emissions of both GVs and EVs by accounting for emissions from primary energy recovery, transportation, and processing; energy product transportation; and powerplant and vehicle operations

  3. Rapid restoration of electric vehicle battery performance while driving at cold temperatures

    Science.gov (United States)

    Zhang, Guangsheng; Ge, Shanhai; Yang, Xiao-Guang; Leng, Yongjun; Marple, Dan; Wang, Chao-Yang

    2017-12-01

    Electric vehicles (EVs) driven in cold weather experience two major drawbacks of Li-ion batteries: drastic power loss (up to 10-fold at -30 °C) and restriction of regenerative braking at temperatures below 5-10 °C. Both factors greatly reduce cruise range, exacerbating drivers' range anxiety in winter. While preheating the battery before driving is a practice widely adopted to maintain battery power and EV drivability, it is time-consuming (on the order of 40 min) and prohibits instantaneous mobility. Here we reveal a control strategy that can rapidly restore EV battery power and permit full regeneration while driving at temperatures as low as -40 °C. The strategy involves heating the battery internally during regenerative braking and rest periods of driving. We show that this technique fully restores room-temperature battery power and regeneration in 13, 33, 46, 56 and 112 s into uninterrupted driving in 0, -10, -20, -30 and -40 °C environments, respectively. Correspondingly, the strategy significantly increases cruise range of a vehicle operated at cold temperatures, e.g. 49% at -40 °C in simulated US06 driving cycle tests. The present work suggests that smart batteries with embedded sensing/actuation can leapfrog in performance.

  4. Influences on dispatch of power generation when introducing electric drive vehicles in an Irish power system year 2020

    DEFF Research Database (Denmark)

    Juul, Nina; Mullane, Alan; Meibom, Peter

    plants. For the future transport system, electric drive vehicles are expected to be one of the solutions. Introducing different electric drive vehicle penetrations in a power system with a large amount of wind power, changes the usage of the predefined power system. This work presents investigations......Increased focus on global warming and CO2 emissions imply increased focus on the energy system, consisting of the heat, power, and transport systems. Solutions for the heat and power system are increasing penetrations of renewable heat and power generation plants such as wind power and biomass heat...... of different charging regimes’ influence of the power dispatch in the Irish power system. Analyses show an overall cost decrease and CO2 emission increase in the heat and power system with the introduction of electric drive vehicles. Furthermore, increased intelligence in the electric drive vehicle charging...

  5. Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles

    International Nuclear Information System (INIS)

    Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

    2012-01-01

    In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

  6. Control concepts for vehicle drive line to reduce fuel consumption

    Energy Technology Data Exchange (ETDEWEB)

    Ossyra, J.C.

    2005-07-01

    In this work advanced drive line control concepts for off-road vehicles have been developed and investigated to reduce the power losses and finally the fuel consumption of the entire drive system by use of on-line optimization procedure. Two separate closed loop speed controls have been developed for the use on a microcontroller onboard the vehicle: one to control the hydrostatic transmission and the other to control the engine speed. Considering the loss characteristics of the displacement machines in the hydrostatic transmission and the steady state characteristics of the combustion engine by use of pure mathematical approximations of measured curves, a direct optimization strategy is used, which works on-line on a microcontroller. A laboratory hardware-in-the loop test rig has been used to investigate the proposed control concepts. For different typical and desired work cycles of an off-road machine on level ground and uphill a slope the effectiveness of the proposed control concepts have been proven. (orig.)

  7. Integration of electric drive vehicles in the Danish electricity network with high wind power penetration

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob; Larsen, Esben

    2010-01-01

    /conventional) which are likely to fuel these cars. The study was carried out considering the Danish electricity network state around 2025, when the EDV penetration levels would be significant enough to have an impact on the power system. Some of the interesting findings of this study are - EDV have the potential......This paper presents the results of a study carried out to examine the feasibility of integrating electric drive vehicles (EDV) in the Danish electricity network which is characterised by high wind power penetration. One of the main aims of this study was to examine the effect of electric drive...... vehicles on the Danish electricity network, wind power penetration and electricity market. In particular the study examined the effect of electric drive vehicles on the generation capacity constraints, load curve, cross border transmission capacity and the type of generating sources (renewable...

  8. Evaluation of semiconductor devices for Electric and Hybrid Vehicle (EHV) ac-drive applications, volume 1

    Science.gov (United States)

    Lee, F. C.; Chen, D. Y.; Jovanovic, M.; Hopkins, D. C.

    1985-01-01

    The results of evaluation of power semiconductor devices for electric hybrid vehicle ac drive applications are summarized. Three types of power devices are evaluated in the effort: high power bipolar or Darlington transistors, power MOSFETs, and asymmetric silicon control rectifiers (ASCR). The Bipolar transistors, including discrete device and Darlington devices, range from 100 A to 400 A and from 400 V to 900 V. These devices are currently used as key switching elements inverters for ac motor drive applications. Power MOSFETs, on the other hand, are much smaller in current rating. For the 400 V device, the current rating is limited to 25 A. For the main drive of an electric vehicle, device paralleling is normally needed to achieve practical power level. For other electric vehicle (EV) related applications such as battery charger circuit, however, MOSFET is advantageous to other devices because of drive circuit simplicity and high frequency capability. Asymmetrical SCR is basically a SCR device and needs commutation circuit for turn off. However, the device poses several advantages, i.e., low conduction drop and low cost.

  9. Distracted Driving, A Major Preventable Cause of Motor Vehicle Collisions: "Just Hang Up and Drive".

    Science.gov (United States)

    Kahn, Christopher A; Cisneros, Victor; Lotfipour, Shahram; Imani, Ghasem; Chakravarthy, Bharath

    2015-12-01

    For years, public health experts have been concerned about the effect of cell phone use on motor vehicle collisions, part of a phenomenon known as "distracted driving." The Morbidity and Mortality Weekly Report (MMWR) article "Mobile Device Use While Driving - United States and Seven European Countries 2011" highlights the international nature of these concerns. Recent (2011) estimates from the National Highway Traffic Safety Administration are that 10% of fatal crashes and 17% of injury crashes were reported as distraction-affected. Of 3,331 people killed in 2011 on roadways in the U.S. as a result of driver distraction, 385 died in a crash where at least one driver was using a cell phone. For drivers 15-19 years old involved in a fatal crash, 21% of the distracted drivers were distracted by the use of cell phones. Efforts to reduce cell phone use while driving could reduce the prevalence of automobile crashes related to distracted driving. The MMWR report shows that there is much ground to cover with distracted driving. Emergency physicians frequently see the devastating effects of distracted driving on a daily basis and should take a more active role on sharing the information with patients, administrators, legislators, friends and family.

  10. Sizing for fuel cell/supercapacitor hybrid vehicles based on stochastic driving cycles

    International Nuclear Information System (INIS)

    Feroldi, Diego; Carignano, Mauro

    2016-01-01

    Highlights: • A sizing procedure based on the fulfilment of real driving conditions is proposed. • A methodology to generate long-term stochastic driving cycles is proposed. • A parametric optimization of the real-time EMS is conducted. • A trade-off design is adopted from a Pareto front. • A comparison with optimal consumption via Dynamic Programming is performed. - Abstract: In this article, a methodology for the sizing and analysis of fuel cell/supercapacitor hybrid vehicles is presented. The proposed sizing methodology is based on the fulfilment of power requirements, including sustained speed tests and stochastic driving cycles. The procedure to generate driving cycles is also presented in this paper. The sizing algorithm explicitly accounts for the Equivalent Consumption Minimization Strategy (ECMS). The performance is compared with optimal consumption, which is found using an off-line strategy via Dynamic Programming. The sizing methodology provides guidance for sizing the fuel cell and the supercapacitor number. The results also include analysis on oversizing the fuel cell and varying the parameters of the energy management strategy. The simulation results highlight the importance of integrating sizing and energy management into fuel cell hybrid vehicles.

  11. Transrapid 06 test vehicle and its drive system

    Energy Technology Data Exchange (ETDEWEB)

    Eitlhuber, E

    1984-06-01

    To prove the practicability of a high-speed maglev transport system, a large-scale test facility is now under construction in Emsland with the backing of the Federal Ministry of Research and Technology. The TRANSRAPID 06 test vehicle is designed to carry 192 seated passengers at a maximum speed of 400 km/h. With running tests now in progress, the project has entered a decisive phase. The article describes the objectives, concept and design of the Tr 06 vehicle and its drive system. Upon conclusion of the main operational preparations by the construction consortium, the facility will be taken over and operated by the MVP, a joint subsidiary of the DB, Lufthansa German Airlines and the IABG. Following a successful changeover, the aim will be to ensure feedback of operating experience to the industry.

  12. Long-Life, Oil-Free Polymeric, Multi-Roller Traction Drives for Planetary Vehicle Surface Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Multi-roller traction drives have several advantages relative to geared units for aerospace and commercial drive applications. Among these are zero backlash, low...

  13. A Low Cost Sensors Approach for Accurate Vehicle Localization and Autonomous Driving Application.

    Science.gov (United States)

    Vivacqua, Rafael; Vassallo, Raquel; Martins, Felipe

    2017-10-16

    Autonomous driving in public roads requires precise localization within the range of few centimeters. Even the best current precise localization system based on the Global Navigation Satellite System (GNSS) can not always reach this level of precision, especially in an urban environment, where the signal is disturbed by surrounding buildings and artifacts. Laser range finder and stereo vision have been successfully used for obstacle detection, mapping and localization to solve the autonomous driving problem. Unfortunately, Light Detection and Ranging (LIDARs) are very expensive sensors and stereo vision requires powerful dedicated hardware to process the cameras information. In this context, this article presents a low-cost architecture of sensors and data fusion algorithm capable of autonomous driving in narrow two-way roads. Our approach exploits a combination of a short-range visual lane marking detector and a dead reckoning system to build a long and precise perception of the lane markings in the vehicle's backwards. This information is used to localize the vehicle in a map, that also contains the reference trajectory for autonomous driving. Experimental results show the successful application of the proposed system on a real autonomous driving situation.

  14. Using discriminant analysis to detect intrusions in external communication for self-driving vehicles

    Directory of Open Access Journals (Sweden)

    Khattab M.Ali Alheeti

    2017-08-01

    Full Text Available Security systems are a necessity for the deployment of smart vehicles in our society. Security in vehicular ad hoc networks is crucial to the reliable exchange of information and control data. In this paper, we propose an intelligent Intrusion Detection System (IDS to protect the external communication of self-driving and semi self-driving vehicles. This technology has the ability to detect Denial of Service (DoS and black hole attacks on vehicular ad hoc networks (VANETs. The advantage of the proposed IDS over existing security systems is that it detects attacks before they causes significant damage. The intrusion prediction technique is based on Linear Discriminant Analysis (LDA and Quadratic Discriminant Analysis (QDA which are used to predict attacks based on observed vehicle behavior. We perform simulations using Network Simulator 2 to demonstrate that the IDS achieves a low rate of false alarms and high accuracy in detection.

  15. Vehicle Routing with Traffic Congestion and Drivers' Driving and Working Rules

    NARCIS (Netherlands)

    Kok, A.L.; Hans, Elias W.; Schutten, Johannes M.J.; Zijm, Willem H.M.

    2010-01-01

    For the intensively studied vehicle routing problem (VRP), two real-life restrictions have received only minor attention in the VRP-literature: traffic congestion and driving hours regulations. Traffic congestion causes late arrivals at customers and long travel times resulting in large transport

  16. Driving Performance After Self-Regulated Control Transitions in Highly Automated Vehicles.

    Science.gov (United States)

    Eriksson, Alexander; Stanton, Neville A

    2017-12-01

    This study aims to explore whether driver-paced, noncritical transitions of control may counteract some of the aftereffects observed in the contemporary literature, resulting in higher levels of vehicle control. Research into control transitions in highly automated driving has focused on urgent scenarios where drivers are given a relatively short time span to respond to a request to resume manual control, resulting in seemingly scrambled control when manual control is resumed. Twenty-six drivers drove two scenarios with an automated driving feature activated. Drivers were asked to read a newspaper or monitor the system and relinquish or resume control from the automation when prompted by vehicle systems. Driving performance in terms of lane positioning and steering behavior was assessed for 20 seconds post resuming control to capture the resulting level of control. It was found that lane positioning was virtually unaffected for the duration of the 20-second time span in both automated conditions compared to the manual baseline when drivers resumed manual control; however, significant increases in the standard deviation of steering input were found for both automated conditions compared to baseline. No significant differences were found between the two automated conditions. The results indicate that when drivers self-paced the transfer back to manual control they exhibit less of the detrimental effects observed in system-paced conditions. It was shown that self-paced transitions could reduce the risk of accidents near the edge of the operational design domain. Vehicle manufacturers must consider these benefits when designing contemporary systems.

  17. Advancing eco-driving strategies for drivers and automated vehicles traveling within intersection vicinities : final report.

    Science.gov (United States)

    2016-01-01

    Vehicle emissions occupy a considerable share of emission inventories in the United States. One of the approaches taken to minimize vehicle emissions is eco-driving. Supported by advanced ITS technologies, it is available to provide the real-time eco...

  18. Electric drives in the vehicle sector. Textbook and manual. 2. enl. ed.; Elektrische Antriebe in der Fahrzeugtechnik. Lehr- und Arbeitsbuch

    Energy Technology Data Exchange (ETDEWEB)

    Babiel, Gerhard [FH Dortmund (Germany). Fahrzeugtechnik

    2009-07-01

    The text book under consideration reports on the fundamentals of power generation, energy conversion, induction engine a well as their application in drive systems such as hybrid vehicles and fuel cell vehicles. First of all, current and future energy sources for power train drives are presented and compared with one another. Subsequently, electro-chemical energy stores and energy converters such as fuel cell or double-layer condensers are considered. These energy storages and energy converters are used in electric vehicles and hybrid vehicles. Additionally, the transformer and the central topic of interest 'Electrical Engines' are considered. Not only standard machines (direct current motor, asynchronous motor, synchronous motor, linear motor) will be described but also engines which are applied in future passenger car drives and railway drives (reluctance motor, transverse flow engine, BLDC engine). Drive systems are presented by the example of an electric locomotive and a magnetic levitation transport system (superconducting MAGLEV).

  19. A hierarchical detection method in external communication for self-driving vehicles based on TDMA

    Science.gov (United States)

    Al-ani, Muzhir Shaban; McDonald-Maier, Klaus

    2018-01-01

    Security is considered a major challenge for self-driving and semi self-driving vehicles. These vehicles depend heavily on communications to predict and sense their external environment used in their motion. They use a type of ad hoc network termed Vehicular ad hoc networks (VANETs). Unfortunately, VANETs are potentially exposed to many attacks on network and application level. This paper, proposes a new intrusion detection system to protect the communication system of self-driving cars; utilising a combination of hierarchical models based on clusters and log parameters. This security system is designed to detect Sybil and Wormhole attacks in highway usage scenarios. It is based on clusters, utilising Time Division Multiple Access (TDMA) to overcome some of the obstacles of VANETs such as high density, high mobility and bandwidth limitations in exchanging messages. This makes the security system more efficient, accurate and capable of real time detection and quick in identification of malicious behaviour in VANETs. In this scheme, each vehicle log calculates and stores different parameter values after receiving the cooperative awareness messages from nearby vehicles. The vehicles exchange their log data and determine the difference between the parameters, which is utilised to detect Sybil attacks and Wormhole attacks. In order to realize efficient and effective intrusion detection system, we use the well-known network simulator (ns-2) to verify the performance of the security system. Simulation results indicate that the security system can achieve high detection rates and effectively detect anomalies with low rate of false alarms. PMID:29315302

  20. A hierarchical detection method in external communication for self-driving vehicles based on TDMA.

    Science.gov (United States)

    Alheeti, Khattab M Ali; Al-Ani, Muzhir Shaban; McDonald-Maier, Klaus

    2018-01-01

    Security is considered a major challenge for self-driving and semi self-driving vehicles. These vehicles depend heavily on communications to predict and sense their external environment used in their motion. They use a type of ad hoc network termed Vehicular ad hoc networks (VANETs). Unfortunately, VANETs are potentially exposed to many attacks on network and application level. This paper, proposes a new intrusion detection system to protect the communication system of self-driving cars; utilising a combination of hierarchical models based on clusters and log parameters. This security system is designed to detect Sybil and Wormhole attacks in highway usage scenarios. It is based on clusters, utilising Time Division Multiple Access (TDMA) to overcome some of the obstacles of VANETs such as high density, high mobility and bandwidth limitations in exchanging messages. This makes the security system more efficient, accurate and capable of real time detection and quick in identification of malicious behaviour in VANETs. In this scheme, each vehicle log calculates and stores different parameter values after receiving the cooperative awareness messages from nearby vehicles. The vehicles exchange their log data and determine the difference between the parameters, which is utilised to detect Sybil attacks and Wormhole attacks. In order to realize efficient and effective intrusion detection system, we use the well-known network simulator (ns-2) to verify the performance of the security system. Simulation results indicate that the security system can achieve high detection rates and effectively detect anomalies with low rate of false alarms.

  1. Prevalence of sleepiness while driving four-wheel motor vehicles in Fiji: a population-based survey (TRIP 9).

    Science.gov (United States)

    Herman, Josephine; Ameratunga, Shanthi N; Wainiqolo, Iris; Kafoa, Berlin; Robinson, Elizabeth; McCaig, Eddie; Jackson, Rod

    2013-08-01

    Sleepiness has been shown to be a risk factor for road crashes in high-income countries, but has received little attention in low- and middle-income countries. We examined the prevalence of sleepiness and sleep-related disorders among drivers of four-wheel motor vehicles in Fiji. Using a two-stage cluster sampling roadside survey conducted over 12 months, we recruited a representative sample of people driving four-wheel motor vehicles on the island of Viti Levu, Fiji. A structured interviewer-administered questionnaire sought self-report information on driver characteristics including sleep-related measures. The 752 motor vehicle drivers recruited (84% response rate) were aged 17-75 years, with most driving in Viti Levu undertaken by male subjects (93%), and those identifying with Indian (70%) and Fijian (22%) ethnic groups. Drivers who reported that they were not fully alert accounted for 17% of driving, while a further 1% of driving was undertaken by those who reported having difficulty staying awake or feeling sleepy. A quarter of the driving time among 15-24-year-olds included driving while sleepy or not fully alert, with a similar proportion driving while chronically sleep deprived (ie, with less than five nights of adequate sleep in the previous week=27%). Driving while acutely or chronically sleep deprived was generally more common among Fijians compared with Indians. Driving while not fully alert is relatively common in Fiji. Sleepiness while driving may be an important contributor to road traffic injuries in this and other low- and middle-income countries.

  2. Performance Analysis of Permanent Magnet Motors for Electric Vehicles (EV Traction Considering Driving Cycles

    Directory of Open Access Journals (Sweden)

    Thanh Anh Huynh

    2018-05-01

    Full Text Available This paper evaluates the electromagnetic and thermal performance of several traction motors for electric vehicles (EVs. Two different driving cycles are employed for the evaluation of the motors, one for urban and the other for highway driving. The electromagnetic performance to be assessed includes maximum motor torque output for vehicle acceleration and the flux weakening capability for wide operating range under current and voltage limits. Thermal analysis is performed to evaluate the health status of the magnets and windings for the prescribed driving cycles. Two types of traction motors are investigated: two interior permanent magnet motors and one permanent magnet-assisted synchronous reluctance motor. The analysis results demonstrate the benefits and disadvantages of these motors for EV traction and provide suggestions for traction motor design. Finally, experiments are conducted to validate the analysis.

  3. Energy Management Strategy for Hybrid Electric Vehicle Based on Driving Condition Identification Using KGA-Means

    Directory of Open Access Journals (Sweden)

    Shuxian Li

    2018-06-01

    Full Text Available In order to solve the problem related to adaptive energy management strategies based on driving condition identification being difficult to be applied to a real hybrid electric vehicle (HEV controller, this paper proposes an energy management strategy by combining the driving condition identification algorithm based on genetic optimized K-means clustering algorithm (KGA-means, and the equivalent consumption minimization strategy (ECMS. The simulation results show that compared with ECMS, the energy management strategy proposed in this article drives the engine working point closer to the best efficiency curve, and smooths out the state of charge (SOC change and better maintains the SOC in a highly efficient area. As a result, the vehicle fuel consumption reduces by 6.84%.

  4. Steering Control in a Low-Cost Driving Simulator: A Case for the Role of Virtual Vehicle Cab.

    Science.gov (United States)

    Mecheri, Sami; Lobjois, Régis

    2018-04-01

    The aim of this study was to investigate steering control in a low-cost driving simulator with and without a virtual vehicle cab. In low-cost simulators, the lack of a vehicle cab denies driver access to vehicle width, which could affect steering control, insofar as locomotor adjustments are known to be based on action-scaled visual judgments of the environment. Two experiments were conducted in which steering control with and without a virtual vehicle cab was investigated in a within-subject design, using cornering and straight-lane-keeping tasks. Driving around curves without vehicle cab information made drivers deviate more from the lane center toward the inner edge in right (virtual cab = 4 ± 19 cm; no cab = 42 ± 28 cm; at the apex of the curve, p vehicle width. This produces considerable differences in the steering trajectory. Providing a virtual vehicle cab must be encouraged for more effectively capturing drivers' steering control in low-cost simulators.

  5. Energy management in vehicles with alternative drives; Energiemanagement in Fahrzeugen mit alternativen Antrieben

    Energy Technology Data Exchange (ETDEWEB)

    Lange, S.; Schimanski, M.

    2007-11-21

    Within the next few years, the automotive industry will be confronted with many challenges, as for example stricter emission standards and increasing oil prices. To meet the challenges, alternative drive concepts are currently being developed and placed in the market. To ensure a secure and efficient operation of the electric components, the introduction of an integrated energy management is required. It comprises all planning, controlling and predictive measures. The first part of this dissertation presents a new system concept, which can make an online prognosis of expected driving situations, such as speed and altitude profiles by means of internal vehicle information during an operating cycle. Based on this the control strategy can calculate the future power requirement of the vehicle and initiate control commands to enable a more efficient driving. The basis of this system concept is the recognition of routes with characteristic steering angle information and the creation of a history database for the routes driven with the respective vehicle speeds and altitudes. On the basis of an extensive analysis of the vehicle's electrical system in the second part of the dissertation, different effects on the development process for dimensioning the electrical system power supply are discussed. From this follows the necessity to develop a tool chain based on simulations. The tool chain consists of commercial simulation tools and the software Avanti (Advanced Analysis Tool and Simulation Interface) which is developed within the scope of the dissertation. Avanti enables an automated and optimal procedure when dimensioning the vehicle's electrical system in consideration of different control algorithms. A substantial part of this tool chain is the integration of a verified VHDL-AMS model library for the electrical system components. (orig.)

  6. Energy management in vehicles with alternative drives; Energiemanagement in Fahrzeugen mit alternativen Antrieben

    Energy Technology Data Exchange (ETDEWEB)

    Lange, S; Schimanski, M

    2007-11-21

    Within the next few years, the automotive industry will be confronted with many challenges, as for example stricter emission standards and increasing oil prices. To meet the challenges, alternative drive concepts are currently being developed and placed in the market. To ensure a secure and efficient operation of the electric components, the introduction of an integrated energy management is required. It comprises all planning, controlling and predictive measures. The first part of this dissertation presents a new system concept, which can make an online prognosis of expected driving situations, such as speed and altitude profiles by means of internal vehicle information during an operating cycle. Based on this the control strategy can calculate the future power requirement of the vehicle and initiate control commands to enable a more efficient driving. The basis of this system concept is the recognition of routes with characteristic steering angle information and the creation of a history database for the routes driven with the respective vehicle speeds and altitudes. On the basis of an extensive analysis of the vehicle's electrical system in the second part of the dissertation, different effects on the development process for dimensioning the electrical system power supply are discussed. From this follows the necessity to develop a tool chain based on simulations. The tool chain consists of commercial simulation tools and the software Avanti (Advanced Analysis Tool and Simulation Interface) which is developed within the scope of the dissertation. Avanti enables an automated and optimal procedure when dimensioning the vehicle's electrical system in consideration of different control algorithms. A substantial part of this tool chain is the integration of a verified VHDL-AMS model library for the electrical system components. (orig.)

  7. Characterization of In-Use Medium Duty Electric Vehicle Driving and Charging Behavior: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Duran, A.; Ragatz, A.; Prohaska, R.; Kelly, K.; Walkowicz, K.

    2014-11-01

    The U.S. Department of Energy's American Recovery and Reinvestment Act (ARRA) deployment and demonstration projects are helping to commercialize technologies for all-electric vehicles (EVs). Under the ARRA program, data from Smith Electric and Navistar medium duty EVs have been collected, compiled, and analyzed in an effort to quantify the impacts of these new technologies. Over a period of three years, the National Renewable Energy Laboratory (NREL) has compiled data from over 250 Smith Newton EVs for a total of over 100,000 days of in-use operation. Similarly, data have been collected from over 100 Navistar eStar vehicles, with over 15,000 operating days having been analyzed. NREL has analyzed a combined total of over 4 million kilometers of driving and 1 million hours of charging data for commercial operating medium duty EVs. In this paper, the authors present an overview of medium duty EV operating and charging behavior based on in-use data collected from both Smith and Navistar vehicles operating in the United States. Specifically, this paper provides an introduction to the specifications and configurations of the vehicles examined; discusses the approach and methodology of data collection and analysis, and presents detailed results regarding daily driving and charging behavior. In addition, trends observed over the course of multiple years of data collection are examined, and conclusions are drawn about early deployment behavior and ongoing adjustments due to new and improving technology. Results and metrics such as average daily driving distance, route aggressiveness, charging frequency, and liter per kilometer diesel equivalent fuel consumption are documented and discussed.

  8. Environmental assessment of plug-in hybrid electric vehicles using naturalistic drive cycles and vehicle travel patterns: A Michigan case study

    International Nuclear Information System (INIS)

    Marshall, Brandon M.; Kelly, Jarod C.; Lee, Tae-Kyung; Keoleian, Gregory A.; Filipi, Zoran

    2013-01-01

    Plug-in hybrid electric vehicles (PHEVs) use grid electricity as well as on-board gasoline for motive force. These multiple energy sources make prediction of PHEV energy consumption challenging and also complicate evaluation of their environmental impacts. This paper introduces a novel PHEV energy consumption modeling approach and compares it to a second approach from the literature, each using actual trip patterns from the 2009 National Household Travel Survey (NHTS). The first approach applies distance-dependent fuel efficiency and on-road electricity consumption rates based on naturalistic or real world, driving information to determine gasoline and electricity consumption. The second uses consumption rates derived in accordance with government certification testing. Both approaches are applied in the context of a location-specific case study that focuses on the state of Michigan. The two PHEV models show agreement in electricity demand due to vehicle charging, gasoline consumption, and life cycle environmental impacts for this case study. The naturalistic drive cycle approach is explored as a means of extending location-specific driving data to supplement existing PHEV impact assessments methods. - Highlights: • Travel patterns from survey data are combined with naturalistic drive cycles. • More realistic PHEV energy modeling using these synthesized real-world drive cycles. • Methodology is demonstrated for PHEVs in Michigan but applicable for other regions. • Energy and emissions findings have major implications for PHEV standards and policy

  9. Age differences in the takeover of vehicle control and engagement in non-driving-related activities in simulated driving with conditional automation.

    Science.gov (United States)

    Clark, Hallie; Feng, Jing

    2017-09-01

    High-level vehicle automation has been proposed as a valuable means to enhance the mobility of older drivers, as older drivers experience age-related declines in many cognitive functions that are vital for safe driving. Recent research attempted to examine age differences in how engagement in non-driving-related activities impact driving performance, by instructing drivers to engage in mandatory pre-designed activities. While the mandatory engagement method allows a precise control of the timing and mental workload of the non-driving-related activities, it is different from how a driver would naturally engage in these activities. This study allowed younger (age 18-35, mean age=19.9years) and older drivers (age 62-81, mean age=70.4years) to freely decide when and how to engage in voluntarily chosen non-driving-related activities during simulated driving with conditional automation. We coded video recordings of participants' engagement in non-driving-related activities. We examined the effect of age, level of activity-engagement and takeover notification interval on vehicle control performance during the takeover, by comparing between the high and low engagement groups in younger and older drivers, across two takeover notification interval conditions. We found that both younger and older drivers engaged in various non-driving-related activities during the automated driving portion, with distinct preferences on the type of activity for each age group (i.e., while younger drivers mostly used an electronic device, older drivers tended to converse). There were also significant differences between the two age groups and between the two notification intervals on various driving performance measures. Older drivers benefited more than younger drivers from the longer interval in terms of response time to notifications. Voluntary engagement in non-driving-related activities did not impair takeover performance in general, although there was a trend of older drivers who were

  10. Electric drive choices for light, medium, and heavy duty vehicles to reduce their climate change impact in Canada

    International Nuclear Information System (INIS)

    Fitzpatrick, N.P.

    2009-01-01

    The evolution of electric drive technologies from 1988, at the 9 th International Electric Vehicle Symposium (EVS 9) in Toronto, to 2007 at EVS 23 in Anaheim, is described. Total hybridization of Canada's fleet of light, medium and heavy duty vehicles would result in greenhouse reductions savings of 30 Mt of CO 2 E per year, similar to the saving from a 25% reduction in vehicle weight. Further savings in greenhouse reductions from plug-in hybrids require a battery cost similar to that needed for electric vehicles. Further development of both ultracapacitors and batteries is needed as is work on other parts of the electric drive supply chain. (author)

  11. Dynamics control of autonomous vehicle at driving limits and experiment on an autonomous formula racing car

    Science.gov (United States)

    Ni, Jun; Hu, Jibin

    2017-06-01

    In this paper, a novel dynamics controller for autonomous vehicle to simultaneously control it to the driving limits and follow the desired path is proposed. The dynamics controller consists of longitudinal and lateral controllers. In longitudinal controller, the G-G diagram is utilized to describe the driving and handling limits of the vehicle. The accurate G-G diagram is obtained based on phase plane approach and a nonlinear vehicle dynamic model with accurate tyre model. In lateral controller, the tyre cornering stiffness is estimated to improve the robustness of the controller. The stability analysis of the closed-looped error dynamics shows that the controller remains stable against parameters uncertainties in extreme condition such as tyre saturation. Finally, an electric autonomous Formula race car developed by the authors is used to validate the proposed controller. The autonomous driving experiment on an oval race track shows the efficiency and robustness of the proposed controller.

  12. Fault classification method for the driving safety of electrified vehicles

    Science.gov (United States)

    Wanner, Daniel; Drugge, Lars; Stensson Trigell, Annika

    2014-05-01

    A fault classification method is proposed which has been applied to an electric vehicle. Potential faults in the different subsystems that can affect the vehicle directional stability were collected in a failure mode and effect analysis. Similar driveline faults were grouped together if they resembled each other with respect to their influence on the vehicle dynamic behaviour. The faults were physically modelled in a simulation environment before they were induced in a detailed vehicle model under normal driving conditions. A special focus was placed on faults in the driveline of electric vehicles employing in-wheel motors of the permanent magnet type. Several failures caused by mechanical and other faults were analysed as well. The fault classification method consists of a controllability ranking developed according to the functional safety standard ISO 26262. The controllability of a fault was determined with three parameters covering the influence of the longitudinal, lateral and yaw motion of the vehicle. The simulation results were analysed and the faults were classified according to their controllability using the proposed method. It was shown that the controllability decreased specifically with increasing lateral acceleration and increasing speed. The results for the electric driveline faults show that this trend cannot be generalised for all the faults, as the controllability deteriorated for some faults during manoeuvres with low lateral acceleration and low speed. The proposed method is generic and can be applied to various other types of road vehicles and faults.

  13. Real-time Accurate Surface Reconstruction Pipeline for Vision Guided Planetary Exploration Using Unmanned Ground and Aerial Vehicles

    Science.gov (United States)

    Almeida, Eduardo DeBrito

    2012-01-01

    This report discusses work completed over the summer at the Jet Propulsion Laboratory (JPL), California Institute of Technology. A system is presented to guide ground or aerial unmanned robots using computer vision. The system performs accurate camera calibration, camera pose refinement and surface extraction from images collected by a camera mounted on the vehicle. The application motivating the research is planetary exploration and the vehicles are typically rovers or unmanned aerial vehicles. The information extracted from imagery is used primarily for navigation, as robot location is the same as the camera location and the surfaces represent the terrain that rovers traverse. The processed information must be very accurate and acquired very fast in order to be useful in practice. The main challenge being addressed by this project is to achieve high estimation accuracy and high computation speed simultaneously, a difficult task due to many technical reasons.

  14. Progress of the Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT) (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A. A.; Han, T.; Hartridge, S.; Shaffer, C.; Kim, G. H.; Pannala, S.

    2013-06-01

    This presentation, Progress of Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT) is about simulation and computer-aided engineering (CAE) tools that are widely used to speed up the research and development cycle and reduce the number of build-and-break steps, particularly in the automotive industry. Realizing this, DOE?s Vehicle Technologies Program initiated the CAEBAT project in April 2010 to develop a suite of software tools for designing batteries.

  15. Modelling and modal properties of the railway vehicle bogie with two individual wheelset drives

    Directory of Open Access Journals (Sweden)

    Zeman V.

    2007-10-01

    Full Text Available The paper deals with mathematical modelling of vibration and modal analysis of two-axled bogie of a railway vehicle. In comparison with recent publications introducing mathematical models of an individual wheelset drive, this paper is focused on modelling of complex bogie vibration. The bogie frame is linked by primary suspension to the two wheelset drives with hollow shafts and by secondary suspension to the car body. The method is based on the system decomposition into three subsystems – two individual wheelset drives including the mass of the rail and the bogie frame coupled with a half of the car body – and on modelling of couplings among subsystems. The eigenvalues of a linearized autonomous model and stability conditions are investigated in dependence on longitudinal creepage and forward velocity of the railway vehicle. The nonlinear model will be used for investigating the dynamic loading of bogie components caused by different types of excitation.

  16. [An intercept survey on the status of driving after alcohol drinking among motor vehicle drivers in 6 counties of Zhejiang, China].

    Science.gov (United States)

    Zhao, Ming; Zhang, Xin-wei; Song, Xiao-chun; Bao, Ping; Zhou, Peng; Zou, Yun

    2012-12-01

    To investigate the status of driving after drinking alcohol among motor vehicle drivers and to provide evidence for the development of specific interventions. A 7-day intercept survey on driving after alcohol drinking, having drinking habit or driving after getting drunk, among motor vehicle drivers, was conducted in 6 counties of Zhejiang province, 2010. 16 467 motor vehicle drivers were included in the survey. Rates of driving after drinking alcohol [blood alcohol concentration (BAC) > 0 mg/100 ml], having habit of drinking alcohol (20 mg/100 ml ≤ BAC driving after being drunk (BAC ≥ 80 mg/100 ml), were 1.82%, 1.03% and 0.27% respectively. Rates of driving after drinking alcohol, having habit of drink alcohol and driving and drunk-driving among the drivers from urban areas were significantly higher than those of drivers from rural areas, and those rates of male drivers were significantly higher than female drivers as well. 60.20% of drivers after drinking alcohol, were 35 to 49 year-olds, and the three above said rates all increased along with age. The highest above said three rates were observed at 23:00 PM and 1:00 AM. Compared with other motor vehicle drivers, motorcyclists possessed the highest rates of the three items, as 9.27%, 5.01% and 1.57% respectively. Driving after drinking alcohol among motor vehicle drivers still prevailed in Zhejiang, especially between 23:00 PM and 1:00 AM. Drivers from the cities, being male or motorcyclists were among the high-risk populations that called for special attention to be paid in the future, including law enforcement and health promotion to fight against the problem.

  17. Conceptual design of a connected vehicle wrong-way driving detection and management system.

    Science.gov (United States)

    2016-04-01

    This report describes the tasks completed to develop a concept of operations, functional requirements, and : high-level system design for a Connected Vehicle (CV) Wrong-Way Driving (WWD) Detection and Management : System. This system was designed to ...

  18. Predicting Motor Vehicle Collisions in a Driving Simulator in Young Adults Using the Useful Field of View Assessment.

    Science.gov (United States)

    McManus, Benjamin; Cox, Molly K; Vance, David E; Stavrinos, Despina

    2015-01-01

    Being involved in motor vehicle collisions is the leading cause of death in 1- to 34-year-olds, and risk is particularly high in young adults. The Useful Field of View (UFOV) task, a cognitive measure of processing speed, divided attention, and selective attention, has been shown to be predictive of motor vehicle collisions in older adults, but its use as a predictor of driving performance in a young adult population has not been investigated. The present study examined whether UFOV was a predictive measure of motor vehicle collisions in a driving simulator in a young adult population. The 3-subtest version of UFOV (lower scores measured in milliseconds indicate better performance) was administered to 60 college students. Participants also completed an 11-mile simulated drive to provide driving performance metrics. Findings suggested that subtests 1 and 2 suffered from a ceiling effect. UFOV subtest 3 significantly predicted collisions in the simulated drive. Each 30 ms slower on the subtest was associated with nearly a 10% increase in the risk of a simulated collision. Post hoc analyses revealed a small partially mediating effect of subtest 3 on the relationship between driving experience and collisions. The selective attention component of UFOV subtest 3 may be a predictive measure of crash involvement in a young adult population. Improvements in selective attention may be the underlying mechanism in how driving experience improves driving performance.

  19. Study of the Energy Conversion Process in the Electro-Hydrostatic Drive of a Vehicle

    Directory of Open Access Journals (Sweden)

    Wiesław Grzesikiewicz

    2018-02-01

    Full Text Available In the paper, we describe a study of an electro-hydrostatic hybrid drive of a utility van intended for city traffic. In this hybrid drive, the electric drive is periodically accompanied by hydrostatic drive, especially during acceleration and regenerative braking of the vehicle. We present a mathematical model of the hybrid drive as a set of dynamics and regulation equations of the van traveling at a given speed. On this basis, we construct a computer program which we use to simulate the processes of energy conversion in the electro-hydrostatic drive. The main goal of the numerical simulation is to assess the possibility of reducing energy intensity of the electric drive through such a support of the hydrostatic drive. The obtained results indicate that it is possible to reduce the load on elements of the electric system and, therefore, improve energy conversion.

  20. Model based Fault Detection and Isolation for Driving Motors of a Ground Vehicle

    Directory of Open Access Journals (Sweden)

    Young-Joon Kim

    2016-04-01

    Full Text Available This paper proposes model based current sensor and position sensor fault detection and isolation algorithm for driving motor of In-wheel independent drive electric vehicle. From low level perspective, fault diagnosis conducted and analyzed to enhance robustness and stability. Composing state equation of interior permanent magnet synchronous motor (IPMSM, current sensor fault and position sensor fault diagnosed with parity equation. Validation and usefulness of algorithm confirmed based on IPMSM fault occurrence simulation data.

  1. Investigation on a Power Coupling Steering System for Dual-Motor Drive Tracked Vehicles Based on Speed Control

    Directory of Open Access Journals (Sweden)

    Li Zhai

    2017-08-01

    Full Text Available Double-motor drive tracked vehicles (2MDTV are widely used in the tracked vehicle industry due to the development of electric vehicle drive systems. The aim of this paper is to solve the problem of insufficient propulsion motor torque in low-speed, small-radius steering and insufficient power in high-speed large-radius steering. In order to do this a new type of steering system with a coupling device is designed and a closed-loop control strategy based on speed is adopted to improve the lateral stability of the vehicle. The work done entails modeling and simulating the 2MDTV and the proposed control strategy in RecurDyn and Matlab/Simulink. The simulation results show that the 2MDTV with the coupling device outputs more torque and power in both steering cases compared to the 2MDTV without the coupling device, and the steering stability of the vehicle is improved by using the strategy based on speed.

  2. Study on the effect of driving cycles on energy efficiency of electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ji Fenzhu; Xu Licong [School of Transportation Science and Engineering of Beihang Univ., BJ (China); Wu Zhixin [Tianjin Qing Yuan Electric Vehicle Corp. Ltd., TJ (China)

    2009-07-01

    The energy usage efficiency of electric vehicles (EVS) and evaluation index of electromotor efficiency were studied. The idea of ''interval usage percentage of energy efficiency'' and ''exertion degree of energy efficiency'' of electromotor was brought forward. The effect of driving cycles on the distribution of running status of electromotor and its efficiency was investigated. The electromotor efficiency and the variety trend of average driving force at different driving cycles were discussed. Based on several typical domestic and foreign driving cycles, the exertion degree of energy efficiency and the whole efficiency of power train on some types of EVS were analyzed and calculated. The result indicates that there is a difference of 9.64% in exertion degree of energy efficiency of electromotor at different driving cycles. The efficiency distribution of electromotor and control system is different, and the average driving force is different, too. That cause the great variety in driving range. The idiographic reference data are provided to the establishment of driving cycles' criterion of EVS in our country. (orig.)

  3. Multi-mode energy management strategy for fuel cell electric vehicles based on driving pattern identification using learning vector quantization neural network algorithm

    Science.gov (United States)

    Song, Ke; Li, Feiqiang; Hu, Xiao; He, Lin; Niu, Wenxu; Lu, Sihao; Zhang, Tong

    2018-06-01

    The development of fuel cell electric vehicles can to a certain extent alleviate worldwide energy and environmental issues. While a single energy management strategy cannot meet the complex road conditions of an actual vehicle, this article proposes a multi-mode energy management strategy for electric vehicles with a fuel cell range extender based on driving condition recognition technology, which contains a patterns recognizer and a multi-mode energy management controller. This paper introduces a learning vector quantization (LVQ) neural network to design the driving patterns recognizer according to a vehicle's driving information. This multi-mode strategy can automatically switch to the genetic algorithm optimized thermostat strategy under specific driving conditions in the light of the differences in condition recognition results. Simulation experiments were carried out based on the model's validity verification using a dynamometer test bench. Simulation results show that the proposed strategy can obtain better economic performance than the single-mode thermostat strategy under dynamic driving conditions.

  4. Near-term hybrid vehicle program, phase 1. Appendix B: Design trade-off studies. [various hybrid/electric power train configurations and electrical and mechanical drive-line components

    Science.gov (United States)

    1979-01-01

    The relative attractiveness of various hybrid/electric power train configurations and electrical and mechanical drive-line components was studied. The initial screening was concerned primarily with total vehicle weight and economic factors and identified the hybrid power train combinations which warranted detailed evaluation over various driving cycles. This was done using a second-by-second vehicle simulation program which permitted the calculations of fuel economy, electricity usage, and emissions as a function of distance traveled in urban and highway driving. Power train arrangement possibilities were examined in terms of their effect on vehicle handling, safety, serviceability, and passenger comfort. A dc electric drive system utilizing a separately excited motor with field control and battery switching was selected for the near term hybrid vehicle. Hybrid vehicle simulations showed that for the first 30 mi (the electric range of the vehicle) in urban driving, the fuel economy was 80 mpg using a gasoline engine and 100 mpg using a diesel engine. In urban driving the hybrid would save about 75% of the fuel used by the conventional vehicle and in combined urban/highway driving the fuel saving is about 50%.

  5. i3Drive, a 3D interactive driving simulator.

    Science.gov (United States)

    Ambroz, Miha; Prebil, Ivan

    2010-01-01

    i3Drive, a wheeled-vehicle simulator, can accurately simulate vehicles of various configurations with up to eight wheels in real time on a desktop PC. It presents the vehicle dynamics as an interactive animation in a virtual 3D environment. The application is fully GUI-controlled, giving users an easy overview of the simulation parameters and letting them adjust those parameters interactively. It models all relevant vehicle systems, including the mechanical models of the suspension, power train, and braking and steering systems. The simulation results generally correspond well with actual measurements, making the system useful for studying vehicle performance in various driving scenarios. i3Drive is thus a worthy complement to other, more complex tools for vehicle-dynamics simulation and analysis.

  6. Development of a Cooperative Braking System for Front-Wheel Drive Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Di Zhao

    2018-02-01

    Full Text Available Most electric vehicles adopt cooperative braking systems that can blend friction braking torque with regenerative braking torque to achieve higher energy efficiency while maintaining a certain braking performance and driving safety. This paper presented a new cooperative regenerative braking system that contained a fully-decoupled hydraulic braking mechanism based on a modified electric stability control system. The pressure control algorithm and brake force distribution strategy were also discussed. Dynamic models of a front wheel drive electric car equipped with this system and a simulation platform with a driver model and driving cycles were established. Tests to evaluate the braking performance and energy regeneration were simulated and analyzed on this platform and the simulation results showed the feasibility and effectiveness of this system.

  7. Assessment of risks for elevated NOx emissions of diesel vehicles outside the boundaries of RDE. Identifying relevant driving and vehicle conditions and possible abatement measures

    NARCIS (Netherlands)

    Mensch, P. van; Cuelenaere, R.F.A.; Ligterink, N.E.

    2017-01-01

    With RDE (Real Driving Emissions) legislation a new chapter in emission testing has started for light-duty vehicles. RDE legislation poses new and more complex engineering targets for manufacturers. The expectation is that RDE will bring major improvements in the emission performance of LD vehicles

  8. In-Cabin Air Quality during Driving and Engine Idling in Air-Conditioned Private Vehicles in Hong Kong.

    Science.gov (United States)

    Barnes, Natasha Maria; Ng, Tsz Wai; Ma, Kwok Keung; Lai, Ka Man

    2018-03-27

    Many people spend lengthy periods each day in enclosed vehicles in Hong Kong. However, comparably limited data is available about in-cabin air quality in air-conditioned private vehicles, and the car usage that may affect the air quality. Fifty-one vehicles were tested for particulate matter (PM 0.3 and PM 2.5 ), total volatile organic compounds (TVOCs), carbon monoxide (CO), carbon dioxide (CO₂), airborne bacteria, and fungi levels during their routine travel journey. Ten of these vehicles were further examined for PM 0.3 , PM 2.5 , TVOCs, CO, and CO₂ during engine idling. In general, during driving PM 2.5 levels in-cabin reduced overtime, but not PM 0.3 . For TVOCs, 24% vehicles exceeded the recommended Indoor Air Quality (IAQ) level in offices and public places set by the Hong Kong Environmental Protection Department. The total volatile organic compounds (TVOC) concentration positively correlated with the age of the vehicle. Carbon monoxide (CO) levels in all of the vehicles were lower than the IAQ recommendation, while 96% vehicles exceeded the recommended CO₂ level of 1000 ppmv; 16% vehicles >5000 ppmv. Microbial counts were relatively low. TVOCs levels at idle engine were higher than that during driving. Although the time we spend in vehicles is short, the potential exposure to high levels of pollutants should not be overlooked.

  9. In-Cabin Air Quality during Driving and Engine Idling in Air-Conditioned Private Vehicles in Hong Kong

    Directory of Open Access Journals (Sweden)

    Natasha Maria Barnes

    2018-03-01

    Full Text Available Many people spend lengthy periods each day in enclosed vehicles in Hong Kong. However, comparably limited data is available about in-cabin air quality in air-conditioned private vehicles, and the car usage that may affect the air quality. Fifty-one vehicles were tested for particulate matter (PM0.3 and PM2.5, total volatile organic compounds (TVOCs, carbon monoxide (CO, carbon dioxide (CO2, airborne bacteria, and fungi levels during their routine travel journey. Ten of these vehicles were further examined for PM0.3, PM2.5, TVOCs, CO, and CO2 during engine idling. In general, during driving PM2.5 levels in-cabin reduced overtime, but not PM0.3. For TVOCs, 24% vehicles exceeded the recommended Indoor Air Quality (IAQ level in offices and public places set by the Hong Kong Environmental Protection Department. The total volatile organic compounds (TVOC concentration positively correlated with the age of the vehicle. Carbon monoxide (CO levels in all of the vehicles were lower than the IAQ recommendation, while 96% vehicles exceeded the recommended CO2 level of 1000 ppmv; 16% vehicles >5000 ppmv. Microbial counts were relatively low. TVOCs levels at idle engine were higher than that during driving. Although the time we spend in vehicles is short, the potential exposure to high levels of pollutants should not be overlooked.

  10. Optimal control of mode transition for four-wheel-drive hybrid electric vehicle with dry dual-clutch transmission

    Science.gov (United States)

    Zhao, Zhiguo; Lei, Dan; Chen, Jiayi; Li, Hangyu

    2018-05-01

    When the four-wheel-drive hybrid electric vehicle (HEV) equipped with a dry dual clutch transmission (DCT) is in the mode transition process from pure electrical rear wheel drive to front wheel drive with engine or hybrid drive, the problem of vehicle longitudinal jerk is prominent. A mode transition robust control algorithm which resists external disturbance and model parameter fluctuation has been developed, by taking full advantage of fast and accurate torque (or speed) response of three electrical power sources and getting the clutch of DCT fully involved in the mode transition process. Firstly, models of key components of driveline system have been established, and the model of five-degrees-of-freedom vehicle longitudinal dynamics has been built by using a Uni-Tire model. Next, a multistage optimal control method has been produced to realize the decision of engine torque and clutch-transmitted torque. The sliding-mode control strategy for measurable disturbance has been proposed at the stage of engine speed dragged up. Meanwhile, the double tracking control architecture that integrates the model calculating feedforward control with H∞ robust feedback control has been presented at the stage of speed synchronization. Finally, the results from Matlab/Simulink software and hardware-in-the-loop test both demonstrate that the proposed control strategy for mode transition can not only coordinate the torque among different power sources and clutch while minimizing vehicle longitudinal jerk, but also provide strong robustness to model uncertainties and external disturbance.

  11. Pregnant women in vehicles: Driving habits, position and risk of injury.

    Science.gov (United States)

    Auriault, F; Brandt, C; Chopin, A; Gadegbeku, B; Ndiaye, A; Balzing, M-P; Thollon, L; Behr, M

    2016-04-01

    This study proposed to broadly examine vehicle use by pregnant women in order to improve realism of accident simulations involving these particular occupants. Three research pathways were developed: the first consisted in a questionnaire survey examining the driving habits of 135 pregnant women, the second obtained measurements of 15 pregnant women driving position in their own vehicle from the 6th to the 9th month of pregnancy by measuring distances between body parts and vehicle parts, and the third examined car accidents involving pregnant occupants. Results obtained indicate that between 90% and 100% of pregnant women wore their seat belts whatever their stage of pregnancy, although nearly one third of subjects considered the seat belt was dangerous for their unborn child. The measurements obtained also showed that the position of the pregnant woman in her vehicle, in relation to the various elements of the passenger compartment, changed significantly during pregnancy. In the studied accidents, no correlation was found between the conditions of the accident and the resulting fetal injury. Results reveal that pregnant women do not modify significantly the seat setting as a function of pregnancy stage. Only the distance between maternal abdomen and steering wheel change significantly, from 16 cm to 12 cm at 6 and 9 month respectively. Pregnant women are mainly drivers before 8 months of pregnancy, passengers after that. Car use frequency falls down rapidly from 6 to 9 months of pregnancy. Real crashes investigations indicate a low rate of casualties, i.e. 342 car accidents involving pregnant women for a period of 9 years in an approximately 1.7 million inhabitants area. No specific injury was found as a function of stage of pregnancy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Wheeled Vehicle Drive Lines, Axles, and Suspension Systems. Military Curriculum Materials for Vocational and Technical Education.

    Science.gov (United States)

    Army Ordnance Center and School, Aberdeen Proving Ground, MD.

    This course is one of several subcourses that make up the entire Army correspondence course on wheeled vehicle maintenance. The subcourse is designed to provide the student with information about the operation, malfunction diagnosis, maintenance, and repair of wheeled vehicle drive lines, axles, and suspension systems. It provides the basic…

  13. Development of real-world driving cycles and estimation of emission factors for in-use light-duty gasoline vehicles in urban areas.

    Science.gov (United States)

    Hwa, Mei-Yin; Yu, Tai-Yi

    2014-07-01

    This investigation adopts vehicle tracking manner to establish real-world driving patterns and estimates emission factors with dynamometers with 23 traffic-driving variables for 384 in-use light-duty passenger vehicles during non-rush hour. Adequate numbers of driving variables were decided with factor analysis and cluster analysis. The dynamometer tests were performed on FTP75 cycle and five local driving cycles derived from real-world speed profiles. Results presented that local driving cycles and FTP75 cycle were completely different in driving characteristic parameters of typical driving cycles and emission factors. The highest values of emission factor ratios of local driving cycle and FTP75 cycle for CO, NMHC, NO x , CH4, and CO2 were 1.38, 1.65, 1.58, 1.39, and 1.14, respectively.

  14. A New Vehicle for Planetary Surface Exploration: The Mars Tumbleweed

    Science.gov (United States)

    Antol, Jeffrey

    2005-01-01

    The surface of Mars is currently being explored with a combination of orbiting spacecraft, stationary landers and wheeled rovers. However, only a small portion of the Martian surface has undergone in-situ examination. Landing sites must be chosen to insure the safety of the vehicles (and human explorers) and provide the greatest opportunity for mission success. While wheeled rovers provide the ability to move beyond the landing sites, they are also limited in their ability to traverse rough terrain; therefore, many scientifically interesting sites are inaccessible by current vehicles. In order to access these sites, a capability is needed that can transport scientific instruments across varied Martian terrain. A new "rover" concept for exploring the Martian surface, known as the Mars Tumbleweed, will derive mobility through use of the surface winds on Mars, much like the Tumbleweed plant does here on Earth. Using the winds on Mars, a Tumbleweed rover could conceivably travel great distances and cover broad areas of the planetary surface. Tumbleweed vehicles would be designed to withstand repeated bouncing and rolling on the rock covered Martian surface and may be durable enough to explore areas on Mars such as gullies and canyons that are currently inaccessible by conventional rovers. Achieving Mars wind-driven mobility; however, is not a minor task. The density of the atmosphere on Mars is approximately 60-80 times less than that on Earth and wind speeds are typically around 2-5 m/s during the day, with periodic winds of 10 m/s to 20 m/s (in excess of 25 m/s during seasonal dust storms). However, because of the Martian atmosphere#s low density, even the strongest winds on Mars equate to only a gentle breeze on Earth. Tumbleweed rovers therefore need to be relatively large (4-6 m in diameter), very lightweight (10-20 kg), and equipped with lightweight, low-power instruments. This paper provides an overview of the Tumbleweed concept, presents several notional design

  15. Engineering Social Justice into Traffic Control for Self-Driving Vehicles?

    Science.gov (United States)

    Mladenovic, Milos N; McPherson, Tristram

    2016-08-01

    The convergence of computing, sensing, and communication technology will soon permit large-scale deployment of self-driving vehicles. This will in turn permit a radical transformation of traffic control technology. This paper makes a case for the importance of addressing questions of social justice in this transformation, and sketches a preliminary framework for doing so. We explain how new forms of traffic control technology have potential implications for several dimensions of social justice, including safety, sustainability, privacy, efficiency, and equal access. Our central focus is on efficiency and equal access as desiderata for traffic control design. We explain the limitations of conventional traffic control in meeting these desiderata, and sketch a preliminary vision for a next-generation traffic control tailored to address better the demands of social justice. One component of this vision is cooperative, hierarchically distributed self-organization among vehicles. Another component of this vision is a priority system enabling selection of priority levels by the user for each vehicle trip in the network, based on the supporting structure of non-monetary credits.

  16. Driving with advanced vehicle technology: A qualitative investigation of older drivers' perceptions and motivations for use.

    Science.gov (United States)

    Gish, Jessica; Vrkljan, Brenda; Grenier, Amanda; Van Miltenburg, Benita

    2017-09-01

    For older drivers, in-vehicle technology offers much potential to improve safety and increase longevity of retaining both licensure and community mobility. However, little is known about how older drivers perceive Advanced Vehicle Technologies (AVTs) based on everyday driving experience. Interviews with 35 older drivers (20 men; 15 women) aged 60-85 who owned a vehicle with at least two AVTs (e.g., back-up camera, lane departure warning) were conducted to explore the meanings that older drivers assigned to AVTs and motivations for use, including whether age-related functional changes were part of their automobile purchase decision. Findings indicate that age-related changes are not a primary reason for why older adults seek out AVTs, but they still perceived and experienced AVTs to counteract age-related changes in driving performance based upon changes they felt occurring within the body. Older drivers also described AVTs as generating a sense of comfort behind-the-wheel. Comfort with this technology was equated with convenience, ease of use, and increased feelings of safety. Discussion emphasizes how assessments of the quality of driving performance and value of technology occur in relation to an aging body. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Launch Vehicles Based on Advanced Hybrid Rocket Motors: An Enabling Technology for the Commercial Small and Micro Satellite Planetary Science

    Science.gov (United States)

    Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan

    2016-07-01

    Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.

  18. Causes for torque degradation during deceleration and the effect on the driving range of battery electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Lieb, Johannes [BMW PEUGEOT CITROEN ELECTRIFICATION, Muenchen (Germany); Wilde, Andreas [BMW Group, Muenchen (Germany); Baeker, Bernard [Dresden Univ. of Technology (Germany). Dept. of Vehicle Mechatronics

    2012-11-01

    The ability to regain considerable amounts of the kinetic energy during deceleration phases is a key aspect to increase the efficiency of battery electric vehicles (BEV). Especially in urban and highly congested areas brake energy recovery (BER) can drastically improve the vehicle's driving range. However, due to the high power peaks that go along even with moderate braking maneuvers, severe requirements are being put on the electric drivetrain. Any limitation of power in one of the components of the powertrain inevitably leads to degradation of the regenerative brake torque, thus limiting the car's energy regeneration capability. Without an integrated brake system that can compensate the torque variations during deceleration, BER may need to be decreased even further to prevent a loss of driving comfort due to dynamic changes in the vehicle's behavior. This paper deals with the causes of these torque restraints within the electric drivetrain and how they affect the energy consumption and therefore the electric driving range. A simulation environment was set up and verified based on an existing BEV to conduct parameter studies and depict the sensitivities towards environmental influences. The calculated efficiencies are based on standard drive cycles and incorporate continuous fading between regenerative braking and the use of friction brakes. Special attention was laid on the battery system since energy storage still poses a particular challenge in the development of electric vehicles. Also through the high mutual dependence of the various parameters of the battery enviromental influences become most evident. (orig.)

  19. Motion Planning in Dynamic Environments with Application to Self-Driving Vehicles

    OpenAIRE

    Schwesinger, Ulrich

    2017-01-01

    This thesis is concerned with the development of trajectory planning approaches targeting autonomous driving applications in dynamic environments shared with other traffic participants. The goal is to enable mobile robots to operate in challenging environments, characterized by narrow spaces and close proximity of other agents. With their broad range of private and commercial applications reaching from logistics to valet parking to name a few, driverless vehicles have gained increasing at...

  20. A Priori User Acceptance and the Perceived Driving Pleasure in Semi-autonomous and Autonomous Vehicles

    DEFF Research Database (Denmark)

    Bjørner, Thomas

    The aim of this minor pilot study is, from a sociological user perspective, to explore a priori user acceptance and the perceived driving pleasure in semi- autonomous and autonomous vehicles. The methods used were 13 in-depth interviews while having participants watch video examples within four...... different scenarios. After each scenario, two different numerical rating scales were used. There was a tendency toward positive attitudes regarding semi- autonomous driving systems, especially the use of a parking assistant and while driving in city traffic congestion. However, there were also major...

  1. Safely towards self-driving vehicles : new opportunities new risks and new challenges during the automation of the traffic system.

    NARCIS (Netherlands)

    Nes, C.N. van & Duivenvoorden, C.W.A.E.

    2017-01-01

    There are more and more systems on the market to support the driver in his vehicle. Step by step the automation of our vehicles increases, the traffic system is in a transition towards self-driving vehicles. The automation offers opportunities to make our traffic safer, cleaner and more efficient.

  2. Novel control algorithm of braking energy regeneration system for an electric vehicle during safety–critical driving maneuvers

    International Nuclear Information System (INIS)

    Lv, Chen; Zhang, Junzhi; Li, Yutong; Yuan, Ye

    2015-01-01

    Highlights: • Models of an electric vehicle with regenerative braking system (RBS) are built. • Control algorithm of RBS under safety–critical driving maneuvers is proposed. • Simulations and HIL tests of the proposed strategy are conducted. • Performance improvement of vehicle’s mean deceleration is up to 13.89%. • Test results verify the feasibility and effectiveness of the proposed method. - Abstract: This paper mainly focuses on control algorithm of the braking energy regeneration system of an electric bus under safety–critical driving situations. With the aims of guaranteeing vehicle stability in various types of tyre–road adhesion conditions, based on the characteristics of electrified powertrain, a novel control algorithm of regenerative braking system is proposed for electric vehicles during anti-lock braking procedures. First, the models of vehicle dynamics and main components including braking energy regenerative system of the case-study electric bus are built in MATLAB/Simulink. Then, based on the phase-plane method, the optimal brake torque is calculated for ABS control of vehicle. Next, a novel allocation strategy, wherein the target optimal brake torque is divided into two parts that are handled separately by the regenerative and friction brakes, is developed. Simulations of the proposed control strategy are conducted based on system models built using MATLAB/Simulink. The simulation results demonstrate that the developed strategy enables improved control in terms of vehicle stability and braking performance under different emergency driving conditions. To further verify the synthesized control algorithm, hardware-in-the-loop tests are also performed. The experimental results validate the simulation data and verify the feasibility and effectiveness of the developed control algorithm.

  3. Efficient direct yaw moment control: tyre slip power loss minimisation for four-independent wheel drive vehicle

    Science.gov (United States)

    Kobayashi, Takao; Katsuyama, Etsuo; Sugiura, Hideki; Ono, Eiichi; Yamamoto, Masaki

    2018-05-01

    This paper proposes an efficient direct yaw moment control (DYC) capable of minimising tyre slip power loss on contact patches for a four-independent wheel drive vehicle. Simulations identified a significant power loss reduction with a direct yaw moment due to a change in steer characteristics during acceleration or deceleration while turning. Simultaneously, the vehicle motion can be stabilised. As a result, the proposed control method can ensure compatibility between vehicle dynamics performance and energy efficiency. This paper also describes the results of a full-vehicle simulation that was conducted to examine the effectiveness of the proposed DYC.

  4. Electric Vehicle - Economical driving

    DEFF Research Database (Denmark)

    Jensen, VCE, Steen V.; Schøn, Henriette

    1999-01-01

    Instruct the reader in getting most satisfaction out of an EV, especially concerning driving and loading.......Instruct the reader in getting most satisfaction out of an EV, especially concerning driving and loading....

  5. Stochastic optimal charging of electric-drive vehicles with renewable energy

    International Nuclear Information System (INIS)

    Pantoš, Miloš

    2011-01-01

    The paper presents the stochastic optimization algorithm that may eventually be used by electric energy suppliers to coordinate charging of electric-drive vehicles (EDVs) in order to maximize the use of renewable energy in transportation. Due to the stochastic nature of transportation patterns, the Monte Carlo simulation is applied to model uncertainties presented by numerous scenarios. To reduce the problem complexity, the simulated driving patterns are not individually considered in the optimization but clustered into fleets using the GAMS/SCENRED tool. Uncertainties of production of renewable energy sources (RESs) are presented by statistical central moments that are further considered in Hong’s 2-point + 1 estimation method in order to define estimate points considered in the optimization. Case studies illustrate the application of the proposed optimization in achieving maximal exploitation of RESs in transportation by EDVs. -- Highlights: ► Optimization model for EDV charging applying linear programming. ► Formation of EDV fleets based on the driving patterns assessment applying the GAMS/SCENRED. ► Consideration of uncertainties of RES production and energy prices in the market. ► Stochastic optimization. ► Application of Hong’s 2-point + 1 estimation method.

  6. The pattern of the electromagnetic field emitted by mobile phones in motor vehicle driving simulators

    Directory of Open Access Journals (Sweden)

    Piotr Politański

    2013-06-01

    Full Text Available Introduction: The paper reports the results of the determinations of UMTS EMF distributions in the driver's cab of motor vehicle simulators. The results will serve as the basis for future research on the influence of EMF emitted by mobile phones on driver physiology. Materials and Methods: Two motor vehicle driving simulators were monitored, while an EMF source was placed at the driver's head or on the dashboard of the motor vehicle driving simulator. For every applied configuration, the maximal electric field strength was measured, as were the values at 16 points corresponding to chosen locations on a driver's or passenger's body. Results: When the power was set for the maximum (49 mW, a value of 27 V/m was measured in the vicinity of the driver's head when the phone was close to the head. With the same power, when the phone was placed on the dashboard, the measured maximum was 15.2 V/m in the vicinity of the driver's foot. Similar results were obtained for the passenger. Significant perturbations in EMF distribution and an increase in electric field strength values in the motor vehicle driving simulator were also observed in comparison to free space measurements, and the electric field strength was up to 3 times higher inside the simulator. Conclusions: This study can act as the basis of future studies concerning the influence of the EMF emitted by mobile phones on the physiology of the driver. Additionally, the authors postulate that it is advisable to keep mobile phones at a distance from the head, i.e. use, whenever possible, hands-free kits to reduce EMF exposure, both for drivers and passengers.

  7. Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.C.

    2002-11-14

    This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less

  8. Energy Management Strategy Based on the Driving Cycle Model for Plugin Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xiaoling Fu

    2014-01-01

    Full Text Available The energy management strategy (EMS for a plugin hybrid electric vehicle (PHEV is proposed based on the driving cycle model and dynamic programming (DP algorithm. A driving cycle model is constructed by collecting and processing the driving data of a certain school bus. The state of charge (SOC profile can be obtained by the DP algorithm for the whole driving cycle. In order to optimize the energy management strategy in the hybrid power system, the optimal motor torque control sequence can be calculated using the DP algorithm for the segments between the traffic intersections. Compared with the traditional charge depleting-charge sustaining (CDCS strategy, the test results on the ADVISOR platform show a significant improvement in fuel consumption using the EMS proposed in this paper.

  9. The useful field of view assessment predicts simulated commercial motor vehicle driving safety.

    Science.gov (United States)

    McManus, Benjamin; Heaton, Karen; Vance, David E; Stavrinos, Despina

    2016-10-02

    The Useful Field of View (UFOV) assessment, a measure of visual speed of processing, has been shown to be a predictive measure of motor vehicle collision (MVC) involvement in an older adult population, but it remains unknown whether UFOV predicts commercial motor vehicle (CMV) driving safety during secondary task engagement. The purpose of this study is to determine whether the UFOV assessment predicts simulated MVCs in long-haul CMV drivers. Fifty licensed CMV drivers (Mage = 39.80, SD = 8.38, 98% male, 56% Caucasian) were administered the 3-subtest version of the UFOV assessment, where lower scores measured in milliseconds indicated better performance. CMV drivers completed 4 simulated drives, each spanning approximately a 22.50-mile distance. Four secondary tasks were presented to participants in a counterbalanced order during the drives: (a) no secondary task, (b) cell phone conversation, (c) text messaging interaction, and (d) e-mailing interaction with an on-board dispatch device. The selective attention subtest significantly predicted simulated MVCs regardless of secondary task. Each 20 ms slower on subtest 3 was associated with a 25% increase in the risk of an MVC in the simulated drive. The e-mail interaction secondary task significantly predicted simulated MVCs with a 4.14 times greater risk of an MVC compared to the no secondary task condition. Subtest 3, a measure of visual speed of processing, significantly predicted MVCs in the email interaction task. Each 20 ms slower on subtest 3 was associated with a 25% increase in the risk of an MVC during the email interaction task. The UFOV subtest 3 may be a promising measure to identify CMV drivers who may be at risk for MVCs or in need of cognitive training aimed at improving speed of processing. Subtest 3 may also identify CMV drivers who are particularly at risk when engaged in secondary tasks while driving.

  10. Supporting anticipation in driving through attentional and interpretational in-vehicle displays.

    Science.gov (United States)

    Stahl, Patrick; Donmez, Birsen; Jamieson, Greg A

    2016-06-01

    This paper evaluates two different types of in-vehicle interfaces to support anticipation in driving: one aids attention allocation and the other aids interpretation of traffic in addition to attention allocation. Anticipation is a competency that has been shown to facilitate safety and eco-driving through the efficient positioning of a vehicle for probable, upcoming changes in traffic. This competency has been shown to improve with driving experience. In an earlier simulator study, we showed that compared to novice drivers, experienced drivers exhibited a greater number of timely actions to avoid upcoming traffic conflicts. In this study, we seek to facilitate anticipation in general and for novice drivers in particular, who appear to lack the competency. We hypothesize that anticipation depends on two major steps and that it can be supported by aiding each: (1) conscious perception of relevant cues, and (2) effective processing of these cues to create a situational assessment as a basis for anticipation of future developments. We conducted a simulator experiment with 24 experienced and 24 novice drivers to evaluate two interfaces that were designed to aid the two hypothesized steps of anticipation. The attentional interface was designed to direct attention toward the most relevant cue. The interpretational interface represented several cues, and in addition to directing attention also aimed to aid sense-making of these cues. The results confirmed our hypothesis that novice drivers' anticipation performance, as measured through timely actions to avoid upcoming traffic conflicts, would be improved with either interface type. However, results contradicted our expectation that novice drivers would obtain larger improvements with the interpretational interface. Experienced drivers performed better than novice drivers to begin with and did not show any statistically significant improvements with either interface. Both interfaces improved anticipation performance for

  11. Virtual Drive Testing of Adaptive Antenna Systems in Dynamic Propagation Scenarios for Vehicle Communications

    DEFF Research Database (Denmark)

    Fan, Wei; Hentilä, Lassi; Zhang, Fengchun

    2018-01-01

    Virtual drive testing (VDT) has gained great interest from both industry and academia, owing to its promise to replay field trials in a controllable laboratory condition. VDT is especially appealing for vehicle communication scenarios, where actual field trials can be difficult to carry out...

  12. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  13. The Role of Interaction Patterns with Hybrid Electric Vehicle Eco-Features for Drivers' Eco-Driving Performance.

    Science.gov (United States)

    Arend, Matthias G; Franke, Thomas

    2017-03-01

    The objective of the present research was to understand drivers' interaction patterns with hybrid electric vehicles' (HEV) eco-features (electric propulsion, regenerative braking, neutral mode) and their relationship to fuel efficiency and driver characteristics (technical system knowledge, eco-driving motivation). Eco-driving (driving behaviors performed to achieve higher fuel efficiency) has the potential to reduce CO 2 emissions caused by road vehicles. Eco-driving in HEVs is particularly challenging due to the systems' dynamic energy flows. As a result, drivers are likely to show diverse eco-driving behaviors, depending on factors like knowledge and motivation. The eco-features represent an interface for the control of the systems' energy flows. A sample of 121 HEV drivers who had constantly logged their fuel consumption prior to the study participated in an online questionnaire. Drivers' interaction patterns with the eco-features were related to fuel efficiency. A common factor was identified in an exploratory factor analysis, characterizing the intensity of actively dealing with electric energy, which was also related to fuel efficiency. Driver characteristics were not related to this factor, yet they were significant predictors of fuel efficiency. From the perspective of user-energy interaction, the relationship of the aggregated factor to fuel efficiency emphasizes the central role of drivers' perception of and interaction with energy conversions in determining HEV eco-driving success. To arrive at an in-depth understanding of drivers' eco-driving behaviors that can guide interface design, authors of future research should be concerned with the psychological processes that underlie drivers' interaction patterns with eco-features.

  14. Development and Testing of a Prototype Connected Vehicle Wrong-Way Driving Detection and Management System

    Science.gov (United States)

    2018-02-01

    The primary objective of Phase II was to develop a prototype connected vehicle wrong-way driving detection and management system at the Texas A&M University Respect, Excellence, Leadership, Loyalty, Integrity, Selfless Service (RELLIS) campus. The pu...

  15. Design and analysis of new fault-tolerant permanent magnet motors for four-wheel-driving electric vehicles

    Science.gov (United States)

    Liu, Guohai; Gong, Wensheng; Chen, Qian; Jian, Linni; Shen, Yue; Zhao, Wenxiang

    2012-04-01

    In this paper, a novel in-wheel permanent-magnet (PM) motor for four-wheel-driving electrical vehicles is proposed. It adopts an outer-rotor topology, which can help generate a large drive torque, in order to achieve prominent dynamic performance of the vehicle. Moreover, by adopting single-layer concentrated-windings, fault-tolerant teeth, and the optimal combination of slot and pole numbers, the proposed motor inherently offers negligible electromagnetic coupling between different phase windings, hence, it possesses a fault-tolerant characteristic. Meanwhile, the phase back electromotive force waveforms can be designed to be sinusoidal by employing PMs with a trapezoidal shape, eccentric armature teeth, and unequal tooth widths. The electromagnetic performance is comprehensively investigated and the optimal design is conducted by using the finite-element method.

  16. How much do electric drive vehicles matter to future U.S. emissions?

    Science.gov (United States)

    Babaee, Samaneh; Nagpure, Ajay S; DeCarolis, Joseph F

    2014-01-01

    Hybrid, plug-in hybrid, and battery electric vehicles--known collectively as electric drive vehicles (EDVs)--may represent a clean and affordable option to meet growing U.S. light duty vehicle (LDV) demand. The goal of this study is 2-fold: identify the conditions under which EDVs achieve high LDV market penetration in the U.S. and quantify the associated change in CO2, SO2, and NOX emissions through midcentury. We employ the Integrated MARKAL-EFOM System (TIMES), a bottom-up energy system model, along with a U.S. data set developed for this analysis. To characterize EDV deployment through 2050, varying assumptions related to crude oil and natural gas prices, a CO2 policy, a federal renewable portfolio standard, and vehicle battery cost were combined to form 108 different scenarios. Across these scenarios, oil prices and battery cost have the biggest effect on EDV deployment. The model results do not demonstrate a clear and consistent trend toward lower system-wide emissions as EDV deployment increases. In addition to the trade-off between lower tailpipe and higher electric sector emissions associated with plug-in vehicles, the scenarios produce system-wide emissions effects that often mask the effect of EDV deployment.

  17. An assessment of commercial motor vehicle driver distraction using naturalistic driving data.

    Science.gov (United States)

    Hickman, Jeffrey S; Hanowski, Richard J

    2012-01-01

    This study analyzed naturalistic driving data from commercial trucks (3-axle and tractor-trailer/tanker) and buses (transit and motorcoach) during a 3-month period. The data set contained 183 commercial truck and bus fleets comprising 13,306 vehicles and included 1085 crashes, 8375 near crashes, 30,661 crash-relevant conflicts, and 211,171 baseline events. Study results documented the prevalence of tertiary tasks and the risks associated with performing these tasks while driving. Results indicated the odds of involvement in a safety-critical event differed as a function of performing different cell phone-related subtasks while driving. Although the odds ratio for talking/listening on a cell phone while driving was found to not significantly increase the likelihood of involvement in a safety-critical event, other cell phone subtasks (e.g., texting, dialing, reaching) were found to significantly increase the odds of involvement in a safety-critical event. The results suggest that cell phone use while driving should not be considered a simple dichotomous task (yes/no). Consideration should instead be made for a set of discrete cell phone subtasks that are each associated with varying levels of risk. Several hypotheses are presented to explain why cell phone use while driving was found to not increase the likelihood of involvement in a safety-critical event.

  18. Vehicle State Estimator based regenerative braking implementation on an electric vehicle to improve lateral vehicle stability

    NARCIS (Netherlands)

    Jansen, S.T.H.; van Boekel, J.J.P.; Iersel, van S.S.; Besselink, I.J.M.; Nijmeijer, H.

    2013-01-01

    The driving range of electric vehicles can be extended using regenerative braking. Regenerative braking uses the electric drive system, and therefore only the driven wheels, for decelerating the vehicle. Braking on one axle affects the stability of the vehicle, especially for road conditions with

  19. Vehicle state estimator based regenerative braking implementation on an electric vehicle to improve lateral vehicle stability

    NARCIS (Netherlands)

    Jansen, S.T.H.; Boekel, J.J.P. van; Iersel, S.S. van; Besselink, I.J.M.; Nijmeijer, H.

    2013-01-01

    The driving range of electric vehicles can be extended using regenerative braking. Regenerative braking uses the elctric drive system, and therefore only the driven wheels, for decelerating the vehicle. Braking on one axle affects the stability of the vehicle, especially for road conditions with

  20. Bringing Terramechanics to bear on Planetary Rover Design

    Science.gov (United States)

    Richter, L.

    2007-08-01

    Thus far, planetary rovers have been successfully operated on the Earth's moon and on Mars. In particular, the two NASA Mars Exploration Rovers (MERs) ,Spirit' and ,Opportunity' are still in sustained daily operations at two sites on Mars more than 3 years after landing there. Currently, several new planetary rover missions are in development targeting Mars (the US Mars Science Lab vehicle for launch in 2009 and ESA's ExoMars rover for launch in 2013), with lunar rover missions under study by China and Japan for launches around 2012. Moreover, the US Constellation program is preparing pre-development of lunar rovers for initially unmanned and, subsequently, human missions to the Moon with a corresponding team dedicated to mobility system development having been set up at the NASA Glenn Research Center. Given this dynamic environment, it was found timely to establish an expert group on off-the-road mobility as relevant for robotic vehicles that would involve individuals representing the various on-going efforts on the different continents. This was realized through the International Society of Terrain-Vehicle Systems (ISTVS), a research organisation devoted to terramechanics and to the ,science' of off-the-road vehicle development which as a result is just now establishing a Technical Group on Terrestrial and Planetary Rovers. Members represent space-related as well as military research institutes and universities from the US, Germany, Italy, and Japan. The group's charter for 2007 is to define its objectives, functions, organizational structure and recommended research objectives to support planetary rover design and development. Expected areas of activity of the ISTVS-sponsored group include: the problem of terrain specification for planetary rovers; identification of limitations in modelling of rover mobility; a survey of existing rover mobility testbeds; the consolidation of mobility predictive models and their state of validation; sensing and real

  1. Integrated Fault Diagnosis Algorithm for Motor Sensors of In-Wheel Independent Drive Electric Vehicles

    Science.gov (United States)

    Jeon, Namju; Lee, Hyeongcheol

    2016-01-01

    An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed. PMID:27973431

  2. Integrated Fault Diagnosis Algorithm for Motor Sensors of In-Wheel Independent Drive Electric Vehicles.

    Science.gov (United States)

    Jeon, Namju; Lee, Hyeongcheol

    2016-12-12

    An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed.

  3. Electric Vehicle - Economical driving

    DEFF Research Database (Denmark)

    Jensen, VCE, Steen V.; Schøn, Henriette

    1999-01-01

    How do you reduce the energy-wast when driving and loading EV's - or rather: How do I get more km/l out of an EV......How do you reduce the energy-wast when driving and loading EV's - or rather: How do I get more km/l out of an EV...

  4. Can vehicle longitudinal jerk be used to identify aggressive drivers? An examination using naturalistic driving data.

    Science.gov (United States)

    Feng, Fred; Bao, Shan; Sayer, James R; Flannagan, Carol; Manser, Michael; Wunderlich, Robert

    2017-07-01

    This paper investigated the characteristics of vehicle longitudinal jerk (change rate of acceleration with respect to time) by using vehicle sensor data from an existing naturalistic driving study. The main objective was to examine whether vehicle jerk contains useful information that could be potentially used to identify aggressive drivers. Initial investigation showed that there are unique characteristics of vehicle jerk in drivers' gas and brake pedal operations. Thus two jerk-based metrics were examined: (1) driver's frequency of using large positive jerk when pressing the gas pedal, and (2) driver's frequency of using large negative jerk when pressing the brake pedal. To validate the performance of the two metrics, drivers were firstly divided into an aggressive group and a normal group using three classification methods (1) traveling at excessive speed (speeding), (2) following too closely to a front vehicle (tailgating), and (3) their association with crashes or near-crashes in the dataset. The results show that those aggressive drivers defined using any of the three methods above were associated with significantly higher values of the two jerk-based metrics. Between the two metrics the frequency of using large negative jerk seems to have better performance in identifying aggressive drivers. A sensitivity analysis shows the findings were largely consistent with varying parameters in the analysis. The potential applications of this work include developing quantitative surrogate safety measures to identify aggressive drivers and aggressive driving, which could be potentially used to, for example, provide real-time or post-ride performance feedback to the drivers, or warn the surrounding drivers or vehicles using the connected vehicle technologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Cooperative driving in platooning scenario’s

    NARCIS (Netherlands)

    van der Linden, M.J.G.M.; Nijmeijer, H.

    2011-01-01

    Cooperative driving enables a more efficient use of existing infrastructure which reduces the expenditures and land use for new roads. Cooperative driving is based on intelligent communication between vehicles and between vehicles and their environment. Vehicles can drive closer to each other due to

  6. BP's driving safety strategy

    Energy Technology Data Exchange (ETDEWEB)

    Herman, B. [BP Canada Energy Company, Calgary, AB (Canada)

    2006-07-01

    This presentation focused on why it is important to drive safely. It addressed driver fatigue as well as BP's global driving standard. The Standard applies to all BP employees and contractors that drive any vehicle on BP business and consists of 10 mandatory elements focusing on safety of the driver, the safety of the journey, and the safety of the vehicle. The driving standards focus on several themes, including skill and competency of the driver, safety of the journey, and safety of the vehicle. Fatigue causes more than 20 per cent of motorway accidents and is the most frequent cause of accidental death of truck drivers. The presentation also discussed vehicle data recorders, driving immersion, and Driving Safety Program results. Journey management, driver training, vehicle inspections and policies, and statistics on vehicle incidents were also provided. The presentation revealed that a lack of pre-trip journey management, inadequate training or recall of training, and not following safe driving practices were major contributors to incident occurrences. It also revealed that traveling on gravel or ice and avoiding wildlife were factors in many vehicle incidents. 1 tab., 1 fig.

  7. Planetary rovers robotic exploration of the solar system

    CERN Document Server

    Ellery, Alex

    2016-01-01

    The increasing adoption of terrain mobility – planetary rovers – for the investigation of planetary surfaces emphasises their central importance in space exploration. This imposes a completely new set of technologies and methodologies to the design of such spacecraft – and planetary rovers are indeed, first and foremost, spacecraft. This introduces vehicle engineering, mechatronics, robotics, artificial intelligence and associated technologies to the spacecraft engineer’s repertoire of skills. Planetary Rovers is the only book that comprehensively covers these aspects of planetary rover engineering and more. The book: • discusses relevant planetary environments to rover missions, stressing the Moon and Mars; • includes a brief survey of previous rover missions; • covers rover mobility, traction and control systems; • stresses the importance of robotic vision in rovers for both navigation and science; • comprehensively covers autonomous navigation, path planning and multi-rover formations on ...

  8. Driving pattern analysis of Nordic region based on the national travel surveys for electric vehicle integration

    DEFF Research Database (Denmark)

    Liu, Zhaoxi; Wu, Qiuwei; Christensen, Linda

    2015-01-01

    to the power system. This paper presents a methodology to transform driving behavior of persons into the one of cars in order to analyze the driving pattern of electric vehicles (EVs) based on the National Travel Surveys. In the proposed methodology, a statistical process is used to obtain the driving behavior......EVs show great potential to cope with the intermittency of renewable energy sources (RES) and provide demand side flexibility required by the smart grid.On the other hand, the EVs will increase the electricity consumption. Large scale integration of EVs will probably have substantial impacts...... of cars by grouping the survey respondents according to the driving license number and car number and mapping the households with similar characteristics. The proposed methodology was used to carry out the driving pattern analysis in the Nordic region. The detailed driving requirements and the charging...

  9. Modelling the Effect of Driving Events on Electrical Vehicle Energy Consumption Using Inertial Sensors in Smartphones

    Directory of Open Access Journals (Sweden)

    David Jiménez

    2018-02-01

    Full Text Available Air pollution and climate change are some of the main problems that humankind is currently facing. The electrification of the transport sector will help to reduce these problems, but one of the major barriers for the massive adoption of electric vehicles is their limited range. The energy consumption in these vehicles is affected, among other variables, by the driving behavior, making range a value that must be personalized to each driver and each type of electric vehicle. In this paper we offer a way to estimate a personalized energy consumption model by the use of the vehicle dynamics and the driving events detected by the use of the smartphone inertial sensors, allowing an easy and non-intrusive manner to predict the correct range for each user. This paper proposes, for the classification of events, a deep neural network (Long-Short Time Memory which has been trained with more than 22,000 car trips, and the application to improve the consumption model taking into account the driver behavior captured across different trips, allowing a personalized prediction. Results and validation in real cases show that errors in the predicted consumption values are halved when abrupt events are considered in the model.

  10. Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicle driving schedules

    International Nuclear Information System (INIS)

    Cardoso, G.; Stadler, M.; Bozchalui, M.C.; Sharma, R.; Marnay, C.; Barbosa-Póvoa, A.; Ferrão, P.

    2014-01-01

    The large scale penetration of electric vehicles (EVs) will introduce technical challenges to the distribution grid, but also carries the potential for vehicle-to-grid services. Namely, if available in large enough numbers, EVs can be used as a distributed energy resource (DER) and their presence can influence optimal DER investment and scheduling decisions in microgrids. In this work, a novel EV fleet aggregator model is introduced in a stochastic formulation of DER-CAM [1], an optimization tool used to address DER investment and scheduling problems. This is used to assess the impact of EV interconnections on optimal DER solutions considering uncertainty in EV driving schedules. Optimization results indicate that EVs can have a significant impact on DER investments, particularly if considering short payback periods. Furthermore, results suggest that uncertainty in driving schedules carries little significance to total energy costs, which is corroborated by results obtained using the stochastic formulation of the problem. - Highlights: • This paper introduces a new EV aggregator model in the DER-CAM model and expands it with a stochastic formulation. • The model is used to analyze the impact of EVs in DER investment decisions in a large office building. • The uncertainty in EV driving patterns is considered through scenarios based on data from a daily commute driving survey. • Results indicate that EVs have a significant impact in optimal DER decisions, particularly when looking at short payback periods. • Furthermore, results indicate that uncertainty in EV driving schedules has little impact on DER investment decisions

  11. A novel multi-drive electric vehicle system control based on multi-input multi-output PID controller

    Directory of Open Access Journals (Sweden)

    Gasbaoui Brahim

    2012-01-01

    Full Text Available In-wheel-motor drive electric vehicle (EV is an innovative configuration of the modern EV, in which each wheel is driven individually by an electric motor. The classical traction motor control called the Independent Machine Control Structure (IMCS using a PID speed controller presents major inconveniences in modern EV safety, when the proposed control can not ensure stability of the EV with differing road topology and variations of speed. A new approach is proposed for a control of a two-in-wheel-motor drive EV, called the Maximum Control Structure MCS. This is based on a multivariable PID (MIMO-PID strategy, which is employed to estimate the linear speed error of each of the two back driving wheels, when the error of each wheel is taken into account in the other speed control computations. Simulation results show that the new control system presents increased safety for the EVs compared with the IMCS strategy and can maintain the error slip rate within the optimal range, ensuring the stability of the vehicle either in a straight or a curved line.

  12. Establishing bonds between vehicle certification data and real-world vehicle fuel consumption – A Vehicle Specific Power approach

    International Nuclear Information System (INIS)

    Duarte, G.O.; Gonçalves, G.A.; Baptista, P.C.; Farias, T.L.

    2015-01-01

    Highlights: • Innovative methodology to estimate VSP fuel consumption based on public available data. • Model validation with accurate fuel consumption results (absolute deviation from 4.7% to 9.2%). • Best-selling vehicles in Portugal case study was developed for different driving cycles. - Abstract: A method to perform the energy characterization of a vehicle according to the specific power required while driving was developed using public vehicle certification data. Using a portable emission measurement system, fuel consumption was quantified in a second-by-second basis under on-road conditions for 19 vehicles (spark-ignition, compression-ignition and hybrids). This data allowed building generic curves of fuel consumption as a function of the specific power, according to Vehicle Specific Power methodology. Comparing on-road measurements and the model estimates, a R 2 higher than 0.9 for conventional and hybrid vehicles was obtained regarding modal fuel consumption. Comparing the fuel consumption measured on the drive cycles performed by each vehicle and the correspondent estimates, an absolute deviation of 9.2% ± 9.2% was found for conventional vehicles and 4.7% ± 1.8% for hybrids vehicles. This methodology was validated and applied to estimate the energy impacts of the best-selling vehicles in Portugal for different driving cycles. This prompt method, that does not require vehicle monitoring, can estimate curves of fuel consumption in g/s, as a function of specific power, which allows quantifying the absolute fuel use for any driving cycle

  13. Plug-in hybrid electric vehicle LiFePO4 battery life implications of thermal management, driving conditions, and regional climate

    Science.gov (United States)

    Yuksel, Tugce; Litster, Shawn; Viswanathan, Venkatasubramanian; Michalek, Jeremy J.

    2017-01-01

    Battery degradation strongly depends on temperature, and many plug-in electric vehicle applications employ thermal management strategies to extend battery life. The effectiveness of thermal management depends on the design of the thermal management system as well as the battery chemistry, cell and pack design, vehicle system characteristics, and operating conditions. We model a plug-in hybrid electric vehicle with an air-cooled battery pack composed of cylindrical LiFePO4/graphite cells and simulate the effect of thermal management, driving conditions, regional climate, and vehicle system design on battery life. We estimate that in the absence of thermal management, aggressive driving can cut battery life by two thirds; a blended gas/electric-operation control strategy can quadruple battery life relative to an all-electric control strategy; larger battery packs can extend life by an order of magnitude relative to small packs used for all-electric operation; and batteries last 73-94% longer in mild-weather San Francisco than in hot Phoenix. Air cooling can increase battery life by a factor of 1.5-6, depending on regional climate and driving patterns. End of life criteria has a substantial effect on battery life estimates.

  14. Analysis of a gas turbine driven hybrid drive system for heavy vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Malmquist, Anders

    1999-07-01

    The goal of this thesis has been to analyze the performance and behavior of a gas turbine driven hybrid drive train. The thesis covers both computer simulations and experimental tests. In two case studies, a number of measurements have been made on gas turbine driven hybrid vehicles that are developed by Volvo and ABB. In the recent years, much effort is currently put into the design and analysis of hybrid drive trains. Many studies involve computer simulations, but they are often made on a general level. This thesis concentrate on gas turbine driven hybrids for heavy vehicles, a field that has previously not been covered to a large extent in academic studies. A major contribution to the field of hybrid drive train design is the development of detailed simulation models that have a close connection to hybrids that are actually built and tested. The access to detailed gas turbine data has further enhanced the possibility to design a dynamic model of the gas turbine driven and the electric circuits. The combination of simulations and extensive field experience gains new knowledge on the properties of gas turbines in hybrid drive trains. Two simulation models have been developed in Matlab and Simulink. One is a quasi-steady state model that can be used for drive cycle simulations, e.g. a complete bus line. The other is a transient model that combines the thermodynamic properties of the gas turbine, the mechanical properties of the combined turbine-generator shaft, the electric power circuit and the control system. The transient model has been used to simulate the power response during accelerations and retardation. An analysis of the internal energy flows and the system efficiency of a hybrid drive train contributes to the understanding of the properties of series hybrid drive trains. An important part of the topology is that the system is based on a DC/DC-converter that is connected between the battery and the DC-bus. It controls the DC-bus voltage and by this

  15. Older driver estimates of driving exposure compared to in-vehicle data in the Candrive II study.

    Science.gov (United States)

    Porter, Michelle M; Smith, Glenys A; Cull, Andrew W; Myers, Anita M; Bédard, Michel; Gélinas, Isabelle; Mazer, Barbara L; Marshall, Shawn C; Naglie, Gary; Rapoport, Mark J; Tuokko, Holly A; Vrkljan, Brenda H

    2015-01-01

    Most studies on older adults' driving practices have relied on self-reported information. With technological advances it is now possible to objectively measure the everyday driving of older adults in their own vehicles over time. The purpose of this study was to examine the ability of older drivers to accurately estimate their kilometers driven over one year relative to objectively measured driving exposure. A subsample (n = 159 of 928; 50.9% male) of Candrive II participants (age ≥ 70 years of age) was used in these analyses based on strict criteria for data collected from questionnaires as well as an OttoView-CD Autonomous Data Logging Device installed in their vehicle, over the first year of the prospective cohort study. Although there was no significant difference overall between the self-reported and objectively measured distance categories, only moderate agreement was found (weighted kappa = 0.57; 95% confidence interval, 0.47-0.67). Almost half (45.3%) chose the wrong distance category, and some people misestimated their distance driven by up to 20,000 km. Those who misjudged in the low mileage group (≤5000 km) consistently underestimated, whereas the reverse was found for those in the high distance categories (≥ 20,000); that is, they always overestimated their driving distance. Although self-reported driving distance categories may be adequate for studies entailing broad group comparisons, caution should be used in interpreting results. Use of self-reported estimates for individual assessments should be discouraged.

  16. A method for measuring particle number emissions from vehicles driving on the road.

    Science.gov (United States)

    Shi, J P; Harrison, R M; Evans, D E; Alam, A; Barnes, C; Carter, G

    2002-01-01

    Earlier research has demonstrated that the conditions of dilution of engine exhaust gases profoundly influence the size distribution and total number of particles emitted. Since real world dilution conditions are variable and therefore difficult to simulate, this research has sought to develop and validate a method for measuring particle number emissions from vehicles driving past on a road. This has been achieved successfully using carbon dioxide as a tracer of exhaust gas dilution. By subsequent adjustment of data to a constant dilution factor, it is possible to compare emissions from different vehicles using different technologies and fuels based upon real world emission data. Whilst further optimisation of the technique, especially in terms of matching the instrument response times is desirable, the measurements offer useful insights into emissions from gasoline and diesel vehicles, and the substantial proportion of particles emitted in the 3-7 nanometre size range.

  17. Time-dependent plug-in hybrid electric vehicle charging based on national driving patterns and demographics

    International Nuclear Information System (INIS)

    Kelly, Jarod C.; MacDonald, Jason S.; Keoleian, Gregory A.

    2012-01-01

    Highlights: ► Analyzed National Household Travel Survey to simulate driving and charging patterns. ► Average compact PHEVs used 49 kW h of electricity and 6.8 L of gasoline per week. ► Percent of electrically driven miles increased from 64.3 in 2001 to 66.7 in 2009. ► Investigated demographic effects of sex, age, income, and household location. ► Analysis shows higher utility factors for females versus males and high age variation. -- Abstract: Plug-in hybrid electric vehicles (PHEVs) are one promising technology for addressing concerns around petroleum consumption, energy security and greenhouse gas emissions. However, there is much uncertainty in the impact that PHEVs can have on energy consumption and related emissions, as they are dependent on vehicle technology, driving patterns, and charging behavior. A methodology is used to simulate PHEV charging and gasoline consumption based on driving pattern data in USDOT’s National Household Travel Survey. The method uses information from each trip taken by approximately 170,000 vehicles to track their battery state of charge throughout the day, and to determine the timing and quantity of electricity and gasoline consumption for a fleet of PHEVs. Scenarios were developed to examine the effects of charging location, charging rate, time of charging and battery size. Additionally, demographic information was examined to see how driver and household characteristics influence consumption patterns. Results showed that a compact vehicle with a 10.4 kW h useable battery (approximately a 42 mile [68 km] all electric range) travels between 62.5% and 75.7% on battery electricity, depending on charging scenario. The percent of travel driven electrically (Utility Factor, UF) in a baseline charging scenario increased from 64.3% using 2001 NHTS data to 66.7% using 2009 data. The average UF was 63.5% for males and 72.9% for females and in both cases they are highly sensitive to age. Vehicle charging load profiles across

  18. Frequency and time domain characteristics of digital control of electric vehicle in-wheel drives

    Directory of Open Access Journals (Sweden)

    Jarzebowicz Leszek

    2017-12-01

    Full Text Available In-wheel electric drives are promising as actuators in active safety systems of electric and hybrid vehicles. This new function requires dedicated control algorithms, making it essential to deliver models that reflect better the wheel-torque control dynamics of electric drives. The timing of digital control events, whose importance is stressed in current research, still lacks an analytical description allowing for modeling its influence on control system dynamics. In this paper, authors investigate and compare approaches to the analog and discrete analytical modeling of torque control loop in digitally controlled electric drive. Five different analytical models of stator current torque component control are compared to judge their accuracy in representing drive control dynamics related to the timing of digital control events. The Bode characteristics and stepresponse characteristics of the analytical models are then compared with those of a reference model for three commonly used cases of motor discrete control schemes. Finally, the applicability of the presented models is discussed.

  19. Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Goncalo [Technical Univ. of Lisbon (Portugal); Stadler, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Center for Energy and Innovation Technologies (Austria); Bozchalui, Mohammed C. [NEC Laboratories American Inc., Irving, TX (United States); Sharma, Ratnesh [NEC Laboratories American Inc., Irving, TX (United States); Marnay, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbosa-Povoa, Ana [Technical Univ. of Lisbon (Portugal); Ferrao, Paulo [Technical Univ. of Lisbon (Portugal)

    2013-12-06

    The large scale penetration of electric vehicles (EVs) will introduce technical challenges to the distribution grid, but also carries the potential for vehicle-to-grid services. Namely, if available in large enough numbers, EVs can be used as a distributed energy resource (DER) and their presence can influence optimal DER investment and scheduling decisions in microgrids. In this work, a novel EV fleet aggregator model is introduced in a stochastic formulation of DER-CAM [1], an optimization tool used to address DER investment and scheduling problems. This is used to assess the impact of EV interconnections on optimal DER solutions considering uncertainty in EV driving schedules. Optimization results indicate that EVs can have a significant impact on DER investments, particularly if considering short payback periods. Furthermore, results suggest that uncertainty in driving schedules carries little significance to total energy costs, which is corroborated by results obtained using the stochastic formulation of the problem.

  20. Evaluation of an in-vehicle monitoring system (IVMS) to reduce risky driving behaviors in commercial drivers: Comparison of in-cab warning lights and supervisory coaching with videos of driving behavior.

    Science.gov (United States)

    Bell, Jennifer L; Taylor, Matthew A; Chen, Guang-Xiang; Kirk, Rachel D; Leatherman, Erin R

    2017-02-01

    Roadway incidents are the leading cause of work-related death in the United States. The objective of this research was to evaluate whether two types of feedback from a commercially available in-vehicle monitoring system (IVMS) would reduce the incidence of risky driving behaviors in drivers from two companies. IVMS were installed in 315 vehicles representing the industries of local truck transportation and oil and gas support operations, and data were collected over an approximate two-year period in intervention and control groups. In one period, intervention group drivers were given feedback from in-cab warning lights from an IVMS that indicated occurrence of harsh vehicle maneuvers. In another period, intervention group drivers viewed video recordings of their risky driving behaviors with supervisors, and were coached by supervisors on safe driving practices. Risky driving behaviors declined significantly more during the period with coaching plus instant feedback with lights in comparison to the period with lights-only feedback (ORadj=0.61 95% CI 0.43-0.86; Holm-adjusted p=0.035) and the control group (ORadj=0.52 95% CI 0.33-0.82; Holm-adjusted p=0.032). Lights-only feedback was not found to be significantly different than the control group's decline from baseline (ORadj=0.86 95% CI 0.51-1.43; Holm-adjusted p>0.05). The largest decline in the rate of risky driving behaviors occurred when feedback included both supervisory coaching and lights. Supervisory coaching is an effective form of feedback to improve driving habits in the workplace. The potential advantages and limitations of this IVMS-based intervention program are discussed. Published by Elsevier Ltd.

  1. Development and Evaluation of an Economic-Driving Assistance Program for Transit Vehicles

    OpenAIRE

    Baoxin Han; Wanjing Ma; Hanzhou Xie

    2012-01-01

    This paper focuses on development and evaluation of an economic-driving assistance program for transit vehicles (EDTV) which can minimize energy consumption, air pollution emission of buses, and improve the level of service of transit system as well. Taking advantage of the latest advances in information and communication technologies, the EDTV system can provide bus drivers with optimal recommended bus holding times at near-side bus stops and dynamic bus speed to adapt to the real-time traff...

  2. Effect of audio in-vehicle red light-running warning message on driving behavior based on a driving simulator experiment.

    Science.gov (United States)

    Yan, Xuedong; Liu, Yang; Xu, Yongcun

    2015-01-01

    Drivers' incorrect decisions of crossing signalized intersections at the onset of the yellow change may lead to red light running (RLR), and RLR crashes result in substantial numbers of severe injuries and property damage. In recent years, some Intelligent Transport System (ITS) concepts have focused on reducing RLR by alerting drivers that they are about to violate the signal. The objective of this study is to conduct an experimental investigation on the effectiveness of the red light violation warning system using a voice message. In this study, the prototype concept of the RLR audio warning system was modeled and tested in a high-fidelity driving simulator. According to the concept, when a vehicle is approaching an intersection at the onset of yellow and the time to the intersection is longer than the yellow interval, the in-vehicle warning system can activate the following audio message "The red light is impending. Please decelerate!" The intent of the warning design is to encourage drivers who cannot clear an intersection during the yellow change interval to stop at the intersection. The experimental results showed that the warning message could decrease red light running violations by 84.3 percent. Based on the logistic regression analyses, drivers without a warning were about 86 times more likely to make go decisions at the onset of yellow and about 15 times more likely to run red lights than those with a warning. Additionally, it was found that the audio warning message could significantly reduce RLR severity because the RLR drivers' red-entry times without a warning were longer than those with a warning. This driving simulator study showed a promising effect of the audio in-vehicle warning message on reducing RLR violations and crashes. It is worthwhile to further develop the proposed technology in field applications.

  3. Energy Balance Models and Planetary Dynamics

    Science.gov (United States)

    Domagal-Goldman, Shawn

    2012-01-01

    We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.

  4. Is vehicle automation enough to prevent crashes? Role of traffic operations in automated driving environments for traffic safety.

    Science.gov (United States)

    Jeong, Eunbi; Oh, Cheol; Lee, Seolyoung

    2017-07-01

    Automated driving systems (ADSs) are expected to prevent traffic accidents caused by driver carelessness on freeways. There is no doubt regarding this safety benefit if all vehicles in the transportation system were equipped with ADSs; however, it is implausible to expect that ADSs will reach 100% market penetration rate (MPR) in the near future. Therefore, the following question arises: 'Can ADSs, which consider only situations in the vicinity of an equipped vehicle, really contribute to a significant reduction in traffic accidents?' To address this issue, the interactions between equipped and unequipped vehicles must be investigated, which is the purpose of this study. This study evaluated traffic safety at different MPRs based on a proposed index to represent the overall rear-end crash risk of the traffic stream. Two approaches were evaluated for adjusting longitudinal vehicle maneuvers: vehicle safety-based maneuvering (VSM), which considers the crash risk of an equipped vehicle and its neighboring vehicles, and traffic safety-based maneuvering (TSM), which considers the overall crash risk in the traffic stream. TSM assumes that traffic operational agencies are able to monitor all the vehicles and to intervene in vehicle maneuvering. An optimization process, which attempts to obtain vehicle maneuvering control parameters to minimize the overall crash risk, is integrated into the proposed evaluation framework. The main purpose of employing the optimization process for vehicle maneuvering in this study is to identify opportunities to improve traffic safety through effective traffic management rather than developing a vehicle control algorithm that can be implemented in practice. The microscopic traffic simulator VISSIM was used to simulate the freeway traffic stream and to conduct systematic evaluations based on the proposed methodology. Both TSM and VSM achieved significant reductions in the potential for rear-end crashes. However, TSM obtained much greater

  5. Driving towards obesity: a systematized literature review on the association between motor vehicle travel time and distance and weight status in adults.

    Science.gov (United States)

    McCormack, Gavin R; Virk, Jagdeep S

    2014-09-01

    Higher levels of sedentary behavior are associated with adverse health outcomes. Over-reliance on private motor vehicles for transportation is a potential contributor to the obesity epidemic. The objective of this study was to review evidence on the relationship between motor vehicle travel distance and time and weight status among adults. Keywords associated with driving and weight status were entered into four databases (PubMed Medline Transportation Research Information Database and Web of Science) and retrieved article titles and abstracts screened for relevance. Relevant articles were assessed for their eligibility for inclusion in the review (English-language articles a sample ≥ 16 years of age included a measure of time or distance traveling in a motor vehicle and weight status and estimated the association between driving and weight status). The database search yielded 2781 articles, from which 88 were deemed relevant and 10 studies met the inclusion criteria. Of the 10 studies included in the review, 8 found a statistically significant positive association between time and distance traveled in a motor vehicle and weight status. Multilevel interventions that make alternatives to driving private motor vehicles more convenient, such as walking and cycling, are needed to promote healthy weight in the adult population. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Non-isolated integrated motor drive and battery charger based on the split-phase PM motor for plug-in vehicles

    OpenAIRE

    Serrano Guillén, Isabel; Bermejo Fernández, Álvaro

    2013-01-01

    In electric vehicles and plug-in hybrid electric vehicles, the utility grid charges the vehicle battery through a battery charger. Different solutions have been proposed to reduce the size and cost of the charger. One solution to achieve this is to include the devices used in the traction circuit in the charger circuit; this is called an integrated motor drive and battery charger. A split-phase PM motor, a motor with double set of windings, gives the opportunity to implement different wind...

  7. Seat-belt wearing and driving behavior: an instrumented-vehicle study.

    Science.gov (United States)

    Janssen, W

    1994-04-01

    Less-than-expected fatality reductions after seat-belt legislation has been introduced in a jurisdiction may be explained in terms of selective recruitment of parts of the driving population and/or behavioral adaptation by beginning belt users. The present investigation has compared the relative merits of these two hypotheses at the level of individual driver behavior. In the initial study the driving behavior of groups of habitual wearers and nonwearers of the belt was compared. Nonwearers made two trips, one with the belt on and one without the belt. Habitual wearers drove belted only. The main part of the experiment was a 105 km freeway route. Two additional tasks of a somewhat more critical nature, a double lane-change manoeuvre and the performance of a braking manoeuvre in front of a fixed obstacle, were performed after the freeway trips. Factor analysis on 39 variables describing driving behavior on the road and during the additional tasks resulted in five factors. One of these, the factor describing the distribution of driving speed on the freeway, differentiated between nonwearers and wearers (thus yielding support for the selective recruitment hypothesis) as well as between wearing and not wearing the belt by the same drivers (thus yielding support for the behavioral adaptation hypothesis). In the follow-up study the original wearers and nonwearers were assigned to one of four experimental treatments: (i) the promise by the experimenter of a considerable incentive for not having a culpable motor vehicle accident over a period of a year. Half the habitual wearer subjects were assigned to this condition. The expectation was that this group would become more careful in their driving; (ii) a control group, consisting of the remaining habitual wearers; (iii) the agreement between the experimenter and the subject that the latter would buckle up in everyday driving for the year to come--half the habitual nonwearer subjects were assigned to this condition; (iv) a

  8. Electric and Conventional Vehicle Driving Patterns

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Andersen, Ove; Torp, Kristian

    2014-01-01

    The electric vehicle (EV) is an interesting vehicle type that can reduce the dependence on fossil fuels, e.g., by using electricity from wind turbines. A significant disadvantage of EVs is a very limited range, typically less than 200 km. This paper compares EVs to conventional vehicles (CVs...

  9. Powertrain Matching and Optimization of Dual-Motor Hybrid Driving System for Electric Vehicle Based on Quantum Genetic Intelligent Algorithm

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2014-01-01

    Full Text Available In order to increase the driving range and improve the overall performance of all-electric vehicles, a new dual-motor hybrid driving system with two power sources was proposed. This system achieved torque-speed coupling between the two power sources and greatly improved the high performance working range of the motors; at the same time, continuously variable transmission (CVT was achieved to efficiently increase the driving range. The power system parameters were determined using the “global optimization method”; thus, the vehicle’s dynamics and economy were used as the optimization indexes. Based on preliminary matches, quantum genetic algorithm was introduced to optimize the matching in the dual-motor hybrid power system. Backward simulation was performed on the combined simulation platform of Matlab/Simulink and AVL-Cruise to optimize, simulate, and verify the system parameters of the transmission system. Results showed that quantum genetic algorithms exhibited good global optimization capability and convergence in dealing with multiobjective and multiparameter optimization. The dual-motor hybrid-driving system for electric cars satisfied the dynamic performance and economy requirements of design, efficiently increasing the driving range of the car, having high performance, and reducing energy consumption of 15.6% compared with the conventional electric vehicle with single-speed reducers.

  10. Driving through the Great Recession: Why does motor vehicle fatality decrease when the economy slows down?

    Science.gov (United States)

    He, Monica M

    2016-04-01

    The relationship between short-term macroeconomic growth and temporary mortality increases remains strongest for motor vehicle (MV) crashes. In this paper, I investigate the mechanisms that explain falling MV fatality rates during the recent Great Recession. Using U.S. state-level panel data from 2003 to 2013, I first estimate the relationship between unemployment and MV fatality rate and then decompose it into risk and exposure factors for different types of MV crashes. Results reveal a significant 2.9 percent decrease in MV fatality rate for each percentage point increase in unemployment rate. This relationship is almost entirely explained by changes in the risk of driving rather than exposure to the amount of driving and is particularly robust for crashes involving large commercial trucks, multiple vehicles, and speeding cars. These findings provide evidence suggesting traffic patterns directly related to economic activity lead to higher risk of MV fatality rates when the economy improves. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Toyota hybrid synergy drive

    Energy Technology Data Exchange (ETDEWEB)

    Gautschi, H.

    2008-07-01

    This presentation made at the Swiss 2008 research conference on traffic by Hannes Gautschi, director of service and training at the Toyota company in Switzerland, takes a look at Toyota's hybrid drive vehicles. The construction of the vehicles and their combined combustion engines and electric generators and drives is presented and the combined operation of these components is described. Braking and energy recovery are discussed. Figures on the performance, fuel consumption and CO{sub 2} output of the hybrid vehicles are compared with those of conventional vehicles.

  12. DRIVING VEHICLES SUBJECT TO A CUSTOMS RESTRICTIONS AGREEMENT WITH ORDINARY SWISS NUMBER PLATES

    CERN Document Server

    Relations with the Host States Service

    2001-01-01

    The Swiss Permanent Mission to the International Organisations in Geneva has just confirmed to CERN that it is not necessary to hold a carte de légitimation or an attestation de fonctions issued by the Swiss Federal Department of Foreign Affairs to drive a vehicle subject to a customs restrictions agreement (engagement douanier), i.e. purchased or imported free of tax and customs duty, provided that the vehicle concerned is registered on ordinary Swiss number plates and not on diplomatic plates. We should like to remind you that the documents published by the Relations with the Host States Service since 1996 can be consulted on the Service's Web pages (http://www.cern.ch/relations/), which are updated as soon as new information is received from the Authorities of the Host States.

  13. Mobility potential of a robotic six-wheeled omnidirectional drive vehicle (ODV) with z-axis and tire inflation control

    Science.gov (United States)

    Witus, Gary

    2000-07-01

    Robot vehicle mobility is the product of the physical configuration, mechatronics (sensors, actuators, and control) and the motion programs for different obstacles, terrain conditions, and maneuver objectives. This paper examines the mobility potential of a robotic 6-by-6 wheeled omni-directional drive vehicle (ODV) with z-axis and tire inflation control. Ad ODV can steer and drive all wheels independently. The direction of motion is independent of the orientation of the body. Z- axis control refers to independent control of the suspension elevation at each wheel. Pneumatic tire inflation control provides the ability to inflate and deflate individual tires. The paper describes motion programs for various discrete obstacles and challenging terrain conditions. The paper illustrates how ODV control, z-axis control and tire inflation control interact to provide high mobility with respect to cornering, maneuvering on slopes, negotiating vertical step and horizontal gap obstacles, and braking/acceleration on soft soil and slick surfaces. The paper derives guidelines for the physical dimensions of the vehicle needed to achieve these capabilities.

  14. Method for modeling driving cycles, fuel use, and emissions for over snow vehicles.

    Science.gov (United States)

    Hu, Jiangchuan; Frey, H Christopher; Sandhu, Gurdas S; Graver, Brandon M; Bishop, Gary A; Schuchmann, Brent G; Ray, John D

    2014-07-15

    As input to a winter use plan, activity, fuel use, and tailpipe exhaust emissions of over snow vehicles (OSV), including five snow coaches and one snowmobile, were measured on a designated route in Yellowstone National Park (YNP). Engine load was quantified in terms of vehicle specific power (VSP), which is a function of speed, acceleration, and road grade. Compared to highway vehicles, VSP for OSVs is more sensitive to rolling resistance and less sensitive to aerodynamic drag. Fuel use rates increased linearly (R2>0.96) with VSP. For gasoline-fueled OSVs, fuel-based emission rates of carbon monoxide (CO) and nitrogen oxides (NOx) typically increased with increasing fuel use rate, with some cases of very high CO emissions. For the diesel OSVs, which had selective catalytic reduction and diesel particulate filters, fuel-based NOx and particulate matter (PM) emission rates were not sensitive to fuel flow rate, and the emission controls were effective. Inter vehicle variability in cycle average fuel use and emissions rates for CO and NOx was substantial. However, there was relatively little inter-cycle variation in cycle average fuel use and emission rates when comparing driving cycles. Recommendations are made regarding how real-world OSV activity, fuel use, and emissions data can be improved.

  15. Hybrid platform. Economical hybrid drive for commercial vehicles; Hybrid Plattform. Wirtschaftlicher Hybridantrieb fuer Nutzfahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Wallner, S.; Lamke, M.; Mohr, M.; Sedlacek, M.; Speck, F.D. [ZF Friedrichshafen AG, Friedrichshafen (Germany)

    2011-07-01

    Up to now, hybrid systems have been adapted to their specific requirements in the various applications for trucks, buses as well as mobile and building machines. From a technical point of view, this does indeed result in optimized hybrid drives for each single vehicle application, but due to small volumes, such single developments are critical from a business point of view. ZF Friedrichshafen AG is providing a solution to the technical and economical requirements of the cost-sensitive CV segment in the form of a modular CV parallel hybrid platform composed of a hybrid module system, an inverter, a battery system, and a hybrid software integrated into the overall vehicle. Thanks to the intelligent combination of assemblies and the use of as many identical parts as possible, platforms are realized which cover power ranges between 60 and 120 kW, voltage ranges between 350 and 650 V, and battery capacities between 2 and 4 kWh. The dimensions of the platform elements are such that integration into the diverse commercial vehicle applications is made easy. The hybrid software required for the vehicle-specific functions is also configurable for the mentioned CV applications. (orig.)

  16. Smart Rotorcraft Field Assistants for Terrestrial and Planetary Science

    Science.gov (United States)

    Young, Larry A.; Aiken, Edwin W.; Briggs, Geoffrey A.

    2004-01-01

    Field science in extreme terrestrial environments is often difficult and sometimes dangerous. Field seasons are also often short in duration. Robotic field assistants, particularly small highly mobile rotary-wing platforms, have the potential to significantly augment a field season's scientific return on investment for geology and astrobiology researchers by providing an entirely new suite of sophisticated field tools. Robotic rotorcraft and other vertical lift planetary aerial vehicle also hold promise for supporting planetary science missions.

  17. Real-world effects of using a phone while driving on lateral and longitudinal control of vehicles.

    Science.gov (United States)

    Dozza, Marco; Flannagan, Carol A C; Sayer, James R

    2015-12-01

    Technologies able to augment human communication, such as smartphones, are increasingly present during all daily activities. Their use while driving, in particular, is of great potential concern, because of the high risk that distraction poses during this activity. Current countermeasures to distraction from phone use are considerably different across countries and not always widely accepted/adopted by the drivers. This study utilized naturalistic driving data collected from 108 drivers in the Integrated Vehicle-Based Safety Systems (IVBSS) program in 2009 and 2010 to assess the extent to which using a phone changes lateral or longitudinal control of a vehicle. The IVBSS study included drivers from three age groups: 20–30 (younger), 40–50 (middle-aged), and 60–70 (older). Results from this study show that younger drivers are more likely to use a phone while driving than older and middle-aged drivers. Furthermore, younger drivers exhibited smaller safety margins while using a phone. Nevertheless, younger drivers did not experience more severe lateral/longitudinal threats than older and middle-aged drivers, probably because of faster reaction times. While manipulating the phone (i.e., dialing, texting), drivers exhibited larger lateral safety margins and experienced less severe lateral threats than while conversing on the phone. Finally, longitudinal threats were more critical soon after phone interaction, suggesting that drivers terminate phone interactions when driving becomes more demanding. These findings suggest that drivers are aware of the potential negative effect of phone use on their safety. This awareness guides their decision to engage/disengage in phone use and to increase safety margins (self-regulation). This compensatory behavior may be a natural countermeasure to distraction that is hard to measure in controlled studies. Practical Applications: Intelligent systems able to amplify this natural compensatory behavior may become a widely accepted

  18. Co-Design Based Lateral Motion Control of All-Wheel-Independent-Drive Electric Vehicles with Network Congestion

    Directory of Open Access Journals (Sweden)

    Wanke Cao

    2017-10-01

    Full Text Available All-wheel-independent-drive electric vehicles (AWID-EVs have considerable advantages in terms of energy optimization, drivability and driving safety due to the remarkable actuation flexibility of electric motors. However, in their current implementations, various real-time data in the vehicle control system are exchanged via a controller area network (CAN, which causes network congestion and network-induced delays. These problems could lead to systemic instability and make the system integration difficult. The goal of this paper is to provide a design methodology that can cope with all these challenges for the lateral motion control of AWID-EVs. Firstly, a continuous-time model of an AWID-EV is derived. Then an expression for determining upper and lower bounds on the delays caused by CAN is presented and with which a discrete-time model of the closed-loop CAN system is derived. An expression on the bandwidth utilization is introduced as well. Thirdly, a co-design based scheme combining a period-dependent linear quadratic regulator (LQR and a dynamic period scheduler is designed for the resulting model and the stability criterion is also derived. The results of simulations and hard-in-loop (HIL experiments show that the proposed methodology can effectively guarantee the stability of the vehicle lateral motion control while obviously declining the network congestion.

  19. Driving Style Analysis Using Primitive Driving Patterns With Bayesian Nonparametric Approaches

    OpenAIRE

    Wang, Wenshuo; Xi, Junqiang; Zhao, Ding

    2017-01-01

    Analysis and recognition of driving styles are profoundly important to intelligent transportation and vehicle calibration. This paper presents a novel driving style analysis framework using the primitive driving patterns learned from naturalistic driving data. In order to achieve this, first, a Bayesian nonparametric learning method based on a hidden semi-Markov model (HSMM) is introduced to extract primitive driving patterns from time series driving data without prior knowledge of the number...

  20. Dempster Shafer Sensor Fusion for Autonomously Driving Vehicles : Association Free Tracking of Dynamic Objects

    OpenAIRE

    Högger, Andreas

    2016-01-01

    Autonomous driving vehicles introduce challenging research areas combining differ-ent disciplines. One challenge is the detection of obstacles with different sensors and the combination of information to generate a comprehensive representation of the environment, which can be used for path planning and decision making.The sensor fusion is demonstrated using two Velodyne multi beam laser scanners, but it is possible to extend the proposed sensor fusion framework for different sensor types. Sensor...

  1. DrivingSense: Dangerous Driving Behavior Identification Based on Smartphone Autocalibration

    Directory of Open Access Journals (Sweden)

    Chunmei Ma

    2017-01-01

    Full Text Available Since pervasive smartphones own advanced computing capability and are equipped with various sensors, they have been used for dangerous driving behaviors detection, such as drunk driving. However, sensory data gathered by smartphones are noisy, which results in inaccurate driving behaviors estimations. Some existing works try to filter noise from sensor readings, but usually only the outlier data are filtered. The noises caused by hardware of the smartphone cannot be removed from the sensor reading. In this paper, we propose DrivingSense, a reliable dangerous driving behavior identification scheme based on smartphone autocalibration. We first theoretically analyze the impact of the sensor error on the vehicle driving behavior estimation. Then, we propose a smartphone autocalibration algorithm based on sensor noise distribution determination when a vehicle is being driven. DrivingSense leverages the corrected sensor parameters to identify three kinds of dangerous behaviors: speeding, irregular driving direction change, and abnormal speed control. We evaluate the effectiveness of our scheme under realistic environments. The results show that DrivingSense, on average, is able to detect the driving direction change event and abnormal speed control event with 93.95% precision and 90.54% recall, respectively. In addition, the speed estimation error is less than 2.1 m/s, which is an acceptable range.

  2. Concepts for Multi-Speed Rotorcraft Drive System - Status of Design and Testing at NASA GRC

    Science.gov (United States)

    Stevens, Mark A.; Lewicki, David G.; Handschuh, Robert F.

    2015-01-01

    In several studies and on-going developments for advanced rotorcraft, the need for variable/multi-speed capable rotors has been raised. Speed changes of up to 50 percent have been proposed for future rotorcraft to improve vehicle performance. A rotor speed change during operation not only requires a rotor that can perform effectively over the operating speed/load range, but also requires a propulsion system possessing these same capabilities. A study was completed investigating possible drive system arrangements that can accommodate up to a 50 percent speed change. Key drivers were identified from which simplicity and weight were judged as central. This paper presents the current status of two gear train concepts coupled with the first of two clutch types developed and tested thus far with focus on design lessons learned and areas requiring development. Also, a third concept is presented, a dual input planetary differential as leveraged from a simple planetary with fixed carrier.

  3. Variability in operation-based NO(x) emission factors with different test routes, and its effects on the real-driving emissions of light diesel vehicles.

    Science.gov (United States)

    Lee, Taewoo; Park, Junhong; Kwon, Sangil; Lee, Jongtae; Kim, Jeongsoo

    2013-09-01

    The objective of this study is to quantify the differences in NO(x) emissions between standard and non-standard driving and vehicle operating conditions, and to estimate by how much NO(x) emissions exceed the legislative emission limits under typical Korean road traffic conditions. Twelve Euro 3-5 light-duty diesel vehicles (LDDVs) manufactured in Korea were driven on a chassis dynamometer over the standard New European Driving Cycle (NEDC) and a representative Korean on-road driving cycle (KDC). NO(x) emissions, average speeds and accelerations were calculated for each 1-km trip segment, so called averaging windows. The results suggest that the NO(x) emissions of the tested vehicles are more susceptible to variations in the driving cycles than to those in the operating conditions. Even under comparable operating conditions, the NO(x) control capabilities of vehicles differ from each other, i.e., NO(x) control is weaker for the KDC than for the NEDC. The NO(x) emissions over the KDC for given vehicle operating conditions exceed those over the NEDC by more than a factor of 8. Consequently, on-road NO(x) emission factors are estimated here to exceed the Euro 5 emission limit by up to a factor of 8, 4 and 3 for typical Korean urban, rural, and motorway road traffic conditions, respectively. Our findings support the development of technical regulations for supplementary real-world emission tests for emission certification and the corresponding research actions taken by automotive industries. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. An analysis of driving and working hour on commercial motor vehicle driver safety using naturalistic data collection.

    Science.gov (United States)

    Soccolich, Susan A; Blanco, Myra; Hanowski, Richard J; Olson, Rebecca L; Morgan, Justin F; Guo, Feng; Wu, Shih-Ching

    2013-09-01

    Current hours-of-service (HOS) regulations prescribe limits to commercial motor vehicle (CMV) drivers' operating hours. By using naturalistic-data-collection, researchers were able to assess activities performed in the 14-h workday and the relationship between safety-critical events (SCEs) and driving hours, work hours, and breaks. The data used in the analyses were collected in the Naturalistic Truck Driving Study and included 97 drivers and about 735,000 miles of continuous driving data. An assessment of the drivers' workday determined that, on average, drivers spent 66% of their shift driving, 23% in non-driving work, and 11% resting. Analyses evaluating the relationship between driving hours (i.e., driving only) and SCE risk found a time-on-task effect across hours, with no significant difference in safety outcomes between 11th driving hour and driving hours 8, 9 or 10. Analyses on work hours (i.e., driving in addition to non-driving work) found that risk of being involved in an SCE generally increased as work hours increased. This suggests that time-on-task effects may not be related to driving hours alone, but implies an interaction between driving hours and work hours: if a driver begins the day with several hours of non-driving work, followed by driving that goes deep into the 14-h workday, SCE risk was found to increase. Breaks from driving were found to be beneficial in reducing SCEs (during 1-h window after a break) and were effective in counteracting the negative effects of time-on-task. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Physics of automated driving in framework of three-phase traffic theory.

    Science.gov (United States)

    Kerner, Boris S

    2018-04-01

    We have revealed physical features of automated driving in the framework of the three-phase traffic theory for which there is no fixed time headway to the preceding vehicle. A comparison with the classical model approach to automated driving for which an automated driving vehicle tries to reach a fixed (desired or "optimal") time headway to the preceding vehicle has been made. It turns out that automated driving in the framework of the three-phase traffic theory can exhibit the following advantages in comparison with the classical model of automated driving: (i) The absence of string instability. (ii) Considerably smaller speed disturbances at road bottlenecks. (iii) Automated driving vehicles based on the three-phase theory can decrease the probability of traffic breakdown at the bottleneck in mixed traffic flow consisting of human driving and automated driving vehicles; on the contrary, even a single automated driving vehicle based on the classical approach can provoke traffic breakdown at the bottleneck in mixed traffic flow.

  6. Physics of automated driving in framework of three-phase traffic theory

    Science.gov (United States)

    Kerner, Boris S.

    2018-04-01

    We have revealed physical features of automated driving in the framework of the three-phase traffic theory for which there is no fixed time headway to the preceding vehicle. A comparison with the classical model approach to automated driving for which an automated driving vehicle tries to reach a fixed (desired or "optimal") time headway to the preceding vehicle has been made. It turns out that automated driving in the framework of the three-phase traffic theory can exhibit the following advantages in comparison with the classical model of automated driving: (i) The absence of string instability. (ii) Considerably smaller speed disturbances at road bottlenecks. (iii) Automated driving vehicles based on the three-phase theory can decrease the probability of traffic breakdown at the bottleneck in mixed traffic flow consisting of human driving and automated driving vehicles; on the contrary, even a single automated driving vehicle based on the classical approach can provoke traffic breakdown at the bottleneck in mixed traffic flow.

  7. Elasticity of Vehicle Miles of Travel to Changes in the Price of Gasoline and the Cost of Driving in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Tom P.; Fujita, K. Sydny

    2018-03-28

    This report examines the sensitivity of annual vehicle miles of travel (VMT) of light-duty vehicles to the price of gasoline, commonly referred to as the elasticity of demand for VMT to the price of gasoline; the fuel-economy-related rebound effect is generally assumed to be of the same magnitude as the VMT elasticity of gas price or driving cost. We use detailed odometer readings from over 30 million vehicles in four urban areas of Texas, over a six-year period. We account for economic conditions over this period, as well as vehicle age. Following the literature we include fixed effects by vehicle make and individual vehicle, as well as the effect of adding an instrument to predict monthly gasoline price independent of any influences of demand for gasoline on its price.

  8. The effect of touch-key size on the usability of In-Vehicle Information Systems and driving safety during simulated driving.

    Science.gov (United States)

    Kim, Heejin; Kwon, Sunghyuk; Heo, Jiyoon; Lee, Hojin; Chung, Min K

    2014-05-01

    Investigating the effect of touch-key size on usability of In-Vehicle Information Systems (IVISs) is one of the most important research issues since it is closely related to safety issues besides its usability. This study investigated the effects of the touch-key size of IVISs with respect to safety issues (the standard deviation of lane position, the speed variation, the total glance time, the mean glance time, the mean time between glances, and the mean number of glances) and the usability of IVISs (the task completion time, error rate, subjective preference, and NASA-TLX) through a driving simulation. A total of 30 drivers participated in the task of entering 5-digit numbers with various touch-key sizes while performing simulated driving. The size of the touch-key was 7.5 mm, 12.5 mm, 17.5 mm, 22.5 mm and 27.5 mm, and the speed of driving was set to 0 km/h (stationary state), 50 km/h and 100 km/h. As a result, both the driving safety and the usability of the IVISs increased as the touch-key size increased up to a certain size (17.5 mm in this study), at which they reached asymptotes. We performed Fitts' law analysis of our data, and this revealed that the data from the dual task experiment did not follow Fitts' law. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  9. User choices regarding vehicle-driving automation

    NARCIS (Netherlands)

    Marchau, V.A.W.J.; Molin, E.J.E.; Heijden, R.E.C.M. van der; Breddia, C.A.; Wadhwa, L.C.

    2004-01-01

    The introduction of Advanced Driver Assistance Systems (ADAS) in motor vehicles is expected to improve traffic efficiency and safety significantly. These systems support the driver in controlling his vehicle applying advanced sensing, computing and controlling devices. Successful implementation of

  10. Using driving simulators to assess driving safety.

    Science.gov (United States)

    Boyle, Linda Ng; Lee, John D

    2010-05-01

    Changes in drivers, vehicles, and roadways pose substantial challenges to the transportation safety community. Crash records and naturalistic driving data are useful for examining the influence of past or existing technology on drivers, and the associations between risk factors and crashes. However, they are limited because causation cannot be established and technology not yet installed in production vehicles cannot be assessed. Driving simulators have become an increasingly widespread tool to understand evolving and novel technologies. The ability to manipulate independent variables in a randomized, controlled setting also provides the added benefit of identifying causal links. This paper introduces a special issue on simulator-based safety studies. The special issue comprises 25 papers that demonstrate the use of driving simulators to address pressing transportation safety problems and includes topics as diverse as neurological dysfunction, work zone design, and driver distraction. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. Distracted Driving, A Major Preventable Cause of Motor Vehicle Collisions: “Just Hang Up and Drive”

    Directory of Open Access Journals (Sweden)

    Christopher A. Kahn

    2015-12-01

    Full Text Available For years, public health experts have been concerned about the effect of cell phone use on motor vehicle collisions, part of a phenomenon known as “distracted driving.” The Morbidity and Mortality Weekly Report (MMWR article “Mobile Device Use While Driving - United States and Seven European Countries 2011” highlights the international nature of these concerns. Recent (2011 estimates from the National Highway Traffic Safety Administration are that 10% of fatal crashes and 17% of injury crashes were reported as distraction-affected. Of 3,331 people killed in 2011 on roadways in the U.S. as a result of driver distraction, 385 died in a crash where at least one driver was using a cell phone. For drivers 15-19 years old involved in a fatal crash, 21% of the distracted drivers were distracted by the use of cell phones. Efforts to reduce cell phone use while driving could reduce the prevalence of automobile crashes related to distracted driving. The MMWR report shows that there is much ground to cover with distracted driving. Emergency physicians frequently see the devastating effects of distracted driving on a daily basis and should take a more active role on sharing the information with patients, administrators, legislators, friends and family.

  12. New Materials for Electric Drive Vehicles - Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J. David [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-18

    This project was sponsored by the US DOE Global Initiatives for Proliferation Prevention. The object was for Ukrainian and US partners, including Argonne, AETC, and Dontech to develop special carbon materials and factory production equipment with the goal of making better car batteries to achieve DOE's goals for all-electric and plug-in hybrid electric vehicles. Carbon materials are used in designs for lithium-ion batteries and metal-air batteries, both leading contenders for future electric cars. Specifically, the collaborators planned to use the equipment derived from this project to develop a rechargeable battery system that will use the carbon materials produced by the innovative factory process equipment. The final outcome of the project was that the Ukrainian participants consisting of the Kharkov Institute of Physics and Technology (KIPT), the Institute of Gas of National Academy of Sciences of Ukraine and the Materials Research Center, Ltd. designed, built, tested and delivered 14 pieces of processing equipment for pilot scale carbon production lines at the AETC, Arlington Heights facilities. The pilot scale equipment will be used to process materials such as activated carbon, thermally expanded graphite and carbon coated nano-particles. The equipment was shipped from Ukraine to the United States and received by AETC on December 3, 2013. The equipment is on loan from Argonne, control # 6140. Plug-in hybrid electric vehicles (PHEV) and all-electric vehicles have already demostrated success in the U.S. as they begin to share the market with older hybrid electric designs. When the project was conceived, PHEV battery systems provided a ~40 mile driving range (2011 figures). DOE R&D targets increased this to >100 miles at reduced cost less than $250/kWh (2011 figures.) A 2016 Tesla model S has boasted 270 miles. The project object was to develop pilot-production line equipment for advanced hybrid battery system that achieves cycle life of 1000, an energy

  13. DEFINITION OF THE GEAR’S GEOMETRY IN THE PLANETARY CYCLOIDAL TRANSMISSION

    Directory of Open Access Journals (Sweden)

    Sławomir BEDNARCZYK

    2014-03-01

    Full Text Available In the paper, the design and operation of the planetary cycloidal transmission have been discussed. The transmission is a synthesis of the planetary and the straight-line mechanism. The planetary mechanism is made of a planetary gear set with rollers, which is critical for the proper work of the transmission. Its basic and most important element is the planetary cycloidal gear. Influence of the parameters determining the cycloidal profile of the gear on the gear’s geometry and the forces has been presented. The straight-line mechanism carrying the motion from the driving onto the driven unit of the transmission is made of the pins and bushes located in the holes of the planetary gears. The influence of the number and geometry of the elements on the forces and occuring in the holes of the planetary gears has been presented. Therefore, the properly defined geometry of the gear and of the material of which the gear is made is crucial for the safe operation of the planetary cycloidal transmission.

  14. Universal Drive Train Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This vehicle drive train research facility is capable of evaluating helicopter and ground vehicle power transmission technologies in a system level environment. The...

  15. Design, construction and integration of hybrid drive components in commercial vehicles. The MAN hybrid drive truck TGL 12.220; Auslegung, Aufbau und Integration von Hybrid-Antriebskomponenten im Nutzfahrzeug. Der MAN Hybrid-Verteiler-Lkw TGL 12.220

    Energy Technology Data Exchange (ETDEWEB)

    Kerschl, Stefan; Hipp, Eberhand; Doebereiner, Rolf [MAN Nutzfahrzeuge AG, Muenchen (Germany)

    2009-07-01

    In contrast to the passenger car the drive train of commercial vehicles is designed basically in view of a maximum efficiency, because the fuel consumption has a determining portion in the vehicle operating expenses of the operators. The pay load of the vehicle also has a high value, in particular in the small and middle segment from 8 t of total weight. In view of pollutant issues the environmental zones which may be also driven by commercial vehicles only from a certain pollutant class were already furnished by many local authority districts. Additional demands for a purely, emission free electric short distance operation can result from suitable emission editions in bigger towns in future. MAN Nutzfahrzeuge AG meet these topical challenges with the development of a hybriddelivery truck of the 12 t - class. At this the aim is to meet to the demands after low CO{sub 2} issue and purely electric operation by a powerful battery system and the recuperation of brake energy. For the integration of the hybrid components in the vehicle it was respected to preserve the pay load of the vehicle without limiting the functionality. The dimensioning of the hybrid drive train for a delivery truck vehicle, the vehicle integration and the effects on the lifecycle economics are lighted up in the following. (orig.)

  16. Direct Yaw-Moment Control of All-Wheel-Independent-Drive Electric Vehicles with Network-Induced Delays through Parameter-Dependent Fuzzy SMC Approach

    Directory of Open Access Journals (Sweden)

    Wanke Cao

    2017-01-01

    Full Text Available This paper investigates the robust direct yaw-moment control (DYC through parameter-dependent fuzzy sliding mode control (SMC approach for all-wheel-independent-drive electric vehicles (AWID-EVs subject to network-induced delays. AWID-EVs have obvious advantages in terms of DYC over the traditional centralized-drive vehicles. However it is one of the most principal issues for AWID-EVs to ensure the robustness of DYC. Furthermore, the network-induced delays would also reduce control performance of DYC and even deteriorate the EV system. To ensure robustness of DYC and deal with network-induced delays, a parameter-dependent fuzzy sliding mode control (FSMC method based on the real-time information of vehicle states and delays is proposed in this paper. The results of cosimulations with Simulink® and CarSim® demonstrate the effectiveness of the proposed controller. Moreover, the results of comparison with a conventional FSMC controller illustrate the strength of explicitly dealing with network-induced delays.

  17. Dual-Drive Production Prototype Project

    Science.gov (United States)

    2009-06-01

    This project was an initiative to engineer, develop and build a plug-in hybrid-electric vehicle using the Dual-Drive system. The project aimed to build a plug-in hybrid utilitarian vehicle on a light commercial vehicle platform. The hybrid vehicle wi...

  18. Exploring the Largest Mass Fraction of the Solar System: the Case for Planetary Interiors

    Science.gov (United States)

    Danielson, L. R.; Draper, D.; Righter, K.; McCubbin, F.; Boyce, J.

    2017-01-01

    Why explore planetary interiors: The typical image that comes to mind for planetary science is that of a planet surface. And while surface data drive our exploration of evolved geologic processes, it is the interiors of planets that hold the key to planetary origins via accretionary and early differentiation processes. It is that initial setting of the bulk planet composition that sets the stage for all geologic processes that follow. But nearly all of the mass of planets is inaccessible to direct examination, making experimentation an absolute necessity for full planetary exploration.

  19. Department of Transportation vs self-reported data on motor vehicle collisions and driving convictions for stroke survivors: do they agree?

    Science.gov (United States)

    Finestone, Hillel M; Guo, Meiqi; O'Hara, Paddi; Greene-Finestone, Linda; Marshall, Shawn C; Hunt, Lynn; Jessup, Anita; Biggs, Jennifer

    2011-08-01

    Research on stroke survivors' driving safety has typically used either self-reports or government records, but the extent to which the 2 may differ is not known. We compared government records and self-reports of motor vehicle collisions and driving convictions in a sample of stroke survivors. The 56 participants were originally recruited for a prospective study on driving and community re-integration post-stroke; the study population consisted of moderately impaired stroke survivors without severe communication disorders who had been referred for a driving assessment. The driving records of the 56 participants for the 5 years before study entry and the 1-year study period were acquired with written consent from the Ministry of Transportation of Ontario (MTO), Canada. Self-reports of collisions and convictions were acquired via a semistructured interview and then compared with the MTO records. Forty-three participants completed the study. For 7 (13.5%) the MTO records did not match the self-reports regarding collision involvement, and for 9 (17.3%) the MTO records did not match self-reports regarding driving convictions. The kappa coefficient for the correlation between MTO records and self-reports was 0.52 for collisions and 0.47 for convictions (both in the moderate range of agreement). When both sources of data were consulted, up to 56 percent more accidents and up to 46 percent more convictions were identified in the study population in the 5 years before study entry compared to when either source was used alone. In our population of stroke survivors, self-reports of motor vehicle collisions and driving convictions differed from government records. In future studies, the use of both government and self-reported data would ensure a more accurate picture of driving safety post-stroke.

  20. Transmissions in vehicles 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the international VDI congress 'Gears in vehicles 2010' of the VDI Wissensforum GmbH (Duesseldorf, Federal Republic of Germany) between 22nd and 23rd June, 2010, in Friedrichshafen (Federal Republic of Germany), the following lectures were held: (1) 8HP70H - The moldhybrid transmission from ZF - Cjallenges and achievements (P. Gutmann); (2) GETRAG boosted range extender - A highly flexible electric powertrain for maximum CO{sub 2} reduction (S. Huepkes); (3) E-Transmission between full-hybrid and E-drive (P. Tenberge); (4) Reducing NO{sub x} and particulate emissions in electrified drivelines (R. Kuberczyk); (5) Simulation aided HEV and EV development: from the component to the whole powertrain (A. Gacometti); (6) Investigations on operating behaviour of the optimized CVT hybrid driveline (B.-R. Hoehn); (7) Customer-oriented dimensioning of electrified drivetrains (M. Eghtessad); (8) Decentralized optimal control strategy for parallel hybrid electric vehicles (A. Frenkel); (9) The new generation 6-speed automatic transmission AF40 (G. Bednarek); (10) Customized mechatronic solutions for integrated transmission control units (M. Wieczorek); (11) The optimal automatic transmission for front-transverse applications - Planetary transmissions or dual clutch transmissions? (G. Gumpoltsberger); (12) The new shift-by-wire gearshift lever for the Audi A8 - Requirements and concept (T. Guttenbergere); (13) The new shift-by-wire gearshift lever for the Audi A8 - Realization (A. Giefer); (14) Fuel-efficient transmissions of the future: Calculation of the efficiency factor for vehicle transmissions (B. Volpert); (15) HT-ACM: A new polymer generation for static and dynamic gearbox sealing solutions (E. Osen); (16) 'Energy efficiency equipped solutions by SKF' for power train applications - A contribution to CO{sub 2} - emission reduction and sustainability (T. Bobke); (17) 6-Ratio planetary shift transmission controlled by 4 external brakes, and design

  1. Autonomous Vehicles: A Policy Roadmap for Law Enforcement

    Science.gov (United States)

    2015-09-01

    autonomous vehicle , vehicles , self - driving car , automated...the fault of the autonomous vehicle .6 In other words, human error was the fault in all of the collisions and the self - driving car has NEVER caused a...32 David Shamah, “As Google Dreams of Driverless Cars , IDF Deploys Them: Self Driving Vehicles Are not New for the Israeli Army, and a

  2. Hybrid vehicle powertrain system with power take-off driven vehicle accessory

    Science.gov (United States)

    Beaty, Kevin D.; Bockelmann, Thomas R.; Zou, Zhanijang; Hope, Mark E.; Kang, Xiaosong; Carpenter, Jeffrey L.

    2006-09-12

    A hybrid vehicle powertrain system includes a first prime mover, a first prime mover driven power transmission mechanism having a power take-off adapted to drive a vehicle accessory, and a second prime mover. The second prime mover is operable to drive the power transmission mechanism alone or in combination with the first prime mover to provide power to the power take-off through the power transmission mechanism. The invention further includes methods for operating a hybrid vehicle powertrain system.

  3. [Risk factors for road traffic injury in agricultural vehicle drivers].

    Science.gov (United States)

    Cui, M J; Chen, Y; Li, Y; Hu, J; Zhang, X J

    2017-08-20

    Objective: To examine the risk factors for road traffic injury in agricultural vehicle drivers. Methods: A total of 103 drivers (who had suffered agricultural vehicle road traffic injury within the past year based on the road traffic injury registrar from the Traffic Management Bureau) who were involved in the annual agricultural vehicle inspection from December 2014 to January 2015 were randomly sampled from the Yixing Agricultural Vehicle Station as the case group for this study. Based on a 1∶2 assignment ratio and matched for sex, age, and education, a total of 206 drivers who had not suffered any agricultural vehicle road traffic injury within the past year were selected as the control group. The general information, vehicle information, driving information, driving behavior, and accident details of the agricultural vehicle drivers were analyzed. Results: The incidence rate of road traffic injury was 7.24% given the 103 agricultural vehicle drivers who had suffered agricultural vehicle road traffic injury in the past year. Univariate logistic regression analysis showed that drinking, debt, pressure, history of car accident, history of drunk driving, smoking and phone use during driving, fatigue driving, and driving with illness were the risk factors for road traffic injury in agricultural vehicle drivers ( OR =2.332, 2.429, 19.778, 5.589, 8.517, 2.125, 3.203, 10.249 and 5.639, respectively) . Multivariate logistic regression analysis also demonstrated that pressure, history of car accident, history of drunk driving, fatigue driving, and driving with illness were the risk factors for road traffic injury in agricultural vehicle drivers ( OR =12.139, 11.184, 6.729, 5.939, and 6.544, respectively) . Conclusion: Pressure, history of car accident, history of drunk driving, fatigue driving, and driving with illness are the major risk factors for road traffic injury in agricultural vehicle drivers.

  4. Driving context influences drivers' decision to engage in visual-manual phone tasks: Evidence from a naturalistic driving study.

    Science.gov (United States)

    Tivesten, Emma; Dozza, Marco

    2015-06-01

    Visual-manual (VM) phone tasks (i.e., texting, dialing, reading) are associated with an increased crash/near-crash risk. This study investigated how the driving context influences drivers' decisions to engage in VM phone tasks in naturalistic driving. Video-recordings of 1,432 car trips were viewed to identify VM phone tasks and passenger presence. Video, vehicle signals, and map data were used to classify driving context (i.e., curvature, other vehicles) before and during the VM phone tasks (N=374). Vehicle signals (i.e., speed, yaw rate, forward radar) were available for all driving. VM phone tasks were more likely to be initiated while standing still, and less likely while driving at high speeds, or when a passenger was present. Lead vehicle presence did not influence how likely it was that a VM phone task was initiated, but the drivers adjusted their task timing to situations when the lead vehicle was increasing speed, resulting in increasing time headway. The drivers adjusted task timing until after making sharp turns and lane change maneuvers. In contrast to previous driving simulator studies, there was no evidence of drivers reducing speed as a consequence of VM phone task engagement. The results show that experienced drivers use information about current and upcoming driving context to decide when to engage in VM phone tasks. However, drivers may fail to sufficiently increase safety margins to allow time to respond to possible unpredictable events (e.g., lead vehicle braking). Advanced driver assistance systems should facilitate and possibly boost drivers' self-regulating behavior. For instance, they might recognize when appropriate adaptive behavior is missing and advise or alert accordingly. The results from this study could also inspire training programs for novice drivers, or locally classify roads in terms of the risk associated with secondary task engagement while driving. Copyright © 2015. Published by Elsevier Ltd.

  5. Driving forces: Motor vehicle trends and their implications for global warming, energy strategies, and transportation planning

    International Nuclear Information System (INIS)

    MacKenzie, J.J.; Walsh, M.P.

    1990-01-01

    Cars, trucks, and other vehicles have long been linked to smog and other urban pollution, but the part they play in the larger complex of atmospheric and energy ills that we now face is often overlooked. In Driving Forces: Motor Vehicle Trends and Their Implications for Global Warming, Energy Strategies, and Transportation Planning, James J. MacKenzie, senior associate in World Resources Institute's Program in Climate, Energy, and Pollution, and Michael P. Walsh, an international consultant on transportation and environmental issues, fill in this knowledge gap with new data and analyses. They spell out four policy shifts that can help hold the line on global warming: improve new-vehicle efficiency; make transportation more efficient; cut other greenhouse gas emissions; create the green car of the future. The report focuses especially on the US, which pioneered the automotive revolution and leads the world in oil imports and emissions

  6. THE APPLICATION OF RTK-GPS AND STEER-BY-WIRE TECHNOLOGY TO THE AUTOMATIC DRIVING OF VEHICLES AND AN EVALUATION OF DRIVER BEHAVIOR

    Directory of Open Access Journals (Sweden)

    Manabu OMAE

    2006-01-01

    Full Text Available Automatic vehicle driving has long been the subject of research efforts designed to improve the safety and efficiency of automobile transportation. In recent years, increasingly sophisticated sensors and automobiles have brought automatic driving systems closer to reality. In this paper we describe an attempt to apply real-time kinematic GPS (RTK-GPS, a highly precise positioning system, and steer-by-wire body technology, which has advanced greatly in recent years, to automatic driving. In addition, we also describe the results of research into human factors related to automatic driving, which will become more and more important as automatic driving is put to practical use.

  7. Effect of Drive Cycle and Gasoline Particulate Filter on the Size and Morphology of Soot Particles Emitted from a Gasoline-Direct-Injection Vehicle.

    Science.gov (United States)

    Saffaripour, Meghdad; Chan, Tak W; Liu, Fengshan; Thomson, Kevin A; Smallwood, Gregory J; Kubsh, Joseph; Brezny, Rasto

    2015-10-06

    The size and morphology of particulate matter emitted from a light-duty gasoline-direct-injection (GDI) vehicle, over the FTP-75 and US06 transient drive cycles, have been characterized by transmission-electron-microscope (TEM) image analysis. To investigate the impact of gasoline particulate filters on particulate-matter emission, the results for the stock-GDI vehicle, that is, the vehicle in its original configuration, have been compared to the results for the same vehicle equipped with a catalyzed gasoline particulate filter (GPF). The stock-GDI vehicle emits graphitized fractal-like aggregates over all driving conditions. The mean projected area-equivalent diameter of these aggregates is in the 78.4-88.4 nm range and the mean diameter of primary particles varies between 24.6 and 26.6 nm. Post-GPF particles emitted over the US06 cycle appear to have an amorphous structure, and a large number of nucleation-mode particles, depicted as low-contrast ultrafine droplets, are observed in TEM images. This indicates the emission of a substantial amount of semivolatile material during the US06 cycle, most likely generated by the incomplete combustion of accumulated soot in the GPF during regeneration. The size of primary particles and soot aggregates does not vary significantly by implementing the GPF over the FTP-75 cycle; however, particles emitted by the GPF-equipped vehicle over the US06 cycle are about 20% larger than those emitted by the stock-GDI vehicle. This may be attributed to condensation of large amounts of organic material on soot aggregates. High-contrast spots, most likely solid nonvolatile cores, are observed within many of the nucleation-mode particles emitted over the US06 cycle by the GPF-equipped vehicle. These cores are either generated inside the engine or depict incipient soot particles which are partially carbonized in the exhaust line. The effect of drive cycle and the GPF on the fractal parameters of particles, such as fractal dimension and

  8. Emissions from US waste collection vehicles

    International Nuclear Information System (INIS)

    Maimoun, Mousa A.; Reinhart, Debra R.; Gammoh, Fatina T.; McCauley Bush, Pamela

    2013-01-01

    Highlights: ► Life-cycle emissions for alternative fuel technologies. ► Fuel consumption of alternative fuels for waste collection vehicles. ► Actual driving cycle of waste collection vehicles. ► Diesel-fueled waste collection vehicle emissions. - Abstract: This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6–10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving

  9. Measurement of the driving behaviour of vehicle owners in a tunnel for the determination of the CO-emission. Messung des Fahrverhaltens eines Verkehrskollektivs in einem Strassentunnel zwecks Bestimmung der CO-Emission

    Energy Technology Data Exchange (ETDEWEB)

    Eberan-Eberhorst, R.; Lenz, H.P.; Bruner-Newton, I.

    1978-01-01

    During the summer of 1977, the speeds of 5742 motor vehicles were registered in the Katschbergtunnel. On the basis of the average speed, the frequency distribution of the speed increases and decreases of the individual vehicles between the loops, the reference distance, the reference time and the average maximum speed difference in the tunnel, a tunnel cycle was elaborated, reproducing the representative driving behaviour of the individual vehicle in the Katschbergtunnel. The tunnel cycle shows a driving behaviour with speeds fluctuating around the average speed of 74 km/h (46 m.p.h.) and corresponds to a steady traffic flow. The CO-emission during constant driving at 74 km/h (46 m.p.h.) and the CO-emission in the tunnel cycle were measured during test drives with eight test vehicles on the dynamometer of the Institute for Internal Combustion Engines and Automotive Engineering (Institut fuer Verbrennungskraftmaschinen und Kraftfahrwesen) of the Technical University Vienna.

  10. Planetary engineering

    Science.gov (United States)

    Pollack, James B.; Sagan, Carl

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  11. Planetary engineering

    Science.gov (United States)

    Pollack, James B.; Sagan, Carl

    1991-01-01

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  12. Human machine interface to manually drive rhombic like vehicles such as transport casks in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Pedro; Vale, Alberto [Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Ventura, Rodrigo [Institute for Systems and Robotics, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2015-07-01

    The Cask and Plug Remote Handling System (CPRHS) and the respective Cask Transfer System (CTS) are designed to transport activated components between the reactor and the hot cell buildings of ITER during maintenance operations. In nominal operation, the CPRHS/CTS shall operate autonomously under human supervision. However, in some unexpected situations, the automatic mode must be overridden and the vehicle must be remotely guided by a human operator due to the harsh conditions of the environment. The CPRHS/CTS is a rhombic-like vehicle with two independent steerable and drivable wheels along its longitudinal axis, giving it omni-directional capabilities. During manual guidance, the human operator has to deal with four degrees of freedom, namely the orientations and speeds of two wheels. This work proposes a Human Machine Interface (HMI) to manage the degrees of freedom and to remotely guide the CPRHS/CTS in ITER taking the most advantages of rhombic like capabilities. Previous work was done to drive each wheel independently, i.e., control the orientation and speed of each wheel independently. The results have shown that the proposed solution is inefficient. The attention of the human operator becomes focused in a single wheel. In addition, the proposed solution cannot assure that the commands accomplish the physical constrains of the vehicle, resulting in slippage or even in clashes. This work proposes a solution that consists in the control of the vehicle looking at the position of its center of mass and its heading in the world frame. The solution is implemented using a rotational disk to control the vehicle heading and a common analogue joystick to control the vector speed of the center of the mass of the vehicle. The number of degrees of freedom reduces to three, i.e., two angles (vehicle heading and the orientation of the vector speed) and a scalar (the magnitude of the speed vector). This is possible using a kinematic model based on the vehicle Instantaneous

  13. Human machine interface to manually drive rhombic like vehicles such as transport casks in ITER

    International Nuclear Information System (INIS)

    Lopes, Pedro; Vale, Alberto; Ventura, Rodrigo

    2015-01-01

    The Cask and Plug Remote Handling System (CPRHS) and the respective Cask Transfer System (CTS) are designed to transport activated components between the reactor and the hot cell buildings of ITER during maintenance operations. In nominal operation, the CPRHS/CTS shall operate autonomously under human supervision. However, in some unexpected situations, the automatic mode must be overridden and the vehicle must be remotely guided by a human operator due to the harsh conditions of the environment. The CPRHS/CTS is a rhombic-like vehicle with two independent steerable and drivable wheels along its longitudinal axis, giving it omni-directional capabilities. During manual guidance, the human operator has to deal with four degrees of freedom, namely the orientations and speeds of two wheels. This work proposes a Human Machine Interface (HMI) to manage the degrees of freedom and to remotely guide the CPRHS/CTS in ITER taking the most advantages of rhombic like capabilities. Previous work was done to drive each wheel independently, i.e., control the orientation and speed of each wheel independently. The results have shown that the proposed solution is inefficient. The attention of the human operator becomes focused in a single wheel. In addition, the proposed solution cannot assure that the commands accomplish the physical constrains of the vehicle, resulting in slippage or even in clashes. This work proposes a solution that consists in the control of the vehicle looking at the position of its center of mass and its heading in the world frame. The solution is implemented using a rotational disk to control the vehicle heading and a common analogue joystick to control the vector speed of the center of the mass of the vehicle. The number of degrees of freedom reduces to three, i.e., two angles (vehicle heading and the orientation of the vector speed) and a scalar (the magnitude of the speed vector). This is possible using a kinematic model based on the vehicle Instantaneous

  14. Greater Sudbury fuel efficient driving handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-12-15

    Reducing the amount of fuel that people use for personal driving saves money, improves local air quality, and reduces personal contributions to climate change. This handbook was developed to be used as a tool for a fuel efficient driving pilot program in Greater Sudbury in 2009-2010. Specifically, the purpose of the handbook was to provide greater Sudbury drivers with information on how to drive and maintain their personal vehicles in order to maximize fuel efficiency. The handbook also provides tips for purchasing fuel efficient vehicles. It outlines the benefits of fuel maximization, with particular reference to reducing contributions to climate change; reducing emissions of air pollutants; safe driving; and money savings. Some tips for efficient driving are to avoid aggressive driving; use cruise control; plan trips; and remove excess weight. Tips for efficient winter driving are to avoid idling to warm up the engine; use a block heater; remove snow and ice; use snow tires; and check tire pressure. The importance of car maintenance and tire pressure was emphasized. The handbook also explains how fuel consumption ratings are developed by vehicle manufacturers. refs., figs.

  15. Naturalistic drive cycle synthesis for pickup trucks.

    Science.gov (United States)

    Liu, Zifan; Ivanco, Andrej; Filipi, Zoran

    2015-09-01

    Future pick-up trucks are meeting much stricter fuel economy and exhaust emission standards. Design tradeoffs will have to be carefully evaluated to satisfy consumer expectations within the regulatory and cost constraints. Boundary conditions will obviously be critical for decision making: thus, the understanding of how customers are driving in naturalistic settings is indispensable. Federal driving schedules, while critical for certification, do not capture the richness of naturalistic cycles, particularly the aggressive maneuvers that often shape consumer perception of performance. While there are databases with large number of drive cycles, applying all of them directly in the design process is impractical. Therefore, representative drive cycles that capture the essence of the naturalistic driving should be synthesized from naturalistic driving data. Naturalistic drive cycles are firstly categorized by investigating their micro-trip components, defined as driving activities between successive stops. Micro-trips are expected to characterize underlying local traffic conditions, and separate different driving patterns. Next, the transitions from one vehicle state to another vehicle state in each cycle category are captured with Transition Probability Matrix (TPM). Candidate drive cycles can subsequently be synthesized using Markov Chain based on TPMs for each category. Finally, representative synthetic drive cycles are selected through assessment of significant cycle metrics to identify the ones with smallest errors. This paper provides a framework for synthesis of representative drive cycles from naturalistic driving data, which can subsequently be used for efficient optimization of design or control of pick-up truck powertrains. Manufacturers will benefit from representative drive cycles in several aspects, including quick assessments of vehicle performance and energy consumption in simulations, component sizing and design, optimization of control strategies, and

  16. Dynamic Eco-Driving Speed Guidance at Signalized Intersections: Multivehicle Driving Simulator Based Experimental Study

    Directory of Open Access Journals (Sweden)

    Peng Chen

    2018-01-01

    Full Text Available Variations in vehicle fuel consumption and gas emissions are usually associated with changes in cruise speed and the aggressiveness of drivers’ acceleration/deceleration, especially at traffic signals. In an attempt to enhance vehicle fuel efficiency on arterials, this study developed a dynamic eco-driving speed guidance strategy (DESGS using real-time signal timing and vehicle positioning information in a connected vehicle (CV environment. DESGS mainly aims to optimize the fuel/emission speed profiles for vehicles approaching signalized intersections. An optimization-based rolling horizon and a dynamic programming approach were proposed to track the optimal guided velocity for individual vehicles along the travel segment. In addition, a vehicle specific power (VSP based approach was integrated into DESGS to estimate the fuel consumption and CO2 emissions. To evaluate the effectiveness of the overall strategy, 15 experienced drivers were recruited to participate in interactive speed guidance experiments using multivehicle driving simulators. It was found that compared to vehicles without speed guidance, those with DESGS had a significantly reduced number of stops and approximately 25% less fuel consumption and CO2 emissions.

  17. Who is driving my car? Development and analysis of a control transition strategy for collaborative automated congestion driving

    NARCIS (Netherlands)

    Urhahne, Joseph

    2016-01-01

    The role of the driver is changing now that vehicles with driving automation technologies appear on the road. It evolves from being an active controller of the vehicle to being a supervisor of the automated ride. The driver has to collaborate with the driving automation and remains responsible for

  18. Hydromechanical transmission with three simple planetary assemblies, one sun gear being mounted on the output shaft and the other two on a common shaft connected to an input-driven hydraulic module

    Science.gov (United States)

    Orshansky, Jr., deceased, Elias; Weseloh, William E.

    1978-01-01

    A power transmission having three simple planetary assemblies, each having its own carrier and its own planet, sun, and ring gears. A speed-varying module is connected in driving relation to the input shaft and in driving relationship to the sun gears of the first two planetary assemblies, these two sun gears being connected together on a common shaft. The speed-varying means may comprise a pair of hydraulic units hydraulically interconnected so that one serves as a pump while the other serves as a motor and vice versa, one of the units having a variable stroke and being connected in driving relation to the input shaft, the other unit, which may have a fixed stroke, being connected in driving relation to the sun gears. The input shaft is also connected to drive the second ring gear and, furthermore is clutchable to the carrier of the third planetary assembly. A brake grounds the first carrier in the first range and in reverse and causes drive to be delivered to the output through the first ring gear in a hydrostatic mode. The carrier of the second planetary assembly drives the ring gear of the third planetary assembly, which is clutchable to the output shaft, and the sun gear of the third planetary assembly is mounted rigidly to the output shaft.

  19. Gears and gear drives

    CERN Document Server

    Jelaska, Damir T

    2012-01-01

    Understanding how gears are formed and how they interact or 'mesh' with each other is essential when designing equipment that uses gears or gear trains. The way in which gear teeth are formed and how they mesh is determined by their geometry and kinematics, which is the topic of this book.  Gears and Gear Drives provides the reader with comprehensive coverage of gears and gear drives. Spur, helical, bevel, worm and planetary gears are all covered, with consideration given to their classification, geometry, kinematics, accuracy control, load capacity and manufacturing. Cylindric

  20. An assessment of the real-world driving gaseous emissions from a Euro 6 light-duty diesel vehicle using a portable emissions measurement system (PEMS)

    Science.gov (United States)

    Luján, José M.; Bermúdez, Vicente; Dolz, Vicente; Monsalve-Serrano, Javier

    2018-02-01

    Recent investigations demonstrated that real-world emissions usually exceed the levels achieved in the laboratory based type approval processes. By means of on-board emissions measurements, it has been shown that nitrogen oxides emitted by diesel engines substantially exceed the limit imposed by the Euro 6 regulation. Thus, with the aim of complementing the worldwide harmonized light vehicles test cycle, the real driving emissions cycle will be introduced after 1 September 2017 to regulate the vehicle emissions in real-world driving situations. This paper presents on-board gaseous emissions measurements from a Euro 6 light-duty diesel vehicle in a real-world driving route using a portable emissions measurement system. The test route characteristics follow the requirements imposed by the RDE regulation. The analysis of the raw emissions results suggests that the greatest amount of nitrogen oxides and nitrogen dioxide are emitted during the urban section of the test route, confirming that lower speeds with more accelerations and decelerations lead to higher nitrogen oxides emissions levels than constant high speeds. Moreover, the comparison of the two calculation methods proposed by the real driving emissions regulation has revealed emissions rates differences ranging from 10% to 45% depending on the pollutant emission and the trip section considered (urban or total). Thus, the nitrogen oxides emissions conformity factor slightly varies from one method to the other.

  1. Dependence of driving characteristics upon follower-leader combination

    Science.gov (United States)

    Nagahama, Akihito; Yanagisawa, Daichi; Nishinari, Katsuhiro

    2017-10-01

    The analysis of the microscopic view of mixed traffic offers a basis for resolving traffic jams which are inhomogeneous due to several types of vehicles. In this study, we research the dependence of driving characteristics upon vehicle order in a platoon. By focusing particularly upon the manner in which the driving characteristics of a follower are affected by both their own vehicle type and that of their leader, we measured the trajectories of platoons comprising two vehicles selected from motorcycles, passenger cars, and trucks on a test course. Analysis based on vehicle order showed that the vehicle types of both the leader and the follower as well as the leader's driving characteristics affected the velocity, acceleration, deceleration, operational delay of followers, and the distance gap between leaders and followers in different ways. In addition, we investigated the factors affecting driving characteristics by multiple regression analysis. We revealed that the operational delay and the maximum distance gap tend to be large when the length of leaders is large. Furthermore, as long as a follower can follow, we need not consider vehicle types among the parameters determining maximum velocity in car-following models. The vehicle types of the leader and the follower should be considered to determine maximum acceleration. When determining maximum deceleration, the vehicle types of the follower should be considered.

  2. Prospects for the application of GaN power devices in hybrid electric vehicle drive systems

    Science.gov (United States)

    Su, Ming; Chen, Chingchi; Rajan, Siddharth

    2013-07-01

    GaN, a wide bandgap semiconductor successfully implemented in optical and high-speed electronic devices, has gained momentum in recent years for power electronics applications. Along with rapid progress in material and device processing technologies, high-voltage transistors over 600 V have been reported by a number of teams worldwide. These advances make GaN highly attractive for the growing market of electrified vehicles, which currently employ bipolar silicon devices in the 600-1200 V class for the traction inverter. However, to capture this billion-dollar power market, GaN has to compete with existing IGBT products and deliver higher performance at comparable or lower cost. This paper reviews key achievements made by the GaN semiconductor industry, requirements of the automotive electric drive system and remaining challenges for GaN power devices to fit in the inverter application of hybrid vehicles.

  3. Reconstruction and visualization of planetary nebulae.

    Science.gov (United States)

    Magnor, Marcus; Kindlmann, Gordon; Hansen, Charles; Duric, Neb

    2005-01-01

    From our terrestrially confined viewpoint, the actual three-dimensional shape of distant astronomical objects is, in general, very challenging to determine. For one class of astronomical objects, however, spatial structure can be recovered from conventional 2D images alone. So-called planetary nebulae (PNe) exhibit pronounced symmetry characteristics that come about due to fundamental physical processes. Making use of this symmetry constraint, we present a technique to automatically recover the axisymmetric structure of many planetary nebulae from photographs. With GPU-based volume rendering driving a nonlinear optimization, we estimate the nebula's local emission density as a function of its radial and axial coordinates and we recover the orientation of the nebula relative to Earth. The optimization refines the nebula model and its orientation by minimizing the differences between the rendered image and the original astronomical image. The resulting model allows creating realistic 3D visualizations of these nebulae, for example, for planetarium shows and other educational purposes. In addition, the recovered spatial distribution of the emissive gas can help astrophysicists gain deeper insight into the formation processes of planetary nebulae.

  4. Effect of regional grid mix, driving patterns and climate on the comparative carbon footprint of gasoline and plug-in electric vehicles in the United States

    Science.gov (United States)

    Yuksel, Tugce; Tamayao, Mili-Ann M.; Hendrickson, Chris; Azevedo, Inês M. L.; Michalek, Jeremy J.

    2016-04-01

    We compare life cycle greenhouse gas (GHG) emissions from several light-duty passenger gasoline and plug-in electric vehicles (PEVs) across US counties by accounting for regional differences due to marginal grid mix, ambient temperature, patterns of vehicle miles traveled (VMT), and driving conditions (city versus highway). We find that PEVs can have larger or smaller carbon footprints than gasoline vehicles, depending on these regional factors and the specific vehicle models being compared. The Nissan Leaf battery electric vehicle has a smaller carbon footprint than the most efficient gasoline vehicle (the Toyota Prius) in the urban counties of California, Texas and Florida, whereas the Prius has a smaller carbon footprint in the Midwest and the South. The Leaf is lower emitting than the Mazda 3 conventional gasoline vehicle in most urban counties, but the Mazda 3 is lower emitting in rural Midwest counties. The Chevrolet Volt plug-in hybrid electric vehicle has a larger carbon footprint than the Prius throughout the continental US, though the Volt has a smaller carbon footprint than the Mazda 3 in many urban counties. Regional grid mix, temperature, driving conditions, and vehicle model all have substantial implications for identifying which technology has the lowest carbon footprint, whereas regional patterns of VMT have a much smaller effect. Given the variation in relative GHG implications, it is unlikely that blunt policy instruments that favor specific technology categories can ensure emission reductions universally.

  5. Effect of regional grid mix, driving patterns and climate on the comparative carbon footprint of gasoline and plug-in electric vehicles in the United States

    International Nuclear Information System (INIS)

    Yuksel, Tugce; Michalek, Jeremy J; Tamayao, Mili-Ann M; Hendrickson, Chris; Azevedo, Inês M L

    2016-01-01

    We compare life cycle greenhouse gas (GHG) emissions from several light-duty passenger gasoline and plug-in electric vehicles (PEVs) across US counties by accounting for regional differences due to marginal grid mix, ambient temperature, patterns of vehicle miles traveled (VMT), and driving conditions (city versus highway). We find that PEVs can have larger or smaller carbon footprints than gasoline vehicles, depending on these regional factors and the specific vehicle models being compared. The Nissan Leaf battery electric vehicle has a smaller carbon footprint than the most efficient gasoline vehicle (the Toyota Prius) in the urban counties of California, Texas and Florida, whereas the Prius has a smaller carbon footprint in the Midwest and the South. The Leaf is lower emitting than the Mazda 3 conventional gasoline vehicle in most urban counties, but the Mazda 3 is lower emitting in rural Midwest counties. The Chevrolet Volt plug-in hybrid electric vehicle has a larger carbon footprint than the Prius throughout the continental US, though the Volt has a smaller carbon footprint than the Mazda 3 in many urban counties. Regional grid mix, temperature, driving conditions, and vehicle model all have substantial implications for identifying which technology has the lowest carbon footprint, whereas regional patterns of VMT have a much smaller effect. Given the variation in relative GHG implications, it is unlikely that blunt policy instruments that favor specific technology categories can ensure emission reductions universally. (letter)

  6. Energy conversion efficiency of hybrid electric heavy-duty vehicles operating according to diverse drive cycles

    Energy Technology Data Exchange (ETDEWEB)

    Banjac, Titina [AVL-AST d.o.o., Trg Leona Stuklja 5, SI-2000 Maribor (Slovenia); Trenc, Ferdinand; Katrasnik, Tomaz [Faculty of Mechanical Engineering, Univ. of Ljubljana, Askerceva 6, SI-1000 Ljubljana (Slovenia)

    2009-12-15

    Energy consumption and exhaust emissions of hybrid electric vehicles (HEVs) strongly depend on the HEV topology, power ratios of their components and applied control strategy. Combined analytical and simulation approach was applied to analyze energy conversion efficiency of different HEV topologies. Analytical approach is based on the energy balance equations and considers all energy paths in the HEVs from the energy sources to the wheels and to other energy sinks. Simulation approach is based on a fast forward-facing simulation model for simulating parallel and series HEVs as well as for conventional internal combustion engine vehicles, and considers all components relevant for modeling energy conversion phenomena. Combined approach enables evaluation of energy losses on different energy paths and provides their impact on the fuel economy. It therefore enables identification of most suitable HEV topology and of most suitable power ratios of the components for targeted vehicle application, since it reveals and quantifies the mechanisms that could lead to improved energy conversion efficiency of particular HEV. The paper exposes characteristics of the test cycles that lead to improved energy conversion efficiency of HEVs. Mechanisms leading to improved fuel economy of parallel HEVs through drive-away and vehicle propulsion at low powertrain loads by electric motor are also analyzed. It was also shown that control strategies managing energy flow through electric storage devices significantly influence energy conversion efficiency of series HEVs. (author)

  7. Relationship Between Motor Vehicle Collisions and Results of Perimetry, Useful Field of View, and Driving Simulation in Drivers With Glaucoma

    NARCIS (Netherlands)

    Tatham, AJ; Boer, E.R.; Gracitelli, CPB; Rosen, PN; Medeiros, FA

    2015-01-01

    Purpose: To examine the relationship between Motor Vehicle Collisions (MVCs) in
    drivers with glaucoma and standard automated perimetry (SAP), Useful Field of View
    (UFOV), and driving simulator assessment of divided attention.
    Methods: A cross-sectional study of 153 drivers from the

  8. Creating a driving profile for older adults using GPS devices and naturalistic driving methodology.

    Science.gov (United States)

    Babulal, Ganesh M; Traub, Cindy M; Webb, Mollie; Stout, Sarah H; Addison, Aaron; Carr, David B; Ott, Brian R; Morris, John C; Roe, Catherine M

    2016-01-01

    Background/Objectives : Road tests and driving simulators are most commonly used in research studies and clinical evaluations of older drivers. Our objective was to describe the process and associated challenges in adapting an existing, commercial, off-the-shelf (COTS), in-vehicle device for naturalistic, longitudinal research to better understand daily driving behavior in older drivers. Design : The Azuga G2 Tracking Device TM was installed in each participant's vehicle, and we collected data over 5 months (speed, latitude/longitude) every 30-seconds when the vehicle was driven.  Setting : The Knight Alzheimer's Disease Research Center at Washington University School of Medicine. Participants : Five individuals enrolled in a larger, longitudinal study assessing preclinical Alzheimer disease and driving performance.  Participants were aged 65+ years and had normal cognition. Measurements :  Spatial components included Primary Location(s), Driving Areas, Mean Centers and Unique Destinations.  Temporal components included number of trips taken during different times of the day.  Behavioral components included number of hard braking, speeding and sudden acceleration events. Methods :  Individual 30-second observations, each comprising one breadcrumb, and trip-level data were collected and analyzed in R and ArcGIS.  Results : Primary locations were confirmed to be 100% accurate when compared to known addresses.  Based on the locations of the breadcrumbs, we were able to successfully identify frequently visited locations and general travel patterns.  Based on the reported time from the breadcrumbs, we could assess number of trips driven in daylight vs. night.  Data on additional events while driving allowed us to compute the number of adverse driving alerts over the course of the 5-month period. Conclusions : Compared to cameras and highly instrumented vehicle in other naturalistic studies, the compact COTS device was quickly installed and transmitted high

  9. Human Decisions in Moral Dilemmas are Largely Described by Utilitarianism: Virtual Car Driving Study Provides Guidelines for Autonomous Driving Vehicles.

    Science.gov (United States)

    Faulhaber, Anja K; Dittmer, Anke; Blind, Felix; Wächter, Maximilian A; Timm, Silja; Sütfeld, Leon R; Stephan, Achim; Pipa, Gordon; König, Peter

    2018-01-22

    Ethical thought experiments such as the trolley dilemma have been investigated extensively in the past, showing that humans act in utilitarian ways, trying to cause as little overall damage as possible. These trolley dilemmas have gained renewed attention over the past few years, especially due to the necessity of implementing moral decisions in autonomous driving vehicles (ADVs). We conducted a set of experiments in which participants experienced modified trolley dilemmas as drivers in virtual reality environments. Participants had to make decisions between driving in one of two lanes where different obstacles came into view. Eventually, the participants had to decide which of the objects they would crash into. Obstacles included a variety of human-like avatars of different ages and group sizes. Furthermore, the influence of sidewalks as potential safe harbors and a condition implicating self-sacrifice were tested. Results showed that participants, in general, decided in a utilitarian manner, sparing the highest number of avatars possible with a limited influence by the other variables. Derived from these findings, which are in line with the utilitarian approach in moral decision making, it will be argued for an obligatory ethics setting implemented in ADVs.

  10. Vehicle Weight in Gipps' Car-Following Model

    OpenAIRE

    Nerem, Sebastian

    2013-01-01

    Car-following models are mathematical models, which describe the situation where vehicles drive behind each other on a single lane road section with no overtaking possibilities. The purpose of the models is to estimate how a vehicle reacts to the behavior of the vehicle ahead. A weakness in these models is that they do not take the weight of each vehicle into account. It can however be shown that a vehicle?s weight affects its driving behavior.The purpose of this master?s thesis is to investi...

  11. Vehicle choices for teenage drivers: A national survey of U.S. parents.

    Science.gov (United States)

    Eichelberger, Angela H; Teoh, Eric R; McCartt, Anne T

    2015-12-01

    Previous research has shown that many newly licensed teenagers in the United States are driving vehicles with inferior crash protection. The objective of this study was to update and extend previous research on U.S. parents' choices of vehicles for their teenagers. Telephone surveys were conducted with parents in May 2014 using a random sample of U.S. households likely to include teenagers. Participation was restricted to parents or guardians of teenagers who lived in the household and held either an intermediate or full driver's license. Parents were interviewed about the vehicle their teenager drives, the reason they chose the vehicle for their teenager, and the cost of purchased vehicles. Teenagers most often were driving 2000-06 model year vehicles (41%), with 30% driving a more recent model year and 19% driving an older model year. Teenagers most often were driving midsize or large cars (27%), followed by SUVs (22%), mini or small cars (20%), and pickups (14%). Far fewer were driving minivans (6%) or sports cars (1%). Forty-three percent of the vehicles driven by teenagers were purchased when the teenager started driving or later. A large majority (83%) were used vehicles. The median cost of the vehicles purchased was $5300, and the mean purchase price was $9751. Although parents report that the majority of teenagers are driving midsize or larger vehicles, many of these vehicles likely do not have key safety features, such as electronic stability control, which would be especially beneficial for teenage drivers. Many teenagers were driving older model year vehicles or vehicle types or sizes that are not ideal for novice drivers. Parents, and their teenage drivers, may benefit from consumer information about optimal vehicle choices for teenagers. Copyright © 2015 Elsevier Ltd and National Safety Council. All rights reserved.

  12. Variable-Reluctance Motor For Electric Vehicles

    Science.gov (United States)

    Lang, Jeffrey H.

    1987-01-01

    Report describes research on variable-reluctance electric-motor drive for eventual use in electric-vehicle propulsion. Primary design and performance criteria were torque and power output per unit mass of motor, cost, and drive efficiency. For each criterion, optimized drive design developed, and designs unified to yield single electric-vehicle drive. Scaled-down motor performed as expected. Prototype of paraplegic lift operated by toggle switch and joystick. Lift plugs into household electrical outlet for recharging when not in use.

  13. Autonomous vehicles: from paradigms to technology

    Science.gov (United States)

    Ionita, Silviu

    2017-10-01

    Mobility is a basic necessity of contemporary society and it is a key factor in global economic development. The basic requirements for the transport of people and goods are: safety and duration of travel, but also a number of additional criteria are very important: energy saving, pollution, passenger comfort. Due to advances in hardware and software, automation has penetrated massively in transport systems both on infrastructure and on vehicles, but man is still the key element in vehicle driving. However, the classic concept of ‘human-in-the-loop’ in terms of ‘hands on’ in driving the cars is competing aside from the self-driving startups working towards so-called ‘Level 4 autonomy’, which is defined as “a self-driving system that does not requires human intervention in most scenarios”. In this paper, a conceptual synthesis of the autonomous vehicle issue is made in connection with the artificial intelligence paradigm. It presents a classification of the tasks that take place during the driving of the vehicle and its modeling from the perspective of traditional control engineering and artificial intelligence. The issue of autonomous vehicle management is addressed on three levels: navigation, movement in traffic, respectively effective maneuver and vehicle dynamics control. Each level is then described in terms of specific tasks, such as: route selection, planning and reconfiguration, recognition of traffic signs and reaction to signaling and traffic events, as well as control of effective speed, distance and direction. The approach will lead to a better understanding of the way technology is moving when talking about autonomous cars, smart/intelligent cars or intelligent transport systems. Keywords: self-driving vehicle, artificial intelligence, deep learning, intelligent transport systems.

  14. Choice of teenagers' vehicles and views on vehicle safety: survey of parents of novice teenage drivers.

    Science.gov (United States)

    Hellinga, Laurie A; McCartt, Anne T; Haire, Emily R

    2007-01-01

    To examine parental decisions about vehicles driven by teenagers and parental knowledge of vehicle safety. About 300 parents were interviewed during spring 2006 in Minnesota, North Carolina, and Rhode Island while teenagers took their first on-road driving tests. Fewer than half of parents surveyed said teenagers would be the primary drivers of the chosen vehicles. Parents most often cited safety, existing family vehicle, and reliability when explaining the choices for their teenagers' vehicles. About half of the vehicles intended for teenagers were small/mini/sports cars, pickups, or SUVs - vehicles considered less safe for teenagers than midsize/large cars or minivans. A large majority of vehicles were 2001 models or earlier. Vehicles purchased in anticipation of adding a new driver to the family were more likely to be the sizes/types considered less safe than vehicles already owned. Few parents insisted on side airbags or electronic stability control, despite strong evidence of their safety benefits. Even when asked to identify ideal vehicles for their teenagers to drive, about half of parents identified less safe vehicle sizes/types. Most parents knew that midsize/large vehicles are safer than small vehicles, and at least half of parents said SUVs and pickups are not safe for teenage drivers, citing instability. The majority of parents understood some of the important criteria for choosing safe vehicles for their teenagers. However, parents actually selected many vehicles for teenagers that provide inferior crash protection. Vehicle safety varies substantially by vehicle size, type, and safety features. Many teenagers are driving inferior vehicles in terms of crashworthiness and crash avoidance.

  15. Electric/Hybrid Vehicle Simulation

    Science.gov (United States)

    Slusser, R. A.; Chapman, C. P.; Brennand, J. P.

    1985-01-01

    ELVEC computer program provides vehicle designer with simulation tool for detailed studies of electric and hybrid vehicle performance and cost. ELVEC simulates performance of user-specified electric or hybrid vehicle under user specified driving schedule profile or operating schedule. ELVEC performs vehicle design and life cycle cost analysis.

  16. Prospects for the application of GaN power devices in hybrid electric vehicle drive systems

    International Nuclear Information System (INIS)

    Su, Ming; Chen, Chingchi; Rajan, Siddharth

    2013-01-01

    GaN, a wide bandgap semiconductor successfully implemented in optical and high-speed electronic devices, has gained momentum in recent years for power electronics applications. Along with rapid progress in material and device processing technologies, high-voltage transistors over 600 V have been reported by a number of teams worldwide. These advances make GaN highly attractive for the growing market of electrified vehicles, which currently employ bipolar silicon devices in the 600–1200 V class for the traction inverter. However, to capture this billion-dollar power market, GaN has to compete with existing IGBT products and deliver higher performance at comparable or lower cost. This paper reviews key achievements made by the GaN semiconductor industry, requirements of the automotive electric drive system and remaining challenges for GaN power devices to fit in the inverter application of hybrid vehicles. (invited review)

  17. Functional safety for road vehicles new challenges and solutions for e-mobility and automated driving

    CERN Document Server

    Ross, Hans-Leo

    2016-01-01

    This book highlights the current challenges for engineers involved in product development and the associated changes in procedure they make necessary. Methods for systematically analyzing the requirements for safety and security mechanisms are described using examples of how they are implemented in software and hardware, and how their effectiveness can be demonstrated in terms of functional and design safety are discussed. Given today’s new E-mobility and automated driving approaches, new challenges are arising and further issues concerning “Road Vehicle Safety” and “Road Traffic Safety” have to be resolved. To address the growing complexity of vehicle functions, as well as the increasing need to accommodate interdisciplinary project teams, previous development approaches now have to be reconsidered, and system engineering approaches and proven management systems need to be supplemented or wholly redefined. The book presents a continuous system development process, starting with the basic requiremen...

  18. Naturalistic Driving: A Framework and Advances in Using Big Data

    Directory of Open Access Journals (Sweden)

    Frank Knoefel

    2018-03-01

    Full Text Available Driving is an activity that facilitates physical, cognitive, and social stimulation in older adults, ultimately leading to better physical and cognitive health. However, aging is associated with declines in vision, physical health, and cognitive health, all of which can affect driving ability. One way of assessing driving ability is with the use of sensors in the older adult’s own vehicle. This paper provides a framework for driving assessment and addresses how naturalistic driving studies can assist in such assessments. The framework includes driving characteristics (how much driving, speed, position, type of road, actions and reactions (lane changes, intersections, passing, merging, traffic lights, pedestrians, other vehicles, destinations (variety and distance, sequencing and route planning, and driving conditions (time of day and season. Data from a subset of Ottawa drivers from the Candrive study is used to illustrate the use of naturalistic driving data. Challenges in using naturalistic driving big data and the changing technology in vehicles are discussed.

  19. Estimation of Longitudinal Force and Sideslip Angle for Intelligent Four-Wheel Independent Drive Electric Vehicles by Observer Iteration and Information Fusion.

    Science.gov (United States)

    Chen, Te; Chen, Long; Xu, Xing; Cai, Yingfeng; Jiang, Haobin; Sun, Xiaoqiang

    2018-04-20

    Exact estimation of longitudinal force and sideslip angle is important for lateral stability and path-following control of four-wheel independent driven electric vehicle. This paper presents an effective method for longitudinal force and sideslip angle estimation by observer iteration and information fusion for four-wheel independent drive electric vehicles. The electric driving wheel model is introduced into the vehicle modeling process and used for longitudinal force estimation, the longitudinal force reconstruction equation is obtained via model decoupling, the a Luenberger observer and high-order sliding mode observer are united for longitudinal force observer design, and the Kalman filter is applied to restrain the influence of noise. Via the estimated longitudinal force, an estimation strategy is then proposed based on observer iteration and information fusion, in which the Luenberger observer is applied to achieve the transcendental estimation utilizing less sensor measurements, the extended Kalman filter is used for a posteriori estimation with higher accuracy, and a fuzzy weight controller is used to enhance the adaptive ability of observer system. Simulations and experiments are carried out, and the effectiveness of proposed estimation method is verified.

  20. The Alabama VIP older driver study rationale and design: examining the relationship between vision impairment and driving using naturalistic driving techniques.

    Science.gov (United States)

    Owsley, Cynthia; McGwin, Gerald; Antin, Jonathan F; Wood, Joanne M; Elgin, Jennifer

    2018-02-07

    Older drivers aged ≥70 years old have among the highest rates of motor vehicle collisions (MVC) compared to other age groups. Driving is a highly visual task, and older adults have a high prevalence of vision impairment compared to other ages. Most studies addressing visual risk factors for MVCs by older drivers utilize vehicle accident reports as the primary outcome, an approach with several methodological limitations. Naturalistic driving research methods overcome these challenges and involve installing a high-tech, unobtrusive data acquisition system (DAS) in an older driver's own vehicle. The DAS continuously records multi-channel video of driver and roadway, sensor-based kinematics, GPS location, and presence of nearby objects in front of the vehicle, providing an objective measure of driving exposure. In this naturalistic driving study, the purpose is to examine the relationship between vision and crashes and near-crashes, lane-keeping, turning at intersections, driving performance during secondary tasks demands, and the role of front-seat passengers. An additional aim is to compare results of the on-road driving evaluation by a certified driving rehabilitation specialist to objective indicators of driving performance derived from the naturalistic data. Drivers ≥70 years old are recruited from ophthalmology clinics and a previous population-based study of older drivers, with the goal of recruiting persons with wide ranging visual function. Target samples size is 195 drivers. At a baseline visit, the DAS is installed in the participant's vehicle and a battery of health and functional assessments are administered to the driver including visual-sensory and visual-cognitive tests. The DAS remains installed in the vehicle for six months while the participant goes about his/her normal driving with no imposed study restrictions. After six months, the driver returns for DAS de-installation, repeat vision testing, and an on-road driving evaluation by a certified

  1. Automated driving safer and more efficient future driving

    CERN Document Server

    Horn, Martin

    2017-01-01

    The main topics of this book include advanced control, cognitive data processing, high performance computing, functional safety, and comprehensive validation. These topics are seen as technological bricks to drive forward automated driving. The current state of the art of automated vehicle research, development and innovation is given. The book also addresses industry-driven roadmaps for major new technology advances as well as collaborative European initiatives supporting the evolvement of automated driving. Various examples highlight the state of development of automated driving as well as the way forward. The book will be of interest to academics and researchers within engineering, graduate students, automotive engineers at OEMs and suppliers, ICT and software engineers, managers, and other decision-makers.

  2. Antihistamines and driving safety.

    Science.gov (United States)

    O'Hanlon, J F

    1988-10-27

    The results of two placebo-controlled driving performance studies confirm laboratory data showing that the nonsedating antihistamine terfenadine does not influence the driving performance of users. The amplitude of vehicle weaving calculated for drivers who received this agent did not differ from control values. Neither terfenadine nor loratadine, another nonsedating antihistamine, potentiated the adverse effects of alcohol on driving performance.

  3. Reliable and Efficient Autonomous Driving: the Need for Heterogeneous Vehicular Networks

    OpenAIRE

    Zheng, Kan; Zheng, Qiang; Yang, Haojun; Zhao, Long; Hou, Lu; Chatzimisios, Periklis

    2015-01-01

    Autonomous driving technology has been regarded as a promising solution to reduce road accidents and traffic congestion, as well as to optimize the usage of fuel and lane. Reliable and high efficient Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications are essential to let commercial autonomous driving vehicles be on the road before 2020. The current paper firstly presents the concept of Heterogeneous Vehicular NETworks (HetVNETs) for autonomous driving, in which an imp...

  4. Motor Vehicle Safety

    Science.gov (United States)

    ... these crashes is one part of motor vehicle safety. Here are some things you can do to ... speed or drive aggressively Don't drive impaired Safety also involves being aware of others. Share the ...

  5. Research on Parameter Design of Multi - axis Hydrostatic Transmission Vehicle

    Directory of Open Access Journals (Sweden)

    Zhao Liang

    2017-01-01

    Full Text Available In order to obtain reasonable parameters in the design of driving system of multi-axis hydrostatic transmission vehicle, the working principle of single-side drive of hydrostatic transmission vehicle is introduced. The matching and control of engine and hydraulic pump are analyzed. According to the driving equation of vehicle, The driving force required for driving system is determined, and the parameters of hydraulic motor, hydraulic pump, system working pressure and braking system are designed and calculated, which provides the parameter design for driving system of multi-axis hydrostatic transmission Reliable theoretical basis.

  6. Fleet analysis of headway distance for autonomous driving.

    Science.gov (United States)

    Ivanco, Andrej

    2017-12-01

    Modern automobiles are going through a paradigm shift, where the driver may no longer be needed to drive the vehicle. As the self-driving vehicles are making their way to public roads the automakers have to ensure the naturalistic driving feel to gain drivers' confidence and accelerate adoption rates. This paper filters and analyzes a subset of radar data collected from SHRP2 with focus on characterizing the naturalistic headway distance with respect to the vehicle speed. The paper identifies naturalistic headway distance and compares it with the previous findings from the literature. A clear relation between time headway and speed was confirmed and quantified. A significant difference exists among individual drivers which supports a need to further refine the analysis. By understanding the relationship between human driving and their surroundings, the naturalistic driving behavior can be quantified and used to increase the adoption rates of autonomous driving. Dangerous and safety-compromising driving can be identified as well in order to avoid its replication in the control algorithms. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.

  7. An ultrasonic corer for planetary rock sample retrieval

    International Nuclear Information System (INIS)

    Harkness, P; Cardoni, A; Lucas, M

    2009-01-01

    Several recent and planned space projects have been focussed on surface rovers for planetary missions, such as the U.S. Mars Exploration Rovers and the European ExoMars. The main functions of similar extraterrestrial vehicles in the future will be moving across planetary surfaces and retrieving rock samples. This paper presents a novel ultrasonic rock sampling tool tuned in a longitudinal-torsional mode along with the conceptual design of a full coring apparatus for preload delivery and core removal. Drilling and coring bits have been designed so that a portion of the longitudinal motion supplied by the ultrasonic transducer is converted into torsional motion. Results of drilling/coring trials are also presented.

  8. Safe driving in a green world: a review of driver performance benchmarks and technologies to support 'smart' driving.

    Science.gov (United States)

    Young, Mark S; Birrell, Stewart A; Stanton, Neville A

    2011-05-01

    Road transport is a significant source of both safety and environmental concerns. With climate change and fuel prices increasingly prominent on social and political agendas, many drivers are turning their thoughts to fuel efficient or 'green' (i.e., environmentally friendly) driving practices. Many vehicle manufacturers are satisfying this demand by offering green driving feedback or advice tools. However, there is a legitimate concern regarding the effects of such devices on road safety--both from the point of view of change in driving styles, as well as potential distraction caused by the in-vehicle feedback. In this paper, we appraise the benchmarks for safe and green driving, concluding that whilst they largely overlap, there are some specific circumstances in which the goals are in conflict. We go on to review current and emerging in-vehicle information systems which purport to affect safe and/or green driving, and discuss some fundamental ergonomics principles for the design of such devices. The results of the review are being used in the Foot-LITE project, aimed at developing a system to encourage 'smart'--that is safe and green--driving. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  9. Automatic control of a robotic vehicle

    Science.gov (United States)

    Mcreynolds, S. R.

    1976-01-01

    Over the last several years Jet Propulsion Laboratory has been engaged in a project to develop some of the technology required to build a robotic vehicle for exploring planetary surfaces. An overview of hardware and software being developed for this project is given. Particular emphasis is placed on the description of the current design for the Vehicle System required for locomotion and the path planning algorithm.

  10. electric vehicle

    Directory of Open Access Journals (Sweden)

    W. R. Lee

    1999-01-01

    Full Text Available A major problem facing battery-powered electric vehicles is in their batteries: weight and charge capacity. Thus, a battery-powered electric vehicle only has a short driving range. To travel for a longer distance, the batteries are required to be recharged frequently. In this paper, we construct a model for a battery-powered electric vehicle, in which driving strategy is to be obtained such that the total travelling time between two locations is minimized. The problem is formulated as an optimization problem with switching times and speed as decision variables. This is an unconventional optimization problem. However, by using the control parametrization enhancing technique (CPET, it is shown that this unconventional optimization is equivalent to a conventional optimal parameter selection problem. Numerical examples are solved using the proposed method.

  11. Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles

    Science.gov (United States)

    . Fueling and Driving Options Plug-in hybrid electric vehicle batteries can be charged by an outside sized hybrid electric vehicle. If the vehicle is driven a shorter distance than its all-electric range drives the wheels almost all of the time, but the vehicle can switch to work like a parallel hybrid at

  12. Radiation protection for human interplanetary spaceflight and planetary surface operations

    Energy Technology Data Exchange (ETDEWEB)

    Clark, B.C. [Armed Forces Radiobiology Research Inst., Bethesda, MD (United States)]|[DLR Inst. of Aerospace Medicine, Cologne (Germany)]|[NASA, Goddard Space Flight Center, Greenbelt, MD (United States)

    1993-12-31

    Radiation protection issues are reviewed for five categories of radiation exposure during human missions to the moon and Mars: trapped radiation belts, galactic cosmic rays, solar flare particle events, planetary surface emissions, and on-board radiation sources. Relative hazards are dependent upon spacecraft and vehicle configurations, flight trajectories, human susceptibility, shielding effectiveness, monitoring and warning systems, and other factors. Crew cabins, interplanetary mission modules, surface habitats, planetary rovers, and extravehicular mobility units (spacesuits) provide various degrees of protection. Countermeasures that may be taken are reviewed relative to added complexity and risks that they could entail, with suggestions for future research and analysis.

  13. Communication System Architecture for Planetary Exploration

    Science.gov (United States)

    Braham, Stephen P.; Alena, Richard; Gilbaugh, Bruce; Glass, Brian; Norvig, Peter (Technical Monitor)

    2001-01-01

    Future human missions to Mars will require effective communications supporting exploration activities and scientific field data collection. Constraints on cost, size, weight and power consumption for all communications equipment make optimization of these systems very important. These information and communication systems connect people and systems together into coherent teams performing the difficult and hazardous tasks inherent in planetary exploration. The communication network supporting vehicle telemetry data, mission operations, and scientific collaboration must have excellent reliability, and flexibility.

  14. Vehicle electrification. Quo vadis?

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, N. [GM Global Research and Development, Warren, MI (United States); Eberle, U.; Formanski, V.; Grebe, U.D.; Matthe, R. [General Motors Europe, Ruesselsheim (Germany)

    2012-11-01

    This publication describes the development of electrified propulsion systems from the invention of the automobile to the present and then provides an outlook on expected technology progress. Vehicle application areas for the various systems are identified based on a range of energy supply chains and the technological limits of electric powertrain components. GM anticipates that vehicle electrification will increase in the future. Battery-electric vehicles will become competitive for some applications, especially intra-urban, short-distance driving. Range-extended electric vehicles provide longer driving range and offer full capability; with this technology, electric vehicles can serve as the prime vehicle for many customers. Hydrogen-powered fuel cell-electric powertrains have potential for application across most of the vehicle segments. They produce zero emissions during all phases of operation, offer short refueling times, but have powertrain cooling and hydrogen storage packaging constraints. While the market share of electrified vehicles is expected to increase significantly, GM expects conventional powertrains with internal combustion engines to also have a long future - however, a lot of them will be supported by various levels of electrification. (orig.)

  15. Multi-Objective Optimization Considering Battery Degradation for a Multi-Mode Power-Split Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Xuerui Ma

    2017-07-01

    Full Text Available A multi-mode power-split (MMPS hybrid electric vehicle (HEV has two planetary gearsets and clutches/grounds which results in several operation modes with enhanced electric drive capability and better fuel economy. Basically, the battery storage system is involved in different operation modes to satisfy the power demand and minimize the fuel consumption, whereas the complicated operation modes with frequent charging/discharging will absolutely influence the battery life because of degradation. In this paper, firstly, we introduce the solid electrolyte interface (SEI film growth model based on the previous study of the battery degradation principles and was verified according to the test data. We consider both the fuel economy and battery degradation as a multi-objective problem for MMPS HEV by normalization with a weighting factor. An instantaneous optimization is implemented based on the equivalent fuel consumption concept. Then the control strategy is implemented on a simulation framework integrating the MMPS powertrain model and the SEI film growth map model over some typical driving cycles, such as New European Driving Cycle (NEDC and Urban Dynamometer Driving Schedule (UDDS. Finally, the result demonstrates that these two objectives are conflicting and the trade-off reduces the battery degradation with fuel sacrifice. Additionally, the analysis reveals how the mode selection will reflect the battery degradation.

  16. Impact of Different Driving Cycles and Operating Conditions on CO2 Emissions and Energy Management Strategies of a Euro-6 Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Claudio Cubito

    2017-10-01

    Full Text Available Although Hybrid Electric Vehicles (HEVs represent one of the key technologies to reduce CO2 emissions, their effective potential in real world driving conditions strongly depends on the performance of their Energy Management System (EMS and on its capability to maximize the efficiency of the powertrain in real life as well as during Type Approval (TA tests. Attempting to close the gap between TA and real world CO2 emissions, the European Commission has decided to introduce from September 2017 the Worldwide Harmonized Light duty Test Procedure (WLTP, replacing the previous procedure based on the New European Driving Cycle (NEDC. The aim of this work is the analysis of the impact of different driving cycles and operating conditions on CO2 emissions and on energy management strategies of a Euro-6 HEV through the limited number of information available from the chassis dyno tests. The vehicle was tested considering different initial battery State of Charge (SOC, ranging from 40% to 65%, and engine coolant temperatures, from −7 °C to 70 °C. The change of test conditions from NEDC to WLTP was shown to lead to a significant reduction of the electric drive and to about a 30% increase of CO2 emissions. However, since the specific energy demand of WLTP is about 50% higher than that of NEDC, these results demonstrate that the EMS strategies of the tested vehicle can achieve, in test conditions closer to real life, even higher efficiency levels than those that are currently evaluated on the NEDC, and prove the effectiveness of HEV technology to reduce CO2 emissions.

  17. Views of US drivers about driving safety.

    Science.gov (United States)

    Williams, Allan F

    2003-01-01

    To assess how drivers view dangers on the highway, what motivates them to drive safely, how they say they reduce their crash and injury risk, and how they rate their own driving skills. Most drivers rated their skills as better than average. The biggest motivating factor for safe driving was concern for safety of others in their vehicle, followed by negative outcomes such as being in a crash, increased insurance costs, and fines. The greatest threats to their safety were thought to be other drivers' actions that increase crash risk such as alcohol impairment or running red lights. In terms of reducing crashes and injuries, drivers tended to focus on actions they could take such as driving defensively or using seat belts. There was less recognition of the role of vehicles and vehicle features in crash or injury prevention. Knowing how drivers view themselves and others, their concerns, and their motivations and techniques for staying out of trouble on the roads provides insight into the difficulty of changing driving practices.

  18. Real-world driving behaviour

    NARCIS (Netherlands)

    Rijkeboer, R.C.; Hendriksen, P.; Gense, N.L.J.

    2001-01-01

    With increasing complexity of engine management system there is a tendency for traditional driving cyles to become further and further removed from reality. So for a sensible evaluation of emissions and fuel consumption of road vehicles in the field there is an urgent need for 'real-world' driving

  19. Medications and impaired driving.

    Science.gov (United States)

    Hetland, Amanda; Carr, David B

    2014-04-01

    To describe the association of specific medication classes with driving outcomes and provide clinical recommendations. The MEDLINE and EMBASE databases were searched for articles published from January 1973 to June 2013 on classes of medications associated with driving impairment. The search included outcome terms such as automobile driving, motor vehicle crash, driving simulator, and road tests. Only English-language articles that contained findings from observational or interventional designs with ≥ 10 participants were included in this review. Cross-sectional studies, case series, and case reports were excluded. Driving is an important task and activity for the majority of adults. Some commonly prescribed medications have been associated with driving impairment measured by road performance, driving simulation, and/or motor vehicle crashes. This review of 30 studies identified findings with barbiturates, benzodiazepines, hypnotics, antidepressants, opioid and nonsteroidal analgesics, anticonvulsants, antipsychotics, antiparkinsonian agents, skeletal muscle relaxants, antihistamines, anticholinergic medications, and hypoglycemic agents. Additional studies of medication impact on sedation, sleep latency, and psychomotor function, as well as the role of alcohol, are also discussed. Psychotropic agents and those with central nervous system side effects were associated with measures of impaired driving performance. It is difficult to determine if such associations are actually a result of medication use or the medical diagnosis itself. Regardless, clinicians should be aware of the increased risk of impaired driving with specific classes of medications, educate their patients, and/or consider safer alternatives.

  20. Data Preservation and Curation for the Planetary Science Community

    Science.gov (United States)

    Hughes, J. S.; Crichton, D. J.; Joyner, R.; Hardman, S.; Rye, E.

    2013-12-01

    The Planetary Data System (PDS) has just released PDS4 Version 1.0, its next generation data standards for the planetary science archive. These data standards are the result of a multi-year effort to develop an information model based on accepted standards for data preservation, data curation, metadata management, and model development. The resulting information model is subsequently used to drive information system development from the generation of data standards documentation to the configuration of federated registries and search engines. This paper will provide an overview of the development of the PDS4 Information Model and focus on the application of the Open Archive Information System (OAIS) Reference Model - ISO 14721:2003, the Metadata Registry (MDR) Standard - ISO/IEC 11179, and the E-Business XML Standard to help ensure the long-term preservation and curation of planetary science data. Copyright 2013 California Institute of Technology Government sponsorship acknowledged

  1. Cleaner drive - Obstacles in the way of a market for a new generation of vehicles; Cleaner Drive. Hindernisse fuer die Markteinfuehrung von neuen Fahrzeug-Generationen. Bericht ueber die Beteiligung von e'mobile am EU-Projekt

    Energy Technology Data Exchange (ETDEWEB)

    Schwegler, U. [e' mobile, der Schweizerische Verband fuer elektrische und effiziente Strassenfahrzeuge, Berne (Switzerland); Domeniconi, R. [AssoVEL2, Mendrisio (Switzerland); Kaufmann, J. [Kaufmann Consulting, Berne (Switzerland); Werfeli, A. [Verband der Schweizerischen Gasindustrie, Zuerich (Switzerland)

    2004-07-01

    This final report for the Association of Swiss Traffic Engineers describes work done within the framework of the fifth European Research Framework Programme involving the development of tools to speed up the introduction of a new generations of vehicles. This report lists the work done by the Swiss e'mobil organisation and discusses the limitations placed on the work by its international framework. The report presents the 'Cleaner Drive' environmental evaluation methods used for vehicles. This considers greenhouse-gas emissions and external costs. Factors not considered, noise and bio-fuels, are mentioned. A data-base based decision-support tool is introduced. The development of the 'Cleaner Drive' web site is described. A further chapter takes a look at efforts being made in the area of filling stations for gaseous fuels.

  2. Next Generation Environmentally-Friendly Driving Feedback Systems Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Matthew [Regents Of The University Of California, Riverside, CA (United States); Boriboonsomsin, Kanok [Regents Of The University Of California, Riverside, CA (United States)

    2014-12-31

    The objective of this project is to design, develop, and demonstrate a next-generation, federal safety- and emission-complaint driving feedback system that can be deployed across the existing vehicle fleet and improve fleet average fuel efficiency by at least 2%. The project objective was achieved with the driving feedback system that encourages fuel-efficient vehicle travel and operation through: 1) Eco-Routing Navigation module that suggests the most fuel-efficient route from one stop to the next, 2) Eco-Driving Feedback module that provides sensible information, recommendation, and warning regarding fuel-efficient vehicle operation, and 3) Eco-Score and Eco-Rank module that provides a means for driving performance tracking, self-evaluation, and peer comparison. The system also collects and stores vehicle travel and operation data, which are used by Algorithm Updating module to customize the other modules for specific vehicles and adapts them to specific drivers over time. The driving feedback system was designed and developed as an aftermarket technology that can be retrofitted to vehicles in the existing fleet. It consists of a mobile application for smart devices running Android operating system, a vehicle on-board diagnostics connector, and a data server. While the system receives and utilizes real-time vehicle and engine data from the vehicle’s controller area network bus through the vehicle’s on-board diagnostic connector, it does not modify or interfere with the vehicle’s controller area network bus, and thus, is in compliance with federal safety and emission regulations. The driving feedback system was demonstrated and then installed on 45 vehicles from three different fleets for field operational test. These include 15 private vehicles of the general public, 15 pickup trucks of the California Department of Transportation that are assigned to individual employees for business use, and 15 shuttle buses of the Riverside Transit Agency that are used

  3. Stakeholders' opinions on a future in-vehicle alcohol detection system for prevention of drunk driving.

    Science.gov (United States)

    Anund, Anna; Antonson, Hans; Ihlström, Jonas

    2015-01-01

    There is a common understanding that driving under the influence of alcohol is associated with higher risk of being involved in crashes with injuries and possible fatalities as the outcome. Various countermeasures have therefore from time to time been taken by the authorities to prevent drunk driving. One of them has been the alcohol interlock. Up to now, interlocks have mainly been used by previously convicted drunk drivers and in the commercial road transport sector, but not in private cars. New technology has today reached a level where broader implementation might be possible. To our knowledge, however, little is known about different stakeholders' opinions of a broader implementation of such systems. In order to increase that knowledge, we conducted a focus group study to collect in-depth thoughts from different stakeholders on this topic. Eight focus groups representing a broad societal span were recruited and conducted for the purpose. The results show that most stakeholders thought that an integrated system for alcohol detection in vehicles might be beneficial in lowering the number of drunk driving crashes. They said that the system would probably mainly prevent driving by people who unintentionally and unknowingly drive under the influence of alcohol. The groups did, however, not regard the system as a final solution to the drunk driving problem, and believed that certain groups, such as criminals and alcoholics, would most likely find a way around the system. Concerns were raised about the risk of increased sleepy driving and driving just under the legal blood alcohol concentration (BAC) limit. The results also indicate that stakeholders preferred a system that provides information on the BAC up to the legal limit, but not for levels above the limit; for those, the system should simply prevent the car from starting. Acceptance of the system depended on the reliability of the system, on its ability to perform fast sampling, and on the analytical process

  4. Overview of the Mars Sample Return Earth Entry Vehicle

    Science.gov (United States)

    Dillman, Robert; Corliss, James

    2008-01-01

    NASA's Mars Sample Return (MSR) project will bring Mars surface and atmosphere samples back to Earth for detailed examination. Langley Research Center's MSR Earth Entry Vehicle (EEV) is a core part of the mission, protecting the sample container during atmospheric entry, descent, and landing. Planetary protection requirements demand a higher reliability from the EEV than for any previous planetary entry vehicle. An overview of the EEV design and preliminary analysis is presented, with a follow-on discussion of recommended future design trade studies to be performed over the next several years in support of an MSR launch in 2018 or 2020. Planned topics include vehicle size for impact protection of a range of sample container sizes, outer mold line changes to achieve surface sterilization during re-entry, micrometeoroid protection, aerodynamic stability, thermal protection, and structural materials selection.

  5. Autonomous driving in urban environments: approaches, lessons and challenges.

    Science.gov (United States)

    Campbell, Mark; Egerstedt, Magnus; How, Jonathan P; Murray, Richard M

    2010-10-13

    The development of autonomous vehicles for urban driving has seen rapid progress in the past 30 years. This paper provides a summary of the current state of the art in autonomous driving in urban environments, based primarily on the experiences of the authors in the 2007 DARPA Urban Challenge (DUC). The paper briefly summarizes the approaches that different teams used in the DUC, with the goal of describing some of the challenges that the teams faced in driving in urban environments. The paper also highlights the long-term research challenges that must be overcome in order to enable autonomous driving and points to opportunities for new technologies to be applied in improving vehicle safety, exploiting intelligent road infrastructure and enabling robotic vehicles operating in human environments.

  6. [Motor vehicle driving and diabetes mellitus - medical aspects].

    Science.gov (United States)

    Brož, Jan; Kriváňová, Lenka Syčová; Fedáková, Zuzana; Petrosyan, Lilit; Kvapil, Milan; Polák, Jan

    2016-03-01

    Diabetes mellitus is a disease which may affect the eligibility to hold a driving license and increase the risk of a road accident. Hypoglycemia while driving is considered to be the most risky situation, with diabetes increasing the mentioned risk for instance due to impaired vision in the case of possible retinopathy. The group of drivers with diabetes being at the greatest risk as to accidents are those with a case history of severe hypoglycemia or hypoglycemia occurred while driving, or possibly of a road accident. Measuring glycaemia before driving and their knowledge how to prevent and treat hypoglycemia - those are the two crucial preventive elements indispensable for insulin treated diabetes patients in order to secure safe road traffic.

  7. Planning of speed profiles for vehicles with automatic drive; Planung von Geschwindigkeitsprofilen fuer automatisch gefuehrte Fahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, O.

    2005-07-01

    Based upon the calculation of US authorities 97% of all accidents are caused by mistakes of the driver. Due to this fact one of the major focuses of research activities of the automobile industry was put on the development of new assistance systems for the driver. These technologies indicate potential risks to the driver and support him with decisions in terms of the actual driving behaviour in dangerous situations. This work presents a new system that provides prospective information in real time about the course of the road lying ahead of the vehicle. Based on this data the driver's assistance system will provide a prognosis on the force working on the vehicle and then propose a suitable speed strategy that guarantees a safe drive at any time (orig.) [German] Nach Berechnungen von US Behoerden sind 97% aller Unfaelle auf Fehlverhalten seitens des Fahrers zurueckzufuehren. Angesichts dieser Tatsache lag in den letzten Jahren einer der wesentlichen Schwerpunkte der Forschungsaktivitaeten der Automobilindustrie in der Entwicklung neuer Fahrerassistenzsysteme. Diese Technologien weisen den Fahrer auf potentielle Gefahren hin und unterstuetzen ihn bei der Entscheidung hinsichtlich des aktuellen Fahrverhaltens in gefaehrlichen Situationen. In der vorliegenden Arbeit wird ein neuartiges Verfahren vorgestellt, welches vorausschauend Informationen ueber den vor dem Fahrzeug zu erwartenden Fahrbahnverlauf in Echtzeit bereitstellt. Basierend auf diesen Daten wird vom Fahrerassistenzsystem eine Prognose ueber die auf das Fahrzeug wirkende Kraft erstellt und anschliessend eine geeignete Geschwindigkeitsstrategie vorgeschlagen, die ein sicheres Durchfahren der Kurve zu jedem Zeitpunkt gewaehrleistet. (orig.)

  8. Driving and engine cycles

    CERN Document Server

    Giakoumis, Evangelos G

    2017-01-01

    This book presents in detail the most important driving and engine cycles used for the certification and testing of new vehicles and engines around the world. It covers chassis and engine-dynamometer cycles for passenger cars, light-duty vans, heavy-duty engines, non-road engines and motorcycles, offering detailed historical information and critical review. The book also provides detailed examples from SI and diesel engines and vehicles operating during various cycles, with a focus on how the engine behaves during transients and how this is reflected in emitted pollutants, CO2 and after-treatment systems operation. It describes the measurement methods for the testing of new vehicles and essential information on the procedure for creating a driving cycle. Lastly, it presents detailed technical specifications on the most important chassis-dynamometer cycles around the world, together with a direct comparison of those cycles.

  9. Auto warranty and driving patterns

    International Nuclear Information System (INIS)

    Anastasiadis, Simon; Anderson, Boyd; Chukova, Stefanka

    2013-01-01

    Automobile warranty coverage is typically limited by age as well as mileage. However, the age is known for all sold vehicles at all times, but mileage is only observed for a vehicle with a claim and only at the time of the claim. We study the relationship between the expected number/cost of warranty claims and the driving patterns. Within a nonparametric framework, we account for the rate of mileage accumulation and propose a measure for the variability of this rate over a vehicle's observable life. We illustrate the ideas with real warranty data and comment on the relationship between the expected number/cost of warranty claims and the driving patterns using results adjusted/unadjusted for withdrawals from the warranty coverage due to mileage accumulation

  10. Current challenges in autonomous driving

    Science.gov (United States)

    Barabás, I.; Todoruţ, A.; Cordoş, N.; Molea, A.

    2017-10-01

    Nowadays the automotive industry makes a quantum shift to a future, where the driver will have smaller and smaller role in driving his or her vehicle ending up being totally excluded. In this paper, we have investigated the different levels of driving automatization, the prospective effects of these new technologies on the environment and traffic safety, the importance of regulations and their current state, the moral aspects of introducing these technologies and the possible scenarios of deploying the autonomous vehicles. We have found that the self-driving technologies are facing many challenges: a) They must make decisions faster in very diverse conditions which can include many moral dilemmas as well; b) They have an important potential in reducing the environmental pollution by optimizing their routes, driving styles by communicating with other vehicles, infrastructures and their environment; c) There is a considerable gap between the self-drive technology level and the current regulations; fortunately, this gap shows a continuously decreasing trend; d) In case of many types of imminent accidents management there are many concerns about the ability of making the right decision. Considering that this field has an extraordinary speed of development, our study is up to date at the submission deadline. Self-driving technologies become increasingly sophisticated and technically accessible, and in some cases, they can be deployed for commercial vehicles as well. According to the current stage of research and development, it is still unclear how the self-driving technologies will be able to handle extreme and unexpected events including their moral aspects. Since most of the traffic accidents are caused by human error or omission, it is expected that the emergence of the autonomous technologies will reduce these accidents in their number and gravity, but the very few currently available test results have not been able to scientifically underpin this issue yet. The

  11. Vibration condition monitoring of planetary gearbox under varying external load

    Energy Technology Data Exchange (ETDEWEB)

    Bartelmus, W.; Zimroz, R. [Wroclaw University of Technology, Wroclaw (Poland)

    2009-01-15

    The paper shows that for condition monitoring of planetary gearboxes it is important to identify the external varying load condition. In the paper, systematic consideration has been taken of the influence of many factors on the vibration signals generated by a system in which a planetary gearbox is included. These considerations give the basis for vibration signal interpretation, development of the means of condition monitoring, and for the scenario of the degradation of the planetary gearbox. Real measured vibration signals obtained in the industrial environment are processed. The signals are recorded during normal operation of the diagnosed objects, namely planetary gearboxes, which are a part of the driving system used in a bucket wheel excavator, used in lignite mines. It has been found that the most important factor of the proper planetary gearbox condition is connected with perturbation of arm rotation, where an arm rotation gives rise to a specific vibration signal whose properties are depicted by a short-time Fourier transform (STFT) and Wigner-Ville distribution presented as a time-frequency map. The paper gives evidence that there are two dominant low-frequency causes that influence vibration signal modulation, i.e. the varying load, which comes from the nature of the bucket wheel digging process, and the arm/carrier rotation. These two causes determine the condition of the planetary gearboxes considered.

  12. Teens' distracted driving behavior: Prevalence and predictors.

    Science.gov (United States)

    Gershon, Pnina; Zhu, Chunming; Klauer, Sheila G; Dingus, Tom; Simons-Morton, Bruce

    2017-12-01

    Teen drivers' over-involvement in crashes has been attributed to a variety of factors, including distracted driving. With the rapid development of in-vehicle systems and portable electronic devices, the burden associated with distracted driving is expected to increase. The current study identifies predictors of secondary task engagement among teenage drivers and provides basis for interventions to reduce distracted driving behavior. We described the prevalence of secondary tasks by type and driving conditions and evaluated the associations between the prevalence of secondary task engagement, driving conditions, and selected psychosocial factors. The private vehicles of 83 newly-licensed teenage drivers were equipped with Data Acquisition Systems (DAS), which documented driving performance measures, including secondary task engagement and driving environment characteristics. Surveys administered at licensure provided psychosocial measures. Overall, teens engaged in a potentially distracting secondary task in 58% of sampled road clips. The most prevalent types of secondary tasks were interaction with a passenger, talking/singing (no passenger), external distraction, and texting/dialing the cell phone. Secondary task engagement was more prevalent among those with primary vehicle access and when driving alone. Social norms, friends' risky driving behaviors, and parental limitations were significantly associated with secondary task prevalence. In contrast, environmental attributes, including lighting and road surface conditions, were not associated with teens' engagement in secondary tasks. Our findings indicated that teens engaged in secondary tasks frequently and poorly regulate their driving behavior relative to environmental conditions. Practical applications: Peer and parent influences on secondary task engagement provide valuable objectives for countermeasures to reduce distracted driving among teenage drivers. Copyright © 2017 National Safety Council and

  13. An investigation on the fuel savings potential of hybrid hydraulic refuse collection vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Frank A., E-mail: bender@isys.uni-stuttgart.de; Bosse, Thomas; Sawodny, Oliver

    2014-09-15

    Highlights: • Driving cycle acquisition in a refuse collection vehicle. • Vehicle modeling and validation for numerical simulations based on the measured driving cycle. • Fuel consumption analysis for a conventional diesel vehicle and a hybrid hydraulic vehicle. - Abstract: Refuse trucks play an important role in the waste collection process. Due to their typical driving cycle, these vehicles are characterized by large fuel consumption, which strongly affects the overall waste disposal costs. Hybrid hydraulic refuse vehicles offer an interesting alternative to conventional diesel trucks, because they are able to recuperate, store and reuse braking energy. However, the expected fuel savings can vary strongly depending on the driving cycle and the operational mode. Therefore, in order to assess the possible fuel savings, a typical driving cycle was measured in a conventional vehicle run by the waste authority of the City of Stuttgart, and a dynamical model of the considered vehicle was built up. Based on the measured driving cycle and the vehicle model including the hybrid powertrain components, simulations for both the conventional and the hybrid vehicle were performed. Fuel consumption results that indicate savings of about 20% are presented and analyzed in order to evaluate the benefit of hybrid hydraulic vehicles used for refuse collection.

  14. An investigation on the fuel savings potential of hybrid hydraulic refuse collection vehicles

    International Nuclear Information System (INIS)

    Bender, Frank A.; Bosse, Thomas; Sawodny, Oliver

    2014-01-01

    Highlights: • Driving cycle acquisition in a refuse collection vehicle. • Vehicle modeling and validation for numerical simulations based on the measured driving cycle. • Fuel consumption analysis for a conventional diesel vehicle and a hybrid hydraulic vehicle. - Abstract: Refuse trucks play an important role in the waste collection process. Due to their typical driving cycle, these vehicles are characterized by large fuel consumption, which strongly affects the overall waste disposal costs. Hybrid hydraulic refuse vehicles offer an interesting alternative to conventional diesel trucks, because they are able to recuperate, store and reuse braking energy. However, the expected fuel savings can vary strongly depending on the driving cycle and the operational mode. Therefore, in order to assess the possible fuel savings, a typical driving cycle was measured in a conventional vehicle run by the waste authority of the City of Stuttgart, and a dynamical model of the considered vehicle was built up. Based on the measured driving cycle and the vehicle model including the hybrid powertrain components, simulations for both the conventional and the hybrid vehicle were performed. Fuel consumption results that indicate savings of about 20% are presented and analyzed in order to evaluate the benefit of hybrid hydraulic vehicles used for refuse collection

  15. E-drive with electrically controlled differential; E-Antrieb mit elektrisch geregeltem Differenzial

    Energy Technology Data Exchange (ETDEWEB)

    Smetana, Tomas; Biermann, Thorsten [Schaeffler Technologies GmbH und Co. KG, Herzogenaurach (Germany); Rohe, Marco [AFT Atlas Fahrzeugtechnik GmbH, Werdohl (Germany); Heinrich, Wolfgang [IDAM, Suhl (Germany)

    2011-10-15

    Schaeffler is presenting an all-wheel drive electric vehicle named 'Active eDrive'. The name is intended principally to convey innovation and the USP of the drive system: an electric differential with a torque vectoring function. The system combines the final drive with intelligent transverse torque distribution which, when used on axles, enables the distribution of torque over the longitudinal axis of the vehicle. The final drive can be integrated in both electric and hybrid vehicles with or without a range extender capability. The authors first explain the mechanical requirements and then describe the electrical systems that are intended to fulfill these. (orig.)

  16. IEA Vehicle Efficiency Workshops Drive New Vehicle Policy Approaches

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Fuel economy is not only about getting more performance from the engine. Components outside the engine are also large fuel consumers. If fuel-economy test methods always remembered that, vehicle manufacturers would optimise component performance. A number of initiatives addressing component test standards and related policies have been triggered by IEA's recent workshops.

  17. Cloud Incubator Car: A Reliable Platform for Autonomous Driving

    Directory of Open Access Journals (Sweden)

    Raúl Borraz

    2018-02-01

    Full Text Available It appears clear that the future of road transport is going through enormous changes (intelligent transport systems, the main one being the Intelligent Vehicle (IV. Automated driving requires a huge research effort in multiple technological areas: sensing, control, and driving algorithms. We present a comprehensible and reliable platform for autonomous driving technology development as well as for testing purposes, developed in the Intelligent Vehicles Lab at the Technical University of Cartagena. We propose an open and modular architecture capable of easily integrating a wide variety of sensors and actuators which can be used for testing algorithms and control strategies. As a proof of concept, this paper presents a reliable and complete navigation application for a commercial vehicle (Renault Twizy. It comprises a complete perception system (2D LIDAR, 3D HD LIDAR, ToF cameras, Real-Time Kinematic (RTK unit, Inertial Measurement Unit (IMU, an automation of the driving elements of the vehicle (throttle, steering, brakes, and gearbox, a control system, and a decision-making system. Furthermore, two flexible and reliable algorithms are presented for carrying out global and local route planning on board autonomous vehicles.

  18. Electric drives

    Energy Technology Data Exchange (ETDEWEB)

    1986-10-01

    Several electric vehicles have been tested in long-term tests, i.e. an electric passenger car (maximum speed 115 km/h) and several busses for use in pedestrians' zones, spas, airports, natural reserves, and urban transportation (DUO busses). The ICE high-speed train is discussed in some detail, i.e. its aeroacoustic and aerodynamic design, running gear, computer-controlled drives and brakes, diagnostic systems, and electrical equipment. The Berlin Maglev system is mentioned as well as current inverters in rail vehicles. (HWJ).

  19. Research on Hybrid Vehicle Drivetrain

    Science.gov (United States)

    Xie, Zhongzhi

    Hybrid cars as a solution to energy saving, emission reduction measures, have received widespread attention. Motor drive system as an important part of the hybrid vehicles as an important object of study. Based on the hybrid electric vehicle powertrain control system for permanent magnet synchronous motor as the object of study. Can be applied to hybrid car compares the characteristics of traction motors, chose permanent magnet synchronous Motors as drive motors for hybrid vehicles. Building applications in hybrid cars in MATLAB/Simulink simulation model of permanent-magnet synchronous motor speed control system and analysis of simulation results.

  20. The study about planetary gearbox virtual prototyping with nonlinear gear contact characteristics

    International Nuclear Information System (INIS)

    Yin Huabing; Zhou Guangming

    2010-01-01

    The virtual prototypes of gear transmission system built in most multi-body dynamic software have difficulties in describing the gear mesh characteristics. The gear mesh contact is modelled as rigid contact and this is not accurate for the gear mesh contact, which is elastic or flexible. The gear contact formula used in the multi-body dynamic software does not reveal the gear contact nonlinear stiffness characteristic. The model built with gear meshing contact is difficult to solve because of its time-consuming algorithm. In the paper a new method is put forward to build the virtual prototype of planetary gearbox system according to the nonlinear mesh stiffness and mesh phase obtained through FEM models. This new FEM method of gear mesh stiffness calculation is much more accurate than the common formulas. The gear mesh nonlinear stiffness of sun gear- pinion and pinion-ring gear of all the planetary gear sets in gearbox are obtained through MATALB code, which is used to read and plot the analyzing result data. The gear mesh phase differences between different pinions with suns or rings of different planetary gear set can be also obtained. With all these data modelled in simulink (or other software) and integrated with the multi-body dynamic planetary gearbox model and the gear meshing contact problem in multi-body gear models is solved easily and accurately. The interfaces for gear mesh stiffness and mesh phases are designed for multi-body dynamic model and simulink. The nonlinear planetary gear set prototyping models are integrated to become the whole planetary gear box model and the whole vehicle system model built in multi-body dynamic software can be integrated to simulate different duty conditions. At last high speed input is put into the nonlinear planetary transmission model and the different duty cases are simulated. The dynamic characteristics of different parts are obtained. The dynamic characteristic comparison between nonlinear and linear models is made

  1. Hybrid Electric Vehicle Testing | Transportation Research | NREL

    Science.gov (United States)

    Hybrid Electric Vehicle Evaluations Hybrid Electric Vehicle Evaluations How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an is used to propel the vehicle during normal drive cycles. The batteries supply additional power for

  2. Cooling Performance Characteristics of the Stack Thermal Management System for Fuel Cell Electric Vehicles under Actual Driving Conditions

    Directory of Open Access Journals (Sweden)

    Ho-Seong Lee

    2016-04-01

    Full Text Available The cooling performance of the stack radiator of a fuel cell electric vehicle was evaluated under various actual road driving conditions, such as highway and uphill travel. The thermal stability was then optimized, thereby ensuring stable operation of the stack thermal management system. The coolant inlet temperature of the radiator in the highway mode was lower than that associated with the uphill mode because the corresponding frontal air velocity was higher than obtained in the uphill mode. In both the highway and uphill modes, the coolant temperatures of the radiator, operated under actual road driving conditions, were lower than the allowable limit (80 °C; this is the maximum temperature at which stable operation of the stack thermal management system of the fuel cell electric vehicle could be maintained. Furthermore, under actual road driving conditions in uphill mode, the initial temperature difference (ITD between the coolant temperature and air temperature of the system was higher than that associated with the highway mode; this higher ITD occurred even though the thermal load of the system in uphill mode was greater than that corresponding to the highway mode. Since the coolant inlet temperature is expected to exceed the allowable limit (80 °C in uphill mode under higher ambient temperature with air conditioning system operation, the FEM design layout should be modified to improve the heat capacity. In addition, the overall volume of the stack cooling radiator is 52.2% higher than that of the present model and the coolant inlet temperature of the improved radiator is 22.7% lower than that of the present model.

  3. A framework for safer driving in Mauritius

    Directory of Open Access Journals (Sweden)

    V. Bassoo

    2017-12-01

    Full Text Available According to the National Transport Authority (NTA, there were 493,081 registered vehicles in Mauritius in April 2016, which represents a 1.4% annual increase compared to 2015. Despite the sensitization campaigns and the series of measures setup by the Minister of Public Infrastructure and Land Transport, the number of road accidents continues to rise. The three main elements that contribute to accidents are: road infrastructure, vehicle and driver. The driver has the highest contribution in collisions. If the driver is given the right information (e.g. driving behaviour, accident-prone areas and vehicle status at the right time, he/she can make better driving decisions and react promptly to critical situations. This paper proposes a framework for safer driving in Mauritius that uses an on-board car diagnostic module (OBDII to collect data such as vehicle average speed, engine revolution and acceleration. This module relays the data to a cloud environment where an adaptive algorithm analyses the data and predicts driver behaviour in real-time. Based on driving behaviour, mobile alerts can be sent to the driver in the form of messages, voice commands or beeps. A survey was also carried out to evaluate the acceptance rate of such a framework by people of different age groups in Mauritius.

  4. Traffic signs recognition for driving assistance

    Science.gov (United States)

    Sai Sangram Reddy, Yatham; Karthik, Devareddy; Rana, Nikunj; Jasmine Pemeena Priyadarsini, M.; Rajini, G. K.; Naseera, Shaik

    2017-11-01

    In the current circumstances with the innovative headway, we must be able to provide assistance to the driving in recognising the traffic signs on the roads. At present time, many reviews are being directed moving in the direction of the usage of a keen Traffic Systems. One field of this exploration is driving support systems, and many reviews are being directed to create frameworks which distinguish and perceive street signs in front of the vehicle, and afterward utilize the data to advise the driver or to even control the vehicle by implementing this system on self-driving vehicles. In this paper we propose a method to detect the traffic sign board in a frame using HAAR cascading and then identifying the sign on it. The output may be either given out in voice or can be displayed as per the driver’s convenience. Each of the Traffic Sign is recognised using a database of images of symbols used to train the KNN classifier using open CV libraries.

  5. [Investigation of emission characteristics for light duty vehicles with a portable emission measurement system].

    Science.gov (United States)

    Wang, Hai-Kun; Fu, Li-Xin; Zhou, Yu; Lin, Xin; Chen, Ai-Zhong; Ge, Wei-hu; Du, Xuan

    2008-10-01

    Emission from 7 typical light-duty vehicles under actual driving conditions was monitored using a portable emission measurement system to gather data for characterization of the real world vehicle emission in Shenzhen, including the effects of driving modes on vehicle emission, comparison of fuel consumption based emission factors (g x L(-1) with mileage based emission factors (g x km(-1)), and the average emission factors of the monitored vehicles. The acceleration and deceleration modes accounted for 66.7% of total travel time, 80.3% of traveling distance and 74.6%-79.2% of vehicle emission; the acceleration mode contributed more than other driving modes. The fuel based emission factors were less dependent on the driving speed; they may be utilized in building macro-scale vehicle emission inventory with smaller sensitivity to the vehicle driving conditions. The effect of vehicle technology on vehicle emission was significant; the emission factors of CO, HC and NO(x) of carbureted vehicles were 19.9-20.5, 5.6-26.1 and 1.8-2.0 times the more advanced vehicles of Euro II, respectively. Using the ECE + EUDC driving cycle would not produce the desired real-world emission rates of light duty vehicles in a typical Chinese city.

  6. To See the Unseen: A History of Planetary Radar Astronomy

    Science.gov (United States)

    Butrica, Andrew J.

    1996-01-01

    This book relates the history of planetary radar astronomy from its origins in radar to the present day and secondarily to bring to light that history as a case of 'Big Equipment but not Big Science'. Chapter One sketches the emergence of radar astronomy as an ongoing scientific activity at Jodrell Bank, where radar research revealed that meteors were part of the solar system. The chief Big Science driving early radar astronomy experiments was ionospheric research. Chapter Two links the Cold War and the Space Race to the first radar experiments attempted on planetary targets, while recounting the initial achievements of planetary radar, namely, the refinement of the astronomical unit and the rotational rate and direction of Venus. Chapter Three discusses early attempts to organize radar astronomy and the efforts at MIT's Lincoln Laboratory, in conjunction with Harvard radio astronomers, to acquire antenna time unfettered by military priorities. Here, the chief Big Science influencing the development of planetary radar astronomy was radio astronomy. Chapter Four spotlights the evolution of planetary radar astronomy at the Jet Propulsion Laboratory, a NASA facility, at Cornell University's Arecibo Observatory, and at Jodrell Bank. A congeries of funding from the military, the National Science Foundation, and finally NASA marked that evolution, which culminated in planetary radar astronomy finding a single Big Science patron, NASA. Chapter Five analyzes planetary radar astronomy as a science using the theoretical framework provided by philosopher of science Thomas Kuhn. Chapter Six explores the shift in planetary radar astronomy beginning in the 1970s that resulted from its financial and institutional relationship with NASA Big Science. Chapter Seven addresses the Magellan mission and its relation to the evolution of planetary radar astronomy from a ground-based to a space-based activity. Chapters Eight and Nine discuss the research carried out at ground

  7. Advanced Technology and Alternative Fuel Vehicles

    International Nuclear Information System (INIS)

    Tuttle, J.

    2001-01-01

    This fact sheet provides a basic overview of today's alternative fuel choices--including biofuels, biodiesel, electricity, and hydrogen--alternative fuel vehicles, and advanced vehicle technology, such as hybrid electric vehicles, fuel cells and advanced drive trains

  8. Equivalent Consumption Minimization Strategy for the Control of Real Driving NOx Emissions of a Diesel Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Tobias Nüesch

    2014-05-01

    Full Text Available Motivated by the fact that the real driving NOx emissions (RDE of conventional diesel vehicles can exceed the legislation norms by far, a concept for the control of RDE with a diesel parallel hybrid electric vehicle (HEV is proposed. By extending the well-known equivalent consumption minimization strategy (ECMS, the power split degree of freedom is used to control the NOx emissions and the battery state of charge (SOC simultaneously. Through an appropriate formulation of the problem, the feedback control is shown to be separable into two dependent PI controllers. By hardware-in-the-loop (HIL experiments, as well as by simulations, the proposed method is shown to minimize the fuel consumption while tracking a given reference trajectory for both the NOx emissions and the battery SOC.

  9. Distracted driving: prevalence, problems, and prevention.

    Science.gov (United States)

    Overton, Tiffany L; Rives, Terry E; Hecht, Carrie; Shafi, Shahid; Gandhi, Rajesh R

    2015-01-01

    While the number of motor vehicle crashes has declined over the years, crashes resulting from distracted driving are increasing in the United States resulting in significant morbidity and mortality. The national public seems to be aware of the dangers associated with using technology while driving, but continues to engage in this dangerous behaviour, and may be unaware of or underestimate the impact of cell phone use on their own driving performance. Problems associated with distracted driving are not limited to novice or teenage drivers; multifaceted universal prevention efforts aimed at impacting large segments of the population may have the greatest impact. Legislation limiting drivers' cell phone use has had little impact, possibly due to low regulation and enforcement. Behaviour change programmes, improved vehicle safety, and public awareness campaigns have been developed as potential preventive efforts to reduce accidents caused by distracted drivers.

  10. A contribution to the energy supply of innovative drive-by-wire vehicle concepts; Beitrag zur Energieversorgung innovativer Drive-by-Wire-Fahrzeugkonzepte

    Energy Technology Data Exchange (ETDEWEB)

    Sieglin, Erik

    2009-07-01

    Due to an increasing number of functions and driver assistance systems, the architecture of modern vehicles ever becomes more complex. This especially results in an increasing expenditure with the integration of new assistance systems. In order to oppose against this trend, one approach is the centralization of data processing. In this case, a drive-by-wire architecture without mechanical relapse level particularly is suitable. The contribution under consideration therefore supplies methods and approaches with which a suitable power supply is specified and realized. Their function can be verified. Apart from the aspects in terms of safety engineering, board specific questions are observed. The explanation of the procedure takes place using a prototypical structure as an example. Additionally, the hardware-in-the-loop-simulator and the processing of the tests are described.

  11. Gender roles, sex and the expression of driving anger.

    Science.gov (United States)

    Sullman, M J M; Paxion, J; Stephens, A N

    2017-09-01

    The present study investigated the validity of the 25-item Driving Anger Expression Inventory (DAX) as well as the role of sex and gender-roles in relation to the expression of driving anger in a sample of 378 French drivers (males=38%, M=32.9years old). Confirmatory Factor Analysis supported the four-factor structure of the 25-item DAX (Adaptive/Constructive Expression; Use of the Vehicle to Express Anger; Verbal Aggressive Expression and Personal Physical Aggressive Expression) and two of the three aggressive factors were found to have significant positive relationships with driving anger, while adaptive/constructive expression was negatively related to driving anger. Use of the vehicle to express anger was not significantly related to crash involvement, but was significantly related to all other crash-related conditions (traffic tickets, loss of concentration, loss of control of the vehicle, near crash). The presence of feminine traits, but not sex, was predictive of adaptive/constructive behaviours, while masculine traits predicted more frequent verbal aggressive expression, use of the vehicle to express anger, personal physical aggressive expression and total aggressive expression. This finding may account for the inconsistent relationship found between driving anger and sex in previous research. This research also found that the 25-item DAX is a valid tool to measure the expression of driving anger and that the endorsement of masculine traits are related to more aggressive forms of driving anger expression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effects on driving performance of interacting with an in-vehicle music player: a comparison of three interface layout concepts for information presentation.

    Science.gov (United States)

    Mitsopoulos-Rubens, Eve; Trotter, Margaret J; Lenné, Michael G

    2011-05-01

    Interface design is an important factor in assessing the potential effects on safety of interacting with an in-vehicle information system while driving. In the current study, the layout of information on a visual display was manipulated to explore its effect on driving performance in the context of music selection. The comparative effects of an auditory-verbal (cognitive) task were also explored. The driving performance of 30 participants was assessed under both baseline and dual task conditions using the Lane Change Test. Concurrent completion of the music selection task with driving resulted in significant impairment to lateral driving performance (mean lane deviation and percentage of correct lane changes) relative to the baseline, and significantly greater mean lane deviation relative to the combined driving and the cognitive task condition. The magnitude of these effects on driving performance was independent of layout concept, although significant differences in subjective workload estimates and performance on the music selection task across layout concepts highlights that potential uncertainty regarding design use as conveyed through layout concept could be disadvantageous. The implications of these results for interface design and safety are discussed. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  13. Study on Reverse Reconstruction Method of Vehicle Group Situation in Urban Road Network Based on Driver-Vehicle Feature Evolution

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Wang

    2017-01-01

    Full Text Available Vehicle group situation is the status and situation of dynamic permutation which is composed of target vehicle and neighboring traffic entities. It is a concept which is frequently involved in the research of traffic flow theory, especially the active vehicle security. Studying vehicle group situation in depth is of great significance for traffic safety. Three-lane condition was taken as an example; the characteristics of target vehicle and its neighboring vehicles were synthetically considered to restructure the vehicle group situation in this paper. The Gamma distribution theory was used to identify the vehicle group situation when target vehicle arrived at the end of the study area. From the perspective of driver-vehicle feature evolution, the reverse reconstruction method of vehicle group situation in the urban road network was proposed. Results of actual driving, virtual driving, and simulation experiments showed that the model established in this paper was reasonable and feasible.

  14. Coupling vibration research on Vehicle-bridge system

    Science.gov (United States)

    Zhou, Jiguo; Wang, Guihua

    2018-01-01

    The vehicle-bridge coupling system forms when vehicle running on a bridge. It will generate a relatively large influence on the driving comfort and driving safe when the vibration of the vehicle is bigger. A three-dimensional vehicle-bridge system with biaxial seven degrees of freedom has been establish in this paper based on finite numerical simulation. Adopting the finite element transient numerical simulation to realize the numerical simulation of vehicle-bridge system coupling vibration. Then, analyze the dynamic response of vehicle and bridge while different numbers of vehicles running on the bridge. Got the variation rule of vertical vibration of car body and bridge, and that of the contact force between the wheel and bridge deck. The research results have a reference value for the analysis about the vehicle running on a large-span cabled bridge.

  15. Vehicle systems design optimization study

    Science.gov (United States)

    Gilmour, J. L.

    1980-01-01

    The optimum vehicle configuration and component locations are determined for an electric drive vehicle based on using the basic structure of a current production subcompact vehicle. The optimization of an electric vehicle layout requires a weight distribution in the range of 53/47 to 62/38 in order to assure dynamic handling characteristics comparable to current internal combustion engine vehicles. Necessary modification of the base vehicle can be accomplished without major modification of the structure or running gear. As long as batteries are as heavy and require as much space as they currently do, they must be divided into two packages, one at front under the hood and a second at the rear under the cargo area, in order to achieve the desired weight distribution. The weight distribution criteria requires the placement of batteries at the front of the vehicle even when the central tunnel is used for the location of some batteries. The optimum layout has a front motor and front wheel drive. This configuration provides the optimum vehicle dynamic handling characteristics and the maximum passenger and cargo space for a given size vehicle.

  16. Motor Torque Calculations For Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Saurabh Chauhan

    2015-08-01

    Full Text Available Abstract It is estimated that 25 of the total cars across the world will run on electricity by 2025. An important component that is an integral part of all electric vehicles is the motor. The amount of torque that the driving motor delivers is what plays a decisive role in determining the speed acceleration and performance of an electric vehicle. The following work aims at simplifying the calculations required to decide the capacity of the motor that should be used to drive a vehicle of particular specifications.

  17. TARDEC Ground Vehicle Robotics: Vehicle Dynamic Characterization and Research

    Science.gov (United States)

    2015-09-01

    subassemblies that would be common on ground vehicles. Powertrain Systems: Gas Powered, Diesel , Turbo Diesel , Gas Turbine, Hybrid: Gas- Electric...PROPULSE (Hybrid Diesel - Electric System with Export Power), Command Zone (integrated vehicle control and diagnostic system), and TerraMax (Unmanned... Diesel -Electric, Series, Parallel. Power Distribution: RWD, FWD, AWD, open diff, LSD, Torsen diff, differential braking (traction control), drive by

  18. Extravehicular Activity and Planetary Protection

    Science.gov (United States)

    Buffington, J. A.; Mary, N. A.

    2015-01-01

    The first human mission to Mars will be the farthest distance that humans have traveled from Earth and the first human boots on Martian soil in the Exploration EVA Suit. The primary functions of the Exploration EVA Suit are to provide a habitable, anthropometric, pressurized environment for up to eight hours that allows crewmembers to perform autonomous and robotically assisted extravehicular exploration, science/research, construction, servicing, and repair operations on the exterior of the vehicle, in hazardous external conditions of the Mars local environment. The Exploration EVA Suit has the capability to structurally interface with exploration vehicles via next generation ingress/egress systems. Operational concepts and requirements are dependent on the mission profile, surface assets, and the Mars environment. This paper will discuss the effects and dependencies of the EVA system design with the local Mars environment and Planetary Protection. Of the three study areas listed for the workshop, EVA identifies most strongly with technology and operations for contamination control.

  19. Test and evaluation of Chrysler T115 electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    Three Chrysler T115 mini vans were converted to electric drive in the spring of 1984 and tested in test track, chassis dynamometer, and urban road settings. Vehicle dc energy consumption and driving range were measured on the Society of Automotive Engineers J227a C schedule driving cycle, and at constant speed at the Blainville, Quebec test track. Other tests measured top speed, maximum acceleration, hill climbing, and braking performance of the vehicle. The vehicle's performance achieved the expected results. Net energy consumption, when compared to gasoline powered vehicles, was very favourable. The test program showed that the vehicle electrics and drive system are reliable. However, the acceleration and maximum speed were limited by the voltage output of the lead acid battery. The performance of the vehicle was not adversely affected by wide range as in ambient temperature, due to the thermal management battery system in the vehicle. The range of the vehicle was limited to 80 km due to the power output of the lead acid battery. When tested with the prototype sodium sulphur battery the range exceeded 200 km. With this range, market acceptance of this vehicle will be significantly enhanced. The overall vehicle efficiency of the T115 electric van was calculated to be 58%. This compared very favourably to the gasoline-powered vehicle which has an efficiency of approximately 17%. Results of this program confirmed the fact that until suitable advanced batteries are available, commercial applications of electric vehicles will be limited. 8 refs., 18 figs., 20 tabs.

  20. Comparison of Output Current Ripple in Single and Dual Three-Phase Inverters for Electric Vehicle Motor Drives

    Directory of Open Access Journals (Sweden)

    Jelena Loncarski

    2015-04-01

    Full Text Available The standard solution for the traction system in battery powered electric vehicles (EVs is a two-level (2L inverter feeding a three-phase motor. A simple and effective way to achieve a three-level (3L inverter in battery-supplied electric vehicles consists of using two standard three-phase 2L inverters with the open-end winding connection of standard three-phase ac motors. The 3L inverter solution can be usefully adopted in EVs since it combines several benefits such as current ripple reduction, increment of phase motor voltage with limited voltage ratings of the two battery banks, improvement in system reliability, etc. The reduction in current ripple amplitude is particularly relevant since it is a source of electromagnetic interference and audio noise from the inverter-motor power connection cables and from the motor itself. By increasing the inverter switching frequency the ripple amplitude is reduced, but the drive efficiency decreases due to the proportionally increased switching losses. In this paper the peak-to-peak ripple amplitude of the dual-2L inverter is evaluated and compared with the corresponding ripple of the single-2L inverter, considering the same voltage and power motor ratings. The ripple analysis is carried out as a function of the modulation index to cover the whole modulation range of the inverter, and the theoretical results are verified with experimental tests carried out by an inverter-motor drive prototype.

  1. 49 CFR 398.4 - Driving of motor vehicles.

    Science.gov (United States)

    2010-10-01

    .... Lighting devices and reflectors. Tires. Horn. Windshield wiper or wipers. Rear-vision mirror or mirrors.... No driver or any employee of a motor carrier shall: (1) Fuel a motor vehicle with the engine running, except when it is necessary to run the engine to fuel the vehicle; (2) Smoke or expose any open flame in...

  2. Hybrid drive train technologies for vehicles

    NARCIS (Netherlands)

    Hofman, T.; Folkson, R.

    This chapter provides a classification of electric hybrid systems for cars and describes the conflicting design challenges involved in designing advanced vehicle propulsion systems. In addition, the chapter provides an analysis of the solution methods currently provided in literature on the coupled

  3. Driving performance at lateral system limits during partially automated driving.

    Science.gov (United States)

    Naujoks, Frederik; Purucker, Christian; Wiedemann, Katharina; Neukum, Alexandra; Wolter, Stefan; Steiger, Reid

    2017-11-01

    This study investigated driver performance during system limits of partially automated driving. Using a motion-based driving simulator, drivers encountered different situations in which a partially automated vehicle could no longer safely keep the lateral guidance. Drivers were distracted by a non-driving related task on a touch display or driving without an additional secondary task. While driving in partially automated mode drivers could either take their hands off the steering wheel for only a short period of time (10s, so-called 'Hands-on' variant) or for an extended period of time (120s, so-called 'Hands-off' variant). When the system limit was reached (e.g., when entering a work zone with temporary lines), the lateral vehicle control by the automation was suddenly discontinued and a take-over request was issued to the drivers. Regardless of the hands-off interval and the availability of a secondary task, all drivers managed the transition to manual driving safely. No lane exceedances were observed and the situations were rated as 'harmless' by the drivers. The lack of difference between the hands-off intervals can be partly attributed to the fact that most of the drivers kept contact to the steering wheel, even in the hands-off condition. Although all drivers were able to control the system limits, most of them could not explain why exactly the take-over request was issued. The average helpfulness of the take-over request was rated on an intermediate level. Consequently, providing drivers with information about the reason for a system limit can be recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Simulation of Automated Vehicles' Drive Cycles

    Science.gov (United States)

    2018-02-28

    This research has two objectives: 1) To develop algorithms for plausible and legally-justifiable freeway car-following and arterial-street gap acceptance driving behavior for AVs 2) To implement these algorithms on a representative road network, in o...

  5. Research of Ant Colony Optimized Adaptive Control Strategy for Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Linhui Li

    2014-01-01

    Full Text Available Energy management control strategy of hybrid electric vehicle has a great influence on the vehicle fuel consumption with electric motors adding to the traditional vehicle power system. As vehicle real driving cycles seem to be uncertain, the dynamic driving cycles will have an impact on control strategy’s energy-saving effect. In order to better adapt the dynamic driving cycles, control strategy should have the ability to recognize the real-time driving cycle and adaptively adjust to the corresponding off-line optimal control parameters. In this paper, four types of representative driving cycles are constructed based on the actual vehicle operating data, and a fuzzy driving cycle recognition algorithm is proposed for online recognizing the type of actual driving cycle. Then, based on the equivalent fuel consumption minimization strategy, an ant colony optimization algorithm is utilized to search the optimal control parameters “charge and discharge equivalent factors” for each type of representative driving cycle. At last, the simulation experiments are conducted to verify the accuracy of the proposed fuzzy recognition algorithm and the validity of the designed control strategy optimization method.

  6. Teen drivers' awareness of vehicle instrumentation in naturalistic research.

    Science.gov (United States)

    Ehsani, J P; Haynie, D; Ouimet, M C; Zhu, C; Guillaume, C; Klauer, S G; Dingus, T; Simons-Morton, B G

    2017-12-01

    Naturalistic driving methods require the installation of instruments and cameras in vehicles to record driving behavior. A critical, yet unexamined issue in naturalistic driving research is the extent to which the vehicle instruments and cameras used for naturalistic methods change human behavior. We sought to describe the degree to which teenage participants' self-reported awareness of vehicle instrumentation changes over time, and whether that awareness was associated with driving behaviors. Forty-two newly-licensed teenage drivers participated in an 18-month naturalistic driving study. Data on driving behaviors including crash/near-crashes and elevated gravitational force (g-force) events rates were collected over the study period. At the end of the study, participants were asked to rate the extent to which they were aware of instruments in the vehicle at four time points. They were also asked to describe their own and their passengers' perceptions of the instrumentation in the vehicle during an in-depth interview. The number of critical event button presses was used as a secondary measure of camera awareness. The association between self-reported awareness of the instrumentation and objectively measured driving behaviors was tested using correlations and linear mixed models. Most participants' reported that their awareness of vehicle instrumentation declined across the duration of the 18-month study. Their awareness increased in response to their passengers' concerns about the cameras or if they were involved in a crash. The number of the critical event button presses was initially high and declined rapidly. There was no correlation between driver's awareness of instrumentation and their crash and near-crash rate or elevated g-force events rate. Awareness was not associated with crash and near-crash rates or elevated g-force event rates, consistent with having no effect on this measure of driving performance. Naturalistic driving studies are likely to yield

  7. Glaucoma and Driving: On-Road Driving Characteristics

    Science.gov (United States)

    Wood, Joanne M.; Black, Alex A.; Mallon, Kerry; Thomas, Ravi; Owsley, Cynthia

    2016-01-01

    Purpose To comprehensively investigate the types of driving errors and locations that are most problematic for older drivers with glaucoma compared to those without glaucoma using a standardized on-road assessment. Methods Participants included 75 drivers with glaucoma (mean = 73.2±6.0 years) with mild to moderate field loss (better-eye MD = -1.21 dB; worse-eye MD = -7.75 dB) and 70 age-matched controls without glaucoma (mean = 72.6 ± 5.0 years). On-road driving performance was assessed in a dual-brake vehicle by an occupational therapist using a standardized scoring system which assessed the types of driving errors and the locations where they were made and the number of critical errors that required an instructor intervention. Driving safety was rated on a 10-point scale. Self-reported driving ability and difficulties were recorded using the Driving Habits Questionnaire. Results Drivers with glaucoma were rated as significantly less safe, made more driving errors, and had almost double the rate of critical errors than those without glaucoma. Driving errors involved lane positioning and planning/approach, and were significantly more likely to occur at traffic lights and yield/give-way intersections. There were few between group differences in self-reported driving ability. Conclusions Older drivers with glaucoma with even mild to moderate field loss exhibit impairments in driving ability, particularly during complex driving situations that involve tactical problems with lane-position, planning ahead and observation. These results, together with the fact that these drivers self-report their driving to be relatively good, reinforce the need for evidence-based on-road assessments for evaluating driving fitness. PMID:27472221

  8. Glaucoma and Driving: On-Road Driving Characteristics.

    Directory of Open Access Journals (Sweden)

    Joanne M Wood

    Full Text Available To comprehensively investigate the types of driving errors and locations that are most problematic for older drivers with glaucoma compared to those without glaucoma using a standardized on-road assessment.Participants included 75 drivers with glaucoma (mean = 73.2±6.0 years with mild to moderate field loss (better-eye MD = -1.21 dB; worse-eye MD = -7.75 dB and 70 age-matched controls without glaucoma (mean = 72.6 ± 5.0 years. On-road driving performance was assessed in a dual-brake vehicle by an occupational therapist using a standardized scoring system which assessed the types of driving errors and the locations where they were made and the number of critical errors that required an instructor intervention. Driving safety was rated on a 10-point scale. Self-reported driving ability and difficulties were recorded using the Driving Habits Questionnaire.Drivers with glaucoma were rated as significantly less safe, made more driving errors, and had almost double the rate of critical errors than those without glaucoma. Driving errors involved lane positioning and planning/approach, and were significantly more likely to occur at traffic lights and yield/give-way intersections. There were few between group differences in self-reported driving ability.Older drivers with glaucoma with even mild to moderate field loss exhibit impairments in driving ability, particularly during complex driving situations that involve tactical problems with lane-position, planning ahead and observation. These results, together with the fact that these drivers self-report their driving to be relatively good, reinforce the need for evidence-based on-road assessments for evaluating driving fitness.

  9. Glaucoma and Driving: On-Road Driving Characteristics.

    Science.gov (United States)

    Wood, Joanne M; Black, Alex A; Mallon, Kerry; Thomas, Ravi; Owsley, Cynthia

    2016-01-01

    To comprehensively investigate the types of driving errors and locations that are most problematic for older drivers with glaucoma compared to those without glaucoma using a standardized on-road assessment. Participants included 75 drivers with glaucoma (mean = 73.2±6.0 years) with mild to moderate field loss (better-eye MD = -1.21 dB; worse-eye MD = -7.75 dB) and 70 age-matched controls without glaucoma (mean = 72.6 ± 5.0 years). On-road driving performance was assessed in a dual-brake vehicle by an occupational therapist using a standardized scoring system which assessed the types of driving errors and the locations where they were made and the number of critical errors that required an instructor intervention. Driving safety was rated on a 10-point scale. Self-reported driving ability and difficulties were recorded using the Driving Habits Questionnaire. Drivers with glaucoma were rated as significantly less safe, made more driving errors, and had almost double the rate of critical errors than those without glaucoma. Driving errors involved lane positioning and planning/approach, and were significantly more likely to occur at traffic lights and yield/give-way intersections. There were few between group differences in self-reported driving ability. Older drivers with glaucoma with even mild to moderate field loss exhibit impairments in driving ability, particularly during complex driving situations that involve tactical problems with lane-position, planning ahead and observation. These results, together with the fact that these drivers self-report their driving to be relatively good, reinforce the need for evidence-based on-road assessments for evaluating driving fitness.

  10. The Attentional Demand of Automobile Driving Revisited: Occlusion Distance as a Function of Task-Relevant Event Density in Realistic Driving Scenarios.

    Science.gov (United States)

    Kujala, Tuomo; Mäkelä, Jakke; Kotilainen, Ilkka; Tokkonen, Timo

    2016-02-01

    We studied the utility of occlusion distance as a function of task-relevant event density in realistic traffic scenarios with self-controlled speed. The visual occlusion technique is an established method for assessing visual demands of driving. However, occlusion time is not a highly informative measure of environmental task-relevant event density in self-paced driving scenarios because it partials out the effects of changes in driving speed. Self-determined occlusion times and distances of 97 drivers with varying backgrounds were analyzed in driving scenarios simulating real Finnish suburban and highway traffic environments with self-determined vehicle speed. Occlusion distances varied systematically with the expected environmental demands of the manipulated driving scenarios whereas the distributions of occlusion times remained more static across the scenarios. Systematic individual differences in the preferred occlusion distances were observed. More experienced drivers achieved better lane-keeping accuracy than inexperienced drivers with similar occlusion distances; however, driving experience was unexpectedly not a major factor for the preferred occlusion distances. Occlusion distance seems to be an informative measure for assessing task-relevant event density in realistic traffic scenarios with self-controlled speed. Occlusion time measures the visual demand of driving as the task-relevant event rate in time intervals, whereas occlusion distance measures the experienced task-relevant event density in distance intervals. The findings can be utilized in context-aware distraction mitigation systems, human-automated vehicle interaction, road speed prediction and design, as well as in the testing of visual in-vehicle tasks for inappropriate in-vehicle glancing behaviors in any dynamic traffic scenario for which appropriate individual occlusion distances can be defined. © 2015, Human Factors and Ergonomics Society.

  11. The risk of a safety-critical event associated with mobile device use in specific driving contexts.

    Science.gov (United States)

    Fitch, Gregory M; Hanowski, Richard J; Guo, Feng

    2015-01-01

    We explored drivers' mobile device use and its associated risk of a safety-critical event (SCE) in specific driving contexts. Our premise was that the SCE risk associated with mobile device use increases when the driving task becomes demanding. Data from naturalistic driving studies involving commercial motor vehicle drivers and light vehicle drivers were partitioned into subsets representative of specific driving contexts. The subsets were generated using data set attributes that included level of service and relation to junction. These attributes were selected based on exogenous factors known to alter driving task demands. The subsets were analyzed using a case-cohort approach, which was selected to complement previous investigations of mobile device SCE risk using naturalistic driving data. Both commercial motor vehicle and light vehicle drivers varied as to how much they conversed on a mobile device but did not vary their engagement in visual-manual subtasks. Furthermore, commercial motor vehicle drivers conversed less frequently as the driving task demands increased, whereas light vehicle drivers did not. The risk of an SCE associated with mobile device use was dependent on the subtask performed and the driving context. Only visual-manual subtasks were associated with an increased SCE risk, whereas conversing was associated with a decreased risk in some driving contexts. Drivers' engagement in mobile device subtasks varies by driving context. The SCE risk associated with mobile device use is dependent on the types of subtasks performed and the driving context. The findings of this exploratory study can be applied to the design of driver-vehicle interfaces that mitigate distraction by preventing visual-manual subtasks while driving.

  12. Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles

    Science.gov (United States)

    Chacko, Salvio; Chung, Yongmann M.

    2012-09-01

    Time-dependent, thermal behaviour of a lithium-ion (Li-ion) polymer cell has been modelled for electric vehicle (EV) drive cycles with a view to developing an effective battery thermal management system. The fully coupled, three-dimensional transient electro-thermal model has been implemented based on a finite volume method. To support the numerical study, a high energy density Li-ion polymer pouch cell was tested in a climatic chamber for electric load cycles consisting of various charge and discharge rates, and a good agreement was found between the model predictions and the experimental data. The cell-level thermal behaviour under stressful conditions such as high power draw and high ambient temperature was predicted with the model. A significant temperature increase was observed in the stressful condition, corresponding to a repeated acceleration and deceleration, indicating that an effective battery thermal management system would be required to maintain the optimal cell performance and also to achieve a full battery lifesapn.

  13. Planetary nebulae

    International Nuclear Information System (INIS)

    Amnuehl', P.R.

    1985-01-01

    The history of planetary nebulae discovery and their origin and evolution studies is discussed in a popular way. The problem of planetary nebulae central star is considered. The connection between the white-draft star and the planetary nebulae formulation is shown. The experimental data available acknowledge the hypothesis of red giant - planetary nebula nucleus - white-draft star transition process. Masses of planetary nebulae white-draft stars and central stars are distributed practically similarly: the medium mass is close to 0.6Msub(Sun) (Msub(Sun) - is the mass of the Sun)

  14. Potential Energy and Emission Benefits of Vehicle Automation and Connectivity

    Science.gov (United States)

    2017-08-01

    Driving behavior greatly impacts vehicle tailpipe emissions. Connected and automated vehicle (CAV) technologies are designed to smooth driving and relieve traffic congestion and are therefore expected to reduce fuel consumption and tailpipe emissions...

  15. Smartphone Based Approach For Monitoring Inefficient And Unsafe Driving Behavior And Recognizing Drink And Drive Conditions.

    Directory of Open Access Journals (Sweden)

    G. V. Mane

    2015-08-01

    Full Text Available Many automobile drivers having knowledge of the driving behaviours and habits that can lead to inefficient and unsafe driving. However it is often the case that these same drivers unknowingly manifest these inefficient and unsafe driving behaviours in their everyday driving activity. The proposed system proposes a practical and economical way to capture measure and alert drives of inefficient and unsafe driving as well as highly efficient system aimed at early detection and alert of dangerous vehicle maneuvers typically related to drunk driving. The upcoming solution consists of a mobile application running on a modern smartphone device paired with a compatible OBDII On-board diagnostics II reader.

  16. A science-based executive for autonomous planetary vehicles

    Science.gov (United States)

    Peters, S.

    2001-01-01

    If requests for scientific observations, rather than specific plans, are uplinked to an autonomous execution system on the vehicle, it would be able to adjust its execution based upon actual performance. Such a science-based executive control system had been developed and demonstrated for the Rocky7 research rover.

  17. Orbital Dynamics of Low-Earth Orbit Laser-Propelled Space Vehicles

    International Nuclear Information System (INIS)

    Yamakawa, Hiroshi; Funaki, Ikkoh; Komurasaki, Kimiya

    2008-01-01

    Trajectories applicable to laser-propelled space vehicles with a laser station in low-Earth orbit are investigated. Laser vehicles are initially located in the vicinity of the Earth-orbiting laser station in low-earth orbit at an altitude of several hundreds kilometers, and are accelerated by laser beaming from the laser station. The laser-propelled vehicles start from low-earth orbit and finally escape from the Earth gravity well, enabling interplanetary trajectories and planetary exploration

  18. Algebraic software analysis and embedded simulation of a driving robot

    NARCIS (Netherlands)

    Merkx, L.L.F.; Duringhof, H.M.; Cuijpers, P.J.L.

    2007-01-01

    At TNO Automotive the Generic Driving Actuator (GDA) is developed. The GDA is a device capable of driving a vehicle fully automatically using the same interface as a human driver does. In this paper, the design of the GDA is discussed. The software and hardware of the GDA and its effect on vehicle

  19. Driving Safety and Fitness to Drive in Sleep Disorders.

    Science.gov (United States)

    Tippin, Jon; Dyken, Mark Eric

    2017-08-01

    Driving an automobile while sleepy increases the risk of crash-related injury and death. Neurologists see patients with sleepiness due to obstructive sleep apnea, narcolepsy, and a wide variety of neurologic disorders. When addressing fitness to drive, the physician must weigh patient and societal health risks and regional legal mandates. The Driver Fitness Medical Guidelines published by the National Highway Traffic Safety Administration (NHTSA) and the American Association of Motor Vehicle Administrators (AAMVA) provide assistance to clinicians. Drivers with obstructive sleep apnea may continue to drive if they have no excessive daytime sleepiness and their apnea-hypopnea index is less than 20 per hour. Those with excessive daytime sleepiness or an apnea-hypopnea index of 20 per hour or more may not drive until their condition is effectively treated. Drivers with sleep disorders amenable to pharmaceutical treatment (eg, narcolepsy) may resume driving as long as the therapy has eliminated excessive daytime sleepiness. Following these guidelines, documenting compliance to recommended therapy, and using the Epworth Sleepiness Scale to assess subjective sleepiness can be helpful in determining patients' fitness to drive.

  20. Syncope and Motor Vehicle Crash Risk

    DEFF Research Database (Denmark)

    Numé, Anna-Karin; Gislason, Gunnar; Christiansen, Christine Benn

    2016-01-01

    IMPORTANCE: Syncope may have serious consequences for traffic safety. Current clinical guideline recommendations on driving following syncope are primarily based on expert consensus. OBJECTIVE: To identify whether there is excess risk of motor vehicle crashes among patients with syncope compared...... vehicle crashes throughout the follow-up period. This study suggests that syncope should be considered as one of several factors in a broad assessment of fitness to drive....

  1. Real-time black carbon emission factor measurements from light duty vehicles.

    Science.gov (United States)

    Forestieri, Sara D; Collier, Sonya; Kuwayama, Toshihiro; Zhang, Qi; Kleeman, Michael J; Cappa, Christopher D

    2013-11-19

    Eight light-duty gasoline low emission vehicles (LEV I) were tested on a Chassis dynamometer using the California Unified Cycle (UC) at the Haagen-Smit vehicle test facility at the California Air Resources Board in El Monte, CA during September 2011. The UC includes a cold start phase followed by a hot stabilized running phase. In addition, a light-duty gasoline LEV vehicle and ultralow emission vehicle (ULEV), and a light-duty diesel passenger vehicle and gasoline direct injection (GDI) vehicle were tested on a constant velocity driving cycle. A variety of instruments with response times ≥0.1 Hz were used to characterize how the emissions of the major particulate matter components varied for the LEVs during a typical driving cycle. This study focuses primarily on emissions of black carbon (BC). These measurements allowed for the determination of BC emission factors throughout the driving cycle, providing insights into the temporal variability of BC emission factors during different phases of a typical driving cycle.

  2. Lunar All-Terrain Utility Vehicle for EVA, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations, LLC proposes to develop a new type of planetary rover called a Lunar All-terrain Utility Vehicle ("Lunar ATV") to assist extra-vehicular activities...

  3. Lunar All-Terrain Utility Vehicle for EVA, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations, LLC proposes to develop a new type of planetary rover called a Lunar All-terrain Utility Vehicle ("LATUV") to assist extra-vehicular activities in...

  4. Real-world vehicle emission factors in Chinese metropolis city--Beijing.

    Science.gov (United States)

    Wang, Qi-dong; He, Ke-bin; Huo, Hong; Lents, James

    2005-01-01

    The dynamometer tests with different driving cycles and the real-world tests are presented. Results indicated the pollutants emission factors and fuel consumption factor with ECE15 + EUDC driving cycle usually take the lowest value and with real world driving cycle occur the highest value, and different driving cycles will lead to significantly different vehicle emission factors with the same vehicle. Relative to the ECE15 + EUDC driving cycle, the increasing rate of pollutant emission factors of CO, NOx and HC are - 0.42-2.99, -0.32-0.81 and -0.11-11 with FTP75 testing, 0.11-1.29, -0.77-0.64 and 0.47-10.50 with Beijing 1997 testing and 0.25-1.83, 0.09-0.75 and - 0.58-1.50 with real world testing. Compared to the carburetor vehicles, the retrofit and MPI + TWC vehicles' pollution emissionfactors decrease with different degree. The retrofit vehicle (Santana) will reduce 4.44%-58.44% CO, -4.95%-36.79% NOx, -32.32%-33.89% HC, and -9.39%-14.29% fuel consumption, and especially that the MPI + TWC vehicle will decrease CO by 82.48%-91.76%, NOx by 44.87%-92.79%, HC by 90.00%-93.89% and fuel consumption by 5.44%-10.55%. Vehicles can cause pollution at a very high rate when operated in high power modes; however, they may not often operate in these high power modes. In analyzing vehicle emissions, it describes the fraction of time that vehicles operate in various power modes. In Beijing, vehicles spend 90% of their operation in low power modes or decelerating.

  5. Electric powertrain modeling of a fuel cell hybrid electric vehicle and development of a power distribution algorithm based on driving mode recognition

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Junghwan; Park, Yeongseop; Sunwoo, Myoungho [Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea)

    2010-09-01

    This paper proposes a novel fuzzy controller based on an adaptive membership function for optimum power management of a fuel cell hybrid electric vehicle (FCHEV). In the first phase, an electric powertrain model of the FCHEV is derived and a fuzzy controller is proposed. Then, the fuzzy controller is optimized using a genetic algorithm. The optimization process is accomplished through simulation for a given driving cycle. Since, however, the optimized result may vary according to the applied driving cycle for optimization, it is impossible for one optimized result to cover various driving cycles. In the second phase, an adaptive membership function based on a stochastic approach is proposed to guarantee optimum performance from the presented fuzzy controller, even though the driving cycle changes. This controller is referred to as the 'Stochastic fuzzy controller' (SFC) in this study. The SFC employs a stochastic approach where membership functions can be transformed statistically using a probability evaluated from driving pattern recognition. Then, driving cycle analysis is performed through off-line simulation and hardware in a loop simulation (HILS) test for four driving cycles. Finally, the SFC shows the best performance in terms of minimum fuel consumption and state-of-charge (SoC) maintenance. (author)

  6. Know Before You Do: Anticipating Maneuvers via Learning Temporal Driving Models

    Science.gov (United States)

    2015-04-01

    features/index.htm. Accessed: 2014-09-30. [3] Google self driving car . http://en.wikipedia.org/wiki/ Google driverless car . Accessed: 2014-10-11. [4...and outside the car , GPS, and speed information, with lane and driving maneuver annotations. II. RELATED WORK Assistive features for vehicles . Recent...made driving safer over the last decade. They prepare vehicles for unsafe road conditions and alert drivers if they perform a dangerous maneuver

  7. Real-world European driving cycles, for measuring pollutant emissions from high- and low-powered cars

    OpenAIRE

    ANDRE, Michel; JOUMARD, Robert; VIDON, Robert; TASSEL, Patrick; PERRET, Pascal

    2006-01-01

    Pollutant emissions from cars are usually measured on a test bench using driving cycles. However, the use of one unique set of driving cycles to test all cars can be seen as a weak point of emission estimation, as vehicles could conceivably be tested differently depending on their performance levels and usage characteristics. A specific study was then conducted to characterize driving conditions and vehicle usage as a function of vehicle categories, as well as to derive driving cycles special...

  8. A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles

    International Nuclear Information System (INIS)

    Ma Hongrui; Balthasar, Felix; Tait, Nigel; Riera-Palou, Xavier; Harrison, Andrew

    2012-01-01

    Electric vehicles have recently been gaining increasing worldwide interest as a promising potential long-term solution to sustainable personal mobility; in particular, battery electric vehicles (BEVs) offer zero tailpipe emissions. However, their true ability to contribute to greenhouse gas (GHG) emissions reductions can only be properly assessed by comparing a life cycle assessment of their GHG emissions with a similar assessment for conventional internal combustion vehicles (ICVs). This paper presents an analysis for vehicles typically expected to be introduced in 2015 in two example markets (the UK and California), taking into account the impact of three important factors: •Like-for-like vehicle comparison and effect of real-world driving conditions. •Accounting for the GHG emissions associated with meeting the additional electricity demand for charging the batteries. •GHG emissions associated with vehicle manufacture, disposal, etc. This work demonstrates that all of these factors are important and emphasises that it is therefore crucial to clearly define the context when presenting conclusions about the relative GHG performance of BEVs and ICVs – such relative performance depends on a wide range of factors, including the marginal regional grid GHG intensity, vehicle size, driving pattern, loading, etc. - Highlights: ► Develops new insights into the life cycle GHG emissions of electric vehicles. ► Addresses like-for-like vehicle comparison and effect of real-world driving. ► Accounts for marginal GHG intensity of the electricity used to charge EVs. ► Accounts for the GHG emissions associated with vehicle manufacture and disposal.

  9. Batu Pahat Driving Cycle for Light Duty Gasoline Engine

    Science.gov (United States)

    Zainul Abidin, Zainul Ameerul Ikhsan B.; Faisal Hushim, Mohd; Ahmad, Osman Bin

    2017-08-01

    Driving cycle is a series of data points that represents the vehicle speed versus time. Transient driving cycles involve many changes such as frequent speed changes during typical on-road driving condition [2]. Model driving cycles involve protracted periods at constant speeds. The Batu Pahat Driving Cycle (BPDC) developed to represent the driving pattern of people in a district of Batu Pahat. Based on this driving cycle, it will be a reference to other researchers to study about the gases emission release and fuel consumption by the vehicle on the dynamometer or automotive simulation based on this driving cycle. Existing driving cycles used such as the New European Driving Cycle (NEDC), the Federal Test Procedure (FTP-72/75, and Japan 10-15 Mode Cycle is not appropriate for Batu Pahat district because of different road conditions, driving habits and environmental of developed driving cycle countries are not same [2][14]. Batu Pahat drive cycle was developed for low-capacity gasoline engine under 150 cc and operating on urban roads, rural roads and road around Universiti Tun Hussein Onn. The importance of these driving cycle as the reference for other research to measure and do automotive simulation regarding fuel consumption and gas emission release from the motorcycle for these three type of driving cycle area. Another use for driving cycles is in vehicle simulations [3]. More specifically, they are used in propulsion system simulations to predict the performance of internal combustion engines, transmissions, electric drive systems, batteries, fuel cell systems, and similar components [18]. Data collection methods used in this study is the use of Global Positioning System (GPS). The results obtained are not similar to each other due to differences in congestion on data taken. From the driving cycle graph obtained, such as the average velocity, maximum velocity, the duration and Positive Acceleration Kinetic Energy (PKE) can be determined. In addition, the best

  10. Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

    2014-06-01

    This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

  11. NREL Evaluates Performance of Hydraulic Hybrid Refuse Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    This highlight describes NREL's evaluation of the in-service performance of 10 next-generation hydraulic hybrid refuse vehicles (HHVs), 8 previous-generation (model year 2013) HHVs, and 8 comparable conventional diesel vehicles operated by Miami-Dade County's Public Works and Waste Management Department in southern Florida. Launched in March 2015, the on-road portion of this 12-month evaluation focuses on collecting and analyzing vehicle performance data - fuel economy, maintenance costs, and drive cycles - from the HHVs and the conventional diesel vehicles. The fuel economy of heavy-duty vehicles, such as refuse trucks, is largely dependent on the load carried and the drive cycles on which they operate. In the right applications, HHVs offer a potential fuel-cost advantage over their conventional counterparts. This advantage is contingent, however, on driving behavior and drive cycles with high kinetic intensity that take advantage of regenerative braking. NREL's evaluation will assess the performance of this technology in commercial operation and help Miami-Dade County determine the ideal routes for maximizing the fuel-saving potential of its HHVs. Based on the field data, NREL will develop a validated vehicle model using the Future Automotive Systems Technology Simulator, also known as FASTSim, to study the impacts of route selection and other vehicle parameters. NREL is also analyzing fueling and maintenance data to support total-cost-of-ownership estimations and forecasts. The study aims to improve understanding of the overall usage and effectiveness of HHVs in refuse operation compared to similar conventional vehicles and to provide unbiased technical information to interested stakeholders.

  12. Cartalk 2000: development of a co-operative ADAS based on vehicle-to-vehicle communication

    NARCIS (Netherlands)

    Morsink, P.L.J.; Hallouzi, R.; Dagli, I.; Cseh, C.; Schäfers, L.; Nelisse, M.W.; Bruin, D. de

    2003-01-01

    Advanced Driver Assistance Systems (ADAS) benefit from using vehicle-to-vehicle communication. In the 5th framework EC project CarTALK2000 co-operative ADAS are designed, tested and evaluated with respect to increasing traffic safety, efficiency and driving comfort. Communication based longitudinal

  13. Sensor Systems for Vehicle Environment Perception in a Highway Intelligent Space System

    Science.gov (United States)

    Tang, Xiaofeng; Gao, Feng; Xu, Guoyan; Ding, Nenggen; Cai, Yao; Ma, Mingming; Liu, Jianxing

    2014-01-01

    A Highway Intelligent Space System (HISS) is proposed to study vehicle environment perception in this paper. The nature of HISS is that a space sensors system using laser, ultrasonic or radar sensors are installed in a highway environment and communication technology is used to realize the information exchange between the HISS server and vehicles, which provides vehicles with the surrounding road information. Considering the high-speed feature of vehicles on highways, when vehicles will be passing a road ahead that is prone to accidents, the vehicle driving state should be predicted to ensure drivers have road environment perception information in advance, thereby ensuring vehicle driving safety and stability. In order to verify the accuracy and feasibility of the HISS, a traditional vehicle-mounted sensor system for environment perception is used to obtain the relative driving state. Furthermore, an inter-vehicle dynamics model is built and model predictive control approach is used to predict the driving state in the following period. Finally, the simulation results shows that using the HISS for environment perception can arrive at the same results detected by a traditional vehicle-mounted sensors system. Meanwhile, we can further draw the conclusion that using HISS to realize vehicle environment perception can ensure system stability, thereby demonstrating the method's feasibility. PMID:24834907

  14. Texting while driving: A study of 1211 U.S. adults with the Distracted Driving Survey

    OpenAIRE

    Gliklich, Emily; Guo, Rong; Bergmark, Regan W.

    2016-01-01

    Texting and other cell-phone related distracted driving is estimated to account for thousands of motor vehicle collisions each year but studies examining the specific cell phone reading and writing activities of drivers are limited. The objective of this study was to describe the frequency of cell-phone related distracted driving behaviors. A national, representative, anonymous panel of 1211 United States drivers was recruited in 2015 to complete the Distracted Driving Survey (DDS), an 11-ite...

  15. A new model to compute the desired steering torque for steer-by-wire vehicles and driving simulators

    Science.gov (United States)

    Fankem, Steve; Müller, Steffen

    2014-05-01

    This paper deals with the control of the hand wheel actuator in steer-by-wire (SbW) vehicles and driving simulators (DSs). A novel model for the computation of the desired steering torque is presented. The introduced steering torque computation does not only aim to generate a realistic steering feel, which means that the driver should not miss the basic steering functionality of a modern conventional steering system such as an electric power steering (EPS) or hydraulic power steering (HPS), and this in every driving situation. In addition, the modular structure of the steering torque computation combined with suitably selected tuning parameters has the objective to offer a high degree of customisability of the steering feel and thus to provide each driver with his preferred steering feel in a very intuitive manner. The task and the tuning of each module are firstly described. Then, the steering torque computation is parameterised such that the steering feel of a series EPS system is reproduced. For this purpose, experiments are conducted in a hardware-in-the-loop environment where a test EPS is mounted on a steering test bench coupled with a vehicle simulator and parameter identification techniques are applied. Subsequently, how appropriate the steering torque computation mimics the test EPS system is objectively evaluated with respect to criteria concerning the steering torque level and gradient, the feedback behaviour and the steering return ability. Finally, the intuitive tuning of the modular steering torque computation is demonstrated for deriving a sportier steering feel configuration.

  16. Driving with head-slaved camera system

    NARCIS (Netherlands)

    Oving, A.B.; Erp, J.B.F. van

    2001-01-01

    In a field experiment, we tested the effectiveness of a head-slaved camera system for driving an armoured vehicle under armour. This system consists of a helmet-mounted display (HMD), a headtracker, and a motion platform with two cameras. Subjects performed several driving tasks on paved and in

  17. 32 CFR 634.18 - Reinstatement of driving privileges.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Reinstatement of driving privileges. 634.18 Section 634.18 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Driving Privileges § 634.18 Reinstatement of driving privileges....

  18. Design and implementation of a personal mobility of single spherical drive

    International Nuclear Information System (INIS)

    Hoshino, Tasuku; Yazawa, Miki; Naganuma, Ryota; Takada, Kotaro

    2016-01-01

    This paper deals with a personal electric vehicle driven by a single spherical wheel. Using an appropriate feedback control, this driving strategy realizes dynamic stability in all directions and the vehicle can always be kept upright on the road surface of variety of slopes. It also enables immediate mobility to all directions, unlike personal vehicles of two- wheel type. The spherical wheel is driven by omnidirectional wheels as usual; however, since the number and location of wheels have huge effect on the driving performance, the authors firstly analyze kinematics of omnidirectional wheels and sphere and derive new configuration to achieve maximum power. Based on the kinematic analysis, the equation of motion of the vehicle is derived via Lagrangian formulation. The full dynamic model including kinematic constraints is then derived. Using the full model, a stabilizing controller for driving is designed based on partial feedback linearization technique. The vehicle is constructed and tested with a human driver. The proposed configuration of omnidirectional wheels, the controller design model and the control scheme are examined in practice. Results of the experiments, including going over uphill road and uneven ground, show much better driving performance than authors’ previous prototype of the similar. (paper)

  19. Natural gas drive for city buses in Skopje

    International Nuclear Information System (INIS)

    Dimitrovski, Mile; Veljanovski, Krsto; Dimitrovski, Dame

    2002-01-01

    Emission improvement in both city centers and conurbations is an important factor which developers of public-utility vehicles and buses must take into account. If natural gas is used as a fuel the emission is considerably lower than that from conventional diesel drive. Thus it is an important contribution to keep the air clean in the area where the vehicles are deployed. In this paper the project 'Ecological Natural gas drive for city buses in Skopje' is analysed. (Original)

  20. Research overview : design specifications for hybrid vehicles

    NARCIS (Netherlands)

    Hofman, T.; Druten, van R.M.

    2004-01-01

    In this paper a method is proposed for determination of the design specifications regarding the energy exchange systems for different chargesustaining hybrid vehicles of different vehicle classes. Hybrid drivetrains for vehicles combine multiple power sources in order to increase the driving

  1. Fundamentals of automotive and engine technology standard drives, hybrid drives, brakes, safety systems

    CERN Document Server

    2014-01-01

    Hybrid drives and the operation of hybrid vehicles are characteristic of contemporary automotive technology. Together with the electronic driver assistant systems, hybrid technology is of the greatest importance and both cannot be ignored by today’s car drivers. This technical reference book provides the reader with a firsthand comprehensive description of significant components of automotive technology. All texts are complemented by numerous detailed illustrations. Contents History of the automobile.- History of the Diesel engine.- Areas of use for Diesel engines.- Basic principles of the Diesel engine.- Basic principles of Diesel fuel-injection.- Basic principles of the gasoline engine.- Inductive ignition system.- Transmissions for motor vehicles.- Motor vehicle safety.- Basic principles of vehicle dynamics.- Car braking systems.- Vehicle electrical systems.- Overview of electrical and electronic systems in the vehicle.- Control of gasoline engines.- Control of Diesel engines.- Lighting technology.- Elec...

  2. In Situ Magnetohydrodynamic Energy Generation for Planetary Entry Vehicles

    Science.gov (United States)

    Ali, H. K.; Braun, R. D.

    2014-06-01

    This work aims to study the suitability of multi-pass entry trajectories for harnessing of vehicle kinetic energy through magnetohydrodynamic power generation from the high temperature entry plasma. Potential mission configurations are analyzed.

  3. Hot Gas TVC For Planetary Ascent Vehicle, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A Mars ascent vehicle (MAV) uses solid rocket motors to propel soil samples into orbit, but the motors cannot provide steering. Flexseal TVC control is planned for...

  4. Hot Gas TVC For Planetary Ascent Vehicle, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A Mars ascent vehicle (MAV) uses solid rocket motors to propel soil samples into orbit, but the motors cannot provide steering. Cold gas thrusters are used for...

  5. Analyzing Vehicle Fuel Saving Opportunities through Intelligent Driver Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.; Earleywine, M.; Sparks, W.

    2012-06-01

    Driving style changes, e.g., improving driver efficiency and motivating driver behavior changes, could deliver significant petroleum savings. This project examines eliminating stop-and-go driving and unnecessary idling, and also adjusting acceleration rates and cruising speeds to ideal levels to quantify fuel savings. Such extreme adjustments can result in dramatic fuel savings of over 30%, but would in reality only be achievable through automated control of vehicles and traffic flow. In real-world driving, efficient driving behaviors could reduce fuel use by 20% on aggressively driven cycles and by 5-10% on more moderately driven trips. A literature survey was conducted of driver behavior influences, and pertinent factors from on-road experiments with different driving styles were observed. This effort highlighted important driver influences such as surrounding vehicle behavior, anxiety over trying to get somewhere quickly, and the power/torque available from the vehicle. Existing feedback approaches often deliver efficiency information and instruction. Three recommendations for maximizing fuel savings from potential drive cycle improvement are: (1) leveraging applications with enhanced incentives, (2) using an approach that is easy and widely deployable to motivate drivers, and (3) utilizing connected vehicle and automation technologies to achieve large and widespread efficiency improvements.

  6. Accounting for the Variation of Driver Aggression in the Simulation of Conventional and Advanced Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J.; Wood, E.

    2013-01-01

    Hybrid electric vehicles, plug-in hybrid electric vehicles, and battery electric vehicles offer the potential to reduce both oil imports and greenhouse gases, as well as to offer a financial benefit to the driver. However, assessing these potential benefits is complicated by several factors, including the driving habits of the operator. We focus on driver aggression, i.e., the level of acceleration and velocity characteristic of travel, to (1) assess its variation within large, real-world drive datasets, (2) quantify its effect on both vehicle efficiency and economics for multiple vehicle types, (3) compare these results to those of standard drive cycles commonly used in the industry, and (4) create a representative drive cycle for future analyses where standard drive cycles are lacking.

  7. Commercial viability of hybrid vehicles : best household use and cross national considerations.

    Energy Technology Data Exchange (ETDEWEB)

    Santini, D. J.; Vyas, A. D.

    1999-07-16

    Japanese automakers have introduced hybrid passenger cars in Japan and will soon do so in the US. In this paper, we report how we used early computer simulation model results to compare the commercial viability of a hypothetical near-term (next decade) hybrid mid-size passenger car configuration under varying fuel price and driving patterns. The fuel prices and driving patterns evaluated are designed to span likely values for major OECD nations. Two types of models are used. One allows the ''design'' of a hybrid to a specified set of performance requirements and the prediction of fuel economy under a number of possible driving patterns (called driving cycles). Another provides an estimate of the incremental cost of the hybrid in comparison to a comparably performing conventional vehicle. In this paper, the models are applied to predict the NPV cost of conventional gasoline-fueled vehicles vs. parallel hybrid vehicles. The parallel hybrids are assumed to (1) be produced at high volume, (2) use nickel metal hydride battery packs, and (3) have high-strength steel bodies. The conventional vehicle also is assumed to have a high-strength steel body. The simulated vehicles are held constant in many respects, including 0-60 time, engine type, aerodynamic drag coefficient, tire rolling resistance, and frontal area. The hybrids analyzed use the minimum size battery pack and motor to meet specified 0-60 times. A key characteristic affecting commercial viability is noted and quantified: that hybrids achieve the most pronounced fuel economy increase (best use) in slow, average-speed, stop-and-go driving, but when households consistently drive these vehicles under these conditions, they tend to travel fewer miles than average vehicles. We find that hours driven is a more valuable measure than miles. Estimates are developed concerning hours of use of household vehicles versus driving cycle, and the pattern of minimum NPV incremental cost (or benefit) of

  8. Some structural aspects that are relevant for synthesis of planetary gear trains

    Energy Technology Data Exchange (ETDEWEB)

    Rajasri, I. [Pathfinder Engineering College, Hanamkonda (India); Gupta, A.V.S.S.K.S. [JNTU, Hyderabad (India); Rao, Y.V.D. [BITS-Pilani. Dept. of Mechanical Engineering, Hyderabad (India)

    2012-07-01

    Gear Trains are typically used in various mechanisms including wind turbines and robots to transmit specified motion and/or torque between two or more shafts and wind turbines need drives and overdrives that amplify the speed of turbine shaft and provide high speed at generator shaft. Planetary gear trains (PGT) are compact, easy to build and operate. Therefore PGTs are most suitable for such drives including over drives. Graph theory used in synthesis of the PGTs is also useful to identify various possible structural aspects of the PGTs. Generation of PGTs is followed by the test for isomorphism in PGTs generated. In this context various structural aspects relevant for the synthesis of PGTs is described. (Author)

  9. Traffic violations in Guangdong Province of China: speeding and drunk driving.

    Science.gov (United States)

    Zhang, Guangnan; Yau, Kelvin K W; Gong, Xiangpu

    2014-03-01

    The number of speeding- and drunk driving-related injuries in China surged in the years immediately preceding 2004 and then began to decline. However, the percent decrease in the number of speeding and drunk driving incidents (decrease by 22%) is not proportional to the corresponding percent decrease in number of automobile accident-related injuries (decrease by 47%) from the year 2004 to 2010 (Traffic Management Bureau, Ministry of Public Security, Annual Statistical Reports on Road Traffic Accidents). Earlier studies have established traffic violations as one of the major risks threatening road safety. In this study, we examine in greater detail two important types of traffic violation events, speeding and drunk driving, and attempt to identify significant risk factors associated with these types of traffic violations. Risk factors in several different dimensions, including driver, vehicle, road and environmental factors, are considered. We analyze the speeding (N=11,055) and drunk driving (N=10,035) data for the period 2006-2010 in Guangdong Province, China. These data, obtained from the Guangdong Provincial Security Department, are extracted from the Traffic Management Sector-Specific Incident Case Data Report and are the only comprehensive and official source of traffic accident data in China. Significant risk factors associating with speeding and drunk driving are identified. We find that several factors are associated with a significantly higher probability of both speeding and drunk driving, particularly male drivers, private vehicles, the lack of street lighting at night and poor visibility. The impact of other specific and unique risk factors for either speeding or drunk driving, such as hukou, road type/grades, commercial vehicles, compulsory third party insurance and vehicle safety status, also require particular attention. Legislative or regulatory measures targeting different vehicle types and/or driver groups with respect to the various driver

  10. Safety problems in vehicles with adaptive cruise control system

    Directory of Open Access Journals (Sweden)

    Yadav Arun K.

    2017-06-01

    Full Text Available In today’s world automotive industries are still putting efforts towards more autonomous vehicles (AVs. The main concern of introducing the autonomous technology is safety of driver. According to a survey 90% of accidents happen due to mistake of driver. The adaptive cruise control system (ACC is a system which combines cruise control with a collision avoidance system. The ACC system is based on laser and radar technologies. This system is capable of controlling the velocity of vehicle automatically to match the velocity of car, bus or truck in front of vehicle. If the lead vehicle gets slow down or accelerate, than ACC system automatically matches that velocity. The proposed paper is focusing on more accurate methods of detecting the preceding vehicle by using a radar and lidar sensors by considering the vehicle side slip and by controlling the distance between two vehicles. By using this approach i.e. logic for calculation of former vehicle distance and controlling the throttle valve of ACC equipped vehicle, an improvement in driving stability was achieved. The own contribution results with fuel efficient driving and with more safer and reliable driving system, but still some improvements are going on to make it more safe and reliable.

  11. Occupant Kinematics in Simulated Autonomous Driving Vehicle Collisions: Influence of Seating Position, Direction and Angle.

    Science.gov (United States)

    Kitagawa, Yuichi; Hayashi, Shigeki; Yamada, Katsunori; Gotoh, Mitsuaki

    2017-11-01

    This two-part study analyzed occupant kinematics in simulated collisions of future automated driving vehicles in terms of seating configuration. In part one, a frontal collision was simulated with four occupants with the front seats reversed. The left front seat occupant was unbelted while the others were belted. In part two of the study, occupant restraint was examined in various seating configurations using a single seat model with a three-point seatbelt. The seat direction with respect to impact was considered as forward, rearward, and lateral facing in 45 degree increments. The effect of seat recline was also studied in the forward-facing and rear-facing cases by assuming three positions: driving position, resting position and relaxed position. Occupants were represented by human body finite element models. The results of part one showed that the front seat (rear-facing) occupants were restrained by the seatback, resulting in T1 forward displacement less than 100 mm; the rear seat occupants were restrained by the seatbelt resulting larger T1 forward displacement more than 500 mm. The results of the part two showed the directional dependence of occupant restraint. Greater T1 displacements were observed when the occupant faced lateral or front oblique. However, the seatbelt provided some restraint in all directions considered. The seatback generated contact force to the occupant when it was in the impact direction, including the lateral directions. The relaxed position allowed increased excursion compared to the driving position when the occupant faced rearward, but the magnitude of this increase was lower with lower impact speed.

  12. Diabetes and Driving Safety: Science, Ethics, Legality & Practice

    Science.gov (United States)

    Cox, Daniel J.; Singh, Harsimran; Lorber, Daniel

    2013-01-01

    Diabetes affects over 25 million people in the United States, most of whom are over the age of 16 and many of whom are licensed to drive a motor vehicle. Safe operation of a motor vehicle requires complex interactions of cognitive and motor functions and medical conditions that affect these functions often will increase the risk of motor vehicle accidents (MVA). In the case of diabetes, hypoglycemia is the most common factor that has been shown to increase MVA rates. When people with diabetes are compared with non-diabetic controls, systematic analyses show that the relative risk of MVA is increased by between 12 and 19% (RRR 1.12-1.19). In comparison, the RRR for Attention Deficit Hyperactivity Disorder is 4.4 and for Sleep Apnea is 2.4. Epidemiologic research suggests that patients at risk for hypoglycemia-related MVAs may have some characteristics in common, including a history of severe hypoglycemia or of hypoglycemia-related driving mishaps. Experimental studies also have shown that people with a history of hypoglycemia-related driving mishaps have abnormal counter-regulatory responses to hypoglycemia and greater cognitive impairments during moderate hypoglycemia. There are medical, ethical and legal issues for health care professionals who care for people with diabetes regarding their patients’ risk of hypoglycemia-related driving mishaps. This includes identifying those at increased risk and counseling them on preventive measures, including more frequent blood glucose testing, delaying driving with low or low normal blood glucose, and carrying readily available emergency supplies in the vehicle for the treatment of hypoglycemia. PMID:23531955

  13. Generating Geospatially Realistic Driving Patterns Derived From Clustering Analysis Of Real EV Driving Data

    DEFF Research Database (Denmark)

    Pedersen, Anders Bro; Aabrandt, Andreas; Østergaard, Jacob

    2014-01-01

    In order to provide a vehicle fleet that realistically represents the predicted Electric Vehicle (EV) penetration for the future, a model is required that mimics people driving behaviour rather than simply playing back collected data. When the focus is broadened from on a traditional user...... scales, which calls for a statistically correct, yet flexible model. This paper describes a method for modelling EV, based on non-categorized data, which takes into account the plug in locations of the vehicles. By using clustering analysis to extrapolate and classify the primary locations where...

  14. Perceptual and Cognitive Impairments and Driving

    Science.gov (United States)

    Korner-Bitensky, Nicol; Coopersmith, Henry; Mayo, Nancy; Leblanc, Ginette; Kaizer, Franceen

    1990-01-01

    Perceptual and cognitive disorders that frequently accompany stroke and head injury influence an individual's ability to drive a motor vehicle. Canadian physicians are legally responsible for identifying patients who are potentially unsafe to drive and, if they fail to do so, may be held liable in a civil action suit. The authors review the guidelines for physicians evaluating a patient's fitness to drive after brain injury. They also examine the actions a physician should take when a patient with perceptual and cognitive problems wants to drive. Ultimately, by taking these actions, physicians will help to prevent driving accidents. PMID:21234047

  15. Influence of roadside infrastructure on driving behavior: driving simulator study

    NARCIS (Netherlands)

    Horst, A.R.A. van der; Ridder, S. de

    2007-01-01

    This paper describes the results of a driving simulator study that focused on the influence of roadside infrastructure on speed choice and lateral placement of car drivers. A review of the RISER detailed accident database revealed that lateral positioning and speed of the vehicle were two of the

  16. Vehicle test report: Electric Vehicle Associates electric conversion of an AMC Pacer

    Science.gov (United States)

    Price, T. W.; Wirth, V. A., Jr.; Pompa, M. F.

    1981-01-01

    Tests were performed to characterize certain parameters of the EVA Pacer and to provide baseline data that can be used for the comparison of improved batteries that may be incorporated into the vehicle at a later time. The vehicle tests were concentrated on the electrical drive subsystem; i.e., the batteries, controller and motor. The tests included coastdowns to characterize the road load, and range evaluations for both cyclic and constant speed conditions. A qualitative evaluation of the vehicle's performance was made by comparing its constant speed range performance with other electric and hybrid vehicles. The Pacer performance was approximately equal to the majority of those vehicles assessed in 1977.

  17. Age and inconsistency in driving performance.

    Science.gov (United States)

    Bunce, David; Young, Mark S; Blane, Alison; Khugputh, Priya

    2012-11-01

    Research in cognitive neuropsychology suggests that investigation of the within-person variability, or inconsistency, of cognitive performance may provide valuable insights into ageing mental processes. It is rare though, for this interest in intraindividual variability to extend to everyday activities. As this may provide important information about driving behaviour, we therefore assessed age differences in driving inconsistency in younger (n=24, M age=21.29 years) and older (n=21, M age=71.24 years) persons who drove in residential, urban and motorway conditions in a fully immersive driving simulator. In measures of headway (maintaining a safe distance to a preceding vehicle) and lateral lane position, older drivers exhibited significantly greater performance inconsistency, and this was particularly marked in the faster motorway condition. Older drivers also recorded greater perceived mental demands associated with driving, and greater within-person variability across a range of cognitive measures. The findings suggest that age-related deficits in attentional and executive control may affect the consistency of driving performance in older persons. Discussion considers interventions to introduce in-vehicle systems to help maintain attention in older drivers, and to intervene when safety-critical boundaries are exceeded. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Do in-car devices affect experienced users' driving performance?

    NARCIS (Netherlands)

    Knapper, A.S.; Hagenzieker, M.P.; Brookhuis, K.A.

    2014-01-01

    Distracted driving is considered to be an important factor in road safety. To investigate how experienced user's driving behaviour is affected by in-vehicle technology, a fixed-base driving simulator was used. 20 participants drove twice in a rich simulated traffic environment while performing

  19. Do in-car devices affect experienced users' driving performance?

    NARCIS (Netherlands)

    Knapper, A.S. Hagenzieker, M.P. & Brookhuis, K.A.

    2015-01-01

    Distracted driving is considered to be an important factor in road safety. To investigate how experienced user's driving behaviour is affected by in-vehicle technology, a fixed-base driving simulator was used. 20 participants drove twice in a rich simulated traffic environment while performing

  20. Method of Controlling Steering of a Ground Vehicle

    Science.gov (United States)

    Dawson, Andrew D. (Inventor); Bluethmann, William J. (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Guo, Raymond (Inventor); Atluri, Venkata Prasad (Inventor)

    2016-01-01

    A method of controlling steering of a vehicle through setting wheel angles of a plurality of modular electronic corner assemblies (eModules) is provided. The method includes receiving a driving mode selected from a mode selection menu. A position of a steering input device is determined in a master controller. A velocity of the vehicle is determined, in the master controller, when the determined position of the steering input device is near center. A drive mode request corresponding to the selected driving mode to the plurality of steering controllers is transmitted to the master controller. A required steering angle of each of the plurality of eModules is determined, in the master controller, as a function of the determined position of the steering input device, the determined velocity of the vehicle, and the selected first driving mode. The eModules are set to the respective determined steering angles.

  1. Adolescence, Attention Allocation, and Driving Safety

    OpenAIRE

    Romer, Daniel; Lee, Yi-Ching; McDonald, Catherine C.; Winston, Flaura K.

    2014-01-01

    Motor vehicle crashes are the leading source of morbidity and mortality in adolescents in the United States and the developed world. Inadequate allocation of attention to the driving task and to driving hazards are important sources of adolescent crashes. We review major explanations for these attention failures with particular focus on the roles that brain immaturity and lack of driving experience play in causing attention problems. The review suggests that the potential for overcoming inexp...

  2. Proto-planetary nebulae

    International Nuclear Information System (INIS)

    Zuckerman, B.

    1978-01-01

    A 'proto-planetary nebula' or a 'planetary nebula progenitor' is the term used to describe those objects that are losing mass at a rate >approximately 10 -5 Msolar masses/year (i.e. comparable to mass loss rates in planetary nebulae with ionized masses >approximately 0.2 Msolar masses) and which, it is believed, will become planetary nebulae themselves within 5 years. It is shown that most proto-planetary nebulae appear as very red objects although a few have been 'caught' near the middle of the Hertzsprung-Russell diagram. The precursors of these proto-planetaries are the general red giant population, more specifically probably Mira and semi-regular variables. (Auth.)end

  3. Vehicle accidents related to sleep: a review.

    Science.gov (United States)

    Horne, J; Reyner, L

    1999-05-01

    Falling asleep while driving accounts for a considerable proportion of vehicle accidents under monotonous driving conditions. Many of these accidents are related to work--for example, drivers of lorries, goods vehicles, and company cars. Time of day (circadian) effects are profound, with sleepiness being particularly evident during night shift work, and driving home afterwards. Circadian factors are as important in determining driver sleepiness as is the duration of the drive, but only duration of the drive is built into legislation protecting professional drivers. Older drivers are also vulnerable to sleepiness in the mid-afternoon. Possible pathological causes of driver sleepiness are discussed, but there is little evidence that this factor contributes greatly to the accident statistics. Sleep does not occur spontaneously without warning. Drivers falling asleep are unlikely to recollect having done so, but will be aware of the precursory state of increasing sleepiness; probably reaching a state of fighting off sleep before an accident. Self awareness of sleepiness is a better method for alerting the driver than automatic sleepiness detectors in the vehicle. None of these have been proved to be reliable and most have shortcomings. Putative counter measures to sleepiness, adopted during continued driving (cold air, use of car radio) are only effective for a short time. The only safe counter measure to driver sleepiness, particularly when the driver reaches the stage of fighting sleep, is to stop driving, and--for example, take a 30 minute break encompassing a short (driving while sleepy, and driving at vulnerable times of the day.

  4. Couples, contentious conversations, mobile telephone use and driving.

    Science.gov (United States)

    Lansdown, Terry C; Stephens, Amanda N

    2013-01-01

    Studies have shown that the inappropriate use of in-vehicle technology may lead to hazardous disruption of driver performance. This paper reports an investigation into the socio-technical implications of maintaining a difficult conversation while driving. Twenty romantically involved couples participated in a driving-simulator experiment. The participants engaged in emotionally difficult conversations while one partner drove. The contentious conversation topics were identified using a revealed differences protocol, requiring partners to discuss sources of ongoing disagreement in their relationship. The conversations were conducted either using handsfree telephone or with both parties present in the simulator. Results indicate that the revealed differences tasks were subjectively viewed as emotionally more difficult than a control. Driver performance was found to be adversely effected for both longitudinal and lateral vehicle control. Performance was worst during contentious conversations with the partner present, suggesting the drivers may be better able to regulate driving task demands with the partner not in the vehicle during difficult discussions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Wrong-way driving crashes on French divided roads.

    Science.gov (United States)

    Kemel, Emmanuel

    2015-02-01

    The objective of divided roads is to increase users' safety by posting unidirectional traffic flows. It happens however that drivers proceed in the wrong direction, endangering themselves as well as other users. The crashes caused by wrong-way drivers are generally spotlighted by the media and call for public intervention. This paper proposes a characterization of wrong-way driving crashes occurring on French divided road on the 2008-2012 period. The objective is to identify the factors that delineate between wrong-way driving crashes and other crashes. Building on the national injury road crash database, 266 crashes involving a wrong-way driver were identified. Their characteristics (related to timing, location, vehicle and driver) are compared to those of the 22,120 other crashes that occurred on the same roads over the same period. The comparison relies on descriptive statistics, completed by a logistic regression. Wrong-way driving crashes are rare but severe. They are more likely to occur during night hours and on non-freeway roads than other crashes. Wrong-way drivers are older, more likely to be intoxicated, to be locals, to drive older vehicles, mainly passenger cars without passengers, than other drivers. The differences observed across networks can help prioritizing public intervention. Most of the identified WW-driving factors deal with cognitive impairment. Therefore, the specific countermeasures such as alternative road signs should be designed for and tested on cognitively impaired drivers. Nevertheless, WW-driving factors are also risk factors for other types of crashes (e.g. elderly driving, drunk driving and age of the vehicle). This suggests that, instead of (or in addition to) developing WW-driving specific countermeasures, managing these risk factors would help reducing a larger number of crashes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Application of theoretical vehicle dynamic results for experimental validation of vehicle characteristics in autonomous vehicle guidance; Aehnlichkeitstheoretische Modelluebertragung zur experimentellen Eigenschaftsabsicherung in der autonomen Fahrzeugfuehrung

    Energy Technology Data Exchange (ETDEWEB)

    Hilgert, J.; Bertram, T. [Univ. Duisburg (Germany). Fachbereich Maschinenbau

    2002-07-01

    The validation and verification of theoretical vehicle dynamic results for autonomous driving can be seen as a major challenge. The main reasons are the high cost of driving tests and the risk of damaging or destroying the test vehicle and the involved persons. One possibility for avoiding these problems and simultaneously to ensure good experimental results lies in the use of scaled model vehicles. Of special relevance is the transfer of relevant parameters to the full size vehicle. In this paper a method based on similitude analysis is developed for validation and verification of driving tests for autonomous vehicles. This method is described for a lane change manoeuvre for a 1:5 scaled vehicle belonging to the Institute of Mechatronics and System Dynamics at the Gerhard-Mercator-Universitaet Duisburg. (orig.) [German] In der autonomen Fahrzeugfuehrung stellt die experimentelle Verifikation und Validierung von theoretischen Ergebnissen hinsichtlich fahrdynamischer Eigenschaften eine grosse Herausforderung dar. Die Ursachen hierfuer liegen zum einen in den hohen Kosten, welche bei Fahrversuchen entstehen, und zum anderen im Unfallrisiko fuer den Versuchstraeger und die am Versuch beteiligten Personen. Eine Moeglichkeit diese Nachteile zu umgehen und gleichzeitig experimentelle Ergebnisse zu bekommen, besteht in der Verwendung massstabgetreuer Modellfahrzeuge. Von besonderer Bedeutung ist hier die Uebertragung relevanter Parameter auf das reale Fahrzeug. In diesem Beitrag wird daher mit Hilfe von aehnlichkeitstheoretischen Ueberlegungen ein Konzept zur experimentellen Verifikation und Validierung von Fahrversuchen auf Basis eines am Institut fuer Mechatronik und Systemdynamik der Gerhard-Mercator-Universitaet Duisburg vorhandenen Fahrzeugmodells (Massstab 1:5) anhand eines Spurwechselmanoevers vorgestellt. (orig.)

  7. Passenger and Cell Phone Conversations in Simulated Driving

    Science.gov (United States)

    Drews, Frank A.; Pasupathi, Monisha; Strayer, David L.

    2008-01-01

    This study examines how conversing with passengers in a vehicle differs from conversing on a cell phone while driving. We compared how well drivers were able to deal with the demands of driving when conversing on a cell phone, conversing with a passenger, and when driving without any distraction. In the conversation conditions, participants were…

  8. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  9. TECHNOLOGICAL DEVELOPMENT OF DRIVING SUPPORT SYSTEMS BASED ON HUMAN BEHAVIORAL CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Shunichi DOI

    2006-01-01

    Full Text Available Driving support and cruise assist systems are of growing importance in achieving both road traffic safety and convenience. Such driver support seeks to achieve, with the highest possible quality, nothing less than “driver-vehicle symbiosis under all conditions.” At the same time, many traffic accidents result from improper driver behavior. The author focuses on driver behavior under various driving conditions, conducting detailed measurement and analysis of visual perception and attention characteristics as well as perceptual characteristics involved in driving. The aim in doing so is to support research on driving support systems and driving workload reduction technologies that function as human-vehicle systems and take such characteristics into account.

  10. Effects of in-vehicle warning information displays with or without spatial compatibility on driving behaviors and response performance.

    Science.gov (United States)

    Liu, Yung-Ching; Jhuang, Jing-Wun

    2012-07-01

    A driving simulator study was conducted to evaluate the effects of five in-vehicle warning information displays upon drivers' emergent response and decision performance. These displays include visual display, auditory displays with and without spatial compatibility, hybrid displays in both visual and auditory format with and without spatial compatibility. Thirty volunteer drivers were recruited to perform various tasks that involved driving, stimulus-response, divided attention and stress rating. Results show that for displays of single-modality, drivers benefited more when coping with visual display of warning information than auditory display with or without spatial compatibility. However, auditory display with spatial compatibility significantly improved drivers' performance in reacting to the divided attention task and making accurate S-R task decision. Drivers' best performance results were obtained for hybrid display with spatial compatibility. Hybrid displays enabled drivers to respond the fastest and achieve the best accuracy in both S-R and divided attention tasks. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  11. Electric driving. Evaluation of transitions based on system options

    International Nuclear Information System (INIS)

    Nagelhout, D.; Ros, J.P.M.

    2009-01-01

    Over the past years, electric driving has become more and more attractive because of the development of better batteries. Driving electric vehicles could drastically reduce CO2 emissions, especially if more electricity would be generated by using sustainable energy. As most passenger cars are not used at night, this is the ideal time for charging their batteries. This would be cost-effective because, at that time, there is a surplus of generating capacity, and wind energy could also be used more effectively. Moreover, consumers will be able to drive clean and quiet vehicles at costs that seem surmountable in the future. At least two obstacles still need to be overcome. The first of which is the current maximum range of electric vehicles of around a few hundred kilometres. The second obstacle is the need for a standardised European network of charging stations, and electrical outlets near residences and at commercial and public parking facilities. This report shows the challenges facing the government and the business community of utilising the benefits of electric driving and of overcoming the obstacles [nl

  12. Idling Reduction for Personal Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-05-07

    Fact sheet on reducing engine idling in personal vehicles. Idling your vehicle--running your engine when you're not driving it--truly gets you nowhere. Idling reduces your vehicle's fuel economy, costs you money, and creates pollution. Idling for more than 10 seconds uses more fuel and produces more emissions that contribute to smog and climate change than stopping and restarting your engine does.

  13. Methodology for functional MRI of simulated driving.

    Science.gov (United States)

    Kan, Karen; Schweizer, Tom A; Tam, Fred; Graham, Simon J

    2013-01-01

    The developed world faces major socioeconomic and medical challenges associated with motor vehicle accidents caused by risky driving. Functional magnetic resonance imaging (fMRI) of individuals using virtual reality driving simulators may provide an important research tool to assess driving safety, based on brain activity and behavior. A fMRI-compatible driving simulator was developed and evaluated in the context of straight driving, turning, and stopping in 16 young healthy adults. Robust maps of brain activity were obtained, including activation of the primary motor cortex, cerebellum, visual cortex, and parietal lobe, with limited head motion (driving is a feasible undertaking.

  14. Accounting for the Variation of Driver Aggression in the Simulation of Conventional and Advanced Vehicles: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J.; Wood, E.

    2013-03-01

    Hybrid electric vehicles, plug-in hybrid electric vehicles, and battery electric vehicles offer the potential to reduce both oil imports and greenhouse gases, as well as to offer a financial benefit to the driver. However, assessing these potential benefits is complicated by several factors, including the driving habits of the operator. We focus on driver aggression, i.e., the level of acceleration and velocity characteristic of travel, to (1) assess its variation within large, real-world drive datasets, (2) quantify its effect on both vehicle efficiency and economics for multiple vehicle types, (3) compare these results to those of standard drive cycles commonly used in the industry, and (4) create a representative drive cycle for future analyses where standard drive cycles are lacking.

  15. A qualitative exploration of driving stress and driving discourtesy.

    Science.gov (United States)

    Scott-Parker, B; Jones, C M; Rune, K; Tucker, J

    2018-05-31

    Driving courtesy, and conversely driving discourtesy, recently has been of great interest in the public domain. In addition, there has been increasing recognition of the negative impact of stress upon the individual's health and wellbeing, with a plethora of interventions aimed at minimising stress more generally. The research literature regarding driving dis/courtesy, in comparison, is scant, with a handful of studies examining the dis/courteous driving behaviour of road users, and the relationship between driving discourtesy and driving stress. To examine courteous and discourteous driving experiences, and to explore the impact of stress associated with such driving experiences. Thirty-eight drivers (20 females) from the Sunshine Coast region volunteered to participate in one of four 1-1.5 h focus groups. Content analysis used the verbatim utterances captured via an Mp3 device. Three themes pertaining to stressful and discourteous interactions were identified. Theme one pertained to the driving context: road infrastructure (eg, roundabouts, roadwork), vehicles (eg, features), location (eg, country vs city, unfamiliar areas), and temporal aspects (eg, holidays). Theme two pertained to other road users: their behaviour (eg, tailgating, merging), and unknown factors (eg, illicit and licit drug use). Theme three pertained to the self as road user: their own behaviours (eg, deliberate intimidation), and their emotions (eg, angry reaction to other drivers, being in control). Driving dis/courtesy and driving stress is a complex phenomenon, suggesting complex intervention efforts are required. Driving discourtesy was reported as being highly stressful, therefore intervention efforts which encourage driving courtesy and which foster emotional capacity to cope with stressful circumstances appear warranted. Copyright © 2018. Published by Elsevier Ltd.

  16. Electronic differential control of 2WD electric vehicle considering steering stability

    Science.gov (United States)

    Hua, Yiding; Jiang, Haobin; Geng, Guoqing

    2017-03-01

    Aiming at the steering wheel differential steering control technology of rear wheel independent driving electric wheel, considering the assisting effect of electronic differential control on vehicle steering, based on the high speed steering characteristic of electric wheel car, the electronic differential speed of auxiliary wheel steering is also studied. A yaw moment control strategy is applied to the vehicle at high speed. Based on the vehicle stability reference value, yaw rate is used to design the fuzzy controller to distribute the driving wheel torque. The simulation results show that the basic electronic differential speed function is realized based on the yaw moment control strategy, while the vehicle stability control is improved and the driving safety is enhanced. On the other hand, the torque control strategy can also assist steering of vehicle.

  17. Simulation of the target-oriented driving of an autonomous vehicle in a labyrinthic environment by means of the KISMET software package

    International Nuclear Information System (INIS)

    Knueppel, H.; Kuehnapfel, U.; Smidt, D.

    1991-10-01

    By using the special capabilities of the KISMET software-package and hardware for geometric operations and graphical presentation, an algorithm for the collision-free target-oriented driving of an autonomous vehicle was developed, implemented and linked to KISMET. The algorithm employs a simple global route-planner. It creates the global path neglecting the finite vehicle dimensions as input to the sensor-based local route-planner. The local planner for each time step transforms the sensor pattern, received by a number of ultrasonic sensors, to the movement-pattern. The target oriented global information influences the local operations. Some examples and a video demonstrate, the target will be reached collision free and close to the shortest path even in a labyrinthic environment. (orig.) [de

  18. Light-Duty Vehicle Thermal Management | Transportation Research | NREL

    Science.gov (United States)

    Light-Duty Vehicle Thermal Management Light-Duty Vehicle Thermal Management Image of a semi improving the thermal efficiency of light-duty vehicles (LDVs) while maintaining the thermal comfort that utility vehicles, vans, and light trucks in use on U.S. roads, and the average American drives 11,300

  19. Correspondence between Simulator and On-Road Drive Performance: Implications for Assessment of Driving Safety.

    Science.gov (United States)

    Aksan, Nazan; Hacker, Sarah D; Sager, Lauren; Dawson, Jeffrey; Anderson, Steven; Rizzo, Matthew

    2016-03-01

    Forty-two younger (Mean age = 35) and 37 older drivers (Mean age = 77) completed four similar simulated drives. In addition, 32 younger and 30 older drivers completed a standard on-road drive in an instrumented vehicle. Performance in the simulated drives was evaluated using both electronic drive data and video-review of errors. Safety errors during the on-road drive were evaluated by a certified driving instructor blind to simulator performance, using state Department of Transportation criteria. We examined the degree of convergence in performance across the two platforms on various driving tasks including lane change, lane keeping, speed control, stopping, turns, and overall performance. Differences based on age group indicated a pattern of strong relative validity for simulator measures. However, relative rank-order in specific metrics of performance suggested a pattern of moderate relative validity. The findings have implications for the use of simulators in assessments of driving safety as well as its use in training and/or rehabilitation settings.

  20. Autonomous Vehicles: Disengagements, Accidents and Reaction Times.

    Directory of Open Access Journals (Sweden)

    Vinayak V Dixit

    Full Text Available Autonomous vehicles are being viewed with scepticism in their ability to improve safety and the driving experience. A critical issue with automated driving at this stage of its development is that it is not yet reliable and safe. When automated driving fails, or is limited, the autonomous mode disengages and the drivers are expected to resume manual driving. For this transition to occur safely, it is imperative that drivers react in an appropriate and timely manner. Recent data released from the California trials provide compelling insights into the current factors influencing disengagements of autonomous mode. Here we show that the number of accidents observed has a significantly high correlation with the autonomous miles travelled. The reaction times to take control of the vehicle in the event of a disengagement was found to have a stable distribution across different companies at 0.83 seconds on average. However, there were differences observed in reaction times based on the type of disengagements, type of roadway and autonomous miles travelled. Lack of trust caused by the exposure to automated disengagements was found to increase the likelihood to take control of the vehicle manually. Further, with increased vehicle miles travelled the reaction times were found to increase, which suggests an increased level of trust with more vehicle miles travelled. We believe that this research would provide insurers, planners, traffic management officials and engineers fundamental insights into trust and reaction times that would help them design and engineer their systems.

  1. Autonomous Vehicles: Disengagements, Accidents and Reaction Times.

    Science.gov (United States)

    Dixit, Vinayak V; Chand, Sai; Nair, Divya J

    2016-01-01

    Autonomous vehicles are being viewed with scepticism in their ability to improve safety and the driving experience. A critical issue with automated driving at this stage of its development is that it is not yet reliable and safe. When automated driving fails, or is limited, the autonomous mode disengages and the drivers are expected to resume manual driving. For this transition to occur safely, it is imperative that drivers react in an appropriate and timely manner. Recent data released from the California trials provide compelling insights into the current factors influencing disengagements of autonomous mode. Here we show that the number of accidents observed has a significantly high correlation with the autonomous miles travelled. The reaction times to take control of the vehicle in the event of a disengagement was found to have a stable distribution across different companies at 0.83 seconds on average. However, there were differences observed in reaction times based on the type of disengagements, type of roadway and autonomous miles travelled. Lack of trust caused by the exposure to automated disengagements was found to increase the likelihood to take control of the vehicle manually. Further, with increased vehicle miles travelled the reaction times were found to increase, which suggests an increased level of trust with more vehicle miles travelled. We believe that this research would provide insurers, planners, traffic management officials and engineers fundamental insights into trust and reaction times that would help them design and engineer their systems.

  2. Autonomous Vehicles: Disengagements, Accidents and Reaction Times

    Science.gov (United States)

    Dixit, Vinayak V.; Chand, Sai; Nair, Divya J.

    2016-01-01

    Autonomous vehicles are being viewed with scepticism in their ability to improve safety and the driving experience. A critical issue with automated driving at this stage of its development is that it is not yet reliable and safe. When automated driving fails, or is limited, the autonomous mode disengages and the drivers are expected to resume manual driving. For this transition to occur safely, it is imperative that drivers react in an appropriate and timely manner. Recent data released from the California trials provide compelling insights into the current factors influencing disengagements of autonomous mode. Here we show that the number of accidents observed has a significantly high correlation with the autonomous miles travelled. The reaction times to take control of the vehicle in the event of a disengagement was found to have a stable distribution across different companies at 0.83 seconds on average. However, there were differences observed in reaction times based on the type of disengagements, type of roadway and autonomous miles travelled. Lack of trust caused by the exposure to automated disengagements was found to increase the likelihood to take control of the vehicle manually. Further, with increased vehicle miles travelled the reaction times were found to increase, which suggests an increased level of trust with more vehicle miles travelled. We believe that this research would provide insurers, planners, traffic management officials and engineers fundamental insights into trust and reaction times that would help them design and engineer their systems. PMID:27997566

  3. Planetary Radar

    Science.gov (United States)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  4. A High-Performance Control Method of Constant V/f-Controlled Induction Motor Drives for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Long Chen

    2014-01-01

    Full Text Available A three-phase induction motor used as a propulsion system for the electric vehicle (EV is a nonlinear, multi-input multi-output, and strong coupling system. For such a complicated model system with unmeasured and unavoidable disturbances, as well as parameter variations, the conventional vector control method cannot meet the demands of high-performance control. Therefore, a novel control strategy named least squares support vector machines (LSSVM inverse control is presented in the paper. Invertibility of the induction motor in the constant V/f control mode is proved to confirm its feasibility. The LSSVM inverse is composed of an LSSVM approximating the nonlinear mapping of the induction motor and two integrators. The inverse model of the constant V/f-controlled induction motor drive is obtained by using LSSVM, and then the optimal parameters of LSSVM are determined automatically by applying a modified particle swarm optimization (MPSO. Cascading the LSSVM inverse with the induction motor drive system, the pseudolinear system can be obtained. Thus, it is easy to design the closed-loop linear regulator. The simulation results verify the effectiveness of the proposed method.

  5. From Planetary Mapping to Map Production: Planetary Cartography as integral discipline in Planetary Sciences

    Science.gov (United States)

    Nass, Andrea; van Gasselt, Stephan; Hargitai, Hendrik; Hare, Trent; Manaud, Nicolas; Karachevtseva, Irina; Kersten, Elke; Roatsch, Thomas; Wählisch, Marita; Kereszturi, Akos

    2016-04-01

    Cartography is one of the most important communication channels between users of spatial information and laymen as well as the open public alike. This applies to all known real-world objects located either here on Earth or on any other object in our Solar System. In planetary sciences, however, the main use of cartography resides in a concept called planetary mapping with all its various attached meanings: it can be (1) systematic spacecraft observation from orbit, i.e. the retrieval of physical information, (2) the interpretation of discrete planetary surface units and their abstraction, or it can be (3) planetary cartography sensu strictu, i.e., the technical and artistic creation of map products. As the concept of planetary mapping covers a wide range of different information and knowledge levels, aims associated with the concept of mapping consequently range from a technical and engineering focus to a scientific distillation process. Among others, scientific centers focusing on planetary cartography are the United State Geological Survey (USGS, Flagstaff), the Moscow State University of Geodesy and Cartography (MIIGAiK, Moscow), Eötvös Loránd University (ELTE, Hungary), and the German Aerospace Center (DLR, Berlin). The International Astronomical Union (IAU), the Commission Planetary Cartography within International Cartographic Association (ICA), the Open Geospatial Consortium (OGC), the WG IV/8 Planetary Mapping and Spatial Databases within International Society for Photogrammetry and Remote Sensing (ISPRS) and a range of other institutions contribute on definition frameworks in planetary cartography. Classical cartography is nowadays often (mis-)understood as a tool mainly rather than a scientific discipline and an art of communication. Consequently, concepts of information systems, mapping tools and cartographic frameworks are used interchangeably, and cartographic workflows and visualization of spatial information in thematic maps have often been

  6. Methodology for kinematic cycle characterization of vehicles with fixed routes in urban areas

    OpenAIRE

    Jiménez Alonso, Felipe; Román de Andrés, Alfonso; López Martínez, José María

    2013-01-01

    This paper analyses the driving cycles of a fleet of vehicles with predetermined urban itineraries. Most driving cycles developed for such type of vehicles do not properly address variability among itineraries. Here we develop a polygonal driving cycle that assesses each group of related routes, based on microscopic parameters. It measures the kinematic cycles of the routes traveled by the vehicle fleet, segments cycles into micro-cycles, and characterizes their properties, groups them int...

  7. Effects of advertising billboards during simulated driving.

    Science.gov (United States)

    Edquist, Jessica; Horberry, Tim; Hosking, Simon; Johnston, Ian

    2011-05-01

    There is currently a great deal of interest in the problem of driver distraction. Most research focuses on distractions from inside the vehicle, but drivers can also be distracted by objects outside the vehicle. Major roads are increasingly becoming sites for advertising billboards, and there is little research on the potential effects of this advertising on driving performance. The driving simulator experiment presented here examines the effects of billboards on drivers, including older and inexperienced drivers who may be more vulnerable to distractions. The presence of billboards changed drivers' patterns of visual attention, increased the amount of time needed for drivers to respond to road signs, and increased the number of errors in this driving task. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  8. Gaze-controlled Driving

    DEFF Research Database (Denmark)

    Tall, Martin; Alapetite, Alexandre; San Agustin, Javier

    2009-01-01

    We investigate if the gaze (point of regard) can control a remote vehicle driving on a racing track. Five different input devices (on-screen buttons, mouse-pointing low-cost webcam eye tracker and two commercial eye tracking systems) provide heading and speed control on the scene view transmitted...

  9. Negotiating the Traffic: Can Cognitive Science Help Make Autonomous Vehicles a Reality?

    Science.gov (United States)

    Chater, Nick; Misyak, Jennifer; Watson, Derrick; Griffiths, Nathan; Mouzakitis, Alex

    2018-02-01

    To drive safely among human drivers, cyclists and pedestrians, autonomous vehicles will need to mimic, or ideally improve upon, humanlike driving. Yet, driving presents us with difficult problems of joint action: 'negotiating' with other users over shared road space. We argue that autonomous driving provides a test case for computational theories of social interaction, with fundamental implications for the development of autonomous vehicles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. An investigation on the fuel savings potential of hybrid hydraulic refuse collection vehicles.

    Science.gov (United States)

    Bender, Frank A; Bosse, Thomas; Sawodny, Oliver

    2014-09-01

    Refuse trucks play an important role in the waste collection process. Due to their typical driving cycle, these vehicles are characterized by large fuel consumption, which strongly affects the overall waste disposal costs. Hybrid hydraulic refuse vehicles offer an interesting alternative to conventional diesel trucks, because they are able to recuperate, store and reuse braking energy. However, the expected fuel savings can vary strongly depending on the driving cycle and the operational mode. Therefore, in order to assess the possible fuel savings, a typical driving cycle was measured in a conventional vehicle run by the waste authority of the City of Stuttgart, and a dynamical model of the considered vehicle was built up. Based on the measured driving cycle and the vehicle model including the hybrid powertrain components, simulations for both the conventional and the hybrid vehicle were performed. Fuel consumption results that indicate savings of about 20% are presented and analyzed in order to evaluate the benefit of hybrid hydraulic vehicles used for refuse collection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Driving and dementia: Efficient approach to driving safety concerns in family practice.

    Science.gov (United States)

    Lee, Linda; Molnar, Frank

    2017-01-01

    To provide primary care physicians with an approach to driving safety concerns when older persons present with memory difficulties. The approach is based on an accredited memory clinic training program developed by the Centre for Family Medicine Primary Care Collaborative Memory Clinic. One of the most challenging aspects of dementia care is the assessment of driving safety. Drivers with dementia are at higher risk of motor vehicle collisions, yet many drivers with mild dementia might be safely able to continue driving for several years. Because safe driving is dependent on multiple cognitive and functional skills, clinicians should carefully consider many factors when determining if cognitive concerns affect driving safety. Specific findings on corroborated history and office-based cognitive testing might aid in the physician's decisions to refer for comprehensive on-road driving evaluation and whether to notify transportation authorities in accordance with provincial reporting requirements. Sensitive communication and a person-centred approach are essential. Primary care physicians must consider many factors when determining if cognitive concerns might affect driving safety in older drivers. Copyright© the College of Family Physicians of Canada.

  12. The ZEN E-Drive program. Realization of a 2011-2015 demonstration platform for the development of an integrated vehicle/infrastructure with energy optimal management. Non-confidential synthesis

    International Nuclear Information System (INIS)

    2015-11-01

    The aim of the ZEN E-Drive program (from 2011 to 2015) was to demonstrate that electric-powered vehicles could be used everyday in urban and peri-urban modes, as well as a common thermal vehicle. The partners of the project (Courb, CEA, Cooltech Applications and Giraudon Carrosserie Industrielle) wanted to show that a good vehicle/infrastructure integration was essential to the development of this application considering the likely development of better-performing batteries that will extend the vehicle autonomy. The objective was thus to develop a light vehicle (less than 800 kg) with two seats and a 540 liter trunk dedicated to a professional usage, for a maximum speed of 115 km/h and a 130 km autonomy. Air conditioning and charging systems were also developed (charging stations with renewable energy sources, optimization control, etc.)

  13. Vehicle Reference Generator for Collision-Free Trajectories in Hazardous Maneuvers

    Directory of Open Access Journals (Sweden)

    Cuauhtémoc Acosta Lúa

    2018-01-01

    Full Text Available This paper presents a reference generator for ground vehicles, based on potential fields adapted to the case of vehicular dynamics. The reference generator generates signals to be tracked by the vehicle, corresponding to a trajectory avoiding collisions with obstacles. This generator integrates artificial forces of potential fields of the object surrounding the vehicle. The reference generator is used with a controller to ensure the tracking of the accident-free reference. This approach can be used for vehicle autonomous driving or for active control of manned vehicles. Simulation results, presented for the autonomous driving, consider a scenario inspired by the so-called moose (or elk test, with the presence of other collaborative vehicles.

  14. Torque Distribution Algorithm for an Independently Driven Electric Vehicle Using a Fuzzy Control Method

    Directory of Open Access Journals (Sweden)

    Jinhyun Park

    2015-08-01

    Full Text Available The in-wheel electric vehicle is expected to be a popular next-generation vehicle because an in-wheel system can simplify the powertrain and improve driving performance. In addition, it also has an advantage in that it maximizes driving efficiency through independent torque control considering the motor efficiency. However, there is an instability problem if only the driving torque is controlled in consideration of only the motor efficiency. In this paper, integrated torque distribution strategies are proposed to overcome these problems. The control algorithm consists of various strategies for optimizing driving efficiency, satisfying driver demands, and considering tire slip and vehicle cornering. Fuzzy logic is used to determine the appropriate timing of intervention for each distribution strategy. A performance simulator for in-wheel electric vehicles was developed by using MATLAB/Simulink and CarSim to validate the control strategies. From simulation results under complex driving conditions, the proposed algorithm was verified to improve both the driving stability and fuel economy of the in-wheel vehicle.

  15. A Distance-Adaptive Refueling Recommendation Algorithm for Self-Driving Travel

    Directory of Open Access Journals (Sweden)

    Quanli Xu

    2018-03-01

    Full Text Available Taking the maximum vehicle driving distance, the distances from gas stations, the route length, and the number of refueling gas stations as the decision conditions, recommendation rules and an early refueling service warning mechanism for gas stations along a self-driving travel route were constructed by using the algorithm presented in this research, based on the spatial clustering characteristics of gas stations and the urgency of refueling. Meanwhile, by combining ArcEngine and Matlab capabilities, a scenario simulation system of refueling for self-driving travel was developed by using c#.net in order to validate and test the accuracy and applicability of the algorithm. A total of nine testing schemes with four simulation scenarios were designed and executed using this algorithm, and all of the simulation results were consistent with expectations. The refueling recommendation algorithm proposed in this study can automatically adapt to changes in the route length of self-driving travel, the maximum driving distance of the vehicle, and the distance from gas stations, which could provide variable refueling recommendation strategies according to differing gas station layouts along the route. Therefore, the results of this study could provide a scientific reference for the reasonable planning and timely supply of vehicle refueling during self-driving travel.

  16. Dialling and driving: factors influencing intentions to use a mobile phone while driving.

    Science.gov (United States)

    Walsh, Shari P; White, Katherine M; Hyde, Melissa K; Watson, Barry

    2008-11-01

    Despite being identified as an unsafe (and, in some jurisdictions, illegal) driving practice, the psychological factors underlying people's decision to use their mobile phone while driving have received little attention. The present study utilised the theory of planned behaviour (TPB) to examine the role of attitudes, norms, control factors, and risk perceptions, in predicting people's intentions to use their mobile phone while driving. We examined the predictors of intentions to use a mobile phone while driving in general, and for calling and text messaging in 4 scenarios differing in descriptions of vehicle speed and time pressure. There was some support for the TPB given that attitudes consistently predicted intentions to drive while using a mobile phone and that pressure from significant others (norms) determined some phone use while driving intentions, although less support was found for the role of perceptions of control. Risk was not generally predictive of safer driving intentions. These findings indicate that different factors influence each form of mobile phone use while driving and, hence, a multi-strategy approach is likely to be required to address the issue.

  17. Do in-car devices affect experienced users' driving performance?

    Directory of Open Access Journals (Sweden)

    Allert S. Knapper

    2015-07-01

    Full Text Available Distracted driving is considered to be an important factor in road safety. To investigate how experienced user's driving behaviour is affected by in-vehicle technology, a fixed-base driving simulator was used. 20 participants drove twice in a rich simulated traffic environment while performing secondary, i.e. mobile phone and navigation system tasks. The results show that mean speed was lower in all experimental conditions, compared to baseline driving, while subjective effort increased. Lateral performance deteriorated only during visual–manual tasks, i.e. texting and destination entry, in which the participants glanced off the forward road for a substantial amount of time. Being experienced in manipulating in-car devices does not solve the problem of dual tasking when the primary task is a complex task like driving a moving vehicle. The results and discussion may shed some light on the current debate regarding phone use hazards.

  18. 49 CFR 392.22 - Emergency signals; stopped commercial motor vehicles.

    Science.gov (United States)

    2010-10-01

    ... REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES Stopped Commercial Motor Vehicles § 392.22 Emergency signals; stopped commercial motor vehicles. (a) Hazard warning signal flashers. Whenever a commercial motor vehicle... than necessary traffic stops, the driver of the stopped commercial motor vehicle shall immediately...

  19. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  20. Fifty years of driving safety research.

    Science.gov (United States)

    Lee, John D

    2008-06-01

    This brief review covers the 50 years of driving-related research published in Human Factors, its contribution to driving safety, and emerging challenges. Many factors affect driving safety, making it difficult to assess the impact of specific factors such as driver age, cell phone distractions, or collision warnings. The author considers the research themes associated with the approximately 270 articles on driving published in Human Factors in the past 50 years. To a large extent, current and past research has explored similar themes and concepts. Many articles published in the first 25 years focused on issues such as driver impairment, individual differences, and perceptual limits. Articles published in the past 25 years address similar issues but also point toward vehicle technology that can exacerbate or mitigate the negative effect of these issues. Conceptual and computational models have played an important role in this research. Improved crash-worthiness has contributed to substantial improvements in driving safety over the past 50 years, but future improvements will depend on enhancing driver performance and perhaps, more important, improving driver behavior. Developing models to guide this research will become more challenging as new technology enters the vehicle and shifts the focus from driver performance to driver behavior. Over the past 50 years, Human Factors has accumulated a large base of driving-related research that remains relevant for many of today's design and policy concerns.

  1. Implications of advanced vehicle technologies for older drivers.

    Science.gov (United States)

    Molnar, Lisa J; Eby, David W

    2017-09-01

    Advances are being made in vehicle technologies that may help older adults compensate for some of the declines in abilities associated with aging. These advances hold promise for increasing vehicle safety, reducing injuries, and making the driving task more comfortable. However, important research gaps remain with regard to how various advanced technologies impact the safety of older drivers, as well as older drivers' perceptions about these technologies. This special issue contains seven original contributions that address these issues. Specific topics include the: congruence of design guidelines with the needs and abilities of older drivers, transfer of control between automated and manual driving, use of in-vehicle monitoring technology, motivations for technology use and assigned meanings, technology valuation, and effects on driving behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Creating a driving profile for older adults using GPS devices and naturalistic driving methodology [version 2; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Ganesh M. Babulal

    2016-12-01

    Full Text Available Background/Objectives: Road tests and driving simulators are most commonly used in research studies and clinical evaluations of older drivers. Our objective was to describe the process and associated challenges in adapting an existing, commercial, off-the-shelf (COTS, in-vehicle device for naturalistic, longitudinal research to better understand daily driving behavior in older drivers. Design: The Azuga G2 Tracking DeviceTM was installed in each participant’s vehicle, and we collected data over 5 months (speed, latitude/longitude every 30-seconds when the vehicle was driven.  Setting: The Knight Alzheimer’s Disease Research Center at Washington University School of Medicine. Participants: Five individuals enrolled in a larger, longitudinal study assessing preclinical Alzheimer disease and driving performance.  Participants were aged 65+ years and had normal cognition. Measurements:  Spatial components included Primary Location(s, Driving Areas, Mean Centers and Unique Destinations.  Temporal components included number of trips taken during different times of the day.  Behavioral components included number of hard braking, speeding and sudden acceleration events. Methods:  Individual 30-second observations, each comprising one breadcrumb, and trip-level data were collected and analyzed in R and ArcGIS.  Results: Primary locations were confirmed to be 100% accurate when compared to known addresses.  Based on the locations of the breadcrumbs, we were able to successfully identify frequently visited locations and general travel patterns.  Based on the reported time from the breadcrumbs, we could assess number of trips driven in daylight vs. night.  Data on additional events while driving allowed us to compute the number of adverse driving alerts over the course of the 5-month period. Conclusions: Compared to cameras and highly instrumented vehicle in other naturalistic studies, the compact COTS device was quickly installed and

  3. Impaired driving from medical conditions: A 70-year-old man trying to decide if he should continue driving

    Science.gov (United States)

    Rizzo, Matthew

    2012-01-01

    Some medical disorders can impair performance, increasing the risk of driving safety errors that can lead to vehicle crashes. The causal pathway often involves a concatenation of factors or events, some of which can be prevented or controlled. Effective interventions can operate before, during, or after a crash occurs at the levels of driver capacity, vehicle and road design, and public policy. A variety of systemic, neurological, psychiatric, and developmental disorders put drivers at potential increased risk of a car crash in the short or long term. Medical diagnosis and age alone are usually insufficient criteria for determining fitness to drive. Strategies are needed for determining what types and levels of reduced function provide a threshold for disqualification in drivers with medical disorders. Evidence of decreased mileage, self-restriction to driving in certain situations, collisions, moving violations, aggressive driving, sleepiness, alcohol abuse, metabolic disorders, and multiple medications may trigger considerations of driver safety. A general framework for evaluating driver fitness relies on a functional evaluation of multiple domains (cognitive, motor, perceptual, and psychiatric) that are important for safe driving and can be applied across many disorders, including conditions that have rarely been studied with respect to driving, and in patients with multiple conditions and medications. Neurocognitive tests, driving simulation, and road tests provide complementary sources of evidence to evaluate driver safety. No single test is sufficient to determine who should drive and who should not. PMID:21364126

  4. Impaired driving from medical conditions: a 70-year-old man trying to decide if he should continue driving.

    Science.gov (United States)

    Rizzo, Matthew

    2011-03-09

    Some medical disorders can impair performance, increasing the risk of driving safety errors that can lead to vehicle crashes. The causal pathway often involves a concatenation of factors or events, some of which can be prevented or controlled. Effective interventions can operate before, during, or after a crash occurs at the levels of driver capacity, vehicle and road design, and public policy. A variety of systemic, neurological, psychiatric, and developmental disorders put drivers at potential increased risk of a car crash in the short or long term. Medical diagnosis and age alone are usually insufficient criteria for determining fitness to drive. Strategies are needed for determining what types and levels of reduced function provide a threshold for disqualification in drivers with medical disorders. Evidence of decreased mileage, self-restriction to driving in certain situations, collisions, moving violations, aggressive driving, sleepiness, alcohol abuse, metabolic disorders, and multiple medications may trigger considerations of driver safety. A general framework for evaluating driver fitness relies on a functional evaluation of multiple domains (cognitive, motor, perceptual, and psychiatric) that are important for safe driving and can be applied across many disorders, including conditions that have rarely been studied with respect to driving, and in patients with multiple conditions and medications. Neurocognitive tests, driving simulation, and road tests provide complementary sources of evidence to evaluate driver safety. No single test is sufficient to determine who should drive and who should not.

  5. An APF and MPC combined collaborative driving controller using vehicular communication technologies

    International Nuclear Information System (INIS)

    Huang, Zichao; Wu, Qing; Ma, Jie; Fan, Shiqi

    2016-01-01

    Collaborative driving is a growing domain of Intelligent Transportation Systems (ITS) which aim to navigate traffic both efficiently and safely. Cooperation between vehicles heavily rely on the comprehensive information collected. With the development of vehicular communication technologies, information can be shared between vehicles or infrastructures through Vehicle-to-Vehicle (V2V)/Vehicle-to-Infrastructure (V2I) data exchange. By taking advantage of data sharing between vehicles, this paper proposes an Artificial Potential Field (APF) and Model Predictive Control (MPC) combined controller to implement collaborative driving in complex environments. Firstly, an APF model ​containing three components is developed to describe the mutual effect and collaboration properties between vehicles and surrounding environments. Afterwards, a MPC cost function for optimized control, considering both kinematic characteristics and environmental effect conveyed by APF, is presented to address the problem of collaborative driving. Such controller is designed from the perspective of multi-objective and multi-constraint optimization which takes the vehicle motion constraints, safety and comfort requirements into consideration. The prominent advantage of the proposed approach is that it can deal with the problems of route planning and manipulating simultaneously. To validate the proposed approach, a variety of scenario simulations are conducted in MATLAB, and the performance of the proposed method are verified.

  6. High risk of near-crash driving events following night-shift work.

    Science.gov (United States)

    Lee, Michael L; Howard, Mark E; Horrey, William J; Liang, Yulan; Anderson, Clare; Shreeve, Michael S; O'Brien, Conor S; Czeisler, Charles A

    2016-01-05

    Night-shift workers are at high risk of drowsiness-related motor vehicle crashes as a result of circadian disruption and sleep restriction. However, the impact of actual night-shift work on measures of drowsiness and driving performance while operating a real motor vehicle remains unknown. Sixteen night-shift workers completed two 2-h daytime driving sessions on a closed driving track at the Liberty Mutual Research Institute for Safety: (i) a postsleep baseline driving session after an average of 7.6 ± 2.4 h sleep the previous night with no night-shift work, and (ii) a postnight-shift driving session following night-shift work. Physiological measures of drowsiness were collected, including infrared reflectance oculography, electroencephalography, and electrooculography. Driving performance measures included lane excursions, near-crash events, and drives terminated because of failure to maintain control of the vehicle. Eleven near-crashes occurred in 6 of 16 postnight-shift drives (37.5%), and 7 of 16 postnight-shift drives (43.8%) were terminated early for safety reasons, compared with zero near-crashes or early drive terminations during 16 postsleep drives (Fishers exact: P = 0.0088 and P = 0.0034, respectively). Participants had a significantly higher rate of lane excursions, average Johns Drowsiness Scale, blink duration, and number of slow eye movements during postnight-shift drives compared with postsleep drives (3.09/min vs. 1.49/min; 1.71 vs. 0.97; 125 ms vs. 100 ms; 35.8 vs. 19.1; respectively, P Night-shift work increases driver drowsiness, degrading driving performance and increasing the risk of near-crash drive events. With more than 9.5 million Americans working overnight or rotating shifts and one-third of United States commutes exceeding 30 min, these results have implications for traffic and occupational safety.

  7. Do We Blindly Trust Self-Driving Cars

    DEFF Research Database (Denmark)

    Egedal Andersen, Kamilla; Köslich, Simon; Pedersen, Bjarke Maigaard Kjær

    2017-01-01

    - to-day activities, such as driving a car, we carried out a series of experiments with an autonomous car simulator. Partici- pants (N=73) engaged in a scenario with no, correct or false audible information regarding the state of traffic around the self-driving vehicle, and were told they could assume...

  8. New space vehicle archetypes for human planetary missions

    Science.gov (United States)

    Sherwood, Brent

    1991-01-01

    Contemporary, archetypal, crew-carrying spacecraft concepts developed for NASA are presented for: a lunar transportation system, two kinds of Mars landers, and five kinds of Mars transfer vehicles. These cover the range of propulsion technologies and mission modes of interest for the Space Exploration Initiative, and include both aerobraking and artificial gravity as appropriate. They comprise both upgrades of extant archetypes and completely new ones. Computer solid models, configurations and mass statements are presented for each.

  9. Numerical analysis of stiffener for hybrid drive unite

    Directory of Open Access Journals (Sweden)

    Jakubovičová Lenka

    2018-01-01

    Full Text Available The matter of this article is a stress-strain analysis of hybrid drive prototype unit connected directly to convention Concrete Transit Mixer Gearbox. The unite was developed with intention to do field test on existing convection machines with possibility to use existing interfaces. The hybrid drive unit consists from electric and hydrostatic motor connected through addition mechanical transmission gearbox. The question is if today standard interface is good enough or need additional support a “stiffener”. Two engineering design were analysed. The first one includes using the stiffener to fixate the construction of hybrid drive unite connected to the planetary gear. The second one is without the stiffener. For strain-stress analysis, a finite element software ANSYS Workbench was used.

  10. Shaping of planetary nebulae

    International Nuclear Information System (INIS)

    Balick, B.

    1987-01-01

    The phases of stellar evolution and the development of planetary nebulae are examined. The relation between planetary nebulae and red giants is studied. Spherical and nonspherical cases of shaping planetaries with stellar winds are described. CCD images of nebulae are analyzed, and it is determined that the shape of planetary nebulae depends on ionization levels. Consideration is given to calculating the distances of planetaries using radio images, and molecular hydrogen envelopes which support the wind-shaping model of planetary nebulae

  11. Longitudinal Control for Mengshi Autonomous Vehicle via Cloud Model

    Science.gov (United States)

    Gao, H. B.; Zhang, X. Y.; Li, D. Y.; Liu, Y. C.

    2018-03-01

    Dynamic robustness and stability control is a requirement for self-driving of autonomous vehicle. Longitudinal control method of autonomous is a key technique which has drawn the attention of industry and academe. In this paper, we present a longitudinal control algorithm based on cloud model for Mengshi autonomous vehicle to ensure the dynamic stability and tracking performance of Mengshi autonomous vehicle. An experiments is applied to test the implementation of the longitudinal control algorithm. Empirical results show that if the longitudinal control algorithm based Gauss cloud model are applied to calculate the acceleration, and the vehicles drive at different speeds, a stable longitudinal control effect is achieved.

  12. Mechanical Design Engineering Enabler Project wheel and wheel drives

    Science.gov (United States)

    Nutt, Richard E.; Couch, Britt K.; Holley, John L., Jr.; Garris, Eric S.; Staut, Paul V.

    1992-01-01

    Our group was assigned the responsibility of designing the wheel and wheel drive system for a proof-of-concept model of the lunar-based ENABLER. ENABLER is a multi-purpose, six wheeled vehicle designed to lift and transport heavy objects associated with the construction of a lunar base. The resulting design was based on the performance criteria of the ENABLER. The drive system was designed to enable the vehicle to achieve a speed of 7 mph on a level surface, climb a 30 percent grade, and surpass a one meter high object and one meter wide crevice. The wheel assemblies were designed to support the entire weight of the vehicle on two wheels. The wheels were designed to serve as the main component of the vehicle's suspension and will provide suitable traction for lunar-type surfaces. The expected performance of the drive system for the ENABLER was influenced by many mechanical factors. The expected top speed on a level sandy surface is 4 mph instead of the desired 7 mph. This is due to a lack of necessary power at the wheels. The lack of power resulted from dimension considerations that allowed only an eight horsepower engine and also from mechanical inefficiencies of the hydraulic system. However, the vehicle will be able to climb a 30 percent grade, surpass a one meter high object and one meter wide crevice. The wheel assemblies will be able to support the entire weight of the vehicle on two wheels. The wheels will also provide adequate suspension for the vehicle and sufficient traction for lunar-type surfaces.

  13. Structural Health Monitoring for a Z-Type Special Vehicle

    Directory of Open Access Journals (Sweden)

    Chaolin Yuan

    2017-06-01

    Full Text Available Nowadays there exist various kinds of special vehicles designed for some purposes, which are different from regular vehicles in overall dimension and design. In that case, accidents such as overturning will lead to large economical loss and casualties. There are still no technical specifications to follow to ensure the safe operation and driving of these special vehicles. Owing to the poor efficiency of regular maintenance, it is more feasible and effective to apply real-time monitoring during the operation and driving process. In this paper, the fiber Bragg grating (FBG sensors are used to monitor the safety of a z-type special vehicle. Based on the structural features and force distribution, a reasonable structural health monitoring (SHM scheme is presented. Comparing the monitoring results with the finite element simulation results guarantees the accuracy and reliability of the monitoring results. Large amounts of data are collected during the operation and driving progress to evaluate the structural safety condition and provide reference for SHM systems developed for other special vehicles.

  14. Planetary Magnetism

    Science.gov (United States)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  15. Preface to the special section on human factors and automation in vehicles: designing highly automated vehicles with the driver in mind.

    Science.gov (United States)

    Merat, Natasha; Lee, John D

    2012-10-01

    This special section brings together diverse research regarding driver interaction with advanced automotive technology to guide design of increasingly automated vehicles. Rapidly evolving vehicle automation will likely change cars and trucks more in the next 5 years than the preceding 50, radically redefining what it means to drive. This special section includes 10 articles from European and North American researchers reporting simulator and naturalistic driving studies. Little research has considered the consequences of fully automated driving, with most focusing on lane-keeping and speed control systems individually. The studies reveal two underlying design philosophies: automate driving versus support driving. Results of several studies, consistent with previous research in other domains, suggest that the automate philosophy can delay driver responses to incidents in which the driver has to intervene and take control from the automation. Understanding how to orchestrate the transfer or sharing of control between the system and the driver, particularly in critical incidents, emerges as a central challenge. Designers should not assume that automation can substitute seamlessly for a human driver, nor can they assume that the driver can safely accommodate the limitations of automation. Designers, policy makers, and researchers must give careful consideration to what role the person should have in highly automated vehicles and how to support the driver if the driver is to be responsible for vehicle control. As in other domains, driving safety increasingly depends on the combined performance of the human and automation, and successful designs will depend on recognizing and supporting the new roles of the driver.

  16. Drivers’ Age, Gender, Driving Experience, and Aggressiveness as Predictors of Aggressive Driving Behaviour

    Directory of Open Access Journals (Sweden)

    Perepjolkina Viktorija

    2011-12-01

    Full Text Available Recent years have seen a growing interest in the problem of aggressive driving. In the presentstudy two demographic variables (gender and age, two non-psychological driving-experiencerelated variables (annual mileage and legal driving experience in years and aggressiveness asa personality trait (including behavioural and affective components as psychological variableof individual differences were examined as potential predictors of aggressive driving. The aimof the study was to find out the best predictors of aggressive driving behaviour. The study wasbased on an online survey, and 228 vehicle drivers in Latvia participated in it. The questionnaireincluded eight-item Aggressive Driving Scale (Bone & Mowen, 2006, short Latvian versionof the Buss-Perry Aggression Questionnaire (AQ; Buss & Perry, 1992, and questions gainingdemographic and driving experience information. Gender, age and annual mileage predictedaggressive driving: being male, young and with higher annual driving exposure were associatedwith higher scores on aggressive driving. Dispositional aggressiveness due to anger componentwas a significant predictor of aggressive diving score. Physical aggression and hostility wereunrelated to aggressive driving. Altogether, the predictors explained a total of 28% of thevariance in aggressive driving behaviour. Findings show that dispositional aggressiveness,especially the anger component, as well as male gender, young age and higher annual mileagehas a predictive validity in relation to aggressive driving. There is a need to extend the scope ofpotential dispositional predictors pertinent to driving aggression.

  17. Glare disability and driving safety.

    Science.gov (United States)

    Babizhayev, M A

    2003-01-01

    Increasing investigation of the visual elements of safe driving environments may be of great benefit to society. Visual disability appears to be only one of many visual factors related to traffic accidents. The purpose of this article was to examine the type of visual impairment mediated by the increased glare sensitivity in adult drivers using the original halometer glare test. In this article, the visual sensory, cognitive and motor functions relevant to driving, their measurement, the epidemiology and prevention of age-associated functional impairments and the relationship of functional impairments to both self-reported driving and the imposition of legal restrictions are reviewed. The problem of night and tunnel driving is the most urgent in relation to the effects of glare from vehicle headlights on motion perception of drivers. The reduced mesopic vision and increased sensitivity to glare are accompanied by an increased risk of nighttime accidents. Elderly drivers and patients with beginning cataract cannot sufficiently fulfill the criteria for night driving ability because of contrast and glare sensitivity. It is indispensable for the parameters mentioned to be carefully measured and for drivers to be informed that night driving ability may be impaired, even if visual acuity is sufficient. It would be advisable for traffic safety if simple tests for contrast and glare sensitivity were implemented for vehicles and/or were regularly added to the requirements for a driver's licence, at least for older drivers. The age, functional status and test result limits should be defined to avoid a risk factor in traffic. Copyright 2003 S. Karger AG, Basel

  18. Effects of decades of physical driving on body movement and motion sickness during virtual driving.

    Directory of Open Access Journals (Sweden)

    Thomas A Stoffregen

    Full Text Available We investigated relations between experience driving physical automobiles and motion sickness during the driving of virtual automobiles. Middle-aged individuals drove a virtual automobile in a driving video game. Drivers were individuals who had possessed a driver's license for approximately 30 years, and who drove regularly, while non-drivers were individuals who had never held a driver's license, or who had not driven for more than 15 years. During virtual driving, we monitored movement of the head and torso. During virtual driving, drivers became motion sick more rapidly than non-drivers, but the incidence and severity of motion sickness did not differ as a function of driving experience. Patterns of movement during virtual driving differed as a function of driving experience. Separately, movement differed between participants who later became motion sick and those who did not. Most importantly, physical driving experience influenced patterns of postural activity that preceded motion sickness during virtual driving. The results are consistent with the postural instability theory of motion sickness, and help to illuminate relations between the control of physical and virtual vehicles.

  19. Influence of unsteady aerodynamics on driving dynamics of passenger cars

    Science.gov (United States)

    Huemer, Jakob; Stickel, Thomas; Sagan, Erich; Schwarz, Martin; Wall, Wolfgang A.

    2014-11-01

    Recent approaches towards numerical investigations with computational fluid dynamics methods on unsteady aerodynamic loads of passenger cars identified major differences compared with steady-state aerodynamic excitations. Furthermore, innovative vehicle concepts such as electric-vehicles or hybrid drives further challenge the basic layout of passenger cars. Therefore, the relevance of unsteady aerodynamic loads on cross-wind stability of changing basic vehicle architectures should be analysed. In order to assure and improve handling and ride characteristics at high velocity of the actual range of vehicle layouts, the influence of unsteady excitations on the vehicle response was investigated. For this purpose, a simulation of the vehicle dynamics through multi-body simulation was used. The impact of certain unsteady aerodynamic load characteristics on the vehicle response was quantified and key factors were identified. Through a series of driving simulator tests, the identified differences in the vehicle response were evaluated regarding their significance on the subjective driver perception of cross-wind stability. Relevant criteria for the subjective driver assessment of the vehicle response were identified. As a consequence, a design method for the basic layout of passenger cars and chassis towards unsteady aerodynamic excitations was defined.

  20. Planetary explorer liquid propulsion study

    Science.gov (United States)

    Mckevitt, F. X.; Eggers, R. F.; Bolz, C. W.

    1971-01-01

    An analytical evaluation of several candidate monopropellant hydrazine propulsion system approaches is conducted in order to define the most suitable configuration for the combined velocity and attitude control system for the Planetary Explorer spacecraft. Both orbiter and probe-type missions to the planet Venus are considered. The spacecraft concept is that of a Delta launched spin-stabilized vehicle. Velocity control is obtained through preprogrammed pulse-mode firing of the thrusters in synchronism with the spacecraft spin rate. Configuration selection is found to be strongly influenced by the possible error torques induced by uncertainties in thruster operation and installation. The propulsion systems defined are based on maximum use of existing, qualified components. Ground support equipment requirements are defined and system development testing outlined.

  1. Analysis of national pay-as-you-drive insurance systems and other variable driving charges

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, T.

    1995-07-01

    Under Pay as You Drive insurance (PAYD), drivers would pay part of their automobile insurance premium as a per-gallon surcharge every time they filled their gas tank. By transfering a portion of the cost of owning a vehicle from a fixed cost to a variable cost, PAYD would discourage driving. PAYD has been proposed recently in California as a means of reforming how auto insurance is provided. PAYD proponents claim that, by forcing drivers to purchase at least part of their insurance every time they refuel their car, PAYD would reduce or eliminate the need for uninsured motorist coverage. Some versions of PAYD proposed in California have been combined with a no-fault insurance system, with the intention of further reducing premiums for the average driver. Other states have proposed PAYD systems that would base insurance premiums on annual miles driven. In this report we discuss some of the qualitative issues surrounding adoption of PAYD and other policies that would convert other fixed costs of driving (vehicle registration, safety/emission control system inspection, and driver license renewal) to variable costs. We examine the effects of these policies on two sets of objectives: objectives related to auto insurance reform, and those related to reducing fuel consumption, CO{sub 2} emissions, and vehicle miles traveled. We pay particular attention to the first objective, insurance reform, since this has generated the most interest in PAYD to date, at least at the state level.

  2. Distributed and self-adaptive vehicle speed estimation in the composite braking case for four-wheel drive hybrid electric car

    Science.gov (United States)

    Zhao, Z.-G.; Zhou, L.-J.; Zhang, J.-T.; Zhu, Q.; Hedrick, J.-K.

    2017-05-01

    Considering the controllability and observability of the braking torques of the hub motor, Integrated Starter Generator (ISG), and hydraulic brake for four-wheel drive (4WD) hybrid electric cars, a distributed and self-adaptive vehicle speed estimation algorithm for different braking situations has been proposed by fully utilising the Electronic Stability Program (ESP) sensor signals and multiple powersource signals. Firstly, the simulation platform of a 4WD hybrid electric car was established, which integrates an electronic-hydraulic composited braking system model and its control strategy, a nonlinear seven degrees-of-freedom vehicle dynamics model, and the Burckhardt tyre model. Secondly, combining the braking torque signals with the ESP signals, self-adaptive unscented Kalman sub-filter and main-filter adaptable to the observation noise were, respectively, designed. Thirdly, the fusion rules for the sub-filters and master filter were proposed herein, and the estimation results were compared with the simulated value of a real vehicle speed. Finally, based on the hardware in-the-loop platform and by picking up the regenerative motor torque signals and wheel cylinder pressure signals, the proposed speed estimation algorithm was tested under the case of moderate braking on the highly adhesive road, and the case of Antilock Braking System (ABS) action on the slippery road, as well as the case of ABS action on the icy road. Test results show that the presented vehicle speed estimation algorithm has not only a high precision but also a strong adaptability in the composite braking case.

  3. Parametric modeling of components for selection and specification of hybrid vehicle drivetrains

    NARCIS (Netherlands)

    Hofman, T.; Steinbuch, M.; Druten, van R.M.; Serrarens, A.F.A.

    2006-01-01

    Drivetrain hybridization implies adding a Secondary power source to a Primary power source in order to improve a multiple of driving functions: Fuel economy, Emissions, Driveability, Comfort and Safety. Designing a hybrid vehicle drivetrain fulfilling the required vehicle driving functions is

  4. On the Optimally Controlled Hydrostatic Mechanical Drive in Case of Flywheel Acceleration

    Directory of Open Access Journals (Sweden)

    V. A. Korsunskii

    2016-01-01

    Full Text Available An improving dynamic quality of vehicles and enhanced fuel efficiency are gained thanks to the combined power system (CPS, comprising a main energy source - internal combustion engine (ICE with an attained level of the power source - and an auxiliary energy source, i.e. an energy storage device (a flywheel.To solve this problem was developed a mathematical model of CPS comprising internal combustion engine and flywheel energy storage (FES with stepless drive.The stepless drive of the flywheel is made to be hydrostatic mechanical to raise the system efficiency. To reduce the drive weight and simplify the control system in the hydraulic part of the flywheel drive is used only one hydraulic unit being controlled.The paper presents a kinematic diagram of the track-type vehicle equipped with the CPS that has a hydrostatic mechanical drive of the flywheel and a mechanical transmission.A mathematical model of the system comprising an ICE, hydrostatic mechanical drive, and FES with stepless drive has been developed. This mathematical model was used to study the influence of ICE and flywheel drive parameters on the dynamic characteristics of the system.The paper estimates the impact of flywheel energy consumption, pressure in the hydraulic system, and control parameter of hydrostatic mechanical drive on the charging time of FES.The obtained piecewise linear law to control the regulation parameter of the hydraulic unit allows us to minimize the charging time of the flywheel at the short-term stops and in the parking area of a tracked vehicle equipped with a CPS.The causes affecting the performance of ‘ICE – drive – flywheel’ system in the course of the flywheel acceleration are a restricted maximum power of the engine, as well as a limited generating capacity, and a maximum flywheel drive hydro-system pressure.The obtained results allow us to determine rational parameters of the flywheel and the laws of drive control to provide their further

  5. Hybrid Turbine Electric Vehicle

    Science.gov (United States)

    Viterna, Larry A.

    1997-01-01

    Hybrid electric power trains may revolutionize today's ground passenger vehicles by significantly improving fuel economy and decreasing emissions. The NASA Lewis Research Center is working with industry, universities, and Government to develop and demonstrate a hybrid electric vehicle. Our partners include Bowling Green State University, the Cleveland Regional Transit Authority, Lincoln Electric Motor Division, the State of Ohio's Department of Development, and Teledyne Ryan Aeronautical. The vehicle will be a heavy class urban transit bus offering double the fuel economy of today's buses and emissions that are reduced to 1/10th of the Environmental Protection Agency's standards. At the heart of the vehicle's drive train is a natural-gas-fueled engine. Initially, a small automotive engine will be tested as a baseline. This will be followed by the introduction of an advanced gas turbine developed from an aircraft jet engine. The engine turns a high-speed generator, producing electricity. Power from both the generator and an onboard energy storage system is then provided to a variable-speed electric motor attached to the rear drive axle. An intelligent power-control system determines the most efficient operation of the engine and energy storage system.

  6. Vehicle systems: coupled and interactive dynamics analysis

    Science.gov (United States)

    Vantsevich, Vladimir V.

    2014-11-01

    This article formulates a new direction in vehicle dynamics, described as coupled and interactive vehicle system dynamics. Formalised procedures and analysis of case studies are presented. An analytical consideration, which explains the physics of coupled system dynamics and its consequences for dynamics of a vehicle, is given for several sets of systems including: (i) driveline and suspension of a 6×6 truck, (ii) a brake mechanism and a limited slip differential of a drive axle and (iii) a 4×4 vehicle steering system and driveline system. The article introduces a formal procedure to turn coupled system dynamics into interactive dynamics of systems. A new research direction in interactive dynamics of an active steering and a hybrid-electric power transmitting unit is presented and analysed to control power distribution between the drive axles of a 4×4 vehicle. A control strategy integrates energy efficiency and lateral dynamics by decoupling dynamics of the two systems thus forming their interactive dynamics.

  7. Effect of police mobile computer terminal interface design on officer driving distraction.

    Science.gov (United States)

    Zahabi, Maryam; Kaber, David

    2018-02-01

    Several crash reports have identified in-vehicle distraction to be a primary cause of emergency vehicle crashes especially in law enforcement. Furthermore, studies have found that mobile computer terminals (MCTs) are the most frequently used in-vehicle technology for police officers. Twenty police officers participated in a driving simulator-based assessment of visual behavior, performance, workload and situation awareness with current and enhanced MCT interface designs. In general, results revealed MCT use while driving to decrease officer visual attention to the roadway, but usability improvements can reduce the level of visual distraction and secondary-task completion time. Results also suggest that use of MCTs while driving significantly reduces perceived level of driving environment awareness for police officers and increases cognitive workload. These findings may be useful for MCT manufacturers in improving interface designs to increase police officer and civilian safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A New Car-Following Model considering Driving Characteristics and Preceding Vehicle’s Acceleration

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    2017-01-01

    Full Text Available In the past decades, many improved car-following models based on the full velocity difference (FVD model have been developed. But these models do not consider the acceleration of leading vehicle. Some of them consider individual anticipation behavior of drivers, but they either do not quantitatively determine the types of driving or artificially divide the driving types rather than deriving them from actual traffic data. In this paper, driver’s driving styles are firstly categorized based on actual traffic data via data mining and clustering algorithm. Secondly, a new car-following model based on FVD model is developed, taking into account individual anticipation effects and the acceleration of leading vehicle. The effect of driving characteristics and leading vehicle’s acceleration on car-following behavior is further analyzed via numerical simulation. The results show that considering the acceleration of preceding vehicle in the model improves the stability of traffic flow and different driving characteristics have different influence on the stability of traffic flow.

  9. Augmented ingestion of carbon monoxide and sulfur oxides by occupants of vehicles while idling in drive-up facility lines

    Energy Technology Data Exchange (ETDEWEB)

    Myronuk, D J

    1977-02-01

    For a line-up of automobiles waiting for a period of time at a drive-up facility, the idling engine emissions are expelled in a rearward direction and tend to envelope the vehicles at the end portion of the queue. Factors that affect these highly localized pollutant accumulation episodes include local meteorological conditions, number, age and tune-up condition of the cars, exhaust pipe location, interior air handling equipment, vehicle separation distances and natural or artificial barriers that form troughs in which vehicular emissions can accumulate or be trapped. In a series of typical vehicle line-ups, local CO concentrations were measured. With Santa Clara Valley background levels of 2 to 5 ppm, the 15 min average driver-area concentration levels ranged from 15 ppm to 95 ppm with short term peaks between 100 and 1000 ppm. The exposure of humans to these concentrations of CO can result in mild headache or nausea, failure to react quickly to stimuli (like oncoming traffic) as well as setting a strain on the heart and lungs. These effects are temporary and reversible. A far more serious local air quality and health problem arises in the growing production of SO/sub x/ and sulfate compounds attributable to the legislated use of oxidizing catalytic mufflers for new car emission control and oxidation of the elemental S found in all gasoline. Using the CO levels as indicators of the accumulation of local automobile produced pollutants, when a majority of cars are equipped with catalytic converters, the anticipated adverse effects of SO/sub x/ concentrations, irritation and inflammation of healthy lung tissue of young and old people alike, as well as aggrevation of preexisting conditions of lung or heart impairment, will be a most undesirable feature of drive-up facility services. Potential reductions in the extent of this developing problem include S removal, SO/sub x/ traps and exhaust system redesign.

  10. An electric vehicle driving behavior model in the traffic system with a wireless charging lane

    Science.gov (United States)

    He, Jia; Huang, Hai-Jun; Yang, Hai; Tang, Tie-Qiao

    2017-09-01

    In this paper, a car-following model is proposed to study each EV's (electric vehicle) motion behavior near the WCL (wireless charging lane) and a lane-changing rule is designed to describe the EV's lane-changing behavior. Then, the car-following model and lane-changing rule are used to explore each EV's micro driving behavior in a two-lane system with a WCL. Finally, the impacts of the WCL on each EV's motion behavior are investigated. The numerical results show that each EV should run slowly on the WCL if it needs charge of electricity, that the EV's lane-changing behavior has great effects on the whole system, that the delay time caused by the WCL turns more prominent when the traffic turns heavy, and that lane-changing frequently occurs near the WCL (especially at the downstream of the WCL).

  11. Electric and Hybrid Vehicle System Research and Development Project: Hybrid Vehicle Potential Assessment. Volume VI. Cost analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, K.S.

    1979-09-30

    The purpose of the cost analysis is to determine the economic feasibility of a variety of hybrid vehicles with respect to conventional vehicles specifically designed for the same duty cycle defined by the mission analysis. Several different hybrid configurations including parallel, parallel-flywheel, and series vehicles were evaluated. The ramifications of incorporating examples of advanced batteries, these being the advanced lead-acid, nickel-zinc, and sodium sulfur were also investigated. Vehicles were specifically designed with these batteries and for the driving cycles specified by the mission. Simulated operation on the missions yielded the energy consumption (petroleum and/or electricity) over the driving cycles. It was concluded that: in the event that gasoline prices reach $2.50 to $3.00/gal, hybrid vehicles in many applications will become economically competitive with conventional vehicles without subsidization; in some commercial applications hybrid vehicles could be economically competitive, when the gasoline price ranges from $1.20 to $1.50/gal. The cost per kWh per cycle of the advanced batteries is much more important economically than the specific energy; the series hybrid vehicles were found to be more expensive in comparison to the parallel or parallel-flywheel hybrids when designed as passenger vehicles; and hybrid vehicles designed for private use could become economically competitive and displace up to 50% of the fuel normally used on that mission if subsidies of $500 to $2000 were supplied to the owner/operator. (LCL)

  12. Freeway Driving Cycle Construction Based on Real-Time Traffic Information and Global Optimal Energy Management for Plug-In Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Hongwen He

    2017-11-01

    Full Text Available This paper presents a freeway driving cycle (FDC construction method based on traffic information. A float car collected different type of roads in California and we built a velocity fragment database. We selected a real freeway driving cycle (RFDC and established the corresponding time traffic information tensor model by using the data in California Department of Transportation performance measure system (PeMS. The correlation of road velocity in the time dimension and spatial dimension are analyzed. According to the average velocity of road sections at different times, the kinematic fragments are stochastically selected in the velocity fragment database to construct a real-time FDC of each section. The comparison between construction freeway driving cycle (CFDC and real freeway driving cycle (RFDC show that the CFDC well reflects the RFDC characteristic parameters. Compared to its application in plug-in electric hybrid vehicle (PHEV optimal energy management based on a dynamic programming (DP algorithm, CFDC and RFDC fuel consumption are similar within approximately 5.09% error, and non-rush hour fuel economy is better than rush hour 3.51 (L/100 km at non-rush hour, 4.29 (L/km at rush hour. Moreover, the fuel consumption ratio can be up to 13.17% in the same CFDC at non-rush hour.

  13. Heat management of electric-powered vehicles; Thermomanagement von Elektro-Fahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Markus; Koppe, Theresia [Webasto AG, Stockdorf (Germany)

    2010-07-01

    In contrast to a driving operation with combustion engine has in the purely electrical driving conditions only a fraction of the heat losses available from the power train components required for interior heating. Already at an ambient temperature of +10 C additional heating action is needed to prevent condensation on the vehicle windscreen and for a comfortable interior climate. An additional electrical heater strains the resource Battery and thus reduces the driving range for the electric drive depending on the driving cycle and environmental conditions up to 50%. A solution to this dilemma is a burner heating system with a neutral emission combustion process, uses the highest efficiency to direct the required heat energy to heat the vehicle. (orig.)

  14. Classifying Secondary Task Driving Safety Using Method of F-ANP

    Directory of Open Access Journals (Sweden)

    Lisheng Jin

    2015-02-01

    Full Text Available This study was designed to build an evaluation system for secondary task driving safety by using method of Fuzzy Analytic Network Process (F-ANP. Forty drivers completed driving on driving simulator while interacting with or without a secondary task. Measures of fixations, saccades, and vehicle running status were analyzed. According to five experts' opinions, a hierarchical model for secondary task driving safety evaluation was built. The hierarchical model was divided into three levels: goal, assessment dimension, and criteria. Seven indexes make up the level of criteria, and the assessment dimension includes two clusters: vehicle control risk and driver eye movement risk. By method of F-ANP, the priorities of the criteria and the subcriteria were determined. Furthermore, to rank the driving safety, an approach based on the principle of maximum membership degree was adopted. At last, a case study of secondary task driving safety evaluation by forty drivers using the proposed method was done. The results indicated that the application of the proposed method is practically feasible and adoptable for secondary task driving safety evaluation.

  15. Longitudinal Control for Mengshi Autonomous Vehicle via Gauss Cloud Model

    Directory of Open Access Journals (Sweden)

    Hongbo Gao

    2017-12-01

    Full Text Available Dynamic robustness and stability control is a requirement for self-driving of autonomous vehicle. Longitudinal control technique of autonomous vehicle is basic theory and one key complex technique which must have the reliability and precision of vehicle controller. The longitudinal control technique is one of the foundations of the safety and stability of autonomous vehicle control. In our paper, we present a longitudinal control algorithm based on cloud model for Mengshi autonomous vehicle to ensure the dynamic stability and tracking performance of Mengshi autonomous vehicle. The longitudinal control algorithm mainly uses cloud model generator to control the acceleration of the autonomous vehicle to achieve the goal that controls the speed of Mengshi autonomous vehicle. The proposed longitudinal control algorithm based on cloud model is verified by real experiments on Highway driving scene. The experiments results of the acceleration and speed show that the algorithm is validity and stability.

  16. Comparison of real driving cycles and consumed braking power in suburban Slovakian driving

    Directory of Open Access Journals (Sweden)

    Gechev Tsvetomir

    2017-01-01

    Full Text Available The paper compares the features of suburban real driving cycles performed with CORRSYS DATRON measurement equipment on routes in the region of Žilina, Slovakia. It observes differences in the maximum and average vehicle velocities and the amount of braking in relation to the elevation profile of each individual cycle. Consumed braking power was also calculated in the different cycles in order to review the potential electricity regeneration capabilities of hybrid electric vehicles, operating on the same routes. The change in braking energy depending on vehicle mass and presence of grade on the routes in the measured cycles was also assessed. The calculations and plotting were done by using Matlab software.

  17. Design, Fabrication and Testing of Carbon Fiber Reinforced Epoxy Drive Shaft for All Terrain Vehicle using Filament Winding

    Directory of Open Access Journals (Sweden)

    Yeshwant Nayak Suhas

    2018-01-01

    Full Text Available Filament winding is a composite material fabrication technique that is used to manufacture concentric hollow components. In this study Carbon/Epoxy composite drive shafts were fabricated using filament winding process with a fiber orientation of [852/±452/252]s. Carbon in the form of multifilament fibers of Tairyfil TC-33 having 3000 filaments/strand was used as reinforcement with low viscosity epoxy resin as the matrix material. The driveshaft is designed to be used in SAE Baja All Terrain Vehicle (ATV that makes use of a fully floating axle in its rear wheel drive system. The torsional strength of the shaft was tested and compared to that of an OEM steel shaft that was previously used in the ATV. Results show that the composite shaft had 8.5% higher torsional strength in comparison to the OEM steel shaft and was also lighter by 60%. Scanning electron microscopy (SEM micrographs were studied to investigate the probable failure mechanism. Delamination, matrix agglomeration, fiber pull-out and matrix cracking were the prominent failure mechanisms identified.

  18. Usability Analysis of Collision Avoidance System in Vehicle-to-Vehicle Communication Environment

    Directory of Open Access Journals (Sweden)

    Hong Cho

    2014-01-01

    Full Text Available Conventional intelligent vehicles have performance limitations owing to the short road and obstacle detection range of the installed sensors. In this study, to overcome this limitation, we tested the usability of a new conceptual autonomous emergency braking (AEB system that employs vehicle-to-vehicle (V2V communication technology in the existing AEB system. To this end, a radar sensor and a driving and communication environment constituting the AEB system were simulated; the simulation was then linked by applying vehicle dynamics and control logic. The simulation results show that the collision avoidance relaxation rate of V2V communication-based AEB system was reduced compared with that of existing vehicle-mounted-sensor-based system. Thus, a method that can lower the collision risk of the existing AEB system, which uses only a sensor cluster installed on the vehicle, is realized.

  19. The effects of practice with MP3 players on driving performance.

    Science.gov (United States)

    Chisholm, S L; Caird, J K; Lockhart, J

    2008-03-01

    This study examined the effects of repeated iPod interactions on driver performance to determine if performance decrements decreased with practice. Nineteen younger drivers (mean age=19.4, range 18-22) participated in a seven session study in the University of Calgary Driving Simulator (UCDS). Drivers encountered a number of critical events on the roadways while interacting with an iPod including a pedestrian entering the roadway, a vehicle pullout, and a lead vehicle braking. Measures of hazard response, vehicle control, eye movements, and secondary task performance were analyzed. Increases in perception response time (PRT) and collisions were found while drivers were performing the difficult iPod tasks, which involved finding a specific song within the song titles menu. Over the course of the six experimental sessions, driving performance improved in all conditions. Difficult iPod interactions significantly increased the amount of visual attention directed into the vehicle above that of the baseline condition. With practice, slowed responses to driving hazards while interacting with the iPod declined somewhat, but a decrement still remained relative to the baseline condition. The multivariate results suggest that access to difficult iPod tasks while vehicles are in motion should be curtailed.

  20. Driving with intelligent vehicles: driving behaviour with Adaptive Cruise Control and the acceptance by individual drivers

    NARCIS (Netherlands)

    Hoedemaeker, D.M.

    1999-01-01

    This thesis focuses on the following research questions: What are the effects of driver support systems on driving behaviour? To what extent will driver support systems be accepted by individual drivers? To what extent will driving behaviour and acceptance be determined by individual differences?