WorldWideScience

Sample records for planetary research

  1. LUNAR AND PLANETARY RESEARCH.

    Science.gov (United States)

    SPECTRA, LUNAR ENVIRONMENTS, MERCURY ( PLANET ), PLANETS , SURFACE PROPERTIES, SCIENTIFIC RESEARCH....MARS( PLANET ), *VENUS( PLANET ), *MOON, *ASTRONOMY, OPTICAL SCANNING, SPECTROSCOPY, OPTICAL ANALYSIS, INFRARED SPECTRA, ULTRAVIOLET SPECTRA, VISIBLE

  2. Europlanet Research Infrastructure: Planetary Simulation Facilities

    Science.gov (United States)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of

  3. Access to the Online Planetary Research Literature

    Science.gov (United States)

    Henneken, E. A.; Accomazzi, A.; Kurtz, M. J.; Grant, C. S.; Thompson, D.; Di Milia, G.; Bohlen, E.; Murray, S. S.

    2009-12-01

    The SAO/NASA Astrophysics Data System (ADS) provides various free services for finding, accessing, and managing bibliographic data, including a basic search form, the myADS notification service, and private library capabilities (a useful tool for building bibliographies), plus access to scanned pages of published articles. The ADS also provides powerful search capabilities, allowing users to find e.g. the most instructive or most important articles on a given subject . For the Planetary Sciences, the citation statistics of the ADS have improved considerably with the inclusion of the references from Elsevier journals, including Icarus, Planetary and Space Science, and Earth and Planetary Science Letters. We currently have about 78 journals convering the planetary and space sciences (Advances in Space Research, Icarus, Solar Physics, Astrophusics and Space Science, JGRE, Meteoritics, to name a few). Currently, this set of journals represents about 180,000 articles and 1.1 million references. Penetration into the Solar Physics, Planetary Sciences and Geophysics community has increased significantly. During the period 2004-2008, user access to JGR and Icarus increased by a factor of 4.4, while e.g. access to the Astrophysical Journal "only" increased by a factor of 1.8.

  4. Exploiting the HASH Planetary Nebula Research Platform

    CERN Document Server

    Parker, Quentin A; Frew, David J

    2016-01-01

    The HASH (Hong Kong/ AAO/ Strasbourg/ H{\\alpha}) planetary nebula research platform is a unique data repository with a graphical interface and SQL capability that offers the community powerful, new ways to undertake Galactic PN studies. HASH currently contains multi-wavelength images, spectra, positions, sizes, morphologies and other data whenever available for 2401 true, 447 likely, and 692 possible Galactic PNe, for a total of 3540 objects. An additional 620 Galactic post-AGB stars, pre-PNe, and PPN candidates are included. All objects were classified and evaluated following the precepts and procedures established and developed by our group over the last 15 years. The complete database contains over 6,700 Galactic objects including the many mimics and related phenomena previously mistaken or confused with PNe. Curation and updating currently occurs on a weekly basis to keep the repository as up to date as possible until the official release of HASH v1 planned in the near future.

  5. Interdisciplinary research produces results in understanding planetary dunes

    Science.gov (United States)

    Titus, Timothy N.; Hayward, Rosalyn K.; Dinwiddie, Cynthia L.

    2012-01-01

    Third International Planetary Dunes Workshop: Remote Sensing and Image Analysis of Planetary Dunes; Flagstaff, Arizona, 12–16 June 2012. This workshop, the third in a biennial series, was convened as a means of bringing together terrestrial and planetary researchers from diverse backgrounds with the goal of fostering collaborative interdisciplinary research. The small-group setting facilitated intensive discussions of many problems associated with aeolian processes on Earth, Mars, Venus, Titan, Triton, and Pluto. The workshop produced a list of key scientifc questions about planetary dune felds.

  6. Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure

    Science.gov (United States)

    André, N.; Grande, M.

    2015-10-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this JRA will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in Europe at the end of

  7. The AFCRL Lunar amd Planetary Research Branch

    Science.gov (United States)

    Price, Stephan D.

    2011-07-01

    The Lunar and Planetary research program led by Dr John (Jack) Salisbury in the 1960s at the United States Air Force Cambridge Research Laboratories (AFCRL) investigated the surface characteristics of Solar System bodies. The Branch was one of the first groups to measure the infrared spectra of likely surface materials in the laboratory under appropriate vacuum and temperature conditions. The spectral atlases created from the results were then compared to photometric and spectral measurements obtained from ground- and balloon-based telescopes to infer the mineral compositions and physical conditions of the regoliths of the Moon, Mars and asteroids. Starting from scratch, the Branch initially sponsored observations of other groups while its in-house facilities were being constructed. The earliest contracted efforts include the spatially-resolved mapping of the Moon in the first half of the 1960s by Richard W. Shorthill and John W. Saari of the Boeing Scientific Research Laboratories in Seattle. This effort ultimately produced isophotal and isothermal contour maps of the Moon during a lunation and time-resolved thermal images of the eclipsed Moon. The Branch also sponsored probe rocket-based experiments flown by Riccardo Giacconi and his group at American Science and Engineering Inc. that produced the first observations of X-ray stars in 1962 and later the first interferometric measurement of the ozone and C02 emission in the upper atmosphere. The Branch also made early use of balloon-based measurements. This was a singular set of experiments, as these observations are among the very few mid-infrared astronomical measurements obtained from a balloon platform. Notable results of the AFCRL balloon flights were the mid-infrared spectra of the spatially-resolved Moon obtained with the University of Denver mid-infrared spectrometer on the Branch's balloon-borne 61-cm telescope during a 1968 flight. These observations remain among the best available. Salisbury also funded

  8. Europlanet Research Infrastructure: Planetary Sample Analysis Facilities

    Science.gov (United States)

    Cloquet, C.; Mason, N. J.; Davies, G. R.; Marty, B.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the third TNA: Planetary Sample Analysis Facilities. The modular infrastructure represents a major commitment of analytical instrumentation by three institutes and together forms a state-of-the-art analytical facility of unprecedented breadth. These centres perform research in the fields of geochemistry and cosmochemistry, studying fluids and rocks in order to better understand the keys cof the universe. Europlanet Research Infrastructure Facilities: Ion Probe facilities at CRPG and OU The Cameca 1270 Ion microprobe is a CNRS-INSU national facility. About a third of the useful analytical time of the ion probe (about 3 months each year) is allocated to the national community. French scientists have to submit their projects to a national committee for selection. The selected projects are allocated time in the following 6 months twice a year. About 15 to 20 projects are run each year. There are only two such instruments in Europe, with cosmochemistry only performed at CRPG. Different analyses can be performed on a routine basis, such as U-Pb dating on Zircon, Monazite or Pechblende, Li, B, C, O, Si isotopic ratios determination on different matrix, 26Al, 60Fe extinct radioactivity ages, light and trace elements contents . The NanoSIMS 50L - producing element or isotope maps with a spatial resolution down to ≈50nm. This is one of the cornerstone facilities of UKCAN, with 75% of available instrument time funded and

  9. Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure

    Science.gov (United States)

    André, Nicolas; Grande, Manuel

    2016-04-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in

  10. Directory of research projects, 1991. Planetary geology and geophysics program

    Science.gov (United States)

    Maxwell, Ted A. (Editor)

    1991-01-01

    Information is provided about currently funded scientific research within the Planetary Geology and Geophysics Program. The directory consists of the proposal summary sheet from each proposal funded by the program during fiscal year 1991. Information is provided on the research topic, principal investigator, institution, summary of research objectives, past accomplishments, and proposed investigators.

  11. Directory of research projects: Planetary geology and geophysics program

    Science.gov (United States)

    Holt, Henry (Editor)

    1992-01-01

    Information about currently funded scientific research within the Planetary Geology and Geophysics Program is provided. The directory consists of the proposal summary sheet from each proposal funded under the program during Fiscal Year 1992. The sheets provide information about the research project, including title, principal investigator, institution, summary of research objectives, past accomplishments, and proposed new investigations.

  12. Interdisciplinary Research Produces Results in the Understanding of Planetary Dunes

    Science.gov (United States)

    Titus, Timothy N.; Hayward, Rosalyn Kay; Bourke, Mary C.

    2010-08-01

    Second International Planetary Dunes Workshop: Planetary Analogs—Integrating Models, Remote Sensing, and Field Data; Alamosa, Colorado, 18-21 May 2010; Dunes and other eolian bed forms are prominent on several planetary bodies in our solar system. Despite 4 decades of study, many questions remain regarding the composition, age, and origins of these features, as well as the climatic conditions under which they formed. Recently acquired data from orbiters and rovers, together with terrestrial analogs and numerical models, are providing new insights into Martian sand dunes, as well as eolian bed forms on other terrestrial planetary bodies (e.g., Titan). As a means of bringing together terrestrial and planetary researchers from diverse backgrounds with the goal of fostering collaborative interdisciplinary research, the U.S. Geological Survey (USGS), the Carl Sagan Center for the Study of Life in the Universe, the Desert Research Institute, and the U.S. National Park Service held a workshop in Colorado. The small group setting facilitated intensive discussion of problems and issues associated with eolian processes on Earth, Mars, and Titan.

  13. Progress of Interoperability in Planetary Research for Geospatial Data Analysis

    Science.gov (United States)

    Hare, T. M.; Gaddis, L. R.

    2015-12-01

    For nearly a decade there has been a push in the planetary science community to support interoperable methods of accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (i.e., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized image formats that retain geographic information (e.g., GeoTiff, GeoJpeg2000), digital geologic mapping conventions, planetary extensions for symbols that comply with U.S. Federal Geographic Data Committee cartographic and geospatial metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they have been modified to support the planetary domain. The motivation to support common, interoperable data format and delivery standards is not only to improve access for higher-level products but also to address the increasingly distributed nature of the rapidly growing volumes of data. The strength of using an OGC approach is that it provides consistent access to data that are distributed across many facilities. While data-steaming standards are well-supported by both the more sophisticated tools used in Geographic Information System (GIS) and remote sensing industries, they are also supported by many light-weight browsers which facilitates large and small focused science applications and public use. Here we provide an

  14. Planetary nebulae in 2014: A review of research

    CERN Document Server

    Zijlstra, Albert

    2015-01-01

    Planetary nebulae had a double anniversary in 2014, 250 year since their discovery and 150 year since the correct spectroscopic identification. This paper gives an overview of planetary nebula research published in 2014. Topics include surveys, central stars, abundances, morphologies, magnetic fields, stellar population and galactic dynamics. An important continuing controversy is the discrepancy between recombination-line and forbidden-line abundances. A new controversy is the relation between symbiotic stars and [WC] stars. PN of the year is undoubtedly CRL 618, with papers on its binary symbiotic/[WC] nucleus, rapid stellar evolution, expanding jets and magnetic fields.

  15. Technology under Planetary Protection Research (PPR) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — PPR supports research to improve NASA's understanding of the potential for both forward and backward contamination, how to minimize it, and to set standards in these...

  16. Microwave spectrum compatibility in planetary research

    Science.gov (United States)

    Siegmeth, A. J.

    1976-01-01

    The paper presents an overview of solar system exploration, basic functions of the Deep Space Network (DSN), deep space microwave links, space research compatibility problems, and DSN's interference susceptibility. To maintain the operational integrity of competing radio systems using the microwave spectrum, the technology must extend to make possible the shared use of the spectral ranges without the ill effects of interferences. Suggestions are given which are only examples of many possible techniques that can eliminate or reduce interferences.

  17. Planetary Nebula Candidates Uncovered with the HASH Research Platform

    CERN Document Server

    Fragkou, Vasiliki; Frew, David; Parker, Quentin

    2016-01-01

    A detailed examination of new high quality radio catalogues (e.g. Cornish) in combination with available mid-infrared (MIR) satellite imagery (e.g. Glimpse) has allowed us to find 70 new planetary nebula (PN) candidates based on existing knowledge of their typical colors and fluxes. To further examine the nature of these sources, multiple diagnostic tools have been applied to these candidates based on published data and on available imagery in the HASH (Hong Kong/ AAO/ Strasbourg H{\\alpha} planetary nebula) research platform. Some candidates have previously-missed optical counterparts allowing for spectroscopic follow-up. Indeed, the single object spectroscopically observed so far has turned out to be a bona fide PN.

  18. Europlanet - Joining the European Planetary Research Information Service

    Science.gov (United States)

    Capria, M. T.; Chanteur, G.; Schmidt, W.

    2009-04-01

    The "Europlanet Research Infrastructure - Europlanet RI", supported by the European Commission's Framework Program 7, aims at integrating major parts of the distributed European Planetary Research infrastructure with as diverse components as space exploration, ground-based observations, laboratory experiments and numerical model-ling teams. A central part of Europlanet RI is the "Integrated and Distributed Information Service" or Europlanet-IDIS which intends to provide easy Web-based access to information about scientists and teams working in related fields, observatories or laboratories with capabilities possibly beneficial to planetary research, modelling expertise useful for planetary science and observations from space-based, ground-based or laboratory measurements. As far as the type of data and their access methods allow, IDIS will provide Virtual Observatory (VO) like access to a variety of data from distributed sources and tools to compare and integrate this information to further data analysis and re-search. IDIS itself is providing a platform for information and data sharing and for data mining. It is structured as a network of thematic nodes each concentrating on a sub-set of research areas in planetary sciences. But the most important elements of IDIS and the whole Europlanet RI are the single scientists, institutes, laboratories, observatories and mission project teams. Without them the whole effort would remain an empty shell. How can an interested individual or team join this activity and what are the benefits to be expected from the related effort? The poster gives detailed answers to these questions. Here some highlights: 1. Locate from the Europlanet web pages (addresses see below) the thematic node best related to the own field of expertise. This might be more than one. 2. Define which services you want to offer to the community: just the contact address, field of competence, off-line access to data on request or even on-line searchable access

  19. Planetary Science Research Discoveries (PSRD) www.psrd.hawaii.edu

    Science.gov (United States)

    Martel, L.; Taylor, J.

    2010-12-01

    NASA's Year of the Solar System is celebrating not only Solar System mission milestones but also the collective data reduction and analysis that happens here on Earth. The Cosmochemistry Program of NASA's Science Mission Directorate takes a direct approach to enhance student learning and engage the public in the latest research on meteorites, asteroids, planets, moons, and other materials in our Solar System with the website known as PSRD. The Planetary Science Research Discoveries (PSRD) website at www.psrd.hawaii.edu explores the science questions that researchers are actively pursuing about our Solar System and explains how the answers are discovered and what they mean. The site helps to convey the scientific basis for sample study to the broader scientific community and the excitement of new results in cosmochemistry to the general public. We share with our broad audience the fascinating discoveries made by cosmochemists, increasing public awareness of the value of sample-focused research in particular and of fundamental scientific research and space exploration in general. The scope of the website covers the full range of cosmochemical research and highlights the investigations of extraterrestrial materials that are used to better understand the origin of the Solar System and the processes by which planets, moons, and small bodies evolve. We relate the research to broader planetary science themes and mission results. Articles are categorized into: asteroids, comets, Earth, instruments of cosmochemistry, Jupiter system, Mars, Mars life issues, Mercury, meteorites, Moon, origins, and space weathering. PSRD articles are based on peer-reviewed, journal publications. Some PSRD articles are based on more than one published paper in order to present multiple views and outcomes of research on a topic of interest. To date, 150 PSRD articles have been based on 184 journal articles (and counting) written by some of the most active cosmochemists and planetary scientists

  20. NASA Johnson Space Center's Planetary Sample Analysis and Mission Science (PSAMS) Laboratory: A National Facility for Planetary Research

    Science.gov (United States)

    Draper, D. S.

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate, houses a unique combination of laboratories and other assets for conducting cutting edge planetary research. These facilities have been accessed for decades by outside scientists, most at no cost and on an informal basis. ARES has thus provided substantial leverage to many past and ongoing science projects at the national and international level. Here we propose to formalize that support via an ARES/JSC Plane-tary Sample Analysis and Mission Science Laboratory (PSAMS Lab). We maintain three major research capa-bilities: astromaterial sample analysis, planetary process simulation, and robotic-mission analog research. ARES scientists also support planning for eventual human ex-ploration missions, including astronaut geological training. We outline our facility's capabilities and its potential service to the community at large which, taken together with longstanding ARES experience and expertise in curation and in applied mission science, enable multi-disciplinary planetary research possible at no other institution. Comprehensive campaigns incorporating sample data, experimental constraints, and mission science data can be conducted under one roof.

  1. The Present and Future of Planetary Nebula Research. A White Paper by the IAU Planetary Nebula Working Group

    CERN Document Server

    Kwitter, K B; Peña, M; Stanghellini, L; Corradi, R L M; DeMarco, O; Fang, X; Henry, R B C; Karakas, A I; Liu, X -W; López, J A; Manchado, A; Parker, Q A

    2014-01-01

    We present a summary of current research on planetary nebulae and their central stars, and related subjects such as atomic processes in ionized nebulae, AGB and post-AGB evolution. Future advances are discussed that will be essential to substantial improvements in our knowledge in the field.

  2. SSERVI Opportunities for the Next Generation of Planetary Researchers

    Science.gov (United States)

    Bailey, B. E.; Day, B. H.; Minafra, J.; Baer, J.

    2015-12-01

    NASA's Solar System Exploration Research Virtual Institute (SSERVI) was founded as a virtual institute that provides interdisciplinary research centered on the goals of its supporting directorates: NASA Science Mission Directorate (SMD) and the Human Exploration & Operations Mission Directorate (HEOMD). SSERVI consists of a diverse set of domestic teams and (currently) nine international teams, ultimately represented by greater than 75 distinct research institutions and more than 450 individual researchers and EPO specialists. The decline in funding opportunities after the termination of the Apollo missions to the Moon in the early 1970's produced a large gap in both the scientific knowledge and experience of the original lunar Apollo researchers and the resurgent group of young lunar/NEA researchers that have emerged within the last 15 years. One of SSERVI's many goals is to bridge this gap through the many networking and scientific connections made between young researchers and established planetary principle investigators. To this end, SSERVI has supported the establishment of NextGen Lunar Scientists and Engineers group (NGLSE), a group of students and early-career professionals designed to build experience and provide networking opportunities to its members. SSERVI has also created the LunarGradCon, a scientific conference dedicated solely to graduate and undergraduate students working in the lunar field. Additionally, SSERVI produces monthly seminars and bi-yearly virtual workshops that introduce students to the wide variety of exploration science being performed in today's research labs. SSERVI also brokers opportunities for domestic and international student exchange between collaborating laboratories as well as internships at our member institutions. SSERVI provides a bridge that is essential to the continued international success of scientific, as well as human and robotic, exploration.

  3. Special Software for Planetary Image Processing and Research

    Science.gov (United States)

    Zubarev, A. E.; Nadezhdina, I. E.; Kozlova, N. A.; Brusnikin, E. S.; Karachevtseva, I. P.

    2016-06-01

    The special modules of photogrammetric processing of remote sensing data that provide the opportunity to effectively organize and optimize the planetary studies were developed. As basic application the commercial software package PHOTOMOD™ is used. Special modules were created to perform various types of data processing: calculation of preliminary navigation parameters, calculation of shape parameters of celestial body, global view image orthorectification, estimation of Sun illumination and Earth visibilities from planetary surface. For photogrammetric processing the different types of data have been used, including images of the Moon, Mars, Mercury, Phobos, Galilean satellites and Enceladus obtained by frame or push-broom cameras. We used modern planetary data and images that were taken over the years, shooting from orbit flight path with various illumination and resolution as well as obtained by planetary rovers from surface. Planetary data image processing is a complex task, and as usual it can take from few months to years. We present our efficient pipeline procedure that provides the possibilities to obtain different data products and supports a long way from planetary images to celestial body maps. The obtained data - new three-dimensional control point networks, elevation models, orthomosaics - provided accurate maps production: a new Phobos atlas (Karachevtseva et al., 2015) and various thematic maps that derived from studies of planetary surface (Karachevtseva et al., 2016a).

  4. Planetary Data Archiving Activities in Indian Space Research Organisation (isro)

    Science.gov (United States)

    Gopala Krishna, Barla; Srivastava, Pradeep Kumar

    The Indian Space Research Organisation (ISRO) has launched its first planetary mission to Moon viz., Chandrayaan-1 on October 22, 2008. The basic objectives of the Chandrayaan-1 mission are photoselenological and chemical mapping of the Moon with improved spatial and spectral resolution. The payloads in this mission are: (i) Terrain mapping stereo camera (TMC) with 20km swath (400-900 nm band) for 3D imaging of lunar surface at a spatial resolution of 5m (ii) Hyper Spectral Imager (HySI) in the 400-920 nm band with 64 channels and spatial resolution of 80m (20km swath) for mineralogical mapping (iii) High-energy X-ray (30-270 keV) spectrometer having a footprint of 40km for study of volatile transport on Moon and (iv) Laser ranging instrument with vertical resolution of 5m (v) Miniature imaging radar instrument (Mini-SAR) from APL, NASA to look for presence of ice in the polar region (vi) Near infrared spectrometer (SIR-2) from Max Plank Institute, Germany (vii)Moon Mineralogy Mapper (M3) from JPL, NASA for mineralogical mapping in the infra-red regions (0.7 -3.0 micron) (viii) Sub-keV Atom Reflecting Analyzer (SARA) from Sweden, India and Japan for detection of low energy neutral atoms emanated from the lunar surface (ix) Radiation Dose Monitor (RADOM) from Bulgaria for monitoring energetic particle flux in the lunar environment and (x) Collimated low energy (1-10keV) X-ray spectrometer (C1XS) with a field of view of 20km for chemical mapping of the lunar surface from RAL, UK. A wealth of data has been collected (November 2008 to August 2009) from the above instru-ments during the mission life of Chandrayaan-1 and the science data from these instruments is being archived at Indian Space Science Data Centre (ISSDC). ISRO Science Data Archive (ISDA) identified at ISSDC is the primary data archive for the payload data of current and future Indian space science missions. The data center (ISSDC) is responsible for the Ingest, Archive, and Dissemination of the payload

  5. Planetary Space Weather Service: Part of the the Europlanet 2020 Research Infrastructure

    Science.gov (United States)

    Grande, Manuel; Andre, Nicolas

    2016-07-01

    Over the next four years the Europlanet 2020 Research Infrastructure will set up an entirely new European Planetary Space Weather service (PSWS). Europlanet RI is a part of of Horizon 2020 (EPN2020-RI, http://www.europlanet-2020-ri.eu). The Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools

  6. Overview of current capabilities and research and technology developments for planetary protection

    Science.gov (United States)

    Frick, Andreas; Mogul, Rakesh; Stabekis, Pericles; Conley, Catharine A.; Ehrenfreund, Pascale

    2014-07-01

    The pace of scientific exploration of our solar system provides ever-increasing insights into potentially habitable environments, and associated concerns for their contamination by Earth organisms. Biological and organic-chemical contamination has been extensively considered by the COSPAR Panel on Planetary Protection (PPP) and has resulted in the internationally recognized regulations to which spacefaring nations adhere, and which have been in place for 40 years. The only successful Mars lander missions with system-level “sterilization” were the Viking landers in the 1970s. Since then different cleanliness requirements have been applied to spacecraft based on their destination, mission type, and scientific objectives. The Planetary Protection Subcommittee of the NASA Advisory Council has noted that a strategic Research & Technology Development (R&TD) roadmap would be very beneficial to encourage the timely availability of effective tools and methodologies to implement planetary protection requirements. New research avenues in planetary protection for ambitious future exploration missions can best be served by developing an over-arching program that integrates capability-driven developments with mission-driven implementation efforts. This paper analyzes the current status concerning microbial reduction and cleaning methods, recontamination control and bio-barriers, operational analysis methods, and addresses concepts for human exploration. Crosscutting research and support activities are discussed and a rationale for a Strategic Planetary Protection R&TD Roadmap is outlined. Such a roadmap for planetary protection provides a forum for strategic planning and will help to enable the next phases of solar system exploration.

  7. Planetary Science Research Discoveries (PSRD): Effective Education and Outreach Website at http://www.soest.hawaii.edu/PSRdiscoveries

    Science.gov (United States)

    Taylor, G. J.; Martel, L. M. V.

    2000-01-01

    Planetary Science Research Discoveries (PSRD) website reports the latest research about planets, meteorites, and other solar system bodies being made by NASA-sponsored scientists. In-depth articles explain research results and give insights to contemporary questions in planetary science.

  8. The applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research

    Science.gov (United States)

    Fegley, Bruce, Jr.

    1990-01-01

    A review of the applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research during the past four decades is presented with an emphasis on chemical equilibrium models and thermochemical kinetics. Several current problems in planetary atmospheres research such as the origin of the atmospheres of the terrestrial planets, atmosphere-surface interactions on Venus and Mars, deep mixing in the atmospheres of the gas giant planets, and the origin of the atmospheres of outer planet satellites all require laboratory data on the kinetics of thermochemical reactions for their solution.

  9. The applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research

    Science.gov (United States)

    Fegley, Bruce, Jr.

    1990-05-01

    A review of the applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research during the past four decades is presented with an emphasis on chemical equilibrium models and thermochemical kinetics. Several current problems in planetary atmospheres research such as the origin of the atmospheres of the terrestrial planets, atmosphere-surface interactions on Venus and Mars, deep mixing in the atmospheres of the gas giant planets, and the origin of the atmospheres of outer planet satellites all require laboratory data on the kinetics of thermochemical reactions for their solution.

  10. Lunar and Planetary Science XXXV: Undergraduate Education and Research Programs, Facilities, and Information Access

    Science.gov (United States)

    2004-01-01

    The titles in this section include: 1) GRIDVIEW: Recent Improvements in Research and Education Software for Exploring Mars Topography; 2) Software and Hardware Upgrades for the University of North Dakota Asteroid and Comet Internet Telescope (ACIT); 3) Web-based Program for Calculating Effects of an Earth Impact; 4) On-Line Education, Web- and Virtual-Classes in an Urban University: A Preliminary Overview; 5) Modelling Planetary Material's Structures: From Quasicrystalline Microstructure to Crystallographic Materials by Use of Mathematica; 6) How We Used NASA Lunar Set in Planetary and Material Science Studies: Textural and Cooling Sequences in Sections of Lava Column from a Thin and a Thick Lava-Flow, from the Moon and Mars with Terrestrial Analogue and Chondrule Textural Comparisons; 7) Classroom Teaching of Space Technology and Simulations by the Husar Rover Model; 8) New Experiments (In Meteorology, Aerosols, Soil Moisture and Ice) on the New Hunveyor Educational Planetary Landers of Universities and Colleges in Hungary; 9) Teaching Planetary GIS by Constructing Its Model for the Test Terrain of the Hunveyor and Husar; 10) Undergraduate Students: An Untapped Resource for Planetary Researchers; 11) Analog Sites in Field Work of Petrology: Rock Assembly Delivered to a Plain by Floods on Earth and Mars; 12) RELAB (Reflectance Experiment Laboratory): A NASA Multiuser Spectroscopy Facility; 13) Full Text Searching and Customization in the NASA ADS Abstract Service.

  11. Cooperative research in terrestrial planetary geology and geophysics

    Science.gov (United States)

    1994-01-01

    This final report for the period of July 1991 to August 1994 covered a variety of topics concerning the study of Earth and Mars. The Earth studies stressed the interpretation of the MAGSAT crustal magnetic anomalies in order to determine the geological structure, mineralogical composition, magnetic nature, and the historical background of submarine features, and also featured work in the area of terrestrial remote sensing. Mars research included the early evolution of the Martian atmosphere and hydrosphere and the investigations of the large Martian impact basins. Detailed summaries of the research is included, along with lists of the publications resulting from this research.

  12. "Where On Mars?": An Open Planetary Mapping Platform for Researchers, Educators, and the General Public

    Science.gov (United States)

    Manaud, Nicolas; Carter, John; Boix, Oriol

    2016-10-01

    The "Where On Mars?" project is essentially the evolution of an existing outreach product developed in collaboration between ESA and CartoDB; an interactive map visualisation of the ESA's ExoMars Rover candidate landing sites (whereonmars.co). Planetary imagery data and maps are increasingly produced by the scientific community, and shared typically as images, in scientific publications, presentations or public outreach websites. However, this media lacks of interactivity and contextual information available for further exploration, making it difficult for any audience to relate one location-based information to another. We believe that interactive web maps are a powerful way of telling stories, engaging with and educating people who, over the last decade, have become familiar with tools such as Google Maps. A few planetary web maps exist but they are either too complex for non-experts, or are closed-systems that do not allows anyone to publish and share content. The long-term vision for the project is to provide researchers, communicators, educators and a worldwide public with an open planetary mapping and social platform enabling them to create, share, communicate and consume research-based content. We aim for this platform to become the reference website everyone will go to learn about Mars and other planets in our Solar System; just like people head to Google Maps to find their bearings or any location-based information. The driver is clearly to create for people an emotional connection with Mars. The short-term objectives for the project are (1) to produce and curate an open repository of basemaps, geospatial data sets, map visualisations, and story maps; (2) to develop a beautifully crafted and engaging interactive map of Mars. Based on user-generated content, the underlying framework should (3) make it easy to create and share additional interactive maps telling specific stories.

  13. Elaboration and research of planetary precessional multiplier type K-H-V

    Science.gov (United States)

    Bostan, I.; Dulgheru, V.; Ciobanu, R.

    2016-08-01

    The multiplier is an indispensable part of the micro hydropower plant and high power wind turbine. It helps to increase rotor low speeds limited by the water flow small velocity and by the relative big placement diameter of the blades that participate in the energy conversion. For example, the microhydrostation rotor's speed is (2 - 3) min'1 for water flow velocity V= (1...1,6) m/s and for blade placement diameter D = 4 m. Diversity of requirements forwarded by the beneficiaries of mechanical transmissions consists, in particular, in increasing reliability, efficiency and lifting capacity, and in reducing the mass and dimensions. It becomes more and more difficult to satisfy the mentioned demands by partial updating of traditional transmissions. The target problem can be solved with special effects by developing new types of multipliers based on precessional planetary transmissions with multiple gear, that were developed by the authors. Absolute multiplicity of precessional gear (up to 100% pairs of teeth simultaneously involved in gearing, compared to 5%-7% - in classical gearings) provides increased lifting capacity and small mass and dimensions. To mention that until now precessional planetary transmissions have been researched and applied mainly in reducers. Therefore it was necessary to carry out theoretical research to determine the geometrical parameters of the precessional gear that operates in multiplier mode. Also, it was necessary to develop new conceptual diagrams of precessional transmissions that function under multiplier regime. The majority of precessional planetary transmissions diagrams developed previously operate efficiently in reducer's regime. Depending on the structural diagram, precessional transmissions fall into two main types - K-H-V and 2K-H, from which a wide range of constructive solutions with wide kinematical and functional options that operate in multiplier regime.

  14. Operational Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure

    Science.gov (United States)

    André, Nicolas; Grande, Manuel

    2017-04-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI, http://www.europlanet-2020-ri.eu) includes an entirely new Virtual Access Service, "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. PSWS will provide at the end of 2017 12 services distributed over 4 different service domains - 1) Prediction, 2) Detection, 3) Modelling, 4) Alerts. These services include 1.1) A 1D MHD solar wind prediction tool, 1.2) Extensions of a Propagation Tool, 1.3) A meteor showers prediction tool, 1.4) A cometary tail crossing prediction tool, 2.1) Detection of lunar impacts, 2.2) Detection of giant planet fireballs, 2.3) Detection of cometary tail events, 3.1) A Transplanet model of magnetosphere-ionosphere coupling, 3.2) A model of the Mars radiation environment, 3.3.) A model of giant planet magnetodisc, 3.4) A model of Jupiter's thermosphere, 4) A VO-event based alert system. We will detail in the present paper some of these services with a particular emphasis on those already operational at the time of the presentation (1.1, 1.2, 1.3, 2.2, 3.1, 4). The proposed Planetary Space Weather Services will be accessible to the research community, amateur astronomers as well as to industrial partners planning for space missions dedicated in particular to the following key planetary environments: Mars, in support of ESA's ExoMars missions; comets, building on the success of the ESA Rosetta mission; and outer planets, in preparation for the ESA JUpiter ICy moon Explorer (JUICE). These services will also be augmented by the future Solar Orbiter and BepiColombo observations. This new facility will not only have an impact on planetary space missions but will also allow the hardness of spacecraft and their components to be evaluated under variety of known conditions, particularly radiation conditions, extending

  15. Developing Technologies for Space Resource Utilization: Concept for a Planetary Engineering Research Institute

    Science.gov (United States)

    Blacic, J. D.; Dreesen, D.; Mockler, T.

    2000-01-01

    There are two principal factors that control the economics and ultimate utilization of space resources: 1) space transportation, and 2) space resource utilization technologies. Development of space transportation technology is driven by major government (military and civilian) programs and, to a lesser degree, private industry-funded research. Communication within the propulsion and spacecraft engineering community is aided by an effective independent professional organization, the American Institute of Aeronautics and Astronautics (AIAA). The many aerospace engineering programs in major university engineering schools sustain professional-level education in these fields. NASA does an excellent job of public education in space science and engineering at all levels. Planetary science, a precursor and supporting discipline for space resource utilization, has benefited from the establishment of the Lunar and Planetary Institute (LPI) which has served, since the early post-Apollo days, as a focus for both professional and educational development in the geosciences of the Moon and other planets. The closest thing the nonaerospace engineering disciplines have had to this kind of professional nexus is the sponsorship by the American Society of Civil Engineers of a series of space engineering conferences that have had a predominantly space resource orientation. However, many of us with long-standing interests in space resource development have felt that an LPI-like, independent institute was needed to focus and facilitate both research and education on the specific engineering disciplines needed to develop space resource utilization technologies on an on-going basis.

  16. Large-eddy simulations of geophysical turbulent flows with applications to planetary boundary layer research

    CERN Document Server

    Esau, Igor

    2009-01-01

    The present study gives an overview and emphasizes principal moments of the applications of the turbulence-resolving modeling with large-eddy simulation (LES) numerical technique to planetary boundary layer (PBL) research and climate studies. LES proved to be very useful in understanding of the atmospheric and ocean turbulent exchange and ultimately in parameterization improvement in traditional meteorological models. LES have played a key role in recognizing the importance of previously ignored self-organized structures in the geophysical turbulence. LES assisted theoreticians and weather/climate modelers with reliable information about the averaged vertical structure of the PBL in convection and shear regimes as well as with better estimations of key PBL parameters, e.g. an entrainment rate, for model calibrations. At present, LES are an essential, indispensible part of geosciences, while the mainstream of the LES research still deals with idealized case studies with rather simple micro-physics.

  17. Life in the Universe - Astronomy and Planetary Science Research Experience for Undergraduates at the SETI Institute

    Science.gov (United States)

    Chiar, J.; Phillips, C. B.; Rudolph, A.; Bonaccorsi, R.; Tarter, J.; Harp, G.; Caldwell, D. A.; DeVore, E. K.

    2016-12-01

    The SETI Institute hosts an Astrobiology Research Experience for Undergraduates (REU) program. Beginning in 2013, we partnered with the Physics and Astronomy Dept. at Cal Poly Pomona, a Hispanic-serving university, to recruit underserved students. Over 11 years, we have served 155 students. We focus on Astrobiology since the Institute's mission is to explore, understand and explain the origin, nature and prevalence of life in the universe. Our REU students work with mentors at the Institute - a non-profit organization located in California's Silicon Valley-and at the nearby NASA Ames Research Center. Projects span research on survival of microbes under extreme conditions, planetary geology, astronomy, the Search for Extraterrestrial Intelligence (SETI), extrasolar planets and more. The REU program begins with an introductory lectures by Institute scientists covering the diverse astrobiology subfields. A week-long field trip to the SETI Institute's Allen Telescope Array (Hat Creek Radio Astronomy Observatory in Northern California) and field experiences at hydrothermal systems at nearby Lassen Volcanic National Park immerses students in radio astronomy and SETI, and extremophile environments that are research sites for astrobiologists. Field trips expose students to diverse environments and allow them to investigate planetary analogs as our scientists do. Students also participate in local trips to the California Academy of Sciences and other nearby locations of scientific interest, and attend the weekly scientific colloquium hosted by the SETI Institute at Microsoft, other seminars and lectures at SETI Institute and NASA Ames. The students meet and present at a weekly journal club where they hone their presentation skills, as well as share their research progress. At the end of the summer, the REU interns present their research projects at a session of the Institute's colloquium. As a final project, students prepare a 2-page formal abstract and 15-minute

  18. Student Planetary Investigators: A Program to Engage Students in Authentic Research Using NASA Mission Data

    Science.gov (United States)

    Hallau, K.; Turney, D.; Beisser, K.; Edmonds, J.; Grigsby, B.

    2015-12-01

    The Student Planetary Investigator (PI) Program engages students in authentic scientific research using NASA mission data. This student-focused STEM (Science, Technology, Engineering and Math) program combines problem-based learning modules, Next Generation Science Standards (NGSS) aligned curriculum, and live interactive webinars with mission scientists to create authentic research opportunities and career-ready experiences that prepare and inspire students to pursue STEM occupations. Primarily for high school students, the program employs distance-learning technologies to stream live presentations from mission scientists, archive those presentations to accommodate varied schedules, and collaborate with other student teams and scientists. Like its predecessor, the Mars Exploration Student Data Team (MESDT) program, the Student PI is free and open to teams across the country. To date, students have drafted research-based reports using data from the Lunar Reconnaissance Orbiter Mini-RF instrument and the MESSENGER Mercury orbiter, with plans to offer similar programs aligned with additional NASA missions in the future pending available funding. Overall, the program has reached about 600 students and their educators. Assessments based on qualitative and quantitative data gathered for each Student PI program have shown that students gain new understanding about the scientific process used by real-world scientists as well as gaining enthusiasm for STEM. Additionally, it is highly adaptable to other disciplines and fields. The Student PI program was created by the Johns Hopkins University Applied Physics Laboratory (APL) Space Department Education and Public Outreach office with support from NASA mission and instrument science and engineering teams.

  19. Design and Testing of a Prototype Lunar or Planetary Surface Landing Research Vehicle (LPSLRV)

    Science.gov (United States)

    Murphy, Gloria A.

    2010-01-01

    This handbook describes a two-semester senior design course sponsored by the NASA Office of Education, the Exploration Systems Mission Directorate (ESMD), and the NASA Space Grant Consortium. The course was developed and implemented by the Mechanical and Aerospace Engineering Department (MAE) at Utah State University. The course final outcome is a packaged senior design course that can be readily incorporated into the instructional curriculum at universities across the country. The course materials adhere to the standards of the Accreditation Board for Engineering and Technology (ABET), and is constructed to be relevant to key research areas identified by ESMD. The design project challenged students to apply systems engineering concepts to define research and training requirements for a terrestrial-based lunar landing simulator. This project developed a flying prototype for a Lunar or Planetary Surface Landing Research Vehicle (LPSRV). Per NASA specifications the concept accounts for reduced lunar gravity, and allows the terminal stage of lunar descent to be flown either by remote pilot or autonomously. This free-flying platform was designed to be sufficiently-flexible to allow both sensor evaluation and pilot training. This handbook outlines the course materials, describes the systems engineering processes developed to facilitate design fabrication, integration, and testing. This handbook presents sufficient details of the final design configuration to allow an independent group to reproduce the design. The design evolution and details regarding the verification testing used to characterize the system are presented in a separate project final design report. Details of the experimental apparatus used for system characterization may be found in Appendix F, G, and I of that report. A brief summary of the ground testing and systems verification is also included in Appendix A of this report. Details of the flight tests will be documented in a separate flight test

  20. Planetary Atmospheric Electricity

    CERN Document Server

    Leblanc, F; Yair, Y; Harrison, R. G; Lebreton, J. P; Blanc, M

    2008-01-01

    This volume presents our contemporary understanding of atmospheric electricity at Earth and in other solar system atmospheres. It is written by experts in terrestrial atmospheric electricity and planetary scientists. Many of the key issues related to planetary atmospheric electricity are discussed. The physics presented in this book includes ionisation processes in planetary atmospheres, charge generation and separation, and a discussion of electromagnetic signatures of atmospheric discharges. The measurement of thunderstorms and lightning, including its effects and hazards, is highlighted by articles on ground and space based instrumentation, and new missions.Theory and modelling of planetary atmospheric electricity complete this review of the research that is undertaken in this exciting field of space science. This book is an essential research tool for space scientists and geoscientists interested in electrical effects in atmospheres and planetary systems. Graduate students and researchers who are new to t...

  1. IMPEx - a web-based distributed research environment for planetary plasma science

    Science.gov (United States)

    Topf, Florian; Khodachenko, Maxim; Kallio, Esa; Génot, Vincent; Al-Ubaidi, Tarek; Modolo, Ronan; Hess, Sébastien; Schmidt, Walter; Scherf, Manuel; Alexeev, Igor; Gangloff, Michel; Budnik, Elena; Bouchemit, Myriam; Renard, Benjamin; Bourrel, Natacha; Penou, Emmanuel; André, Nicolas; Belenkaya, Elena

    2014-05-01

    The FP7-SPACE project IMPEx (http://impex-fp7.oeaw.ac.at/) was established to provide a web-based infrastructure to facilitate the inter-comparison of spacecraft in-situ measurements and computational models in the fields of planetary plasma science. Within this project several observational (CDAWeb, AMDA, CLWeb), as well as numerical simulation (FMI, LATMOS, SINP) databases provide datasets, which can be combined for further joint analysis and scientific investigation. The major goal of this project consists in providing an environment for the connection and joint operation of the different types of numerical and observational data sources in order to validate numerical simulations with spacecraft observations and vice versa. As an important milestone of IMPEx a common metadata standard was developed for the description of the currently integrated simulation models and the archived datasets. This standard is based on the SPASE data model (DM), which originates from the Heliospheric physics community. This DM was developed for the description of observational data, and that is why it was chosen as a basis within the scope of IMPEx. A considerable part of the project effort is dedicated to the development of standardized (web service-) interfaces and protocols using the SPASE DM as an elaborated IMPEx DM for the communication between the different tools and databases of the IMPEx research infrastructure. For the visualization and analysis of the archived datasets available within IMPEx and beyond, several tools (AMDA, 3DView, ClWeb) were upgraded to be able to work with the newly developed metadata standards and protocols. A practical example will be presented to demonstrate the capabilities and potentials of the achievements of IMPEx by using these tools. Furthermore the IMPEx DM has by now also been successfully applied outside the project's core infrastructure: A prototype for UCLA MHD description can be seen at LatHyS. Besides that IRAP is currently working on a

  2. Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes

    DEFF Research Database (Denmark)

    Draxl, Caroline; Hahmann, Andrea N.; Pena Diaz, Alfredo

    2014-01-01

    The existence of vertical wind shear in the atmosphere close to the ground requires that wind resource assessment and prediction with numerical weather prediction (NWP) models use wind forecasts at levels within the full rotor span of modern large wind turbines. The performance of NWP models...... regarding wind energy at these levels partly depends on the formulation and implementation of planetary boundary layer (PBL) parameterizations in these models. This study evaluates wind speeds and vertical wind shears simulated by theWeather Research and Forecasting model using seven sets of simulations...

  3. Planetary Radar

    Science.gov (United States)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  4. Planetary data definition

    Science.gov (United States)

    1984-10-01

    Planetary data include all of those data which have resulted from measurements made by the instruments carried aboard planetary exploration spacecraft, and (for our purposes) exclude observations of Moon and Earth. The working, planetary data base is envisioned to contain not only these data, but also a wide range of supporting measurements such as calibration files, navigation parameters, spacecraft engineering states, and the various Earth-based and laboratory measurements which provide the planetary research scientist with historical and comparative data. No convention exists across the disciplines of the planetary community for defining or naming the various levels through which data pass in the progression from a sensed impulse at the spacecraft to a reduced, calibrated, and/or analyzed element in a planetary data set. Terms such as EDR (experiment data record), RDR (reduced data record), and SEDR (supplementary experiment data record) imply different meanings depending on the data set under consideration. The development of standard terminology for the general levels of planetary data is necessary.

  5. From Planetary Intelligence to Planetary Wisdom

    Science.gov (United States)

    Moser, S. C.

    2016-12-01

    "Planetary intelligence" - when understood as an input into the processes of "managing" Earth - hints at an instrumental understanding of scientific information. At minimum it is a call for useful data of political (and even military) value; at best it speaks to an ability to collect, integrate and apply such information. In this sense, 21st century society has more "intelligence" than any generation of humans before, begging the question whether just more or better "planetary intelligence" will do anything at all to move us off the path of planetary destruction (i.e., beyond planetary boundaries) that it has been on for decades if not centuries. Social scientists have argued that there are at least four shortcomings in this way of thinking that - if addressed - could open up 1) what is being researched; 2) what is considered socially robust knowledge; 3) how science interacts with policy-makers and other "planet managers"; and 4) what is being done in practice with the "intelligence" given to those positioned at the levers of change. To the extent "planetary management" continues to be approached from a scientistic paradigm alone, there is little hope that Earth's future will remain in a safe operating space in this or coming centuries.

  6. Discipline-based planetary education research and computational fluid dynamics analysis of Mars

    Science.gov (United States)

    Coba, Filis

    This thesis originates from the testing and implementation of an IRB-approved interactive animation designed to help students understand what causes The Reasons For The Seasons (RFTS) on Earth. Results from the testing indicated a small improvement in student understanding after exposure to the animation. Next, using the 3-D mapping tool Google Earth, students explored seasons and other planetary features on Mercury, Venus, the Moon and Mars through IRB-approved interactive tours which were developed and tested for astronomy education. Results from the tests indicated that there were statistically significant learning gains (p-value < 0.05) after students interacted with the tours compared to those who did not. The development of the tours inspired a geophysics study of the possibility of former plate motion (or plate tectonics) on Mars. A 2-D finite element convection model for the mantle of Mars was designed and solved using COMSOL Multiphysics 5.1, to investigate whether or not thermal gradients in a Mars-sized planet could cause vigorous upper mantle convection, consistent with plate tectonic processes. Results from this project indicated that stable convection could occur in the interior of a Mars-like planet assuming the presence of sufficiently high thermal gradients at about 0.8 times the mantle temperature of Earth. The convective patterns resembled hot upwelling and cool downwelling which may be similar to subduction-like features. Furthermore, increasing the temperature of the hot boundaries resulted in faster, more rigorous convective motions and a hotter average temperature.

  7. Planetary atmosphere models: A research and instructional web-based resource

    Science.gov (United States)

    Gray, Samuel Augustine

    The effects of altitude change on the temperature, pressure, density, and speed of sound were investigated. These effects have been documented in Global Reference Atmospheric Models (GRAMs) to be used in calculating the conditions in various parts of the atmosphere for several planets. Besides GRAMs, there are several websites that provide online calculators for the 1976 US Standard Atmosphere. This thesis presents the creation of an online calculator of the atmospheres of Earth, Mars, Venus, Titan, and Neptune. The websites consist of input forms for altitude and temperature adjustment followed by a results table for the calculated data. The first phase involved creating a spreadsheet reference based on the 1976 US Standard Atmosphere and other planetary GRAMs available. Microsoft Excel was used to input the equations and make a graphical representation of the temperature, pressure, density, and speed of sound change as altitude changed using equations obtained from the GRAMs. These spreadsheets were used later as a reference for the JavaScript code in both the design and comparison of the data output of the calculators. The websites were created using HTML, CSS, and JavaScript coding languages. The calculators could accurately display the temperature, pressure, density, and speed of sound of these planets from surface values to various stages within the atmosphere. These websites provide a resource for students involved in projects and classes that require knowledge of these changes in these atmospheres. This project also created a chance for new project topics to arise for future students involved in aeronautics and astronautics.

  8. The Planetary Project

    Science.gov (United States)

    Pataki, Louis P.

    2016-06-01

    This poster presentation presents the Planetary Project, a multi-week simulated research experience for college non-science majors. Students work in research teams of three to investigate the properties of a fictitious planetary system (the “Planetary System”) created each semester by the instructor. The students write team and individual papers in which they use the available data to draw conclusions about planets, other objects or general properties of the Planetary System and in which they compare, contrast and explain the similarities between the objects in the Planetary System and comparable objects in the Solar System.Data about the orbital and physical properties of the planets in the Planetary System are released at the start of the project. Each week the teams request data from a changing pool of available data. For example, in week one pictures of the planets are available. Each team picks one planet and the data (pictures) on that planet are released only to that team. Different data are available in subsequent weeks. Occasionally a news release to all groups reports an unusual occurrence - e.g. the appearance of a comet.Each student acts as principal author for one of the group paper which must contain a description of the week’s data, conclusions derived from that data about the Planetary System and a comparison with the Solar System. Each students writes a final, individual paper on a topic of their choice dealing with the Planetary System in which they follow the same data, conclusion, comparison format. Students “publish” their papers on a class-only restricted website and present their discoveries in class talks. Data are released to all on the website as the related papers are “published.” Additional papers commenting on the published work and released data are encouraged.The successes and problems of the method are presented.

  9. Planetary Magnetism

    Science.gov (United States)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  10. Laboratory and theoretical work in the service of planetary atmospheric research

    Science.gov (United States)

    Coustenis, Athena

    2015-08-01

    A large quantity of observations is obtained by instruments onboard space missions exploring our solar system and by large ground-based telescopes observing the planets and also the exoplanets. Spectroscopy plays a major role in this type of investigation. To analyze and exploit these observations, planetary scientists need spectroscopic data covering wide ranges in wavelength but also in temperature, pressure, distance, etc.The outer regions of our solar system in particular, including the giant gaseous planets Jupiter and Saturn and their satellites, have recently been the target of space missions such as Cassini-Huygens and several investigations from the ground. Titan, the largest moon of Saturn, in particular, offers many similarities with our own planet, among which a dense atmosphere whose major component is dinitrogen at about 95%. Combining with methane (at a few percent) and hydrogen, gives rise to a complex organic chemistry with hydrocarbons and nitriles. Oxygen compounds also exist in Titan’s atmosphere. By studying Titan, we learn about our own planet and our Solar system Solar as a whole [1,2,3]. To properly interpret the Cassini-Huygens data and in anticipation of future missions like ESA’s JUICE to the Jupiter system, spectroscopic data are crucially needed. In the field of exoplanets (over 1000 discovered to date), it also becomes urgent to have adequate data of several molecules in order to analyze the observations returned to us every day by major observatories on Earth and in the space [4,5]. I will discuss recent applications from theoretical and experimental studies on the investigation of Titan and exoplanets, with emphasis on methane. I will also present some needs for future analyses.References: [1] Campargue, A., et al. 2012. Icarus 219, 110-128. [2] Coustenis, A., et al. 2013. Astrophys. J. 799, 177, 9p. [3] Hirtzig, et al., 2013. Icarus 226, 470-486 and corrigendum 1182-1182. [4] Tinetti, G., Encrenaz, Th., Coustenis, A., 2013

  11. NASA Space Engineering Research Center for utilization of local planetary resources

    Science.gov (United States)

    1992-01-01

    Reports covering the period from 1 Nov. 1991 to 31 Oct. 1992 and documenting progress at the NASA Space Engineering Research Center are included. Topics covered include: (1) processing of propellants, volatiles, and metals; (2) production of structural and refractory materials; (3) system optimization discovery and characterization; (4) system automation and optimization; and (5) database development.

  12. NASA Space Engineering Research Center for utilization of local planetary resources

    Science.gov (United States)

    In 1987, responding to widespread concern about America's competitiveness and future in the development of space technology and the academic preparation of our next generation of space professionals, NASA initiated a program to establish Space Engineering Research Centers (SERC's) at universities with strong doctoral programs in engineering. The goal was to create a national infrastructure for space exploration and development, and sites for the Centers would be selected on the basis of originality of proposed research, the potential for near-term utilization of technologies developed, and the impact these technologies could have on the U.S. space program. The Centers would also be charged with a major academic mission: the recruitment of topnotch students and their training as space professionals. This document describes the goals, accomplishments, and benefits of the research activities of the University of Arizona/NASA SERC. This SERC has become recognized as the premier center in the area known as In-Situ Resource Utilization or Indigenous Space Materials Utilization.

  13. Planetary Rings

    Science.gov (United States)

    Cuzzi, Jeffrey N.

    1994-01-01

    Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system

  14. Citizen Science in Planetary Sciences: Intersection of Scientific Research and Amateur Networks

    Science.gov (United States)

    Yanamandra-Fisher, Padma A.

    2014-11-01

    The Pro-Am Collaborative Astronomy (PACA) project evolved from the observational campaign of C/2012 S1 or C/ISON in 2013. Following the success of the professional-amateur astronomer collaboration in scientific research via social media, it is now implemented in other comet observing campaigns. While PACA identifies a consistent collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access and storage are needed. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers:(1) the establishment of a network of astronomers and related professionals, that canbe galvanized into action on short notice to support observing campaigns;(2) assist in various science investigations pertinent to the campaign;(3) provide an alert-sounding mechanism should the need arise;(4) immediate outreach and dissemination of results via our media/blogger members;(5) provide a forum for discussions between the imagers and modelers to helpstrategize the observing campaign for maximum benefit.In 2014, two new comet observing campaigns involving pro-am collaborations have been initiated: (1) C/2013 A1 (C/SidingSpring) and (2) 67P/Churyumov-Gerasimenko (CG), target for ESA/Rosetta mission. The evolving need for individual customized observing campaigns has been incorporated into the evolution of PACA portal that currently is focused on comets: from supporting observing campaigns of current comets, legacy data, historical comets; interconnected with social media and a set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers. The integration of science, observations by professional and amateur astronomers, and various social media provides a dynamic and evolving collaborative partnership between professional and amateur astronomers. The

  15. Chemical and mineralogical analyses of planetary rocks using a laser ablation mass spectrometer for in situ space research

    Science.gov (United States)

    Brigitte Neuland, Maike; Mezger, Klaus; Riedo, Andreas; Tulej, Marek; Wurz, Peter

    2015-04-01

    The context chemical analysis is of considerable importance in space research. High resolution in situ studies of planetary materials can yield important information on surface heterogeneity, basic grain mineralogy and chemical composition of surface and subsurface. In turn, these data are the basis for our understanding of the physical and chemical processes which led to the formation and alteration of planetary material [1] [2]. A highly heterogeneous sample of Allende meteorite, representative for extraterrestrial material, is investigated by LMS, a miniature laser ablation mass spectrometer designed for space research [3]. In the current setup a fs-laser ablation ion source is applied, allowing chemical analysis with lateral resolution of about 10-15 μm and sub-micrometre depth resolution [4]. The reflectron TOF mass analyser is used to measure elemental and isotopic composition of the sampled surface. The LMS instrument supports mass resolution 400 and dynamic range of 108 [5]. In the current studies with the fs-ablation ion source significant improvements in the detection efficiency of several metals e.g., Ni, Co, and non-metals e.g., Si, P, S and O, was achieved comparing to our previous setup [6]. Also the values of sensitivity coefficients for these elements are determined to be close to one, which resulted in the substantial improvements of the quantitative element analysis of the sample. Since the ablation crater depth is expected to be about 1 nm/laser shot also the possible changes of the main element or isotope distribution in depth can be analysed to assess their influence on the mineralogical analysis [7]. Several areas on an Allende sample were investigated and the chemical composition across the surface was determined from the mass spectrometric analysis. Also accurate isotope analysis could be conducted for most of main elements with sufficiently high signal to noise ratio. Correlation of elements was conducted and yielded mineralogical maps

  16. Planetary Society

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    Carl Sagan, Bruce Murray and Louis Friedman founded the non-profit Planetary Society in 1979 to advance the exploration of the solar system and to continue the search for extraterrestrial life. The Society has its headquarters in Pasadena, California, but is international in scope, with 100 000 members worldwide, making it the largest space interest group in the world. The Society funds a var...

  17. Planetary Rings

    CERN Document Server

    Tiscareno, Matthew S

    2011-01-01

    Planetary rings are the only nearby astrophysical disks, and the only disks that have been investigated by spacecraft. Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 1e-7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close-range and in real-time in planetary rings. We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The main rings of Saturn comprise our system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty...

  18. Project of the planetary terrain analogs research for technology development and education in geodesy and image processing.

    Science.gov (United States)

    Semenov, Mikhail; Gavrushin, Nikolay; Bataev, Mikhail; Kruzhkov, Maxim; Oberst, Juergen

    2013-04-01

    The MIIGAiK Extraterrestrial Laboratory (MExLab) is currently finalizing the development the robotic mobile science platform MExRover, designed for simulating rover activities on the surface of earth-type planets and satellites. In the project, we develop a hardware and software platform for full rover operation and telemetry processing from onboard instruments, as a means of training undergraduate and postgraduate students and young scientists working in the field of planetary exploration. 1. Introduction The main aim of the project is to provide the research base for image processing development and geodesy survey. Other focus is the development of research programs with participation of students and young scientists of the University, for digital terrain model creation for macro- and microrelief surveying. MExRover would be a bridge from the old soviet Lunokhod experience to the new research base for the future rover technology development support. 2. Rover design The design of the rover and its instrument suite allows acquiring images and navigation data satisfying the requirements for photogrammetric processing. The high-quality color panoramas as well as DTMs (Digital Terrain Models) will be produced aboard and could be used for the real-time track correction and environment analysis. A local operator may control the rover remotely from a distance up to 3 km and continuously monitor all systems. The MExRover has a modular design, which provides maximum flexibility for accomplishing different tasks with different sets of additional equipment weighing up to 15 kg. The framework can be easily disassembled and fit into 3 transport boxes, which allows transporting them on foot, by car, train or plane as a the ordinary luggage. The imaging system included in the present design comprises low resolution video cameras, high resolution stereo camera, microphone and IR camera. More instruments are planned to be installed later as auxiliary equipment, such as

  19. Amateur - professional collaborations in Giant Planets Atmospheres Research through the Planetary Virtual Observatory of the International Outer Planets Watch (PVOL - IOPW)

    Science.gov (United States)

    Hueso, R.; Legarreta, J.; Sánchez-Lavega, A.

    2015-10-01

    The atmospheres node of the International Outer Planets Watch (IOPW) maintains a large database of observations of the Giant Planets called Planetary Virtual Observatory Laboratory (PVOL) [1]. This image repository is contributed by amateur astronomers worldwide and its images keep a record of atmospheric activity on Jupiter, Saturn and Uranus over the years. PVOL was created as an unfunded project that has been online since 2004. Its data content has been growing ever since then, now containing about 25,000 image files that cover the period 2000-2015. The main characteristic of PVOL, when compared with other amateur images repositories, is that it is built as a database with different searching tools. This characteristic has made PVOL an important research tool over the years for various scientific teams. Here we update the description of the data in PVOL and we discuss new development plans in the context of the Virtual European Solar and Planetary Access (VESPA) collaboration which will bring life to a Virtual Observatory for Planetary Sciences. The database is available in the following address:

  20. First Joint U.S.-Canada Polar Expedition for Educators, Axel Heiberg Island, Nunavut, Canada: Planetary Analogue Research and Lessons Learned

    Science.gov (United States)

    Williamson, M.; Pollard, W. H.; McKay, C. M.; Coe, L.; Steinberg, M.; Clement, J.

    2008-12-01

    From July 20 to August 2, 2008, joint activities sponsored by the Canadian Space Agency (CSA - Space Learning) and NASA (Spaceward Bound) were carried out at the McGill Arctic Research Station (MARS) in the Canadian High Arctic. Established in 1960, MARS consists of two sites located on western Axel Heiberg Island along the shore of Expedition Fiord (lower camp), and 8 km inland, at Colour Lake (upper camp). The MARS upper camp is one of the longest-operating seasonal field research facilities in polar regions. The lower camp was established in 2007 through infrastructure support provided by the CSA. The station is located in a mountainous area dominated by ice caps, outlet and valley glaciers, polar desert, arctic tundra, and permafrost, and is internationally recognized for research on cold, perennial springs associated with the presence of evaporite domes. Six educators from the U.S. and Canada participated in field surveys and hands-on demonstrations with the following objectives: (1) join a team of scientists and engineers to explore the topics of Physical Geography, Geoscience, Astrobiology, and Robotics through experiential learning; (2) discover how remote and extreme polar environments on Earth are used by planetary scientists to better understand the evolution of the Moon and Mars, and to potentially train future planetary explorers; (3) bring that experience back to their classrooms, and assist in the development of space curriculum related to science, technology, and engineering projects carried out at planetary analogue sites. In this paper, we present a summary of operational planning and field surveys that led to successful scientific experiments by 16 participants during the Expedition. Research topics explored prior to, and during the arctic mission include Physical Geography, Geomorphology, Geology, Seismology, Earth Observation, Astrobiology, and Terrain Characterization with implications for future human and robotic exploration missions to the

  1. The chemical composition and mineralogy of meteorites measured with very high spatial resolution by a laser mass spectrometer for in situ planetary research

    Science.gov (United States)

    Brigitte Neuland, Maike; Mezger, Klaus; Tulej, Marek; Frey, Samira; Riedo, Andreas; Wurz, Peter; Wiesendanger, Reto

    2017-04-01

    The knowledge of the chemical composition of moons, comets, asteroids or other planetary bodies is of particular importance for the investigation of the origin and evolution of the Solar System. High resolution in situ studies on planetary surfaces can yield important information on surface heterogeneity, basic grain mineralogy and chemical composition of surface and subsurface. In turn, these data are the basis for our understanding of the physical and chemical processes which led to the formation and alteration of planetary material [1]. We investigated samples of Allende and Sayh al Uhaymir with a highly miniaturised laser mass spectrometer (LMS), which has been designed and built for in situ space research [2,3]. Both meteorite samples were investigated with a spatial resolution of about 10μm in lateral direction. The high sensitivity and high dynamic range of the LMS allow for quantitative measurements of the abundances of the rock-forming and minor and trace elements with high accuracy [4]. From the data, the modal mineralogy of micrometre-sized chondrules can be inferred [5], conclusions about the condensation sequence of the material are possible and the sensitivity for radiogenic elements allows for dating analyses of the investigated material. We measured the composition of various chondrules in Allende, offering valuable clues about the condensation sequence of the different components of the meteorite. We explicitly investigated the chemical composition and heterogeneity of the Allende matrix with an accuracy that cannot be reached by the mechanical analysis methods that were and are widely used in meteoritic research. We demonstrate the capabilities for dating analyses with the LMS. By applying the U-Th-dating method, the age of the SaU169 sample could be determined. Our analyses show that the LMS would be a suitable instrument for high-quality quantitative chemical composition measurements on the surface of a celestial body like a planet, moon or

  2. Planetary Geologic Mapping Handbook - 2009

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  3. 基于拓扑学的行星轮系综合与研究%Synthesis and Research of Planetary Gear Train based on Topological Theory

    Institute of Scientific and Technical Information of China (English)

    俞庆; 毛旭东

    2012-01-01

    应用拓扑图对行星轮系进行综合与研究是寻找新行星轮系的一种最有效方法.利用拓扑学探讨了拓扑图基本构成和行星轮系的基本单元,通过对行星轮系演化和反演规律的深入研究得到了行星轮系图库建立的方法与基础,为行星轮系的创新设计提供了一种简单而又可行的途径.%Application of topological graphs to analyze and synthesize planetary gear trains is an effective approach in searching for innovative planetary gear trains. Topological graphs of basic structure and fundamental units of PGTs are discussed as the basis of topological theory. According to the further research of the law of PGTs diversification and inversion, the basic and method of PGTs graph library establishment is obtained. Thus graph library based on variation law is presented as a simple and practical way to create a great number of new PGTs.

  4. The OpenPlanetary initiative

    Science.gov (United States)

    Manaud, Nicolas; Rossi, Angelo Pio; Hare, Trent; Aye, Michael; Galluzzi, Valentina; van Gasselt, Stephan; Martinez, Santa; McAuliffe, Jonathan; Million, Chase; Nass, Andrea; Zinzi, Angelo

    2016-10-01

    "Open" has become attached to several concepts: science, data, and software are some of the most obvious. It is already common practice within the planetary science community to share spacecraft missions data freely and openly [1]. However, this is not historically the case for software tools, source code, and derived data sets, which are often reproduced independently by multiple individuals and groups. Sharing data, tools and overall knowledge would increase scientific return and benefits [e.g. 2], and recent projects and initiatives are helping toward this goal [e.g. 3,4,5,6].OpenPlanetary is a bottom-up initiative to address the need of the planetary science community for sharing ideas and collaborating on common planetary research and data analysis problems, new challenges, and opportunities. It started from an initial participants effort to stay connected and share information related to and beyond the ESA's first Planetary GIS Workshop [7]. It then continued during the 2nd (US) Planetary Data Workshop [8], and aggregated more people.Our objective is to build an online distributed framework enabling open collaborations within the planetary science community. We aim to co-create, curate and publish resource materials and data sets; to organise online events, to support community-based projects development; and to offer a real-time communication channel at and between conferences and workshops.We will present our current framework and resources, developing projects and ideas, and solicit for feedback and participation. OpenPlanetary is intended for research and education professionals: scientists, engineers, designers, teachers and students, as well as the general public that includes enthusiasts and citizen scientists. All are welcome to join and contribute at openplanetary.co[1] International Planetary Data Alliance, planetarydata.org. [2] Nosek et al (2015), dx.doi.org/10.1126/science.aab2374. [3] Erard S. et al. (2016), EGU2016-17527. [4] Proposal for a PDS

  5. Planetary Data System (PDS)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Planetary Data System (PDS) is an archive of data products from NASA planetary missions, which is sponsored by NASA's Science Mission Directorate. We actively...

  6. Nasa's Planetary Geologic Mapping Program: Overview

    Science.gov (United States)

    Williams, D. A.

    2016-06-01

    NASA's Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA's planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT's Steering Committee includes specialists in geological mapping, who make up the Geologic Mapping Subcommittee (GEMS). I am the GEMS Chair, and with a group of 3-4 community mappers we advise the U.S. Geological Survey Planetary Geologic Mapping Coordinator (Dr. James Skinner) and develop policy and procedures to aid the planetary geologic mapping community. GEMS meets twice a year, at the Annual Lunar and Planetary Science Conference in March, and at the Annual Planetary Mappers' Meeting in June (attendance is required by all NASA-funded geologic mappers). Funding programs under NASA's current R&A structure to propose geological mapping projects include Mars Data Analysis (Mars), Lunar Data Analysis (Moon), Discovery Data Analysis (Mercury, Vesta, Ceres), Cassini Data Analysis (Saturn moons), Solar System Workings (Venus or Jupiter moons), and the Planetary Data Archiving, Restoration, and Tools (PDART) program. Current NASA policy requires all funded geologic mapping projects to be done digitally using Geographic Information Systems (GIS) software. In this presentation we will discuss details on how geologic mapping is done consistent with current NASA policy and USGS guidelines.

  7. Astrophysical Conditions for Planetary Habitability

    CERN Document Server

    Guedel, M; Erkaev, N; Kasting, J; Khodachenko, M; Lammer, H; Pilat-Lohinger, E; Rauer, H; Ribas, I; Wood, B E

    2014-01-01

    With the discovery of hundreds of exoplanets and a potentially huge number of Earth-like planets waiting to be discovered, the conditions for their habitability have become a focal point in exoplanetary research. The classical picture of habitable zones primarily relies on the stellar flux allowing liquid water to exist on the surface of an Earth-like planet with a suitable atmosphere. However, numerous further stellar and planetary properties constrain habitability. Apart from "geophysical" processes depending on the internal structure and composition of a planet, a complex array of astrophysical factors additionally determine habitability. Among these, variable stellar UV, EUV, and X-ray radiation, stellar and interplanetary magnetic fields, ionized winds, and energetic particles control the constitution of upper planetary atmospheres and their physical and chemical evolution. Short- and long-term stellar variability necessitates full time-dependent studies to understand planetary habitability at any point ...

  8. Planetary systems in star clusters

    CERN Document Server

    Kouwenhoven, M B N; Cai, Maxwell Xu; Spurzem, Rainer

    2016-01-01

    Thousands of confirmed and candidate exoplanets have been identified in recent years. Consequently, theoretical research on the formation and dynamical evolution of planetary systems has seen a boost, and the processes of planet-planet scattering, secular evolution, and interaction between planets and gas/debris disks have been well-studied. Almost all of this work has focused on the formation and evolution of isolated planetary systems, and neglect the effect of external influences, such as the gravitational interaction with neighbouring stars. Most stars, however, form in clustered environments that either quickly disperse, or evolve into open clusters. Under these conditions, young planetary systems experience frequent close encounters with other stars, at least during the first 1-10 Myr, which affects planets orbiting at any period range, as well as their debris structures.

  9. From Planetary Mapping to Map Production: Planetary Cartography as integral discipline in Planetary Sciences

    Science.gov (United States)

    Nass, Andrea; van Gasselt, Stephan; Hargitai, Hendrik; Hare, Trent; Manaud, Nicolas; Karachevtseva, Irina; Kersten, Elke; Roatsch, Thomas; Wählisch, Marita; Kereszturi, Akos

    2016-04-01

    Cartography is one of the most important communication channels between users of spatial information and laymen as well as the open public alike. This applies to all known real-world objects located either here on Earth or on any other object in our Solar System. In planetary sciences, however, the main use of cartography resides in a concept called planetary mapping with all its various attached meanings: it can be (1) systematic spacecraft observation from orbit, i.e. the retrieval of physical information, (2) the interpretation of discrete planetary surface units and their abstraction, or it can be (3) planetary cartography sensu strictu, i.e., the technical and artistic creation of map products. As the concept of planetary mapping covers a wide range of different information and knowledge levels, aims associated with the concept of mapping consequently range from a technical and engineering focus to a scientific distillation process. Among others, scientific centers focusing on planetary cartography are the United State Geological Survey (USGS, Flagstaff), the Moscow State University of Geodesy and Cartography (MIIGAiK, Moscow), Eötvös Loránd University (ELTE, Hungary), and the German Aerospace Center (DLR, Berlin). The International Astronomical Union (IAU), the Commission Planetary Cartography within International Cartographic Association (ICA), the Open Geospatial Consortium (OGC), the WG IV/8 Planetary Mapping and Spatial Databases within International Society for Photogrammetry and Remote Sensing (ISPRS) and a range of other institutions contribute on definition frameworks in planetary cartography. Classical cartography is nowadays often (mis-)understood as a tool mainly rather than a scientific discipline and an art of communication. Consequently, concepts of information systems, mapping tools and cartographic frameworks are used interchangeably, and cartographic workflows and visualization of spatial information in thematic maps have often been

  10. NASA’S PLANETARY GEOLOGIC MAPPING PROGRAM: OVERVIEW

    OpenAIRE

    Williams, D. A.

    2016-01-01

    NASA’s Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA’s planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT...

  11. Research on the Propagation Acting of the Equatorial Planetary Waves on the Western Equatorial Pacific Warm Pool Heat

    Institute of Scientific and Technical Information of China (English)

    Shi Qiang; Xu Jianping; Zhu Bokang

    2003-01-01

    Based on the long-term buoy data from the Tropical Atmosphere Ocean ( TAO ) array during the TOGA ( Tropical Ocean and Global Atmosphere) Program (1980-1996), the propagation acting of the Equatorial planetary waves on the Western Equatorial Pacific warm pool heat is analyzed. Results show that the zonal heat transmission in the Western Equatorial Pacific takes palace mainly in the subsurface water and spreads eastwards along the thermocline; while the seasonal westward-spreading heat change structure occurs in the mixed layers in the middle and western Pacific. The standing-form transmission in the western Pacific appears in the thermocline layer, while in the eastern pacific, it exists in the mixed layer as well as in the thermocline layer. The standing-form and eastward-spreading sign of zonal heat transmitting in the upper water is predominant and strong, and the westward sign is weak.The component force of Kelvin Equatorial wave pressure runs through the western and eastern Equatorial pacific, and transmits heat energy eastwards. And the heat transmitted by zonal current component occurs mostly in the western Pacific; The heat transmitted by the component force of Rossby wave pressure mainly appears in the eastern and middle areas of the Pacific, while the zonal current component transmitting occurs mainly in the western Pacific; Mixed-Rossby gravity wave's action on the zonal current is stronger than that of the thermocline layer. In the mean state, the standing wave model of Equatorial Pacific up layer ocean temperature confines the transport of western Pacific warm pool heat to the eastern Pacific. Under abnormal conditions, the standing wave model of Equatorial Pacific up layer ocean temperature weakens, the eastwardly transmitting model enhances, and subsequently the El Ni n o event occurs.

  12. Virtual reality and planetary exploration

    Science.gov (United States)

    McGreevy, Michael W.

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  13. Planetary protection in the framework of the Aurora exploration program

    Science.gov (United States)

    Kminek, G.

    The Aurora Exploration Program will give ESA new responsibilities in the field of planetary protection. Until now, ESA had only limited exposure to planetary protection from its own missions. With the proposed ExoMars and MSR missions, however, ESA will enter the realm of the highest planetary protection categories. As a consequence, the Aurora Exploration Program has initiated a number of activities in the field of planetary protection. The first and most important step was to establish a Planetary Protection Working Group (PPWG) that is advising the Exploration Program Advisory Committee (EPAC) on all matters concerning planetary protection. The main task of the PPWG is to provide recommendations regarding: Planetary protection for robotic missions to Mars; Planetary protection for a potential human mission to Mars; Review/evaluate standards & procedures for planetary protection; Identify research needs in the field of planetary protection. As a result of the PPWG deliberations, a number of activities have been initiated: Evaluation of the Microbial Diversity in SC Facilities; Working paper on legal issues of planetary protection and astrobiology; Feasibility study on a Mars Sample Return Containment Facility; Research activities on sterilization procedures; Training course on planetary protection (May, 2004); Workshop on sterilization techniques (fall 2004). In parallel to the PPWG, the Aurora Exploration Program has established an Ethical Working Group (EWG). This working group will address ethical issues related to astrobiology, planetary protection, and manned interplanetary missions. The recommendations of the working groups and the results of the R&D activities form the basis for defining planetary protection specification for Aurora mission studies, and for proposing modification and new inputs to the COSPAR planetary protection policy. Close cooperation and free exchange of relevant information with the NASA planetary protection program is strongly

  14. International Infrastructure for Planetary Sciences: Universal Planetary Database Development Project 'the International Planetary Data Alliance'

    Science.gov (United States)

    Kasaba, Yasumasa; Crichton, D.; Capria, M. T.; Beebe, R.; Zender, J.

    2009-09-01

    The International Planetary Data Alliance (IPDA), formed under COSPAR in 2008, is a joint international effort to enable global access and exchange of high quality planetary science data, and to establish archive standards that make it easier to share data across international boundaries. In June - July 2009, we held the 4th Steering Committee meeting. Thanks to the many players from several agencies and institutions in the world, we got fruitful results in 6 projects: (1) Inter-operable Planetary Data Access Protocol (PDAP) implementations [led by J. Salgado@ESA], (2) Small bodies interoperability [led by I. Shinohara@JAXA & N. Hirata@U. Aizu], (3) PDAP assessment [led by Y. Yamamoto@JAXA], (4) Architecture and standards definition [led by D. Crichton@NASA], (5) Information model and data dictionary [led by S. Hughes@NASA], and (6) Venus Express Interoperability [led by N. Chanover@NMSU]. The projects demonstrated the feasibility of sharing data and emphasized the importance of developing common data standards to ensure world-wide access to international planetary archives. The Venus Express Interoperability project leveraged standards and technology efforts from both the Planetary Data System (PDS) and IPDA in order to deliver a new capability for data sharing between NASA/PDS and ESA/PSA. This project demonstrated a model and framework for linking compliant planetary archive systems for future international missions. The next step for IPDA, during the 2009-2010 period, will be to work with NASA/PDS to review and participate in an upgrade of its standards to improve both the consistency of the standards to build compliant international archives as well as improve long-term usability of the science data products. This paper presents the achievements and plans, which will be summarized in the paper which will appear in 'Space Research Today' in December 2009.

  15. Desert Research and Technology Studies (DRATS) 2010 Science Operations: Operational Approaches and Lessons Learned for Managing Science during Human Planetary Surface Missions

    Science.gov (United States)

    Eppler, Dean; Adams, Byron; Archer, Doug; Baiden, Greg; Brown, Adrian; Carey, William; Cohen, Barbara; Condit, Chris; Evans, Cindy; Fortezzo, Corey; Garry, Brent; Graff, Trevor; Gruener, John; Heldmann, Jennifer; Hodges, Kip; Horz, Friedrich; Hurtado, Jose; Hynek, Brian; Isaacson, Peter; Juranek, Catherine; Klaus, Kurt; Kring, David; Lanza, Nina; Lederer, Susan; Lofgren, Gary

    2012-01-01

    Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. These activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable, and they allow NASA to evaluate different mission concepts and approaches in an environment less costly and more forgiving than space.The results from the RATS tests allows election of potential operational approaches to planetary surface exploration prior to making commitments to specific flight and mission hardware development. In previous RATS operations, the Science Support Room has operated largely in an advisory role, an approach that was driven by the need to provide a loose science mission framework that would underpin the engineering tests. However, the extensive nature of the traverse operations for 2010 expanded the role of the science operations and tested specific operational approaches. Science mission operations approaches from the Apollo and Mars-Phoenix missions were merged to become the baseline for this test. Six days of traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. Within this framework, the team evaluated integrated science operations management using real-time, tactical science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results during a post-traverse planning shift. During continuous communications, both tactical and strategic teams were employed. On days when communications were reduced to only two communications periods per day, only a strategic team was employed. The Science Operations Team found that, if

  16. Sensitivity of Turbine-Height Wind Speeds to Parameters in Planetary Boundary-Layer and Surface-Layer Schemes in the Weather Research and Forecasting Model

    Science.gov (United States)

    Yang, Ben; Qian, Yun; Berg, Larry K.; Ma, Po-Lun; Wharton, Sonia; Bulaevskaya, Vera; Yan, Huiping; Hou, Zhangshuan; Shaw, William J.

    2017-01-01

    We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor-Yamada-Nakanishi-Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. The parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. The relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.

  17. Sensitivity of Turbine-Height Wind Speeds to Parameters in Planetary Boundary-Layer and Surface-Layer Schemes in the Weather Research and Forecasting Model

    Science.gov (United States)

    Yang, Ben; Qian, Yun; Berg, Larry K.; Ma, Po-Lun; Wharton, Sonia; Bulaevskaya, Vera; Yan, Huiping; Hou, Zhangshuan; Shaw, William J.

    2016-07-01

    We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor-Yamada-Nakanishi-Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. The parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. The relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.

  18. Sensitivity of Turbine-Height Wind Speeds to Parameters in Planetary Boundary-Layer and Surface-Layer Schemes in the Weather Research and Forecasting Model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ben; Qian, Yun; Berg, Larry K.; Ma, Po-Lun; Wharton, Sonia; Bulaevskaya, Vera; Yan, Huiping; Hou, Zhangshuan; Shaw, William J.

    2016-07-21

    We evaluate the sensitivity of simulated turbine-height winds to 26 parameters applied in a planetary boundary layer (PBL) scheme and a surface layer scheme of the Weather Research and Forecasting (WRF) model over an area of complex terrain during the Columbia Basin Wind Energy Study. An efficient sampling algorithm and a generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of modeled turbine-height winds. The results indicate that most of the variability in the ensemble simulations is contributed by parameters related to the dissipation of the turbulence kinetic energy (TKE), Prandtl number, turbulence length scales, surface roughness, and the von Kármán constant. The relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability. The parameter associated with the TKE dissipation rate is found to be the most important one, and a larger dissipation rate can produce larger hub-height winds. A larger Prandtl number results in weaker nighttime winds. Increasing surface roughness reduces the frequencies of both extremely weak and strong winds, implying a reduction in the variability of the wind speed. All of the above parameters can significantly affect the vertical profiles of wind speed, the altitude of the low-level jet and the magnitude of the wind shear strength. The wind direction is found to be modulated by the same subset of influential parameters. Remainder of abstract is in attachment.

  19. Planetary Data System (PDS) Strategic Roadmap

    Science.gov (United States)

    Law, Emily; McNutt, Ralph; Crichton, Daniel J.; Morgan, Tom

    2016-07-01

    The Planetary Data System (PDS) archives and distributes scientific data from NASA planetary missions, astronomical observations, and laboratory measurements. NASA's Science Mission Directorate (SMD) sponsors the PDS. Its purpose is to ensure the long-term usability of NASA data and to stimulate advanced research. The Planetary Science Division (PSD) within the SMD at NASA Headquarters has directed the PDS to set up a Roadmap team to formulate a PDS Roadmap for the period 2017-2026. The purpose of this activity is to provide a forecast of both the rapidly changing Information Technology (IT) environment and the changing expectations of the planetary science communities with respect to Planetary Data archives including, specifically, increasing assessability to all planetary data. The Roadmap team will also identify potential actions that could increase interoperability with other archive and curation elements within NASA and with the archives of other National Space Agencies. The Roadmap team will assess the current state of the PDS and report their findings to the PSD Director by April 15, 2017. This presentation will give an update of this roadmap activity and serve as an opportunity to engage the planetary community at large to provide input to the Roadmap.

  20. Solar Variability and Planetary Climates

    CERN Document Server

    Calisesi, Y; Gray, L; Langen, J; Lockwood, M

    2007-01-01

    Variations in solar activity, as revealed by variations in the number of sunspots, have been observed since ancient times. To what extent changes in the solar output may affect planetary climates, though, remains today more than ever a subject of controversy. In 2000, the SSSI volume on Solar Variability and Climate reviewed the to-date understanding of the physics of solar variability and of the associated climate response. The present volume on Solar Variability and Planetary Climates provides an overview of recent advances in this field, with particular focus at the Earth's middle and lower atmosphere. The book structure mirrors that of the ISSI workshop held in Bern in June 2005, the collection of invited workshop contributions and of complementary introductory papers synthesizing the current understanding in key research areas such as middle atmospheric processes, stratosphere-troposphere dynamical coupling, tropospheric aerosols chemistry, solar storm influences, solar variability physics, and terrestri...

  1. Planetary mass function and planetary systems

    CERN Document Server

    Dominik, M

    2010-01-01

    With planets orbiting stars, a planetary mass function should not be seen as a low-mass extension of the stellar mass function, but a proper formalism needs to take care of the fact that the statistical properties of planet populations are linked to the properties of their respective host stars. This can be accounted for by describing planet populations by means of a differential planetary mass-radius-orbit function, which together with the fraction of stars with given properties that are orbited by planets and the stellar mass function allows to derive all statistics for any considered sample. These fundamental functions provide a framework for comparing statistics that result from different observing techniques and campaigns which all have their very specific selection procedures and detection efficiencies. Moreover, recent results both from gravitational microlensing campaigns and radial-velocity surveys of stars indicate that planets tend to cluster in systems rather than being the lonely child of their r...

  2. Using Planetary Nebulae to Teach Physics

    Science.gov (United States)

    Kwitter, Karen B.

    2011-05-01

    We have developed an interactive website, "Gallery of Planetary Nebula Spectra," (www.williams.edu/Astronomy/research/PN/nebulae/) that contains high-quality optical-to-near-infrared spectra, atlas information, and bibliographic references for more than 160 planetary nebulae that we have observed in the Milky Way Galaxy. To make the material more accessible to students, I have created three undergraduate-level exercises that explore physics-related aspects of planetary nebulae. "Emission Lines and Central Star Temperature” uses the presence or absence of emission lines from species with different ionization potentials to rank the temperatures of the exciting stars in a selection of nebulae. "Interstellar Reddening” uses the observed Balmer decrement in a sample of planetary nebulae at different Galactic latitudes to infer the distribution of interstellar dust in the Milky Way. Finally, "Determining the Gas Density in Planetary Nebulae,” which I will focus on here, uses the observed intensity ratio of the 6717 Å and 6731 Å emission lines from singly ionized sulfur to determine the electron density in the nebular gas. These exercises demonstrate that planetary nebula spectra are useful real-world examples illustrating a variety of physical principles, including the behavior of blackbodies, wavelength-dependent particle scattering, recombination-line ratios, atomic physics, and statistical mechanics.

  3. Bibliography of scientific publications and presentations relating to planetary quarantine: 1966 - 1971

    Science.gov (United States)

    Bradley, F. D.; Nadel, M. R.

    1973-01-01

    A bibliography, which is a compilation of citations relating to planetary quarantine, previously listed in similar publications since 1967, is presented to provide a reference for reviewing planetary quarantine research and development.

  4. Planetary Geologic Mapping Handbook - 2010. Appendix

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  5. Foundations of planetary quarantine.

    Science.gov (United States)

    Hall, L. B.; Lyle, R. G.

    1971-01-01

    Discussion of some of the problems in microbiology and engineering involved in the implementation of planetary quarantine. It is shown that the solutions require new knowledge in both disciplines for success at low cost in terms of both monetary outlay and man's further exploration of the planets. A related problem exists in that engineers are not accustomed to the wide variation of biological data and microbiologists must learn to work and think in more exact terms. Those responsible for formulating or influencing national and international policies must walk a tightrope with delicate balance between unnecessarily stringent requirements for planetary quarantine on the one hand and prevention of contamination on the other. The success of planetary quarantine measures can be assured only by rigorous measures, each checked, rechecked, and triple-checked to make sure that no errors have been made and that no factor has been overlooked.

  6. Airships for Planetary Exploration

    Science.gov (United States)

    Colozza, Anthony

    2004-01-01

    The feasibility of utilizing an airship for planetary atmospheric exploration was assessed. The environmental conditions of the planets and moons within our solar system were evaluated to determine their applicability for airship flight. A station-keeping mission of 50 days in length was used as the baseline mission. Airship sizing was performed utilizing both solar power and isotope power to meet the baseline mission goal at the selected planetary location. The results show that an isotope-powered airship is feasible within the lower atmosphere of Venus and Saturn s moon Titan.

  7. Planetary Simulation Chambers bring Mars to laboratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Mateo-Marti, E.

    2016-07-01

    Although space missions provide fundamental and unique knowledge for planetary exploration, they are always costly and extremely time-consuming. Due to the obvious technical and economical limitations of in-situ planetary exploration, laboratory simulations are among the most feasible research options for making advances in planetary exploration. Therefore, laboratory simulations of planetary environments are a necessary and complementary option to expensive space missions. Simulation chambers are economical, more versatile, and allow for a higher number of experiments than space missions. Laboratory-based facilities are able to mimic the conditions found in the atmospheres and on the surfaces of a majority of planetary objects. Number of relevant applications in Mars planetary exploration will be described in order to provide an understanding about the potential and flexibility of planetary simulation chambers systems: mainly, stability and presence of certain minerals on Mars surface; and microorganisms potential habitability under planetary environmental conditions would be studied. Therefore, simulation chambers will be a promising tools and necessary platform to design future planetary space mission and to validate in-situ measurements from orbital or rover observations. (Author)

  8. Technology for NASA's Planetary Science Vision 2050.

    Science.gov (United States)

    Lakew, B.; Amato, D.; Freeman, A.; Falker, J.; Turtle, Elizabeth; Green, J.; Mackwell, S.; Daou, D.

    2017-01-01

    NASAs Planetary Science Division (PSD) initiated and sponsored a very successful community Workshop held from Feb. 27 to Mar. 1, 2017 at NASA Headquarters. The purpose of the Workshop was to develop a vision of planetary science research and exploration for the next three decades until 2050. This abstract summarizes some of the salient technology needs discussed during the three-day workshop and at a technology panel on the final day. It is not meant to be a final report on technology to achieve the science vision for 2050.

  9. Planetary polarization nephelometer

    NARCIS (Netherlands)

    Banfield, D.; Dissly, R.; Mishchenko, M.; Muñoz, O.; Roos-Serote, M.; Stam, D.M.; Volten, H.; Wilson, A.

    2004-01-01

    We have proposed to develop a polarization nephelometer for use on future planetary descent probes. It will measure both the scattered intensity and polarization phase functions of the aerosols it encounters descending through an atmosphere. These measurements will be taken at two wavelengths

  10. The planetary scientist's companion

    CERN Document Server

    Lodders, Katharina

    1998-01-01

    A comprehensive and practical book of facts and data about the Sun, planets, asteroids, comets, meteorites, the Kuiper belt and Centaur objects in our solar system. Also covered are properties of nearby stars, the interstellar medium, and extra-solar planetary systems.

  11. Planetary polarization nephelometer

    NARCIS (Netherlands)

    Banfield, D.; Dissly, R.; Mishchenko, M.; Muñoz, O.; Roos-Serote, M.; Stam, D.M.; Volten, H.; Wilson, A.

    2004-01-01

    We have proposed to develop a polarization nephelometer for use on future planetary descent probes. It will measure both the scattered intensity and polarization phase functions of the aerosols it encounters descending through an atmosphere. These measurements will be taken at two wavelengths separa

  12. Catalogues of planetary nebulae.

    Science.gov (United States)

    Acker, A.

    Firstly, the general requirements concerning catalogues are studied for planetary nebulae, in particular concerning the objects to be included in a catalogue of PN, their denominations, followed by reflexions about the afterlife and comuterized versions of a catalogue. Then, the basic elements constituting a catalogue of PN are analyzed, and the available data are looked at each time.

  13. Planetary ring systems

    CERN Document Server

    Miner, Ellis D; Cuzzi, Jeffrey N

    2007-01-01

    This is the most comprehensive and up-to-date book on the topic of planetary rings systems yet written. The book is written in a style that is easily accessible to the interested non expert. Each chapter includes notes, references, figures and tables.

  14. Planetary rings - Theory

    Science.gov (United States)

    Borderies, Nicole

    1989-01-01

    Theoretical models of planetary-ring dynamics are examined in a brief analytical review. The mathematical description of streamlines and streamline interactions is outlined; the redistribution of angular momentum due to collisions between particles is explained; and problems in the modeling of broad, narrow, and arc rings are discussed.

  15. 一种新型行星轮系机构的研究%Research on a New Planetary Gear Train Mechanism

    Institute of Scientific and Technical Information of China (English)

    俞高红; 俞腾飞; 叶秉良; 贾德宝; 王林伟; 胡海军

    2013-01-01

    分析现有行星轮系机构,提出一种新型的基于偏心圆-不完全非圆齿轮间歇传动行星轮系机构,在一个工作周期内,实现行星轮相对行星架作非匀速间歇转动.介绍该机构的工作原理和运动学特性,建立行星轮系机构模型.开发该行星轮系机构的计算机辅助分析软件,通过人机交互方式得出一组满足非匀速间歇传动的结构参数.基于该参数对该行星轮系机构进行设计及试验,并将该行星轮系机构成功应用于穴盘苗取苗机构的创新设计,并进行取苗试验,从而验证了该行星轮系机构理论模型的正确性和可行性.%A new intermittent drive transfer mechanism of planetary gear train with eccentric circle and incomplete non-circular gear is designed on the basis of the analysis of recent advances.In one work period,non-uniform intermittent rotation of planet gear relative to planet carrier is achieved.Work principle and structural feature of the mechanism are introduced,kinematics model is established.The software of computer-aided analysis for this intermittent drive transfer mechanism of planetary gear train is developed.By human-computer conversation,structural parameters are carried out,which can meet the demand of driving.Based on these parameters,design and test of this intermittent drive transfer mechanism of planetary gear train are carried out.The mechanism has been successfully used in creation design of vegetable plug seedling pick-up mechanism,and experimented with transplanting seedling.The correct and feasible of theoretical model of planetary gear train mechanism are verified.

  16. Teaching, learning, and planetary exploration

    Science.gov (United States)

    Brown, Robert A.

    1992-01-01

    The progress accomplished in the first five months of the three-year grant period of Teaching, Learning, and Planetary Exploration is presented. The objectives of this project are to discover new education products and services based on space science, particularly planetary exploration. An Exploration in Education is the umbrella name for the education projects as they are seen by teachers and the interested public. As described in the proposal, our approach consists of: (1) increasing practical understanding of the potential role and capabilities of the research community to contribute to basic education using new discoveries; (2) developing an intellectual framework for these contributions by supplying criteria and templates for the teacher's stories; (3) attracting astronomers, engineers, and technical staff to the project and helping them form productive education partnerships for the future, (4) exploring relevant technologies and networks for authoring and communicating the teacher's stories; (5) enlisting the participation of potential user's of the teacher's stories in defining the products; (6) actually producing and delivering many educationally useful teacher's stories; and (7) reporting the pilot study results with critical evaluation. Technical progress was made by assembling our electronic publishing stations, designing electronic publications based on space science, and developing distribution approaches for electronic products. Progress was made addressing critical issues by developing policies and procedures for securing intellectual property rights and assembling a focus group of teachers to test our ideas and assure the quality of our products. The following useful materials are being produced: the TOPS report; three electronic 'PictureBooks'; one 'ElectronicArticle'; three 'ElectronicReports'; ten 'PrinterPosters'; and the 'FaxForum' with an initial complement of printed materials. We have coordinated with planetary scientists and astronomers

  17. Summary of the Third International Planetary Dunes Workshop: remote sensing and image analysis of planetary dunes

    Science.gov (United States)

    Fenton, Lori K.; Hayward, Rosalyn K.; Horgan, Briony H.N.; Rubin, David M.; Titus, Timothy N.; Bishop, Mark A.; Burr, Devon M.; Chojnacki, Matthew; Dinwiddie, Cynthia L.; Kerber, Laura; Gall, Alice Le; Michaels, Timothy I.; Neakrase, Lynn D.V.; Newman, Claire E.; Tirsch, Daniela; Yizhaq, Hezi; Zimbelman, James R.

    2013-01-01

    The Third International Planetary Dunes Workshop took place in Flagstaff, AZ, USA during June 12–15, 2012. This meeting brought together a diverse group of researchers to discuss recent advances in terrestrial and planetary research on aeolian bedforms. The workshop included two and a half days of oral and poster presentations, as well as one formal (and one informal) full-day field trip. Similar to its predecessors, the presented work provided new insight on the morphology, dynamics, composition, and origin of aeolian bedforms on Venus, Earth, Mars, and Titan, with some intriguing speculation about potential aeolian processes on Triton (a satellite of Neptune) and Pluto. Major advancements since the previous International Planetary Dunes Workshop include the introduction of several new data analysis and numerical tools and utilization of low-cost field instruments (most notably the time-lapse camera). Most presentations represented advancement towards research priorities identified in both of the prior two workshops, although some previously recommended research approaches were not discussed. In addition, this workshop provided a forum for participants to discuss the uncertain future of the Planetary Aeolian Laboratory; subsequent actions taken as a result of the decisions made during the workshop may lead to an expansion of funding opportunities to use the facilities, as well as other improvements. The interactions during this workshop contributed to the success of the Third International Planetary Dunes Workshop, further developing our understanding of aeolian processes on the aeolian worlds of the Solar System.

  18. 行星齿轮式离合器可行性研究%Research on Feasibility of Planetary Gear Type Clutch

    Institute of Scientific and Technical Information of China (English)

    海争平; 杨志红

    2011-01-01

    Clutch is mainly to realize disengagement and engagement of driving force. The characteristics of planetary gear set: if one of components (sun gear, planet carrier and gear ring) is fixed, transmission of power is fixed; if three components are all released, driving force can not be transmitted.The above is the process of disengagement and engagement of driving force. This paper analyzes the feasibility of planetary gear set as clutch from the perspective of design.%离合器主要的功能是实现动力的分离和结合.行星齿轮组的特性是:如果将行星齿轮的三元件(太阳轮、行星架和齿圈)中某一个固定,动力传递固定;将三元件全部松开,动力不能传递,也就是动力分离和结合的过程.本文从设计角度分析采用行星齿轮组作为离合器机构的可行性.

  19. Research on Design Technology of the Planetary Gear System for Open Rotor Engine%开式转子发动机齿轮传动系统设计技术研究

    Institute of Scientific and Technical Information of China (English)

    侯明曦; 信琦; 王飞鸣

    2013-01-01

      等速对转行星齿轮传动系统是对转风扇开式转子发动机的关键技术。与齿轮驱动单级风扇(GTF)发动机的行星齿轮传动系统相比较,该系统的结构更为复杂,工作条件更恶劣。本文以对转风扇开式转子发动机齿轮传动系统概念设计为基础,开展了行星齿轮传动系统初步设计、齿轮疲劳强度分析、行星轴承寿命分析和传动系统润滑设计技术研究,为开式转子发动机的发展提供参考。%As the key technology of the open rotor engine with counter-rotating fans, the planetary gear system with the same counter-rotating speeds owns more complicated conifguration and bears poorer working environment compared with the single fan of geared turbofan engine. Based on the concept design of gear driven system for the open rotor engine with counter-rotating fans, the preliminary design of planetary gear system, gear tooth strength analysis, planetary bearing life analysis and lubrication design technology research were accomplished in this paper, which contribute to the development and experience accumulation of the open rotor engine.

  20. The Planetary Archive

    Science.gov (United States)

    Penteado, Paulo F.; Trilling, David; Szalay, Alexander; Budavári, Tamás; Fuentes, César

    2014-11-01

    We are building the first system that will allow efficient data mining in the astronomical archives for observations of Solar System Bodies. While the Virtual Observatory has enabled data-intensive research making use of large collections of observations across multiple archives, Planetary Science has largely been denied this opportunity: most astronomical data services are built based on sky positions, and moving objects are often filtered out.To identify serendipitous observations of Solar System objects, we ingest the archive metadata. The coverage of each image in an archive is a volume in a 3D space (RA,Dec,time), which we can represent efficiently through a hierarchical triangular mesh (HTM) for the spatial dimensions, plus a contiguous time interval. In this space, an asteroid occupies a curve, which we determine integrating its orbit into the past. Thus when an asteroid trajectory intercepts the volume of an archived image, we have a possible observation of that body. Our pipeline then looks in the archive's catalog for a source with the corresponding coordinates, to retrieve its photometry. All these matches are stored into a database, which can be queried by object identifier.This database consists of archived observations of known Solar System objects. This means that it grows not only from the ingestion of new images, but also from the growth in the number of known objects. As new bodies are discovered, our pipeline can find archived observations where they could have been recorded, providing colors for these newly-found objects. This growth becomes more relevant with the new generation of wide-field surveys, particularly LSST.We also present one use case of our prototype archive: after ingesting the metadata for SDSS, 2MASS and GALEX, we were able to identify serendipitous observations of Solar System bodies in these 3 archives. Cross-matching these occurrences provided us with colors from the UV to the IR, a much wider spectral range than that

  1. Gallery of Planetary Nebula Spectra

    CERN Document Server

    Kwitter, K B; Kwitter, Karen B.; Henry, Richard B.C.

    2006-01-01

    We present the Gallery of Planetary Nebula Spectra now available at http://oitwilliams.edu/nebulae. The website offers high-quality, moderate resolution (~7-10 A FWHM) spectra of 128 Galactic planetary nebulae from 3600-9600 A, obtained by Kwitter, Henry, and colleagues with the Goldcam spectrograph at the KPNO 2.1-m or with the RC spectrograph at the CTIO 1.5-m. The master PN table contains atlas data and an image link. A selected object's spectrum is displayed in a zoomable window; line identification templates are provided. In addition to the spectra themselves, the website also contains a brief discussion of PNe as astronomical objects and as contributors to our understanding of stellar evolution. We envision that this website, which concentrates a large amount of data in one place, will be of interest to a variety of users: researchers might need to check the spectrum of a particular object of interest; the non-specialist astronomer might simply be interested in perusing such a collection of spectra; and...

  2. Research on Simulation of Contact Force of Fault Planetary Gear Train%故障行星轮系接触力仿真研究∗

    Institute of Scientific and Technical Information of China (English)

    向玲; 陈涛

    2015-01-01

    In order to obtain the changing pattern of contact force of fault planetary gear train, pro/E and ADAMS were used to build the modal of fault planetary gear train and the computation method for contact force based on Hertz theory was also introduced, with the dynamic modal, the contact force and the frequen-cy spectrum of gear meshing were simulated. The simulation results show that the contact force of fault plan-etary gear train contains significant cyclical impact in time domain graph and obvious modulation phenome-non. In frequency domain, not only the failure frequency is found, but also fault characteristic that failure frequency stands for side band in meshing frequency and the frequency doubling is appeared. At the same time, As also can be seen from the frequency domain:the carrier wave is meshing frequency and the modu-lation wave is revolution frequency of the planet wheel.%为获得故障行星轮系啮合传动时接触力的变化规律,运用pro/E与ADAMS建立故障行星轮系的动力学模型,结合Hertz接触理论的接触力计算方法,对故障行星轮系啮合传动时的接触力的变化规律及其频谱特征进行仿真研究。仿真结果表明:故障行星轮系的接触力在时域上具有显著的周期性冲击和明显的调制现象。在频域上,不仅出现了故障频率,而且在啮合频率及其倍频处出现了以故障频率为边频带的故障特征。同时,从频域中还可以看出:载波频率为啮合频率,调制频率为行星轮的公转频率。

  3. Strongly Interacting Planetary Systems

    Science.gov (United States)

    Ford, Eric

    2017-01-01

    Both ground-based Doppler surveys and NASA's Kepler mission have discovered a diversity of planetary system architectures that challenge theories of planet formation. Systems of tightly-packed or near-resonant planets are particularly useful for constraining theories of orbital migration and the excitation of orbital eccentricities and inclinations. In particular, transit timing variations (TTVs) provide a powerful tool to characterize the masses and orbits of dozens of small planets, including many planets at orbital periods beyond the reach of both current Doppler surveys and photoevaporation-induced atmospheric loss. Dynamical modeling of these systems has identified some ``supper-puffy'' planets, i.e., low mass planets with surprisingly large radii and low densities. I will describe a few particularly interesting planetary systems and discuss the implications for the formation of planets ranging from gaseous super-Earth-size planets to rocky planets the size of Mars.

  4. Forming different planetary systems

    Institute of Scientific and Technical Information of China (English)

    Ji-Lin Zhou; Ji-Wei Xie; Hui-Gen Liu; Hui Zhang; Yi-Sui Sun

    2012-01-01

    With the increasing number of detected exoplanet samples,the statistical properties of planetary systems have become much clearer.In this review,we summarize the major statistical results that have been revealed mainly by radial velocity and transiting observations,and try to interpret them within the scope of the classical core-accretion scenario of planet formation,especially in the formation of different orbital architectures for planetary systems around main sequence stars.Based on the different possible formation routes for different planet systems,we tentatively classify them into three major catalogs:hot Jupiter systems,standard systems and distant giant planet systems.The standard systems can be further categorized into three sub-types under different circumstances:solar-like systems,hot Super-Earth systems,and subgiant planet systems.We also review the theory of planet detection and formation in binary systems as well as planets in star clusters.

  5. Novel Polymer Microfluidics Technology for In Situ Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Los Gatos Research proposes to develop a new polymer based microfluidics technology for NASA planetary science applications. In particular, we will design, build and...

  6. The Role of Planetary Data System Archive Standards in International Planetary Data Archives

    Science.gov (United States)

    Guinness, Edward; Slavney, Susan; Beebe, Reta; Crichton, Daniel

    A major objective of NASA's Planetary Data System (PDS) is to efficiently archive and make accessible digital data produced by NASA's planetary missions, research programs, and data analysis programs. The PDS is comprised of a federation of groups known as nodes, with each node focused on archiving and managing planetary data from a given science discipline. PDS nodes include Atmospheres, Geosciences, Small Bodies (asteroids, comets, and dust), Rings, Planetary Plasma Interactions, and Imaging. There are also support nodes for engineering, radio science, and ancillary data, such as geometry information. The PDS archives include space-borne, ground-based, and laboratory experiment data from several decades of NASA exploration of comets, asteroids, moons, and planets. PDS archives are peer-reviewed, welldocumented, and accessible online via web sites, catalogs, and other user-interfaces that provide search and retrieval capabilities. Current holdings within the PDS online repositories total approximately 50 TB of data. Over the next few years, the PDS is planning for a rapid expansion in the volume of data being delivered to its archives. The archive standards developed by the PDS are crucial elements for producing planetary data archives that are consistent across missions and planetary science disciplines and that yield archives that are useable by the planetary research community. These standards encompass the full range of archiving needs. They include standards for the format of data products and the metadata needed to detail how observations were made. They also specify how data products and ancillary information such as documentation, calibration, and geometric information are packaged into data sets. The PDS standards are documented in its Planetary Science Data Dictionary and in its Standards Reference Document and Archive Preparation Guide. The PDS standards are being used to design and implement data archives for current and future NASA planetary missions

  7. ESA Planetary Science Archive

    Science.gov (United States)

    Arviset, C.; Dowson, J.; Ortiz, I.; Parrilla, E.; Salgado, J.; Zender, J.

    2007-10-01

    The (ESA Planetary Science Archive {http://www.rssd.esa.int/psa} (PSA) hosts all the data from ESA's planetary missions into a single archive. It currently contains data from the Giotto, Mars Express, Rosetta, and Huygens spacecraft, some ground-based observations, and will host data from the Smart-1, Venus Express, and BepiColombo spacecraft in the future. Based on the NASA Planetary Data Systems (PDS) data dictionary, all datasets provided by the instrument teams are scientifically peer-reviewed and technically validated by software before being ingested into the Archive. Based on a modular and flexible architecture, the PSA offers a classical user-interface based on input fields, with powerful query and display possibilities. Data can be downloaded directly or through a more detailed shopping basket. Furthermore, a map-based interface is available to access Mars Express data without requiring any knowledge of the mission. Interoperability between the ESA PSA and the NASA PDS archives is also in progress, re-using concepts and experience gained from existing IVOA protocols. Prototypes are being developed to provide functionalities like GoogleMars, allowing access to both ESA PSA and NASA PDS data.

  8. Galactic planetary science.

    Science.gov (United States)

    Tinetti, Giovanna

    2014-04-28

    Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. Whether this fact is the result of a selection bias induced by the kind of techniques used to discover new planets--mainly radial velocity and transit--or simply the proof that the Solar System is a rarity in the Milky Way, we do not know yet. What is clear, though, is that the Solar System has failed to be the paradigm not only in our Galaxy but even 'just' in the solar neighbourhood. This finding, although unsettling, forces us to reconsider our knowledge of planets under a different light and perhaps question a few of the theoretical pillars on which we base our current 'understanding'. The next decade will be critical to advance in what we should perhaps call Galactic planetary science. In this paper, I review highlights and pitfalls of our current knowledge of this topic and elaborate on how this knowledge might arguably evolve in the next decade. More critically, I identify what should be the mandatory scientific and technical steps to be taken in this fascinating journey of remote exploration of planets in our Galaxy.

  9. Research on the gear root dynamic stress of the planetary gear transmission%行星齿轮传动齿根动应力计算

    Institute of Scientific and Technical Information of China (English)

    蒋立冬; 李应生; 朱振荣; 陈营利

    2012-01-01

    The workload is big to calculate the gear root stress of the planetary gear transmission because of the big contact ratio, so the gear root dynamic stress was studied in the paper. At the same time, the sun gear in the differential stage of the power dividing planetary transmission was taken an example, the finite element model, meshing and loading method were analyzed in detail. File of load was formed by use of APDL language on Ansys software. It was used for controlling loading on locations of several contact lines in a meshing cycle. Method of calculation in the paper can obtain the gear root dynamic stress on a tooth meshing process precisely and quickly.%针对功率分流行星齿轮传动齿轮重合度大,齿根应力计算工作量大的问题,对齿根动应力的计算问题进行了详细的研究.并以功率分流差动级太阳轮为例,对模型的建立方法、网格的划分方法、载荷的施加方法进行了详细的分析.利用Ansys中的APDL语言形成载荷文件,来控制在1个啮合周期内若干对接触线位置上载荷的施加.本文的计算方法可以精确、快速地得到1个齿在啮合过程中齿根的动应力.

  10. Quasi-Stationary Planetary Wave in the MLT During Summer

    Science.gov (United States)

    Stray, N. H.; Espy, P. J.; Hibbins, R. E.

    2014-12-01

    A network of 8 northern hemispheric SuperDARN radars (51-66N) has been used to study planetary wave activity in the mesosphere lower thermosphere (MLT). The meridional meteor winds from the longitudinally spaced SuperDARN network are used to derive the planetary wave activity with zonal wave numbers 1 and 2 in the polar summer MLT (~95 km). In addition planetary wave amplitudes throughout the middle atmosphere have been retrieved from the meridional wind data of the Modern-Era Retrospective Analysis for Research and Application (MERRA) of the NASA Global Modelling and Assimilation Office. The fitting technique used to derive the planetary wave amplitudes will be presented, and it will be shown that there are strong quasi-stationary longitudinal differences in the strength of the meridional wind in the MLT during summer which can be described as a quasi-stationary planetary wave number 1. The ground-based network allows this planetary wave to be separated from tidal perturbations that are aliased in satellite observations, and the combination of these two data sets provides evidence that the mesopause planetary wave activity is produced in situ in the MLT rather than propagating upwards from lower altitudes. Finally, the impact of this planetary wave feature on Polar Mesospheric Clouds (PMC) and Polar Mesospheric Summer Echoes (PMSE) will be discussed.

  11. Lightning detection in planetary atmospheres

    CERN Document Server

    Aplin, Karen L

    2016-01-01

    Lightning in planetary atmospheres is now a well-established concept. Here we discuss the available detection techniques for, and observations of, planetary lightning by spacecraft, planetary landers and, increasingly, sophisticated terrestrial radio telescopes. Future space missions carrying lightning-related instrumentation are also summarised, specifically the European ExoMars mission and Japanese Akatsuki mission to Venus, which could both yield lightning observations in 2016.

  12. Universal planetary tectonics (supertectonics)

    Science.gov (United States)

    Kochemasov, G. G.

    2009-04-01

    Universal planetary tectonics (supertectonics) G. Kochemasov IGEM of the Russian Academy of Sciences, Moscow, Russia, kochem.36@mail.ru The wave planetology [1-3 & others] proceeds from the following: "planetary structures are made by orbits and rotations". A uniform reason makes uniform structures. Inertia-gravity waves arising in planetary bodies due to their movements in Keplerian elliptical orbits with periodically changing accelerations warp these bodies in such way that they acquire polyhedron shapes (after interference of standing waves of four directions). Strong Newtonian gravity makes bodies larger than ~400 to 500 km in diameter globular and polyhedra are rarely seen. Only geomorphologic, geologic and geophysical mapping can develop these hidden structures. But small bodies, normally less than ~ 300 to 400 km in diameter, often show parts of the polyhedra, rarely fully developed forms (the asteroid Steins and satellite Amalthea present rather perfect forms of "diamond"). Depending on warping wavelengths (they make harmonics) various Plato's figures superimposed on each other can be distinguished. The fundamental wave 1 produces a tetrahedron, intrinsically dichotomic figure in which a vertex (contraction) always is opposed to a face (expansion). From the recent examples the best is the saturnian northern hexagon (a face) opposed to the southern hurricane (a vertex). The first overtone wave 2 is responsible for creation of structural octahedra. Whole ‘diamonds" and their parts are known [4, 5]. Other overtones produce less developed (because of smaller wave amplitudes) planetary shapes complicating main forms. Thus, the first common structural peculiarity of planetary bodies is their polyhedron nature. Not less important is the second common structural peculiarity. As all globular or smaller more or less isometric bodies rotate, they have an angular momentum. It is inevitably different in tropic and extra-tropic belts having uneven radii or distances to

  13. An ethical approach of planetary protection

    Science.gov (United States)

    Arnould, J.; Debus, A.

    Since the beginning of Solar System Exploration a lot of spacecraft have been sent in the Solar System and one of the main goals of such missions on Mars particularly is the search for eventual extraterrestrial life forms It is known that some terrestrial entities are able to survive the cruise during space exploration missions and it cannot be excluded that they can contaminate other planetary environments forward contamination At another level possible extraterrestrial life forms are unknown and their ability to contaminate the Earth s biosphere back contamination in the frame of sample return missions for example remains also unknown The article IX of the OUTER SPACE TREATY London Washington January 27 1967 ratified by pratically all spacefaring nations requires to preserve Solar system bodies and Earth from contamination All Nations part to this Treaty have to prevent forward mainly for scientific reasons and backward contamination during missions exploring our Solar System Consequently the United Nations UN-COPUOS has delegated the COSPAR Committee of Space Research to take charge of planetary protection and at present all spacefaring nations have to comply with COSPAR policy and consequently with COSPAR planetary protection recommendations It could be useful to review the planetary protection recommendations in the light of an ethical approach Shall other environments Mars one for example be protected only for scientific reason allowing its biological contamination in proportion compatible with exobiological

  14. Robotic Planetary Drill Tests

    Science.gov (United States)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  15. DESIGN FOR A BI-PLANETARY GEAR TRAIN

    Directory of Open Access Journals (Sweden)

    Józef DREWNIAK

    2016-06-01

    Full Text Available The article presents the design for a bi-planetary gear train. The project description is supplemented with calculations of kinematics, statics and meshing efficiency of the gear wheels included in the gear train. Excluded are calculations of strength and geometry of gears, shaft and rolling bearing, since they are similar to classical calculations for planetary gears. An assembly drawing in 2D and assembly drawings in 3D of the designed bi-planetary gear train are also shown. This gear train will form the main element of the research in hand.

  16. Planetary Ices Attenuation Properties

    Science.gov (United States)

    McCarthy, Christine; Castillo-Rogez, Julie C.

    In this chapter, we review the topic of energy dissipation in the context of icy satellites experiencing tidal forcing. We describe the physics of mechanical dissipation, also known as attenuation, in polycrystalline ice and discuss the history of laboratory methods used to measure and understand it. Because many factors - such as microstructure, composition and defect state - can influence rheological behavior, we review what is known about the mechanisms responsible for attenuation in ice and what can be inferred from the properties of rocks, metals and ceramics. Since attenuation measured in the laboratory must be carefully scaled to geologic time and to planetary conditions in order to provide realistic extrapolation, we discuss various mechanical models that have been used, with varying degrees of success, to describe attenuation as a function of forcing frequency and temperature. We review the literature in which these models have been used to describe dissipation in the moons of Jupiter and Saturn. Finally, we address gaps in our present knowledge of planetary ice attenuation and provide suggestions for future inquiry.

  17. Galactic planetary science

    CERN Document Server

    Tinetti, Giovanna

    2014-01-01

    Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. Whether this fact is the result of a selection bias induced by the kind of techniques used to discover new planets -mainly radial velocity and transit - or simply the proof that the Solar System is a rarity in the Milky Way, we do not know yet. What is clear, though, is that the Solar System has failed to be the paradigm not only in our Galaxy but even 'just' in the solar neighbourhood. This finding, although unsettling, forces us to reconsider our knowledge of planets under a different light and perhaps question a few of the theoretical pillars on which we base our current 'understanding'. The next...

  18. 移栽机取苗机构行星轮系设计与动力学研究%Dynamic Simulation Research of the Planetary Gear of the Seeding Transplanting Mechanism

    Institute of Scientific and Technical Information of China (English)

    赵宏政; 曹卫彬; 唐海洋; 杨萌; 王崧浩

    2017-01-01

    This paper took planetary gear of the seeding transplanting mechanism as the research object. Firstly, a three-dimensional model of the planetary gear transmission system was built by solid works software,and the model was imported to automatic dynamic analysis of mechanical system,or ADAMS software for simulation,which was used to analyze the change regularity and spectrum characteristics of mesh forces in x direction and y direction when gear drove. After analy-zing the basic consistency of the simulation results and the test results showed the improved design is correct and reasona-ble. Virtual prototype technology is beneficial to improving the design level of planetary gear train of pick-up mechanism, and providing technical support for the optimal design of the transmission system.%以移栽机取苗机构的行星齿轮为研究对象,基于三维造型设计软件 SolidWorks 设计了取苗机构行星齿轮传动系统的实体模型,并将其导入机械系统动力学仿真软件 ADAMS 中,设定工作参数后进行刚体动力学分析,分析行星齿轮传动时的齿轮x 方向接触力和y 方向接触力的变化规律及其频谱特征。经分析,仿真结果与理论值相吻合,验证了仿真的正确性。采用虚拟样机技术可提高取苗机构行星轮系的设计水平,也为后续的传动系统的优化设计提供了一种解决方案。

  19. Performance evaluation of a miniature laser ablation time-of-flight mass spectrometer designed for in situ investigations in planetary space research.

    Science.gov (United States)

    Riedo, A; Bieler, A; Neuland, M; Tulej, M; Wurz, P

    2013-01-01

    Key performance features of a miniature laser ablation time-of-flight mass spectrometer designed for in situ investigations of the chemical composition of planetary surfaces are presented. This mass spectrometer is well suited for elemental and isotopic analysis of raw solid materials with high sensitivity and high spatial resolution. In this study, ultraviolet laser radiation with irradiances suitable for ablation (laser ablation studies at infrared wavelengths, several improvements to the experimental setup have been made, which allow accurate control over the experimental conditions and good reproducibility of measurements. Current performance evaluations indicate significant improvements to several instrumental figures of merit. Calibration of the mass scale is performed within a mass accuracy (Δm/m) in the range of 100 ppm, and a typical mass resolution (m/Δm) ~600 is achieved at the lead mass peaks. At lower laser irradiances, the mass resolution is better, about (m/Δm) ~900 for lead, and limited by the laser pulse duration of 3 ns. The effective dynamic range of the instrument was enhanced from about 6 decades determined in previous study up to more than 8 decades at present. Current studies show high sensitivity in detection of both metallic and non-metallic elements. Their abundance down to tens of ppb can be measured together with their isotopic patterns. Due to strict control of the experimental parameters, e.g. laser characteristics, ion-optical parameters and sample position, by computer control, measurements can be performed with high reproducibility.

  20. Lay and Expert Perceptions of Planetary Protection

    Science.gov (United States)

    Race, Margaret S.; MacGregor, Donald G.; Slovic, Paul

    2000-01-01

    As space scientists and engineers plan new missions to Mars and other planets in our solar system, they will face critical questions about the potential for biological contamination of planetary surfaces. In a society that places ever-increasing importance on the role of public involvement in science and technology policy, questions about risks of biological contamination will be examined and debated in the media, and will lead to the formation of public perceptions of planetary-contamination risks. These perceptions will, over time, form an important input to the development of space policy. Previous research in public and expert perceptions of technological risks and hazards has shown that many of the problems faced by risk-management organizations are the result of differing perceptions of risk (and risk management) between the general public and scientific and technical experts. These differences manifest themselves both as disagreements about the definition (and level) of risk associated with a scientific, technological or industrial enterprise, and as distrust about the ability of risk-management organizations (both public and private) to adequately protect people's health and safety. This report presents the results of a set of survey studies designed to reveal perceptions of planetary exploration and protection from a wide range of respondents, including both members of the general public and experts in the life sciences. The potential value of this research lies in what it reveals about perceptions of risk and benefit that could improve risk-management policies and practices. For example, efforts to communicate with the public about Mars sample return missions could benefit from an understanding of the specific concerns that nonscientists have about such a mission by suggesting areas of potential improvement in public education and information. Assessment of both public and expert perceptions of risk can also be used to provide an advanced signal of

  1. Lay and Expert Perceptions of Planetary Protection

    Science.gov (United States)

    Race, Margaret S.; MacGregor, Donald G.; Slovic, Paul

    2000-01-01

    As space scientists and engineers plan new missions to Mars and other planets in our solar system, they will face critical questions about the potential for biological contamination of planetary surfaces. In a society that places ever-increasing importance on the role of public involvement in science and technology policy, questions about risks of biological contamination will be examined and debated in the media, and will lead to the formation of public perceptions of planetary-contamination risks. These perceptions will, over time, form an important input to the development of space policy. Previous research in public and expert perceptions of technological risks and hazards has shown that many of the problems faced by risk-management organizations are the result of differing perceptions of risk (and risk management) between the general public and scientific and technical experts. These differences manifest themselves both as disagreements about the definition (and level) of risk associated with a scientific, technological or industrial enterprise, and as distrust about the ability of risk-management organizations (both public and private) to adequately protect people's health and safety. This report presents the results of a set of survey studies designed to reveal perceptions of planetary exploration and protection from a wide range of respondents, including both members of the general public and experts in the life sciences. The potential value of this research lies in what it reveals about perceptions of risk and benefit that could improve risk-management policies and practices. For example, efforts to communicate with the public about Mars sample return missions could benefit from an understanding of the specific concerns that nonscientists have about such a mission by suggesting areas of potential improvement in public education and information. Assessment of both public and expert perceptions of risk can also be used to provide an advanced signal of

  2. Planetary Doppler Imaging

    Science.gov (United States)

    Murphy, N.; Jefferies, S.; Hart, M.; Hubbard, W. B.; Showman, A. P.; Hernandez, G.; Rudd, L.

    2014-12-01

    Determining the internal structure of the solar system's gas and ice giant planets is key to understanding their formation and evolution (Hubbard et al., 1999, 2002, Guillot 2005), and in turn the formation and evolution of the solar system. While internal structure can be constrained theoretically, measurements of internal density distributions are needed to uncover the details of the deep interior where significant ambiguities exist. To date the interiors of giant planets have been probed by measuring gravitational moments using spacecraft passing close to, or in orbit around the planet. Gravity measurements are effective in determining structure in the outer envelope of a planet, and also probing dynamics (e.g. the Cassini and Juno missions), but are less effective in probing deep structure or the presence of discrete boundaries. A promising technique for overcoming this limitation is planetary seismology (analogous to helioseismology in the solar case), postulated by Vorontsov, 1976. Using trapped pressure waves to probe giant planet interiors allows insight into the density and temperature distribution (via the sound speed) down to the planetary core, and is also sensitive to sharp boundaries, for example at the molecular to metallic hydrogen transition or at the core-envelope interface. Detecting such boundaries is not only important in understanding the overall structure of the planet, but also has implications for our understanding of the basic properties of matter at extreme pressures. Recent Doppler measurements of Jupiter by Gaulme et al (2011) claimed a promising detection of trapped oscillations, while Hedman and Nicholson (2013) have shown that trapped waves in Saturn cause detectable perturbations in Saturn's C ring. Both these papers have fueled interest in using seismology as a tool for studying the solar system's giant planets. To fully exploit planetary seismology as a tool for understanding giant planet structure, measurements need to be made

  3. Distances from Planetary Nebulae

    CERN Document Server

    Ciardullo, R

    2003-01-01

    The [O III] 5007 planetary nebula luminosity function (PNLF) occupies an important place on the extragalactic distance ladder. Since it is the only method that is applicable to all the large galaxies of the Local Supercluster, it is uniquely useful for cross-checking results and linking the Population I and Population II distance scales. We review the physics underlying the method, demonstrate its precision, and illustrate its value by comparing its distances to distances obtained from Cepheids and the Surface Brightness Fluctuation (SBF) method. We use the Cepheid and PNLF distances to 13 galaxies to show that the metallicity dependence of the PNLF cutoff is in excellent agreement with that predicted from theory, and that no additional systematic corrections are needed for either method. However, when we compare the Cepheid-calibrated PNLF distance scale with the Cepheid-calibrated SBF distance scale, we find a significant offset: although the relative distances of both methods are in excellent agreement, th...

  4. Planetary internal structures

    CERN Document Server

    Baraffe, I; Fortney, J; Sotin, C

    2014-01-01

    This chapter reviews the most recent advancements on the topic of terrestrial and giant planet interiors, including Solar System and extrasolar objects. Starting from an observed mass-radius diagram for known planets in the Universe, we will discuss the various types of planets appearing in this diagram and describe internal structures for each type. The review will summarize the status of theoretical and experimental works performed in the field of equation of states (EOS) for materials relevant to planetary interiors and will address the main theoretical and experimental uncertainties and challenges. It will discuss the impact of new EOS on interior structures and bulk composition determination. We will discuss important dynamical processes which strongly impact the interior and evolutionary properties of planets (e.g plate tectonics, semiconvection) and describe non standard models recently suggested for our giant planets. We will address the case of short-period, strongly irradiated exoplanets and critica...

  5. Laser Mass Spectrometry in Planetary Science

    Science.gov (United States)

    Wurz, P.; Whitby, J. A.; Managadze, G. G.

    2009-06-01

    Knowing the chemical, elemental, and isotopic composition of planetary objects allows the study of their origin and evolution within the context of our solar system. Exploration plans in planetary research of several space agencies consider landing spacecraft for future missions. Although there have been successful landers in the past, more landers are foreseen for Mars and its moons, Venus, the jovian moons, and asteroids. Furthermore, a mass spectrometer on a landed spacecraft can assist in the sample selection in a sample-return mission and provide mineralogical context, or identify possible toxic soils on Mars for manned Mars exploration. Given the resources available on landed spacecraft mass spectrometers, as well as any other instrument, have to be highly miniaturised.

  6. Earth-like Habitats in Planetary Systems

    CERN Document Server

    Fritz, Jörg; Kührt, Ekkehard; Morbidelli, Alessandro; Tornow, Carmen; Wünnemann, Kai; Fernandes, Vera A; Grenfell, Lee J; Rauer, Heike; Wagner, Roland; Werner, Stephanie C

    2014-01-01

    Understanding the concept of habitability is related to an evolutionary knowledge of the particular planet-in-question. Additional indications so-called "systemic aspects" of the planetary system as a whole governs a particular planet's claim on habitability. Here we focus on such systemic aspects and discuss their relevance to the formation of an 'Earth-like' habitable planet. We summarize our results obtained by lunar sample work and numerical models within the framework of the Research Alliance "Planetary Evolution and Life". We consider various scenarios which simulate the dynamical evolution of the Solar System and discuss the likelihood of forming an Earth-like world orbiting another star. Our model approach is constrained by observations of the modern Solar System and the knowledge of its history. Results suggest that the long-term presence of terrestrial planets is jeopardized due to gravitational interactions if giant planets are present. But habitability of inner rocky planets may be supported in th...

  7. To See the Unseen: A History of Planetary Radar Astronomy

    Science.gov (United States)

    Butrica, Andrew J.

    1996-01-01

    This book relates the history of planetary radar astronomy from its origins in radar to the present day and secondarily to bring to light that history as a case of 'Big Equipment but not Big Science'. Chapter One sketches the emergence of radar astronomy as an ongoing scientific activity at Jodrell Bank, where radar research revealed that meteors were part of the solar system. The chief Big Science driving early radar astronomy experiments was ionospheric research. Chapter Two links the Cold War and the Space Race to the first radar experiments attempted on planetary targets, while recounting the initial achievements of planetary radar, namely, the refinement of the astronomical unit and the rotational rate and direction of Venus. Chapter Three discusses early attempts to organize radar astronomy and the efforts at MIT's Lincoln Laboratory, in conjunction with Harvard radio astronomers, to acquire antenna time unfettered by military priorities. Here, the chief Big Science influencing the development of planetary radar astronomy was radio astronomy. Chapter Four spotlights the evolution of planetary radar astronomy at the Jet Propulsion Laboratory, a NASA facility, at Cornell University's Arecibo Observatory, and at Jodrell Bank. A congeries of funding from the military, the National Science Foundation, and finally NASA marked that evolution, which culminated in planetary radar astronomy finding a single Big Science patron, NASA. Chapter Five analyzes planetary radar astronomy as a science using the theoretical framework provided by philosopher of science Thomas Kuhn. Chapter Six explores the shift in planetary radar astronomy beginning in the 1970s that resulted from its financial and institutional relationship with NASA Big Science. Chapter Seven addresses the Magellan mission and its relation to the evolution of planetary radar astronomy from a ground-based to a space-based activity. Chapters Eight and Nine discuss the research carried out at ground

  8. Planetary Landscape Geography

    Science.gov (United States)

    Hargitai, H.

    INTRODUCTION Landscape is one of the most often used category in physical ge- ography. The term "landshap" was introduced by Dutch painters in the 15-16th cen- tury. [1] The elements that build up a landscape (or environment) on Earth consists of natural (biogenic and abiogenic - lithologic, atmospheric, hydrologic) and artificial (antropogenic) factors. Landscape is a complex system of these different elements. The same lithology makes different landscapes under different climatic conditions. If the same conditions are present, the same landscape type will appear. Landscapes build up a hierarchic system and cover the whole surface. On Earth, landscapes can be classified and qualified according to their characteristics: relief forms (morphology), and its potential economic value. Aesthetic and subjective parameters can also be considered. Using the data from landers and data from orbiters we can now classify planetary landscapes (these can be used as geologic mapping units as well). By looking at a unknown landscape, we can determine the processes that created it and its development history. This was the case in the Pathfinder/Sojourner panoramas. [2]. DISCUSSION Planetary landscape evolution. We can draw a raw landscape develop- ment history by adding the different landscape building elements to each other. This has a strong connection with the planet's thermal evolution (age of the planet or the present surface materials) and with orbital parameters (distance from the central star, orbit excentricity etc). This way we can build a complex system in which we use differ- ent evolutional stages of lithologic, atmospheric, hydrologic and biogenic conditions which determine the given - Solar System or exoplanetary - landscape. Landscape elements. "Simple" landscapes can be found on asteroids: no linear horizon is present (not differentiated body, only impact structures), no atmosphere (therefore no atmospheric scattering - black sky as part of the landscape) and no

  9. Planetary Magnetic Fields: Planetary Interiors and Habitability W. M. Keck Institute for Space Studies Report

    Science.gov (United States)

    Lazio, T. Joseph; Shkolnik, Evgenya; Hallinan, Gregg

    2017-05-01

    The W. M. Keck Institute for Space Studies (KISS) sponsored the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study to review the state of knowledge of extrasolar planetary magnetic fields and the prospects for their detection.There were multiple motivations for this Study. Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. In turn, these internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these in objects' interiors. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind or an orbiting satellite, a planet's magnetic field can produce intense electron cyclotron masers in its magnetic polar regions. The most well known example of this process in the solar system is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior--all of which will be difficult to determine by other means--as well as improved understanding of the basic planetary dynamo process.We review the findings from the Study, including potential mission concepts that emerged and recent developments toward one of the mission concepts, a space-based radio wavelength array. There was an identification of that radio wavelength observations would likely be key to making significant progress in this field.We acknowledge ideas and advice from the participants in the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study organized by the W. M. Keck

  10. Planetary Protection Constraints For Planetary Exploration and Exobiology

    Science.gov (United States)

    Debus, A.; Bonneville, R.; Viso, M.

    According to the article IX of the OUTER SPACE TREATY (London / Washington January 27., 1967) and in the frame of extraterrestrial missions, it is required to preserve planets and Earth from contamination. For ethical, safety and scientific reasons, the space agencies have to comply with the Outer Space Treaty and to take into account the related planetary protection Cospar recommendations. Planetary protection takes also into account the protection of exobiological science, because the results of life detection experimentations could have impacts on planetary protection regulations. The validation of their results depends strongly of how the samples have been collected, stored and analyzed, and particularly of their biological and organic cleanliness. Any risk of contamination by organic materials, chemical coumpounds and by terrestrial microorganisms must be avoided. A large number of missions is presently scheduled, particularly on Mars, in order to search for life or traces of past life. In the frame of such missions, CNES is building a planetary protection organization in order handle and to take in charge all tasks linked to science and engineering concerned by planetary protection. Taking into account CNES past experience in planetary protection related to the Mars 96 mission, its planned participation in exobiological missions with NASA as well as its works and involvement in Cospar activities, this paper will present the main requirements in order to avoid celestial bodies biological contamination, focussing on Mars and including Earth, and to protect exobiological science.

  11. Planetary cratering mechanics

    Science.gov (United States)

    O'Keefe, John D.; Ahrens, Thomas J.

    1993-09-01

    The objective of this study was to obtain a quantitative understanding of the cratering process over a broad range of conditions. Our approach was to numerically compute the evolution of impact induced flow fields and calculate the time histories of the key measures of crater geometry (e.g., depth, diameter, lip height) for variations in planetary gravity (0 to 109 cm/s2), material strength (0 to 2400 kbar), and impactor radius (0.05 to 5000 km). These results were used to establish the values of the open parameters in the scaling laws of Holsapple and Schmidt (1987). We describe the impact process in terms of four regimes: (1) penetration, (2) inertial, (3) terminal, and (4) relaxation. During the penetration regime, the depth of impactor penetration grows linearly for dimensionless times τ=(Ut/a)5.1, the crater grows at a slower rate until it is arrested by either strength or gravitational forces. In this regime, the increase of crater depth, d, and diameter, D, normalized by projectile radius is given by d/a=1.3 (Ut/a)0.36 and D/a=2.0(Ut/a)0.36. For strength-dominated craters, growth stops at the end of the inertial regime, which occurs at τ=0.33 (Yeff/ρU2)-0.78, where Yeff is the effective planetary crustal strength. The effective strength can be reduced from the ambient strength by fracturing and shear band melting (e.g., formation of pseudo-tachylites). In gravity-dominated craters, growth stops when the gravitational forces dominate over the inertial forces, which occurs at τ=0.92 (ga/U2)-0.61. In the strength and gravity regimes, the maximum depth of penetration is dp/a=0.84 (Y/ρ U2)-0.28 and dp/a=1.2 (ga/U2)-0.22, respectively. The transition from simple bowl-shaped craters to complex-shaped craters occurs when gravity starts to dominate over strength in the cratering process. The diameter for this transition to occur is given by Dt=9.0 Y/ρg, and thus scales as g-1 for planetary surfaces when strength is not strain-rate dependent. This scaling result

  12. Planetary science: Eris under scrutiny

    Science.gov (United States)

    Gulbis, Amanda

    2011-10-01

    A stellar occultation by the dwarf planet Eris provides a new estimate of its size. It also reveals a surprisingly bright planetary surface, which could indicate the relatively recent condensation of a putative atmosphere. See Letter p.493

  13. Magnetic Helicity and Planetary Dynamos

    Science.gov (United States)

    Shebalin, John V.

    2012-01-01

    A model planetary dynamo based on the Boussinesq approximation along with homogeneous boundary conditions is considered. A statistical theory describing a large-scale MHD dynamo is found, in which magnetic helicity is the critical parameter

  14. What characterizes planetary space weather?

    OpenAIRE

    2014-01-01

    International audience; Space weather has become a mature discipline for the Earth space environment. With increasing efforts in space exploration, it is becoming more and more necessary to understand the space environments of bodies other than Earth. This is the background for an emerging aspect of the space weather discipline: planetary space weather. In this article, we explore what characterizes planetary space weather, using some examples throughout the solar system. We consider energy s...

  15. Molecular studies of Planetary Nebulae

    OpenAIRE

    Zhang, Yong

    2016-01-01

    Circumstellar envelopes (CEs) around evolved stars are an active site for the production of molecules. After evolving through the Asymptotic Giant Branch (AGB), proto-planetary nebula (PPN), to planetary nebula (PN) phases, CEs ultimately merge with the interstellar medium (ISM). The study of molecules in PNe, therefore, is essential to understanding the transition from stellar to interstellar materials. So far, over 20 molecular species have been discovered in PNe. The molecular composition ...

  16. Planetary satellites - an update

    Science.gov (United States)

    Beatty, J. K.

    1983-11-01

    General features of all known planetary satellites in the system are provided, and attention is focused on prominent features of several of the bodies. Titan has an atmosphere 1.5 times earth's at sea level, a well a a large body of liquid which may be ethane, CH4, and disolved N2. Uranus has at least five moons, whose masses have recently been recalculated and determined to be consistent with predictions of outer solar system composition. Io's violent volcanic activity is a demonstration of the conversion of total energy (from Jupiter) to heat, i.e., interior melting and consequent volcanoes. Plumes of SO2 have been seen and feature temperatures of up to 650 K. Enceladus has a craterless, cracked surface, indicating the presence of interior ice and occasional breakthroughs from tidal heating. Hyperion has a chaotic rotation, and Iapetus has one light and one dark side, possibly from periodic collisions with debris clouds blasted off the surface of the outer moon Phoebe.

  17. Planetary Bow Shocks

    CERN Document Server

    Treumann, R A

    2008-01-01

    Our present knowledge of the properties of the various planetary bow shocks is briefly reviewed. We do not follow the astronomical ordering of the planets. We rather distinguish between magnetised and unmagnetised planets which groups Mercury and Earth with the outer giant planets of the solar system, Mars and Moon in a separate group lacking magnetic fields and dense atmospheres, and Venus together with the comets as the atmospheric celestial objects exposed to the solar wind. Asteroids would, in this classification, fall into the group together with the Moon and should behave similarly though being much smaller. Extrasolar planets are not considered as we have only remote information about their behaviour. The presentation is brief in the sense that our in situ knowledge is rather sporadic yet, depending on just a countable number of bow shock crossings from which just some basic conclusions can be drawn about size, stationarity, shape and nature of the respective shock. The only bow shock of which we have ...

  18. Planetary Vital Signs

    Science.gov (United States)

    Kennel, Charles; Briggs, Stephen; Victor, David

    2016-07-01

    The climate is beginning to behave in unusual ways. The global temperature reached unprecedented highs in 2015 and 2016, which led climatologists to predict an enormous El Nino that would cure California's record drought. It did not happen the way they expected. That tells us just how unreliable temperature has become as an indicator of important aspects of climate change. The world needs to go beyond global temperature to a set of planetary vital signs. Politicians should not over focus policy on one indicator. They need to look at the balance of evidence. A coalition of scientists and policy makers should start to develop vital signs at once, since they should be ready at the entry into force of the Paris Agreement in 2020. But vital signs are only the beginning. The world needs to learn how to use the vast knowledge we will be acquiring about climate change and its impacts. Is it not time to use all the tools at hand- observations from space and ground networks; demographic, economic and societal measures; big data statistical techniques; and numerical models-to inform politicians, managers, and the public of the evolving risks of climate change at global, regional, and local scales? Should we not think in advance of an always-on social and information network that provides decision-ready knowledge to those who hold the responsibility to act, wherever they are, at times of their choosing?

  19. The NASA Regional Planetary Image Facility at the German Aerospace Center (DLR) in Berlin, Germany

    OpenAIRE

    Pieth, Susanne; Jaumann, R.; Weiland, Marianne; Eichentopf, Karin

    2016-01-01

    The DLR/NASA Regional Planetary Image Facility (RPIF) was founded in 1985 in cooperation with NASA and is located at the DLR Institute of Planetary Research in Berlin-Adlershof. This library of planetary photographs and maps keeps on file all the image data transmitted by many NASA and ESA space probes and makes them accessible to the public in Europe and mainly in Germany, Austria and Switzerland.

  20. ECSS standard on planetary protection requirements

    Science.gov (United States)

    Debus, A.; Ecss Planetary Protection Working Group

    Since the beginning of Solar System Exploration a lot of spacecraft have been sent towards other worlds including landers and one of the main goals of such missions is the search for extraterrestrial life forms It cannot be excluded today that terrestrial entities could survive the cruise during space exploration missions and that they could be able to contaminate other bodies within our Solar System At another level possible extraterrestrial life forms are unknown and their ability to contaminate the Earth s biosphere in the frame of sample return missions remains also unknown The article IX of the OUTER SPACE TREATY London Washington January 27 1967 ratified by all spacefaring nations recommends consequently to preserve planets and Earth from contamination The United Nations UN-COPUOS has delegated the COSPAR Committee of Space Research to take charge of Planetary Protection and to propose to spacefaring nations a planetary protection policy and a set of recommendations Using these recommendations and with the CNES Planetary Protection Standard as a basis a working group has been nominated in order to build ECSS European Cooperation for Space Standardization documents The first level of ECSS will describe the main specifications in order to prevent the forward contamination of target bodies inside the Solar System management of spacecraft systems crash probability sterilization or biocleaning of spacecraft systems microbiological control integration in sterile environment etc and specifications in order to

  1. Reflection seismology systems for planetary geology: A feasibility study

    NARCIS (Netherlands)

    Batenburg, P.A.W.; Gill, E.K.A.; Drijkoningen, G.G.; Foing, B.H.; Toxopeus, G.

    2009-01-01

    A feasibility study is conducted to determine whether reflection seismology systems can be used for planetary geology research. The focus is on systems with up to 20,000 seismic detectors, such as used today in Earth geological research and energy companies. The study follows a top-down systems engi

  2. Research on Virtual Prototype Simulation of Compound Planetary Gear Train Sets%复合行星齿轮传动系统虚拟样机仿真研究

    Institute of Scientific and Technical Information of China (English)

    刘振皓; 巫世晶; 潜波; 王晓笋

    2012-01-01

    Based on the typical structure of Ravigneaux compound planetary gear train sets, the transmission ratio and meshing frequency of the system were analyzed. In order to obtain the changing patterns of contact force of Ravigneaux compound planetary gear train sets, a 3-D solid model of the sets was established by SolidWorks software and the virtual prototype of the system was built based on ADAMS software. The computation method for contact force of gear meshing was introduced based on Hertz theory. The transmission ratio of the system was verified. The changing pattern and the spectrum characteristics of the synthetic contact force between small sun gear and short planet gear, that of x direction and y direction were simulated. The simulation results show that the ampltude of contact force fluctuated obviously, which had notable periodic property. The contact force of x direction and y direction has the same frequency spectrum and phase difference of 90°. The rotational frequency and frequency multiplication of 1 to 7 of meshing frequency are in the frequency spectrum of contact force,which have explict modulating characteristics. The virtual prototype researches of Ravigneaux compound planetary gear train sets can provide some references to improve the system dynamic characteristics and achieve dynamic design.%根据Ravigneaux式复合行星齿轮传动系统的典型结构,分析了系统的传动比与啮合频率.为获得Ravigneaux式复合行星齿轮传动系统轮齿接触力的变化规律,运用三维CAD软件SolidWorks建立了系统的三维实体模型,以ADAMS软件为平台建立了系统的虚拟样机模型.给出基于Hertz接触理论的齿轮啮合传动时轮齿接触力的计算方法,验证了系统传动比,对小太阳轮与短行星轮啮合的综合接触力、x方向接触力和y方向接触力的变化规律及其频谱特性进行仿真研究.仿真结果表明,接触力的幅值波动显著,具有明显的周期性.x方向接触力

  3. Modular Dynamic Research on Multi-Stage Planetary Gear System%空间机械臂用多级2K-H行星传动系统模块化动力学研究

    Institute of Scientific and Technical Information of China (English)

    刘明; 赵永强; 徐冬梅; 李瑰贤

    2014-01-01

    The integral modeling method is usually used in dynamic research of multi-stage planetary gear system. But it is not convenient for the analysis of dynamic performance and for the selection of transmission scheme. The dynamic model has to be rebuilt when the transmission scheme is changed. So based on the modular method, four general modules are established with meshing stiffness, damping, friction, backlash and bearing supporting stiffness of planets considered. Then the nonlinear dynamical differential equations of multi-stage planetary gear trains are generated automatically by calling in the four modules. According to the modular method, the dynamic characteris-tics of the four-stage planetary gear train used in space manipulator are analyzed. In order to verify the applicability and availability of the modularly designed model, the calculation results of the modularly designed model and those of the integrally designed model are compared.%多级行星传动系统的动力学研究多采用整体式建模方法,此种方法不便于通过动态性能分析快速选取传动方案,而且模型不具有通用性,传动形式改变,需要重建系统动力学模型。为克服整体式建模方法的缺点,提出了模块化思想,将多级行星传动系统划分为4个分级子模块,综合考虑啮合刚度、阻尼和行星轮支撑刚度等因素,建立了各级子模块的动力学模型,通过各级模块的集成,得到了多级行星传动系统非线性动力学方程。以空间机械臂关节用多级行星传动系统为例,通过调用各级模块,形成4级行星传动系统动力学微分方程组,对其进行数值求解,得到了系统的时域及频域响应特性。通过与整体式建模方法所得响应结果进行对比,验证了模块化建模方法的同一性和有效性。

  4. NASA Planetary Visualization Tool

    Science.gov (United States)

    Hogan, P.; Kim, R.

    2004-12-01

    NASA World Wind allows one to zoom from satellite altitude into any place on Earth, leveraging the combination of high resolution LandSat imagery and SRTM elevation data to experience Earth in visually rich 3D, just as if they were really there. NASA World Wind combines LandSat 7 imagery with Shuttle Radar Topography Mission (SRTM) elevation data, for a dramatic view of the Earth at eye level. Users can literally fly across the world's terrain from any location in any direction. Particular focus was put into the ease of usability so people of all ages can enjoy World Wind. All one needs to control World Wind is a two button mouse. Additional guides and features can be accessed though a simplified menu. Navigation is automated with single clicks of a mouse as well as the ability to type in any location and automatically zoom to it. NASA World Wind was designed to run on recent PC hardware with the same technology used by today's 3D video games. NASA World Wind delivers the NASA Blue Marble, spectacular true-color imagery of the entire Earth at 1-kilometer-per-pixel. Using NASA World Wind, you can continue to zoom past Blue Marble resolution to seamlessly experience the extremely detailed mosaic of LandSat 7 data at an impressive 15-meters-per-pixel resolution. NASA World Wind also delivers other color bands such as the infrared spectrum. The NASA Scientific Visualization Studio at Goddard Space Flight Center (GSFC) has produced a set of visually intense animations that demonstrate a variety of subjects such as hurricane dynamics and seasonal changes across the globe. NASA World Wind takes these animations and plays them directly on the world. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) produces a set of time relevant planetary imagery that's updated every day. MODIS catalogs fires, floods, dust, smoke, storms and volcanic activity. NASA World Wind produces an easily customized view of this information and marks them directly on the globe. When one

  5. Planetary Geophysics and Tectonics

    Science.gov (United States)

    Zuber, Maria

    2005-01-01

    The broad objective of this work is to improve understanding of the internal structures and thermal and stress histories of the solid planets by combining results from analytical and computational modeling, and geophysical data analysis of gravity, topography and tectonic surface structures. During the past year we performed two quite independent studies in the attempt to explain the Mariner 10 magnetic observations of Mercury. In the first we revisited the possibility of crustal remanence by studying the conditions under which one could break symmetry inherent in Runcorn's model of a uniformly magnetized shell to produce a remanent signal with a dipolar form. In the second we applied a thin shell dynamo model to evaluate the range of intensity/structure for which such a planetary configuration can produce a dipole field consistent with Mariner 10 results. In the next full proposal cycle we will: (1) develop numerical and analytical and models of thin shell dynamos to address the possible nature of Mercury s present-day magnetic field and the demise of Mars magnetic field; (2) study the effect of degree-1 mantle convection on a core dynamo as relevant to the early magnetic field of Mars; (3) develop models of how the deep mantles of terrestrial planets are perturbed by large impacts and address the consequences for mantle evolution; (4) study the structure, compensation, state of stress, and viscous relaxation of lunar basins, and address implications for the Moon s state of stress and thermal history by modeling and gravity/topography analysis; and (5) use a three-dimensional viscous relaxation model for a planet with generalized vertical viscosity distribution to study the degree-two components of the Moon's topography and gravity fields to constrain the primordial stress state and spatial heterogeneity of the crust and mantle.

  6. Geophysics of Small Planetary Bodies

    Science.gov (United States)

    Asphaug, Erik I.

    1998-01-01

    As a SETI Institute PI from 1996-1998, Erik Asphaug studied impact and tidal physics and other geophysical processes associated with small (low-gravity) planetary bodies. This work included: a numerical impact simulation linking basaltic achondrite meteorites to asteroid 4 Vesta (Asphaug 1997), which laid the groundwork for an ongoing study of Martian meteorite ejection; cratering and catastrophic evolution of small bodies (with implications for their internal structure; Asphaug et al. 1996); genesis of grooved and degraded terrains in response to impact; maturation of regolith (Asphaug et al. 1997a); and the variation of crater outcome with impact angle, speed, and target structure. Research of impacts into porous, layered and prefractured targets (Asphaug et al. 1997b, 1998a) showed how shape, rheology and structure dramatically affects sizes and velocities of ejecta, and the survivability and impact-modification of comets and asteroids (Asphaug et al. 1998a). As an affiliate of the Galileo SSI Team, the PI studied problems related to cratering, tectonics, and regolith evolution, including an estimate of the impactor flux around Jupiter and the effect of impact on local and regional tectonics (Asphaug et al. 1998b). Other research included tidal breakup modeling (Asphaug and Benz 1996; Schenk et al. 1996), which is leading to a general understanding of the role of tides in planetesimal evolution. As a Guest Computational Investigator for NASA's BPCC/ESS supercomputer testbed, helped graft SPH3D onto an existing tree code tuned for the massively parallel Cray T3E (Olson and Asphaug, in preparation), obtaining a factor xIO00 speedup in code execution time (on 512 cpus). Runs which once took months are now completed in hours.

  7. Interstellar Transfer of Planetary Microbiota

    Science.gov (United States)

    Wallis, Max K.; Wickramasinghe, N. C.

    Panspermia theories require the transport of micro-organisms in a viable form from one astronomical location to another. The evidence of material ejection from planetary surfaces, of dynamical orbit evolution and of potential survival on landing is setting a firm basis for interplanetary panspermia. Pathways for interstellar panspermia are less clear. We compare the direct route, whereby life-bearing planetary ejecta exit the solar system and risk radiation hazards en route to nearby stellar systems, and an indirect route whereby ejecta hitch a ride within the shielded environment of comets of the Edgeworth- Kuiper Belt that are subsequently expelled from the solar system. We identify solutions to the delivery problem. Delivery to fully-fledged planetary systems of either the direct ejecta or the ejecta borne by comets depends on dynamical capture and is of very low efficiency. However, delivery into a proto-planetary disc of an early solar-type nebula and into pre-stellar molecular clouds is effective, because the solid grains efficiently sputter the incoming material in hypervelocity collisions. The total mass of terrestrial fertile material delivered to nearby pre-stellar systems as the solar system moves through the galaxy is from kilogrammes up to a tonne. Subject to further study of bio-viability under irradiation and fragmenting collisions, a few kg of original grains and sputtered fragments could be sufficient to seed the planetary system with a wide range of solar system micro-organisms.

  8. Planetary Image Geometry Library

    Science.gov (United States)

    Deen, Robert C.; Pariser, Oleg

    2010-01-01

    The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A

  9. Variational Principle for Planetary Interiors

    CERN Document Server

    Zeng, Li

    2016-01-01

    In the past few years, the number of confirmed planets has grown above 2000. It is clear that they represent a diversity of structures not seen in our own solar system. In addition to very detailed interior modeling, it is valuable to have a simple analytical framework for describing planetary structures. Variational principle is a fundamental principle in physics, entailing that a physical system follows the trajectory which minimizes its action. It is alternative to the differential equation formulation of a physical system. Applying this principle to planetary interior can beautifully summarize the set of differential equations into one, which provides us some insight into the problem. From it, a universal mass-radius relation, an estimate of error propagation from equation of state to mass-radius relation, and a form of virial theorem applicable to planetary interiors are derived.

  10. Variational Principle for Planetary Interiors

    Science.gov (United States)

    Zeng, Li; Jacobsen, Stein B.

    2016-09-01

    In the past few years, the number of confirmed planets has grown above 2000. It is clear that they represent a diversity of structures not seen in our own solar system. In addition to very detailed interior modeling, it is valuable to have a simple analytical framework for describing planetary structures. The variational principle is a fundamental principle in physics, entailing that a physical system follows the trajectory, which minimizes its action. It is alternative to the differential equation formulation of a physical system. Applying the variational principle to the planetary interior can beautifully summarize the set of differential equations into one, which provides us some insight into the problem. From this principle, a universal mass-radius relation, an estimate of the error propagation from the equation of state to the mass-radius relation, and a form of the virial theorem applicable to planetary interiors are derived.

  11. Middle School Adventures in Planetary Exploration

    Science.gov (United States)

    Limaye, S. S.; Pertzborn, R. A.

    1998-09-01

    During the summer of 1998 the UW-Madison Office of Space Science Education (OSSE) developed and implemented a pilot summer school program to improve the math and science performance of middle school students. The program focused on the subject of solar system exploration for the summer school offered by the Milwaukee Public Schools (MPS) for middle school students. OSSE staff collaborated with science, math, and technology teachers from two middle schools (Milwaukee Education Center and Bell Middle School) to expand upon a series of hands-on, interdisciplinary lesson plans originally developed to accompany the Planetary Society's Red Rover, Red Rover Program. For six weeks, sixty inner city middle school students had the opportunity to explore new worlds as far reaching as Mars, Mercury, Titania, Uranus and Pluto with the assistance of Planetary Scientists and staff from the UW-Madison Space Science and Engineering Center. Students were provided with computers and internet connections by AT&T to conduct on-line research on their own research topic relating to planetary exploration. Based on their own research efforts, teams of five or six students wrote a mission statement and then proceeded to create a terrain resembling their desired planetary target. Team engineers then built a computer operated Lego Dacta rover designed especially for exploring the unique features of their targeted planet. In addition to strengthening their science and math skills, students also focused on the improvement of their communication skills by maintaining a daily journal of their experiences, tribulations and successes. Students were tested in the beginning and again at the end of the program. An independent group from University of Wisconsin-Milwaukee performed overall assessment of the summer program. Based on the overall success in achieving performance enchmarks, the Milwaukee Public Schools and UW-Extension Learning Innovations Center have elected to collaborate with the OSSE to

  12. Influence of Planetary Protection Guidelines on Waste Management Operations

    Science.gov (United States)

    Hogan, John A.; Fisher, John W.; Levri, Julie A.; Wignarajah, Kanapathipi; Race, Margaret S.; Stabekis, Perry D.; Rummel, John D.

    2005-01-01

    Newly outlined missions in the Space Exploration Initiative include extended human habitation on Mars. During these missions, large amounts of waste materials will be generated in solid, liquid and gaseous form. Returning these wastes to Earth will be extremely costly, and will therefore likely remain on Mars. Untreated, these wastes are a reservoir of live/dead organisms and molecules considered to be "biomarkers" i.e., indicators of life). If released to the planetary surface, these materials can potentially confound exobiology experiments and disrupt Martian ecology indefinitely (if existent). Waste management systems must therefore be specifically designed to control release of problematic materials both during the active phase of the mission, and for any specified post-mission duration. To effectively develop waste management requirements for Mars missions, planetary protection guidelines must first be established. While previous policies for Apollo lunar missions exist, it is anticipated that the increased probability of finding evidence of life on Mars, as well as the lengthy mission durations will initially lead to more conservative planetary protection measures. To facilitate the development of overall requirements for both waste management and planetary protection for future missions, a workshop was conducted to identify how these two areas interface, and to establish a preliminary set of planetary protection guidelines that address waste management operations. This paper provides background regarding past and current planetary protection and waste management issues, and their interactions. A summary of the recommended planetary protection guidelines, anticipated ramifications and research needs for waste management system design for both forward (Mars) and backward (Earth) contamination is also provided.

  13. 差速器行星齿轮冷挤压工艺及制造研究%Research of cold extrusion technology and manufacturing for differential planetary gear

    Institute of Scientific and Technical Information of China (English)

    林超; 徐萍

    2011-01-01

    结合开发差速器行星齿轮冷挤加工,根据该零件的技术要求,依据冷挤压理论,分析研究了该零件的冷挤压工艺及制造方案,特别对冷挤压工艺中的几个主要问题进行了研究.通过研究得到,冷挤压加工是该齿轮最合适的生产方式,它具有以下独特优势:降低生产成本,提高原材料利用率,提高齿轮质量,提高生产效率,降低环境污染,有利于可持续发展,是值得推广的低碳锥齿轮加工技术.%Examines the cold extrusion machining for the planetary pinion of differential, according to the part specifications and the cold extrusion theory ,the cold extrusion technology characters and machining for the part are studied and analyzed, the cold extrusion technology schedules are made, especially, several problems occurred in the cold extrusion processes are discussed.Through the research can know that using the cold extrusion method to process the gear is the most appropriate mode of production ,it has the following unique advantages :lower production costs and improve raw material utilization ;improve gear quality ;improve production efficiency; reduce pollution, contribute to sustainable development; is a low-carbon bevel gear technology which worth to promote.

  14. Revised Diagnostic Diagrams for Planetary Nebulae

    CERN Document Server

    Riesgo, H

    2006-01-01

    Diagnostic diagrams of electron density - excitation for a sample of 613 planetary nebulae are presented. The present extensive sample allows the definition of new statistical limits for the distribution of planetary nebulae in the log [Ha/[SII

  15. Bringing Planetary Science to the Public

    Science.gov (United States)

    Chapman, C. R.

    1999-09-01

    Since I am not fluent in Italian, I won't presume to give a "public" science lecture in Padua (that will happen in the year 2000 before an English-speaking audience). But I will discuss the gap between the arcane practice of planetary research and the yearnings of a poorly educated public to participate in planetary exploration. Education and public outreach (E&PO) is a vital enterprise for our profession to be engaged in. But that does not mean that every researcher needs to become proficient at public communication. Our interdisciplinary field advances because of our diverse talents and we should do what we are good at. It is good that entities like the DPS and NASA are encouraging scientists to engage in E&PO, yet I fear that this endeavor is already, in its infancy, becoming bureaucratized. An E&PO cottage industry is developing, complete with its own jargon and checklists. The essential thing is for us all to realize that science is a human activity, supported by the public as part of our civilization's culture. As we do our science, we should do it with consciousness of our public role and use whatever creative talents we have to synthesize our specialized results for the broader scientific community, to articulate them to science communicators (educators, journalists, writers), and to share them directly with the public.

  16. The International Planetary Data Alliance (IPDA)

    Science.gov (United States)

    Stein, Thomas; Gopala Krishna, Barla; Crichton, Daniel J.

    2016-07-01

    The International Planetary Data Alliance (IPDA) is a close association of partners with the aim of improving the quality of planetary science data and services to the end users of space based instrumentation. The specific mission of the IPDA is to facilitate global access to, and exchange of, high quality scientific data products managed across international boundaries. Ensuring proper capture, accessibility and availability of the data is the task of the individual member space agencies. The IPDA is focused on developing an international standard that allows discovery, query, access, and usage of such data across international planetary data archive systems. While trends in other areas of space science are concentrating on the sharing of science data from diverse standards and collection methods, the IPDA concentrates on promoting governing data standards that drive common methods for collecting and describing planetary science data across the international community. This approach better supports the long term goal of easing data sharing across system and agency boundaries. An initial starting point for developing such a standard will be internationalization of NASA's Planetary Data System's (PDS) PDS4 standard. The IPDA was formed in 2006 with the purpose of adopting standards and developing collaborations across agencies to ensure data is captured in common formats. It has grown to a dozen member agencies represented by a number of different groups through the IPDA Steering Committee. Member agencies include: Armenian Astronomical Society, China National Space Agency (CNSA), European Space Agency (ESA), German Aerospace Center (DLR), Indian Space Research Organization (ISRO), Italian Space Agency (ASI), Japanese Aerospace Exploration Agency (JAXA), National Air and Space Administration (NASA), National Centre for Space Studies (CNES), Space Research Institute (IKI), UAE Space Agency, and UK Space Agency. The IPDA Steering Committee oversees the execution of

  17. Hazard detection and avoidance sensor for NASA's planetary landers

    Science.gov (United States)

    Lau, Brian; Chao, Tien-Hsin

    1992-01-01

    An optical terrain analysis based sensor system specifically designed for landing hazard detection as required for NASA's autonomous planetary landers is introduced. This optical hazard detection and avoidance (HDA) sensor utilizes an optoelectronic wedge-and-ting (WRD) filter for Fourier transformed feature extraction and an electronic neural network processor for pattern classification. A fully implemented optical HDA sensor would assure safe landing of the planetary landers. Computer simulation results of a successful feasibility study is reported. Future research for hardware system implementation is also provided.

  18. SMART-1 technology preparation for future planetary missions

    Science.gov (United States)

    Marini, A. E.; Racca, G. D.; Foing, B. H.

    SMART-1 is the first ESA Small Mission for Advanced Research in Technology, with the prime objective of demonstrating the use of Solar Electric Primary Propulsion in a planetary mission. Further to this, SMART-1 will test novel spacecraft technologies and will host six instruments carrying out nine technology and science experiments, all aimed at preparing future ESA Cornerstones, including the ESA Mercury Cornerstone (now named BepiColombo) and other future planetary missions under study, as well as solar and fundamental physics missions.

  19. Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions: Workshop Report

    Science.gov (United States)

    Race, Margaret S. (Editor); Johnson, James E. (Editor); Spry, James A. (Editor); Siegel, Bette; Conley, Catharine A.

    2015-01-01

    This report on Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions summarizes the presentations, deliberations and findings of a workshop at NASA Ames Research Center, March 24-26, 2015, which was attended by more than 100 participants representing a diverse mix of science, engineering, technology, and policy areas. The main objective of the three-day workshop was to identify specific knowledge gaps that need to be addressed to make incremental progress towards the development of NASA Procedural Requirements (NPRs) for Planetary Protection during human missions to Mars.

  20. Small Spacecraft for Planetary Science

    Science.gov (United States)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew

    2016-07-01

    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (electronics, advanced manufacturing for lightweight structures, and innovative propulsion are making it possible to fly much more capable micro spacecraft for planetary exploration. While micro spacecraft, such as CubeSats, offer significant cost reductions with added capability from advancing technologies, the technical challenges for deep space missions are very different than for missions conducted in low Earth orbit. Micro spacecraft must be able to sustain a broad range of planetary environments (i.e., radiations, temperatures, limited power generation) and offer long-range telecommunication performance on a par with science needs. Other capabilities needed for planetary missions, such as fine attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  1. Editorial Introduction: Fourth Planetary Dunes Workshop Special Issue

    Science.gov (United States)

    Chojnacki, Matthew; Telfer, Matt W.

    2017-06-01

    The Fourth International Planetary Dunes Workshop: Integrating Models, Remote Sensing, and Field Data was held May 19-22, 2015 in Boise, Idaho (see Final Announcement). More than 60 researchers and students participated in two and a half days of presentations and lively discussion, plus a full day field trip to Bruneau Dunes State Park. The workshop focused on the many landforms and deposits created by the dynamic interactions between granular material and airflow (aeolian processes). These processes are known to occur on several planetary bodies, including Earth, Mars, Titan, Venus, and possibly, cometary surfaces. The overarching purpose of this workshop was to provide a forum for discussion and the exchange of new ideas and approaches to gaining new insights into planetary aeolian processes. Meeting programs, abstracts, and E-Posters are all available at the workshop website (http://www.hou.usra.edu/meetings/dunes2015/)

  2. Alien skies planetary atmospheres from earth to exoplanets

    CERN Document Server

    Pont, Frédéric J

    2014-01-01

    Planetary atmospheres are complex and evolving entities, as mankind is rapidly coming to realise whilst attempting to understand, forecast and mitigate human-induced climate change. In the Solar System, our neighbours Venus and Mars provide striking examples of two endpoints of planetary evolution, runaway greenhouse and loss of atmosphere to space. The variety of extra-solar planets brings a wider angle to the issue: from scorching "hot jupiters'' to ocean worlds, exo-atmospheres explore many configurations unknown in the Solar System, such as iron clouds, silicate rains, extreme plate tectonics, and steam volcanoes. Exoplanetary atmospheres have recently become accessible to observations. This book puts our own climate in the wider context of the trials and tribulations of planetary atmospheres. Based on cutting-edge research, it uses a grand tour of the atmospheres of other planets to shine a new light on our own atmosphere, and its relation with life.

  3. Planetary Real Estate.

    Science.gov (United States)

    Chillot, Lisa A.

    2003-01-01

    Explains the design and implementation of a creative class activity that teaches students characteristics of the planets. Requires students to research and synthesize information about a specific planet and sell it through an oral presentation and visual aids. Includes a grading rubric. (SOE)

  4. Turning Planetary Theory Upside Down

    Science.gov (United States)

    2010-04-01

    Didier Queloz of Geneva Observatory. Two of the newly discovered retrograde planets have already been found to have more distant, massive companions that could potentially be the cause of the upset. These new results will trigger an intensive search for additional bodies in other planetary systems. This research was presented at the Royal Astronomical Society National Astronomy Meeting (NAM2010) that is taking place this week in Glasgow, Scotland. Nine publications submitted to international journals will be released on this occasion, four of them using data from ESO facilities. On the same occasion, the WASP consortium was awarded the 2010 Royal Astronomical Society Group Achievement Award. Notes [1] The current count of known exoplanets is 454. [2] The nine newly found exoplanets were discovered by the Wide Angle Search for Planets (WASP). WASP comprises two robotic observatories, each consisting of eight wide-angle cameras that simultaneously monitor the sky continuously for planetary transit events. A transit occurs when a planet passes in front of its parent star, temporarily blocking some of the light from it. The eight wide-angle cameras allow millions of stars to be monitored simultaneously to detect these rare transit events. The WASP cameras are operated by a consortium including Queen's University Belfast, the Universities of Keele, Leicester and St Andrews, the Open University, the Isaac Newton Group on La Palma and the Instituto Astrofisica Canarias. [3] To confirm the discovery and characterise a new transiting planet, it is necessary to do radial velocity follow-up to detect the wobble of the host star around its common centre of mass with the planet. This is done with a worldwide network of telescopes equipped with sensitive spectrometers. In the northern hemisphere, the Nordic Optical Telescope in the Canary Islands and the SOPHIE instrument on the 1.93-metre telescope at Haute-Provence in France lead the search. In the south, the HARPS exoplanet hunter

  5. Life sciences and space research 24 (4): Planetary biology and origins of life; Topical Meeting of the COSPAR Interdisciplinary Scientific Commission F (Meeting F3) of the COSPAR Plenary Meeting, 29th, Washington, DC, Aug. 28-Sep. 5, 1992

    Science.gov (United States)

    Greenberg, J. M. (Editor); Oro, J. (Editor); Brack, A. (Editor); Devincenzi, D. L. (Editor); Banin, A. (Editor); Friedmann, E. I. (Editor); Rummel, J. D. (Editor); Raulin, F. (Editor); Mckay, C. P. (Editor); Baltscheffsky, H. (Editor)

    1995-01-01

    The proceedings include sessions on extraterrestrial organic chemistry and the origins of life; life on Mars: past, present and future; planetary protection of Mars missions; chemical evolution on Titan; origins and early evolution of biological (a) energy transduction and membranes (b) information and catalysis; and carbon chemistry and isotopic fractionations in astrophysical environments.

  6. Life sciences and space research 24 (4): Planetary biology and origins of life; Topical Meeting of the COSPAR Interdisciplinary Scientific Commission F (Meeting F3) of the COSPAR Plenary Meeting, 29th, Washington, DC, Aug. 28-Sep. 5, 1992

    Science.gov (United States)

    Greenberg, J. M. (Editor); Oro, J. (Editor); Brack, A. (Editor); Devincenzi, D. L. (Editor); Banin, A. (Editor); Friedmann, E. I. (Editor); Rummel, J. D. (Editor); Raulin, F. (Editor); Mckay, C. P. (Editor); Baltscheffsky, H. (Editor)

    1995-01-01

    The proceedings include sessions on extraterrestrial organic chemistry and the origins of life; life on Mars: past, present and future; planetary protection of Mars missions; chemical evolution on Titan; origins and early evolution of biological (a) energy transduction and membranes (b) information and catalysis; and carbon chemistry and isotopic fractionations in astrophysical environments.

  7. Handbook of cosmic hazards and planetary defense

    CERN Document Server

    Allahdadi, Firooz

    2015-01-01

    Covers in a comprehensive fashion all aspects of cosmic hazards and possible strategies for contending with these threats through a comprehensive planetary defense strategy. This handbook brings together in a single reference work a rich blend of information about the various types of cosmic threats that are posed to human civilization by asteroids, comets, bolides, meteors, solar flares and coronal mass ejections, cosmic radiation and other types of threats that are only recently beginning to be understood and studied, such as investigation of the “cracks” in the protective shield provided by the Van Allen belts and the geomagnetosphere, of matter-antimatter collisions, orbital debris and radiological or biological contamination. Some areas that are addressed involve areas about which there is a good deal of information that has been collected for many decades by multiple space missions run by many different space agencies, observatories and scientific researchers. Other areas involving research and ...

  8. The Anthropocene: A Planetary Perspective

    Science.gov (United States)

    Anbar, A. D.; Hartnett, H. E.; York, A.; Selin, C.

    2016-12-01

    The Anthropocene is a new planetary epoch defined by the emergence of human activity as one of the most important driving forces on Earth, rivaling and also stressing the other systems that govern the planet's habitability. Public discussions and debates about the challenges of this epoch tend to be polarized. One extreme denies that humans have a planetary-scale impact, while the other wishes that this impact could disappear. The tension between these perspectives is often paralyzing. Effective adaptation and mitigation requires a new perspective that reframes the conversation. We propose a planetary perspective according to which this epoch is the result of a recent major innovation in the 4 ­billion ­year history of life on Earth: the emergence of an energy-intensive planetary civilization. The rate of human energy use is already within an order of magnitude of that of the rest of the biosphere, and rising rapidly, and so this innovation is second only to the evolution of photosynthesis in terms of energy capture and utilization by living systems. Such energy use has and will continue to affect Earth at planetary scale. This reality cannot be denied nor wished away. From this pragmatic perspective, the Anthropocene is not an unnatural event that can be reversed, as though humanity is separate from the Earth systems with which we are co-evolving. Rather, it is an evolutionary transition to be managed. This is the challenge of turning a carelessly altered planet into a carefully designed and managed world, maintaining a "safe operating space" for human civilization (Steffen et al., 2011). To do so, we need an integrated approach to Earth systems science that considers humans as a natural and integral component of Earth's systems. Insights drawn from the humanities and the social sciences must be integrated with the natural sciences in order to thrive in this new epoch. This type of integrated perspective is relatively uncontroversial on personal, local, and even

  9. Jim Pollack's Contributions to Planetary Science

    Science.gov (United States)

    Haberle, Robert M.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    Jim Pollack was an extraordinary scientist. Since receiving his Ph.D. from Harvard in 1965, he published hundreds of papers in scientific journals, encyclopedias, popular magazines, and books. The sheer volume of this kind of productivity is impressive enough, but when considering the diversity and detail of his work, these accomplishments seem almost superhuman. Jim studied and wrote about every planet in the solar system. For, this he was perhaps the most distinguished planetary scientist of his generation. He successfully identified the composition of Saturn's rings and Venus's clouds. With his collaborators, he created the first detailed models for the formation of the outer planets, and the general circulation of the Martian atmosphere. His interest in Mars dust storms provided a foundation for the "nuclear winter" theory that ultimately helped shape foreign policy in the cold war era. Jim's creative talents brought him many awards including the Kuiper Award of the Division of Planetary Sciences, the Leo Szilard Award of the American Physical Society, H. Julian Allen award of the Ames Research Center, and several NASA medals for exceptional scientific achievement.

  10. Chandrayaan-1: India's first planetary science mission

    Science.gov (United States)

    Nath Goswami, Jitendra

    A new initiative of the Indian Space Research Organization to have dedicated Space Science Missions led to two major missions that are currently in progress: Astrosat and Chandrayaan-1, the latter being the first planetary science mission of the country. The spadework for this mission started about ten years back and culminated in late 2003 with the official endorsement for the mission. This remote sensing mission, to be launched in early next year, is expected to further our understanding of the origin and evolution of the Moon based on a chemical, mineralogical and topographic study of the lunar surface at spatial and spectral resolutions much better than those for previous and other currently planned lunar missions. The Chandrayaan-1 mission is also international in character and will have an array of Indian instruments as well as several instruments from abroad some of which will have very strong Indian collaboration. This talk will provide a brief overview of our present understanding of the Moon, the science objectives of the Chandrayaan-1 mission and how we hope to achieve these from the data to be obtained by the various instruments on board the mission. A possible road map for Indian planetary exploration programme in the context of the International scenario will be presented at the end.

  11. Teaching, Learning, and Planetary Exploration

    Science.gov (United States)

    Brown, Robert A.

    2002-01-01

    This is the final report of a program that examined the fundamentals of education associated with space activities, promoted educational policy development in appropriate forums, and developed pathfinder products and services to demonstrate the utility of advanced communication technologies for space-based education. Our focus was on space astrophysics and planetary exploration, with a special emphasis on the themes of the Origins Program, with which the Principal Investigator (PI) had been involved from the outset. Teaching, Learning, and Planetary Exploration was also the core funding of the Space Telescope Science Institute's (ST ScI) Special Studies Office (SSO), and as such had provided basic support for such important NASA studies as the fix for Hubble Space Telescope (HST) spherical aberration, scientific conception of the HST Advanced Camera, specification of the Next-Generation Space Telescope (NGST), and the strategic plan for the second decade of the HST science program.

  12. Evolution of Planetary Ringmoon Systems

    Science.gov (United States)

    Cuzzi, Jeffrey N.

    1995-01-01

    The last few decades have seen an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of these systems as our intuition (and our computers) catch up with the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is an emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system.

  13. Molecular studies of Planetary Nebulae

    CERN Document Server

    Zhang, Yong

    2016-01-01

    Circumstellar envelopes (CEs) around evolved stars are an active site for the production of molecules. After evolving through the Asymptotic Giant Branch (AGB), proto-planetary nebula (PPN), to planetary nebula (PN) phases, CEs ultimately merge with the interstellar medium (ISM). The study of molecules in PNe, therefore, is essential to understanding the transition from stellar to interstellar materials. So far, over 20 molecular species have been discovered in PNe. The molecular composition of PNe is rather different from those of AGB and PPNe, suggesting that the molecules synthesized in PN progenitors have been heavily processed by strong ultraviolet radiation from the central star. Intriguingly, fullerenes and complex organic compounds having aromatic and aliphatic structures can be rapidly formed and largely survive during the PPN/PN evolution. The similar molecular compositions in PNe and diffuse clouds as well as the detection of C$_{60}^+$ in the ISM reinforce the view that the mass-loss from PNe can ...

  14. The PSA: Planetary Science Archive

    Science.gov (United States)

    Barthelemy, M.; Martinez, S.; Heather, D.; Vazquez, J. L.; Arviset, C.; Osuna, P.; PSA development Team

    2012-04-01

    Scientific and engineering data from ESA's planetary missions are made accessible to the world-wide scientific community via the Planetary Science Archive (PSA). The PSA consists of online services incorporating search, preview, download, notification and delivery basket functionality. Besides data from the GIOTTO spacecraft and several ground-based cometary observations, the PSA contains data from the Mars Express, Venus Express, Rosetta, SMART-1 and Huygens missions. The focus of the PSA activities is on the long-term preservation of data and knowledge from ESA's planetary missions. Scientific users can access the data online using several interfaces: - The Advanced Search Interface allows complex parameter based queries, providing the end user with a facility to complete very specific searches on meta-data and geometrical parameters. By nature, this interface requires careful use and heavy interaction with the end-user to input and control the relevant search parameters. - The Map-based Interface is currently operational only for Mars Express HRCS and OMEGA data. This interface allows an end-user to specify a region-of-interest by dragging a box onto a base map of Mars. From this interface, it is possible to directly visualize query results. The Map-based and Advanced interfaces are linked and cross-compatible. If a user defines a region-of-interest in the Map-based interface, the results can be refined by entering more detailed search parameters in the Advanced interface. - The FTP Browser Interface is designed for more experienced users, and allows for direct browsing and access of the data set content through ftp-tree search. Each dataset contains documentation and calibration information in addition to the scientific or engineering data. All data are prepared by the corresponding instrument teams, mostly located in Europe. PSA supports the instrument teams in the full archiving process, from the definition of the data products, meta-data and product labels

  15. GIS Facility and Services at the Ronald Greeley Center for Planetary Studies

    Science.gov (United States)

    Nelson, D. M.; Williams, D. A.

    2017-06-01

    At the RGCPS, we established a Geographic Information Systems (GIS) computer laboratory, where we instruct researchers how to use GIS and image processing software. Seminars demonstrate viewing, integrating, and digitally mapping planetary data.

  16. Planetary Geologic Mapping Python Toolbox: A Suite of Tools to Support Mapping Workflows

    Science.gov (United States)

    Hunter, M. A.; Skinner, J. A.; Hare, T. M.; Fortezzo, C. M.

    2017-06-01

    The collective focus of the Planetary Geologic Mapping Python Toolbox is to provide researchers with additional means to migrate legacy GIS data, assess the quality of data and analysis results, and simplify common mapping tasks.

  17. Get Involved in Planetary Discoveries through New Worlds, New Discoveries

    Science.gov (United States)

    Shupla, Christine; Shipp, S. S.; Halligan, E.; Dalton, H.; Boonstra, D.; Buxner, S.; SMD Planetary Forum, NASA

    2013-01-01

    "New Worlds, New Discoveries" is a synthesis of NASA’s 50-year exploration history which provides an integrated picture of our new understanding of our solar system. As NASA spacecraft head to and arrive at key locations in our solar system, "New Worlds, New Discoveries" provides an integrated picture of our new understanding of the solar system to educators and the general public! The site combines the amazing discoveries of past NASA planetary missions with the most recent findings of ongoing missions, and connects them to the related planetary science topics. "New Worlds, New Discoveries," which includes the "Year of the Solar System" and the ongoing celebration of the "50 Years of Exploration," includes 20 topics that share thematic solar system educational resources and activities, tied to the national science standards. This online site and ongoing event offers numerous opportunities for the science community - including researchers and education and public outreach professionals - to raise awareness, build excitement, and make connections with educators, students, and the public about planetary science. Visitors to the site will find valuable hands-on science activities, resources and educational materials, as well as the latest news, to engage audiences in planetary science topics and their related mission discoveries. The topics are tied to the big questions of planetary science: how did the Sun’s family of planets and bodies originate and how have they evolved? How did life begin and evolve on Earth, and has it evolved elsewhere in our solar system? Scientists and educators are encouraged to get involved either directly or by sharing "New Worlds, New Discoveries" and its resources with educators, by conducting presentations and events, sharing their resources and events to add to the site, and adding their own public events to the site’s event calendar! Visit to find quality resources and ideas. Connect with educators, students and the public to

  18. Mars 2020 Planetary Protection Status

    Science.gov (United States)

    Stricker, Moogega; Bernard, Douglas; Benardini, James Nick; Jones, Melissa

    2016-07-01

    The Mars 2020 (M2020) flight system consists of a cruise stage; an entry, descent and landing system (EDL); and a Radioisotope Thermoelectric Generator (RTG) powered roving science vehicle that will land on the surface of Mars. The M2020 Mission is designed to investigate key question related to the habitability of Mars and will conduct assessments that set the stage for potential future human exploration of Mars. Per its Program Level Requirements, the project will also acquire and cache samples of rock, regolith, and/or procedural "blank" samples for possible return to Earth by a subsequent mission. NASA has assigned the M2020 Mission as a Category V Restricted Earth Return due to the possible future return of collected samples. As indicated in NPR8020.12D, Section 5.3.3.2, the outbound leg of a Category V mission that could potentially return samples to Earth, Mars 2020 would be expected to meet the requirements of a Category IVb mission. The entire flight system is subject to microbial reduction requirements, with additional specific emphasis on the sample acquisition and caching. A bioburden accounting tool is being used to track the microbial population on the surfaces to ensure that the biological cleanliness requirements are met. Initial bioburden estimates based on MSL heritage allows M2020 to gauge more precisely how the bioburden is allocated throughout each hardware element. Mars 2020 has completed a Planetary Protection Plan with Planetary Implementation Plans at a mature draft form. Planetary protection sampling activities have commenced with the start of flight system fabrication and assembly. The status of the Planetary Protection activities will be reported.

  19. Precision photometry for planetary transits

    CERN Document Server

    Pont, F; Pont, Frederic; Moutou, Claire

    2007-01-01

    We review the state of the art in follow-up photometry for planetary transit searches. Three topics are discussed: (1) Photometric monitoring of planets discovered by radial velocity to detect possible transits (2) Follow-up photometry of candidates from photometric transit searches to weed out eclipsing binaries and false positives (3) High-precision lightcurves of known transiting planets to increase the accuracy on the planet parameters.

  20. Planetary Exploration in the Classroom

    Science.gov (United States)

    Slivan, S. M.; Binzel, R. P.

    1997-07-01

    We have developed educational materials to seed a series of undergraduate level exercises on "Planetary Exploration in the Classroom." The goals of the series are to teach modern methods of planetary exploration and discovery to students having both science and non-science backgrounds. Using personal computers in a "hands-on" approach with images recorded by planetary spacecraft, students working through the exercises learn that modern scientific images are digital objects that can be examined and manipulated in quantitative detail. The initial exercises we've developed utilize NIH Image in conjunction with images from the Voyager spacecraft CDs. Current exercises are titled "Using 'NIH IMAGE' to View Voyager Images", "Resolving Surface Features on Io", "Discovery of Volcanoes on Io", and "Topography of Canyons on Ariel." We expect these exercises will be released during Fall 1997 and will be available via 'anonymous ftp'; detailed information about obtaining the exercises will be on the Web at "http://web.mit.edu/12s23/www/pec.html." This curriculum development was sponsored by NSF Grant DUE-9455329.

  1. Intelligence for Human-Assistant Planetary Surface Robots

    Science.gov (United States)

    Hirsh, Robert; Graham, Jeffrey; Tyree, Kimberly; Sierhuis, Maarten; Clancey, William J.

    2006-01-01

    The central premise in developing effective human-assistant planetary surface robots is that robotic intelligence is needed. The exact type, method, forms and/or quantity of intelligence is an open issue being explored on the ERA project, as well as others. In addition to field testing, theoretical research into this area can help provide answers on how to design future planetary robots. Many fundamental intelligence issues are discussed by Murphy [2], including (a) learning, (b) planning, (c) reasoning, (d) problem solving, (e) knowledge representation, and (f) computer vision (stereo tracking, gestures). The new "social interaction/emotional" form of intelligence that some consider critical to Human Robot Interaction (HRI) can also be addressed by human assistant planetary surface robots, as human operators feel more comfortable working with a robot when the robot is verbally (or even physically) interacting with them. Arkin [3] and Murphy are both proponents of the hybrid deliberative-reasoning/reactive-execution architecture as the best general architecture for fully realizing robot potential, and the robots discussed herein implement a design continuously progressing toward this hybrid philosophy. The remainder of this chapter will describe the challenges associated with robotic assistance to astronauts, our general research approach, the intelligence incorporated into our robots, and the results and lessons learned from over six years of testing human-assistant mobile robots in field settings relevant to planetary exploration. The chapter concludes with some key considerations for future work in this area.

  2. Life sciences and space research XXIII(2): Planetary biology and origins of life; Proceedings of the Topical Meeting and Workshops XX, XXI and XXIII of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    Science.gov (United States)

    Schwartz, A. W. (Editor); Dose, K. (Editor); Raup, D. M. (Editor); Klein, H. P. (Editor); Devincenzi, D. L. (Editor)

    1989-01-01

    This volume includes chapters on exobiology in space, chemical and early biochemical evolution, life without oxygen, potential for chemical evolution in the early environment of Mars, planetary protection issues and sample return missions, and the modulation of biological evolution by astrophysical phenomena. Papers are presented on the results of spaceflight missions, the action of some factors of space medium on the abiogenic synthesis of nucleotides, early peptidic enzymes, microbiology and biochemistry of the methanogenic archaeobacteria, and present-day biogeochemical activities of anaerobic bacteria and their relevance to future exobiological investigations. Consideration is also given to the development of the Alba Patera volcano on Mars, biological nitrogen fixation under primordial Martian partial pressures of dinitrogen, the planetary protection issues in advance of human exploration of Mars, and the difficulty with astronomical explanations of periodic mass extinctions.

  3. Life sciences and space research XXIII(2): Planetary biology and origins of life; Proceedings of the Topical Meeting and Workshops XX, XXI and XXIII of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    Science.gov (United States)

    Schwartz, A. W. (Editor); Dose, K. (Editor); Raup, D. M. (Editor); Klein, H. P. (Editor); Devincenzi, D. L. (Editor)

    1989-01-01

    This volume includes chapters on exobiology in space, chemical and early biochemical evolution, life without oxygen, potential for chemical evolution in the early environment of Mars, planetary protection issues and sample return missions, and the modulation of biological evolution by astrophysical phenomena. Papers are presented on the results of spaceflight missions, the action of some factors of space medium on the abiogenic synthesis of nucleotides, early peptidic enzymes, microbiology and biochemistry of the methanogenic archaeobacteria, and present-day biogeochemical activities of anaerobic bacteria and their relevance to future exobiological investigations. Consideration is also given to the development of the Alba Patera volcano on Mars, biological nitrogen fixation under primordial Martian partial pressures of dinitrogen, the planetary protection issues in advance of human exploration of Mars, and the difficulty with astronomical explanations of periodic mass extinctions.

  4. Planetary protection issues related to human missions to Mars

    Science.gov (United States)

    Debus, A.; Arnould, J.

    2008-09-01

    In accordance with the United Nations Outer Space Treaties [United Nations, Agreement Governing the Activities of States on the Moon and Other Celestial Bodies, UN doc A/RES/34/68, resolution 38/68 of December 1979], currently maintained and promulgated by the Committee on Space Research [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], missions exploring the Solar system must meet planetary protection requirements. Planetary protection aims to protect celestial bodies from terrestrial contamination and to protect the Earth environment from potential biological contamination carried by returned samples or space systems that have been in contact with an extraterrestrial environment. From an exobiology perspective, Mars is one of the major targets, and several missions are currently in operation, in transit, or scheduled for its exploration. Some of them include payloads dedicated to the detection of life or traces of life. The next step, over the coming years, will be to return samples from Mars to Earth, with a view to increasing our knowledge in preparation for the first manned mission that is likely to take place within the next few decades. Robotic missions to Mars shall meet planetary protection specifications, currently well documented, and planetary protection programs are implemented in a very reliable manner given that experience in the field spans some 40 years. With regards to sample return missions, a set of stringent requirements has been approved by COSPAR [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], and technical challenges must now be overcome in order to preserve the Earth’s biosphere from any eventual contamination risk. In addition to the human dimension of

  5. Research on mechanical characteristics of closed planetary bevel-type CVT%封闭式行星锥盘无级变速器的传动性能研究

    Institute of Scientific and Technical Information of China (English)

    谢观如; 刘开昌

    2012-01-01

    介绍了封闭式行星锥盘无级变速器的基本结构与传动原理.利用负号差动轮系的特点,将行星锥盘无级变速器与差动轮系封闭组合,列出了几种主要的结构形式,并对其运动、功率分配和功率流流向进行分析,通过效率计算表明该思路的可行性与优越性.%This paper describes the basic structure and driving principle of the closed planetary bevel - type CVT. The characteristics of negative differential gear - train are applied to combine planetary bevel - type CVT with the differential gear - train. Several major structural forms to close the planetary bevel - type CVT are listed and its movement and power flow are analyzed. The calculated efficiency results proved the feasibility and superiority of this idea.

  6. JMARS - A Planetary GIS

    Science.gov (United States)

    Christensen, P. R.; Engle, E.; Anwar, S.; Dickenshied, S.; Noss, D.; Gorelick, N.; Weiss-Malik, M.

    2009-12-01

    to effectively allocate instrument resources by using any available product, including their own. Mission participants submit regions of interest for acquisition, and review the resulting images. Command line tools provide a scriptable environment for querying the position and geometry of spacecraft and targets. JMARS is free and open source. Students and researchers are encouraged to submit their data for inclusion in the data archive, where it may be accessed by other tools that support the necessary web standards. Software developers with a little Java experience are invited to write their own layers, or to learn and borrow from our open source SVN repository. JMARS provides free and efficient access to more than a terabyte of NASA orbiter data, and the basic image and vector processing features to conveniently compare, plot, and blend data. It is used by all levels of user, and is actively supported on Windows, Mac, Linux, and Solaris.

  7. Seasonal constraints on inferred planetary heat content

    Science.gov (United States)

    McKinnon, Karen A.; Huybers, Peter

    2016-10-01

    Planetary heating can be quantified using top of the atmosphere energy fluxes or through monitoring the heat content of the Earth system. It has been difficult, however, to compare the two methods with each other because of biases in satellite measurements and incomplete spatial coverage of ocean observations. Here we focus on the the seasonal cycle whose amplitude is large relative to satellite biases and observational errors. The seasonal budget can be closed through inferring contributions from high-latitude oceans and marginal seas using the covariance structure of National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM1). In contrast, if these regions are approximated as the average across well-observed regions, the amplitude of the seasonal cycle is overestimated relative to satellite constraints. Analysis of the same CESM1 simulation indicates that complete measurement of the upper ocean would increase the magnitude and precision of interannual trend estimates in ocean heating more than fully measuring the deep ocean.

  8. New analytical planetary theories VSOP2010

    Science.gov (United States)

    Francou, G.; Simon, J.-L.

    2011-10-01

    The planetary theories VSOP are essentially issued from the research works of P. Bretagnon. After the last version, VSOP2000, he began to make some improvements, but, unfortunately, he did not have time to complete his work. We took up again this work introducing various changes and complements and build two versions : VSOP2010A fitted to DE405 (numerical integration of the JPL) and VSOP2010B, not yet finished, fitted to INPOP08A (numerical integration of the IMCCE at Paris observatory). Over the time interval [1890,2000], the estimated precision is 3 to 10 times better than that of VSOP2000. Over the time interval [-4000,8000], the gain in precision is about 5 times better for the telluric planets and 10 to 50 times better for the outer planets in comparison with VSOP2000.

  9. Horses for courses: analytical tools to explore planetary boundaries

    Science.gov (United States)

    van Vuuren, D. P.; Lucas, P. L.; Häyhä, T.; Cornell, S. E.; Stafford-Smith, M.

    2015-09-01

    There is a need for further integrated research on developing a set of sustainable development objectives, based on the proposed framework of planetary boundaries indicators. The relevant research questions are divided in this paper into four key categories, related to the underlying processes and selection of key indicators, understanding the impacts of different exposure levels and influence of connections between different types of impacts, a better understanding of different response strategies and the available options to implement changes. Clearly, different categories of scientific disciplines and associated models exist that can contribute to the necessary analysis, noting that the distinctions between them are fuzzy. In the paper, we both indicate how different models relate to the four categories of questions but also how further insights can be obtained by connecting the different disciplines (without necessarily fully integrating them). Research on integration can support planetary boundary quantification in a credible way, linking human drivers and social and biophysical impacts.

  10. The Roles of Discs for Planetary Systems

    CERN Document Server

    Yeh, L C; Yeh, Li-Chin; Jiang, Ing-Guey

    2007-01-01

    It is known that the discs are detected for some of the extra-solar planetary systems. It is also likely that there was a disc mixing with planets and small bodies while our Solar System was forming. From our recent results, we conclude that the discs play two roles: the gravity makes planetary systems more chaotic and the drag makes planetary systems more resonant.

  11. Twenty-Second Lunar and Planetary Science Conference

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The papers in this collection were written for general presentation, avoiding jargon and unnecessarily complex terms. Some of the topics covered include: planetary evolution, planetary satellites, planetary composition, planetary surfaces, planetary geology, volcanology, meteorite impacts and composition, and cosmic dust. Particular emphasis is placed on Mars and the Moon.

  12. Sealed Planetary Return Canister (SPRC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sample return missions have primary importance in future planetary missions. A basic requirement is that samples be returned in pristine, uncontaminated condition,...

  13. Institute of Geophysics, Planetary Physics, and Signatures

    Data.gov (United States)

    Federal Laboratory Consortium — The Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory is committed to promoting and supporting high quality, cutting-edge...

  14. Robotic Tool Changer for Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future planetary exploration missions will require compact, lightweight robotic manipulators for handling a variety of tools & instruments without increasing the...

  15. Sealed Planetary Return Canister (SPRC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sample return missions have primary importance in future planetary missions. A basic requirement is that samples be returned in pristine, uncontaminated condition,...

  16. Planetary protection issues linked to human missions to Mars

    Science.gov (United States)

    Debus, A.

    According to United Nations Treaties and handled presently by the Committee of Space Research COSPAR the exploration of the Solar System has to comply with planetary protection requirements The goal of planetary protection is to protect celestial bodies from terrestrial contamination and also to protect the Earth environment from an eventual biocontamination carried by return samples or by space systems returning to the Earth Mars is presently one of the main target at exobiology point of view and a lot of missions are operating on travel or scheduled for its exploration Some of them include payload dedicated to the search of life or traces of life and one of the goals of these missions is also to prepare sample return missions with the ultimate objective to walk on Mars Robotic missions to Mars have to comply with planetary protection specifications well known presently and planetary protection programs are implemented with a very good reliability taking into account an experience of 40 years now For sample return missions a set of stringent requirements have been approved by the COSPAR and technical challenges have now to be won in order to preserve Earth biosphere from an eventual contamination risk Sending astronauts on Mars will gather all these constraints added with the human dimension of the mission The fact that the astronauts are huge contamination sources for Mars and that they are also potential carrier of a contamination risk back to Earth add also ethical considerations to be considered For the preparation of a such

  17. On the dynamics of the three dimensional planetary systems

    CERN Document Server

    Antoniadou, Kyriaki I; Hadjidemetriou, John D

    2013-01-01

    Over the last decades, there has been a tremendous increase in research on extrasolar planets. Many exosolar systems, which consist of a Star and two inclined Planets, seem to be locked in 4/3, 3/2, 2/1, 5/2, 3/1 and 4/1 mean motion resonance (MMR). We herewith present the model used to simulate three dimensional planetary systems and provide planar families of periodic orbits (PO), which belong to all possible configurations that each MMR has, along with their linear horizontal and vertical stability. We focus on depicting stable spatial families (most of them up to mutual inclination of $60^\\circ$) generated by PO of planar circular families, because the trapping in MMR could be a consequence of planetary migration process. We attempt to connect the linear stability of PO with long-term stability of a planetary system close to them. This can stimulate the search of real planetary systems in the vicinity of stable spatial PO-counterbalanced by the planets' orbital elements, masses and MMR; all of which could...

  18. Planetary Radars Operating Centre PROC

    Science.gov (United States)

    Catallo, C.; Flamini, E.; Seu, R.; Alberti, G.

    2007-12-01

    Planetary exploration by means of radar systems, mainly using Ground Penetrating Radars (GPR) plays an important role in Italy. Numerous scientific international space programs are currently carried out jointly with ESA and NASA by Italian Space Agency, the scientific community and the industry. Three important experiments under Italian leadership ( designed and manufactured by the Italian industry), provided by ASI either as contribution to ESA programs either within a NASA/ASI joint venture framework, are now operating: MARSIS on-board Mars Express, SHARAD on-board Mars Reconnaissance Orbiter and CASSINI Radar on-board Cassini spacecraft. In order to support all the scientific communities, institutional customers and experiment teams operation three Italian dedicated operational centers have been realized, namely SHOC, (Sharad Operating Centre), MOC (Marsis Operating Center) and CASSINI PAD ( Processing Altimetry Data). Each center is dedicated to a single instrument management and control, data processing and distribution. Although they had been conceived to operate autonomously and independently one from each other, synergies and overlaps have been envisaged leading to the suggestion of a unified center, the Planetary Radar Processing Center (PROC). PROC is conceived in order to include the three operational centers, namely SHOC, MOC and CASSINI PAD, either from logistics point of view and from HW/SW capabilities point of view. The Planetary Radar Processing Center shall be conceived as the Italian support facility to the scientific community for on-going and future Italian planetary exploration programs. Therefore, scalability, easy use and management shall be the design drivers. The paper describes how PROC is designed and developed, to allow SHOC, MOC and CASSINI PAD to operate as before, and to offer improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation. Furthermore, in the frame of

  19. Central Stars of Planetary Nebulae

    CERN Document Server

    Jones, David

    2016-01-01

    In this brief invited review, I will attempt to summarise some of the key areas of interest in the study of central stars of planetary nebulae which (probably) won't be covered by other speakers' proceedings. The main focus will, inevitably, be on the subject of multiplicity, with special emphasis on recent results regarding triple central star systems as well as wide binaries which avoid a common-envelope phase. Furthermore, in light of the upcoming release of Kepler's Campaign 11 data, I will discuss a few of the prospects from that data including the unique possibility to detect merger products.

  20. The four hundred years of planetary science since Galileo and Kepler.

    Science.gov (United States)

    Burns, Joseph A

    2010-07-29

    For 350 years after Galileo's discoveries, ground-based telescopes and theoretical modelling furnished everything we knew about the Sun's planetary retinue. Over the past five decades, however, spacecraft visits to many targets transformed these early notions, revealing the diversity of Solar System bodies and displaying active planetary processes at work. Violent events have punctuated the histories of many planets and satellites, changing them substantially since their birth. Contemporary knowledge has finally allowed testable models of the Solar System's origin to be developed and potential abodes for extraterrestrial life to be explored. Future planetary research should involve focused studies of selected targets, including exoplanets.

  1. Fitting the curve in Excel® : Systematic curve fitting of laboratory and remotely sensed planetary spectra

    NARCIS (Netherlands)

    McCraig, M.A.; Osinski, G.R.; Cloutis, E.A.; Flemming, R.L.; Izawa, M.R.M.; Reddy, V.; Fieber-Beyer, S.K.; Pompilio, L.; van der Meer, F.D.; Berger, J.A.; Bramble, M.S.; Applin, D.M.

    2017-01-01

    Spectroscopy in planetary science often provides the only information regarding the compositional and mineralogical make up of planetary surfaces. The methods employed when curve fitting and modelling spectra can be confusing and difficult to visualize and comprehend. Researchers who are new to

  2. Design and research of belt-differential planetary gear continuously variable transmission%带式差动行星齿轮无级变速器的设计与研究

    Institute of Scientific and Technical Information of China (English)

    吴斌; 孙付春; 段钦华

    2009-01-01

    The belt-differential planetary gear continuously variable transmission is a closed planetary gear train the speed of which is adjustable. The way of designing this kind of gear train has been introduced in this paper based on the study of speed regulation range and differential gears. Meanwhile, a new method for analysis of gear train power flow and calculation for meshing efficiency has been also put forward in the paper though an example. As a result, with this method the belt-differential planetary gear continuously variable transmission with speed Conveniently, high carrying capacity and efficient, large speed range can be designed.%带式差动行星齿轮无级变速器是一种可进行无级调速的封闭式行星轮系,实际上是带式无级变速器和行星轮系的组合.在对带式无级变速调速范围和差动轮系研究的基础上,给出了设计带式差动行星齿轮无级变速器的方法.并通过实例,给出了研究此类无级变速器功率流分析和啮合效率计算的新方法.结果表明,应用此方法可设计出调速方便、承载能力强、效率高、调速范围大的带式差动行星齿轮无级变速器.

  3. 行星传动原理在NGW型减速器中应用%Research on the application of planetary gear transmission technology in the NGW model reducer

    Institute of Scientific and Technical Information of China (English)

    王斌

    2011-01-01

    Since the involute gear planetary transmission features with transmission load by several gears at the same time to divide power. It is widely used in the fields like metallurgy,aviation,shipbuilding,engineering machinery,machine tools and other industries for the gear assembly of reduction gear,overdrive gear or variable gear,which is playing more important role. In order to further enhance the accuracy of involute gear planetary transmission and to expand the applications of involute gear planetary gear,a new method on the plane tary transmission technology is presented it for completing the velocity complex,in which structural design,the stress analysis as well as power allocation and installation methods are also introduced in detail which feasibility and reliability are verified by experiments.%由于渐开线齿轮行星传动具有几个齿轮同时传递载荷,使功率分流的特点,所以在冶金、航空、船舶、工程机械、机床等行业作减速、增速或变速齿轮传动装置,发挥较为重要作用.为了进一步提高渐开线齿轮行星传动的精度,扩大渐开线齿轮行星传动的应用范围,提出了一种采用行星传动技术来完成速度合成的新方法,并对其结构设计、受力分析、功率分配以及安装方法等进行了详细的介绍,并通过实验验证了该方法的简便易行,可靠性要求.

  4. The complex planetary synchronization structure of the solar system

    CERN Document Server

    Scafetta, Nicola

    2014-01-01

    The complex planetary synchronization structure of the solar system, which since Pythagoras of Samos (ca. 570-495 BC) is known as the music of the spheres, is briefly reviewed from the Renaissance up to contemporary research. Copernicus' heliocentric model from 1543 suggested that the planets of our solar system form a kind of mutually ordered and quasi-synchronized system. From 1596 to 1619 Kepler formulated preliminary mathematical relations of approximate commensurabilities among the planets, which were later reformulated in the Titius-Bode rule (1766-1772) that successfully predicted the orbital position of Ceres and Uranus. Following the discovery of the ~11 yr sunspot cycle, in 1859 Wolf suggested that the observed solar variability could be approximately synchronized with the orbital movements of Venus, Earth, Jupiter and Saturn. Modern research have further confirmed that: (1) the planetary orbital periods can be approximately deduced from a simple system of resonant frequencies; (2) the solar system ...

  5. Visual lunar and planetary astronomy

    CERN Document Server

    Abel, Paul G

    2013-01-01

    With the advent of CCDs and webcams, the focus of amateur astronomy has to some extent shifted from science to art. The object of many amateur astronomers is now to produce “stunning images” that, although beautiful, are not intended to have scientific merit. Paul Abel has been addressing this issue by promoting visual astronomy wherever possible – at talks to astronomical societies, in articles for popular science magazines, and on BBC TV’s The Sky at Night.   Visual Lunar and Planetary Astronomy is a comprehensive modern treatment of visual lunar and planetary astronomy, showing that even in the age of space telescopes and interplanetary probes it is still possible to contribute scientifically with no more than a moderately priced commercially made astronomical telescope.   It is believed that imaging and photography is somehow more objective and more accurate than the eye, and this has led to a peculiar “crisis of faith” in the human visual system and its amazing processing power. But by anal...

  6. Interactive investigations into planetary interiors

    Science.gov (United States)

    Rose, I.

    2015-12-01

    Many processes in Earth science are difficult to observe or visualize due to the large timescales and lengthscales over which they operate. The dynamics of planetary mantles are particularly challenging as we cannot even look at the rocks involved. As a result, much teaching material on mantle dynamics relies on static images and cartoons, many of which are decades old. Recent improvements in computing power and technology (largely driven by game and web development) have allowed for advances in real-time physics simulations and visualizations, but these have been slow to affect Earth science education.Here I demonstrate a teaching tool for mantle convection and seismology which solves the equations for conservation of mass, momentum, and energy in real time, allowing users make changes to the simulation and immediately see the effects. The user can ask and answer questions about what happens when they add heat in one place, or take it away from another place, or increase the temperature at the base of the mantle. They can also pause the simulation, and while it is paused, create and visualize seismic waves traveling through the mantle. These allow for investigations into and discussions about plate tectonics, earthquakes, hot spot volcanism, and planetary cooling.The simulation is rendered to the screen using OpenGL, and is cross-platform. It can be run as a native application for maximum performance, but it can also be embedded in a web browser for easy deployment and portability.

  7. New Indivisible Planetary Science Paradigm

    CERN Document Server

    Herndon, J Marvin

    2013-01-01

    I present here a new, indivisible planetary science paradigm, a wholly self-consistent vision of the nature of matter in the Solar System, and dynamics and energy sources of planets. Massive-core planets formed by condensing and raining-out from within giant gaseous protoplanets at high pressures and high temperatures. Earth's complete condensation included a 300 Earth-mass gigantic gas/ice shell that compressed the rocky kernel to about 66% of Earth's present diameter. T-Tauri eruptions stripped the gases away from the inner planets and stripped a portion of Mercury's incompletely condensed protoplanet, and transported it to the region between Mars and Jupiter where it fused with in-falling oxidized condensate from the outer regions of the Solar System and formed the parent matter of ordinary chondrite meteorites, the main-Belt asteroids, and veneer for the inner planets, especially Mars. In response to decompression-driven planetary volume increases, cracks form to increase surface area and mountain ranges ...

  8. Infrastructure for Planetary Sciences: Universal planetary database development project

    Science.gov (United States)

    Kasaba, Yasumasa; Capria, M. T.; Crichton, D.; Zender, J.; Beebe, R.

    The International Planetary Data Alliance (IPDA), formally formed under COSPAR (Formal start: from the COSPAR 2008 at Montreal), is a joint international effort to enable global access and exchange of high quality planetary science data, and to establish archive stan-dards that make it easier to share the data across international boundaries. In 2008-2009, thanks to the many players from several agencies and institutions, we got fruitful results in 6 projects: (1) Inter-operable Planetary Data Access Protocol (PDAP) implementations [led by J. Salgado@ESA], (2) Small bodies interoperability [led by I. Shinohara@JAXA N. Hirata@U. Aizu], (3) PDAP assessment [led by Y. Yamamoto@JAXA], (4) Architecture and standards definition [led by D. Crichton@NASA], (5) Information model and data dictionary [led by S. Hughes@NASA], and (6) Venus Express Interoperability [led by N. Chanover@NMSU]. 'IPDA 2009-2010' is important, especially because the NASA/PDS system reformation is now reviewed as it develops for application at the international level. IPDA is the gate for the establishment of the future infrastructure. We are running 8 projects: (1) IPDA Assessment of PDS4 Data Standards [led by S. Hughes (NASA/JPL)], (2) IPDA Archive Guide [led by M.T. Capria (IASF/INAF) and D. Heather (ESA/PSA)], (3) IPDA Standards Identification [led by E. Rye (NASA/PDS) and G. Krishna (ISRO)], (4) Ancillary Data Standards [led by C. Acton (NASA/JPL)], (5) IPDA Registries Definition [led by D. Crichton (NASA/JPL)], (6) PDAP Specification [led by J. Salgado (ESA/PSA) and Y. Yamamoto (JAXA)], (7) In-teroperability Assessment [R. Beebe (NMSU) and D. Heather (ESA/PSA)], and (8) PDAP Geographic Information System (GIS) extension [N. Hirata (Univ. Aizu) and T. Hare (USGS: thare@usgs.gov)]. This paper presents our achievements and plans summarized in the IPDA 5th Steering Com-mittee meeting at DLR in July 2010. We are now just the gate for the establishment of the Infrastructure.

  9. Planetary plains: subsidence and warping

    Science.gov (United States)

    Kochemasov, G.

    A common feature of all celestial bodies is their tectonic dichotomy best studied, naturally, at Earth [1]. Here there is an opposition of the eastern continental hemisphere and the western oceanic one. The first one is uplifted and cracked, the second one subsided, squeezed and warped. The next excellent example of dichotomy is at Mars where the subsided northern hemisphere is opposed by the highly uplifted southern one. The enigmatic two-face Iapetus now with help of Cassini SC presents a more clear picture: the leading dark hemisphere is opposed by the trailing light one. The light hemisphere is built mainly of water ice, the dark one of some more dense material. Bean-shaped asteroids with one convex and another concave hemispheres are best exemplified by Ida. Examples of dichotomic asteroids, satellites, planets and stars could be extended. Ubiquity of this phenomenon was expressed as the 1st theorem of the planetary wave tectonics [2 & others]: "Celestial bodies are dichotomic". A reason of this phenomenon is in action of inertia-gravity waves occurring in any celestial body because of its movement in non-round but elliptical (parabolic) orbit with periodically changing accelerations. The inertia-gravity standing waves warp rotating bodies (but all bodies rotate !) in 4 ortho- and diagonal interfering directions and in several harmonic wave-lengths. The fundamental wave1 produces ubiquitous tectonic dichotomy (2πR-structure): an opposition of two hemispheres with different planetary radii. To keep angular momenta of two hemispheres equal (otherwise a body will fall apart) the lower subsiding one is constructed of denser material than the higher one. Normally in terrestrial planets lowlands are filled with dense basalts, highlands are built by lighter lithologies. A subsidence means diminishing radius, otherwise, the larger surface must be fit into a smaller space. It is possible only if an original infilling is warped. At Earth cosmic altimetry shows complex

  10. Europlanet/IDIS: Combining Diverse Planetary Observations and Models

    Science.gov (United States)

    Schmidt, Walter; Capria, Maria Teresa; Chanteur, Gerard

    2013-04-01

    Planetary research involves a diversity of research fields from astrophysics and plasma physics to atmospheric physics, climatology, spectroscopy and surface imaging. Data from all these disciplines are collected from various space-borne platforms or telescopes, supported by modelling teams and laboratory work. In order to interpret one set of data often supporting data from different disciplines and other missions are needed while the scientist does not always have the detailed expertise to access and utilize these observations. The Integrated and Distributed Information System (IDIS) [1], developed in the framework of the Europlanet-RI project, implements a Virtual Observatory approach ([2] and [3]), where different data sets, stored in archives around the world and in different formats, are accessed, re-formatted and combined to meet the user's requirements without the need of familiarizing oneself with the different technical details. While observational astrophysical data from different observatories could already earlier be accessed via Virtual Observatories, this concept is now extended to diverse planetary data and related model data sets, spectral data bases etc. A dedicated XML-based Europlanet Data Model (EPN-DM) [4] was developed based on data models from the planetary science community and the Virtual Observatory approach. A dedicated editor simplifies the registration of new resources. As the EPN-DM is a super-set of existing data models existing archives as well as new spectroscopic or chemical data bases for the interpretation of atmospheric or surface observations, or even modeling facilities at research institutes in Europe or Russia can be easily integrated and accessed via a Table Access Protocol (EPN-TAP) [5] adapted from the corresponding protocol of the International Virtual Observatory Alliance [6] (IVOA-TAP). EPN-TAP allows to search catalogues, retrieve data and make them available through standard IVOA tools if the access to the archive

  11. Overview of the 2008 COSPAR Planetary Protection Policy Workshop

    Science.gov (United States)

    Rummel, John

    In January 2008 the COSPAR Panel on Planetary Protection held a Policy Workshop in Montŕal, Canada to consider a number of recommendations that had been suggested at prior e Panel business meetings for updating and clarifying the COSPAR Planetary Protection Policy that had been adopted at the World Space Congress in 2002. One particular element of the Policy that was due for clarification was the definition of "Special Regions" on Mars, which was discussed by the Panel at a Special Regions Colloquium in Rome in September 2008, and which was recommended for updating by both the US National Research Council's Committee on Preventing the Forward Contamination of Mars and by a Special Regions Science Analysis Group organized by NASA under its Mars Exploration Program Analysis Group in 2006. In other business, the Workshop also discussed and adopted wording to reflect the planetary protection considerations associated with future human missions to Mars (subsequent to several NASA and ESA workshops defining those), and addressed the planetary protection categorizations of both Venus and the Earth's Moon. The Workshop also defined a plan to move forward on the categorization of Outer Planet Satellites (to be done in conjunction with SC's B and F), and revised certain portions of the wording of the 1983 version of the COSPAR policy statement, emphasized full participation by all national members in planetary protection decisions and the need to study the ethical considerations of space exploration, and provided for a traceable version of the policy to be assembled and maintained by the Panel. This talk will review the Montŕal Workshop, and use its themes to introduce the remaining speakers in the session. e

  12. Earth as an Exoplanet: Lessons in Recognizing Planetary Habitability

    Science.gov (United States)

    Meadows, Victoria; Robinson, Tyler; Misra, Amit; Ennico, Kimberly; Sparks, William B.; Claire, Mark; Crisp, David; Schwieterman, Edward; Bussey, D. Ben J.; Breiner, Jonathan

    2015-01-01

    Earth will always be our best-studied example of a habitable world. While extrasolar planets are unlikely to look exactly like Earth, they may share key characteristics, such as oceans, clouds and surface inhomogeneity. Earth's globally-averaged characteristics can therefore help us to recognize planetary habitability in data-limited exoplanet observations. One of the most straightforward ways to detect habitability will be via detection of 'glint', specular reflectance from an ocean (Robinson et al., 2010). Other methods include undertaking a census of atmospheric greenhouse gases, or attempting to measure planetary surface temperature and pressure, to determine if liquid water would be feasible on the planetary surface. Here we present recent research on detecting planetary habitability, led by the NASA Astrobiology Institute's Virtual Planetary Laboratory Team. This work includes a collaboration with the NASA Lunar Science Institute on the detection of ocean glint and ozone absorption using Lunar Crater Observation and Sensing Satellite (LCROSS) Earth observations (Robinson et al., 2014). This data/model comparison provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths. We find that the VPL spectral Earth model is in excellent agreement with the LCROSS Earth data, and can be used to reliably predict Earth's appearance at a range of phases relevant to exoplanet observations. Determining atmospheric surface pressure and temperature directly for a potentially habitable planet will be challenging due to the lack of spatial-resolution, presence of clouds, and difficulty in spectrally detecting many bulk constituents of terrestrial atmospheres. Additionally, Rayleigh scattering can be masked by absorbing gases and absorption from the underlying surface. However, new techniques using molecular dimers of oxygen (Misra et al., 2014) and nitrogen

  13. Ethical considerations for planetary protection in space exploration: a workshop.

    Science.gov (United States)

    Rummel, J D; Race, M S; Horneck, G

    2012-11-01

    With the recognition of an increasing potential for discovery of extraterrestrial life, a diverse set of researchers have noted a need to examine the foundational ethical principles that should frame our collective space activities as we explore outer space. A COSPAR Workshop on Ethical Considerations for Planetary Protection in Space Exploration was convened at Princeton University on June 8-10, 2010, to examine whether planetary protection measures and practices should be extended to protect planetary environments within an ethical framework that goes beyond "science protection" per se. The workshop had been in development prior to a 2006 NRC report on preventing the forward contamination of Mars, although it responded directly to one of the recommendations of that report and to several peer-reviewed papers as well. The workshop focused on the implications and responsibilities engendered when exploring outer space while avoiding harmful impacts on planetary bodies. Over 3 days, workshop participants developed a set of recommendations addressing the need for a revised policy framework to address "harmful contamination" beyond biological contamination, noting that it is important to maintain the current COSPAR planetary protection policy for scientific exploration and activities. The attendees agreed that there is need for further study of the ethical considerations used on Earth and the examination of management options and governmental mechanisms useful for establishing an environmental stewardship framework that incorporates both scientific input and enforcement. Scientists need to undertake public dialogue to communicate widely about these future policy deliberations and to ensure public involvement in decision making. A number of incremental steps have been taken since the workshop to implement some of these recommendations.

  14. Planetary Gearbox Fault Diagnosis Using a Single Piezoelectric Strain Sensor

    Science.gov (United States)

    2014-12-23

    to process signals acquired from a si ngle piezoelectric strain sensor mounted on the housing of a planetary gearbox a nd extracting condition... Melbourne , Australia, pp. 171 - 178. Jiang, X., Kim, K., Zha ng, S., Johnson, J., & Salazar, G. (2014). High-temperature piezoelectic sensing...epicyclic gearbox by signal averaging of th e vibration, Aeronautical Research Laboratory, Melbourne , Victoria, Australia. McFadden, P. D . (1991). A

  15. Summary and abstracts of the Planetary Data Workshop, June 2012

    Science.gov (United States)

    Gaddis, Lisa R.; Hare, Trent; Beyer, Ross

    2014-01-01

    The recent boom in the volume of digital data returned by international planetary science missions continues to both delight and confound users of those data. In just the past decade, the Planetary Data System (PDS), NASA’s official archive of scientific results from U.S. planetary missions, has seen a nearly 50-fold increase in the amount of data and now serves nearly half a petabyte. In only a handful of years, this volume is expected to approach 1 petabyte (1,000 terabytes or 1 quadrillion bytes). Although data providers, archivists, users, and developers have done a creditable job of providing search functions, download capabilities, and analysis and visualization tools, the new wealth of data necessitates more frequent and extensive discussion among users and developers about their current capabilities and their needs for improved and new tools. A workshop to address these and other topics, “Planetary Data: A Workshop for Users and Planetary Software Developers,” was held June 25–29, 2012, at Northern Arizona University (NAU) in Flagstaff, Arizona. A goal of the workshop was to present a summary of currently available tools, along with hands-on training and how-to guides, for acquiring, processing and working with a variety of digital planetary data. The meeting emphasized presentations by data users and mission providers during days 1 and 2, and developers had the floor on days 4 and 5 using an “unconference” format for day 5. Day 3 featured keynote talks by Laurence Soderblom (U.S. Geological Survey, USGS) and Dan Crichton (Jet Propulsion Laboratory, JPL) followed by a panel discussion, and then research and technical discussions about tools and capabilities under recent or current development. Software and tool demonstrations were held in break-out sessions in parallel with the oral session. Nearly 150 data users and developers from across the globe attended, and 22 National Aeronautics and space Administration (NASA) and non-NASA data providers

  16. Modeling of the process of gear shifting in planetary gear trains of motor vehicles

    OpenAIRE

    Aleksandar R. Grkić; Čedomir V. Duboka; Milan M. Krsmanović

    2011-01-01

    Gear boxes, i. e. the realization of their functions, especially gear shift, have a big impact on vehicle operation quality through their effects on the performance of vehicles and their comfort. This paper shows a method of modeling the transition process during gear shifting in planetary gear trains. The simulation model is developed with in order to provide virtual research of planetary gear trains, which would positively decrease the number of real prototypes, thus considerably saving tim...

  17. Advanced model for the calculation of meshing forces in spur gear planetary transmissions

    OpenAIRE

    Iglesias Santamaría, Miguel; Fernández del Rincón, Alfonso; Juan de Luna, Ana Magdalena de; Díez Ibarbia, Alberto; García Fernández, Pablo; Viadero Rueda, Fernando

    2015-01-01

    This paper presents a planar spur gear planetary transmission model, describing in great detail aspects such as the geometric definition of geometric overlaps and the contact forces calculation, thus facilitating the reproducibility of results by fellow researchers. The planetary model is based on a mesh model already used by the authors in the study of external gear ordinary transmissions. The model has been improved and extended to allow for the internal meshing simulation, taking into cons...

  18. SPEX: The spectropolarimeter for planetary EXploration

    NARCIS (Netherlands)

    Snik, F.; Rietjens, J.H.H.; Harten, G. van; Stam, D.M.; Keller, C.U.; Smit, J.M.; Laan, E.C.; Verlaan, A.L.; Horst, R. ter; Navarro, R.; Wielinga, K.; Moon, S.G.; Voors, R.

    2010-01-01

    SPEX (Spectropolarimeter for Planetary EXploration) is an innovative, compact instrument for spectropolarimetry, and in particular for detecting and characterizing aerosols in planetary atmospheres. With its ∼1-liter volume it is capable of full linear spectropolarimetry, without moving parts. The d

  19. Introduction to the special issue: Planetary geomorphology

    Science.gov (United States)

    Burr, Devon M.; Howard, Alan D.

    2015-07-01

    Planetary geomorphology is the study of extraterrestrial landscapes. In recognition of the promise for productive interaction between terrestrial and planetary geomorphologists, the 45th annual Binghamton Geomorphology Symposium (BGS) focused on Planetary Geomorphology. The aim of the symposium was to bring planetary and terrestrial geomorphologists together for symbiotic and synthetic interactions that would enrich both subdisciplines. In acknowledgment of the crucial role of terrestrial field work in planetary geomorphology and of the BGS tradition, the symposium began with a field trip to the Appalachian Mountains, followed by a dinner talk of recent results from the Mars Surface Laboratory. On Saturday and Sunday, the symposium was organized around major themes in planetary geomorphology, starting with the geomorphic processes that are most common in our Solar System-impact cratering, tectonism, volcanism-to set the stage for other geomorphic processes, including aeolian, fluvial, lacustrine, and glacial/polar. On Saturday evening, the banquet talk provided an historical overview of planetary geomorphology, including its roots in the terrestrial geosciences. The symposium concluded with a full-afternoon tutorial on planetary geomorphologic datasets. This special issue of Geomorphology consists of papers by invited authors from the 2014 BGS, and this introduction provides some context for these papers.

  20. Visualization of Kepler's Laws of Planetary Motion

    Science.gov (United States)

    Lu, Meishu; Su, Jun; Wang, Weiguo; Lu, Jianlong

    2017-01-01

    For this article, we use a 3D printer to print a surface similar to universal gravitation for demonstrating and investigating Kepler's laws of planetary motion describing the motion of a small ball on the surface. This novel experimental method allows Kepler's laws of planetary motion to be visualized and will contribute to improving the…

  1. Planetary nebulae abundances and stellar evolution II

    NARCIS (Netherlands)

    Pottasch, S. R.; Bernard-Salas, J.

    2010-01-01

    Context. In recent years mid-and far infrared spectra of planetary nebulae have been analysed and lead to more accurate abundances. It may be expected that these better abundances lead to a better understanding of the evolution of these objects. Aims. The observed abundances in planetary nebulae are

  2. SPEX: The spectropolarimeter for planetary EXploration

    NARCIS (Netherlands)

    Snik, F.; Rietjens, J.H.H.; Harten, G. van; Stam, D.M.; Keller, C.U.; Smit, J.M.; Laan, E.C.; Verlaan, A.L.; Horst, R. ter; Navarro, R.; Wielinga, K.; Moon, S.G.; Voors, R.

    2010-01-01

    SPEX (Spectropolarimeter for Planetary EXploration) is an innovative, compact instrument for spectropolarimetry, and in particular for detecting and characterizing aerosols in planetary atmospheres. With its ∼1-liter volume it is capable of full linear spectropolarimetry, without moving parts. The d

  3. Summary of the Third International Planetary Dunes Workshop: Remote Sensing and Image Analysis of Planetary Dunes, Flagstaff, Arizona, USA, June 12-15, 2012

    Science.gov (United States)

    Fenton, Lori K.; Hayward, Rosalyn K.; Horgan, Briony H. N.; Rubin, David M.; Titus, Timothy N.; Bishop, Mark A.; Burr, Devon M.; Chojnacki, Matthew; Dinwiddie, Cynthia L.; Kerber, Laura; Le Gall, Alice; Michaels, Timothy I.; Neakrase, Lynn D. V.; Newman, Claire E.; Tirsch, Daniela; Yizhaq, Hezi; Zimbelman, James R.

    2013-03-01

    The Third International Planetary Dunes Workshop took place in Flagstaff, AZ, USA during June 12-15, 2012. This meeting brought together a diverse group of researchers to discuss recent advances in terrestrial and planetary research on aeolian bedforms. The workshop included two and a half days of oral and poster presentations, as well as one formal (and one informal) full-day field trip. Similar to its predecessors, the presented work provided new insight on the morphology, dynamics, composition, and origin of aeolian bedforms on Venus, Earth, Mars, and Titan, with some intriguing speculation about potential aeolian processes on Triton (a satellite of Neptune) and Pluto. Major advancements since the previous International Planetary Dunes Workshop include the introduction of several new data analysis and numerical tools and utilization of low-cost field instruments (most notably the time-lapse camera). Most presentations represented advancement towards research priorities identified in both of the prior two workshops, although some previously recommended research approaches were not discussed. In addition, this workshop provided a forum for participants to discuss the uncertain future of the Planetary Aeolian Laboratory; subsequent actions taken as a result of the decisions made during the workshop may lead to an expansion of funding opportunities to use the facilities, as well as other improvements. The interactions during this workshop contributed to the success of the Third International Planetary Dunes Workshop, further developing our understanding of aeolian processes on the aeolian worlds of the Solar System.

  4. A Planetary Park system for the Moon and beyond

    Science.gov (United States)

    Cockell, Charles; Horneck, Gerda

    Deutschland International space exploration programs foresee the establishment of human settlements on the Moon and on Mars within the next decades, following a series of robotic precursor missions. These increasing robotic visits and eventual human exploration and settlements may have an environmental impact on scientifically important sites and sites of natural beauty in the form of contamination with microorganisms and spacecraft parts, or even pollution as a consequence of in situ resource use. This concern has already been reflected in the Moon Treaty, "The Agreement Governing the Activities of States on the Moon and Other Celestial Bodies" of the United Nations, which follows the Outer Space Treaty of the UN. However, so far, the Moon Treaty has not been ratified by any nation which engages in human space programs or has plans to do so. Planetary protection guidelines as formulated by the Committee on Space Research (COSPAR) are based on the Outer Space Treaty and follow the objectives: (i) to prevent contamination by terrestrial microorganisms if this might jeopardize scientific investi-gations of possible extraterrestrial life forms, and (ii) to protect the Earth from the potential hazard posed by extraterrestrial material brought back to the Earth. As a consequence, they group exploratory missions according to the type of mission and target body in five different categories, requesting specific means of cleaning and sterilization. However, the protection of extraterrestrial environments might also encompass ethical and other non-instrumental reasons. In order to allow intense scientific research and exploitation, and on the other hand to preserve regions of the Moon for research and use by future generations, we proposed the introduction of a planetary (or lunar) park system, which would protect areas of scientific, historic and intrinsic value under a common scheme. A similar placePlaceNamePlanetary PlaceTypePark system could be established on Mars well

  5. 基于扭转几何大变形理论的并联行星传动太阳轮轴设计研究%Designing research on sun gear shaft of parallel planetary gear transmission based on theory of torsional geometric large deformation

    Institute of Scientific and Technical Information of China (English)

    姜世平; 马亚光; 李洁

    2009-01-01

    以潜油单螺杆泵采油系统中的并联行星齿轮减速器为研究对象,结合等圆截面杆的弹性扭转几何大变形位移公式,通过Matlab软件计算,建立了并联行星齿轮减速器中并联太阳轮轴扭转变形的数学模型,应用各段并联太阳轮轴扭转变形协调原理和等功率传递原理,设计了并联行星齿轮减速器.该减速器在传递额定功率的情况下可以大幅度减小径向尺寸.%Taking the parallel planetary gear reducer in the submersible single screw pump oil-extraction system as the target of research, combining with the displacement formula of elastic tor-sional geometric large deformation of equalized circular sectioned rod and through the calculation of Matlab software the mathematical model of torsional deformation of parallel sun gear shaft in the paral-lel planetary gear reducer was established. Using the coordination principle and the uniform power transmission principle of torsional deformations in each section of parallel sun gear shaft, the parallel planetary gear reducer was designed. The radial dimensions of this reducer could be minimized to a large range under the condition of transmitting rated power.

  6. GTR Component of Planetary Precession

    Indian Academy of Sciences (India)

    P C Deshmukh; Kaushal Jaikumar Pillay; Thokala Solomon Raju; Sudipta Dutta; Tanima Banerjee

    2017-06-01

    Even as the theory of relativity is more than a hundred yearsold, it is not within easy reach of undergraduate students.These students have an insatiable urge to learn more aboutit even if the full machinery of the tools required to studythe same is not within their comfortable reach. The recentdetection of gravitational waves has only augmented their enthusiasmabout the General Theory of Relativity (GTR), developedjust over a hundred years now, encapsulated in Einstein’sField Equations. The GTR provided a consistent formulationof the theory of gravity, removed the anomalies inthe Newtonian model, and predicted spectacular natural phenomenawhich eventual experiments have testified to. Thispedagogical article retraces some of the major milestones thatled to the GTR and presents a simple numerical simulation ofthe GTR advance of the perihelion of planetary motion aboutthe sun.

  7. Tidal Evolution of Planetary Systems

    Science.gov (United States)

    Rodríguez, A.

    2017-07-01

    We review the orbital and rotational evolution of single and two-planet systems under tidal dissipation. In the framework of mutual gravitational perturbation and tidal interaction between the star and the innermost planet, we shall present the main results for the variations of eccentricities in both cases. These results are obtained through the numerical solution of the exact equations of motions. Moreover, we will also give an analysis of the planetary rotation, which can be temporarily trapped in special configurations such as spin-orbit resonances. Results will be shown using a Maxwell viscoelastic deformation law for the inner planet. This rheology is characterized by a viscous relaxation time, τ, that can be seen as the characteristic average time that the planet requires to achieve a new equilibrium shape after being disturbed by an external forcing (tides of the star).

  8. Dynamical evolution of planetary systems

    CERN Document Server

    Morbidelli, Alessandro

    2011-01-01

    The apparent regularity of the motion of the giant planets of our solar system suggested for decades that said planets formed onto orbits similar to the current ones and that nothing dramatic ever happened during their lifetime. The discovery of extra-solar planets showed astonishingly that the orbital structure of our planetary system is not typical. Many giant extra-solar planets have orbits with semi major axes of $\\sim 1$ AU, and some have even smaller orbital radii, sometimes with orbital periods of just a few days. Moreover, most extra-solar planets have large eccentricities, up to values that only comets have in our solar system. Why such a big diversity between our solar system and the extra-solar systems, as well as among the extra-solar systems themselves? This chapter aims to give a partial answer to this fundamental question....

  9. Formation around planetary displaced orbit

    Institute of Scientific and Technical Information of China (English)

    GONG Sheng-ping; LI Jun-feng; BAOYIN He-xi

    2007-01-01

    The paper investigates the relative motion around the planetary displaced orbit. Several kinds of displaced orbits for geocentric and martian cases were discussed. First, the relative motion was linearized around the displaced orbits. Then, two seminatural control laws were investigated for each kind of orbit and the stable regions were obtained for each case. One of the two control laws is the passive control law that is very attractive for engineering practice. However, the two control laws are not very suitable for the Martian mission. Another special semi-natural control law is designed based on the requirement of the Martian mission. The results show that large stable regions exist for the control law.

  10. Equations of State: Gateway to Planetary Origin and Evolution (Invited)

    Science.gov (United States)

    Melosh, J.

    2013-12-01

    Research over the past decades has shown that collisions between solid bodies govern many crucial phases of planetary origin and evolution. The accretion of the terrestrial planets was punctuated by planetary-scale impacts that generated deep magma oceans, ejected primary atmospheres and probably created the moons of Earth and Pluto. Several extrasolar planetary systems are filled with silicate vapor and condensed 'tektites', probably attesting to recent giant collisions. Even now, long after the solar system settled down from its violent birth, a large asteroid impact wiped out the dinosaurs, while other impacts may have played a role in the origin of life on Earth and perhaps Mars, while maintaining a steady exchange of small meteorites between the terrestrial planets and our moon. Most of these events are beyond the scale at which experiments are possible, so that our main research tool is computer simulation, constrained by the laws of physics and the behavior of materials during high-speed impact. Typical solar system impact velocities range from a few km/s in the outer solar system to 10s of km/s in the inner system. Extrasolar planetary systems expand that range to 100s of km/sec typical of the tightly clustered planetary systems now observed. Although computer codes themselves are currently reaching a high degree of sophistication, we still rely on experimental studies to determine the Equations of State (EoS) of materials critical for the correct simulation of impact processes. The recent expansion of the range of pressures available for study, from a few 100 GPa accessible with light gas guns up to a few TPa from current high energy accelerators now opens experimental access to the full velocity range of interest in our solar system. The results are a surprise: several groups in both the USA and Japan have found that silicates and even iron melt and vaporize much more easily in an impact than previously anticipated. The importance of these findings is

  11. Summary of the Second International Planetary Dunes Workshop: Planetary Analogs - Integrating Models, Remote Sensing, and Field Data, Alamosa, Colorado, USA, May 18-21, 2010

    Science.gov (United States)

    Fenton, L.K.; Bishop, M.A.; Bourke, M.C.; Bristow, C.S.; Hayward, R.K.; Horgan, B.H.; Lancaster, N.; Michaels, T.I.; Tirsch, D.; Titus, T.N.; Valdez, A.

    2010-01-01

    The Second International Planetary Dunes Workshop took place in Alamosa, Colorado, USA from May 18-21, 2010. The workshop brought together researchers from diverse backgrounds to foster discussion and collaboration regarding terrestrial and extra-terrestrial dunes and dune systems. Two and a half days were spent on five oral sessions and one poster session, a full-day field trip to Great Sand Dunes National Park, with a great deal of time purposefully left open for discussion. On the last day of the workshop, participants assembled a list of thirteen priorities for future research on planetary dune systems. ?? 2010.

  12. Design of Hybrid Mobile Communication Networks for Planetary Exploration

    Science.gov (United States)

    Alena, Richard L.; Ossenfort, John; Lee, Charles; Walker, Edward; Stone, Thom

    2004-01-01

    The Mobile Exploration System Project (MEX) at NASA Ames Research Center has been conducting studies into hybrid communication networks for future planetary missions. These networks consist of space-based communication assets connected to ground-based Internets and planetary surface-based mobile wireless networks. These hybrid mobile networks have been deployed in rugged field locations in the American desert and the Canadian arctic for support of science and simulation activities on at least six occasions. This work has been conducted over the past five years resulting in evolving architectural complexity, improved component characteristics and better analysis and test methods. A rich set of data and techniques have resulted from the development and field testing of the communication network during field expeditions such as the Haughton Mars Project and NASA Mobile Agents Project.

  13. Planetary Systems Detection, Formation and Habitability of Extrasolar Planets

    CERN Document Server

    Ollivier, Marc; Casoli, Fabienne; Encrenaz, Thérèse; Selsis, Franck

    2009-01-01

    Over the past ten years, the discovery of extrasolar planets has opened a new field of astronomy, and this area of research is rapidly growing, from both the observational and theoretical point of view. The presence of many giant exoplanets in the close vicinity of their star shows that these newly discovered planetary systems are very different from the solar system. New theoretical models are being developed in order to understand their formation scenarios, and new observational methods are being implemented to increase the sensitivity of exoplanet detections. In the present book, the authors address the question of planetary systems from all aspects. Starting from the facts (the detection of more than 300 extraterrestrial planets), they first describe the various methods used for these discoveries and propose a synthetic analysis of their global properties. They then consider the observations of young stars and circumstellar disks and address the case of the solar system as a specific example, different fr...

  14. Lunar and Planetary Science XXXV: Education Programs Demonstrations

    Science.gov (United States)

    2004-01-01

    Reports from the session on Education Programs Demonstration include:Hands-On Activities for Exploring the Solar System in K-14; Formal Education and Informal Settings;Making Earth and Space Science and Exploration Accessible; New Thematic Solar System Exploration Products for Scientists and Educators Engaging Students of All Ages with Research-related Activities: Using the Levers of Museum Reach and Media Attention to Current Events; Astronomy Village: Use of Planetary Images in Educational Multimedia; ACUMEN: Astronomy Classes Unleashed: Meaningful Experiences for Neophytes; Unusual Guidebook to Terrestrial Field Work Studies: Microenvironmental Studies by Landers on Planetary Surfaces (New Atlas in the Series of the Solar System Notebooks on E tv s University, Hungary); and The NASA ADS: Searching, Linking and More.

  15. The Rings Node for the Planetary Data System

    Science.gov (United States)

    Showalter, Mark R.; Bollinger, Kenneth J.; Cuzzi, Jeffrey N.; Nicholson, Philip D.

    1994-01-01

    The Planetary Data System's Rings Node is devoted to the archiving and distributing of scientific data sets relevant to planetary ring systems. The two major classes of ring data are images and occultation profiles, although a variety of additional data types (e.g. spectra, particle absorption signatures, etc.) are also of interest. A large fraction of our data sets are from the Voyager missions to the outer planets, but Earth-based and Hubble Space Telescope data sets are also represented. Archiving work often includes re-formatting the data into standardized formats and reconstructing some of the data processing steps. The Rings Node also performs a variety of services to support research into these data sets. These services include developing on-line catalogs and information systems, filling orders for data, developing software tools, and coordinating special observing campaigns.

  16. Where Do Messy Planetary Nebulae Come From?

    Science.gov (United States)

    Kohler, Susanna

    2017-03-01

    If you examined images of planetary nebulae, you would find that many of them have an appearance that is too messy to be accounted for in the standard model of how planetary nebulae form. So what causes these structures?Examples of planetary nebulae that have a low probability of having beenshaped by a triple stellar system. They are mostly symmetric, with only slight departures (labeled) that can be explained by instabilities, interactions with the interstellar medium, etc. [Bear and Soker 2017]A Range of LooksAt the end of a stars lifetime, in the red-giant phase, strong stellar winds can expel the outer layers of the star. The hot, luminous core then radiates in ultraviolet, ionizing the gas of the ejected stellar layers and causing them to shine as a brightly colored planetary nebula for a few tens of thousands of years.Planetary nebulae come in a wide variety of morphologies. Some are approximately spherical, but others can be elliptical, bipolar, quadrupolar, or even more complex.Its been suggested that non-spherical planetary nebulae might be shaped by the presence of a second star in a binary system with the source of the nebula but even this scenario should still produce a structure with axial or mirror symmetry.A pair of scientists from Technion Israel Institute of Technology, Ealeal Bear and Noam Soker, argue that planetary nebulae with especially messy morphologies those without clear axial or point symmetries may have been shaped by an interacting triple stellar system instead.Examples of planetary nebulae that might have been shaped by a triple stellar system. They have some deviations from symmetry but also show signs of interacting with the interstellar medium. [Bear and Soker 2017]Departures from SymmetryTo examine this possibility more closely, Bear and Soker look at a sample of thousands planetary nebulae and qualitatively classify each of them into one of four categories, based on the degree to which they show signs of having been shaped by a

  17. Process engineering with planetary ball mills.

    Science.gov (United States)

    Burmeister, Christine Friederike; Kwade, Arno

    2013-09-21

    Planetary ball mills are well known and used for particle size reduction on laboratory and pilot scales for decades while during the last few years the application of planetary ball mills has extended to mechanochemical approaches. Processes inside planetary ball mills are complex and strongly depend on the processed material and synthesis and, thus, the optimum milling conditions have to be assessed for each individual system. The present review focuses on the insight into several parameters like properties of grinding balls, the filling ratio or revolution speed. It gives examples of the aspects of grinding and illustrates some general guidelines to follow for modelling processes in planetary ball mills in terms of refinement, synthesis' yield and contamination from wear. The amount of energy transferred from the milling tools to the powder is significant and hardly measurable for processes in planetary ball mills. Thus numerical simulations based on a discrete-element-method are used to describe the energy transfer to give an adequate description of the process by correlation with experiments. The simulations illustrate the effect of the geometry of planetary ball mills on the energy entry. In addition the imaging of motion patterns inside a planetary ball mill from simulations and video recordings is shown.

  18. Challenges in Predicting Planetary Granular Mechanics

    Science.gov (United States)

    Metzger, Philip T.

    2005-01-01

    Through the course of human history, our needs in agriculture, habitat construction, and resource extraction have driven us to gain more experience working with the granular materials of planet Earth than with any other type of substance in nature, with the possible exception being water. Furthermore, throughout the past two centuries we have seen a dramatic and ever growing interest among scientists and engineers to understand and predict both its static and rheological properties. Ironically, however, despite this wealth of experience we still do not have a fundamental understanding of the complex physical phenomena that emerge even as just ordinary sand is shaken, squeezed or poured. As humanity is now reaching outward through the solar system, not only robotic ally but also with our immediate human presence, the need to understand and predict granular mechanics has taken on a new dimension. We must learn to farm, build and mine the regoliths of other planets where the environmental conditions are different than on Earth, and we are rapidly discovering that the effects of these environmental conditions are not trivial. Some of the relevant environmental features include the regolith formation processes throughout a planet's geologic and hydrologic history, the unknown mixtures of volatiles residing within the soil, the relative strength of gravitation, d the atm9spheric pressure and its seasonal variations. The need to work with soils outside our terrestrial experience base provides us with both a challenge and an opportunity. The challenge is to learn how to extrapolate our experience into these new planetary conditions, enabling the engineering decisions that are needed right now as we take the next few steps in solar system exploration. The opportunity is to use these new planetary environments as laboratories that will help us to see granular mechanics in new ways, to challenge our assumptions, and to help us finally unravel the elusive physics that lie

  19. Planetary Gear Profile Modification Design Based on Load Sharing Modelling

    Institute of Scientific and Technical Information of China (English)

    IGLESIAS Miguel; FERNÁNDEZ DEL RINCÓN Alfonso; DE-JUAN Ana Magdalena; GARCIA Pablo; DIEZ Alberto; VIADERO Fernando

    2015-01-01

    In order to satisfy the increasing demand on high performance planetary transmissions, an important line of research is focused on the understanding of some of the underlying phenomena involved in this mechanical system. Through the development of models capable of reproduce the system behavior, research in this area contributes to improve gear transmission insight, helping developing better maintenance practices and more efficient design processes. A planetary gear model used for the design of profile modifications ratio based on the levelling of the load sharing ratio is presented. The gear profile geometry definition, following a vectorial approach that mimics the real cutting process of gears, is thoroughly described. Teeth undercutting and hypotrochoid definition are implicitly considered, and a procedure for the incorporation of a rounding arc at the tooth tip in order to deal with corner contacts is described. A procedure for the modeling of profile deviations is presented, which can be used for the introduction of both manufacturing errors and designed profile modifications. An easy and flexible implementation of the profile deviation within the planetary model is accomplished based on the geometric overlapping. The contact force calculation and dynamic implementation used in the model are also introduced, and parameters from a real transmission for agricultural applications are presented for the application example. A set of reliefs is designed based on the levelling of the load sharing ratio for the example transmission, and finally some other important dynamic factors of the transmission are analyzed to assess the changes in the dynamic behavior with respect to the non-modified case. Thus, the main innovative aspect of the proposed planetary transmission model is the capacity of providing a simulated load sharing ratio which serves as design variable for the calculation of the tooth profile modifications.

  20. The Magnetic Field Effect on Planetary Nebulae

    Institute of Scientific and Technical Information of China (English)

    A. R. Khesali; K. Kokabi

    2006-01-01

    In our previous work on the 3-dimensional dynamical structure of planetary nebulae the effect of magnetic field was not considered. Recently Jordan et al. have directly detected magnetic fields in the central stars of some planetary nebulae. This discovery supports the hypothesis that the non-spherical shape of most planetary nebulae is caused by magnetic fields in AGB stars. In this study we focus on the role of initially weak toroidal magnetic fields embedded in a stellar wind in altering the shape of the PN. We found that magnetic pressure is probably influential on the observed shape of most PNe.

  1. Planetary climates (princeton primers in climate)

    CERN Document Server

    Ingersoll, Andrew

    2013-01-01

    This concise, sophisticated introduction to planetary climates explains the global physical and chemical processes that determine climate on any planet or major planetary satellite--from Mercury to Neptune and even large moons such as Saturn's Titan. Although the climates of other worlds are extremely diverse, the chemical and physical processes that shape their dynamics are the same. As this book makes clear, the better we can understand how various planetary climates formed and evolved, the better we can understand Earth's climate history and future.

  2. Spectroscopic detection and characterisation of planetary atmospheres

    Directory of Open Access Journals (Sweden)

    Collier Cameron A.

    2011-07-01

    Full Text Available Space based broadband infrared observations of close orbiting extrasolar giant planets at transit and secondary eclipse have proved a successful means of determining atmospheric spectral energy distributions and molecular composition. Here, a ground-based spectroscopic technique to detect and characterise planetary atmospheres is presented. Since the planet need not be transiting, this method enables a greater sample of systems to be studied. By modelling the planetary signature as a function of phase, high resolution spectroscopy has the potential to recover the signature of molecules in planetary atmospheres.

  3. Planetary astronomy in the 1990's

    Science.gov (United States)

    Morrison, David

    1992-01-01

    An overview is presented of current achievements and future possibilities that exist in planetary astronomy. Planetary astronomers employ a wide range of techniques, from straightforward telescopic observation to laboratory analysis of meteorites and cosmic dust. Much of this work focuses on three fundamental questions: how abundant are planets throughout the universe, how did the solar system form, and what can other planets tell us about earth? Several examples show that many recent discoveries reveal the continuing value of earth-orbit and ground-based methods for planetary studies.

  4. Bringing Terramechanics to bear on Planetary Rover Design

    Science.gov (United States)

    Richter, L.

    2007-08-01

    Thus far, planetary rovers have been successfully operated on the Earth's moon and on Mars. In particular, the two NASA Mars Exploration Rovers (MERs) ,Spirit' and ,Opportunity' are still in sustained daily operations at two sites on Mars more than 3 years after landing there. Currently, several new planetary rover missions are in development targeting Mars (the US Mars Science Lab vehicle for launch in 2009 and ESA's ExoMars rover for launch in 2013), with lunar rover missions under study by China and Japan for launches around 2012. Moreover, the US Constellation program is preparing pre-development of lunar rovers for initially unmanned and, subsequently, human missions to the Moon with a corresponding team dedicated to mobility system development having been set up at the NASA Glenn Research Center. Given this dynamic environment, it was found timely to establish an expert group on off-the-road mobility as relevant for robotic vehicles that would involve individuals representing the various on-going efforts on the different continents. This was realized through the International Society of Terrain-Vehicle Systems (ISTVS), a research organisation devoted to terramechanics and to the ,science' of off-the-road vehicle development which as a result is just now establishing a Technical Group on Terrestrial and Planetary Rovers. Members represent space-related as well as military research institutes and universities from the US, Germany, Italy, and Japan. The group's charter for 2007 is to define its objectives, functions, organizational structure and recommended research objectives to support planetary rover design and development. Expected areas of activity of the ISTVS-sponsored group include: the problem of terrain specification for planetary rovers; identification of limitations in modelling of rover mobility; a survey of existing rover mobility testbeds; the consolidation of mobility predictive models and their state of validation; sensing and real

  5. Using Primary Literature for Teaching Undergraduate Planetary Sciences

    Science.gov (United States)

    Levine, J.

    2013-05-01

    Articles from the primary scientific literature can be a valuable teaching tool in undergraduate classrooms. At Colgate University, I emphasize selected research articles in an upper-level undergraduate course in planetary sciences. In addition to their value for conveying specific scientific content, I find that they also impart larger lessons which are especially apt in planetary sciences and allied fields. First, because of the interdisciplinary nature of planetary sciences, students discover that contributions to outstanding problems may arrive from unexpected directions, so they need to be aware of the multi-faceted nature of scientific problems. For instance, after millennia of astrometric attempts, the scale of the Solar System was determined with extraordinary precision with emerging radar technology in the 1960's. Second, students learn the importance of careful work, with due attention to detail. After all, the timescales of planetary formation are encoded in systematic isotopic variations of a few parts in 10,000; in students' own experiences with laboratory data they might well overlook such a small effect. Third, students identify the often-tortuous connections between measured and inferred quantities, which corrects a common student misconception that all quantities of interest (e.g., the age of a meteorite) can be measured directly. Fourth, research articles provide opportunities for students to practice the interpretation of graphical data, since figures often represent a large volume of data in succinct form. Fifth, and perhaps of greatest importance, by considering the uncertainties inherent in reported data, students come to recognize the limits of scientific understanding, the extent to which scientific conclusions are justified (or not), and the lengths to which working scientists go to mitigate their uncertainties. These larger lessons are best mediated by students' own encounters with the articles they read, but require instructors to make

  6. Sensor Array Analyzer for Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future planetary exploration missions such as those planned by NASA and other space agencies over the next few decades require advanced chemical and biological...

  7. Planetary science: Cometary dust under the microscope

    Science.gov (United States)

    Kolokolova, Ludmilla

    2016-09-01

    The Rosetta spacecraft made history by successfully orbiting a comet. Data from the craft now reveal the structure of the comet's dust particles, shedding light on the processes that form planetary systems. See Letter p.73

  8. Planetary camera control improves microfiche production

    Science.gov (United States)

    Chesterton, W. L.; Lewis, E. B.

    1965-01-01

    Microfiche is prepared using an automatic control system for a planetary camera. The system provides blank end-of-row exposures and signals card completion so the legend of the next card may by photographed.

  9. Low-energy Planetary Excavator (LPE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop an innovative Low-energy Planetary Excavator (LPE) to excavate in situ regolith, ice-regolith mixes, and a variety of other geologic...

  10. Low-energy Planetary Excavator (LPE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC is developing an innovative Low-energy Planetary Excavator (LPE) to excavate in situ regolith, ice-regolith mixes, and a variety of other geologic materials...

  11. An ecological compass for planetary engineering.

    Science.gov (United States)

    Haqq-Misra, Jacob

    2012-10-01

    Proposals to address present-day global warming through the large-scale application of technology to the climate system, known as geoengineering, raise questions of environmental ethics relevant to the broader issue of planetary engineering. These questions have also arisen in the scientific literature as discussions of how to terraform a planet such as Mars or Venus in order to make it more Earth-like and habitable. Here we draw on insights from terraforming and environmental ethics to develop a two-axis comparative tool for ethical frameworks that considers the intrinsic or instrumental value placed upon organisms, environments, planetary systems, or space. We apply this analysis to the realm of planetary engineering, such as terraforming on Mars or geoengineering on present-day Earth, as well as to questions of planetary protection and space exploration.

  12. Fourier transform spectroscopy for future planetary missions

    Science.gov (United States)

    Brasunas, John; Kolasinski, John; Kostiuk, Ted; Hewagama, Tilak

    2017-01-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system. Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, we have developed CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. We discuss the roadmap for making CIRS-lite a viable candidate for future planetary missions, including the recent increased emphasis on ocean worlds (Europa, Encelatus, Titan) and also on smaller payloads such as CubeSats and SmallSats.

  13. Planetary science: Flow of an alien ocean

    Science.gov (United States)

    Goodman, Jason

    2014-01-01

    Liquid water may lurk beneath the frozen surfaces of Jupiter's moon Europa and other icy worlds. Extending ocean science beyond Earth, planetary oceanographers are linking Europa's ocean dynamics to its enigmatic surface geology.

  14. The Planetary Science Workforce: Goals Through 2050

    Science.gov (United States)

    Rathbun, J. A.; Cohen, B. A.; Turtle, E. P.; Vertesi, J. A.; Rivkin, A. S.; Hörst, S. M.; Tiscareno, M. S.; Marchis, F.; Milazzo, M.; Diniega, S.; Lakdawalla, E.; Zellner, N.

    2017-02-01

    The planetary science workforce is not nearly as diverse as the society from which its membership is drawn and from which the majority of our funding comes. We discuss the current state and recommendations for improvement.

  15. Predictions of mineral assemblages in planetary interiors

    Science.gov (United States)

    Stolper, E.

    1980-01-01

    It is shown that mineral compatibilities in the model system CaO-MgO-Al2O3-SiO2 can be applied to deduce the mineral assemblages expected in planetary interiors and their variation with depth. In general, the available estimates of bulk composition of the terrestrial planets suggest that the terrestrial planets can be divided into two groups based on their predicted mineral assemblages. The terrestrial, Venusian, and lunar bulk compositions are expected to display the following sequence of mineral assemblages with increasing pressure: plagioclase lherzolite, spinel lherzolite, and garnet lherzolite. The sequences expected in Martian and Mercurian are different: spinel-plagioclase wehrlite, spinel lherzolite, and spinel-garnet wehrlite. These assemblages have a major influence on the compositions of liquids produced by melting of these planetary interiors, on the solidus temperatures, and thus on the nature of planetary differentiation and the types of magmas extruded at planetary surfaces.

  16. Planetary boundaries: Governing emerging risks and opportunities

    OpenAIRE

    2016-01-01

    The climate, ecosystems and species, ozone layer, acidity of the oceans, the flow of energy and elements through nature, landscape change, freshwater systems, aerosols, and toxins—these constitute the planetary boundaries within which humanity must find a safe way to live and prosper. These are thresholds that, if we cross them, we run the risk of rapid, non-linear, and irreversible changes to the environment, with severe consequences for human wellbeing. The concept of planetary boundaries, ...

  17. Lessons learned from planetary entry probe missions

    Science.gov (United States)

    Niemann, Hasso; Atreya, Sushil K.; Kasprzak, Wayne

    Probing the atmospheres and surfaces of the planets and their moons with fast moving entry probes has been a very useful and essential technique to obtain in situ or quasi in situ scientific data (ground truth) which could not otherwise be obtained from fly by or orbiter only missions and where balloon, aircraft or lander missions are too complex and too costly. Planetary entry probe missions have been conducted successfully on Venus, Mars, Jupiter and Titan after having been first demonstrated in the Earth's atmosphere. Future planetary missions should also include more entry probe missions back to Venus and to the outer planets. The success of and science returns from past missions, the need for more and unique data, and a continuously advancing technology generate confidence that future missions will be even more successful with respect to science return and technical performance. There are, however, unique challenges associated with entry probe missions and with building instruments for an entry probe, as compared to orbiters, landers, or rovers. Conditions during atmospheric entry are extreme. There are operating time constraints due to the usually short duration of the probe descent, and the instruments experience rapid environmental changes in temperature and pressure. In addition, there are resource limitations, i.e. mass, power, size and bandwidth. Because of the protective heat shield and the high acceleration the probe experiences during entry, the ratio of payload to total probe mass is usually much smaller than in other missions. Finally, the demands on the instrument design are determined in large part by conditions (pressure, temperature, composition) unique to the particular body under study, and as a result, there is no one-size-fits-all instrument for an atmospheric probe. Many of these requirements are more easily met by miniaturizing the probe instrumentation and consequently reducing the required size of the probe. Improved heat shield

  18. Human-Robot Planetary Exploration Teams

    Science.gov (United States)

    Tyree, Kimberly

    2004-01-01

    The EVA Robotic Assistant (ERA) project at NASA Johnson Space Center studies human-robot interaction and robotic assistance for future human planetary exploration. Over the past four years, the ERA project has been performing field tests with one or more four-wheeled robotic platforms and one or more space-suited humans. These tests have provided experience in how robots can assist humans, how robots and humans can communicate in remote environments, and what combination of humans and robots works best for different scenarios. The most efficient way to understand what tasks human explorers will actually perform, and how robots can best assist them, is to have human explorers and scientists go and explore in an outdoor, planetary-relevant environment, with robots to demonstrate what they are capable of, and roboticists to observe the results. It can be difficult to have a human expert itemize all the needed tasks required for exploration while sitting in a lab: humans do not always remember all the details, and experts in one arena may not even recognize that the lower level tasks they take for granted may be essential for a roboticist to know about. Field tests thus create conditions that more accurately reveal missing components and invalid assumptions, as well as allow tests and comparisons of new approaches and demonstrations of working systems. We have performed field tests in our local rock yard, in several locations in the Arizona desert, and in the Utah desert. We have tested multiple exploration scenarios, such as geological traverses, cable or solar panel deployments, and science instrument deployments. The configuration of our robot can be changed, based on what equipment is needed for a given scenario, and the sensor mast can even be placed on one of two robot bases, each with different motion capabilities. The software architecture of our robot is also designed to be as modular as possible, to allow for hardware and configuration changes. Two focus

  19. SPICE Supports Planetary Science Observation Geometry

    Science.gov (United States)

    Hall Acton, Charles; Bachman, Nathaniel J.; Semenov, Boris V.; Wright, Edward D.

    2015-11-01

    "SPICE" is an information system, comprising both data and software, providing scientists with the observation geometry needed to plan observations from instruments aboard robotic spacecraft, and to subsequently help in analyzing the data returned from those observations. The SPICE system has been used on the majority of worldwide planetary exploration missions since the time of NASA's Galileo mission to Jupiter. Along with its "free" price tag, portability and the absence of licensing and export restrictions, its stable, enduring qualities help make it a popular choice. But stability does not imply rigidity-improvements and new capabilities are regularly added. This poster highlights recent additions that could be of interest to planetary scientists.Geometry Finder allows one to find all the times or time intervals when a particular geometric condition exists (e.g. occultation) or when a particular geometric parameter is within a given range or has reached a maximum or minimum.Digital Shape Kernel (DSK) provides means to compute observation geometry using accurately modeled target bodies: a tessellated plate model for irregular bodies and a digital elevation model for large, regular bodies.WebGeocalc (WGC) provides a graphical user interface (GUI) to a SPICE "geometry engine" installed at a mission operations facility, such as the one operated by NAIF. A WGC user need have only a computer with a web browser to access this geometry engine. Using traditional GUI widgets-drop-down menus, check boxes, radio buttons and fill-in boxes-the user inputs the data to be used, the kind of calculation wanted, and the details of that calculation. The WGC server makes the specified calculations and returns results to the user's browser.Cosmographia is a mission visualization program. This tool provides 3D visualization of solar system (target) bodies, spacecraft trajectory and orientation, instrument field-of-view "cones" and footprints, and more.The research described in this

  20. Sonar equations for planetary exploration.

    Science.gov (United States)

    Ainslie, Michael A; Leighton, Timothy G

    2016-08-01

    The set of formulations commonly known as "the sonar equations" have for many decades been used to quantify the performance of sonar systems in terms of their ability to detect and localize objects submerged in seawater. The efficacy of the sonar equations, with individual terms evaluated in decibels, is well established in Earth's oceans. The sonar equations have been used in the past for missions to other planets and moons in the solar system, for which they are shown to be less suitable. While it would be preferable to undertake high-fidelity acoustical calculations to support planning, execution, and interpretation of acoustic data from planetary probes, to avoid possible errors for planned missions to such extraterrestrial bodies in future, doing so requires awareness of the pitfalls pointed out in this paper. There is a need to reexamine the assumptions, practices, and calibrations that work well for Earth to ensure that the sonar equations can be accurately applied in combination with the decibel to extraterrestrial scenarios. Examples are given for icy oceans such as exist on Europa and Ganymede, Titan's hydrocarbon lakes, and for the gaseous atmospheres of (for example) Jupiter and Venus.

  1. Cosmological aspects of planetary habitability

    CERN Document Server

    Shchekinov, Yu A; Murthy, J

    2014-01-01

    The habitable zone (HZ) is defined as the region around a star where a planet can support liquid water on its surface, which, together with an oxygen atmosphere, is presumed to be necessary (and sufficient) to develop and sustain life on the planet. Currently, about twenty potentially habitable planets are listed. The most intriguing question driving all these studies is whether planets within habitable zones host extraterrestrial life. It is implicitly assumed that a planet in the habitable zone bears biota. However along with the two usual indicators of habitability, an oxygen atmosphere and liquid water on the surface, an additional one -- the age --- has to be taken into account when the question of the existence of life (or even a simple biota) on a planet is addressed. The importance of planetary age for the existence of life as we know it follows from the fact that the primary process, the photosynthesis, is endothermic with an activation energy higher than temperatures in habitable zones. Therefore on...

  2. Fluid dynamics of planetary ices

    CERN Document Server

    Greve, Ralf

    2009-01-01

    The role of water ice in the solar system is reviewed from a fluid-dynamical point of view. On Earth and Mars, water ice forms ice sheets, ice caps and glaciers at the surface, which show glacial flow under their own weight. By contrast, water ice is a major constituent of the bulk volume of the icy satellites in the outer solar system, and ice flow can occur as thermal convection. The rheology of polycrystalline aggregates of ordinary, hexagonal ice Ih is described by a power law, different forms of which are discussed. The temperature dependence of the ice viscosity follows an Arrhenius law. Therefore, the flow of ice in a planetary environment constitutes a thermo-mechanically coupled problem; its model equations are obtained by inserting the flow law and the thermodynamic material equations in the balance laws of mass, momentum and energy. As an example of gravity-driven flow, the polar caps of Mars are discussed. For the north-polar cap, large-scale flow velocities of the order of 0.1...1 mm/a are likely...

  3. Unveiling shocks in planetary nebulae

    CERN Document Server

    Guerrero, M A; Medina, J J; Luridiana, V; Miranda, L F; Riera, A; Velázquez, P F

    2013-01-01

    The propagation of a shock wave into a medium is expected to heat the material beyond the shock, producing noticeable effects in intensity line ratios such as [O III]/Halpha. To investigate the occurrence of shocks in planetary nebulae (PNe), we have used all narrowband [O III] and Halpha images of PNe available in the HST archive to build their [O III]/Halpha ratio maps and to search for regions where this ratio is enhanced. Regions with enhanced [O III]/Halpha emission ratio can be ascribed to two different types of morphological structures: bow-shock structures produced by fast collimated outflows and thin skins enveloping expanding nebular shells. Both collimated outflows and expanding shells are therefore confirmed to generate shocks in PNe. We also find regions with depressed values of the [O III]/Halpha ratio which are found mostly around density bounded PNe, where the local contribution of [N II] emission into the F656N Halpha filter cannot be neglected.

  4. Planetary and stellar auroral magnetospheric radio emission

    Science.gov (United States)

    Speirs, David; Cairns, Robert A.; Bingham, Robert; Kellett, Barry J.; McConville, Sandra L.; Gillespie, Karen M.; Vorgul, Irena; Phelps, Alan D. R.; Cross, Adrian W.; Ronald, Kevin

    2012-10-01

    A variety of astrophysical radio emissions have been identified to date in association with non-uniform magnetic fields and accelerated particle streams [1]. Such sources are spectrally well defined and for the planetary cases [1,2] show a high degree of extraordinary (X-mode) polarisation within the source region. It is now widely accepted that these emissions are generated by an electron cyclotron-maser instability driven by a horseshoe shaped electron velocity distribution. Although the generation mechanism is well established, a satisfactory explanation does not yet exist for the observed field aligned beaming of the radiation out-with the source region [2]. In the current context, the results of PiC simulations will be presented investigating the spatial growth of the horseshoe-maser instability in an unbounded interaction geometry, with a view to studying the wave vector of emission, spectral properties and RF conversion efficiency. In particular, the potential for backward-wave coupling is investigated as a viable precursor to a model of upward refraction and field-aligned beaming of the radiation [3].[4pt] [1] A.P. Zarka, Advances in Space Research, 12, pp. 99 (1992).[0pt] [2] R.E. Ergun et al., Astrophys. J., 538, pp. 456 (2000)[0pt] [3] J.D. Menietti et al., J. Geophys. Res., 116, A12219 (2011).

  5. Performances of a balanced hydraulic motor with planetary gear train

    Science.gov (United States)

    Yu, Hongying; Luo, Changjie; Wang, Huimin

    2012-07-01

    The current research of a balanced hydraulic motor focuses on the characteristics of the motor with three planet gears. References of a balanced hydraulic motor with more than three planet gears are hardly found. In order to study the characteristics of a balanced hydraulic motor with planetary gear train that includes more than three planet gears, on the basis of analysis of the structure and working principle of a balanced hydraulic motor with planetary gear train, formulas are deduced for calculating the hydraulic motor's primary performance indexes such as displacement, unit volume displacement, flowrate fluctuation ratio, etc. Influences of the gears' tooth number on displacement and flowrate characteristics are analyzed. In order to guarantee the reliability of sealing capability, the necessary conditions that tooth number of the sun gear and the planet gears should satisfy are discussed. Selecting large unit volume displacement and small displacement fluctuation ratio as designing objectives, a balanced hydraulic motor with three planet gears and a common gear motor are designed under the conditions of same displacement, tooth addendum coefficien and clearance coefficient. By comparing the unit volume displacement and fluctuation ratio of the two motors, it can be seen that the balanced hydraulic motor with planetary gear train has the advantages of smaller fluctuation ratio and larger unit volume displacement. The results provide theoretical basis for choosing gear tooth-number of this kind of hydraulic motor.

  6. Considering the Ethical Implications of Space Exploration and Potential Impacts on Planetary Environments and Possible Indigenous Life

    Science.gov (United States)

    Race, Margaret

    Since the early days of the Outer Space Treaty, a primary concern of planetary protection policy has been to avoid contamination of planetary environments by terrestrial microbes that could compromise current or subsequent scientific investigations, particularly those searching for indigenous life. Over the past decade robotic missions and astrobiological research have greatly increased our understanding of diverse planetary landscapes and altered our views about the survivability of terrestrial organisms in extreme environments. They have also expanded notions about the prospect for finding evidence of extraterrestrial life. Recently a number of different groups, including the COSPAR Planetary Protection Workshop in Montreal (January 2008), have questioned whether it is advisable to re-examine current biological planetary protection policy in light of the ethical implications and responsibilities to preserve planetary environments and possible indigenous life. This paper discusses the issues and concerns that have led to recent recommendations for convening an international workshop specifically to discuss planetary protection policy and practices within a broader ethical and practical framework, and to consider whether revisions to policy and practices should be made. In addition to including various international scientific and legal organizations and experts in such a workshop, it will be important to find ways to involve the public in these discussions about ethical aspects of planetary exploration.

  7. 行星轮系的机架变换与传动比变化规律的研究%Research on the variation law of transmission ratio and frame alternation of planetary gear train

    Institute of Scientific and Technical Information of China (English)

    程爱明; 赵自强; 张春林

    2009-01-01

    The frame alternation method is an important meth-od of mechanism innovation; it has significant application prospects in the innovative design of gear train. Taking the simplest gear train as the innovative base, this paper probed into the transmission ratio relationship between the new gear train after the alternation of frame and the original gear train, thus an important conclusion was educed that the sum of the transmission ratio that takes the gear train link-ing bar as the output component and the transmission ratio of the mechanism when the linking bar was fixed equals to one. And then a certification was carried out on this conclusion. By means of car-tying out the calculations of transmission ratios on the typical plane-tary gear train, the fewer teeth differenced transmission, the transla-tional gear transmission and the frame alternation of complex hybrid gear train, the correctness of this conclusion was verified. Finally the important role of this conclusion in the calculation of transmis-sion ratio of the complex planetary gear train was clarified.%转换机架法是机构创新的重要方法,在轮系的创新设计中有重要应用前景.文中以最简单的轮系为创新基础,探讨机架变换后的新轮系与原轮系的传动比关系,得出重要结论:以轮系系杆为输出构件时的传动比与系杆固定时机构的传动比之和为1.然后对该结论进行证明,再通过典型的行星轮系、少齿差传动、平动齿轮传动和复杂的混合轮系的机架变换进行传动比的计算,验证了该结论的正确性.最后阐明了该结论在复杂行星轮系传动比计算中的重要作用.

  8. The Research of New Planetary Ring Tapered Gear Divergent Power on CVT%新型行星环锥齿轮功率分流式无级变速器的研究

    Institute of Scientific and Technical Information of China (English)

    王爽; 董小瑞; 毛虎平

    2014-01-01

    基于当前无级变速器油耗大,传动效率偏低,传动结构复杂的缺陷,设计一种新型行星环锥齿轮功率分流式无级变速器,即RX环锥齿轮无级变速器与2 K-H无级变速器的组合。对传统无级变速器进行结构改进设计,在原传动调速的基础上,以高效率,大变速比为研究设计目标,对其理论分析和研究。结果表明:该新型变速器传动效率高,变速范围广,有效实现传动比的无级变化,无封闭功率循环现象和无根切现象出现;且其传动系统中的调速性能及传动效率均优于原行星锥齿轮变速器;具有很高的推广实用价值。%Based on current fuel consumption slightly larger CVT, Lower transmission efficiency, defects of complex transmission structure, Proposes a new power split planetary ring bevel gear-type continuously vari-able transmission. That is RX gear CVT combination with a 2K-H CVT. To the structural of Conventional CVT’ s design improvements, On the basis of the original transmission speed control, High efficiency, gear ratio for the study of the design goals. And analysis and calculation its theoretical. The results show: the new gearbox drive have high efficiency, wide range, effectively infinitely variable transmission ratio, no closed cycling power phenomenon and no undercutting of phenomenon, and its transmission in speed per-formance and the drive efficiency are better than the original tapered planetary gear transmission. It possesses Promotion of high practical value.

  9. Planetary Gearbox Fault Diagnosis Using Envelope Manifold Demodulation

    OpenAIRE

    Weigang Wen; Gao, Robert X.; Weidong Cheng

    2016-01-01

    The important issue in planetary gear fault diagnosis is to extract the dependable fault characteristics from the noisy vibration signal of planetary gearbox. To address this critical problem, an envelope manifold demodulation method is proposed for planetary gear fault detection in the paper. This method combines complex wavelet, manifold learning, and frequency spectrogram to implement planetary gear fault characteristic extraction. The vibration signal of planetary gear is demodulated by w...

  10. IPDA PDS4 Project: Towards an International Planetary Data Standard

    Science.gov (United States)

    Martinez, Santa; Roatsch, Thomas; Capria, Maria Teresa; Heather, David; Yamamoto, Yukio; Hughes, Steven; Stein, Thomas; Cecconi, Baptiste; Prashar, Ajay; Batanov, Oleg; Gopala Krishna, Barla

    2016-07-01

    The International Planetary Data Alliance (IPDA) is an international collaboration of space agencies with the main objective of facilitating discovery, access and use of planetary data managed across international boundaries. For this purpose, the IPDA has adopted the NASA's Planetary Data System (PDS) standard as the de-facto archiving standard, and is working towards the internationalisation of the new generation of the standards, called PDS4. PDS4 is the largest upgrade in the history of the PDS, and is a significant step towards an online, distributed, model-driven and service-oriented architecture international archive. Following the successful deployment of PDS4 to support NASA's LADEE and MAVEN missions, PDS4 was endorsed by IPDA in 2014. This has led to the adoption of PDS4 by a number of international space agencies (ESA, JAXA, ISRO and Roscosmos, among others) for their upcoming missions. In order to closely follow the development of the PDS4 standards and to coordinate the international contribution and participation in its evolution, a group of experts from each international agency is dedicated to review different aspects of the standards and to capture recommendations and requirements to ensure the international needs are met. The activities performed by this group cover the assessment and implementation of all aspects of PDS4, including its use, documentation, tools, validation strategies and information model. This contribution will present the activities carried out by this group and how this partnership between PDS and IPDA provides an excellent foundation towards an international platform for planetary science research.

  11. Miniaturized Environmental Scanning Electron Microscope for In Situ Planetary Studies

    Science.gov (United States)

    Gaskin, Jessica; Abbott, Terry; Medley, Stephanie; Gregory, Don; Thaisen, Kevin; Taylor , Lawrence; Ramsey, Brian; Jerman, Gregory; Sampson, Allen; Harvey, Ralph

    2010-01-01

    The exploration of remote planetary surfaces calls for the advancement of low power, highly-miniaturized instrumentation. Instruments of this nature that are capable of multiple types of analyses will prove to be particularly useful as we prepare for human return to the moon, and as we continue to explore increasingly remote locations in our Solar System. To this end, our group has been developing a miniaturized Environmental-Scanning Electron Microscope (mESEM) capable of remote investigations of mineralogical samples through in-situ topographical and chemical analysis on a fine scale. The functioning of an SEM is well known: an electron beam is focused to nanometer-scale onto a given sample where resulting emissions such as backscattered and secondary electrons, X-rays, and visible light are registered. Raster scanning the primary electron beam across the sample then gives a fine-scale image of the surface topography (texture), crystalline structure and orientation, with accompanying elemental composition. The flexibility in the types of measurements the mESEM is capable of, makes it ideally suited for a variety of applications. The mESEM is appropriate for use on multiple planetary surfaces, and for a variety of mission goals (from science to non-destructive analysis to ISRU). We will identify potential applications and range of potential uses related to planetary exploration. Over the past few of years we have initiated fabrication and testing of a proof-of-concept assembly, consisting of a cold-field-emission electron gun and custom high-voltage power supply, electrostatic electron-beam focusing column, and scanning-imaging electronics plus backscatter detector. Current project status will be discussed. This effort is funded through the NASA Research Opportunities in Space and Earth Sciences - Planetary Instrument Definition and Development Program.

  12. Horses for courses: analytical tools to explore planetary boundaries

    Science.gov (United States)

    van Vuuren, Detlef P.; Lucas, Paul L.; Häyhä, Tiina; Cornell, Sarah E.; Stafford-Smith, Mark

    2016-03-01

    There is a need for more integrated research on sustainable development and global environmental change. In this paper, we focus on the planetary boundaries framework to provide a systematic categorization of key research questions in relation to avoiding severe global environmental degradation. The four categories of key questions are those that relate to (1) the underlying processes and selection of key indicators for planetary boundaries, (2) understanding the impacts of environmental pressure and connections between different types of impacts, (3) better understanding of different response strategies to avoid further degradation, and (4) the available instruments to implement such strategies. Clearly, different categories of scientific disciplines and associated model types exist that can accommodate answering these questions. We identify the strength and weaknesses of different research areas in relation to the question categories, focusing specifically on different types of models. We discuss that more interdisciplinary research is need to increase our understanding by better linking human drivers and social and biophysical impacts. This requires better collaboration between relevant disciplines (associated with the model types), either by exchanging information or by fully linking or integrating them. As fully integrated models can become too complex, the appropriate type of model (the racehorse) should be applied for answering the target research question (the race course).

  13. Origins of the Lunar and Planetary Laboratory, University of Arizona

    Science.gov (United States)

    Cruikshank, Dale P.; Hartmann, William K.

    2014-11-01

    The roots of the Lunar and Planetary Laboratory (LPL) extend deep into the rich fabric of G. P. Kuiper’s view of the Earth as a planet and planetary systems as expected companions to most stars, as well as the post-war emergent technology of infrared detectors suitable for astronomy. These concepts and events began with Kuiper’s theoretical work at Yerkes Observatory on the origin of the Solar System, his discovery of two planetary satellites and observational work with his near-infrared spectrometer on the then-new McDonald 82-inch telescope in the mid- to late-1940s. A grant for the production of a photographic atlas of the Moon in the mid-1950s enabled him to assemble the best existing images of the Moon and acquire new photographs. This brought E. A. Whitaker and D. W. G. Arthur to Yerkes. Others who joined in the lunar work were geologist Carl S. Huzzen and grad student E. P. Moore, as well as undergrad summer students A. B. Binder and D. P. Cruikshank (both in 1958). The Atlas was published in 1959, and work began on an orthographic lunar atlas. Kuiper’s view of planetary science as an interdisciplinary enterprise encompassing astronomy, geology, and atmospheric physics inspired his vision of a research institution and an academic curriculum tuned to the combination of all the scientific disciplines embraced in a comprehensive study of the planets. Arrangements were made with the University of Arizona (UA) to establish LPL in affiliation with the widely recognized Inst. of Atmospheric Physics. Kuiper moved to the UA in late 1960, taking the lunar experts, graduate student T. C. Owen (planetary atmospheres), and associate B. M. Middlehurst along. G. van Biesbroeck also joined the migration to Tucson; Binder and Cruikshank followed along as new grad students. Astronomy grad student W. K. Hartmann came into the academic program at UA and the research group at LPL in 1961. Senior faculty affiliating with LPL in the earliest years were T. Gehrels, A. B

  14. Integrating Information Networks for Collective Planetary Stewardship

    Science.gov (United States)

    Tiwari, A.

    2016-12-01

    Responsible behaviour resulting from climate literacy in global environmental movement is limited to policy and planning institutions in the Global South, while remaining absent for ends-user. Thus, planetary stewardship exists only at earth system boundaries where pressures sink to the local scale while ethics remains afloat. Existing citizen participation is restricted within policy spheres, appearing synonymous to enforcements in social psychology. Much, accounted reason is that existing information mechanisms operate mostly through linear exchanges between institutions and users, therefore reinforcing only hierarchical relationships. This study discloses such relationships that contribute to broad networking gaps through information demand assessment of stakeholders in a dozen development projects based in South Asia. Two parameters widely used for this purpose are: a. Feedback: Ends-user feedback to improve consumption literacy of climate sensitive resources (through consumption displays, billing, advisory services ecolabelling, sensors) and, b. Institutional Policy: Rewarding punishing to enforce desired behaviour (subsidies, taxation). Research answered: 1. Who gets the information (Equity in Information Distribution)? As existing information publishing mechanisms are designed by and for analysts, 2. How information translates to climate action Transparency of Execution)? Findings suggested that climate goals manifested in economic policy, than environmental policy, have potential clear short-term benefits and costs, and coincide with people's economic goals Also grassroots roles for responsible behaviour are empowered with presence of end user information. Barier free climate communication process and decision making is ensured among multiplicity of stakeholders with often conflicting perspectives. Research finds significance where collaboration among information networks can better translate regional policies into local action for climate adaptation and

  15. Assessing planetary protection and contamination control technologies for planetary science missions

    Science.gov (United States)

    Beauchamp, Patricia; Belz, Andrea

    Planetary protection and organic contamination control, like many technologically rich areas, continually progress. As a result of the 2011 Planetary Science Decadal Survey Report, Vision and Voyages for Planetary Science in the Decade 2013-2022, the future focus is now on proposed Mars sample return missions. In addition to Mars exploration we now have the exciting possibility of a potential mission to the outer planets, most likely Europa. This paper reassesses planetary protection and organic contamination control technologies, which were evaluated in 2005, and provides updates based on new science results, technology development, and programmatic priorities. The study integrates information gathered from interviews of a number of National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) scientists, systems engineers, planetary protection engineers, and consultants, as well as relevant documents, and focuses on the technologies and practices relevant to the current project mission set as presented in the 2011 Planetary Science Decadal Survey. This paper provides the status of planetary protection and contamination control technologies as they apply to potential future missions, and provides findings and recommendations to improve our capabilities as we further explore our solar system. It has become clear that linking planetary protection and contamination control requirements and processes together early in mission development and spacecraft design is key to keeping mission costs in check and returning high-quality samples that are free from biological and organic contaminants.

  16. Laser-based mass spectrometry for in situ chemical composition analysis of planetary surfaces

    Science.gov (United States)

    Frey, Samira; Neuland, Maike B.; Grimaudo, Valentine; Moreno-García, Pavel; Riedo, Andreas; Tulej, Marek; Broekmann, Peter; Wurz, Peter

    2016-04-01

    Mass spectrometry is an important analytical technique in space research. The chemical composition of planetary surface material is a key scientific question on every space mission to a planet, moon or asteroid. Chemical composition measurements of rocky material on the surface are of great importance to understand the origin and evolution of the planetary body.[1] A miniature laser ablation/ionisation reflectron- type time-of-flight mass spectrometer (instrument name LMS) was designed and built at the University of Bern for planetary research.[2] Despite its small size and light weight, the LMS instrument still maintains the same capabilities as large laboratory systems, which makes it suitable for its application on planetary space missions.[3-5] The high dynamic range of about eight orders of magnitude, high lateral (μm-level) and vertical (sub-nm level) resolution and high detection sensitivity for almost all elements (10 ppb, atomic fraction) make LMS a versatile instrument for various applications. LMS is a suitable instrument for in situ measurements of elemental and isotope composition with high precision and accuracy. Measurements of Pb- isotope abundances can be used for dating of planetary material. Measurements of bio-relevant elements allow searching for past or present life on a planetary surface. The high spatial resolution, both in lateral and vertical direction, is of considerable interest, e.g. for analysis of inhomogeneous, extraterrestrial samples as well as weathering processes of planetary material. References [1] P. Wurz, D. Abplanalp, M. Tulej, M. Iakovleva, V.A. Fernandes, A. Chumikov, and G. Managadze, "Mass Spectrometric Analysis in Planetary Science: Investigation of the Surface and the Atmosphere", Sol. Sys. Res., 2012, 46, 408. [2] U. Rohner, J.A. Whitby, P. Wurz, "A miniature laser ablation time of flight mass spectrometer for in situ planetary exploration" Meas. Sci. Tch., 2003, 14, 2159. [3] M. Tulej, A. Riedo, M.B. Neuland, S

  17. Observations of planetary nebulae in the Galactic Bulge

    CERN Document Server

    Cuisinier, F; Köppen, J; Acker, A; Stenholm, B

    2000-01-01

    High quality spectrophotometric observations of 30 Planetary Nebulae in the Galactic Bulge have been made. Accurate reddenings, plasma parameters, and abundances of He,O,N,S,Ar,Cl are derived. We find the abundances of O,S,Ar in the Planetary Nebulae in the Galactic Bulge to be comparable with the abundances of the Planetary Nebulae in the Disk, high abundances being maybe slightly more frequent in the Bulge. The distribution of the N/O ratio does not present in the Galactic Bulge Planetary Nebulae the extension to high values that it presents in the Disk Planetary Nebulae. We interpret this as a signature of the greater age of Bulge Planetary Nebulae. We thus find the Bulge Planetary Nebulae to be an old population, slightly more metal-rich than the Disk Planetary Nebulae. The population of the Bulge Planetary Nebulae shows hence the same characteristics than the Bulge stellar population.

  18. 封闭差动行星齿轮箱动态均载性能试验研究%Testing Research on Dynamic Load Sharing Performance of Encased Differential Planetary Gearbox

    Institute of Scientific and Technical Information of China (English)

    谭援强; 胡聪芳; 张跃春; 王文; 熊顺; 左晃

    2016-01-01

    An encased differential planetary gearbox is tested to investigate the load sharing performance. The gearbox uses the floating sun, flexible pin and flexible ring simultaneously to distribute load. The tooth root bending strain of the ring in the differential stage and the bending strain of the sun in the encased stage is tested, and a load sharing coefficient tackle method is proposed to analyze tested result from all channels in axial and circle directions. The maximum load sharing coefficient of tested tooth is got, and then the varying of the dynamic load sharing characteristic for the gearbox is studied under different load condition. The mean load sharing coefficient and standard deviation for both the encased and differential stages are calculated and counted, besides, these result is compared with the analytic load sharing coefficient of a main gearbox in an aviation engine. The result shows that the encased stage distributes load more equally than the differential stage, the larger load makes more equal load sharing. The planetary transmission taking the three load sharing methods represents better load sharing performance than that taking one method, the experimental results help design the encased differential gearbox.%针对同时具有太阳轮浮动、柔性销轴和柔性内齿圈三种均载方法的封闭差动行星齿轮箱进行试验研究,探索多种均载措施的封闭差动行星传动均载性能的特点。测试行星传动的差动级内齿圈齿根弯曲应力和封闭级的太阳轮齿根弯曲应力,根据齿向方向和圆周方向上各个通道应变测试结果提出均载系数的数据处理方法。得到每个被测轮齿最大均载系数,研究行星齿轮箱动态均载系数随工况载荷的变化趋势。分析并统计封闭级和差动级不同载荷下的平均均载系数及其标准差,并与某航空发动机主齿轮箱的理论分析均载系数进行对比。结果表明封闭级

  19. Lunar Team Report from a Planetary Design Workshop at ESTEC

    Science.gov (United States)

    Gray, A.; MacArthur, J.; Foing, B. H.

    2014-04-01

    On February 13, 2014, GeoVUsie, a student association for Earth science majors at Vrijie University (VU), Amsterdam, hosted a Planetary Sciences: Moon, Mars and More symposium. The symposium included a learning exercise the following day for a planetary design workshop at the European Space Research and Technology Centre (ESTEC) for 30 motivated students, the majority being from GeoVUsie with little previous experience of planetary science. Students were split into five teams and assigned pre-selected new science mission projects. A few scientific papers were given to use as reference just days before the workshop. Three hours were allocated to create a mission concept before presenting results to the other students and science advisors. The educational backgrounds varied from second year undergraduate students to masters' students from mostly local universities.The lunar team was told to design a mission to the lunar south pole, as this is a key destination agreed upon by the international lunar scientific community. This region has the potential to address many significant objectives for planetary science, as the South Pole-Aitken basin has preserved early solar system history and would help to understand impact events throughout the solar system as well as the origin and evolution of the Earth-Moon system, particularly if samples could be returned. This report shows the lunar team's mission concept and reasons for studying the origin of volatiles on the Moon as the primary science objective [1]. Amundsen crater was selected as the optimal landing site near the lunar south pole [2]. Other mission concepts such as RESOLVE [3], L-VRAP [4], ESA's lunar lander studies and Luna-27 were reviewed. A rover and drill were selected as being the most suitable architecture for the requirements of this mission. Recommendations for future student planetary design exercises were to continue events like this, ideally with more time, and also to invite a more diverse range of

  20. The Planetary Data System--preparing for a New Decade

    Science.gov (United States)

    Morgan, Thomas H.; Knopf, William P.; Grayzeck, Edwin J.

    2015-11-01

    In order to improve NASA’s ability to serve the Planetary Science Community, the Planetary Data System (PDS) has been transformed. NASA has used the highly successful virtual institute model (e.g., for NASA’s Astrobiology Program) to re-compete the Science Nodes within the PDS Structure. The new institute structure will facilitate our efforts within the PDS to improve both archive searchability and product discoverability. We will continue the adaption of the new PDS4 Standard, and enhance our ability to work with other archive/curation activities within NASA and with the community of space faring nations (through the IPDA). PDS science nodes will continue to work with NASA missions from the initial Announcement of Opportunity through the end of mission to define, organize, and document the data. This process includes peer-review of data sets by members of the science community to ensure that the data sets are scientifically useful, effectively organized, and well documented.The Science nodes were selected through a Cooperative Agreement Notice (NNH15ZDA006C) which specifically allowed the community to propose specific archive concepts. The selected nodes are: Cartography and Imaging Sciences, Rings-Moon Systems, Planetary Geosciences, Planetary Plasma Interactions, Atmospheres, and Small Bodies. Other elements of the PDS include an Engineering Node, the Navigation and Ancillary Information Facility, and a small project office.The prime role of the PDS is unchanged. We archive and distribute scientific data from NASA planetary missions, astronomical observations, and laboratory measurements. NASA’s Science Mission Directorate sponsors the PDS. Its purpose is to ensure the long-term usability of NASA data and to stimulate advanced research.In this presentation we discuss recent changes in the PDS, and our future activities to build on the new Institute. Near term efforts include developing a PDS Roadmap for the next decade lead by PDS Chief Scientist, Dr

  1. Visual End-Effector Position Error Compensation for Planetary Robotics

    Science.gov (United States)

    Bajracharya, Max; DiCicco, Matthew; Backes, Paul; Nickels, Kevin

    2007-01-01

    This paper describes a vision-guided manipulation algorithm that improves arm end-effector positioning to subpixel accuracy and meets the highly restrictive imaging and computational constraints of a planetary robotic flight system. Analytical, simulation-based, and experimental analyses of the algorithm's effectiveness and sensitivity to camera and arm model error is presented along with results on several prototype research systems and 'ground-in-the-loop' technology experiments on the Mars Exploration Rover (MER) vehicles. A computationally efficient and robust subpixel end-effector fiducial detector that is instrumental to the algorithm's ability to achieve high accuracy is also described along with its validation results on MER data.

  2. Global and planetary health: teaching as if the future matters.

    Science.gov (United States)

    Johnston, Nancy; Rogers, Martha; Cross, Nadine; Sochan, Anne

    2005-01-01

    If nursing, along with other health professions, is to be able to critique national and international health policy and be equipped to address the global and planetary dimensions of health, the conceptual horizons of our educational and research enterprises will need to be expanded. Not only are nursing curricula needed that address such concepts as "health for all" and "environmental sustainability," but new pedagogies are required that engage students deeply and call them to socially and globally responsible ways-of-being. This article describes teaching and learning in a course that situates health in a global and environmental context and calls forth new personal and professional meanings.

  3. Visual End-Effector Position Error Compensation for Planetary Robotics

    Science.gov (United States)

    Bajracharya, Max; DiCicco, Matthew; Backes, Paul; Nickels, Kevin

    2007-01-01

    This paper describes a vision-guided manipulation algorithm that improves arm end-effector positioning to subpixel accuracy and meets the highly restrictive imaging and computational constraints of a planetary robotic flight system. Analytical, simulation-based, and experimental analyses of the algorithm's effectiveness and sensitivity to camera and arm model error is presented along with results on several prototype research systems and 'ground-in-the-loop' technology experiments on the Mars Exploration Rover (MER) vehicles. A computationally efficient and robust subpixel end-effector fiducial detector that is instrumental to the algorithm's ability to achieve high accuracy is also described along with its validation results on MER data.

  4. Planetary Protection Bioburden Analysis Program

    Science.gov (United States)

    Beaudet, Robert A.

    2013-01-01

    is programmed in Visual Basic for Applications for installation as a simple add-in for Microsoft Excel. The user is directed to a graphical user interface (GUI) that requires user inputs and provides solutions directly in Microsoft Excel workbooks. This work was done by Shannon Ryan of the USRA Lunar and Planetary Institute for Johnson Space Center. Further information is contained in a TSP (see page 1). MSC- 24582-1 Micrometeoroid and Orbital Debris (MMOD) Shield Ballistic Limit Analysis Program Lyndon B. Johnson Space Center, Houston, Texas Commercially, because it is so generic, Enigma can be used for almost any project that requires engineering visualization, model building, or animation. Models in Enigma can be exported to many other formats for use in other applications as well. Educationally, Enigma is being used to allow university students to visualize robotic algorithms in a simulation mode before using them with actual hardware. This work was done by David Shores and Sharon P. Goza of Johnson Space Center; Cheyenne McKeegan, Rick Easley, Janet Way, and Shonn Everett of MEI Technologies; Mark Manning of PTI; and Mark Guerra, Ray Kraesig, and William Leu of Tietronix Software, Inc. For further information, contact the JSC Innovation Partnerships Office at (281) 483-3809. MSC-24211-1 Spitzer Telemetry Processing System NASA's Jet Propulsion Laboratory, Pasadena, California The Spitzer Telemetry Processing System (SirtfTlmProc) was designed to address objectives of JPL's Multi-mission Image Processing Lab (MIPL) in processing spacecraft telemetry and distributing the resulting data to the science community. To minimize costs and maximize operability, the software design focused on automated error recovery, performance, and information management. The system processes telemetry from the Spitzer spacecraft and delivers Level 0 products to the Spitzer Science Center. SirtfTlmProc is a unique system with automated error notification and recovery, with a real

  5. The complex itinerary of Leibniz’s planetary theory physical convictions, metaphysical principles and Keplerian inspiration

    CERN Document Server

    Bussotti, Paolo

    2015-01-01

    This book presents new insights into Leibniz’s research on planetary theory and his system of pre-established harmony. Although some aspects of this theory have been explored in the literature, others are less well known. In particular, the book offers new contributions on the connection between the planetary theory and the theory of gravitation. It also provides an in-depth discussion of Kepler’s influence on Leibniz’s planetary theory and, more generally, on Leibniz’s concept of pre-established harmony. Three initial chapters presenting the mathematical and physical details of Leibniz’s works provide a frame of reference. The book then goes on to discuss research on Leibniz’s conception of gravity and the connection between Leibniz and Kepler. .

  6. Challenges in implementing a Planetary Boundaries based Life-Cycle Impact Assessment methodology

    DEFF Research Database (Denmark)

    Ryberg, Morten; Owsianiak, Mikolaj; Richardson, Katherine

    2016-01-01

    of resolving the challenges and developing such methodology is discussed. The challenges are related to technical issues, i.e., modelling and including the Earth System processes and their control variables as impact categories in Life-Cycle Impact Assessment and to theoretical considerations with respect...... to the interpretation and use of Life-Cycle Assessment results in accordance with the Planetary Boundary framework. The identified challenges require additional research before a Planetary Boundaries based Life-Cycle Impact Assessment method can be developed. Research on modelling the impacts on Earth System processes......, for a number of processes which are essential for maintaining the Earth System in its present state. Life-Cycle Assessment was identified as a suitable tool for linking human activities to the Planetary Boundaries. However, to facilitate proper use of Life-Cycle Assessment for non-global environmental...

  7. Obtaining and Using Planetary Spatial Data into the Future: The Role of the Mapping and Planetary Spatial Infrastructure Team (MAPSIT)

    Science.gov (United States)

    Radebaugh, J.; Thomson, B. J.; Archinal, B.; Hagerty, J.; Gaddis, L.; Lawrence, S. J.; Sutton, S.

    2017-01-01

    Planetary spatial data, which include any remote sensing data or derived products with sufficient positional information such that they can be projected onto a planetary body, continue to rapidly increase in volume and complexity. These data are the hard-earned fruits of decades of planetary exploration, and are the end result of mission planning and execution. Maintaining these data using accessible formats and standards for all scientists has been necessary for the success of past, present, and future planetary missions. The Mapping and Planetary Spatial Infrastructure Team (MAPSIT) is a group of planetary community members tasked by NASA Headquarters to work with the planetary science community to identify and prioritize their planetary spatial data needs to help determine the best pathways for new data acquisition, usable product derivation, and tools/capability development that supports NASA's planetary science missions.

  8. Liberating exomoons in white dwarf planetary systems

    CERN Document Server

    Payne, Matthew J; Holman, Matthew J; Gaensicke, Boris T

    2016-01-01

    Previous studies indicate that more than a quarter of all white dwarf (WD) atmospheres are polluted by remnant planetary material, with some WDs being observed to accrete the mass of Pluto in 10^6 years. The short sinking timescale for the pollutants indicate that the material must be frequently replenished. Moons may contribute decisively to this pollution process if they are liberated from their parent planets during the post-main-sequence evolution of the planetary systems. Here, we demonstrate that gravitational scattering events among planets in WD systems easily triggers moon ejection. Repeated close encounters within tenths of a planetary Hill radii are highly destructive to even the most massive, close-in moons. Consequently, scattering increases both the frequency of perturbing agents in WD systems, as well as the available mass of polluting material in those systems, thereby enhancing opportunities for collision and fragmentation and providing more dynamical pathways for smaller bodies to reach the ...

  9. Magnetic investigations for studying planetary interiors

    Directory of Open Access Journals (Sweden)

    A. De Santis

    1994-06-01

    Full Text Available Most of the magnetic methods used for investigating planetary interiors are based on the reasonable hypothesis that the mechanism for the origin of the field is an Earth-like hydromagnetic dynamo: in this case the planet has an electrically conducting fluid shell within it as in the case of the Earth's core. The present paper describes several techniques of planetary magnetic investigation which give important clues on the internal constitution of planets. Some considerations on the possible mechanisms for maintaining a dynamo and simple concepts with the help of a few non-dimensional numbers are also introduced and discussed. Then some fundamental relationships are given in order to relate the planetary magnetism to other physical parameters, such as angular rotation, core dimensions etc. It finally summarizes some results available for the planets of the Solar System.

  10. Dust in the 55 Cancri planetary system

    CERN Document Server

    Jayawardhana, R; Greaves, J S; Dent, W R F; Marcy, G W; Hartmann, L W; Fazio, G G; Jayawardhana, Ray; Holland, Wayne S.; Greaves, Jane S.; Dent, William R. F.; Marcy, Geoffrey W.; Hartmann, Lee W.; Fazio, Giovanni G.

    2000-01-01

    The presence of debris disks around $\\sim$ 1-Gyr-old main sequence stars suggests that an appreciable amount of dust may persist even in mature planetary systems. Here we report the detection of dust emission from 55 Cancri, a star with one, or possibly two, planetary companions detected through radial velocity measurements. Our observations at 850$\\mu$m and 450$\\mu$m imply a dust mass of 0.0008-0.005 Earth masses, somewhat higher than that in the the Kuiper Belt of our solar system. The estimated temperature of the dust grains and a simple model fit both indicate a central disk hole of at least 10 AU in radius. Thus, the region where the planets are detected is likely to be significantly depleted of dust. Our results suggest that far-infrared and sub-millimeter observations are powerful tools for probing the outer regions of extrasolar planetary systems.

  11. An Interactive Gallery of Planetary Nebula Spectra

    Science.gov (United States)

    Kwitter, K. B.; Henry, R. B. C.

    2002-12-01

    We have created a website containing high-quality moderate-resolution spectra of 88 planetary nebulae (PNe) from 3600 to 9600 Å, obtained at KPNO and CTIO. Spectra are displayed in a zoomable window, and there are templates available that show wavelength and ion identifications. In addition to the spectra themselves, the website also contains a brief discussion of PNe as astronomical objects and as contributors to our understanding of stellar evolution, and a table with atlas information for each object along with a link to an image. This table can be re-ordered by object name, galactic or equatorial coordinates, distance from the sun, the galactic center, or the galactic plane. We envision that this website, which concentrates a large amount of data in one place, will be of interest to a variety of users. PN researchers might need to check the spectrum of a particular object of interest; the non-specialist astronomer might simply be interested in perusing such a collection of spectra; and finally, teachers of introductory astronomy can use this database to illustrate basic principles of atomic physics and radiation. To encourage such use, we have written two simple exercises at a basic level to introduce beginning astronomy students to the wealth of information that PN spectra contain. We are grateful to Adam Wang of the Williams College OIT and to his summer student teams who worked on various apects of the implementation of this website. This work has been supported by NSF grant AST-9819123 and by Williams College and the University of Oklahoma.

  12. Reconsideration of the planetary boundary for phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, Stephen R [Center for Limnology, University of Wisconsin, Madison, WI 53706 (United States); Bennett, Elena M, E-mail: srcarpen@wisc.edu, E-mail: Elena.Bennett@mcgill.ca [Department of Natural Resource Sciences and McGill School of Environment, McGill University, 21 111 Lakeshore Road, Ste-Anne de Bellevue, QC, H9X 3V9 (Canada)

    2011-01-15

    Phosphorus (P) is a critical factor for food production, yet surface freshwaters and some coastal waters are highly sensitive to eutrophication by excess P. A planetary boundary, or upper tolerable limit, for P discharge to the oceans is thought to be ten times the pre-industrial rate, or more than three times the current rate. However this boundary does not take account of freshwater eutrophication. We analyzed the global P cycle to estimate planetary boundaries for freshwater eutrophication. Planetary boundaries were computed for the input of P to freshwaters, the input of P to terrestrial soil, and the mass of P in soil. Each boundary was computed for two water quality targets, 24 mg P m{sup -3}, a typical target for lakes and reservoirs, and 160 mg m{sup -3}, the approximate pre-industrial P concentration in the world's rivers. Planetary boundaries were also computed using three published estimates of current P flow to the sea. Current conditions exceed all planetary boundaries for P. Substantial differences between current conditions and planetary boundaries demonstrate the contrast between large amounts of P needed for food production and the high sensitivity of freshwaters to pollution by P runoff. At the same time, some regions of the world are P-deficient, and there are some indications that a global P shortage is possible in coming decades. More efficient recycling and retention of P within agricultural ecosystems could maintain or increase food production while reducing P pollution and improving water quality. Spatial heterogeneity in the global P cycle suggests that recycling of P in regions of excess and transfer of P to regions of deficiency could mitigate eutrophication, increase agricultural yield, and delay or avoid global P shortage.

  13. Institute of Geophyics and Planetary Physics. Annual report for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Ryerson, F.J. [ed.

    1995-09-29

    The Institute of Geophysics and Planetary Physics (IGPP) is a Multicampus Research Unit of the University of California (UC). IGPP was founded in 1946 at UC Los Angeles with a charter to further research in the earth and planetary sciences and in related fields. The Institute now has branches at UC campuses in Los Angeles, San Diego, Riverside, and Irvine and at Los Alamos and Lawrence Livermore national laboratories. The University-wide IGPP has played an important role in establishing interdisciplinary research in the earth and planetary sciences. For example, IGPP was instrumental in founding the fields of physical oceanography and space physics, which at the time fell between the cracks of established university departments. Because of its multicampus orientation, IGPP has sponsored important interinstitutional consortia in the earth and planetary sciences. Each of the six branches has a somewhat different intellectual emphasis as a result of the interplay between strengths of campus departments and Laboratory programs. The IGPP branch at Lawrence Livermore National Laboratory (LLNL) was approved by the Regents of the University of California in 1982. IGPP-LLNL emphasizes research in seismology, geochemistry, cosmochemistry, high-pressure sciences, and astrophysics. It provides a venue for studying the fundamental aspects of these fields, thereby complementing LLNL programs that pursue applications of these disciplines in national security and energy research. IGPP-LLNL is directed by Charles Alcock and is structured around three research centers. The Center for Geosciences, headed by George Zandt and Frederick Ryerson, focuses on research in geophysics and geochemistry. The Center for High-Pressure Sciences, headed by William Nellis, sponsors research on the properties of planetary materials and on the synthesis and preparation of new materials using high-pressure processing.

  14. Mission Implementation Constraints on Planetary Muon Radiography

    Science.gov (United States)

    Jones, Cathleen E.; Kedar, Sharon; Naudet, Charles; Webb, Frank

    2011-01-01

    Cost: Use heritage hardware, especially use a tested landing system to reduce cost (Phoenix or MSL EDL stage). The sky crane technology delivers higher mass to the surface and enables reaching targets at higher elevation, but at a higher mission cost. Rover vs. Stationary Lander: Rover-mounted instrument enables tomography, but the increased weight of the rover reduces the allowable payload weight. Mass is the critical design constraint for an instrument for a planetary mission. Many factors that are minor factors or do not enter into design considerations for terrestrial operation are important for a planetary application. (Landing site, diurnal temperature variation, instrument portability, shock/vibration)

  15. Directed Energy Missions for Planetary Defense

    OpenAIRE

    Lubin, P.; Hughes, GB; Eskenazi, M; Kosmo, K.; Johansson, IE; Griswold, J., Ian,;Zhou, Hongjun,;Matison, Mikenzie,;Swanson, V., Ronald,;McIntosh, P., Lawrence,;Simon, I., Melvin,;Dahlquist, W., Frederick,; Pryor, M; O'Neill, H.; Meinhold, P.; Suen, J; J; Riley; Zhang, Q.; Walsh, K.; Melis, C.; Kangas, M

    2016-01-01

    Directed energy for planetary defense is now a viable option and is superior in many ways to other proposed technologies, being able to defend the Earth against all known threats. This paper presents basic ideas behind a directed energy planetary defense system that utilizes laser ablation of an asteroid to impart a deflecting force on the target. A conceptual philosophy called DE-STAR, which stands for Directed Energy System for Targeting of Asteroids and exploRation, is an orbiting stand-of...

  16. Global Analysis of a Planetary Gear Train

    OpenAIRE

    Tongjie Li; Rupeng Zhu

    2014-01-01

    By using the Poincaré-like cell-to-cell mapping method and shooting method, the global characteristics of a planetary gear train are studied based on the torsional vibration model with errors of transmission, time-varying meshing stiffness, and multiple gear backlashes. The study results reveal that the planetary with a certain set of parameters has four coexisting periodic orbits, which are P-1, P-2, P-4, and P-8, respectively. P-1 and P-2 motions are not of long-term stability, P-8 motion ...

  17. Dynamical Problems in Extrasolar Planetary Science

    Science.gov (United States)

    Morbidelli, Alessandro; Haghighipour, Nader

    2016-10-01

    The past few years have witnessed a large increase in the number of extrasolar planets. Thanks to successful surveys from the ground and from space, there are now over 1000 confirmed exoplanets and more then 3000 planetary candidates. More than 130 of these systems host multiple planets. Many of these systems demonstrate physical and orbital characteristics fundamentally different from those of our solar system. The challenges associated with the diversity of planetary systems have raised many interesting questions on planet formation and orbital dynamics.

  18. Planetary Atmosphere and Surfaces Chamber (PASC: A Platform to Address Various Challenges in Astrobiology

    Directory of Open Access Journals (Sweden)

    Eva Mateo-Marti

    2014-08-01

    Full Text Available The study of planetary environments of astrobiological interest has become a major challenge. Because of the obvious technical and economical limitations on in situ planetary exploration, laboratory simulations are one of the most feasible research options to make advances both in planetary science and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum technology to the design of versatile vacuum chambers devoted to the simulation of planetary atmospheres’ conditions. These vacuum chambers are able to simulate atmospheres and surface temperatures representative of the majority of planetary objects, and they are especially appropriate for studying the physical, chemical and biological changes induced in a particular sample by in situ irradiation or physical parameters in a controlled environment. Vacuum chambers are a promising potential tool in several scientific and technological fields, such as engineering, chemistry, geology and biology. They also offer the possibility of discriminating between the effects of individual physical parameters and selected combinations thereof. The implementation of our vacuum chambers in combination with analytical techniques was specifically developed to make feasible the in situ physico-chemical characterization of samples. Many wide-ranging applications in astrobiology are detailed herein to provide an understanding of the potential and flexibility of these experimental systems. Instruments and engineering technology for space applications could take advantage of our environment-simulation chambers for sensor calibration. Our systems also provide the opportunity to gain a greater understanding of the chemical reactivity of molecules on surfaces under different environments, thereby leading to a greater understanding of interface processes in prebiotic chemical reactions and facilitating studies of UV photostability and photochemistry on surfaces

  19. Planetary Atmosphere and Surfaces Chamber (PASC): A Platform to Address Various Challenges in Astrobiology

    Science.gov (United States)

    Mateo-Marti, Eva

    2014-08-01

    The study of planetary environments of astrobiological interest has become a major challenge. Because of the obvious technical and economical limitations on in situ planetary exploration, laboratory simulations are one of the most feasible research options to make advances both in planetary science and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum technology to the design of versatile vacuum chambers devoted to the simulation of planetary atmospheres' conditions. These vacuum chambers are able to simulate atmospheres and surface temperatures representative of the majority of planetary objects, and they are especially appropriate for studying the physical, chemical and biological changes induced in a particular sample by in situ irradiation or physical parameters in a controlled environment. Vacuum chambers are a promising potential tool in several scientific and technological fields, such as engineering, chemistry, geology and biology. They also offer the possibility of discriminating between the effects of individual physical parameters and selected combinations thereof. The implementation of our vacuum chambers in combination with analytical techniques was specifically developed to make feasible the in situ physico-chemical characterization of samples. Many wide-ranging applications in astrobiology are detailed herein to provide an understanding of the potential and flexibility of these experimental systems. Instruments and engineering technology for space applications could take advantage of our environment-simulation chambers for sensor calibration. Our systems also provide the opportunity to gain a greater understanding of the chemical reactivity of molecules on surfaces under different environments, thereby leading to a greater understanding of interface processes in prebiotic chemical reactions and facilitating studies of UV photostability and photochemistry on surfaces. Furthermore, the

  20. Planetary Protection Technology Definition Team: Tasks, Status, and Feedback

    Science.gov (United States)

    Meyer, M. A.; Rummel, J. D.

    2016-10-01

    A Planetary Protection and Technology Definition Team will assess challenges to meeting planetary protection requirements to instruments and will suggest technological solutions. Status and initial findings will be reported.

  1. Overview of Outreach Activities of the Planetary Sciences and Remote Sensing Group at Freie Universität Berlin

    Science.gov (United States)

    Musiol, S.; Balthasar, H.; Dumke, A.; Gross, C.; Michael, G.; Neu, D.; Platz, T.; Rosenberg, H.; Schreiner, B.; Walter, S. H. G.; van Gasselt, S.

    2014-04-01

    Planetary Sciences teach us how special our homeplanet is in the solar system. Incorporating a broad variety of natural science topics they count to the most fundamental branches of scientific research with a strong interdisciplinary character. However, since planetary sciences are not a school subject, children as well as adults are often lacking an overall awareness and understanding of that field. The mission of planetary education has to be fulfilled by research institutions. With several platforms and activities our group is engaged to address this topic. The Planetary Sciences and Remote Sensing Group at Freie Universität Berlin (FUB) is involved in space missions such as Mars Express with the High Resolution Stereo Camera (HRSC), Cassini to Saturn, and Dawn to the asteroids Vesta and Ceres. Moreover, we participate in developing a planetary X-ray fluorescence spectrometer. Information of our planetary research activities can be found on our institutes website [1]. Our outreach activities include press releases, an image download hub, permanent and special exhibition support, 3D-HD-animation production, science fairs, workshops, hands-on courses, public talks at observatories and schools, as well as media appearances in radio, press and TV.

  2. Planetary Science Education - Workshop Concepts for Classrooms and Internships

    Science.gov (United States)

    Musiol, S.; Rosenberg, H.; Rohwer, G.; Balthasar, H.; van Gasselt, S.

    2014-12-01

    In Germany, education in astronomy and planetary sciences is limited to very few schools or universities and is actively pursued by only selected research groups. Our group is situated at the Freie Universität Berlin and we are actively involved in space missions such as Mars Express, Cassini in the Saturnian system, and DAWN at Vesta and Ceres. In order to enhance communication and establish a broader basis for building up knowledge on our solar-system neighborhood, we started to offer educational outreach in the form of workshops for groups of up to 20 students from primary/middle schools to high schools. Small group sizes guarantee practical, interactive, and dialog-based working environments as well as a high level of motivation. Several topical workshops have been designed which are targeted at different age groups and which consider different educational background settings. One workshop called "Impact craters on planets and moons" provides a group-oriented setting in which 3-4 students analyze spacecraft images showing diverse shapes of impact craters on planetary surfaces. It is targeted not only at promoting knowledge about processes on planetary surfaces but it also stimulates visual interpretation skills, 3D viewing and reading of map data. A second workshop "We plan a manned mission to Mars" aims at fostering practical team work by designing simple space mission scenarios which are solved within a team by collaboration and responsibility. A practical outdoor activity called "Everything rotates around the Sun" targets at developing a perception of absolute - but in particular relative - sizes, scales and dimensions of objects in our solar system. Yet another workshop "Craters, volcanoes and co. - become a geologist on Mars" was offered at the annual national "Girls' Day" aiming at motivating primary to middle school girls to deal with topics in classical natural sciences. Small groups investigated and interpreted geomorphologic features in image data of

  3. Journal Bearing Analysis Suite Released for Planetary Gear System Evaluation

    Science.gov (United States)

    Brewe, David E.; Clark, David A.

    2005-01-01

    Planetary gear systems are an efficient means of achieving high reduction ratios with minimum space and weight. They are used in helicopter, aerospace, automobile, and many industrial applications. High-speed planetary gear systems will have significant dynamic loading and high heat generation. Hence, they need jet lubrication and associated cooling systems. For units operating in critical applications that necessitate high reliability and long life, that have very large torque loading, and that have downtime costs that are significantly greater than the initial cost, hydrodynamic journal bearings are a must. Computational and analytical tools are needed for sufficiently accurate modeling to facilitate optimal design of these systems. Sufficient physics is needed in the model to facilitate parametric studies of design conditions that enable optimal designs. The first transient journal bearing code to implement the Jacobsson-Floberg-Olsson boundary conditions, using a mass-conserving algorithm devised by Professor Emeritus Harold Elrod of Columbia University, was written by David E. Brewe of the U.S. Army at the NASA Lewis Research Center1 in 1983. Since then, new features and improved modifications have been built into the code by several contributors supported through Army and NASA funding via cooperative agreements with the University of Toledo (Professor Ted Keith, Jr., and Dr. Desikakary Vijayaraghavan) and National Research Council Programs (Dr. Vijayaraghavan). All this was conducted with the close consultation of Professor Elrod and the project management of David Brewe.

  4. Ground tests with active neutron instrumentation for the planetary science missions

    Energy Technology Data Exchange (ETDEWEB)

    Litvak, M.L., E-mail: litvak@mx.iki.rssi.ru [Space Research Institute, RAS, Moscow 117997 (Russian Federation); Mitrofanov, I.G.; Sanin, A.B. [Space Research Institute, RAS, Moscow 117997 (Russian Federation); Jun, I. [Jet Propulsion Laboratory, Pasadena, CA USA (United States); Kozyrev, A.S. [Space Research Institute, RAS, Moscow 117997 (Russian Federation); Krylov, A.; Shvetsov, V.N.; Timoshenko, G.N. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Starr, R. [Catholic University of America, Washington DC (United States); Zontikov, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2015-07-11

    We present results of experimental work performed with a spare flight model of the DAN/MSL instrument in a newly built ground test facility at the Joint Institute for Nuclear Research. This instrument was selected for the tests as a flight prototype of an active neutron spectrometer applicable for future landed missions to various solid solar system bodies. In our experiment we have fabricated simplified samples of planetary material and tested the capability of neutron activation methods to detect thin layers of water/water ice lying on top of planetary dry regolith or buried within a dry regolith at different depths.

  5. Hypersonic and planetary entry flight mechanics

    Science.gov (United States)

    Vinh, N. X.; Busemann, A.; Culp, R. D.

    1980-01-01

    The book treats hypersonic flight trajectories and atmospheric entry flight mechanics in light of their importance for space shuttle entry. Following a review of the structures of planetary atmospheres and aerodynamic forces, equations are derived for flight over a spherical planet, and the performance of long-range hypervelocity vehicles in extra-atmospheric flight is analyzed. Consideration is then given to vehicle trajectories in the powered and atmospheric reentry phases of flight, and several first-order solutions are derived for various planetary entry situations. The second-order theory of Loh for entry trajectories is presented along with the classical theories of Yaroshevskii and Chapman for entry into planetary atmospheres, and the thermal problems encountered in hypersonic flight are analyzed. A unified theory for entry into planetary atmospheres is then introduced which allows the performance of a general type of lifting vehicle to be studied, and applied to the analysis of orbit contraction due to atmospheric drag, flight with lift modulation and lateral maneuvers.

  6. Planetary boundaries : Governing emerging risks and opportunities

    NARCIS (Netherlands)

    Galaz, V.; de Zeeuw, Aart; Shiroyama, Hideaki; Tripley, Debbie

    2016-01-01

    The climate, ecosystems and species, ozone layer, acidity of the oceans, the flow of energy and elements through nature, landscape change, freshwater systems, aerosols, and toxins—these constitute the planetary boundaries within which humanity must find a safe way to live and prosper. These are thre

  7. The cosmopolitan contradictions of planetary urbanization.

    Science.gov (United States)

    Millington, Gareth

    2016-09-01

    This paper explores the empirical, conceptual and theoretical gains that can be made using cosmopolitan social theory to think through the urban transformations that scholars have in recent years termed planetary urbanization. Recognizing the global spread of urbanization makes the need for a cosmopolitan urban sociology more pressing than ever. Here, it is suggested that critical urban sociology can be invigorated by focusing upon the disconnect that Henri Lefebvre posits between the planetarization of the urban - which he views as economically and technologically driven - and his dis-alienated notion of a global urban society. The first aim of this paper is to highlight the benefits of using 'cosmopolitan' social theory to understand Lefebvre's urban problematic (and to establish why this is also a cosmopolitan problematic); the second is to identify the core cosmopolitan contradictions of planetary urbanization, tensions that are both actually existing and reproduced in scholarly accounts. The article begins by examining the challenges presented to urban sociology by planetary urbanization, before considering how cosmopolitan sociological theory helps provide an analytical 'grip' on the deep lying social realities of contemporary urbanization, especially in relation to questions about difference, culture and history. These insights are used to identify three cosmopolitan contradictions that exist within urbanized (and urbanizing) space; tensions that provide a basis for a thoroughgoing cosmopolitan investigation of planetary urbanization.

  8. Six Hot Topics in Planetary Astronomy

    OpenAIRE

    Jewitt, David

    2008-01-01

    Six hot topics in modern planetary astronomy are described: 1) lightcurves and densities of small bodies 2) colors of Kuiper belt objects and the distribution of the ultrared matter 3) spectroscopy and the crystallinity of ice in the outer Solar system 4) irregular satellites of the giant planets 5) the Main Belt Comets and 6) comets and meteor stream parents.

  9. Transiting planetary system WASP-17 (Southworth+, 2012)

    DEFF Research Database (Denmark)

    Southworth, J.; Hinse, T. C.; Dominik, M.

    2013-01-01

    A light curve of four transits of the extrasolar planetary system WASP-17 is presented. The data were obtained using the Danish 1.5m telescope and DFOSC camera at ESO La Silla in 2012, with substantial telescope defocussing in order to improve the photometric precision of the observations. A Cous...

  10. Introduction: Special issue on planetary rings

    Science.gov (United States)

    Nicholson, Philip; Esposito, Larry

    2016-11-01

    This issue of Icarus is devoted largely to papers presented at an open conference held at the Univ. of Colorado on 13-15 August 2014. This Planetary Rings Workshop is the fourth in a series organized by the Rings Working Group of the Cassini-Huygens mission and most of the papers presented dealt with phenomena revealed

  11. Planetary nebulae abundances and stellar evolution

    NARCIS (Netherlands)

    Pottasch, S. R.; Bernard-Salas, J.

    2006-01-01

    A summary is given of planetary nebulae abundances from ISO measurements. It is shown that these nebulae show abundance gradients (with galactocentric distance), which in the case of neon, argon, sulfur and oxygen (with four exceptions) are the same as HII regions and early type star abundance gradi

  12. Multiscale regime shifts and planetary boundaries

    NARCIS (Netherlands)

    Hughes, T.P.; Carpenter, S.; Rockstrom, J.; Scheffer, M.; Walker, B.

    2013-01-01

    Life on Earth has repeatedly displayed abrupt and massive changes in the past, and there is no reason to expect that comparable planetary-scale regime shifts will not continue in the future. Different lines of evidence indicate that regime shifts occur when the climate or biosphere transgresses a ti

  13. Submillimeter Planetary Atmospheric Chemistry Exploration Sounder

    Science.gov (United States)

    Schlecht, Erich T.; Allen, Mark A.; Gill, John J.; Choonsup, Lee; Lin, Robert H.; Sin, Seth; Mehdi, Imran; Siegel, Peter H.; Maestrini, Alain

    2013-01-01

    Planetary Atmospheric Chemistry Exploration Sounder (SPACES), a high-sensitivity laboratory breadboard for a spectrometer targeted at orbital planetary atmospheric analysis. The frequency range is 520 to 590 GHz, with a target noise temperature sensitivity of 2,500 K for detecting water, sulfur compounds, carbon compounds, and other atmospheric constituents. SPACES is a prototype for a powerful tool for the exploration of the chemistry and dynamics of any planetary atmosphere. It is fundamentally a single-pixel receiver for spectral signals emitted by the relevant constituents, intended to be fed by a fixed or movable telescope/antenna. Its front-end sensor translates the received signal down to the 100-MHz range where it can be digitized and the data transferred to a spectrum analyzer for processing, spectrum generation, and accumulation. The individual microwave and submillimeter wave components (mixers, LO high-powered amplifiers, and multipliers) of SPACES were developed in cooperation with other programs, although with this type of instrument in mind. Compared to previous planetary and Earth science instruments, its broad bandwidth (approx. =.13%) and rapid tunability (approx. =.10 ms) are new developments only made possible recently by the advancement in submillimeter circuit design and processing at JPL.

  14. Abundances of planetary nebula NGC2392

    NARCIS (Netherlands)

    Pottasch, S. R.; Bernard-Salas, J.; Roellig, T. L.

    The spectra of the planetary nebula NGC2392 is reanalysed using spectral measurements made in the mid-infrared with the Spitzer Space Telescope. The aim is to determine the chemical composition of this object. We also make use of IUE and ground based spectra. Abundances determined from the

  15. Transiting planetary system WASP-17 (Southworth+, 2012)

    DEFF Research Database (Denmark)

    Southworth, J.; Hinse, T. C.; Dominik, M.;

    2013-01-01

    A light curve of four transits of the extrasolar planetary system WASP-17 is presented. The data were obtained using the Danish 1.5m telescope and DFOSC camera at ESO La Silla in 2012, with substantial telescope defocussing in order to improve the photometric precision of the observations. A Cous...

  16. The brazilian indigenous planetary-observatory

    Science.gov (United States)

    Afonso, G. B.

    2003-08-01

    We have performed observations of the sky alongside with the Indians of all Brazilian regions that made it possible localize many indigenous constellations. Some of these constellations are the same as the other South American Indians and Australian aborigines constellations. The scientific community does not have much of this information, which may be lost in one or two generations. In this work, we present a planetary-observatory that we have made in the Park of Science Newton Freire-Maia of Paraná State, in order to popularize the astronomical knowledge of the Brazilian Indians. The planetary consists, essentially, of a sphere of six meters in diameter and a projection cylinder of indigenous constellations. In this planetary we can identify a lot of constellations that we have gotten from the Brazilian Indians; for instance, the four seasonal constellations: the Tapir (spring), the Old Man (summer), the Deer (autumn) and the Rhea (winter). A two-meter height wooden staff that is posted vertically on the horizontal ground similar to a Gnomon and stones aligned with the cardinal points and the soltices directions constitutes the observatory. A stone circle of ten meters in diameter surrounds the staff and the aligned stones. During the day we observe the Sun apparent motions and at night the indigenous constellations. Due to the great community interest in our work, we are designing an itinerant indigenous planetary-observatory to be used in other cities mainly by indigenous and primary schools teachers.

  17. A Path to Planetary Protection Requirements for Human Exploration: A Literature Review and Systems Engineering Approach

    Science.gov (United States)

    Johnson, James E.; Conley, Cassie; Siegel, Bette

    2015-01-01

    As systems, technologies, and plans for the human exploration of Mars and other destinations beyond low Earth orbit begin to coalesce, it is imperative that frequent and early consideration is given to how planetary protection practices and policy will be upheld. While the development of formal planetary protection requirements for future human space systems and operations may still be a few years from fruition, guidance to appropriately influence mission and system design will be needed soon to avoid costly design and operational changes. The path to constructing such requirements is a journey that espouses key systems engineering practices of understanding shared goals, objectives and concerns, identifying key stakeholders, and iterating a draft requirement set to gain community consensus. This paper traces through each of these practices, beginning with a literature review of nearly three decades of publications addressing planetary protection concerns with respect to human exploration. Key goals, objectives and concerns, particularly with respect to notional requirements, required studies and research, and technology development needs have been compiled and categorized to provide a current 'state of knowledge'. This information, combined with the identification of key stakeholders in upholding planetary protection concerns for human missions, has yielded a draft requirement set that might feed future iteration among space system designers, exploration scientists, and the mission operations community. Combining the information collected with a proposed forward path will hopefully yield a mutually agreeable set of timely, verifiable, and practical requirements for human space exploration that will uphold international commitment to planetary protection.

  18. The effect of roll with passive segment on the planetary rolling process

    Directory of Open Access Journals (Sweden)

    Qing-Ling Zeng

    2015-03-01

    Full Text Available In three-roll planetary rolling process, there is secondary torsion phenomenon that may lead to rolling instability. This article proposed a new idea to alleviate the secondary torsion phenomenon by dividing the secondary torsion segment out of the roll as an independent and passive one. To study the performance of the roll with passive segment, the three-dimensional finite element models of planetary rolling process using actual roll or new roll with passive segment involving elastic–plastic and thermal–mechanical coupling were established by the software ABAQUS/Explicit, and a series of analysis had been done successfully. The rolling temperature and rolling force of planetary mill were in good agreement with the measured results, which indicated that the finite element method would supply important reference merit for three-dimensional thermo-mechanical simulation of the three-roll planetary rolling process. Comparing the simulation results of the two models, the results indicated that the change in the roll structure had just a little influence on the metal deformation, temperature, and rolling force, but it lessened the secondary torsion deformation effectively and improved the outside roundness of the rolled tube slightly. The research provided a new idea for the roll design of three-roll planetary mill (PSW.

  19. Robotic automation for space: planetary surface exploration, terrain-adaptive mobility, and multirobot cooperative tasks

    Science.gov (United States)

    Schenker, Paul S.; Huntsberger, Terrance L.; Pirjanian, Paolo; Baumgartner, Eric T.; Aghazarian, Hrand; Trebi-Ollennu, Ashitey; Leger, Patrick C.; Cheng, Yang; Backes, Paul G.; Tunstel, Edward; Dubowsky, Steven; Iagnemma, Karl D.; McKee, Gerard T.

    2001-10-01

    During the last decade, there has been significant progress toward a supervised autonomous robotic capability for remotely controlled scientific exploration of planetary surfaces. While planetary exploration potentially encompasses many elements ranging from orbital remote sensing to subsurface drilling, the surface robotics element is particularly important to advancing in situ science objectives. Surface activities include a direct characterization of geology, mineralogy, atmosphere and other descriptors of current and historical planetary processes-and ultimately-the return of pristine samples to Earth for detailed analysis. Toward these ends, we have conducted a broad program of research on robotic systems for scientific exploration of the Mars surface, with minimal remote intervention. The goal is to enable high productivity semi-autonomous science operations where available mission time is concentrated on robotic operations, rather than up-and-down-link delays. Results of our work include prototypes for landed manipulators, long-ranging science rovers, sampling/sample return mobility systems, and more recently, terrain-adaptive reconfigurable/modular robots and closely cooperating multiple rover systems. The last of these are intended to facilitate deployment of planetary robotic outposts for an eventual human-robot sustained scientific presence. We overview our progress in these related areas of planetary robotics R&D, spanning 1995-to-present.

  20. Planetary Perspectives: Training Teachers about Rocks from Earth and Space Through Project WISER

    Science.gov (United States)

    Buxner, S.; Crown, D. A.; Lebofsky, L. A.; Croft, S. K.; Canizo, T.; Baldridge, A. M.; Kortenkamp, S.; Chuang, F.; Pierazzo, E.

    2011-12-01

    Within the exciting context of planetary exploration, the Planetary Science Institute is offering an ongoing series of professional development workshops for elementary and middle school science teachers in Southern Arizona. Each workshop is an opportunity for teachers to learn about current exploration of the Solar System, engage in modeling scientific inquiry, and interact with active planetary science researchers. Current workshops include the Moon-Earth System, Exploring the Terrestrial Planets, Impact Cratering, Asteroid-Meteorite Connection, and Volcanoes of the Solar System. Two more workshops, Deserts of the Solar System and Astrobiology and the Search for Extrasolar Planetary Systems are being developed. Three rock kits have been designed for use during these workshops: the Impact Rock Kit, Meteorite Kit, and Volcanic Rock Kit. Each kit includes supporting materials with scientific background, supporting presentations, and additional ideas for using the kits in the classroom. In response to teachers' request to be able to use these kits in their classrooms, we have created a series of stand-alone workshops to train educators to use the rock kits in their own educational settings. After completing the training, teachers and other community educators are able to check out the kits for use in their classrooms, science fairs, star parties, and educational and social events. This work is supported by NASA EPOESS award NNX10AE56G: Workshops in Science Education and Resources (Wiser): Planetary Perspectives.

  1. The search for life's origins: Progress and future directions in planetary biology and chemical evolution

    Science.gov (United States)

    1990-01-01

    The current state is reviewed of the study of chemical evolution and planetary biology and the probable future is discussed of the field, at least for the near term. To this end, the report lists the goals and objectives of future research and makes detailed, comprehensive recommendations for accomplishing them, emphasizing those issues that were inadequately discussed in earlier Space Studies Board reports.

  2. Planetary Sciences, Geodynamics, Impacts, Mass Extinctions, and Evolution: Developments and Interconnections

    Directory of Open Access Journals (Sweden)

    Jaime Urrutia-Fucugauchi

    2016-01-01

    Full Text Available Research frontiers in geophysics are being expanded, with development of new fields resulting from technological advances such as the Earth observation satellite network, global positioning system, high pressure-temperature physics, tomographic methods, and big data computing. Planetary missions and enhanced exoplanets detection capabilities, with discovery of a wide range of exoplanets and multiple systems, have renewed attention to models of planetary system formation and planet’s characteristics, Earth’s interior, and geodynamics, highlighting the need to better understand the Earth system, processes, and spatio-temporal scales. Here we review the emerging interconnections resulting from advances in planetary sciences, geodynamics, high pressure-temperature physics, meteorite impacts, and mass extinctions.

  3. The Planetary and Space Simulation Facilities at DLR Cologne

    Science.gov (United States)

    Rabbow, Elke; Parpart, André; Reitz, Günther

    2016-06-01

    Astrobiology strives to increase our knowledge on the origin, evolution and distribution of life, on Earth and beyond. In the past centuries, life has been found on Earth in environments with extreme conditions that were expected to be uninhabitable. Scientific investigations of the underlying metabolic mechanisms and strategies that lead to the high adaptability of these extremophile organisms increase our understanding of evolution and distribution of life on Earth. Life as we know it depends on the availability of liquid water. Exposure of organisms to defined and complex extreme environmental conditions, in particular those that limit the water availability, allows the investigation of the survival mechanisms as well as an estimation of the possibility of the distribution to and survivability on other celestial bodies of selected organisms. Space missions in low Earth orbit (LEO) provide access for experiments to complex environmental conditions not available on Earth, but studies on the molecular and cellular mechanisms of adaption to these hostile conditions and on the limits of life cannot be performed exclusively in space experiments. Experimental space is limited and allows only the investigation of selected endpoints. An additional intensive ground based program is required, with easy to access facilities capable to simulate space and planetary environments, in particular with focus on temperature, pressure, atmospheric composition and short wavelength solar ultraviolet radiation (UV). DLR Cologne operates a number of Planetary and Space Simulation facilities (PSI) where microorganisms from extreme terrestrial environments or known for their high adaptability are exposed for mechanistic studies. Space or planetary parameters are simulated individually or in combination in temperature controlled vacuum facilities equipped with a variety of defined and calibrated irradiation sources. The PSI support basic research and were recurrently used for pre

  4. MExLab Planetary Geoportal: 3D-access to planetary images and results of spatial data analysis

    Science.gov (United States)

    Karachevtseva, I.; Garov, A.

    2015-10-01

    MExLab Planetary Geoportal was developed as Geodesy and Cartography Node which provide access to results of study of celestial bodies such as DEM and orthoimages, as well as basemaps, crater catalogues and derivative products: slope, roughness, crater density (http://cartsrv.mexlab.ru/geoportal). The main feature of designed Geoportal is the ability of spatial queries and access to the contents selecting from the list of available data set (Phobos, Mercury, Moon, including Lunokhod's archive data). Prior version of Geoportal has been developed using Flash technology. Now we are developing new version which will use 3D-API (OpenGL, WebGL) based on shaders not only for standard 3D-functionality, but for 2D-mapping as well. Users can obtain quantitative and qualitative characteristics of the objects in graphical, tabular and 3D-forms. It will bring the advantages of unification of code and speed of processing and provide a number of functional advantages based on GIS-tools such as: - possibility of dynamic raster transform for needed map projection; - effective implementation of the co-registration of planetary images by combining spatial data geometries; - presentation in 3D-form different types of data, including planetary atmospheric measurements, subsurface radar data, ect. The system will be created with a new software architecture, which has a potential for development and flexibility in reconfiguration based on cross platform solution: - an application for the three types of platforms: desktop (Windows, Linux, OSX), web platform (any HTML5 browser), and mobile application (Android, iOS); - a single codebase shared between platforms (using cross compilation for Web); - a new telecommunication solution to connect between modules and external system like PROVIDE WebGIS (http://www.provide-space.eu/progis/). The research leading to these result was partly supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n

  5. Confronting unknown planetary boundary threats from chemical pollution.

    Science.gov (United States)

    Persson, Linn M; Breitholtz, Magnus; Cousins, Ian T; de Wit, Cynthia A; MacLeod, Matthew; McLachlan, Michael S

    2013-11-19

    Rockström et al. proposed a set of planetary boundaries that delimitate a "safe operating space for humanity". One of the planetary boundaries is determined by "chemical pollution", however no clear definition was provided. Here, we propose that there is no single chemical pollution planetary boundary, but rather that many planetary boundary issues governed by chemical pollution exist. We identify three conditions that must be simultaneously met for chemical pollution to pose a planetary boundary threat. We then discuss approaches to identify chemicals that could fulfill those conditions, and outline a proactive hazard identification strategy that considers long-range transport and the reversibility of chemical pollution.

  6. Computer Modeling of Planetary Surface Temperatures in Introductory Astronomy Courses

    Science.gov (United States)

    Barker, Timothy; Goodman, J.

    2013-01-01

    Barker, T., and Goodman, J. C., Wheaton College, Norton, MA Computer modeling is an essential part of astronomical research, and so it is important that students be exposed to its powers and limitations in the first (and, perhaps, only) astronomy course they take in college. Building on the ideas of Walter Robinson (“Modeling Dynamic Systems,” Springer, 2002) we have found that STELLA software (ISEE Systems) allows introductory astronomy students to do sophisticated modeling by the end of two classes of instruction, with no previous experience in computer programming or calculus. STELLA’s graphical interface allows students to visualize systems in terms of “flows” in and out of “stocks,” avoiding the need to invoke differential equations. Linking flows and stocks allows feedback systems to be constructed. Students begin by building an easily understood system: a leaky bucket. This is a simple negative feedback system in which the volume in the bucket (a “stock”) depends on a fixed inflow rate and an outflow that increases in proportion to the volume in the bucket. Students explore how changing inflow rate and feedback parameters affect the steady-state volume and equilibration time of the system. This model is completed within a 50-minute class meeting. In the next class, students are given an analogous but more sophisticated problem: modeling a planetary surface temperature (“stock”) that depends on the “flow” of energy from the Sun, the planetary albedo, the outgoing flow of infrared radiation from the planet’s surface, and the infrared return from the atmosphere. Students then compare their STELLA model equilibrium temperatures to observed planetary temperatures, which agree with model ones for worlds without atmospheres, but give underestimates for planets with atmospheres, thus introducing students to the concept of greenhouse warming. We find that if we give the students part of this model at the start of a 50-minute class they are

  7. The Source of Planetary Period Oscillations in Saturn's Magnetosphere

    Science.gov (United States)

    Khurana, Krishan K.; Mitchell, Jonathan L.; Mueller, Ingo C. F.

    2017-04-01

    In this presentation, we resolve a three-decades old mystery of how Saturn is able to modulate its kilometric wave radiation and many field and plasma parameters at the planetary rotation period even though its magnetic field is extremely axisymmetric. Such waves emanating from the auroral regions of planets lacking solid surfaces have been used as clocks to measure the lengths of their days, because asymmetric internal magnetic fields spin-modulate wave amplitudes. A review by Carbary and Mitchell (2013, Periodicities in Saturn's magnetosphere, Reviews of Geophysics, 51, 1-30) on the topic summarized findings from over 200 research articles, on what the phenomena is, how it is manifested in a host of magnetospheric and auroral parameters; examined several proposed models and pointed out their shortcomings. The topic has now been explored in several topical international workshops, but the problem has remained unsolved so far. By quantitatively modeling the amplitudes and phases of these oscillations in the magnetic field observed by the Cassini spacecraft, we have now uncovered the generation mechanism responsible for these oscillations. We show that the observed oscillations are the manifestations of two global convectional conveyor belts excited in Saturn's upper atmosphere by auroral heating below its northern and southern auroral belts. We demonstrate that a feedback process develops in Saturn system such that the magnetosphere expends energy to drive convection in Saturn's upper stratosphere but gains back an amplified share in the form of angular momentum that it uses to enforce corotation in the magnetosphere and power its aurorae and radio waves. In essence, we have uncovered a new mechanism (convection assisted loss of angular momentum in an atmosphere) by which gaseous planets lose their angular momentum to their magnetospheres and outflowing plasma at rates far above previous predictions. We next show how the m = 1 convection system in the upper

  8. Planetary Defense From Space: Part 1-Keplerian Theory

    Science.gov (United States)

    Maccone, Claudio

    A system of two space bases housing missiles is proposed to achieve the Planetary Defense of the Earth against dangerous asteroids and comets. We show that the layout of the Earth-Moon system with the five relevant Lagrangian (or libration) points in space leads naturally to only one, unmistakable location of these two space bases within the sphere of influence of the Earth. These locations are at the two Lagrangian points L1 (in between the Earth and the Moon) and L3 (in the direction opposite to the Moon from the Earth). We show that placing bases of missiles at L1 and L3 would cause those missiles to deflect the trajectory of asteroids by hitting them orthogonally to their impact trajectory toward the Earth, so as to maximize their deflection. We show that the confocal conics are the best class of trajectories fulfilling this orthogonal deflection requirement. An additional remark is that the theory developed in this paper is just a beginning of a larger set of future research work. In fact, while in this paper we only develop the Keplerian analytical theory of the Optimal Planetary Defense achievable from the Earth-Moon Lagrangian points L1 and L3, much more sophisticated analytical refinements would be needed to: Take into account many perturbation forces of all kinds acting on both the asteroids and missiles shot from L1 and L3; add more (non-optimal) trajectories of missiles shot from either the Lagrangian points L4 and L5 of the Earth-Moon system or from the surface of the Moon itself; encompass the full range of missiles currently available to the US (and possibly other countries) so as to really see "which asteroids could be diverted by which missiles", even in the very simplified scheme outlined here. Outlined for the first time in February 2002, our Confocal Planetary Defense concept is a Keplerian Theory that proved simple enough to catch the attention of scholars, representatives of the US Military and popular writers. These developments could

  9. NASA's Planetary Science Missions and Participations

    Science.gov (United States)

    Green, James

    2016-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. Last year, PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of

  10. NASA's Planetary Science Missions and Participations

    Science.gov (United States)

    Daou, Doris; Green, James L.

    2017-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another

  11. Planetary Cartography and Mapping: where we are Today, and where we are Heading For?

    Science.gov (United States)

    Naß, A.; Di, K.; Elgner, S.; van Gasselt, S.; Hare, T.; Hargitai, H.; Karachevtseva, I.; Kersten, E.; Manaud, N.; Roatsch, T.; Rossi, A. P.; Skinner, J., Jr.; Wählisch, M.

    2017-07-01

    Planetary Cartography does not only provides the basis to support planning (e.g., landing-site selection, orbital observations, traverse planning) and to facilitate mission conduct during the lifetime of a mission (e.g., observation tracking and hazard avoidance). It also provides the means to create science products after successful termination of a planetary mission by distilling data into maps. After a mission's lifetime, data and higher level products like mosaics and digital terrain models (DTMs) are stored in archives - and eventually into maps and higher-level data products - to form a basis for research and for new scientific and engineering studies. The complexity of such tasks increases with every new dataset that has been put on this stack of information, and in the same way as the complexity of autonomous probes increases, also tools that support these challenges require new levels of sophistication. In planetary science, cartography and mapping have a history dating back to the roots of telescopic space exploration and are now facing new technological and organizational challenges with the rise of new missions, new global initiatives, organizations and opening research markets. The focus of this contribution is to summarize recent activities in Planetary Cartography, highlighting current issues the community is facing to derive the future opportunities in this field. By this we would like to invite cartographers/researchers to join this community and to start thinking about how we can jointly solve some of these challenges.

  12. Langmuir-like waves and radiation in planetary foreshocks

    Science.gov (United States)

    Cairns, Iver H.; Robinson, P. A.; Anderson, R. R.; Gurnett, D. A.; Kurth, W. S.

    1995-01-01

    The basic objectives of this NASA Grant are to develop theoretical understandings (tested with spacecraft data) of the generation and characteristics of electron plasma waves, commonly known as Langmuir-like waves, and associated radiation near f(sub p) and 2f(sub p) in planetary foreshocks. (Here f(sub p) is plasma frequency.) Related waves and radiation in the source regions of interplanetary type III solar radio bursts provide a simpler observational and theoretical context for developing and testing such understandings. Accordingly, applications to type III bursts constitute a significant fraction of the research effort. The testing of the new Stochastic Growth Theory (SGT) for type III bursts, and its extension and testing for foreshock waves and radiation, constitutes a major longterm strategic goal of the research effort.

  13. The final fate of planetary systems

    Science.gov (United States)

    Gaensicke, Boris

    2015-12-01

    The discovery of the first extra-solar planet around a main-sequence star in 1995 has changed the way we think about the Universe: our solar system is not unique. Twenty years later, we know that planetary systems are ubiquitous, orbit stars spanning a wide range in mass, and form in an astonishing variety of architectures. Yet, one fascinating aspect of planetary systems has received relatively little attention so far: their ultimate fate.Most planet hosts will eventually evolve into white dwarfs, Earth-sized stellar embers, and the outer parts of their planetary systems (in the solar system, Mars and beyond) can survive largely intact for billions of years. While scattered and tidally disrupted planetesimals are directly detected at a small number of white dwarfs in the form infrared excess, the most powerful probe for detecting evolved planetary systems is metal pollution of the otherwise pristine H/He atmospheres.I will present the results of a multi-cycle HST survey that has obtained COS observations of 136 white dwarfs. These ultraviolet spectra are exquisitely sensitive to the presence of metals contaminating the white atmosphere. Our sophisticated model atmosphere analysis demonstrates that at least 27% of all targets are currently accreting planetary debris, and an additional 29% have very likely done so in the past. These numbers suggest that planet formation around A-stars (the dominant progenitors of today's white dwarf population) is similarly efficient as around FGK stars.In addition to post-main sequence planetary system demographics, spectroscopy of the debris-polluted white dwarf atmospheres provides a direct window into the bulk composition of exo-planetesimals, analogous to the way we use of meteorites to determine solar-system abundances. Our ultraviolet spectroscopy is particularly sensitive to the detection of Si, a dominant rock-forming species, and we identify up to ten additional volatile and refractory elements in the most strongly

  14. Planetary Gearbox Fault Diagnosis Using Envelope Manifold Demodulation

    Directory of Open Access Journals (Sweden)

    Weigang Wen

    2016-01-01

    Full Text Available The important issue in planetary gear fault diagnosis is to extract the dependable fault characteristics from the noisy vibration signal of planetary gearbox. To address this critical problem, an envelope manifold demodulation method is proposed for planetary gear fault detection in the paper. This method combines complex wavelet, manifold learning, and frequency spectrogram to implement planetary gear fault characteristic extraction. The vibration signal of planetary gear is demodulated by wavelet enveloping. The envelope energy is adopted as an indicator to select meshing frequency band. Manifold learning is utilized to reduce the effect of noise within meshing frequency band. The fault characteristic frequency of the planetary gear is shown by spectrogram. The planetary gearbox model and test rig are established and experiments with planet gear faults are conducted for verification. All results of experiment analysis demonstrate its effectiveness and reliability.

  15. Flyover Modeling of Planetary Pits - Undergraduate Student Instrument Project

    Science.gov (United States)

    Bhasin, N.; Whittaker, W.

    2015-12-01

    On the surface of the moon and Mars there are hundreds of skylights, which are collapsed holes that are believed to lead to underground caves. This research uses Vision, Inertial, and LIDAR sensors to build a high resolution model of a skylight as a landing vehicle flies overhead. We design and fabricate a pit modeling instrument to accomplish this task, implement software, and demonstrate sensing and modeling capability on a suborbital reusable launch vehicle flying over a simulated pit. Future missions on other planets and moons will explore pits and caves, led by the technology developed by this research. Sensor software utilizes modern graph-based optimization techniques to build 3D models using camera, LIDAR, and inertial data. The modeling performance was validated with a test flyover of a planetary skylight analog structure on the Masten Xombie sRLV. The trajectory profile closely follows that of autonomous planetary powered descent, including translational and rotational dynamics as well as shock and vibration. A hexagonal structure made of shipping containers provides a terrain feature that serves as an appropriate analog for the rim and upper walls of a cylindrical planetary skylight. The skylight analog floor, walls, and rim are modeled in elevation with a 96% coverage rate at 0.25m2 resolution. The inner skylight walls have 5.9cm2 color image resolution and the rims are 6.7cm2 with measurement precision superior to 1m. The multidisciplinary student team included students of all experience levels, with backgrounds in robotics, physics, computer science, systems, mechanical and electrical engineering. The team was commited to authentic scientific experimentation, and defined specific instrument requirements and measurable experiment objectives to verify successful completion.This work was made possible by the NASA Undergraduate Student Instrument Project Educational Flight Opportunity 2013 program. Additional support was provided by the sponsorship of an

  16. Earth-based analogs of lunar and planetary facilities

    Science.gov (United States)

    Bell, Larry; Trotti, Guillermo

    1992-09-01

    Antarctica contains areas where the environment and terrain are more similar to regions on the Moon and Mars than any other place on Earth. These features offer opportunities for simulations to determine performance capabilities of people and machines in harsh, isolated locales. The Sasakawa International Center for Space Architecture (SICSA) plans to create a facility on Antarctica for research, planning, and demonstrations in support of planetary exploration. The Antarctic Planetary Testbed (APT) will be financed and utilized by public and private organizations throughout the world. Established on a continent owned by no country, it can serve as a model for cooperation between spacefaring nations. APT science and technology programs will expand knowledge about the nature and origin of our solar system, and will support preparations for human settlements beyond Earth that may occur within the first quarter of the next century. The initial APT facility, conceived to be operational by the year 1992, will be constructed during the summer months by a crew of approximately 12. Six to eight of these people will remain through the winter. As in space, structures and equipment systems will be modular to facilitate efficient transport to the site, assembly, and evolutionary expansion. State-of-the-art waste recovery/recycling systems are also emphasized due to their importance in space.

  17. Planetary companions orbiting M giants HD 208527 and HD 220074

    CERN Document Server

    Lee, B -C; Park, M -G

    2012-01-01

    Aims. The purpose of the present study is to research the origin of planetary companions by using a precise radial velocity (RV) survey. Methods. The high-resolution spectroscopy of the fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at Bohyunsan Optical Astronomy Observatory (BOAO) is used from September 2008 to June 2012. Results. We report the detection of two exoplanets in orbit around HD 208527 and HD 220074 exhibiting periodic variations in RV of 875.5 +/- 5.8 and 672.1 +/- 3.7 days. The RV variations are not apparently related to the surface inhomogeneities and a Keplerian motion of the planetary companion is the most likely explanation. Assuming possible stellar masses of 1.6 +/- 0.4 and 1.2 +/- 0.3 M_Sun, we obtain the minimum masses for the exoplanets of 9.9 +/- 1.7 and 11.1 +/- 1.8 M_Jup around HD 208527 and HD 220074 with an orbital semi-major axis of 2.1 +/- 0.2 and 1.6 +/- 0.1 AU and an eccentricity of 0.08 and 0.14, respectively. We also find that the previously known spectral class...

  18. Native Fluorescence Life Detection instrument for planetary surfaces.

    Science.gov (United States)

    Smith, Heather

    2016-07-01

    For this research project we designed an instrument to detect organisms (amino acids, metabolites) via biomolecular fluorescence. We proposed a novel technique for searching for direct evidence of life on planetary bodies. Results indicate the fluorescence of the biotic component of desert soils is approximately as strong as the fluorescence of the mineral component. Fluorescence laboratory measurements using the portable instrument reveal microbial concentration in the Mojave Desert soil is 107 bacteria per gram of soil. Soil microbial concentrations in the Mojave Desert, determined in situ via fluorescence, show that the number varies from 104 to 107 cells per gram of soil. Biomolecules and polycyclic aromatic hydrocarbons are highly fluorescent at wavelengths in the ultra violet (266 nm, 355 nm), but not as much in the visible 532 nm range. Preliminary results show minerals discovered, such as perchlorate, fluoresce highest when excited by 355 nm. Overall, we conclude the fluorescent instrument described is suitable to detect soil microbes, organics, biomolecules, and some minerals via fluorescence, offering a high scientific return for minimal cost with non-contact applications in extreme environments on Earth and on future planetary missions.

  19. Pristine Igneous Rocks and the Early Differentiation of Planetary Materials

    Science.gov (United States)

    Warren, Paul H.

    2005-01-01

    Our studies are highly interdisciplinary, but are focused on the processes and products of early planetary and asteroidal differentiation, especially the genesis of the ancient lunar crust. The compositional diversity that we explore is the residue of process diversity, which has strong relevance for comparative planetology. Most of the accessible lunar crust consists of materials hybridized by impact-mixing. Our lunar research concentrates on the rare pristine (unmixed) samples that reflect the original genetic diversity of the early crust. Among HED basalts (eucrites and clasts in howardites), we distinguish as pristine the small minority that escaped the pervasive thermal metamorphism of the parent asteroid's crust. We have found a correlation between metamorphically pristine HED basalts and the similarly small minority of compositionally evolved "Stannern trend" samples, which are enriched in incompatible elements and titanium compared to main group eucrites, and yet have relatively high mg ratios. Other topics under investigation included: lunar and SNC (martian?) meteorites; igneous meteorites in general; impact breccias, especially metal-rich Apollo samples and polymict eucrites; siderophile compositions of the lunar and martian mantles; and planetary bulk compositions and origins.

  20. Nonlinear Vibroimpact Characteristics of a Planetary Gear Transmission System

    Directory of Open Access Journals (Sweden)

    Jianxing Zhou

    2016-01-01

    Full Text Available In order to research the vibroimpact characteristics of a planetary gear transmission system under high speed and lightly loaded conditions, a new modeling method is proposed. In the modeling process, linear spring was used to simulate gear mesh elasticity under heavy load cases, and Hertz contact theory was used to calculate the contact force of gear pair under light load cases. Then, effects of the working conditions on the system vibroimpact characteristics are analyzed. The results show that, with input speed growing, the mesh force produced obvious fluctuations on the resonance frequencies of the sun gear and carrier torsion vibration, ring gear’s transverse vibration under the heavy load. Under light load condition, the collision vibration occurs in the gear pair; the changing trend of the contact force shows strongly nonlinear characteristics. The time of mesh-apart in gears pair decreases gradually as the load is increased; until it reaches collision vibration threshold value, the gear pair is no longer mesh-apart. With increasing of the input speed, the time of mesh-apart is decreased gradually; the fluctuation amplitude of contact force shows a linearly increasing trend. The study provides useful theoretical guideline for planetary gear transmission low-noise design.

  1. Mathematical optimization of matter distribution for a planetary system configuration

    Science.gov (United States)

    Morozov, Yegor; Bukhtoyarov, Mikhail

    2016-07-01

    Planetary formation is mostly a random process. When the humanity reaches the point when it can transform planetary systems for the purpose of interstellar life expansion, the optimal distribution of matter in a planetary system will determine its population and expansive potential. Maximization of the planetary system carrying capacity and its potential for the interstellar life expansion depends on planetary sizes, orbits, rotation, chemical composition and other vital parameters. The distribution of planetesimals to achieve maximal carrying capacity of the planets during their life cycle, and maximal potential to inhabit other planetary systems must be calculated comprehensively. Moving much material from one planetary system to another is uneconomic because of the high amounts of energy and time required. Terraforming of the particular planets before the whole planetary system is configured might drastically decrease the potential habitability the whole system. Thus a planetary system is the basic unit for calculations to sustain maximal overall population and expand further. The mathematical model of optimization of matter distribution for a planetary system configuration includes the input observed parameters: the map of material orbiting in the planetary system with specified orbits, masses, sizes, and the chemical compound for each, and the optimized output parameters. The optimized output parameters are sizes, masses, the number of planets, their chemical compound, and masses of the satellites required to make tidal forces. Also the magnetic fields and planetary rotations are crucial, but they will be considered in further versions of this model. The optimization criteria is the maximal carrying capacity plus maximal expansive potential of the planetary system. The maximal carrying capacity means the availability of essential life ingredients on the planetary surface, and the maximal expansive potential means availability of uranium and metals to build

  2. Europa Planetary Protection for Juno Jupiter Orbiter

    Science.gov (United States)

    Bernard, Douglas E.; Abelson, Robert D.; Johannesen, Jennie R.; Lam, Try; McAlpine, William J.; Newlin, Laura E.

    2010-01-01

    NASA's Juno mission launched in 2011 and will explore the Jupiter system starting in 2016. Juno's suite of instruments is designed to investigate the atmosphere, gravitational fields, magnetic fields, and auroral regions. Its low perijove polar orbit will allow it to explore portions of the Jovian environment never before visited. While the Juno mission is not orbiting or flying close to Europa or the other Galilean satellites, planetary protection requirements for avoiding the contamination of Europa have been taken into account in the Juno mission design.The science mission is designed to conclude with a deorbit burn that disposes of the spacecraft in Jupiter's atmosphere. Compliance with planetary protection requirements is verified through a set of analyses including analysis of initial bioburden, analysis of the effect of bioburden reduction due to the space and Jovian radiation environments, probabilistic risk assessment of successful deorbit, Monte-Carlo orbit propagation, and bioburden reduction in the event of impact with an icy body.

  3. The planetary rate of sprite events

    DEFF Research Database (Denmark)

    Ignaccolo, M.; Farges, T.; Mika, A.;

    2006-01-01

    We propose a new formula to calculate the planetary rate of sprite events, based on observations with sprite detectors. This formula uses the number of detected sprites, the detection efficiency and the false alarm rate of the detector and spatial and temporal effectiveness functions. The role...... of these elements in the formula is discussed for optical and non-optical recordings. We use the formula to calculate an average planetary rate of sprite events of similar to 2.8 per minute with an accuracy of a factor similar to 2 - 3 by use of observations reported in the literature. The proposed formula can...... be used to calculate the occurrence rate of any physical event detected by remote sensing....

  4. Life in the spacecraft and planetary station.

    Science.gov (United States)

    Adamovich, B A; Nefyodov, Y G; Ushakov, A S; Chizhov, S V

    1968-01-01

    Further exploration of outer space and the solar system, performance of interplanetary flights and establishment of planetary stations necessitate extensive physiological studies and development of reliable life-support systems. When developing the systems, particular attention should be paid to the concept and testing of new processes which can provide a highly efficient regeneration of vitally important materials and decrease the weight of expendables. Of great significance is the establishment of optimal parameters of the environment for long-term manned spaceflights and selection of facilities securing them. The development of new life-support systems should be based on a thorough study of the particular environment, proper selection and physiological and hygienical evaluation of their components. Long duration space missions can be planned from studies on the effects of space flight factors upon the human body to reveal its variability limits under peculiar conditions of the spacecraft or planetary station.

  5. PRM: A database of planetary reflection matrices

    Science.gov (United States)

    Stam, D. M.; Batista, S. F. A.

    2014-04-01

    We present the PRM database with reflection matrices of various types of planets. With the matrices, users can calculate the total, and the linearly and circularly polarized fluxes of incident unpolarized light that is reflected by a planet for arbitrary illumination and viewing geometries. To allow for flexibility in these geometries, the database does not contain the elements of reflection matrices, but the coefficients of their Fourier series expansion. We describe how to sum these coefficients for given illumination and viewing geometries to obtain the local reflection matrix. The coefficients in the database can also be used to calculate flux and polarization signals of exoplanets, by integrating, for a given planetary phase angle, locally reflected fluxes across the visible part of the planetary disk. Algorithms for evaluating the summation for locally reflected fluxes, as applicable to spatially resolved observations of planets, and the subsequent integration for the disk-integrated fluxes, as applicable to spatially unresolved exoplanets are also in the database

  6. Lunar and Planetary Webcam User's Guide

    CERN Document Server

    Mobberley, Martin

    2006-01-01

    Inexpensive webcams are revolutionizing imaging in amateur astronomy by providing an affordable alternative to cooled-chip astronomical CCD cameras, for photographing the brighter astronomical objects. Webcams – costing only a few tens of dollars – are capable of more advanced high resolution work than "normal" digital cameras because their rapid image download speed can freeze fine planetary details, even through the Earth's turbulent atmosphere. Also, their simple construction makes it easy to remove the lens, allowing them to be used at high power at the projected focus of an astronomical telescope. Webcams also connect direct to a PC, so that software can be used to "stack" multiple images, providing a stunning increase in image quality. In the Lunar and Planetary Webcam User’s Guide Martin Mobberley de-mystifies the jargon of webcams and computer processing, and provides detailed hints and tips for imaging the Sun, Moon and planets with a webcam. He looks at each observing target separately, descri...

  7. Global Analysis of a Planetary Gear Train

    Directory of Open Access Journals (Sweden)

    Tongjie Li

    2014-01-01

    Full Text Available By using the Poincaré-like cell-to-cell mapping method and shooting method, the global characteristics of a planetary gear train are studied based on the torsional vibration model with errors of transmission, time-varying meshing stiffness, and multiple gear backlashes. The study results reveal that the planetary with a certain set of parameters has four coexisting periodic orbits, which are P-1, P-2, P-4, and P-8, respectively. P-1 and P-2 motions are not of long-term stability, P-8 motion is of local stability, and P-4 motion is of global stability. Shooting method does not have the capacity of searching coexisting periodic orbits in a global scope, and it is easy to omit some periodic orbits which are far away from the main gropes of periodic orbits.

  8. Testing Lorentz symmetry with planetary orbital dynamics

    CERN Document Server

    Hees, Aurélien; Poncin-Lafitte, Christophe Le; Bourgoin, Adrien; Rivoldini, Attilio; Lamine, Brahim; Meynadier, Frédéric; Guerlin, Christine; Wolf, Peter

    2015-01-01

    Planetary ephemerides are a very powerful tool to constrain deviations from the theory of General Relativity using orbital dynamics. The effective field theory framework called the Standard-Model Extension (SME) has been developed in order to systematically parametrize hypothetical violations of Lorentz symmetry (in the Standard Model and in the gravitational sector). In this communication, we use the latest determinations of the supplementary advances of the perihelia and of the nodes obtained by planetary ephemerides analysis to constrain SME coefficients from the pure gravity sector and also from gravity-matter couplings. Our results do not show any deviation from GR and they improve current constraints. Moreover, combinations with existing constraints from Lunar Laser Ranging and from atom interferometry gravimetry allow us to disentangle contributions from the pure gravity sector from the gravity-matter couplings.

  9. Diurnal Forcing of Planetary Atmospheres

    Science.gov (United States)

    Houben, Howard C.

    1997-01-01

    Much progress has been made on calculations of the Martian seasonal water cycle using the Mars Climate Model developed for this purpose. Two papers, documenting the model and the water transport results obtained with it have been published in the Journal of Geophysical Research - Planets. An additional paper describing results related to the evolution of the seasonal water cycle as a result of orbital changes was published in Advances in Space Research. Since that time, further studies have concentrated on the consequences of the soil adsorption required to match the observed water cycle and its relation to the stability of ground ice and other potential water reservoirs. Earth-related studies have concentrated on incorporating an efficient and realistic microphysical model into the Ames Stratospheric General Circulation Model used to simulate the spread of the ML Pinatubo and other volcanic clouds in the stratosphere. In addition, visualizations of the simulations are being incorporated into a video describing the UARS mission. A paper describing the new stratospheric aerosol microphysics package (and its consequences for volcanic cloud evolution) will be submitted in the near future. The paper will discuss the relative importance of condensation and coagulation to early particle growth and the separation of the cloud by sedimentation of the larger particles. A more general paper which highlights the observation that particle number densities did not increase dramatically after the ML Pinatubo eruption is planned. Simulations of atmospheric transport will be extended to include studies of terrestrial tropospheric tracers using the Fifth-Generation Penn State/NCAR Mesoscale Model.

  10. Modeling, Modal Properties, and Mesh Stiffness Variation Instabilities of Planetary Gears

    Science.gov (United States)

    Parker, Robert G.; Lin, Jian; Krantz, Timothy L. (Technical Monitor)

    2001-01-01

    Planetary gear noise and vibration are primary concerns in their applications in helicopters, automobiles, aircraft engines, heavy machinery and marine vehicles. Dynamic analysis is essential to the noise and vibration reduction. This work analytically investigates some critical issues and advances the understanding of planetary gear dynamics. A lumped-parameter model is built for the dynamic analysis of general planetary gears. The unique properties of the natural frequency spectra and vibration modes are rigorously characterized. These special structures apply for general planetary gears with cyclic symmetry and, in practically important case, systems with diametrically opposed planets. The special vibration properties are useful for subsequent research. Taking advantage of the derived modal properties, the natural frequency and vibration mode sensitivities to design parameters are investigated. The key parameters include mesh stiffnesses, support/bearing stiffnesses, component masses, moments of inertia, and operating speed. The eigen-sensitivities are expressed in simple, closed-form formulae associated with modal strain and kinetic energies. As disorders (e.g., mesh stiffness variation. manufacturing and assembling errors) disturb the cyclic symmetry of planetary gears, their effects on the free vibration properties are quantitatively examined. Well-defined veering rules are derived to identify dramatic changes of natural frequencies and vibration modes under parameter variations. The knowledge of free vibration properties, eigen-sensitivities, and veering rules provide important information to effectively tune the natural frequencies and optimize structural design to minimize noise and vibration. Parametric instabilities excited by mesh stiffness variations are analytically studied for multi-mesh gear systems. The discrepancies of previous studies on parametric instability of two-stage gear chains are clarified using perturbation and numerical methods. The

  11. Search For Planetary Transits in Auriga

    Science.gov (United States)

    Mandushev, G. I.; Dunham, E. W.; Latham, D. W.; Everett, M.

    2007-07-01

    We report the results of an extensive, three-year search for planetary transits in a Milky Way field in the constellation of Auriga. More than 60 objects with transit-like events in their light curves were detected. Photometric and spectroscopic follow-up observations were carried out on the most promising transit candidates. Despite the large number of candidates, so far none of them has been found to be a transiting planet.

  12. Robots and Humans: Synergy in Planetary Exploration

    Science.gov (United States)

    Landis, Geoffrey A.

    2003-01-01

    How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments.

  13. Planetary nebulae in the Small Magellanic Cloud

    Science.gov (United States)

    Ventura, P.; Stanghellini, L.; Di Criscienzo, M.; García-Hernández, D. A.; Dell'Agli, F.

    2016-08-01

    We analyse the planetary nebulae (PNe) population of the Small Magellanic Cloud (SMC), based on evolutionary models of stars with metallicities in the range 10-3 ≤ Z ≤ 4 × 10-3 and mass 0.9 M⊙ Magellanic Cloud is explained on the basis of the diverse star formation history and age-metallicity relation of the two galaxies. The implications of this study for some still highly debated points regarding the AGB evolution are also commented.

  14. High scale anisotropies in planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Pascoli, G.

    1986-06-01

    We present a new classification of Planetary Nebulae (PN) grounded on their characteristic symmetries: bipolarity, ring shape, spiral structure, etc... The different anisotropic models (rotation of nucleus, binary progenitor intranebular magnetic field, nebular rotation, etc...) which have been lately proposed, are analysed and their explanatory power is tested with certain morphological criterious. The comparison with the other classifications (Acker, 1980; Kaler, 1978; Peimbert, 1978) reveals that the morphology has been insufficiently discussed in these latters.

  15. Communication System Architecture for Planetary Exploration

    Science.gov (United States)

    Braham, Stephen P.; Alena, Richard; Gilbaugh, Bruce; Glass, Brian; Norvig, Peter (Technical Monitor)

    2001-01-01

    Future human missions to Mars will require effective communications supporting exploration activities and scientific field data collection. Constraints on cost, size, weight and power consumption for all communications equipment make optimization of these systems very important. These information and communication systems connect people and systems together into coherent teams performing the difficult and hazardous tasks inherent in planetary exploration. The communication network supporting vehicle telemetry data, mission operations, and scientific collaboration must have excellent reliability, and flexibility.

  16. Mars Science Laboratory Planetary Protection Status

    Science.gov (United States)

    Benardini, James; La Duc, Myron; Naviaux, Keith; Samuels, Jessica

    With over 500 sols of surface operations, the Mars Science Laboratory (MSL) Rover has trekked over 5km. A key finding along this journey thus far, is that water molecules are bound to fine-grained soil particles, accounting for about 2 percent of the particles' weight at Gale Crater where Curiosity landed. There is no concern to planetary protection as the finding resulted directly from SAM baking (100-835°C) out the soil for analysis. Over that temperature range, OH and/or H2O was released, which was bound in amorphous phases. MSL has completed an approved Post-Launch Report. The Project continues to be in compliance with planetary protection requirements as Curiosity continues its exploration and scientific discoveries there is no evidence suggesting the presence of a special region. There is no spacecraft induced special region and no currently flowing liquid. All systems of interest to planetary protection are functioning nominally. The project has submitted an extended mission request to the NASA PPO. The status of the PP activities will be reported.

  17. Resonant Removal of Exomoons during Planetary Migration

    Science.gov (United States)

    Spalding, Christopher; Batygin, Konstantin; Adams, Fred C.

    2016-01-01

    Jupiter and Saturn play host to an impressive array of satellites, making it reasonable to suspect that similar systems of moons might exist around giant extrasolar planets. Furthermore, a significant population of such planets is known to reside at distances of several Astronomical Units (AU), leading to speculation that some moons thereof might support liquid water on their surfaces. However, giant planets are thought to undergo inward migration within their natal protoplanetary disks, suggesting that gas giants currently occupying their host star’s habitable zone formed farther out. Here we show that when a moon-hosting planet undergoes inward migration, dynamical interactions may naturally destroy the moon through capture into a so-called evection resonance. Within this resonance, the lunar orbit’s eccentricity grows until the moon eventually collides with the planet. Our work suggests that moons orbiting within about ∼10 planetary radii are susceptible to this mechanism, with the exact number dependent on the planetary mass, oblateness, and physical size. Whether moons survive or not is critically related to where the planet began its inward migration, as well as the character of interlunar perturbations. For example, a Jupiter-like planet currently residing at 1 AU could lose moons if it formed beyond ∼5 AU. Cumulatively, we suggest that an observational census of exomoons could potentially inform us on the extent of inward planetary migration, for which no reliable observational proxy currently exists.

  18. Russian Planetary Exploration History, Development, Legacy, Prospects

    CERN Document Server

    Harvey, Brian

    2007-01-01

    Russia’s accomplishments in planetary space exploration were not achieved easily. Formerly, the USSR experienced frustration in trying to tame unreliable Molniya and Proton upper stages and in tracking spacecraft over long distances. This book will assess the scientific haul of data from the Venus and Mars missions and look at the engineering approaches. The USSR developed several generations of planetary probes: from MV and Zond to the Phobos type. The engineering techniques used and the science packages are examined, as well as the nature of the difficulties encountered which ruined several missions. The programme’s scientific and engineering legacy is also addressed, as well as its role within the Soviet space programme as a whole. Brian Harvey concludes by looking forward to future Russian planetary exploration (e.g Phobos Grunt sample return mission). Several plans have been considered and may, with a restoration of funding, come to fruition. Soviet studies of deep space and Mars missions (e.g. TMK, ...

  19. Intelligent robots for planetary exploration and construction

    Science.gov (United States)

    Albus, James S.

    1992-01-01

    Robots capable of practical applications in planetary exploration and construction will require realtime sensory-interactive goal-directed control systems. A reference model architecture based on the NIST Real-time Control System (RCS) for real-time intelligent control systems is suggested. RCS partitions the control problem into four basic elements: behavior generation (or task decomposition), world modeling, sensory processing, and value judgment. It clusters these elements into computational nodes that have responsibility for specific subsystems, and arranges these nodes in hierarchical layers such that each layer has characteristic functionality and timing. Planetary exploration robots should have mobility systems that can safely maneuver over rough surfaces at high speeds. Walking machines and wheeled vehicles with dynamic suspensions are candidates. The technology of sensing and sensory processing has progressed to the point where real-time autonomous path planning and obstacle avoidance behavior is feasible. Map-based navigation systems will support long-range mobility goals and plans. Planetary construction robots must have high strength-to-weight ratios for lifting and positioning tools and materials in six degrees-of-freedom over large working volumes. A new generation of cable-suspended Stewart platform devices and inflatable structures are suggested for lifting and positioning materials and structures, as well as for excavation, grading, and manipulating a variety of tools and construction machinery.

  20. Kinematics, turbulence and evolution of planetary nebulae

    CERN Document Server

    Gesicki, K; Zijlstra, A A; Gesicki, Krzysztof; Acker, Agnes; Zijlstra, Albert A.

    2003-01-01

    This paper discusses the location of a sample of planetary nebulae on the HR diagram. We determine the internal velocity fields of 14 planetary nebulae from high-resolution echelle spectroscopy, with the help of photoionization models. The mass averaged velocity is shown to be a robust, simple parameter describing the outflow. The expansion velocity and radius are used to define the dynamical age; together with the stellar temperature, this gives a measurement of the luminosity and core mass of the central star. The same technique is applied to other planetary nebulae with previously measured expansion velocities, giving a total sample of 73 objects. The objects cluster closely around the Schoenberner track of 0.61 M_sun, with a very narrow distribution of core masses. The masses are higher than found for local white dwarfs. The luminosities determined in this way tend to be higher by a factor of a few than those derived from the nebular luminosities. The discrepancy is highest for the hottest (most evolved) ...

  1. Robust Adaptive Fuzzy Control for Planetary Rovers While Climbing up Deformable Slopes with Longitudinal Slip

    Directory of Open Access Journals (Sweden)

    Li Zhengcai

    2014-01-01

    Full Text Available Mobility control is one of the most essential parts of planetary rovers’ research and development. The goal of this research is to let the planetary rovers be able to achieve demand of motion from upper level with satisfied control performance under the rough and deformable planetary terrain that often lead to longitudinal slip. The longitudinal slip influences the mobility efficiency obviously, especially on the major deformable slopes. Compared with the past works on normal stiff terrains, properties of soil and interaction between wheels and soil should be considered additionally. Therefore, to achieve the final goal, in this paper, wheel-soil dynamic model for six-wheel planetary rovers while climbing up deformable slopes with longitudinal slip is first built and control based in order to account for slip phenomena. These latter effects are then taken into account within terramechanics theory, relying upon nonlinear control techniques; finally, a robust adaptive fuzzy control strategy with longitudinal slip compensation is developed to reduce the effects induced by slip phenomena and modeling error. Capabilities of this control scheme are demonstrated via full scale simulations carried out with a six-wheel robot moving on sloped deformable terrain, whose real time was computed relying uniquely upon RoSTDyn, a dynamic software.

  2. Planetary science and exploration in the deep subsurface: results from the MINAR Program, Boulby Mine, UK

    Science.gov (United States)

    Payler, Samuel J.; Biddle, Jennifer F.; Coates, Andrew J.; Cousins, Claire R.; Cross, Rachel E.; Cullen, David C.; Downs, Michael T.; Direito, Susana O. L.; Edwards, Thomas; Gray, Amber L.; Genis, Jac; Gunn, Matthew; Hansford, Graeme M.; Harkness, Patrick; Holt, John; Josset, Jean-Luc; Li, Xuan; Lees, David S.; Lim, Darlene S. S.; McHugh, Melissa; McLuckie, David; Meehan, Emma; Paling, Sean M.; Souchon, Audrey; Yeoman, Louise; Cockell, Charles S.

    2017-04-01

    The subsurface exploration of other planetary bodies can be used to unravel their geological history and assess their habitability. On Mars in particular, present-day habitable conditions may be restricted to the subsurface. Using a deep subsurface mine, we carried out a program of extraterrestrial analog research - MINe Analog Research (MINAR). MINAR aims to carry out the scientific study of the deep subsurface and test instrumentation designed for planetary surface exploration by investigating deep subsurface geology, whilst establishing the potential this technology has to be transferred into the mining industry. An integrated multi-instrument suite was used to investigate samples of representative evaporite minerals from a subsurface Permian evaporite sequence, in particular to assess mineral and elemental variations which provide small-scale regions of enhanced habitability. The instruments used were the Panoramic Camera emulator, Close-Up Imager, Raman spectrometer, Small Planetary Linear Impulse Tool, Ultrasonic drill and handheld X-ray diffraction (XRD). We present science results from the analog research and show that these instruments can be used to investigate in situ the geological context and mineralogical variations of a deep subsurface environment, and thus habitability, from millimetre to metre scales. We also show that these instruments are complementary. For example, the identification of primary evaporite minerals such as NaCl and KCl, which are difficult to detect by portable Raman spectrometers, can be accomplished with XRD. By contrast, Raman is highly effective at locating and detecting mineral inclusions in primary evaporite minerals. MINAR demonstrates the effective use of a deep subsurface environment for planetary instrument development, understanding the habitability of extreme deep subsurface environments on Earth and other planetary bodies, and advancing the use of space technology in economic mining.

  3. Modeling of the process of gear shifting in planetary gear trains of motor vehicles

    Directory of Open Access Journals (Sweden)

    Aleksandar R. Grkić

    2011-04-01

    Full Text Available Gear boxes, i. e. the realization of their functions, especially gear shift, have a big impact on vehicle operation quality through their effects on the performance of vehicles and their comfort. This paper shows a method of modeling the transition process during gear shifting in planetary gear trains. The simulation model is developed with in order to provide virtual research of planetary gear trains, which would positively decrease the number of real prototypes, thus considerably saving time and contributing to the quality improvement of the final product (planetary gear train and vehicles in general. Introduction Modeling of gear shift processes has been carried out on the planetary gear type Ravigneaux used in planetary gear trains of motor vehicles. The model was developed modularly, so that more simulation models can be added to the whole. At the same time each subsystem is a model for itself and can be used independently from the main model. Simplified engine model Bearing in mind that, for the simulation of the planetary gear which is the subject of this paper, the necessary input parameters are in the form of engine torque Mm, angular velocity and motor ωm moment of inertia of rotating engine components reduced to the input shaft gear, a simplified model of an internal combustion engine has been formed. Model of external load External load resistance is in the form of the torque Mt occurring on the drive wheel of the vehicle. On the other hand, this load is defined by the moment of inertia of rotating elements from the planetary gear to the drive wheel, reduced to the output shaft. Model of friction transmission simulation Transmission power control in planetary gears is achieved through friction components. The output size of this subsystem is the moment of carrying the friction assembly. Simulation model of the planetary gear train The model simulation of the planetary gear type Ravigneaux was formed in accordance with the kinematic

  4. Collaborative Planetary GIS with JMARS

    Science.gov (United States)

    Dickenshied, S.; Christensen, P. R.; Edwards, C. S.; Prashad, L. C.; Anwar, S.; Engle, E.; Noss, D.; Jmars Development Team

    2010-12-01

    Traditional GIS tools have allowed users to work locally with their own datasets in their own computing environment. More recently, data providers have started offering online repositories of preprocessed data which helps minimize the learning curve required to access new datasets. The ideal collaborative GIS tool provides the functionality of a traditional GIS and easy access to preprocessed data repositories while also enabling users to contribute data, analysis, and ideas back into the very tools they're using. JMARS (Java Mission-planning and Analysis for Remote Sensing) is a suite of geospatial applications developed by the Mars Space Flight Facility at Arizona State University. This software is used for mission planning and scientific data analysis by several NASA missions, including Mars Odyssey, Mars Reconnaissance Orbiter, and the Lunar Reconnaissance Orbiter. It is used by scientists, researchers and students of all ages from more than 40 countries around the world. In addition to offering a rich set of global and regional maps and publicly released orbiter images, the JMARS software development team has been working on ways to encourage the creation of collaborative datasets. Bringing together users from diverse teams and backgrounds allows new features to be developed with an interest in making the application useful and accessible to as wide a potential audience as possible. Actively engaging the scientific community in development strategy and hands on tasks allows the creation of user driven data content that would not otherwise be possible. The first community generated dataset to result from this effort is a tool mapping peer-reviewed papers to the locations they relate to on Mars with links to ancillary data. This allows users of JMARS to browse to an area of interest and then quickly locate papers corresponding to that area. Alternately, users can search for published papers over a specified time interval and visually see what areas of Mars have

  5. The evolution of planetary nebulae VII. Modelling planetary nebulae of distant stellar systems

    CERN Document Server

    Schönberner, D; Sandin, C; Steffen, M

    2010-01-01

    By means of hydrodynamical models we do the first investigations of how the properties of planetary nebulae are affected by their metal content and what can be learned from spatially unresolved spectrograms of planetary nebulae in distant stellar systems. We computed a new series of 1D radiation-hydrodynamics planetary nebulae model sequences with central stars of 0.595 M_sun surrounded by initial envelope structures that differ only by their metal content. At selected phases along the evolutionary path, the hydrodynamic terms were switched off, allowing the models to relax for fixed radial structure and radiation field into their equilibrium state with respect to energy and ionisation. The analyses of the line spectra emitted from both the dynamical and static models enabled us to systematically study the influence of hydrodynamics as a function of metallicity and evolution. We also recomputed selected sequences already used in previous publications, but now with different metal abundances. These sequences w...

  6. A deep kinematic survey of planetary nebulae in the Andromeda Galaxy using the Planetary Nebula Spectrograph

    CERN Document Server

    Merrett, H R; Bridges, T J; Capaccioli, M; Carter, D; Coccato, L; Douglas, N G; Evans, N W; Freeman, K C; Gerhard, O; Halliday, C; Kuijken, K; Merrifield, M R; Napolitano, N R; Romanowsky, A J; Wilkinson, M I

    2006-01-01

    We present a catalogue of positions, magnitudes and velocities for 3300 emission-line objects found by the Planetary Nebula Spectrograph in a survey of the Andromeda Galaxy, M31. Of these objects, 2615 are found likely to be planetary nebulae (PNe) associated with M31. The survey area covers the whole of M31's disk out to a radius of 1.5 degrees. Beyond this radius, observations have been made along the major and minor axes, and the Northern Spur and Southern Stream regions. The calibrated data have been checked for internal consistency and compared with other catalogues. With the exception of the very central, high surface brightness region of M31, this survey is complete to a magnitude limit of m_5007~23.75, 3.5 magnitudes into the planetary nebula luminosity function.

  7. Avenues for Scientist Involvement in Planetary Science Education and Public Outreach

    Science.gov (United States)

    Shipp, S. S.; Buxner, S.; Cobabe-Ammann, E. A.; Dalton, H.; Bleacher, L.; Scalice, D.

    2012-12-01

    The Planetary Science Education and Public Outreach (E/PO) Forum is charged by NASA's Science Mission Directorate (SMD) with engaging, extending, and supporting the community of E/PO professionals and scientists involved in planetary science education activities in order to help them more effectively and efficiently share NASA science with all learners. A number of resources and opportunities for involvement are available for planetary scientists involved in - or interested in being involved in - E/PO. The Forum provides opportunities for community members to stay informed, communicate, collaborate, leverage existing programs and partnerships, and become more skilled education practitioners. Interested planetary scientists can receive newsletters, participate in monthly calls, interact through an online community workspace, and attend annual E/PO community meetings and meetings of opportunity at science and education conferences. The Forum also provides professional development opportunities on a myriad of topics, from common pre-conceptions in planetary science to program evaluation, to delivering effective workshops. Thematic approaches, such as the Year of the Solar System (http://solarsystem.nasa.gov/yss), are coordinated by the Forum; through these efforts resources are presented topically, in a manner that can be easily ported into diverse learning environments. Information about the needs of audiences with which scientists interact - higher education, K-12 education, informal education, and public - currently is being researched by SMD's Audience-Based Working Groups. Their findings and recommendations will be made available to inform the activities and products of E/PO providers so they are able to better serve these audiences. Also in production is a "one-stop-shop" of SMD E/PO products and resources that can be used in conjunction with E/PO activities. Further supporting higher-education efforts, the Forum coordinates a network of planetary science

  8. Planetary/DOD entry technology flight experiments. Volume 2: Planetary entry flight experiments

    Science.gov (United States)

    Christensen, H. E.; Krieger, R. J.; Mcneilly, W. R.; Vetter, H. C.

    1976-01-01

    The technical feasibility of launching a high speed, earth entry vehicle from the space shuttle to advance technology for the exploration of the outer planets' atmospheres was established. Disciplines of thermodynamics, orbital mechanics, aerodynamics propulsion, structures, design, electronics and system integration focused on the goal of producing outer planet environments on a probe shaped vehicle during an earth entry. Major aspects of analysis and vehicle design studied include: planetary environments, earth entry environment capability, mission maneuvers, capabilities of shuttle upper stages, a comparison of earth entry planetary environments, experiment design and vehicle design.

  9. Effect of Disk Self-Gravity on Planetary Migration

    Science.gov (United States)

    Tanigawa, T.; Lin, D. N. C.

    2005-08-01

    We carry out hydrodynamic simulations of a proto-planetary disk with an embedded low-mass proto-planet in order to investigate the effect of self gravity of the disk on the migration velocity of the planet. For the disk model, we adopt power functions for the surface density profile and the temperature profile. We investigate the dependence on various parameters, such as the exponents of power functions of temperature and surface density, disk mass, and planet mass. We find that, without self gravity, the dependence of the planet mass on the torque is qualitatively agree with linear analysis of Tanaka, Takeuchi and Ward 2002. With self-gravity cases, the dependence of the disk surface density on the torque is slightly stronger than linear relationship, which infers that the effect of self gravity could accelerate inward migration of planets. This research is supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT 16077202).

  10. The International Planetary Data Alliance (IPDA): Overview of the Activities

    Science.gov (United States)

    Sarkissian, A.; Gopala Krishna, B.; Crichton, D. J.; Beebe, R.; Yamamoto, Y.; Arviset, C.; Di Capria, M. T.; Mickaelian, A. M.; IPDA

    2016-06-01

    An overview of activities of the IPDA is presented in the frame of the recently growing number of successful space experiments dedicated to planetary observation, with a significantly growing number of people involved in such activity and with significantly growing numbers of web services willing to share data and services in our research domain, but also, in close by domains such as astronomy, heliophysics and atmospheric sciences for the Earth. An overview of a number of space agencies and organizations is given. In total, IPDA consists of 13 national organizations: NASA (USA), CNES (France), ESA (Europe), STFC (UK), JAXA (Japan), ASI (Italy), ISRO (India), DLR (Germany), RKA (Russia), RCSA (China), FMI (Finland), ArSA (Armenia) and United Arab Emirates. Some projects of 2015 in frame of the IPDA activities are described.

  11. Symmetry and its Effects on Structures of Planetary Gear Trains

    Science.gov (United States)

    Rajasri, I.; Gupta, A. V. S. S. K. S.; Rao, Y. V. D.

    2014-01-01

    A Planetary Gear Train (PGT) can be represented by a graph and this graph in turn is converted to a link to link adjacency symmetric matrix. Identifying isomorphism in structural synthesis of PGT is very important. Several methods have been adopted by various researchers to test for isomorphism in PGTs and out of these isomorphic PGTs one PGT is selected at random. There is no definite basis for selecting a particular PGT out of these isomorphic PGTs for further generation process. Structural aspects and rating of the PGTs are useful in selecting one such PGT for further generation process. Symmetry in PGTs is one such aspect. Hamming matrix is used to measure the structural aspect of symmetry in PGTs. Symmetry in PGT results in more number of structural arrangements i.e. more symmetry in EGTs results in higher number of structural arrangements as compared to EGTs with no or less symmetry.

  12. Formation, Orbital and Internal Evolutions of Young Planetary Systems

    CERN Document Server

    Baruteau, Clément; Mordasini, Christoph; Mollière, Paul

    2016-01-01

    The growing body of observational data on extrasolar planets and protoplanetary disks has stimulated intense research on planet formation and evolution in the past few years. The extremely diverse, sometimes unexpected physical and orbital characteristics of exoplanets lead to frequent updates on the mainstream scenarios for planet formation and evolution, but also to the exploration of alternative avenues. The aim of this review is to bring together classical pictures and new ideas on the formation, orbital and internal evolutions of planets, highlighting the key role of the protoplanetary disk in the various parts of the theory. We begin by briefly reviewing the conventional mechanism of core accretion by the growth of planetesimals, and discuss a relatively recent model of core growth through the accretion of pebbles. We review the basic physics of planet-disk interactions, recent progress in this area, and discuss their role in observed planetary systems. We address the most important effects of planets i...

  13. Finite Element Residual Stress Analysis of Planetary Gear Tooth

    Directory of Open Access Journals (Sweden)

    Jungang Wang

    2013-01-01

    Full Text Available A method to simulate residual stress field of planetary gear is proposed. In this method, the finite element model of planetary gear is established and divided to tooth zone and profile zone, whose different temperature field is set. The gear's residual stress simulation is realized by the thermal compression stress generated by the temperature difference. Based on the simulation, the finite element model of planetary gear train is established, the dynamic meshing process is simulated, and influence of residual stress on equivalent stress of addendum, pitch circle, and dedendum of internal and external meshing planetary gear tooth profile is analyzed, according to non-linear contact theory, thermodynamic theory, and finite element theory. The results show that the equivalent stresses of planetary gear at both meshing and nonmeshing surface are significantly and differently reduced by residual stress. The study benefits fatigue cracking analysis and dynamic optimization design of planetary gear train.

  14. Planetary rovers robotic exploration of the solar system

    CERN Document Server

    Ellery, Alex

    2016-01-01

    The increasing adoption of terrain mobility – planetary rovers – for the investigation of planetary surfaces emphasises their central importance in space exploration. This imposes a completely new set of technologies and methodologies to the design of such spacecraft – and planetary rovers are indeed, first and foremost, spacecraft. This introduces vehicle engineering, mechatronics, robotics, artificial intelligence and associated technologies to the spacecraft engineer’s repertoire of skills. Planetary Rovers is the only book that comprehensively covers these aspects of planetary rover engineering and more. The book: • discusses relevant planetary environments to rover missions, stressing the Moon and Mars; • includes a brief survey of previous rover missions; • covers rover mobility, traction and control systems; • stresses the importance of robotic vision in rovers for both navigation and science; • comprehensively covers autonomous navigation, path planning and multi-rover formations on ...

  15. Storyboards and Science: Introducing the Planetary Data Storyboard

    Science.gov (United States)

    King, T. A.; Del Villar, A.; Alkhawaja, A.; Grayzeck, E. J.; Galica, C.; Odess, J.; Erickson, K. J.

    2015-12-01

    Every discovery has a story and storytelling is an ancient form of education. The stories of scientific discovery are often very formal and technical and not always very accessible. As in the past, today most scientific storytelling is done as in-person presentations in the form of slide shows or movies that unfold according to the design of its author. Things have changed. Using today's technologies telling stories can be a rich multi-media experience with a blending of text, animations, movies and infographics. Also, with presentations on the web the presentation can provide links to more details and the audience (reader) can jump to the linked information. Even so, the most common form of today's storytelling is as a narrative that starts with a page, a link to a single movie or a slide-show. We introduce a new promising form of scientific storytelling, the storyboard. With a storyboard a story is presented as a set of panels that contain representative images of an event and may have associated notes or instructions. The panels are arranged in a timeline that allow the audience to experience the discovery in the same way it occurred. A panel can also link to a more detailed source such as a publication, the data that was collected or items derived from the research (like movies or animations). Scientific storyboards can make science discovery more accessible to people by presenting events in an easy to follow layout. Scientific storyboards can also help to teach the scientific method, by following the experiences of a researcher as they investigate a phenomenon or try to understand a new set of observations. We illustrate the unique features of scientific storyboards with the Planetary Data Storyboard using data archived by the Planetary Data System.

  16. New Design and Improvement of Planetary Gear Trains

    Science.gov (United States)

    Handschuh, Robert (Technical Monitor); Litvin, Faydor L.; Fuentes, Alfonso; Vecchiato, Daniele; Gonzalez-Perez, Ignacio

    2004-01-01

    The development of new types of planetary and planetary face-gear drives is proposed. The new designs are based on regulating backlash between the gears and modifying the tooth surfaces to improve the design. The goal of this work is to obtain a nearly uniform distribution of load between the planet gears. In addition, a new type of planetary face-gear drive was developed in this project.

  17. DESIGN FOR A BI-PLANETARY GEAR TRAIN

    OpenAIRE

    Józef DREWNIAK; Paulina GARLICKA; Aleksandra KOLBER

    2016-01-01

    The article presents the design for a bi-planetary gear train. The project description is supplemented with calculations of kinematics, statics and meshing efficiency of the gear wheels included in the gear train. Excluded are calculations of strength and geometry of gears, shaft and rolling bearing, since they are similar to classical calculations for planetary gears. An assembly drawing in 2D and assembly drawings in 3D of the designed bi-planetary gear train are also shown. This gear train...

  18. Machine Learning Tools for Geomorphic Mapping of Planetary Surfaces

    OpenAIRE

    Stepinski, Tomasz F.; Vilalta, Ricardo

    2010-01-01

    Geomorphic auto-mapping of planetary surfaces is a challenging problem. Here we have described how machine learning techniques, such as clustering or classification, can be utilized to automate the process of geomorphic mapping for exploratory and exploitation purposes. Relatively coarse resolution of planetary topographic data limits the number of features that can be used in the learning process and makes planetary auto-mapping more challenging than terrestrial auto-mapping. With this cavea...

  19. Free and Open Source Software for Geospatial in the field of planetary science

    Science.gov (United States)

    Frigeri, A.

    2012-12-01

    Information technology applied to geospatial analyses has spread quickly in the last ten years. The availability of OpenData and data from collaborative mapping projects increased the interest on tools, procedures and methods to handle spatially-related information. Free Open Source Software projects devoted to geospatial data handling are gaining a good success as the use of interoperable formats and protocols allow the user to choose what pipeline of tools and libraries is needed to solve a particular task, adapting the software scene to his specific problem. In particular, the Free Open Source model of development mimics the scientific method very well, and researchers should be naturally encouraged to take part to the development process of these software projects, as this represent a very agile way to interact among several institutions. When it comes to planetary sciences, geospatial Free Open Source Software is gaining a key role in projects that commonly involve different subjects in an international scenario. Very popular software suites for processing scientific mission data (for example, ISIS) and for navigation/planning (SPICE) are being distributed along with the source code and the interaction between user and developer is often very strict, creating a continuum between these two figures. A very widely spread library for handling geospatial data (GDAL) has started to support planetary data from the Planetary Data System, and recent contributions enabled the support to other popular data formats used in planetary science, as the Vicar one. The use of Geographic Information System in planetary science is now diffused, and Free Open Source GIS, open GIS formats and network protocols allow to extend existing tools and methods developed to solve Earth based problems, also to the case of the study of solar system bodies. A day in the working life of a researcher using Free Open Source Software for geospatial will be presented, as well as benefits and

  20. ESA's Planetary Science Archive: Status and Plans

    Science.gov (United States)

    Heather, David; Barthelemy, Maud; Manaud, Nicolas; Martinez, Santa; Szumlas, Marek; Vazquez, Jose Luis; Arviset, Christophe; Osuna, Pedro; PSA Development Team

    2013-04-01

    Scientific and engineering data from ESA's planetary missions are made accessible to the world-wide scientific community via the Planetary Science Archive (PSA). The PSA consists of online services incorporating search, preview, download, notification and delivery basket functionality. The PSA currently holds data from Mars Express, Venus Express, SMART-1, Huygens, Rosetta and Giotto, as well as several ground-based cometary observations. It will be used for archiving on ExoMars, BepiColombo and for the European contributions to Chandrayaan-1. The focus of the PSA activities is on the long-term preservation of data and knowledge from ESA's planetary missions. Scientific users can access the data online using several interfaces: - The Advanced Search Interface allows complex parameter based queries, providing the end user with a facility to complete very specific searches on meta-data and geometrical parameters. - The Map-based Interface is currently operational only for Mars Express HRSC and OMEGA data. This interface allows an end-user to specify a region-of-interest by dragging a box onto a base map of Mars. From this interface, it is possible to directly visualize query results. The Map-based and Advanced interfaces are linked and cross-compatible. If a user defines a region-of-interest in the Map-based interface, the results can be refined by entering more detailed search parameters in the Advanced interface. - The FTP Browser Interface is designed for more experienced users, and allows for direct browsing and access of the data set content through ftp-tree search. Each dataset contains documentation and calibration information in addition to the scientific or engineering data. All PSA data are prepared by the corresponding instrument teams, and are made to comply with the internationally recognized PDS standards. PSA supports the instrument teams in the full archiving process, from the definition of the data products, meta-data and product labels through to

  1. UNIFIED REPRESENTATION FOR COLLABORATIVE VISUALIZATION OF PLANETARY TERRAIN DATA Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to apply to planetary terrain mapping an alternative, multiresolution method, subdivision surfaces (subdivs), in place of conventional digital elevation...

  2. High Performance Monopropellants for Future Planetary Ascent Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. proposes to design, develop, and demonstrate, a novel high performance monopropellant for application in future planetary ascent vehicles. Our...

  3. Urey prize lecture: On the diversity of plausible planetary systems

    Science.gov (United States)

    Lissauer, J. J.

    1995-01-01

    Models of planet formation and of the orbital stability of planetary systems are used to predict the variety of planetary and satellite systems that may be present within our galaxy. A new approximate global criterion for orbital stability of planetary systems based on an extension of the local resonance overlap criterion is proposed. This criterion implies that at least some of Uranus' small inner moons are significantly less massive than predicted by estimates based on Voyager volumes and densities assumed to equal that of Miranda. Simple calculations (neglecting planetary gravity) suggest that giant planets which acrete substantial amounts of gas while their envelopes are extremely distended ultimately rotate rapidly in the prgrade direction.

  4. Planetary Boundaries: Exploring the Safe Operating Space for Humanity

    Directory of Open Access Journals (Sweden)

    Johan Rockström

    2009-12-01

    Full Text Available Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due to the risk of crossing thresholds that will trigger non-linear, abrupt environmental change within continental- to planetary-scale systems. We have identified nine planetary boundaries and, drawing upon current scientific understanding, we propose quantifications for seven of them. These seven are climate change (CO2 concentration in the atmosphere

  5. Simultaneous Localization and Mapping for Planetary Surface Mobility Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations, LLC and Carnegie Mellon University have formed a partnership to commercially develop localization and mapping technologies for planetary rovers....

  6. Precision Time Protocol Based Trilateration for Planetary Navigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's vision for planetary exploration requires development and field testing of the key technologies required for extended habitation. To support extended lunar...

  7. Planetary Stewardship in an Urbanizing World: Beyond City Limits

    National Research Council Canada - National Science Library

    Sybil P. Seitzinger; Uno Svedin; Carole L. Crumley; Will Steffen; Saiful Arif Abdullah; Christine Alfsen; Wendy J. Broadgate; Frank Biermann; Ninad R. Bondre; John A. Dearing; Lisa Deutsch; Shobhakar Dhakal; Thomas Elmqvist; Neda Farahbakhshazad; Owen Gaffney; Helmut Haberl; Sandra Lavorel; Cheikh Mbow; Anthony J. McMichael; Joao M. F. deMorais; Per Olsson; Patricia Fernanda Pinho; Karen C. Seto; Paul Sinclair; Mark Stafford Smith; Lorraine Sugar

    2012-01-01

    ... and impacts of cities globally. The world's multiple and complex environmental and social challenges require interconnected solutions and coordinated governance approaches to planetary stewardship...

  8. Planetary Boundaries: Exploring the Safe Operating Space for Humanity

    DEFF Research Database (Denmark)

    Richardson, Katherine; Rockström, Johan; Steffen, Will

    2009-01-01

    Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one...... or more planetary boundaries may be deleterious or even catastrophic due to the risk of crossing thresholds that will trigger non-linear, abrupt environmental change within continental- to planetary-scale systems. We have identified nine planetary boundaries and, drawing upon current scientific...... background weathering of P); global freshwater use (system change (

  9. How does downward planetary wave coupling affect polar stratospheric ozone in the Arctic winter stratosphere?

    Science.gov (United States)

    Lubis, Sandro W.; Silverman, Vered; Matthes, Katja; Harnik, Nili; Omrani, Nour-Eddine; Wahl, Sebastian

    2017-02-01

    It is well established that variable wintertime planetary wave forcing in the stratosphere controls the variability of Arctic stratospheric ozone through changes in the strength of the polar vortex and the residual circulation. While previous studies focused on the variations in upward wave flux entering the lower stratosphere, here the impact of downward planetary wave reflection on ozone is investigated for the first time. Utilizing the MERRA2 reanalysis and a fully coupled chemistry-climate simulation with the Community Earth System Model (CESM1(WACCM)) of the National Center for Atmospheric Research (NCAR), we find two downward wave reflection effects on ozone: (1) the direct effect in which the residual circulation is weakened during winter, reducing the typical increase of ozone due to upward planetary wave events and (2) the indirect effect in which the modification of polar temperature during winter affects the amount of ozone destruction in spring. Winter seasons dominated by downward wave reflection events (i.e., reflective winters) are characterized by lower Arctic ozone concentration, while seasons dominated by increased upward wave events (i.e., absorptive winters) are characterized by relatively higher ozone concentration. This behavior is consistent with the cumulative effects of downward and upward planetary wave events on polar stratospheric ozone via the residual circulation and the polar temperature in winter. The results establish a new perspective on dynamical processes controlling stratospheric ozone variability in the Arctic by highlighting the key role of wave reflection.

  10. Towards Camera-LIDAR Fusion-Based Terrain Modelling for Planetary Surfaces: Review and Analysis

    Directory of Open Access Journals (Sweden)

    Affan Shaukat

    2016-11-01

    Full Text Available In recent decades, terrain modelling and reconstruction techniques have increased research interest in precise short and long distance autonomous navigation, localisation and mapping within field robotics. One of the most challenging applications is in relation to autonomous planetary exploration using mobile robots. Rovers deployed to explore extraterrestrial surfaces are required to perceive and model the environment with little or no intervention from the ground station. Up to date, stereopsis represents the state-of-the art method and can achieve short-distance planetary surface modelling. However, future space missions will require scene reconstruction at greater distance, fidelity and feature complexity, potentially using other sensors like Light Detection And Ranging (LIDAR. LIDAR has been extensively exploited for target detection, identification, and depth estimation in terrestrial robotics, but is still under development to become a viable technology for space robotics. This paper will first review current methods for scene reconstruction and terrain modelling using cameras in planetary robotics and LIDARs in terrestrial robotics; then we will propose camera-LIDAR fusion as a feasible technique to overcome the limitations of either of these individual sensors for planetary exploration. A comprehensive analysis will be presented to demonstrate the advantages of camera-LIDAR fusion in terms of range, fidelity, accuracy and computation.

  11. Towards Camera-LIDAR Fusion-Based Terrain Modelling for Planetary Surfaces: Review and Analysis.

    Science.gov (United States)

    Shaukat, Affan; Blacker, Peter C; Spiteri, Conrad; Gao, Yang

    2016-11-20

    In recent decades, terrain modelling and reconstruction techniques have increased research interest in precise short and long distance autonomous navigation, localisation and mapping within field robotics. One of the most challenging applications is in relation to autonomous planetary exploration using mobile robots. Rovers deployed to explore extraterrestrial surfaces are required to perceive and model the environment with little or no intervention from the ground station. Up to date, stereopsis represents the state-of-the art method and can achieve short-distance planetary surface modelling. However, future space missions will require scene reconstruction at greater distance, fidelity and feature complexity, potentially using other sensors like Light Detection And Ranging (LIDAR). LIDAR has been extensively exploited for target detection, identification, and depth estimation in terrestrial robotics, but is still under development to become a viable technology for space robotics. This paper will first review current methods for scene reconstruction and terrain modelling using cameras in planetary robotics and LIDARs in terrestrial robotics; then we will propose camera-LIDAR fusion as a feasible technique to overcome the limitations of either of these individual sensors for planetary exploration. A comprehensive analysis will be presented to demonstrate the advantages of camera-LIDAR fusion in terms of range, fidelity, accuracy and computation.

  12. Science requirements for PRoViScout, a robotics vision system for planetary exploration

    Science.gov (United States)

    Hauber, E.; Pullan, D.; Griffiths, A.; Paar, G.

    2011-10-01

    The robotic exploration of planetary surfaces, including missions of interest for geobiology (e.g., ExoMars), will be the precursor of human missions within the next few decades. Such exploration will require platforms which are much more self-reliant and capable of exploring long distances with limited ground support in order to advance planetary science objectives in a timely manner. The key to this objective is the development of planetary robotic onboard vision processing systems, which will enable the autonomous on-site selection of scientific and mission-strategic targets, and the access thereto. The EU-funded research project PRoViScout (Planetary Robotics Vision Scout) is designed to develop a unified and generic approach for robotic vision onboard processing, namely the combination of navigation and scientific target selection. Any such system needs to be "trained", i.e. it needs (a) scientific requirements which the system needs to address, and (b) a data base of scientifically representative target scenarios which can be analysed. We present our preliminary list of science requirements, based on previous experience from landed Mars missions.

  13. Ices Under Conditions of Planetary Nebulae

    Science.gov (United States)

    Yeghikyan, A. G.

    2017-07-01

    A large number of molecules are observed in planetary nebulae, both simple, the most common (H2, CO and OH), and more complex (H2O, SiO, HCN, HNC, HCO+), and even the polycyclic aromatic hydrocarbons and fullerenes containing a few dozen and more atoms. The water molecules are observed, as a rule, in the young objects, in the gas phase (water "fountains" and related water masers) and solid phase (emission of crystalline ice particles), and, regardless of the C/O ratio, water and carbon-containing molecules may be linked to the same object. On the other hand, the results of calculations by the well known Cloudy computer program given in this paper for stationery models, show that the abundance of water ice in planetary nebulae, other conditions being equal, is dependent on the ionization rate of hydrogen, which depends in turn on the flux of energetic particles (protons and alpha particles) in the range of MeV energies and higher. The possibility of the increased flux of such particles in planetary nebulae under conditions of the standard interacting stellar winds scenario is discussed, when the flux may locally exceed by 1-3 orders of magnitude that of caused by galactic cosmic rays. Calculated water ice column densities reach values up to 1018-1019 cm-2 at the usual average ISM H2 ionisation rate of 10-16s -1 and sharply decrease for the thousands times larger rates. Known observed results of NGC 6302 show for the column density of crystalline ice about 1019cm-2 close to the calculated one.

  14. Directed energy missions for planetary defense

    Science.gov (United States)

    Lubin, Philip; Hughes, Gary B.; Eskenazi, Mike; Kosmo, Kelly; Johansson, Isabella E.; Griswold, Janelle; Pryor, Mark; O'Neill, Hugh; Meinhold, Peter; Suen, Jonathan; Riley, Jordan; Zhang, Qicheng; Walsh, Kevin; Melis, Carl; Kangas, Miikka; Motta, Caio; Brashears, Travis

    2016-09-01

    Directed energy for planetary defense is now a viable option and is superior in many ways to other proposed technologies, being able to defend the Earth against all known threats. This paper presents basic ideas behind a directed energy planetary defense system that utilizes laser ablation of an asteroid to impart a deflecting force on the target. A conceptual philosophy called DE-STAR, which stands for Directed Energy System for Targeting of Asteroids and exploration, is an orbiting stand-off system, which has been described in other papers. This paper describes a smaller, stand-on system known as DE-STARLITE as a reduced-scale version of DE-STAR. Both share the same basic heritage of a directed energy array that heats the surface of the target to the point of high surface vapor pressure that causes significant mass ejection thus forming an ejection plume of material from the target that acts as a rocket to deflect the object. This is generally classified as laser ablation. DE-STARLITE uses conventional propellant for launch to LEO and then ion engines to propel the spacecraft from LEO to the near-Earth asteroid (NEA). During laser ablation, the asteroid itself provides the propellant source material; thus a very modest spacecraft can deflect an asteroid much larger than would be possible with a system of similar mission mass using ion beam deflection (IBD) or a gravity tractor. DE-STARLITE is capable of deflecting an Apophis-class (325 m diameter) asteroid with a 1- to 15-year targeting time (laser on time) depending on the system design. The mission fits within the rough mission parameters of the Asteroid Redirect Mission (ARM) program in terms of mass and size. DE-STARLITE also has much greater capability for planetary defense than current proposals and is readily scalable to match the threat. It can deflect all known threats with sufficient warning.

  15. Dynamics of early planetary gear trains

    Science.gov (United States)

    August, R.; Kasuba, R.; Frater, J. L.; Pintz, A.

    1984-01-01

    A method to analyze the static and dynamic loads in a planetary gear train was developed. A variable-variable mesh stiffness (VVMS) model was used to simulate the external and internal spur gear mesh behavior, and an equivalent conventional gear train concept was adapted for the dynamic studies. The analysis can be applied either involute or noninvolute spur gearing. By utilizing the equivalent gear train concept, the developed method may be extended for use for all types of epicyclic gearing. The method is incorporated into a computer program so that the static and dynamic behavior of individual components can be examined. Items considered in the analysis are: (1) static and dynamic load sharing among the planets; (2) floating or fixed Sun gear; (3) actual tooth geometry, including errors and modifications; (4) positioning errors of the planet gears; (5) torque variations due to noninvolute gear action. A mathematical model comprised of power source, load, and planetary transmission is used to determine the instantaneous loads to which the components are subjected. It considers fluctuating output torque, elastic behavior in the system, and loss of contact between gear teeth. The dynamic model has nine degrees of freedom resulting in a set of simultaneous second order differential equations with time varying coefficients, which are solved numerically. The computer program was used to determine the effect of manufacturing errors, damping and component stiffness, and transmitted load on dynamic behavior. It is indicated that this methodology offers the designer/analyst a comprehensive tool with which planetary drives may be quickly and effectively evaluated.

  16. Risk to civilization: A planetary science perspective

    Science.gov (United States)

    Chapman, Clark R.; Morrison, David

    1988-01-01

    One of the most profound changes in our perspective of the solar system resulting from the first quarter century of planetary exploration by spacecraft is the recognition that planets, including Earth, were bombarded by cosmic projectiles for 4.5 aeons and continue to be bombarded today. Although the planetary cratering rate is much lower now than it was during the first 0.5 aeons, sizeable Earth-approaching asteroids and comets continue to hit the Earth at a rate that poses a finite risk to civilization. The evolution of this planetary perspective on impact cratering is gradual over the last two decades. It took explorations of Mars and Mercury by early Mariner spacecraft and of the outer solar system by the Voyagers to reveal the significance of asteroidal and cometary impacts in shaping the morphologies and even chemical compositions of the planets. An unsettling implication of the new perspective is addressed: the risk to human civilization. Serious scientific attention was given to this issue in July 1981 at a NASA-sponsored Spacewatch Workshop in Snowmass, Colorado. The basic conclusion of the 1981 NASA sponsored workshop still stands: the risk that civilization might be destroyed by impact with an as-yet-undiscovered asteroid or comet exceeds risk levels that are sometimes deemed unacceptable by modern societies in other contexts. Yet these impact risks have gone almost undiscussed and undebated. The tentative quantitative assessment by some members of the 1981 workshop was that each year, civilization is threatened with destruction with a probability of about 1 in 100,000. The enormous spread in risk levels deemed by the public to be at the threshold of acceptability derives from a host of psychological factors that were widely discussed in the risk assessment literature. Slovic shows that public fears of hazards are greatest for hazards that are uncontrollable, involuntary, fatal, dreadful, globally catastrophic, and which have consequences that seem

  17. Planetary and Lunar ephemerides, INPOP10A

    CERN Document Server

    Fienga, A; Kuchynka, P; Laskar, J; Gastineau, M

    2010-01-01

    The Planetary and Lunar ephemerides INPOP10a version has several improvements in the fitting process, the data sets used in the fit and in the general features of the solution. No big change was brought in the dynamics. As a consequence of these changes, the extrapolation capabilities of INPOP10a are improved compared to INPOP08, especially for the Earth, Mars, Mercury and Saturn orbits. As for INPOP08, INPOP10a provides to the user, positions, velocities of the planets and the moon and TT-TDB chebychev polynomials at \\url{http://www.imcce.fr/inpop}.

  18. NASA Lunar and Planetary Mapping and Modeling

    Science.gov (United States)

    Day, Brian; Law, Emily

    2016-10-01

    NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap some of the enhancements to these products during the past year and preview work currently being undertaken.New data products added to the Lunar Mapping and Modeling Portal (LMMP) include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. New tools being developed include traverse planning and surface potential analysis. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions. Looking ahead, LMMP is working with the NASA Astromaterials Office to integrate with their Lunar Apollo Sample database to help better visualize the geographic contexts of retrieved samples. All of this will be done within the framework of a new user interface which, among other improvements, will provide significantly enhanced 3D visualizations and navigation.Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites, and is being enhanced with data products and analysis tools specifically requested by the proposing teams for the various sites. NASA Headquarters is giving high priority to Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars.The portals also

  19. Automatic extraction of planetary image features

    Science.gov (United States)

    LeMoigne-Stewart, Jacqueline J. (Inventor); Troglio, Giulia (Inventor); Benediktsson, Jon A. (Inventor); Serpico, Sebastiano B. (Inventor); Moser, Gabriele (Inventor)

    2013-01-01

    A method for the extraction of Lunar data and/or planetary features is provided. The feature extraction method can include one or more image processing techniques, including, but not limited to, a watershed segmentation and/or the generalized Hough Transform. According to some embodiments, the feature extraction method can include extracting features, such as, small rocks. According to some embodiments, small rocks can be extracted by applying a watershed segmentation algorithm to the Canny gradient. According to some embodiments, applying a watershed segmentation algorithm to the Canny gradient can allow regions that appear as close contours in the gradient to be segmented.

  20. Chemistry of Planetary Atmospheres: Insights and Prospects

    Science.gov (United States)

    Yung, Yuk

    2015-11-01

    Using observations from the Mariners, Pioneers, Vikings, Voyagers, Pioneer Venus, Galileo, Venus Express, Curiosity, Cassini, New Horizons, and numerous observatories both in orbit of Earth and on the ground, I will give a survey of the major chemical processes that control the composition of planetary atmospheres. For the first time since the beginning of the space age, we understand the chemistry of planetary atmospheres ranging from the primitive atmospheres of the giant planets to the highly evolved atmospheres of terrestrial planets and small bodies. Our understanding can be distilled into three important ideas: (1) The stability of planetary atmospheres against escape of their constituents to space, (2) the role of equilibrium chemistry in determining the partitioning of chemical species, and (3) the role of disequilibrium chemistry, which produces drastic departures from equilibrium chemistry. To these three ideas we must also add a fourth: the role of biochemistry at Earth's surface, which makes its atmospheric chemistry unique in the cosmochemical environment. Only in the Earth's atmosphere do strong reducing and oxidizing species coexist to such a degree. For example, nitrogen species in the Earth's atmosphere span eight oxidation states from ammonia to nitric acid. Much of the Earth's atmospheric chemistry consists of reactions initiated by the degradation of biologically produced molecules. Life uses solar energy to drive chemical reactions that would otherwise not occur; it represents a kind of photochemistry that is special to Earth, at least within the Solar System. It remains to be seen how many worlds like Earth there are beyond the Solar System, especially as we are now exploring the exoplanets using Kepler, TESS, HST, Spitzer, soon to be launched missions such as JWST and WFIRST, and ground-based telescopes. The atmospheres of the Solar System provide a benchmark for studying exoplanets, which in turn serve to test and extend our current

  1. Virtual Planetary Analysis Environment for Remote Science

    Science.gov (United States)

    Keely, Leslie; Beyer, Ross; Edwards. Laurence; Lees, David

    2009-01-01

    All of the data for NASA's current planetary missions and most data for field experiments are collected via orbiting spacecraft, aircraft, and robotic explorers. Mission scientists are unable to employ traditional field methods when operating remotely. We have developed a virtual exploration tool for remote sites with data analysis capabilities that extend human perception quantitatively and qualitatively. Scientists and mission engineers can use it to explore a realistic representation of a remote site. It also provides software tools to "touch" and "measure" remote sites with an immediacy that boosts scientific productivity and is essential for mission operations.

  2. ANALYSIS METHOD OF AUTOMATIC PLANETARY TRANSMISSION KINEMATICS

    Directory of Open Access Journals (Sweden)

    Józef DREWNIAK

    2014-06-01

    Full Text Available In the present paper, planetary automatic transmission is modeled by means of contour graphs. The goals of modeling could be versatile: ratio calculating via algorithmic equation generation, analysis of velocity and accelerations. The exemplary gears running are analyzed, several drives/gears are consecutively taken into account discussing functional schemes, assigned contour graphs and generated system of equations and their solutions. The advantages of the method are: algorithmic approach, general approach where particular drives are cases of the generally created model. Moreover, the method allows for further analyzes and synthesis tasks e.g. checking isomorphism of design solutions.

  3. Dust Extinction in Compact Planetary Nebulae

    OpenAIRE

    Lee, TH; Kwok, S.

    2005-01-01

    The effects of dust extinction on the departure from axisymmetry in the morphology of planetary nebulae (PNs) are investigated through a comparison of the radio free-free emission and hydrogen recombination line images. The dust extinction maps from five compact PNs are derived using high-resolution (̃0"1) Hα and radio maps of the HST and VLA. These extinction maps are then analyzed by an ellipsoidal shell ionization model including the effects of dust extinction to infer the nebulae's intrin...

  4. NASA Lunar and Planetary Mapping and Modeling

    Science.gov (United States)

    Day, B. H.; Law, E.

    2016-12-01

    NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look forward to the results of the exciting work currently being undertaken. Additional data products and tools continue to be added to the Lunar Mapping and Modeling Portal (LMMP). These include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions, and working with the NASA Astromaterials Acquisition and Curation Office's Lunar Apollo Sample database in order to help better visualize the geographic contexts from which samples were retrieved. A new user interface provides, among other improvements, significantly enhanced 3D visualizations and navigation. Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites. This effort is concentrating on enhancing Mars Trek with data products and analysis tools specifically requested by the proposing teams for the various sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. The portals also serve as

  5. Phase Equilibrium Investigations of Planetary Materials

    Science.gov (United States)

    Grove, T. L.

    1997-01-01

    This grant provided funds to carry out experimental studies designed to illuminate the conditions of melting and chemical differentiation that has occurred in planetary interiors. Studies focused on the conditions of mare basalt generation in the moon's interior and on processes that led to core formation in the Shergottite Parent Body (Mars). Studies also examined physical processes that could lead to the segregation of metal-rich sulfide melts in an olivine-rich solid matrix. The major results of each paper are discussed below and copies of the papers are attached as Appendix I.

  6. Thermal evolution of planetary size bodies

    Science.gov (United States)

    Hsui, A. T.; Toksoz, M. N.

    1977-01-01

    The size dependence of planetary thermal evolution is investigated through calculations which take into account the effects of heat source differentiation and convection. The theoretical computations make use of hypothetical bodies for minor planets; Mercury, Venus and Mars are employed to represent the size spectrum of the inner planets. If started at a cold initial condition, an object with a radius less than 1000 km is unlikely to reach melting. Accretional heating, inductive heating and short half-life radioactive heating are among the mechanisms which may produce early melting and differentiation in larger planets. Core formation in Mercury and Venus is also discussed.

  7. Kinematic Distance of Galactic Planetary Nebulae

    CERN Document Server

    Yang, A Y; Zhu, H; Leahy, D A; Wu, D

    2016-01-01

    We construct \\HI~absorption spectra for 18 planetary nebulae (PNe) and their background sources using the data from the International Galactic Plane Survey. We estimate the kinematic distances of these PNe, among which 15 objects' kinematic distances are obtained for the first time. The distance uncertainties of 13 PNe range from 10% to 50%, which is a significant improvement with uncertainties of a factor two or three smaller than most of previous distance measurements. We confirm that PN G030.2-00.1 is not a PN because of its large distance found here.

  8. Herschel Planetary Nebula Survey (HerPlaNS). First detection of OH+ in planetary nebulae

    NARCIS (Netherlands)

    Aleman, I.; Ueta, T.; Ladjal, D.; Exter, K.M.; Kastner, J.H.; Montez, R.; Tielens, A.G.G.M.; Chu, Y.-H.; Izumiura, H.; McDonald, I.; Sahai, R.; Siódmiak, N.; Szczerba, R.; Hoof, van P. A. M.; Villaver, E.; Vlemmings, W.; Wittkowski, M.; Zijlstra, A.A.

    2014-01-01

    We report the first detections of OH+emission in planetary nebulae (PNe). As part of an imaging and spectroscopy survey of 11 PNe in the far-IR using the PACS and SPIRE instruments aboard the HerschelSpace Observatory, we performed a line survey in these PNe over the entire spectral range between 51

  9. Access to planetary science for the broad public: a more familiar planetary nomenclature and terminology system

    Science.gov (United States)

    Hargitai, H.

    The Planetary Sciences in the last decades has accumulated an amount of knowledge that is comparable to other Earth Sciences. The study of planets is not any more a computation of orbital data, but the investigation and description of surface features of dozens of planetary bodies, including our own Earth. This way, it is only an extention of the present Earth sciences like geography, geology, geophisics, meteorolgy etc. In Hungary, Planetary Science studies has been made for decades, but especially today, numerous popular scientific works are published, and the subject of planetology (and also exobiology linked to it) is taught in more and more secondary schools and universities. This ma kes a demand for a Hungarian language terminology and nomenclature in the relatively new discipline of Planetology. It is needed because the present terminology of geosciences is not adequeate for the description of the surface conditions and structures in other planetary bodies. In the mean time it has to be in accord with the Earth-based system. Since this is areal discipline in its subject, it is of high importance that the areas studied be identifiable easily, unambiguously and descriptively. This make s the translation/transcription of IAU's nomenclature our second goal. This is not a simple transliteration of the proper names used in planetary body nomenclatures, but the task is also the setting of the basic rules used in the making of Hungarian nomenclature system. It would be useful, if the system would be useable for any body of the solar system. It has to fit into the system of both the IAU's nomenlcature and the Hungarian geographic name system [1]. This makes a double task: to make a system that is appropriate both linguistically and scientifically. At the same time, in popular science and elementary education, the planetary features' common names and some basic terms should be in the mother languages of the readers, and not in latin or English (outside the anglophone

  10. Impact cratering – fundamental process in geoscience and planetary science

    Indian Academy of Sciences (India)

    J K Pati; W U Reimold

    2007-04-01

    Impact cratering is a geological process characterized by ultra-fast strain rates, which generates extreme shock pressure and shock temperature conditions on and just below planetary surfaces. Despite initial skepticism, this catastrophic process has now been widely accepted by geoscientists with respect to its importance in terrestrial – indeed, in planetary – evolution. About 170 impact structures have been discovered on Earth so far, and some more structures are considered to be of possible impact origin. One major extinction event, at the Cretaceous–Paleogene boundary, has been firmly linked with catastrophic impact, but whether other important extinction events in Earth history, including the so-called “Mother of All Mass Extinctions” at the Permian–Triassic boundary, were triggered by huge impact catastrophes is still hotly debated and a subject of ongoing research. There is a beneficial side to impact events as well, as some impact structures worldwide have been shown to contain significant (in some cases, world class) ore deposits, including the gold– uranium province of the Witwatersrand basin in South Africa, the enormous Ni and PGE deposits of the Sudbury structure in Canada, as well as important hydrocarbon resources, especially in North America. Impact cratering is not a process of the past, and it is mandatory to improve knowledge of the past-impact record on Earth to better constrain the probability of such events in the future. In addition, further improvement of our understanding of the physico–chemical and geological processes fundamental to the impact cratering process is required for reliable numerical modeling of the process, and also for the correlation of impact magnitude and environmental effects. Over the last few decades, impact cratering has steadily grown into an integrated discipline comprising most disciplines of the geosciences as well as planetary science, which has created positive spin-offs including the study of

  11. Mars Returned Sample Handling: Planetary Protection and Science Aspects

    Science.gov (United States)

    Beaty, D.; Campbell, J.; Lindstrom, D.; McBride, K.; Papanastassiou, D.

    The action of returning geological samples from Mars, should it be attempted by robotic missions, will require some careful planning on what would be done with the samples once they are on Earth, and the conditions under which they would need to be kept in order to realize their value. It is generally assumed that returned martian samples would be the subject of two primary kinds of analysis and investigation: planetary protection testing, and scientific analysis to support martian exploration objectives. Testing for the purpose of planetary protection would need to be carried out in a facility that has containment characteristics comparable to those of BSL-4 laboratories. This hypothetical facility has been informally referred to as the "Sample Receiving Facility" (SRF). However, it is not yet known if this capability would be optimized as a completely new facility, as a facility built in partnership with some other existing infrastructure, or if the required functionalities could even be distributed across multiple buildings, perhaps in quite different places. Although the essential purpose of planetary protection testing would be to assess whether or not the samples pose a biological hazard, many of the measurements called for in the draft test protocol, especially those related to preliminary examination/sample classification and life detection, are the same measurements called for to support scientific exploration objectives. Despite the uncertainties in the facility configuration required to carry out PP testing, it is clear that during such tests, the scientific integrity of the samples would need to be maintained. The primary challenge to scientific integrity revolves around contamination control. The science community has a need for the samples to be kept "clean", especially with regards to biological contaminants. However, specific definitions of "clean" have been difficult to establish. Further definition by the Mars science community of their scientific

  12. Science Case for Planetary Exploration with Planetary CubeSats and SmallSats

    Science.gov (United States)

    Castillo-Rogez, Julie; Raymond, Carol; Jaumann, Ralf; Vane, Gregg; Baker, John

    2016-07-01

    Nano-spacecraft and especially CubeSats are emerging as viable low cost platforms for planetary exploration. Increasing miniaturization of instruments and processing performance enable smart and small packages capable of performing full investigations. While these platforms are limited in terms of payload and lifetime, their form factor and agility enable novel mission architectures and a refreshed relationship to risk. Leveraging a ride with a mothership to access far away destinations can significantly augment the mission science return at relatively low cost. Depending on resources, the mothership may carry several platforms and act as telecom relay for a distributed network or other forms of fractionated architectures. In Summer 2014 an international group of scientists, engineers, and technologists started a study to define investigations to be carried out by nano-spacecrafts. These applications flow down from key science priorities of interest across space agencies: understanding the origin and organization of the Solar system; characterization of planetary processes; assessment of the astrobiological significance of planetary bodies across the Solar system; and retirement of strategic knowledge gaps (SKGs) for Human exploration. This presentation will highlight applications that make the most of the novel architectures introduced by nano-spacecraft. Examples include the low cost reconnaissance of NEOs for science, planetary defense, resource assessment, and SKGs; in situ chemistry measurements (e.g., airless bodies and planetary atmospheres), geophysical network (e.g., magnetic field measurements), coordinated physical and chemical characterization of multiple icy satellites in a giant planet system; and scouting, i.e., risk assessment and site reconnaissance to prepare for close proximity observations of a mothership (e.g., prior to sampling). Acknowledgements: This study is sponsored by the International Academy of Astronautics (IAA). Part of this work is

  13. The new Planetary Science Archive (PSA): Exploration and discovery of scientific datasets from ESA's planetary missions

    Science.gov (United States)

    Martinez, Santa; Besse, Sebastien; Heather, Dave; Barbarisi, Isa; Arviset, Christophe; De Marchi, Guido; Barthelemy, Maud; Docasal, Ruben; Fraga, Diego; Grotheer, Emmanuel; Lim, Tanya; Macfarlane, Alan; Rios, Carlos; Vallejo, Fran; Saiz, Jaime; ESDC (European Space Data Centre) Team

    2016-10-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://archives.esac.esa.int/psa. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA is currently implementing a number of significant improvements, mostly driven by the evolution of the PDS standard, and the growing need for better interfaces and advanced applications to support science exploitation. The newly designed PSA will enhance the user experience and will significantly reduce the complexity for users to find their data promoting one-click access to the scientific datasets with more specialised views when needed. This includes a better integration with Planetary GIS analysis tools and Planetary interoperability services (search and retrieve data, supporting e.g. PDAP, EPN-TAP). It will be also up-to-date with versions 3 and 4 of the PDS standards, as PDS4 will be used for ESA's ExoMars and upcoming BepiColombo missions. Users will have direct access to documentation, information and tools that are relevant to the scientific use of the dataset, including ancillary datasets, Software Interface Specification (SIS) documents, and any tools/help that the PSA team can provide. A login mechanism will provide additional functionalities to the users to aid / ease their searches (e.g. saving queries, managing default views). This contribution will introduce the new PSA, its key features and access interfaces.

  14. Elpasolite Planetary Ice and Composition Spectrometer (EPICS): A Low-Resource Combined Gamma-Ray and Neutron Spectrometer for Planetary Science

    Science.gov (United States)

    Stonehill, L. C.; Coupland, D. D. S.; Mesick, K. E.; Nowicki, S.

    2016-12-01

    The Elpasolite Planetary Ice and Composition Spectrometer (EPICS) is an innovative, low-resource gamma-ray and neutron spectrometer for planetary science missions, enabled by new scintillator and photodetector technologies. Neutrons and gamma rays are produced by cosmic ray interactions with planetary bodies and their subsequent interactions with the near-surface materials produce distinctive energy spectra. Measuring these spectra reveals details of the planetary near-surface composition that are not accessible through any other phenomenology. Under the resource constraints of space missions, these measurements are difficult as they require good gamma-ray energy resolution, measurement of neutron energy over almost twelve orders of magnitude, and disentangling the effects of background cosmic radiation, all while surviving the space environment for many years. EPICS will provide a transformational advance in the investigation of these signatures, enabling new scientific discovery. EPICS will be the first planetary science instrument to fully integrate the neutron and gamma-ray spectrometers. This integration is enabled by the recently-discovered elpasolite family of scintillators that offer gamma-ray spectroscopy energy resolutions as good as 3% FWHM at 662 keV, thermal neutron sensitivity and some fast neutron spectroscopy, and the ability to distinguish gamma-ray and neutron signals via pulse shape differences. This new detection technology will significantly reduce size, weight, and power (SWaP) while providing similar neutron performance and improved gamma energy resolution compared to previous scintillator instruments, and the ability to monitor the cosmic-ray source term. EPICS will detect scintillation light with silicon photomultipliers rather than traditional photomultiplier tubes, offering dramatic additional SWaP reduction. EPICS is being developed under Los Alamos National Laboratory internal research and development funding to a maturity level

  15. a Performance Comparison of Feature Detectors for Planetary Rover Mapping and Localization

    Science.gov (United States)

    Wan, W.; Peng, M.; Xing, Y.; Wang, Y.; Liu, Z.; Di, K.; Teng, B.; Mao, X.; Zhao, Q.; Xin, X.; Jia, M.

    2017-07-01

    Feature detection and matching are key techniques in computer vision and robotics, and have been successfully implemented in many fields. So far there is no performance comparison of feature detectors and matching methods for planetary mapping and rover localization using rover stereo images. In this research, we present a comprehensive evaluation and comparison of six feature detectors, including Moravec, Förstner, Harris, FAST, SIFT and SURF, aiming for optimal implementation of feature-based matching in planetary surface environment. To facilitate quantitative analysis, a series of evaluation criteria, including distribution evenness of matched points, coverage of detected points, and feature matching accuracy, are developed in the research. In order to perform exhaustive evaluation, stereo images, simulated under different baseline, pitch angle, and interval of adjacent rover locations, are taken as experimental data source. The comparison results show that SIFT offers the best overall performance, especially it is less sensitive to changes of image taken at adjacent locations.

  16. Experimental Investigations of Noise Control in Planetary Gear Set by Phasing

    Directory of Open Access Journals (Sweden)

    S. H. Gawande

    2014-01-01

    Full Text Available Now a days reduction of gear noise and resulting vibrations has received much attention of the researchers. The internal excitation caused by the variation in tooth mesh stiffness is a key factor in causing vibration. Therefore to reduce gear noise and vibrations several techniques have been proposed in recent years. In this research the experimental work is carried out to study the effect of planet phasing on noise and subsequent resulting vibrations of Nylon-6 planetary gear drive. For this purpose experimental set-up was built and trials were conducted for two different arrangements (i.e., with phasing and without phasing and it is observed that the noise level and resulting vibrations were reduced by planet phasing arrangement. So from the experimental results it is observed that by applying the meshing phase difference one can reduce planetary gear set noise and vibrations.

  17. Experimental substantiation of planetary quarantine in orbital flight

    Science.gov (United States)

    Novikova, Nataliya; Polikarpov, Nikolay; Deshevaya, Elena; Svistunova, Yulia

    Planetary quarantine is one of the outstanding issues faced by planners of future exploration missions. Evaluation of risks associated with the hypothesized transfer of biological material through the interplanetary space has been listed among the high-priority goals of space research. To address this issue, the Institute for Biomedical Problems of the Russian Academy of Sciences has developed a program of and equipment for space experiment BIORISK with the idea of extended exposure of various microorganisms on the outer surface of the International Space Station {ISS}. The experiment is to provide new data about patterns and limits of phenotypic adaptation and genotype modifications, if any, in bacterial-fungal associations that form typical microbiota found on the structural materials used in space vehicles. The first extended {18 months} exposure of microorganisms-artificial substrates systems in open space comparable with the length of voyage on the Earth-Mars-Earth itinerary demonstrated preservation of the viability of spore forms of bacteria and microscopic fungi. Also, after exposure to the extremities of open space most of the survived strains were shown to have mobilized a protection-adaptation mechanism consisting of intensification of the enzyme and biochemical activities. The present, second stage of BIORISK is being conducted with a broader variety of biological objects. The conditions of near-Earth orbits are entirely different from the conditions the exploration crew and their microbial companions will have to live in during the voyage, mainly in terms of values and spectra of radiation doses. For this reason, indication of space exploration trajectories with the help of different taxonomic groups of microorganisms will be essential to defining approaches to planetary quarantine and astrobiology.

  18. Ozone zonal asymmetry and planetary wave characterization during Antarctic spring

    Directory of Open Access Journals (Sweden)

    I. Ialongo

    2012-03-01

    Full Text Available A large zonal asymmetry of ozone has been observed over Antarctica during winter-spring, when the ozone hole develops. It is caused by a planetary wave-driven displacement of the polar vortex. The total ozone data by OMI (Ozone Monitoring Instrument and the ozone profiles by MLS (Microwave Limb Sounder and GOMOS (Global Ozone Monitoring by Occultation of Stars were analysed to characterize the ozone zonal asymmetry and the wave activity during Antarctic spring. Both total ozone and profile data have shown a persistent zonal asymmetry over the last years, which is usually observed from September to mid-December. The largest amplitudes of planetary waves at 65° S (the perturbations can achieve up to 50% of zonal mean values is observed in October. The wave activity is dominated by the quasi-stationary wave 1 component, while the wave 2 is mainly an eastward travelling wave. Wave numbers 1 and 2 generally explain more than the 90% of the ozone longitudinal variations. Both GOMOS and MLS ozone profile data show that ozone zonal asymmetry covers the whole stratosphere and extends up to the altitudes of 60–65 km. The wave amplitudes in ozone mixing ratio decay with altitude, with maxima (up to 50% below 30 km.

    The characterization of the ozone zonal asymmetry has become important in the climate research. The inclusion of the polar zonal asymmetry in the climate models is essential for an accurate estimation of the future temperature trends. This information might also be important for retrieval algorithms that rely on ozone a priori information.

  19. Synthetic vision for lunar and planetary landing vehicles

    Science.gov (United States)

    Williams, Steven P.; Arthur, Jarvis J., III; Shelton, Kevin J.; Prinzel, Lawrence J., III; Norman, R. Michael

    2008-04-01

    The Crew Vehicle Interface (CVI) group of the Integrated Intelligent Flight Deck Technologies (IIFDT) has done extensive research in the area of Synthetic Vision (SV), and has shown that SV technology can substantially enhance flight crew situation awareness, reduce pilot workload, promote flight path control precision and improve aviation safety. SV technology is being extended to evaluate its utility for lunar and planetary exploration vehicles. SV may hold significant potential for many lunar and planetary missions since the SV presentation provides a computer-generated view of the terrain and other significant environment characteristics independent of the outside visibility conditions, window locations, or vehicle attributes. SV allows unconstrained control of the computer-generated scene lighting, terrain coloring, and virtual camera angles which may provide invaluable visual cues to pilots/astronauts and in addition, important vehicle state information may be conformally displayed on the view such as forward and down velocities, altitude, and fuel remaining to enhance trajectory control and vehicle system status. This paper discusses preliminary SV concepts for tactical and strategic displays for a lunar landing vehicle. The technical challenges and potential solutions to SV applications for the lunar landing mission are explored, including the requirements for high resolution terrain lunar maps and an accurate position and orientation of the vehicle that is essential in providing lunar Synthetic Vision System (SVS) cockpit displays. The paper also discusses the technical challenge of creating an accurate synthetic terrain portrayal using an ellipsoid lunar digital elevation model which eliminates projection errors and can be efficiently rendered in real-time.

  20. Detecting Abundance Variations in Planetary Nebulae

    Science.gov (United States)

    Monteiro, H.; Santos, P. M.; Falceta-Gonçalves, D.

    2014-04-01

    Empirical methods of investigating chemical abundances are still widely used as a primary tool to study planetary nebulae (PNe) as well as HII regions. In this work we investigate the capacity of the empirical abundance determination methods to recover pre-defined parameters and abundance variations in a realistically modeled planetary nebula. To perform the test we use a threedimensional density structure obtained from a hydrodynamical simulation which is fed through a threedimensional photoionization code. The density structure is an asymetrical and inhomogeneous elongated closed shell. The input parameters used, such as, ionizing source, density, and chemical abundances are typical values of type I PNe. The model emissivities are then projected in the line of sight and emission line maps are generated, which are used to obtain the temperature and density diagnostics. The diagnostics and line emission maps are then used to obtain spatially resolved maps of the abundances. In this work we use the method described above to investigate abundances for two distinct orientations of the density structure. Our results show that for typical signal to noise ratios obtained from long-slit spectroscopy, only large abundance variations can be determined with good precision.

  1. Planetary penetrators: Their origins, history and future

    Science.gov (United States)

    Lorenz, Ralph D.

    2011-08-01

    Penetrators, which emplace scientific instrumentation by high-speed impact into a planetary surface, have been advocated as an alternative to soft-landers for some four decades. However, such vehicles have yet to fly successfully. This paper reviews in detail, the origins of penetrators in the military arena, and the various planetary penetrator mission concepts that have been proposed, built and flown. From the very limited data available, penetrator developments alone (without delivery to the planet) have required ˜$30M: extensive analytical instrumentation may easily double this. Because the success of emplacement and operation depends inevitably on uncontrollable aspects of the target environment, unattractive failure probabilities for individual vehicles must be tolerated that are higher than the typical '3-sigma' (99.5%) values typical for spacecraft. The two pathways to programmatic success, neither of which are likely in an austere financial environment, are a lucky flight as a 'piggyback' mission or technology demonstration, or with a substantial and unprecedented investment to launch a scientific (e.g. seismic) network mission with a large number of vehicles such that a number of terrain-induced failures can be tolerated.

  2. Planetary Systems and the Origins of Life

    Science.gov (United States)

    Pudritz, Ralph; Higgs, Paul; Stone, Jonathon

    2013-01-01

    Preface; Part I. Planetary Systems and the Origins of Life: 1. Observations of extrasolar planetary systems Shay Zucker; 2. The atmospheres of extrasolar planets L. Jeremy Richardson and Sara Seager; 3. Terrestrial planet formation Edward Thommes; 4. Protoplanetary disks, amino acids and the genetic code Paul Higgs and Ralph Pudritz; 5. Emergent phenomena in biology: the origin of cellular life David Deamer; Part II. Life on Earth: 6. Extremophiles: defining the envelope for the search for life in the Universe Lynn Rothschild; 7. Hyperthermophilic life on Earth - and on Mars? Karl Stetter; 8. Phylogenomics: how far back in the past can we go? Henner Brinkmann, Denis Baurain and Hervé Philippe; 9. Horizontal gene transfer, gene histories and the root of the tree of life Olga Zhaxybayeva and J. Peter Gogarten; 10. Evolutionary innovation versus ecological incumbency Adolf Seilacher; 11. Gradual origins for the Metazoans Alexandra Pontefract and Jonathan Stone; Part III. Life in the Solar System?: 12. The search for life on Mars Chris McKay; 13. Life in the dark dune spots of Mars: a testable hypothesis Eörs Szathmary, Tibor Ganti, Tamas Pocs, Andras Horvath, Akos Kereszturi, Szaniszlo Berzci and Andras Sik; 14. Titan: a new astrobiological vision from the Cassini-Huygens data François Raulin; 15. Europa, the Ocean Moon: tides, permeable ice, and life Richard Greenberg; Index.

  3. Planetary Torque in 3D Isentropic Disks

    Science.gov (United States)

    Fung, Jeffrey; Masset, Frédéric; Lega, Elena; Velasco, David

    2017-03-01

    Planetary migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep resolution requirements. Using two different hydrodynamics codes, FARGO3D and PEnGUIn, we simulate disk–planet interaction for a one to five Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet’s potential (r s), and that it has a weak dependence on the adiabatic index of the gaseous disk (γ). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern around the planets that show active flow is present within the planet’s Hill sphere, and meridional vortices are shed downstream. The vertical flow speed near the planet is faster for a smaller r s or γ, up to supersonic speeds for the smallest r s and γ in our study.

  4. InSight Planetary Protection Status

    Science.gov (United States)

    Benardini, James; Vaishampayan, Parag; Chen, Fei; Kazarians, Gayane; Willis, Jason; Witte, Joe; Hendrickson, Ryan

    2016-07-01

    The InSight Project is a Discovery mission that consists of a single spacecraft with an overarching mission goal of illuminating the fundamentals of formation and evolution of terrestrial planets by investigating the interior structure and processes of Mars. The flight system is comprised of a 2008 Phoenix mission heritage cruise stage, aeroshell (heatshield and backshell), and lander. The lander payload contains cameras, a seismometer, a mole to penetrate the regolith (≤5 meters) to measure the geothermal gradient of Mars, and an auxiliary payload sensor suite to measure wind, temperature, and pressure. As a Mars lander mission without life detection instruments, the InSight mission has been designated PP Category IVa. Therefore, planetary protection bioburden requirements are applicable to this mission and require microbial reduction procedures and biological burden reports. Due to primary payload technical issues, InSight's 2016 launch has been delayed by NASA. The mission is currently under a re-planning phase. InSight has completed an approved Planetary Protection Plan, Subsidiary PP Plans, PP Implementation Documentation, and ~50% of the PPO verification biological assays. The flight system and additional payloads were assembled and being readied for launch at the launch site at the time of the project stand-down and has since been secured for storage. The status of the PP activities will be reported.

  5. Planetary nebulae abundances and stellar evolution

    CERN Document Server

    Pottasch, S R

    2006-01-01

    A summary is given of planetary nebulae abundances from ISO measurements. It is shown that these nebulae show abundance gradients (with galactocentric distance), which in the case of neon, argon, sulfur and oxygen (with four exceptions) are the same as HII regions and early type star abundance gradients. The abundance of these elements predicted from these gradients at the distance of the Sun from the center are exactly the solar abundance. Sulfur is the exception to this; the reason for this is discussed. The higher solar neon abundance is confirmed; this is discussed in terms of the results of helioseismology. Evidence is presented for oxygen destruction via ON cycling having occurred in the progenitors of four planetary nebulae with bilobal structure. These progenitor stars had a high mass, probably greater than 5 solar masses. This is deduced from the high values of He/H and N/H found in these nebulae. Formation of nitrogen, helium and carbon are discussed. The high mass progenitors which showed oxygen de...

  6. Education and Outreach for Volunteer Planetary Defense

    Science.gov (United States)

    Burke, J. D.

    2016-12-01

    When a large meteor exploded over Chelyabinsk in 2013, people saw the bright flash and rushed to windows. Then the blast wave hit and many were injured by flying glass fragments. Education about airbursts might have reduced the casualties. Education and Public Outreach (EPO) can also be important in broadening public involvement in preparations for dealing with cosmic hazards. Amateur astronomers have an important role in discovering potentially hazardous asteroids and comets, and also in making follow-up observations after discovery. This is especially important for Southern Hemisphere observing sites where professional observers are relatively few. The Planetary Society makes small Shoemaker grants to aid amateur astronomers in this work. Much more could be done if educators, students and the general public were aware of the opportunity and the need. Beyond this, public engagement is essential to raise and maintain support for active agencies, including the UN-sponsored International Asteroid Warning Network (IAWN) and Space Mission Planning Advisory Group (SMPAG). This paper will describe and advocate EPO efforts in support of these and other Volunteer Planetary Defense activities.

  7. Characterization of the Wolf 1061 Planetary System

    Science.gov (United States)

    Kane, Stephen R.; von Braun, Kaspar; Henry, Gregory W.; Waters, Miranda A.; Boyajian, Tabetha S.; Mann, Andrew W.

    2017-02-01

    A critical component of exoplanetary studies is an exhaustive characterization of the host star, from which the planetary properties are frequently derived. Of particular value are the radius, temperature, and luminosity, which are key stellar parameters for studies of transit and habitability science. Here we present the results of new observations of Wolf 1061, known to host three super-Earths. Our observations from the Center for High Angular Resolution Astronomy interferometric array provide a direct stellar radius measurement of 0.3207 ± 0.0088 R⊙, from which we calculate the effective temperature and luminosity using spectral energy distribution models. We obtained 7 yr of precise, automated photometry that reveals the correct stellar rotation period of 89.3 ± 1.8 days, finds no evidence of photometric transits, and confirms that the radial velocity signals are not due to stellar activity. Finally, our stellar properties are used to calculate the extent of the Habitable Zone (HZ) for the Wolf 1061 system, for which the optimistic boundaries are 0.09–0.23 au. Our simulations of the planetary orbital dynamics show that the eccentricity of the HZ planet oscillates to values as high as ∼0.15 as it exchanges angular momentum with the other planets in the system.

  8. The ultimate fate of planetary systems

    Science.gov (United States)

    Wachlin, F. C.; Vauclair, S.; Vauclair, G.; Althaus, L. G.

    2016-08-01

    In recent years, the increasing evidence that a significant fraction of white dwarfs is accreting matter from a debris disk has triggered a significant scientific interest. Its mere existence suggests that the planetary system which had formed around the star was able to survive all previous phases of stellar evolution, including those implying dramatic size changes as well as mass loss events of the central star. The computation of accretion rates provides us important information about the original planetary system. Unfortunately the present estimations do not take into account a physical process that may happen when heavy material falls ontop a lighter one, generating turbulences that dilutes the accreted material. This process affects directly the computed accretion rates, since if it takes place, larger accretion rates become necessary in order to explain the amount of surface contamination observed. In this work we present the results of numerical simulations that show that this destabilizing physical process actually occurs. Its impact on an accreting DA white dwarf model is presented.

  9. Observations of an extreme planetary system

    Science.gov (United States)

    Raetz, Stefanie; Schmidt, Tobias O. B.; Briceno, Cesar; Neuhäuser, Ralph

    2015-12-01

    Almost 500 planet host stars are already known to be surrounded by more than one planet. Most of them (except HR8799) are old and all planets were found with the same or similar detection method.We present an unique planetary system. For the first time, a close in transiting and a wide directly imaged planet are found to orbit a common host star which is a low mass member of a young open cluster. The inner candidate is the first possible young transiting planet orbiting a previously known weak-lined T-Tauri star and was detected in our international monitoring campaign of young stellar clusters. The transit shape is changing between different observations and the transit even disappears and reappears. This unusual transit behaviour can be explained by a precessing planet transiting a gravity-darkened star.The outer candidate was discovered in the course of our direct imaging survey with NACO at ESO/VLT. Both objects are consistent with a relation to protoplanetary disc lifetimes. Furthermore, this system with two planets on such extreme orbits gives us the opportunity to study the possible outcome of planet-planet scattering theories for the first time by observations.I will report on our monitoring and photometric follow-up observations as well as on the direct detection and the integral field spectroscopy of this extreme planetary system.

  10. Directed Energy Missions for Planetary Defense

    CERN Document Server

    Lubin, Philip; Eskenazi, Mike; Kosmo, Kelly; Johansson, Isabella E; Griswold, Janelle; Pryor, Mark; O'Neill, Hugh; Meinhold, Peter; Suen, Jonathon; Riley, Jordan; Zhang, Qicheng; Walsh, Kevin; Melis, Carl; Kangas, Miikka; Motta, Caio; Brashears, Travis

    2016-01-01

    Directed energy for planetary defense is now a viable option and is superior in many ways to other proposed technologies, being able to defend the Earth against all known threats. This paper presents basic ideas behind a directed energy planetary defense system that utilizes laser ablation of an asteroid to impart a deflecting force on the target. A conceptual philosophy called DE-STAR, which stands for Directed Energy System for Targeting of Asteroids and exploRation, is an orbiting stand-off system, which has been described in other papers. This paper describes a smaller, stand-on system known as DE-STARLITE as a reduced-scale version of DE-STAR. Both share the same basic heritage of a directed energy array that heats the surface of the target to the point of high surface vapor pressure that causes significant mass ejection thus forming an ejection plume of material from the target that acts as a rocket to deflect the object. This is generally classified as laser ablation. DE-STARLITE uses conventional prop...

  11. Planetary Nebulae and How to Observe Them

    CERN Document Server

    Griffiths, Martin

    2012-01-01

    Astronomers' Observing Guides provide up-to-date information for amateur astronomers who want to know all about what is it they are observing. This is the basis of the first part of the book. The second part details observing techniques for practical astronomers, working with a range of different instruments. Planetary Nebulae and How to Observe Them is intended for amateur astronomers who want to concentrate on one of the most beautiful classes of astronomical objects in the sky. This book will help the observer to see these celestial phenomena using telescopes of various apertures. As a Sun-like star reaches the end of its life, its hydrogen fuel starts to run out. It collapses until helium nuclei begin nuclear fusion, whereupon the star begins to pulsate, each pulsation throwing off a layer of the star's atmosphere. Eventually the atmosphere has all been ejected as an expanding cloud of gas, the star's core is exposed and ultraviolet photons cause the shell of gas to glow brilliantly - that's planetary ...

  12. of Planetary Nebulae III. NGC 6781

    Directory of Open Access Journals (Sweden)

    Hugo E. Schwarz

    2006-01-01

    Full Text Available Continuing our series of papers on the three-dimensional (3D structures and accurate distances to Planetary Nebulae (PNe, we present our study of the planetary nebula NGC6781. For this object we construct a 3D photoionization model and, using the constraints provided by observational data from the literature we determine the detailed 3D structure of the nebula, the physical parameters of the ionizing source and the first precise distance. The procedure consists in simultaneously fitting all the observed emission line morphologies, integrated intensities and the two-dimensional (2D density map from the [SII] (sulfur II line ratios to the parameters generated by the model, and in an iterative way obtain the best fit for the central star parameters and the distance to NGC6781, obtaining values of 950±143 pc (parsec – astronomic distance unit and 385 LΘ (solar luminosity for the distance and luminosity of the central star respectively. Using theoretical evolutionary tracks of intermediate and low mass stars, we derive the mass of the central star of NGC6781 and its progenitor to be 0.60±0.03MΘ (solar mass and 1.5±0.5MΘ respectively.

  13. Using Vulcan to Recreate Planetary Cores

    CERN Document Server

    Collins, G W; Benedetti, L R; Benuzzi-Mounaix, A; Cauble, R; Celliers, P M; Danson, C; Da Silva, L B; Gessner, H; Henry, E; Hicks, D G; Huser, G; Jeanloz, R; Koening, M; Lee, K M; Mackinnon, A J; Moon, S J; Neely, D; Notley, M; Pasley, J; Willi, O

    2001-01-01

    An accurate equation of state (EOS) for planetary constituents at extreme conditions is the key to any credible model of planets or low mass stars. However, experimental validation has been carried out on at high pressure (>few Mbar), and then only on the principal Hugoniot. For planetary and stellar interiors, compression occurs from gravitational force so that material states follow a line of isentropic compression (ignoring phase separation) to ultra-high densities. An example of the predicted states for water along the isentrope for Neptune is shown in a figure. The cutaway figure on the left is from Hubbard, and the phase diagram on the right is from Cavazzoni et al. Clearly these states lie at quite a bit lower temperature and higher density than single shock Hugoniot states but they are at higher temperature than can be achieved with accurate diamond anvil experiments. At extreme densities, material states are predicted to have quite unearthly properties such as high temperature superconductivity and l...

  14. Disentangling stellar activity and planetary signals

    CERN Document Server

    Boisse, I; Hebrard, G; Bonfils, X; Santos, N C; Vauclair, S

    2010-01-01

    Photospheric stellar activity might be an important source of noise and confusion in the radial-velocity measurements. RV planet search surveys as well as follow-up of photometric transit surveys require a deeper understanding and characterization of the effects of stellar activities to disentangle it from planetary signals. We simulate dark spots on a rotating stellar photosphere. The variations of the photometry, RV and spectral line shapes are characterized and analyzed according to the stellar inclination, the latitude and the number of spots. The Lomb-Scargle periodograms of the RV variations induced by activity present power at the rotational period Prot of the star and its two-first harmonics Prot/2 and Prot/3. Three adjusted sinusoids fixed at Prot and its two-first harmonics allow to remove about 90% of the RV jitter amplitude. We apply and validate our approach on four known active planet-host stars: HD189733, GJ674, CoRoT-7 and iHor. We succeed in fitting simultaneously activity and planetary signa...

  15. The Making of a Pre-Planetary Nebula

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    The gas expelled by dying stars gets twisted into intricate shapes and patterns as nebulae form. Now a team of researchers might have some answers about how this happens.Whats a Pre-Planetary Nebula?This H-R diagram for the globular cluster M5 shows where AGB stars lie: they are represented by blue markers here. The AGB is one of the final stages in a low- to intermediate-mass stars lifetime. [Lithopsian]When a low- to intermediate-mass star approaches the end of its lifetime, it moves onto the Asymptotic Giant Branch (AGB) in the Herzsprung-Russell diagram. As the star exhausts its fuel here, it shrugs off its outer layers. These layers of gas then encase the stars core, which is not yet hot enough to ionize the gas and cause it to glow.Instead, during this time the gas is relatively cool and dark, faintly reflecting light from the star and emitting only very dim infrared emission of its own. At this stage, the gas represents a pre-planetary nebula. Only later when the stellar core contracts enough to heat up and emit ionizing radiation does the nebula begin to properly glow, at which point it qualifies as a full planetary nebula.Images of OH231 in optical light (top) and 12CO (bottom) taken from the literature. [See Balick et al. 2017 for full credit]Unexpected ShapesPre-planetary nebulae are a very short-lived evolutionary stage, so weve observed only a few hundred of them which has left many unanswered questions about these objects.One particular mystery is that of their shapes: if these nebulae are formed by stars expelling their outer layers, we would naively expect them to be simple spherical shells and yet we observe pre-planetary nebulae to have intricate shapes and patterns. How does the star create these asymmetric shapes? A team of scientists led by Bruce Balick (University of Washington, Seattle) has now used simulations to address this question.Injecting MassBalick and collaborators use 3D hydrodynamic simulations to model one particular pre-planetary

  16. Star Surface Polluted by Planetary Debris

    Science.gov (United States)

    2007-07-01

    Looking at the chemical composition of stars that host planets, astronomers have found that while dwarf stars often show iron enrichment on their surface, giant stars do not. The astronomers think that the planetary debris falling onto the outer layer of the star produces a detectable effect in a dwarf star, but this pollution is diluted by the giant star and mixed into its interior. "It is a little bit like a Tiramisu or a Capuccino," says Luca Pasquini from ESO, lead-author of the paper reporting the results. "There is cocoa powder only on the top!' ESO PR Photo 29/07 ESO PR Photo 29/07 The Structure of Stars Just a few years after the discovery of the first exoplanet it became evident that planets are preferentially found around stars that are enriched in iron. Planet-hosting stars are on average almost twice as rich in metals than their counterparts with no planetary system. The immediate question is whether this richness in metals enhances planet formation, or whether it is caused by the presence of planets. The classic chicken and egg problem. In the first case, the stars would be metal-rich down to their centre. In the second case, debris from the planetary system would have polluted the star and only the external layers would be affected by this pollution. When observing stars and taking spectra, astronomers indeed only see the outer layers and can't make sure the whole star has the same composition. When planetary debris fall onto a star, the material will stay in the outer parts, polluting it and leaving traces in the spectra taken. A team of astronomers has decided to tackle this question by looking at a different kind of stars: red giants. These are stars that, as will the Sun in several billion years, have exhausted the hydrogen in their core. As a result, they have puffed up, becoming much larger and cooler. Looking at the distribution of metals in fourteen planet-hosting giants, the astronomers found that their distribution was rather different from

  17. Planetary Data Archiving Activities of ISRO

    Science.gov (United States)

    Gopala Krishna, Barla; D, Rao J.; Thakkar, Navita; Prashar, Ajay; Manthira Moorthi, S.

    ISRO has launched its first planetary mission to moon viz., Chandrayaan-1 on October 22, 2008. This mission carried eleven instruments; a wealth of science data has been collected during its mission life (November 2008 to August 2009), which is archived at Indian Space Science Data Centre (ISSDC). The data centre ISSDC is responsible for the Ingest, storage, processing, Archive, and dissemination of the payload and related ancillary data in addition to real-time spacecraft operations support. ISSDC is designed to provide high computation power, large storage and hosting a variety of applications necessary to support all the planetary and space science missions of ISRO. State-of-the-art architecture of ISSDC provides the facility to ingest the raw payload data of all the science payloads of the science satellites in automatic manner, processes raw data and generates payload specific processed outputs, generate higher level products and disseminates the data sets to principal investigators, guest observers, payload operations centres (POC) and to general public. The data archive makes use of the well-proven archive standards of the Planetary Data System (PDS). The long term Archive for five payloads of Chandrayaan-1 data viz., TMC, HySI, SARA, M3 and MiniSAR is released from ISSDC on19th April 2013 (http://www.issdc.gov.in) to the users. Additionally DEMs generated from possible passes of Chandrayaan-1 TMC stereo data and sample map sheets of Lunar Atlas are also archived and released from ISSDC along with the LTA. Mars Orbiter Mission (MOM) is the recent planetary mission launched on October 22, 2013; currently enroute to MARS, carrying five instruments (http://www.isro.org) viz., Mars Color Camera (MCC) to map various morphological features on Mars with varying resolution and scales using the unique elliptical orbit, Methane Sensor for Mars (MSM) to measure total column of methane in the Martian atmosphere, Thermal Infrared Imaging Spectrometer (TIS) to map surface

  18. 60 Kelvin Absorption Cell for Planetary Spectroscopic Research

    Science.gov (United States)

    Chackerian, Charles, Jr.; McGee, James; Gore, Warren I. Y. (Technical Monitor)

    1995-01-01

    We will describe a 30 cm long absorption cell which has been in operation for about two years. The cell is designed for use with sensitive-wide-spectral-coverage Fourier transform spectrometers. A helium compressor refrigerator allows temperatures to be achieved down to about 57 K. Heaters allow above-ambient temperatures as well. A unique vibration isolation system effectively quenches the transfer of vibration of the compressor unit to the spectrometer. An acid-resistant stainless steel liner in the copper body of the call permits the use of corrosive gases.

  19. PLANETARY NEBULAE IN 2014: A REVIEW OF RESEARCH

    Directory of Open Access Journals (Sweden)

    Albert Zijlstra

    2015-01-01

    Full Text Available En 2014 se celebr ́o un doble aniversario en el campo de las neb ulosas pla- netarias, 250 a ̃nos desde su descubrimiento y 150 a ̃nos desd e su correcta identifi- caci ́on espectrosc ́opica. En este art ́ıculo rese ̃namos la investigaci ́on sobre nebulosas planetarias publicada durante 2014. Se incluyen relevamie ntos, estrellas centrales, abundancias qu ́ımicas, morfolog ́ıas, campos magn ́eticos , poblaciones estelares y din ́amica gal ́actica. Ha continuado la importante controv ersia sobre las abundancias derivadas a partir de l ́ıneas de recombinaci ́on y l ́ıneas pr ohibidas. Nueva es la con- troversia sobre la relaci ́on entre estrellas simbi ́oticas y estrellas [WC]. La nebulosa planetaria del a ̃no es, sin duda, CRL 618, de la cual se public aron estudios acerca de su n ́ucleo simbi ́otico binario o [WC], su r ́apida evoluci ́on estelar, sus chorros en expansi ́on y su campo magn ́etico.

  20. McIDAS-eXplorer: A version of McIDAS for planetary applications

    Science.gov (United States)

    Limaye, Sanjay S.; Saunders, R. Stephen; Sromovsky, Lawrence A.; Martin, Michael

    1994-01-01

    McIDAS-eXplorer is a set of software tools developed for analysis of planetary data published by the Planetary Data System on CD-ROM's. It is built upon McIDAS-X, an environment which has been in use nearly two decades now for earth weather satellite data applications in research and routine operations. The environment allows convenient access, navigation, analysis, display, and animation of planetary data by utilizing the full calibration data accompanying the planetary data. Support currently exists for Voyager images of the giant planets and their satellites; Magellan radar images (F-MIDR and C-MIDR's, global map products (GxDR's), and altimetry data (ARCDR's)); Galileo SSI images of the earth, moon, and Venus; Viking Mars images and MDIM's as well as most earth based telescopic images of solar system objects (FITS). The NAIF/JPL SPICE kernels are used for image navigation when available. For data without the SPICE kernels (such as the bulk of the Voyager Jupiter and Saturn imagery and Pioneer Orbiter images of Venus), tools based on NAIF toolkit allow the user to navigate the images interactively. Multiple navigation types can be attached to a given image (e.g., for ring navigation and planet navigation in the same image). Tools are available to perform common image processing tasks such as digital filtering, cartographic mapping, map overlays, and data extraction. It is also possible to have different planetary radii for an object such as Venus which requires a different radius for the surface and for the cloud level. A graphical user interface based on Tel-Tk scripting language is provided (UNIX only at present) for using the environment and also to provide on-line help. It is possible for end users to add applications of their own to the environment at any time.

  1. The Need for Analogue Missions in Scientific Human and Robotic Planetary Exploration

    Science.gov (United States)

    Snook, K. J.; Mendell, W. W.

    2004-01-01

    With the increasing challenges of planetary missions, and especially with the prospect of human exploration of the moon and Mars, the need for earth-based mission simulations has never been greater. The current focus on science as a major driver for planetary exploration introduces new constraints in mission design, planning, operations, and technology development. Analogue missions can be designed to address critical new integration issues arising from the new science-driven exploration paradigm. This next step builds on existing field studies and technology development at analogue sites, providing engineering, programmatic, and scientific lessons-learned in relatively low-cost and low-risk environments. One of the most important outstanding questions in planetary exploration is how to optimize the human and robotic interaction to achieve maximum science return with minimum cost and risk. To answer this question, researchers are faced with the task of defining scientific return and devising ways of measuring the benefit of scientific planetary exploration to humanity. Earth-based and spacebased analogue missions are uniquely suited to answer this question. Moreover, they represent the only means for integrating science operations, mission operations, crew training, technology development, psychology and human factors, and all other mission elements prior to final mission design and launch. Eventually, success in future planetary exploration will depend on our ability to prepare adequately for missions, requiring improved quality and quantity of analogue activities. This effort demands more than simply developing new technologies needed for future missions and increasing our scientific understanding of our destinations. It requires a systematic approach to the identification and evaluation of the categories of analogue activities. This paper presents one possible approach to the classification and design of analogue missions based on their degree of fidelity in ten

  2. On the Peripheries of Planetary Urbanization: Globalizing Manaus and its Expanding Impact

    OpenAIRE

    Kanai, J.M.

    2014-01-01

    In this paper I argue that global urbanism produces peripherality in ways that cannot be adequately problematized without taking into account its actual extent and geographically uneven development. Therefore, planetary urbanization needs to engage scholarly traditions attuned to regional urbanization if the discourse is to move past limitations in the urban globalization canon and its narrow focus on cities. To that end, I examine research on extensive urbanization in the Amazon region. Illu...

  3. Planetary boundaries: guiding human development on a changing planet

    NARCIS (Netherlands)

    Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.; Biggs, R.; Vries, de W.

    2015-01-01

    The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth System. Here, we revise and update the planetary boundaries framework, with a focus on the underpinning biophysical science, based on t

  4. Activities in planetary geology for the physical and earth sciences

    Science.gov (United States)

    Dalli, R.; Greeley, R.

    1982-01-01

    A users guide for teaching activities in planetary geology, and for physical and earth sciences is presented. The following topics are discussed: cratering; aeolian processes; planetary atmospheres, in particular the Coriolis Effect and storm systems; photogeologic mapping of other planets, Moon provinces and stratigraphy, planets in stereo, land form mapping of Moon, Mercury and Mars, and geologic features of Mars.

  5. Uncovering Circumbinary Planetary Architectural Properties from Selection Biases

    CERN Document Server

    Li, Gongjie; Tao, Molei

    2016-01-01

    The new discoveries of circumbinary planetary systems shed light on the understanding of planetary system formation. Learning the architectural properties of these systems is essential for constraining the different formation mechanisms. We first revisit the stability limit of circumbinary planets. Next, we focus on eclipsing stellar binaries and obtain an analytical expression for the transit probability in a realistic setting, where finite observation period and planetary orbital precession are included. Then, understanding of the architectural properties of the currently observed transiting systems is refined, based on Bayesian analysis and a series of hypothesis tests. We find 1) it is not a selection bias that the innermost planets reside near the stability limit for eight of the nine observed systems, and this is consistent with a log uniform distribution of the planetary semi-major axis; 2) it is not a selection bias that the planetary and stellar orbits are nearly coplanar ($\\lesssim 3^\\circ$), and th...

  6. Revised planetary protection policy for solar system exploration.

    Science.gov (United States)

    DeVincenzi, D L; Stabekis, P D

    1984-01-01

    In order to control contamination of planets by terrestrial microorganisms and organic constituents, U.S. planetary missions have been governed by a planetary protection (or planetary quarantine) policy which has changed little since 1972. This policy has recently been reviewed in light of new information obtained from planetary exploration during the past decade and because of changes to, or uncertainties in, some parameters used in the existing quantitative approach. On the basis of this analysis, a revised planetary protection policy with the following key features is proposed: deemphasizing the use of mathematical models and quantitative analyses; establishing requirements for target planet/mission type (i.e., orbiter, lander, etc.) combinations; considering sample return missions a separate category; simplifying documentation; and imposing implementing procedures (i.e., trajectory biasing, cleanroom assembly, spacecraft sterilization, etc.) by exception, i.e., only if the planet/mission combination warrants such controls.

  7. Carbon Monoxide Affecting Planetary Atmospheric Chemistry

    Science.gov (United States)

    He, Chao; Horst, Sarah

    2016-10-01

    Atmospheric hazes are present in a range of solar system and extrasolar planetary atmospheres, and organic hazes, such as that in Titan's atmosphere, could be a source of prebiotic molecules.1 However, the chemistry occurring in planetary atmospheres and the resulting chemical structures are still not clear. Numerous experimental simulations2 have been carried out in the laboratory to understand the chemistry in N2/CH4 atmospheres, but very few simulations4 have included CO in their initial gas mixtures, which is an important component in many N2/CH4 atmospheres including Titan, Triton, and Pluto.3 Here we have conducted a series of atmosphere simulation experiments using AC glow discharge (cold plasma) as energy source to irradiate reactions in gas mixtures of CO, CH4, and N2 with a range of CO mixing ratios (from 0, 0.05%, 0.2%, 0.5%, 1%, 2.5%, to 5%) at low temperature (~100 K). Gas phase products are monitored during the reaction by quadrupole mass spectrometer (MS), and solid phase products are analyzed by solution-state nuclear magnetic resonance spectroscopy (NMR). MS results show that with the increase of CO in the initial gases, the production of nitrogenous organic molecules increases while the production of hydrogen molecules decreases in the gas phase. NMR measurements of the solid phase products show that with the increase of CO, hydrogen atoms bonded to nitrogen or oxygen in unsaturated structures increase while those bonded to saturated carbon decrease, which means more unsaturated species and less saturated species formed with the addition of CO. MS and NMR results demonstrate that the inclusion of CO affects the compositions of both gas and solid phase products, indicating that CO has an important impact on the chemistry occurring in our experiments and probably in planetary atmospheres.1. Hörst, S. M., et al. 2012, AsBio, 12, 8092. Cable, M. L., et al. 2012, Chem. Rev., 112, 18823. Lutz, B. L., et al. 1983, Sci, 220, 1374; Greaves, J. S., et al

  8. An integral approach to investigate planetary cores

    Science.gov (United States)

    Fei, Y.

    2012-12-01

    The same core-mantle differentiation process was in operation during the early formation of the terrestrial planets, but it led to unique cores for the Earth, Venus, Mars, and Mercury, with different magnetic fields, reflecting their different dynamic, physical, and chemical states. Assuming all terrestrial planets shared the same materials of the building block, the differences must be resulted from the different conditions of the early accretion and the subsequent planetary evolution unique to each planet. The pressures at the core-mantle boundary of the terrestrial planets range from as low as 7 GPa to 136 GPa. The physical state (liquid or solid) for each planetary core is closely tied to the melting and chemical composition of the cores. In order to determine the minimal temperature of a liquid core or the maximal temperature of a solid core, we have systematically investigated melting relations in the binary systems Fe-FeS, Fe-C, and Fe-FeSi, move toward unravelling the crystallization sequence and element partitioning between solid and liquid metal in the ternary and quaternary systems up to 25 GPa, using multi-anvil apparatus. We have developed new techniques to analyze the quenched samples recovered from laser-heating diamond-anvil cell experiments using combination of focus ion beam (FIB) milling, high-resolution SEM imaging, and quantitative chemical analysis with silicon drift detector EDS. With precision milling of the laser-heating spot, we determined melting using quenching texture criteria imaged with high-resolution SEM and the sulfur partitioning between solid and liquid at submicron spatial resolution. We have also re-constructed 3D image of the laser-heating spot at multi-megabar pressures to better constrain melting point and understanding melting process. The new techniques allow us to extend precise measurements of melting relations to core pressures in the laser-heating diamond-anvil cell. In addition to the static experiments, we also used

  9. Atmospheric escape, redox evolution, and planetary habitability

    Science.gov (United States)

    Catling, D. C.; Zahnle, K. J.

    2011-12-01

    Through the greenhouse effect, the presence and composition of an atmosphere is critical for defining a (conventional) circumstellar habitable zone in terms of planetary surface temperatures suitable for liquid water. Lack of knowledge of planetary atmospheres is likely to frustrate attempts to say with any certainty whether detected terrestrial-sized exoplanets may or may not be habitable. Perhaps an underappreciated role in such considerations is the evolutionary effect of atmospheric escape for determining atmospheric composition or whether an atmosphere exists in the first place. Whether atmospheres exist at all on planets is demonstrably connected to the effect of integrated atmospheric escape. When we observe our own Solar System and transiting exoplanets, the existence of an atmosphere is clearly delineated by a relative vulnerability to thermal escape and impact erosion. The prevalence of thermal escape as a key evolutionary determinant for the presence of planetary atmosphere is shown by a relationship between the relative solar (or stellar) heating and the escape velocity. Those bodies with too much stellar heating and too smaller escape velocity end up devoid of atmospheres. Impact erosion is evident in the relationship between impact velocity and escape velocity. Escape due to impacts is particularly important for understanding the large differences in the atmospheres of giant planet moons, such as Ganymede versus Titan. It is also significant for Mars-sized planets. The oxidation state of atmospheres is important for some theories of the origin of life (where an early reducing atmosphere is helpful for organic synthesis) and the evolution of advanced life (where free molecular oxygen is the best source of high energy metabolism). Surfaces on some relatively small planets and moons are observed to have evolved to an oxidized state, which theory and observation can explain through atmospheric escape. There are several examples in the Solar System where a

  10. An enhanced Planetary Radar Operating Centre (PROC)

    Science.gov (United States)

    Catallo, C.

    2010-12-01

    Planetary exploration by means of radar systems, mainly using GPRs is an important role of Italy and numerous scientific international space programs are carried out jointly with ESA and NASA by Italian Space Agency, the scientific community and the industry. Three experiments under Italian leadership ( designed and manufactured by the Italian industry) provided by ASI within a NASA/ESA/ASI joint venture framework are successfully operating: MARSIS on-board MEX, SHARAD on-board MRO and CASSINI Radar on-board Cassini spacecraft: the missions have been further extended . Three dedicated operational centers, namely SHOC, (Sharad Operating Centre), MOC (Marsis Operating Center) and CASSINI PAD are operating from the missions beginning to support all the scientific communities, institutional customers and experiment teams operation Each center is dedicated to a single instrument management and control, data processing and distribution and even if they had been conceived to operate autonomously and independently one from each other, synergies and overlaps have been envisaged leading to the suggestion of a unified center, the Planetary Radar Processing Center (PROC). In order to harmonize operations either from logistics point of view and from HW/SW capabilities point of view PROC is designed and developed for offering improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation. PROC is, therefore, conceived as the Italian support facility to the scientific community for on-going and future Italian planetary exploration programs, such as Europa-Jupiter System Mission (EJSM) The paper describes how the new PROC is designed and developed, to allow SHOC, MOC and CASSINI PAD to operate as before, and to offer improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation aiding scientists to increase their knowledge in the field of surface

  11. Planetary Atmospheres and Evolution of Complex Life

    Science.gov (United States)

    Catling, D.

    2014-04-01

    Let us define "complex life" as actively mobile organisms exceeding tens of centimeter size scale with specialized, differentiated anatomy comparable to advanced metazoans. Such organisms on any planet will need considerable energy for growth and metabolism, and an atmosphere is likely to play a key role. The history of life on Earth suggests that there were at least two major hurdles to overcome before complex life developed. The first was biological. Large, three-dimensional multicellular animals and plants are made only of eukaryotic cells, which are the only type that can develop into a large, diverse range of cell types unlike the cells of microbes. Exactly how eukaryotes allow 3D multicellularity and how they originated are matters of debate. But the internal structure and bigger and more modular genomes of eukaryotes are important factors. The second obstacle for complex life was having sufficient free, diatomic oxygen (O2). Aerobic metabolism provides about an order of magnitude more energy for a given intake of food than anaerobic metabolism, so anaerobes don't grow multicellular beyond filaments because of prohibitive growth efficiencies. A precursor to a 2.4 Ga rise of oxygen was the evolution of water-splitting, oxygen-producing photosynthesis. But although the atmosphere became oxidizing at 2.4 Ga, sufficient atmospheric O2 did not occur until about 0.6 Ga. Earth-system factors were involved including planetary outgassing (as affected by size and composition), hydrogen escape, and processing of organic carbon. An atmosphere rich in O2 provides the largest feasible energy source per electron transfer in the Periodic Table, which suggests that O2 would be important for complex life on exoplanets. But plentiful O2 is unusual in a planetary atmosphere because O2 is easily consumed in chemical reactions with reducing gases or surface materials. Even with aerobic metabolism, the partial pressure of O2 (pO2) must exceed ~10^3 Pa to allow organisms that rely

  12. The Planetary Data System Web Catalog Interface--Another Use of the Planetary Data System Data Model

    Science.gov (United States)

    Hughes, S.; Bernath, A.

    1995-01-01

    The Planetary Data System Data Model consists of a set of standardized descriptions of entities within the Planetary Science Community. These can be real entities in the space exploration domain such as spacecraft, instruments, and targets; conceptual entities such as data sets, archive volumes, and data dictionaries; or the archive data products such as individual images, spectrum, series, and qubes.

  13. The NASA Planetary Data System's Cartography and Imaging Sciences Node and the Planetary Spatial Data Infrastructure (PSDI) Initiative

    Science.gov (United States)

    Gaddis, L. R.; Laura, J.; Hare, T.; Hagerty, J.

    2017-06-01

    Here we address the role of the PSDI initiative in the context of work to archive and deliver planetary data by NASA’s Planetary Data System, and in particular by the PDS Cartography and Imaging Sciences Discipline Node (aka “Imaging” or IMG).

  14. Study of Diurnal Cycle Variability of Planetary Boundary Layer Characteristics over the Red Sea and Arabian Peninsula

    KAUST Repository

    Li, Weigang

    2012-07-01

    This work is aimed at investigating diurnal cycle variability of the planetary boundary layer characteristics over the Arabian Peninsula and the Red Sea region. To fulfill this goal the downscaling simulations are performed using Weather Research and Forecasting (WRF) model. We analyze planetary boundary layer height, latent and sensible heat fluxes, and surface air temperature. The model results are compared with observations in different areas, for different seasons, and for different model resolutions. The model results are analyzed in order to better quantify the diurnal cycle variability over the Arabian Peninsula and the Red Sea. The specific features of this region are investigated and discussed.

  15. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    Science.gov (United States)

    Lowes, L. L.; Budney, C. J.; Sohus, A.; Wheeler, T.; Urban, A.; NASA Planetary Science Summer School Team

    2011-12-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor's recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions

  16. The New Planetary Science Archive (PSA): Exploration and Discovery of Scientific Datasets from ESA's Planetary Missions

    Science.gov (United States)

    Heather, David; Besse, Sebastien; Vallat, Claire; Barbarisi, Isa; Arviset, Christophe; De Marchi, Guido; Barthelemy, Maud; Coia, Daniela; Costa, Marc; Docasal, Ruben; Fraga, Diego; Grotheer, Emmanuel; Lim, Tanya; MacFarlane, Alan; Martinez, Santa; Rios, Carlos; Vallejo, Fran; Saiz, Jaime

    2017-04-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA is currently implementing a number of significant improvements, mostly driven by the evolution of the PDS standard, and the growing need for better interfaces and advanced applications to support science exploitation. As of the end of 2016, the PSA is hosting data from all of ESA's planetary missions. This includes ESA's first planetary mission Giotto that encountered comet 1P/Halley in 1986 with a flyby at 800km. Science data from Venus Express, Mars Express, Huygens and the SMART-1 mission are also all available at the PSA. The PSA also contains all science data from Rosetta, which explored comet 67P/Churyumov-Gerasimenko and asteroids Steins and Lutetia. The year 2016 has seen the arrival of the ExoMars 2016 data in the archive. In the upcoming years, at least three new projects are foreseen to be fully archived at the PSA. The BepiColombo mission is scheduled for launch in 2018. Following that, the ExoMars Rover Surface Platform (RSP) in 2020, and then the JUpiter ICy moon Explorer (JUICE). All of these will archive their data in the PSA. In addition, a few ground-based support programmes are also available, especially for the Venus Express and Rosetta missions.
 The newly designed PSA will enhance the user experience and will significantly reduce the complexity for users to find their data promoting one-click access to the scientific datasets with more customized views when needed. This includes a better integration with Planetary GIS analysis tools and Planetary interoperability services (search and retrieve data, supporting e.g. PDAP, EPN-TAP). It will also be up

  17. Introducing PLIA: Planetary Laboratory for Image Analysis

    Science.gov (United States)

    Peralta, J.; Hueso, R.; Barrado, N.; Sánchez-Lavega, A.

    2005-08-01

    We present a graphical software tool developed under IDL software to navigate, process and analyze planetary images. The software has a complete Graphical User Interface and is cross-platform. It can also run under the IDL Virtual Machine without the need to own an IDL license. The set of tools included allow image navigation (orientation, centring and automatic limb determination), dynamical and photometric atmospheric measurements (winds and cloud albedos), cylindrical and polar projections, as well as image treatment under several procedures. Being written in IDL, it is modular and easy to modify and grow for adding new capabilities. We show several examples of the software capabilities with Galileo-Venus observations: Image navigation, photometrical corrections, wind profiles obtained by cloud tracking, cylindrical projections and cloud photometric measurements. Acknowledgements: This work has been funded by Spanish MCYT PNAYA2003-03216, fondos FEDER and Grupos UPV 15946/2004. R. Hueso acknowledges a post-doc fellowship from Gobierno Vasco.

  18. Planetary Overload, Limits to Growth and Health.

    Science.gov (United States)

    Butler, Colin D

    2016-12-01

    Since the use of atomic weapons in 1945 visionaries have warned that without major changes the survival of global civilization is in question. These concerns deepened in following decades, during the Cold War, with The Limits to Growth, the best-selling environmental book of the 1970s. Yet, since then, most concern has faded, fuelled by technological developments and a shift in dominant global ideology. Public health, with a few exceptions (one of which is the book Planetary Overload), has been slow to recognize this debate, even as evidence emerges that civilization may indeed be at risk, driven by an increasingly ominous complex of events. This article outlines the key relevant literature and concepts, attempting to bring emerging and future health consequences to the attention of health workers, including the idea of a "social vaccine," conveying sufficient anxiety to provoke action for environmental protection, but insufficient to induce paralysis.

  19. Atlas of monochromatic images of planetary nebulae

    CERN Document Server

    Weidmann, W A; Valdarenas, R R Vena; Ahumada, J A; Volpe, M G; Mudrik, A

    2016-01-01

    We present an atlas of more than one hundred original images of planetary nebulae (PNe). These images were taken in a narrow-band filter centred on the nebular emission of the [N II] during several observing campaigns using two moderate-aperture telescopes, at the Complejo Astron\\'omico El Leoncito (CASLEO), and the Estaci\\'on Astrof\\'isica de Bosque Alegre (EABA), both in Argentina. The data provided by this atlas represent one of the most extensive image surveys of PNe in [N II]. We compare the new images with those available in the literature, and briefly describe all cases in which our [N II] images reveal new and interesting structures.

  20. Searching for Planetary Transits in Star Clusters

    CERN Document Server

    Weldrake, David T F

    2007-01-01

    Star clusters provide an excellent opportunity to study the role of environment on determining the frequencies of short period planets. They provide a large sample of stars which can be imaged simultaneously, with a common distance, age and pre-determined physical parameters. This allows the search to be tailor-made for each specific cluster. Several groups are attempting to detect transiting planets in open clusters. Three previous surveys have also targeted the two brightest globular clusters. No cluster survey has yet detected a planet. This contribution presents a brief overview of the field, highlighting the pros and cons of performing such a search, and presents the expected and current results, with implications for planetary frequencies in regions of high stellar density and low metallicity.

  1. Probing Planetary Formation and Evolution Through Occultations

    Science.gov (United States)

    Rodriguez, Joseph E.; KELT Team

    2016-01-01

    The circumstellar environments of young stellar objects (YSOs) involve complex dynamical interactions between dust and gas that directly influence the formation of planets. However, our understanding of the evolution from the material in the circumstellar disk to the thousands of planetary systems discovered to date, is limited. One means to better constrain the size, mass, and composition of this planet-forming material is to observe a YSO being eclipsed by its circumstellar disk. Through this dissertation project, we are discovering and characterizing both disk eclipsing systems and exoplanets using the Kilodegree Extremely Little Telescope (KELT) project. KELT is a photometric survey for transiting planets orbiting bright stars (8 TYC 2505-672-1, the latter now representing the longest-period eclipsing object known (period ~ 69 years). I will describe our results for planet atmosphere characterization and for protoplanetary disk structure and composition, and discuss how to search for these kinds of systems in future surveys such as LSST.

  2. Vibroacoustical diagnosis of planetary precessional kinematical transmission

    Science.gov (United States)

    Malcoci, Iu; Bodnariuc, I.

    2016-08-01

    An ideal dynamical system should not generate any vibrations, because vibrations mean a loss of energy. Vibration in planetary precessional gear box occurs at bearings, gear wheels, misaligned shafts, imbalance rotating parts, couplings. If damage occurs, not only the dynamic processes change, but also the forces that act on system components. Regarding this aspects, sound level was measured by using Brüel & Kjær Sound Level Meter Type 2250 Light that has everything needed to perform high-precision, Class 1 measurement tasks in environmental, occupational and industrial application areas. Obtained and measured results were presented in diagrams and tables to be compared with German standard VDI-2058 Limit value for vibration severity and noise level.

  3. Remote control of planetary surface vehicles.

    Science.gov (United States)

    Heer, E.

    1973-01-01

    A remotely manned system consisting of an earth-based control center and a remote rover system on the planetary surface is assumed to extend to the remote site the sensory, manipulative and certain intellectual capabilities of humans here on earth. Required system functions, including scientific payload functions, vehicle functions and ground-based human control functions are discussed and the effects of communication delay and increased remote automaticity on system performance are investigated. To accomplish the required operations for scientific exploration, the control of the remote system requires the development of techniques to deal with problems of long communication time delays so that the performance in terms of operation speed can be increased to acceptable levels. Increased operational performance can be achieved primarily by increasing the rate of useful information flow in the man-machine sensor-control loop, or by increasing the autonomous capabilities of the remote system or by both.

  4. Proposed nomenclature for Extragalactic Planetary Nebulae

    CERN Document Server

    Parker, Q A; Parker, Quentin A

    2004-01-01

    The ability to identify and distinguish between the wide variety of celestial objects benefits from application of a systematic and logical nomenclature. This often includes value-added information within the naming convention which can aid in placing the object positionally either via an RA/DEC or l,b concatenation. All new nomenclatures should be created following IAU guidelines. However as the number density of specific object types on the sky increases, as in the case of PN in external galaxies, a useful positional identifier becomes problematic. This brief but timely paper attempts to progress the debate on this vexing issue for the case of extragalactic planetary nebulae (EPN). There is a clear need to rationalise the current ad-hoc system now that many thousands of Extragalactic PN are being discovered.

  5. Planetary Nebula Surveys: Past, Present and Future

    CERN Document Server

    Parker, Quentin A

    2010-01-01

    In this review we cover the detection, identification and astrophysical importance of planetary nebulae (PN). The legacy of the historic Perek & Kohoutek and Acker et al. catalogues is briefly covered before highlighting the more recent but significant progress in PN discoveries in our Galaxy and the Magellanic Clouds. We place particular emphasis on the major MASH and the IPHAS catalogues, which, over the last decade alone, have essentially doubled Galactic and LMC PN numbers. We then discuss the increasing role and importance that multi-wavelength data is playing in both the detection of candidate PN and the elimination of PN mimics that have seriously biased previous PN compilations. The prospects for future surveys and current efforts and prospects for PN detections in external galaxies are briefly discussed due to their value both as cosmic distance indicators and as kinematical probes of galaxies and dark matter properties.

  6. An ethical approach to planetary protection

    Science.gov (United States)

    Arnould, Jacques; Debus, André

    2008-09-01

    What hazards might biological contamination pose to planets, comets and other celestial bodies visited by probes launched from Earth? What hazards might returning probes pose to Earth and its inhabitants? What should be considered an acceptable level of risk? What technologies, procedures and constraints should be applied? What sort of attitude has to be chosen concerning human crews, who themselves could become both contaminated victims and contaminating agents? The vast issue of planetary protection must, more than ever, spark ethical debate. Space treaty, COSPAR recommendations offer borders and context for this reflection, which has to be introduced in the actual humanist: never has been anthropocentrism so practical and concerned, in the same time, by the next generations, because of the historical character of life. At least an ethics of risk is necessary (far from the myth of zero-risk) for all the three types of contamination: other celestial bodies (forward contamination), Earth (backward contamination) and astronauts.

  7. Resonant Removal of Exomoons During Planetary Migration

    CERN Document Server

    Spalding, Christopher; Adams, Fred C

    2015-01-01

    Jupiter and Saturn play host to an impressive array of satellites, making it reasonable to suspect that similar systems of moons might exist around giant extrasolar planets. Furthermore, a significant population of such planets is known to reside at distances of several Astronomical Units (AU), leading to speculation that some moons thereof might support liquid water on their surfaces. However, giant planets are thought to undergo inward migration within their natal protoplanetary disks, suggesting that gas giants currently occupying their host star's habitable zone formed further out. Here we show that when a moon-hosting planet undergoes inward migration, dynamical interactions may naturally destroy the moon through capture into a so-called "evection resonance." Within this resonance, the lunar orbit's eccentricity grows until the moon eventually collides with the planet. Our work suggests that moons orbiting within about 10 planetary radii are susceptible to this mechanism, with the exact number dependent ...

  8. Investigating potential planetary nebula/cluster pairs

    CERN Document Server

    Bidin, Christian Moni; Bonatto, Charles; Mauro, Francesco; Turner, David; Geisler, Doug; Chene, Andres-Nicolas; Gormaz-Matamala, Alex C; Borissova, Jura; Kurtev, Radostin G; Minniti, Dante; Carraro, Giovanni; Gieren, Wolfgang

    2013-01-01

    Fundamental parameters characterizing the end-state of intermediate-mass stars may be constrained by discovering planetary nebulae (PNe) in open clusters (OCs). Cluster membership may be exploited to establish the distance, luminosity, age, and physical size for PNe, and the intrinsic luminosity and mass of its central star. Four potential PN-OC associations were investigated, to assess the cluster membership for the PNe. Radial velocities were measured from intermediate-resolution optical spectra, complemented with previous estimates in the literature. When the radial velocity study supported the PN/OC association, we analyzed if other parameters (e.g., age, distance, reddening, central star brightness) were consistent with this conclusion. Our measurements imply that the PNe VBe3 and HeFa1 are not members of the OCs NGC5999 and NGC6067, respectively, and likely belong to the background bulge population. Conversely, consistent radial velocities indicate that NGC2452/NGC2453 could be associated, but our resul...

  9. Cluster analysis of multiple planetary flow regimes

    Science.gov (United States)

    Mo, Kingtse; Ghil, Michael

    1988-01-01

    A modified cluster analysis method developed for the classification of quasi-stationary events into a few planetary flow regimes and for the examination of transitions between these regimes is described. The method was applied first to a simple deterministic model and then to a 500-mbar data set for Northern Hemisphere (NH), for which cluster analysis was carried out in the subspace of the first seven empirical orthogonal functions (EOFs). Stationary clusters were found in the low-frequency band of more than 10 days, while transient clusters were found in the band-pass frequency window between 2.5 and 6 days. In the low-frequency band, three pairs of clusters determined EOFs 1, 2, and 3, respectively; they exhibited well-known regional features, such as blocking, the Pacific/North American pattern, and wave trains. Both model and low-pass data exhibited strong bimodality.

  10. Debris disc formation induced by planetary growth

    CERN Document Server

    Kobayashi, Hiroshi

    2014-01-01

    Several hundred stars older than 10 million years have been observed to have infrared excesses. These observations are explained by dust grains formed by the collisional fragmentation of hidden planetesimals. Such dusty planetesimal discs are known as debris discs. In a dynamically cold planetesimal disc, collisional coagulation of planetesimals produces planetary embryos which then stir the surrounding leftover planetesimals. Thus, the collisional fragmentation of planetesimals that results from planet formation forms a debris disc. We aim to determine the properties of the underlying planetesimals in debris discs by numerically modelling the coagulation and fragmentation of planetesimal populations. The brightness and temporal evolution of debris discs depend on the radial distribution of planetesimal discs, the location of their inner and outer edges, their total mass, and the size of planetesimals in the disc. We find that a radially narrow planetesimal disc is most likely to result in a debris disc that ...

  11. Planetary geomorphology: Some historical/analytical perspectives

    Science.gov (United States)

    Baker, V. R.

    2015-07-01

    Three broad themes from the history of planetary geomorphology provide lessons in regard to the logic (valid reasoning processes) for the doing of that science. The long controversy over the origin of lunar craters, which was dominated for three centuries by the volcanic hypothesis, provides examples of reasoning on the basis of authority and a priori presumptions. Percival Lowell's controversy with geologists over the nature of linear markings on the surface of Mars illustrates the role of tenacity in regard to the beliefs of some individual scientists. Finally, modern controversies over the role of water in shaping the surface of Mars illustrate how the a priori method, i.e., belief produced according to reason, can seductively cloud the scientific openness to the importance of brute facts that deviate from a prevailing paradigm.

  12. Rotating, hydromagnetic laboratory experiment modelling planetary cores

    Science.gov (United States)

    Kelley, Douglas H.

    2009-10-01

    This dissertation describes a series of laboratory experiments motivated by planetary cores and the dynamo effect, the mechanism by which the flow of an electrically conductive fluid can give rise to a spontaneous magnetic field. Our experimental apparatus, meant to be a laboratory model of Earth's core, contains liquid sodium between an inner, solid sphere and an outer, spherical shell. The fluid is driven by the differential rotation of these two boundaries, each of which is connected to a motor. Applying an axial, DC magnetic field, we use a collection of Hall probes to measure the magnetic induction that results from interactions between the applied field and the flowing, conductive fluid. We have observed and identified inertial modes, which are bulk oscillations of the fluid restored by the Coriolis force. Over-reflection at a shear layer is one mechanism capable of exciting such modes, and we have developed predictions of both onset boundaries and mode selection from over-reflection theory which are consistent with our observations. Also, motivated by previous experimental devices that used ferromagnetic boundaries to achieve dynamo action, we have studied the effects of a soft iron (ferromagnetic) inner sphere on our apparatus, again finding inertial waves. We also find that all behaviors are more broadband and generally more nonlinear in the presence of a ferromagnetic boundary. Our results with a soft iron inner sphere have implications for other hydromagnetic experiments with ferromagnetic boundaries, and are appropriate for comparison to numerical simulations as well. From our observations we conclude that inertial modes almost certainly occur in planetary cores and will occur in future rotating experiments. In fact, the predominance of inertial modes in our experiments and in other recent work leads to a new paradigm for rotating turbulence, starkly different from turbulence theories based on assumptions of isotropy and homogeneity, starting instead

  13. Online Planetary Science Courses at Athabasca University

    Science.gov (United States)

    Connors, Martin; Munyikwa, Ken; Bredeson, Christy

    2016-01-01

    Athabasca University offers distance education courses in science, at freshman and higher levels. It has a number of geology and astronomy courses, and recently opened a planetary science course as the first upper division astronomy course after many years of offering freshman astronomy. Astronomy 310, Planetary Science, focuses on process in the Solar System on bodies other than Earth. This process-oriented course uses W. F. Hartmann's "Moons and Planets" as its textbook. It primarily approaches the subject from an astronomy and physics perspective. Geology 415, Earth's Origin and Early Evolution, is based on the same textbook, but explores the evidence for the various processes, events, and materials involved in the formation and evolution of Earth. The course provides an overview of objects in the Solar System, including the Sun, the planets, asteroids, comets, and meteoroids. Earth's place in the solar system is examined and physical laws that govern the motion of objects in the universe are looked at. Various geochemical tools and techniques used by geologists to reveal and interpret the evidence for the formation and evolution of bodies in the solar system as well as the age of earth are also explored. After looking at lines of evidence used to reconstruct the evolution of the solar system, processes involved in the formation of planets and stars are examined. The course concludes with a look at the origin and nature of Earth's internal structure. GEOL415 is a senior undergraduate course and enrols about 15-30 students annually. The courses are delivered online via Moodle and student evaluation is conducted through assignments and invigilated examinations.

  14. Magnetotelluric Sensor Development for Planetary Subsurface Exploration

    Science.gov (United States)

    Fuqua, H.; Delory, G. T.; De Pater, I.; Grimm, R. E.

    2012-12-01

    Electromagnetic (EM) Sounding is a powerful geophysical investigation technique capable of constraining planetary subsurface structure, including core size, mantle and crustal temperature profiles, and the distribution of electrical conductivity at depth. Natural sources of EM activity, including solar wind turbulence and plasma waves, can induce electric and magnetic fields in the Moon and other small bodies. These induced fields respond according to the electrical conductivity as a function of skin depth of the body in question. In a branch of EM Sounding known as Magnetotellurics (MT), measurements of the horizontal electric and magnetic fields at the planetary surface are inverted to produce constraints on the interior. MT is particularly worthwhile in that geophysically meaningful results can be obtained from a single station, thus avoiding network mission architectures. While surface magnetic field measurements were taken on the Moon during the Apollo era, to date no measurements of the surface horizontal electric field have been attempted. However electric field measurements on the lunar surface should be feasible given their long successful history on spacecraft missions in similar environments. Building upon the heritage of electric field sensor technology at the UC Berkeley Space Sciences Laboratory, we describe a development plan for this instrument from component level to a fully functional instrument assembly for use in EM sounding, highlighting operational requirements, science capabilities, required testing, anticipated results and challenges to overcome. Upon development, this lander electric field sensor will enable future MT surveys on the Moon, and will provide a new exploration method for other small airless bodies from a single station.

  15. Scientific field training for human planetary exploration

    Science.gov (United States)

    Lim, D. S. S.; Warman, G. L.; Gernhardt, M. L.; McKay, C. P.; Fong, T.; Marinova, M. M.; Davila, A. F.; Andersen, D.; Brady, A. L.; Cardman, Z.; Cowie, B.; Delaney, M. D.; Fairén, A. G.; Forrest, A. L.; Heaton, J.; Laval, B. E.; Arnold, R.; Nuytten, P.; Osinski, G.; Reay, M.; Reid, D.; Schulze-Makuch, D.; Shepard, R.; Slater, G. F.; Williams, D.

    2010-05-01

    Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts' scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows: LDP#1: Provide multiple experiences: varied field science activities will hone astronauts' abilities to adapt to novel scientific opportunities LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery LDP#3: Provide a relevant experience - the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning LDP#4: Provide a social learning experience - the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts' abilities to think and perform like a field scientist. The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved

  16. Spice Tools Supporting Planetary Remote Sensing

    Science.gov (United States)

    Acton, C.; Bachman, N.; Semenov, B.; Wright, E.

    2016-06-01

    NASA's "SPICE"* ancillary information system has gradually become the de facto international standard for providing scientists the fundamental observation geometry needed to perform photogrammetry, map making and other kinds of planetary science data analysis. SPICE provides position and orientation ephemerides of both the robotic spacecraft and the target body; target body size and shape data; instrument mounting alignment and field-of-view geometry; reference frame specifications; and underlying time system conversions. SPICE comprises not only data, but also a large suite of software, known as the SPICE Toolkit, used to access those data and subsequently compute derived quantities-items such as instrument viewing latitude/longitude, lighting angles, altitude, etc. In existence since the days of the Magellan mission to Venus, the SPICE system has continuously grown to better meet the needs of scientists and engineers. For example, originally the SPICE Toolkit was offered only in Fortran 77, but is now available in C, IDL, MATLAB, and Java Native Interface. SPICE calculations were originally available only using APIs (subroutines), but can now be executed using a client-server interface to a geometry engine. Originally SPICE "products" were only available in numeric form, but now SPICE data visualization is also available. The SPICE components are free of cost, license and export restrictions. Substantial tutorials and programming lessons help new users learn to employ SPICE calculations in their own programs. The SPICE system is implemented and maintained by the Navigation and Ancillary Information Facility (NAIF)-a component of NASA's Planetary Data System (PDS). * Spacecraft, Planet, Instrument, Camera-matrix, Events

  17. Planetary Protection for LIFE-Sample Return from Enceladus

    Science.gov (United States)

    Tsou, Peter; Yano, Hajime; Takano, Yoshinori; McKay, David; Takai, Ken; Anbar, Ariel; Baross, J.

    Introduction: We are seeking a balanced approach to returning Enceladus plume samples to state-of-the-art terrestrial laboratories to search for signs of life. NASA, ESA, JAXA and other space agencies are seeking habitable worlds and life beyond Earth. Enceladus, an icy moon of Saturn, is the first known body in the Solar System besides Earth to emit liquid water from its interior. Enceladus is the most accessible body in our Solar System for a low cost flyby sample return mission to capture aqueous based samples, to determine its state of life development, and shed light on how life can originate on wet planets/moons. LIFE combines the unique capabilities of teams of international exploration expertise. These returned Enceladus plume samples will determine if this habitable body is in fact inhabited [McKay et al, 2014]. This paper describes an approach for the LIFE mission to capture and return samples from Enceladus while meeting NASA and COSPAR planetary protection requirements. Forward planetary protection requirements for spacecraft missions to icy solar system bodies have been defined, however planetary protection requirements specific to an Earth return of samples collected from Enceladus or other Outer Planet Icy Moons, have yet to be defined. Background: From the first half century of space exploration, we have returned samples only from the Moon, comet Wild 2, the Solar Wind and the asteroid Itokawa. The in-depth analyses of these samples in terrestrial laboratories have yielded detailed chemical information that could not have been obtained otherwise. While obtaining samples from Solar System bodies is trans-formative science, it is rarely performed due to cost and complexity. The discovery by Cassini of geysers on Enceladus and organic materials in the ejected plume indicates that there is an exceptional opportunity and strong scientific rationale for LIFE. The earliest low-cost possible flight opportunity is the next Discovery Mission [Tsou et al 2012

  18. The San Pedro M\\'artir Planetary Nebula Kinematic Catalogue: Extragalactic Planetary Nebulae

    CERN Document Server

    Richer, M G; Díaz-Méndez, E; Riesgo, H; Báez, S -H; García-Díaz, Ma -T; Meaburn, J; Clark, D M; Olvera, R M Calderón; Soto, G López; Rebolo, O Toledano

    2010-01-01

    We present kinematic data for 211 bright planetary nebulae in eleven Local Group galaxies: M31 (137 PNe), M32 (13), M33 (33), Fornax (1), Sagittarius (3), NGC 147 (2), NGC 185 (5), NGC 205 (9), NGC 6822 (5), Leo A (1), and Sextans A (1). The data were acquired at the Observatorio Astron\\'omico Nacional in the Sierra de San Pedro M\\'artir using the 2.1m telescope and the Manchester Echelle Spectrometer in the light of [\\ion{O}{3}]$\\lambda$5007 at a resolution of 11 km/s. A few objects were observed in H$\\alpha$. The internal kinematics of bright planetary nebulae do not depend strongly upon the metallicity or age of their progenitor stellar populations, though small systematic differences exist. The nebular kinematics and H$\\beta$ luminosity require that the nebular shells be accelerated during the early evolution of their central stars. Thus, kinematics provides an additional argument favoring similar stellar progenitors for bright planetary nebulae in all galaxies.

  19. An Ion-Propelled Cubesat for Planetary Defense and Planetary Science

    Science.gov (United States)

    Russell, Christopher T.; Wirz, Richard; Lai, Hairong; Li, Jian-Yang; Connors, Martin

    2017-04-01

    Small satellites can reduce the cost of launch by riding along with other payloads on a large rocket or being launched on a small rocket, but are perceived as having limited capabilities. This perception can be at least partially overcome by innovative design, including ample in-flight propulsion. This allows achieving multiple targets and adaptive exploration. Ion propulsion has been pioneered on Deep Space 1 and honed on the long-duration, multiple-planetary body mission Dawn. Most importantly, the operation of such a mission is now well- understood, including navigation, communication, and science operations for remote sensing. We examined different mission concepts that can be used for both planetary defense and planetary science near 1 AU. Such a spacecraft would travel in the region between Venus and Mars, allowing a complete inventory of material above, including objects down to about 10m diameter to be inventoried. The ion engines could be used to approach these bodies slowly and carefully and allow the spacecraft to map debris and follow its collisional evolution throughout its orbit around the Sun, if so desired. The heritage of Dawn operations experience enables the mission to be operated inexpensively, and the engineering heritage will allow it to be operated for many trips around the Sun.

  20. A new planetary mapping for future space missions

    Science.gov (United States)

    Karachevtseva, Irina; Kokhanov, Alexander; Rodionova, Janna; Zubarev, Anatoliy; Nadezhdina, Irina; Kreslavsky, Mikhail; Oberst, Jürgen

    2015-04-01

    The wide studies of Solar system, including different planetary bodies, were announced by new Russian space program. Their geodesy and cartography support provides by MIIGAiK Extraterrestrial Laboratory (http://mexlab.miigaik.ru/eng) in frames of the new project "Studies of Fundamental Geodetic Parameters and Topography of Planets and Satellites". The objects of study are satellites of the outer planets (satellites of Jupiter - Europa, Calisto and Ganymede; Saturnine satellite Enceladus), some planets (Mercury and Mars) and the satellites of the terrestrial planets - Phobos (Mars) and the Moon (Earth). The new research project, which started in 2014, will address the following important scientific and practical tasks: - Creating new three-dimensional geodetic control point networks of satellites of the outer planets using innovative photogrammetry techniques; - Determination of fundamental geodetic parameters and study size, shape, and spin parameters and to create the basic framework for research of their surfaces; - Studies of relief of planetary bodies and comparative analysis of general surface characteristics of the Moon, Mars, and Mercury, as well as studies of morphometric parameters of volcanic formations on the Moon and Mars; - Modeling of meteoritic bombardment of celestial bodies and the study of the dynamics of particle emissions caused by a meteorite impacts; - Development of geodatabase for studies of planetary bodies, including creation of object catalogues, (craters and volcanic forms, etc.), and thematic mapping using GIS technology. The significance of the project is defined both by necessity of obtaining fundamental characteristics of the Solar System bodies, and practical tasks in preparation for future Russian and international space missions to the Jupiter system (Laplace-P and JUICE), the Moon (Luna-Glob and Luna-Resource), Mars (Exo-Mars), Mercury (Bepi-Colombo), and possible mission to Phobos (project Boomerang). For cartographic support of

  1. Worldwide Telescope as an earth and planetary science educational platform

    Science.gov (United States)

    Fatland, D. R.; Rush, K.; van Ingen, C.; Wong, C.; Fay, J.; Xu, Y.; Fay, D.

    2009-12-01

    Worldwide Telescope (WWT) -available at no cost from Microsoft Research as both Windows desktop and web browser applications - enables personal computers to function as virtual telescopes for viewing the earth, the solar system and the cosmos across many wavelengths. Bringing together imagery from ground and space-based telescopes as well as photography from Mars rovers and Apollo astronauts, WWT is designed to work as both a research tool and a platform for educational exploration. Central to the latter purpose is the Tour authoring facility which enables a student or educator to create narrative stories with dynamic perspective, voice-over narrative, background sound and superimposed content. We describe here the application of recent developments in WWT, particularly the 2009 updates, towards planetary science education with particular emphasis on WWT earth models. Two core themes informing this development are the notions of enabling social networking through WWT Communities and including the earth as part of the bigger picture, in effect swinging the telescope around from the deep sky to look back at our observatory. moon, earth (WWT solar system view)

  2. Dynamic load sharing characteristics and sun gear radial orbits of double-row planetary gear train

    Institute of Scientific and Technical Information of China (English)

    盛冬平; 朱如鹏; 靳广虎; 陆凤霞; 鲍和云

    2015-01-01

    A new non-linear bending-torsional coupled model for double-row planetary gear set was proposed, and planet’s eccentricity error, static transmission error, and time-varying meshing stiffness were taken into consideration. The solution of differential governing equation of motion is determined by applying the Fourier series method. The behaviors of dynamic load sharing characteristics affected by the system parameters including gear eccentricities error, ring gear’s supporting stiffness, planet’s bearing stiffness, torsional stiffness of first stage carrier and input rotation rate were investigated qualitatively and systematically, and sun gear radial orbits at first and second stage were explored as well. Some theoretical results are summarized as guidelines for further research and design of double-row planetary gear train at last.

  3. Global Architecture of Planetary Systems (GAPS), a project for the whole Italian Community

    CERN Document Server

    Poretti, Ennio; Claudi, Riccardo; Cosentino, Rosario; Covino, Elvira; Desidera, Silvano; Gratton, Raffaele; Lanza, Antonino F; Maggio, Antonio; Micela, Giuseppina; Molinari, Emilio; Pagano, Isabella; Piotto, Giampaolo; Smareglia, Riccardo; Sozzetti, Alessandro

    2015-01-01

    The GAPS project is running since 2012 with the goal to optimize the science return of the HARPS-N instrument mounted at Telescopio Nazionale Galileo. A large number of astronomers is working together to allow the Italian community to gain an international position adequate to the HARPS-N capabilities in the exoplanetary researches. Relevant scientific results are being obtained on both the main guidelines of the collaboration, i.e., the discovery surveys and the characterization studies. The planetary system discovered around the southern component of the binary XO-2 and its characterization together with that of the system orbiting the northern component are a good example of the completeness of the topics matched by the GAPS project. The dynamics of some planetary systems are investigated by studying the Rossiter-McLaughlin effect, while host stars are characterized by means of asteroseismology and star-planet interaction.

  4. Mpo - the Bepicolombo Mercury Planetary Orbiter.

    Science.gov (United States)

    Benkhoff, J.

    2008-09-01

    Introduction: BepiColombo is an interdisciplinary mission to explore the planet Mercury through a partnership between ESA and Japan's Aerospace Exploration Agency (JAXA). From their dedicated orbits two spacecrafts, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO), will be studying the planet and its environment Both orbiter will be launched together on an ARIANE 5. The launch is foreseen for Summer 2014 with arrival in Summer 2020. Solar electric propulsion will be used for the journey to Mercury. In November 2004, the BepiColombo scientific payload has been officially approved. Payload of BepiColombo: The MPO scientific payload comprises eleven instruments/instrument packages; the MMO scientific payload consists of five instruments/instrument packages. Together, the scientific payload of both spacecraft will provide the detailed information necessary to understand Mercury and its magnetospheric environment and to find clues to the origin and evolution of a planet close to its parent star. The MPO will focus on a global characterization of Mercury through the investigation of its interior, surface, exosphere and magnetosphere. In addition, it will be testing Einstein's theory of general relativity. Major effort was put into optimizing the scientific return by defining the payload complement such that individual measurements can be interrelated and complement each other. A detailed overview of the status of BepiColombo will be given with special emphasis on the MPO and its payload complement. BepiColombo factsheet BepiColombo is Europe's first mission to Mercury, the innermost planet of the Solar System, and ESA's first science mission in collaboration with Japan. A satellite 'duo' - consisting of an orbiter for planetary investigation and one for magnetospheric studies - Bepi- Colombo will reach Mercury after a six-year journey towards the inner Solar System, to make the most extensive and detailed study of the planet ever performed

  5. Research

    African Journals Online (AJOL)

    A possible strategy to influence students' understanding and perception ... researcher in higher education teaching and learning facilitated the data- ..... B. Qualitative content analysis in nursing research: Concepts, procedures and measures.

  6. Extreme Environment Simulation - Current and New Capabilities to Simulate Venus and Other Planetary Bodies

    Science.gov (United States)

    Kremic, Tibor; Vento, Dan; Lalli, Nick; Palinski, Timothy

    2014-01-01

    Science, technology, and planetary mission communities have a growing interest in components and systems that are capable of working in extreme (high) temperature and pressure conditions. Terrestrial applications range from scientific research, aerospace, defense, automotive systems, energy storage and power distribution, deep mining and others. As the target environments get increasingly extreme, capabilities to develop and test the sensors and systems designed to operate in such environments will be required. An application of particular importance to the planetary science community is the ability for a robotic lander to survive on the Venus surface where pressures are nearly 100 times that of Earth and temperatures approach 500C. The scientific importance and relevance of Venus missions are stated in the current Planetary Decadal Survey. Further, several missions to Venus were proposed in the most recent Discovery call. Despite this interest, the ability to accurately simulate Venus conditions at a scale that can test and validate instruments and spacecraft systems and accurately simulate the Venus atmosphere has been lacking. This paper discusses and compares the capabilities that are known to exist within and outside the United States to simulate the extreme environmental conditions found in terrestrial or planetary surfaces including the Venus atmosphere and surface. The paper then focuses on discussing the recent additional capability found in the NASA Glenn Extreme Environment Rig (GEER). The GEER, located at the NASA Glenn Research Center in Cleveland, Ohio, is designed to simulate not only the temperature and pressure extremes described, but can also accurately reproduce the atmospheric compositions of bodies in the solar system including those with acidic and hazardous elements. GEER capabilities and characteristics are described along with operational considerations relevant to potential users. The paper presents initial operating results and concludes

  7. Proactive Integration of Planetary Protection Needs Into Early Design Phases of Human Exploration Missions

    Science.gov (United States)

    Race, Margaret; Conley, Catharine

    Planetary protection (PP) policies established by the Committee on Space Research (COSPAR) of the International Council for Science have been in force effectively for five decades, ensuring responsible exploration and the integrity of science activities, for both human and robotic missions in the Solar System beyond low Earth orbit (LEO). At present, operations on most bodies in the solar system are not constrained by planetary protection considerations because they cannot be contaminated by Earth life in ways that impact future space exploration. However, operations on Mars, Europa, and Enceladus, which represent locations with biological potential, are subject to strict planetary protection constraints for missions of all types because they can potentially be contaminated by organisms brought from Earth. Forward contamination control for robotic missions is generally accomplished through a combination of activities that reduce the bioload of microbial hitchhikers on outbound spacecraft prior to launch. Back contamination control for recent robotic missions has chiefly been accomplished by selecting sample-return targets that have little or no potential for extant life (e.g., cometary particles returned by Stardust mission). In the post-Apollo era, no human missions have had to deal with planetary protection constraints because they have never left Earth orbit. Future human missions to Mars, for example, will experience many of the challenges faced by the Apollo lunar missions, with the added possibility that astronauts on Mars may encounter habitable environments in their exploration or activities. Current COSPAR PP Principles indicate that safeguarding the Earth from potential back contamination is the highest planetary protection priority in Mars exploration. While guidelines for planetary protection controls on human missions to Mars have been established by COSPAR, detailed engineering constraints and processes for implementation of these guidelines have not

  8. Impact cratering: The effect of crustal strength and planetary gravity

    OpenAIRE

    O'Keefe, John D.; Ahrens, Thomas J.

    1981-01-01

    Upon impact of a meteorite with a planetary surface the resulting shock wave both ‘processes’ the material in the vicinity of the impact and sets a larger volume of material than was subjected to high pressure into motion. Most of the volume which is excavated by the impact leaves the crater after the shock wave has decayed. The kinetic energy which has been deposited in the planetary surface is converted into reversible and irreversible work, carried out against the planetary gravity field a...

  9. A New Perspective on Trapped Radiation Belts in Planetary Atmospheres

    Science.gov (United States)

    Diaz, A.; Lodhi, M. A. K.; Wilson, T. L.

    2005-01-01

    The charged particle fluxes trapped in the magnetic dipole fields of certain planets in our Solar System are interesting signatures of planetary properties in space physics. They also represent a source of potentially hazardous radiation to spacecraft during planetary and interplanetary exploration. The Earth s trapped radiation belts have been studied for years and the physical mechanisms by which primary radiation from the Sun and Galaxy is captured is well understood. The higher-energy particles collide with molecules in the planetary atmosphere and initiate large cascades of secondary radiation which itself becomes trapped by the magnetic dipole field of the planet. Some of it is even backscattered as albedo neutrons.

  10. Simulation of Vertical Planetary Mill Based on Virtual Prototyping

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The mechanical model of vertical planetary mill is set up, whose dynamic and kinetic characteristics are described as well. Based on the analysis of system dynamics of vertical planetary mill, virtual prototyping technology is applied in the simulation of this mill. The development of virtual prototype of equipment, virtual test and optimization of virtual prototype are stated in detail. Some useful conclusions which have theoretical meaning for the manufacturing of vertical planetary mill have been obtained. Furthermore, it is pointed out that virtual prototyping technology shows great advantage and is bound to become a main method of developing product in the future.

  11. Physics of Planetary Rings. Celestial Mechanics of Continuous Media.

    Science.gov (United States)

    Fridman, Alexei M., Gorkavyi, Nikolai N.

    Physics of Planetary Rings describes striking structures of the planetary rings of Saturn, Uranus, Jupiter, and Neptune: Narrow ringlets, spiral waves, and a chain of clumps. The author has contributed essential ideas to the full understanding of planetary rings via the stability analysis of dynamical systems. The combination of a high-quality description, the set of interesting illustrations, as well as the fascinating and natural presentation will make this book of considerable interest to astronomers, physicists, and mathematicians as well as students. There is no competing text for this book so far.

  12. Planetary and exoplanetary low frequency radio observations from the Moon

    Science.gov (United States)

    Zarka, P.; Bougeret, J.-L.; Briand, C.; Cecconi, B.; Falcke, H.; Girard, J.; Grießmeier, J.-M.; Hess, S.; Klein-Wolt, M.; Konovalenko, A.; Lamy, L.; Mimoun, D.; Aminaei, A.

    2012-12-01

    We analyze the planetary and exoplanetary science that can be carried out with precursor as well as future low frequency radio instruments on the Moon, assessing the limiting noise sources, comparing them to the average and peak spectra of all planetary radio components as they will be seen from the Lunar surface or orbit. We identify which objectives will be accessible with each class of instrument, and discuss the interest of these observations compared to observations by planetary probes and to ground-based observations by large low-frequency radio arrays. The interest of goniopolarimetry is emphasized for pathfinder missions.

  13. PDS4: Developing the Next Generation Planetary Data System

    Science.gov (United States)

    Crichton, D.; Beebe, R.; Hughes, S.; Stein, T.; Grayzeck, E.

    2011-01-01

    The Planetary Data System (PDS) is in the midst of a major upgrade to its system. This upgrade is a critical modernization of the PDS as it prepares to support the future needs of both the mission and scientific community. It entails improvements to the software system and the data standards, capitalizing on newer, data system approaches. The upgrade is important not only for the purpose of capturing results from NASA planetary science missions, but also for improving standards and interoperability among international planetary science data archives. As the demands of the missions and science community increase, PDS is positioning itself to evolve and meet those demands.

  14. Efficiency Formulas for the 2K-H Type Planetary Gear Train (A II Type Planetary Gear Train with an Idie Planet Pinion)

    OpenAIRE

    岸, 佐年; 両角, 宗晴

    1989-01-01

    A new 2K-H type planetary gear train with an idle planet pinion is devised. This planetary gear train consists of only spur gears. The function of this planetary gear train is equal to those of the internal 2K-H type planetary gear train and the bevel gear type planetary gear train. The efficiency formulas of this planetary gear train are derived from the theoretical analysis and tabulated. The formulas tabulated can be utilized safely without any understanding of the underlying theory.

  15. ISO Spectroscopy of Proto-Planetary Nebulae

    Science.gov (United States)

    Hrivnak, Bruce J.

    2000-01-01

    The goal of this program was to determine the chemical properties of the dust shells around protoplanetary nebulae (PPNs) through a study of their short-wavelength (6-45 micron) infrared spectra. PPNs are evolved stars in transition from the asymptotic giant branch to the planetary nebula stages. Spectral features in the 10 to 20 gm region indicate the chemical nature (oxygen- or carbon-rich), and the strengths of the features relate to the physical properties of the shells. A few bright carbon-rich PPNs have been observed to show PAH features and an unidentified 21 micron emission feature. We used the Infrared Space Observatory (ISO) to observe a sample of IRAS sources that have the expected properties of PPNs and for which we have accurate positions. Some of these have optical counterparts (proposal SWSPPN01) and some do not (SWSPPN02). We had previously observed these from the ground with near-infrared photometry and, for those with visible counterparts, visible photometry and spectroscopy, which we have combined with these new ISO data in the interpretation of the spectra. We have completed a study of the unidentified emission feature at 21 micron in eight sources. We find the shape of the feature to be the same in all of the sources, with no evidence of any substructure. The ratio of the emission peak to continuum ranges from 0.13 to 1.30. We have completed a study of seven PPNs and two other carbon-rich objects for which we had obtained ISO 2-45 micron observations. The unidentified emission features at 21 and 30 micron were detected in six sources, including four new detections of the 30 micron feature. This previously unresolved 30 micron feature was resolved and found to consist of a broad feature peaking at 27.2 micron (the "30 micron" feature) and a narrower feature peaking at 25.5 micron (the "26 micron" feature). This new 26 micron feature is detected in eight sources and is particularly strong in IRAS Z02229+6208 and 16594-4656. The unidentified

  16. ISO Spectroscopy of Proto-Planetary Nebulae

    Science.gov (United States)

    Hrivnak, Bruce J.

    2000-01-01

    The goal of this program was to determine the chemical properties of the dust shells around protoplanetary nebulae (PPNs) through a study of their short-wavelength (6-45 micron) infrared spectra. PPNs are evolved stars in transition from the asymptotic giant branch to the planetary nebula stages. Spectral features in the 10 to 20 gm region indicate the chemical nature (oxygen- or carbon-rich), and the strengths of the features relate to the physical properties of the shells. A few bright carbon-rich PPNs have been observed to show PAH features and an unidentified 21 micron emission feature. We used the Infrared Space Observatory (ISO) to observe a sample of IRAS sources that have the expected properties of PPNs and for which we have accurate positions. Some of these have optical counterparts (proposal SWSPPN01) and some do not (SWSPPN02). We had previously observed these from the ground with near-infrared photometry and, for those with visible counterparts, visible photometry and spectroscopy, which we have combined with these new ISO data in the interpretation of the spectra. We have completed a study of the unidentified emission feature at 21 micron in eight sources. We find the shape of the feature to be the same in all of the sources, with no evidence of any substructure. The ratio of the emission peak to continuum ranges from 0.13 to 1.30. We have completed a study of seven PPNs and two other carbon-rich objects for which we had obtained ISO 2-45 micron observations. The unidentified emission features at 21 and 30 micron were detected in six sources, including four new detections of the 30 micron feature. This previously unresolved 30 micron feature was resolved and found to consist of a broad feature peaking at 27.2 micron (the "30 micron" feature) and a narrower feature peaking at 25.5 micron (the "26 micron" feature). This new 26 micron feature is detected in eight sources and is particularly strong in IRAS Z02229+6208 and 16594-4656. The unidentified

  17. Iron isotope systematics in planetary reservoirs

    Science.gov (United States)

    Sossi, Paolo A.; Nebel, Oliver; Foden, John

    2016-10-01

    Iron is the only polyvalent major element, and controls reduction-oxidation (redox) reactions in a host of geologic processes and reservoirs, from the mineral- to planetary-scale, on Earth and in space. Mass transfer of Fe is often accompanied by changes in bonding environment, meaning the resultant variation in bond-strength in crystals, liquids and gases induces stable isotope fractionation, even at high temperatures. In the absence of iron exchange, electron transfer can also affect iron's valence state and calculated oxygen fugacity (fO2), however its isotope composition remains unchanged. Thus, iron isotopes are a powerful tool to investigate processes that involve mass transfer, redox reactions and changes in bonding environment in planetary systems. Primitive chondritic meteorites show remarkable isotopic homogeneity, δ57 Fe = - 0.01 ± 0.01 ‰ (2SE), over a wide range of Fe/Mg vs Ni/Mg, a proxy for fO2 in the solar nebula. In chondrites, there are iron isotope differences between metal and silicates that become more pronounced at higher metamorphic grades. However, on a planetary scale, Mars and Vesta overlap with chondrites, preserving no trace of core formation or volatile depletion on these bodies. Upon assessment of pristine lherzolites, the Bulk Silicate Earth is heavier than chondrites (δ57 Fe = + 0.05 ± 0.01 ‰; 2SE), and similar to or slightly lighter than the Moon. That the mantles of some differentiated inner solar system bodies extend to heavier compositions (+ 0.2 ‰) than chondrites may principally result from volatile depletion either at a nebular or late accretion stage. Within terrestrial silicate reservoirs, iron isotopes provide insight into petrogenetic and geodynamic processes. Partial melting of the upper mantle produces basalts that are heavier than their sources, scaling with degree of melting and driving the increasingly refractory peridotite to lighter compositions. Mid-Ocean Ridge Basalts (MORBs) are homogeneous to δ57 Fe

  18. Emirates Mars Mission Planetary Protection Plan

    Science.gov (United States)

    Awadhi, Mohsen Al

    2016-07-01

    The United Arab Emirates is planning to launch a spacecraft to Mars in 2020 as part of the Emirates Mars Mission (EMM). The EMM spacecraft, Amal, will arrive in early 2021 and enter orbit about Mars. Through a sequence of subsequent maneuvers, the spacecraft will enter a large science orbit and remain there throughout the primary mission. This paper describes the planetary protection plan for the EMM mission. The EMM science orbit, where Amal will conduct the majority of its operations, is very large compared to other Mars orbiters. The nominal orbit has a periapse altitude of 20,000 km, an apoapse altitude of 43,000 km, and an inclination of 25 degrees. From this vantage point, Amal will conduct a series of atmospheric investigations. Since Amal's orbit is very large, the planetary protection plan is to demonstrate a very low probability that the spacecraft will ever encounter Mars' surface or lower atmosphere during the mission. The EMM team has prepared methods to demonstrate that (1) the launch vehicle targets support a 0.01% probability of impacting Mars, or less, within 50 years; (2) the spacecraft has a 1% probability or less of impacting Mars during 20 years; and (3) the spacecraft has a 5% probability or less of impacting Mars during 50 years. The EMM mission design resembles the mission design of many previous missions, differing only in the specific parameters and final destination. The following sequence describes the mission: 1.The mission will launch in July, 2020. The launch includes a brief parking orbit and a direct injection to the interplanetary cruise. The launch targets are specified by the hyperbolic departure's energy C3, and the hyperbolic departure's direction in space, captured by the right ascension and declination of the launch asymptote, RLA and DLA, respectively. The targets of the launch vehicle are biased away from Mars such that there is a 0.01% probability or less that the launch vehicle arrives onto a trajectory that impacts Mars

  19. FOREWORD: International Conference on Planetary Boundary Layer and Climate Change

    Science.gov (United States)

    Djolov, G.; Esau, I.

    2010-05-01

    structural uncertainties is hard to reduce and this could be one of the reasons determining slow progress in narrowing the climate model uncertainty range over the last 30 years (Knutti and Hagerl, Nature Geoscience, 2008). One of the most prominent structural uncertainties in the ongoing transient climate change is related to poor understanding and hence incorrect modelling of the turbulent physics and dynamics processes in the planetary boundary layer. Nevertheless, the climate models continue to rely on physically incorrect boundary layer parameterizations (Cuxart et al., BLM, 2006), whose erroneous dynamical response in the climate models may lead to significant abnormalities in simulated climate. At present, international efforts in theoretical understanding of the turbulent mixing have resulted in significant progress in turbulence simulation, measurements and parameterizations. However, this understanding has not yet found its way to the climate research community. Vice versa, climate research is not usually addressed by the boundary layer research community. The gap needs to be closed in order to crucially complete the scientific basis of climate change studies. The focus of the proposed forum could be formulated as follows: The planetary boundary layer determines several key parameters controlling the Earth's climate system but being a dynamic sub-system, just a layer of turbulent mixing in the atmosphere/ocean, it is also controlled by the climate system and its changes. Such a dynamic relationship causes a planetary boundary layer feedback (PBL-feedback) which could be defined as the response of the surface air temperature on changes in the vertical turbulent mixing. The forum participants have discussed both climatological and fluid dynamic aspects of this response, in order to quantify their role in the Earth's transient heat uptake and its representation in climate models. The choice of the forum location and dates are motivated by the role of tropical oceans

  20. Statistical scaling properties of planetary topographic fields

    Science.gov (United States)

    Landais, François; Schmidt, Frederic; Lovejoy, Shaun

    2016-10-01

    The massive acquisition of altimetric data in the solar system has motivated numerous analysis of the topography of planets, in particular the surface roughness. Many statistical indicators have been proposed and widely explored in order to study the surface of plantets. Useful informations have been obtained by the use of those indicators but they often have the disadvantage of been defined at a given scale. By construction, they do not directly take into account the well-established scale symmetry that generally occurs in the case of natural surfaces. Indeed, topography can not be interpreted as a stationary field, meaning that statistical parameters like the mean or the standard deviation exhibit a dependence toward scales. This subject has been widely studied in the past, parallel to the development of the notion of fractals. It is now well established that topography is often efficiently modelled by fractal simulations. More interestingly, the fractal theory provides a mathematical formalism to describe the scale dependence of statistical parameters toward scales. It turns out that simple power-law relations efficiently approach the variability of planetary surfaces.However, The observed intermittency (spatial dependance of the scaling laws) apparently rejects the idea of a global description of any topographic field at the planetary scale. Still, modern developments in the fractal theory might be able to give full account to the observed variability and intermittency. It is possible to extent the fractal interpretation of topography to a multifractal statistical object requiring an infinite number of fractal dimensions (one for each statistical moment order). In the present study, we analyse the global scaling laws of topography for different body in the solar system in order to test the multifractal formalism. We then compare the fractal and multifractal parameters form a body to the other. We demonstrate that a change of processes governing the global